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Abstract
Diameter, radius and eccentricities are fundamental graph parameters, which are extensively studied
in various computational settings. Typically, computing approximate answers can be much more
efficient compared with computing exact solutions. In this paper, we give a near complete char-
acterization of the trade-offs between approximation ratios and round complexity of distributed
algorithms for approximating these parameters, with a focus on the weighted and directed variants.

Furthermore, we study bi-chromatic variants of these parameters defined on a graph whose
vertices are colored either red or blue, and one focuses only on distances for pairs of vertices that
are colored differently. Motivated by applications in computational geometry, bi-chromatic diameter,
radius and eccentricities have been recently studied in the sequential setting [Backurs et al. STOC’18,
Dalirrooyfard et al. ICALP’19]. We provide the first distributed upper and lower bounds for such
problems.

Our technical contributions include introducing the notion of approximate pseudo-center, which
extends the pseudo-centers of [Choudhary and Gold SODA’20], and presenting an efficient distributed
algorithm for computing approximate pseudo-centers. On the lower bound side, our constructions
introduce the usage of new functions into the framework of reductions from 2-party communication
complexity to distributed algorithms.
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1 Introduction

The diameter and radius are central graph parameters, defined as the maximum and minimum
eccentricities over all vertices, respectively, where the eccentricity of a vertex v is the maximum
distance out of v. Computing the diameter and radius of a given graph are cornerstone
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problems with abundant applications. This is particularly the case in the context of distributed
computing, where distances between nodes in a network (and in particular the graph diameter)
directly influence the time it takes to communicate throughout the network.

We focus on computing the diameter, radius and eccentricities in the classic CONGEST
model of distributed computation, in which n nodes of a synchronous network communicate
by exchanging messages of O(logn) bits with their neighbors in the underlying network graph.
In a seminal work, Frischknecht et al. [35] showed that the diameter is hard to compute in
CONGEST, namely that Ω̃(n)1 rounds are required, even in undirected unweighted graphs.
Abboud et al. [1] showed that the same holds for computing the radius. Both of these results
are tight up to logarithmic factors due to algorithms that compute all pairs shortest paths
(APSP) in a given unweighted, undirected graph in O(n) rounds, see Lenzen and Peleg, and
Peleg et al. [50,53]. Recently, Bernstein and Nanongkai [14], presented an algorithm which
computes exact APSP in a given weighted, directed graph in Õ(n) rounds as well.

As computing the diameter and radius exactly in general graphs is hard, a natural
relaxation is to settle for approximate computations. In an unweighted, undirected graph, a
simple observation due to the triangle inequality is that computing a BFS tree from any node
yields a 2-approximation to the diameter or radius, and a 3-approximation of all eccentricities.

Obtaining a more thorough understanding of the complexity landscape of computing
approximations to these distance parameters has been an ongoing endeavour of the community.
The current state of the art for diameter approximation is the algorithm by Holzer et al. [40]
with round complexity of O(

√
n logn+D), that achieves a 3

2 -approximation of the diameter
in a given unweighted, undirected graph (further discussion is deferred to Section 1.2).

However, many open cases have remained, and unveiling the full picture of the trade-
offs between approximation ratios and round complexity for distance parameters in the
CONGEST model has remained a central open problem. In this paper, we give a near-complete
characterization of this trade-off for the problems of diameter, radius and eccentricities,
focusing on the weighted and/or directed variants. For the problem of directed diameter,
only the range [ 3

2 , 2] of approximation ratios remains open.
In some cases, originally motivated by computational geometry problems [4,29,46,57], we

are interested in a “bi-chromatic” definition of the parameters. In the bi-chromatic setting,
the vertices are partitioned into two sets, S and T = V \ S, and the bi-chromatic eccentricity
of a node s ∈ S is the maximum distance from s to a node in T . The bi-chromatic diameter
and radius are the maximum and minimum bi-chromatic eccentricities of nodes in S.

The bi-chromatic versions of diameter and radius have received much recent attention in
the sequential setting [11,24]. In this paper, we initiate the study of these problems in the
CONGEST model, by providing upper and lower bounds for these problems. For example, we
prove that a 5

3 -approximation to bi-chromatic diameter in an unweighted, undirected graph
can be computed in Õ(

√
n + D) rounds, and we prove this is tight in the sense that any

improvement in the approximation ratio incurs a blowup in the round complexity to Ω̃(n).
A more comprehensive display of our results follows. Also, a comparison with previous

work is depicted in Table 1 and Table 2 and is elaborated upon in Section 1.2.

1.1 Our contributions and techniques
As mentioned earlier, the eccentricity ecc(v) of a vertex v is the distance maxu∈V d(v, u).
The diameter D is the largest eccentricity in the graph, and the radius r is the smallest.

1 Throughout the paper, Õ and Ω̃ are used to hide poly-logarithmic factors
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Table 1 Upper bounds for the problems considered in this paper. A variant can be weighted,
directed, both, or neither. Upper bounds hold for the listed variants and all subsets of those variants.
Approximation factors are multiplicative but may omit additive error. The value k may be any
integer greater or equal to 1. We denote the round complexity of the current best exact weighted
SSSP algorithm by T (SSSP ), currently Õ(min

{√
nD,
√
nD

1
4 + n

3
5

}
+D) by [34].

∗for k = 1

Problem Approx. Variant Upper Bound Õ(·) Reference
Diameter Exact wted dir n [14]

2− 1
2k n

1
k+1 +D Theorem 9, [39]∗

2 wted dir T (SSSP ) Corollary 4
2 + ε wted

√
n+D [13]

wted dir
√
nD1/4 +D Corollary 3

Radius Exact wted dir n [14]
2− 1

2k n
1

k+1 +D Theorem 9
2 wted dir T (SSSP ) Corollary 4

2 + ε wted
√
n+D Corollary 2

wted dir
√
nD1/4 +D Corollary 3

Eccentricities Exact wted dir n [14]
3− 4

2k+1 n
1

k+1 +D Theorem 9
2 wted dir T (SSSP ) Corollary 4

2 + ε wted
√
n+D Corollary 2

wted dir
√
nD1/4 +D Corollary 3

Bi-chromatic Diameter Exact wted dir n [14]
5/3

√
n+D Theorem 10

2 wted T (SSSP ) Theorem 11

Directed/weighted Radius and Eccentricities. We present a connection between the
complexity of computing or approximating the Single Source Shortest Paths (SSSP) problem
and the complexity of approximating radius, diameter and eccentricities. Formally, we prove
the following theorem in Section 3.

I Theorem 1. For any ε ≥ 0, given a (1 + ε)-approximation algorithm Aε for weighted and
directed SSSP running in T (n, ε,D) rounds, there exists an algorithm for (2 + ε3 + 3ε2 + 4ε)-
approximate diameter, radius, and all eccentricities in Õ(T (n, ε,D) +D) rounds on weighted,
directed graphs.

We now describe the challenges in proving the above and how we cope with them. A
useful notion for distance parameters is the center of a graph, which is the vertex with the
lowest eccentricity. Given the center c of a graph, we can easily approximate all eccentricities
of a given graph by performing an SSSP algorithm rooted at c, and letting each node v
estimate its eccentricity by outputting d(v, c) + ecc(c). However, computing the center of a
graph, or even its eccentricity (the radius), is a hard task that requires Ω̃(n) rounds [1].

For proving Theorem 1, we rely on an approach of Choudhary and Gold [22]. Here, one
defines a notion of a pseudo-center and one then shows how to compute a pseudo-center of
size O(log2 n) sequentially in near-linear time. A pseudo-center C is a set of nodes, whose
goal is to mimic the center of the graph, by promising that all eccentricities are at least the
maximal distance between any node to the pseudo-center C. Using such a pseudo-center, one
estimates the eccentricity of every node, similarly to the case of computing the actual center.

OPODIS 2020
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Table 2 Lower bounds for the problems considered in this paper. A variant can be weighted,
directed, both, or neither. Lower bounds hold for the listed variants and all supersets of those
variants. Approximation factors are multiplicative.

Problem Approx. Variant Lower Bound Ω̃(·) Reference
Diameter 3/2− ε n [1]

2− ε wted [41]
poly(n) wted

√
n+D [49]

dir Theorem 8
Radius 3/2− ε n [1]

2− ε wted Theorem 5
dir

poly(n) wted
√
n+D Corollary 6

dir
Eccentricities 5/3− ε n [1]

2− ε wted [41]
dir Theorem 5

poly(n) wted
√
n+D Corollary 6

dir
Bi-chromatic Diameter 5/3− ε n Theorem 14

2− ε wted [41]
dir Theorem 15

poly(n) wted
√
n+D Corollary 6

dir

The algorithm of [22] for computing a small pseudo-center can be viewed as a reduction
to Single Source Shortest Paths (SSSP), which is very efficient in the sequential setting.
However, the current state-of-the-art distributed complexity of computing exact SSSP is
very costly, and hence we wish to avoid it. To overcome this, we introduce the notion of an
approximate pseudo-center, which generalizes the notion of a pseudo-center. We prove that
(i) an approximate pseudo-center of small size can be computed efficiently in a distributed
manner (thus avoiding the complexities of exact SSSP), and (ii) an approximate pseudo-center
is still sufficient for approximating the required distance parameters.

From Theorem 1, using the (1 + ε)-approximate SSSP algorithms of [13,34], which run in
Õ((
√
n+D)/ε) rounds on weighted, undirected graphs and Õ((

√
nD1/4 +D)/ε) rounds on

weighted, directed graphs, respectively, we deduce the following corollaries:

I Corollary 2. For any ε = 1/polylog(n), there exists an algorithm for (2 + ε)-approximate
diameter, radius and all eccentricities running in Õ(

√
n+D) rounds on nonnegative weighted

graphs, with n nodes and hop-diameter D.

I Corollary 3. For any ε = 1/polylog(n), there exists an algorithm for (2 + ε)-approximate
diameter, radius and all eccentricities running in Õ(

√
nD1/4 +D) rounds on nonnegative

weighted, directed graphs, with n nodes and hop-diameter D.

Using the exact SSSP algorithm of Chechik and Mukhtar [21] we obtain the following.

I Corollary 4. There exists an algorithm for 2-approximate radius, diameter and all eccent-
ricities running in Õ(

√
nD1/4 +D) rounds on nonnegative weighted, directed graphs, with n

nodes and hop-diameter D.

Regarding radius, the only previous result regarding the complexity of approximating
the radius in the CONGEST model is due to [1], in which they showed that for any ε > 0,
computing an (3/2−ε)-approximation to the radius in undirected, unweighted graphs requires
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Ω̃(n) rounds. Abboud et al. [1] show that any algorithm computing an ( 5
3 − ε)-approximation

of all eccentricities requires Ω̃(n) rounds as well. Having a complete understanding of the
relationship between approximation ratio and the round complexity of computing unweighted,
undirected radius remains an intriguing open problem. As a step towards resolving this
problem, we give a nearly full characterization of the approximation factor to round complexity
mapping for radius in weighted or directed graphs in the CONGEST model.

In Section 4 we prove the following.

I Theorem 5. Given any constant ε > 0, any algorithm (even randomized) computing an
(2− ε)-approximation to the weighted (directed) radius in a given weighted (directed) graph
G requires Ω̃(n) rounds.

A standard technique for proving lower bounds for the CONGEST model, is to reduce it
from 2-party communication complexity. In the context of the distance parameters discussed
in this work, this framework was used by [35] to show that any algorithm that distinguishes
between networks with diameter 2 and 3 requires Ω̃(n) rounds. Later, [1] showed that this
lower bound holds even when one considers sparse networks with only O(n) edges (they also
proved more results as discussed in the related work section).

Many of the papers that employ this framework, reduce from either the Set Disjointness
function, the Equality function, or the Gap Disjointness function [10,16,23,25]. In this work,
we enhance this framework by showing lower bounds using reductions from other functions,
which were not used previously to obtain lower bounds for the CONGEST model. Namely, in
the proof of Theorem 5, we use the Tribes function, defined by Jayram et al. in [45], and
the Hitting Set Existence (HSE) function, which is a communication complexity variant of
a problem introduced by Abboud et al. in [3]. We elaborate upon this framework and the
functions that we use in Section 2.

The following is a corollary of Theorem 7 and Theorem 8 which are stated below for the
diameter, since any finite approximation to the radius, implies a finite approximation to the
diameter, as r ≤ D ≤ 2r.

I Corollary 6. Given any positive function α(n), any algorithm (even randomized) computing
an α(n)-approximation to the weighted (directed) radius in a given weighted (directed) graph
G requires Ω̃(

√
n+D) rounds.

Directed/Weighted Diameter. In previous work, Holzer and Pinsker [41] showed a lower
bound of Ω̃(n) rounds for computing a (2 − ε)-approximation of the diameter of a given
weighted graph. Shortly after, Becker et al. [13] designed an algorithm that computes a
(2 + o(1))-approximation of weighted and directed diameter in Õ(

√
nD1/4 +D) rounds. Such

an algorithm makes one wonder, is there a smooth trade-off between the round complexity
and the approximation ratio when going beyond a 2-approximation, for either the directed
or weighted variants? In other words, can one further reduce the round complexity if we are
willing to settle for a worse approximation ratio? For weighted diameter, this question was
resolved by Lenzen et al. [49] in the negative, in the sense that the dependence on n in the
algorithm of [13] is necessary (up to poly-logarithmic factors) for any approximation of the
diameter in weighted or directed graphs. We give a proof of this result for completeness, and
this allows us to more easily present a similar new result for the bi-chromatic diameter case.
The bi-chromatic diameter is a variant of the diameter problem that is discussed later.

I Theorem 7. Given any positive function α(n), any algorithm (even randomized) computing
an α(n)-approximation to the weighted diameter or bi-chromatic diameter in a given graph
G requires Ω̃(

√
n+D) rounds.

OPODIS 2020
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I Theorem 8. Given any positive function α(n), any algorithm (even randomized) computing
an α(n)-approximation to the diameter in a given directed graph G requires Ω̃(

√
n+D) rounds.

To prove these theorems we reduce from the problem of Spanning Connected Subgraph
Verification (SCSV) to approximating these parameters. The SCSV problem is known to
admit the above lower bound due to Das Sarma et al. [25]. The key challenge is to construct
a reduction in a manner that can be efficiently simulated in CONGEST. The proofs of these
theorems are given in full version of the paper.

Undirected and Unweighted Diameter, Radius and Eccentricities. Abbout et al. [1] show
that for any ε > 0, any algorithm computing an ( 3

2 − ε)-approximation of diameter or radius
in unweighted undirected graphs has round complexity Ω̃(n). Furthermore, any algorithm
computing an ( 5

3 − ε)-approximation to all eccentricities has round complexity Ω̃(n). For
upper bounds, the state of art for diameter approximation is an algorithm by Holzer et
al. [40], computing a 3/2-approximation in Õ(

√
n logn+D) rounds. Fully understanding

the mapping of approximation ratios in the range [ 3
2 , 2) for diameter and radius, and in

the range ( 5
3 , 3) for all eccentricities, to their respective correct round complexity in the

CONGEST model remains open. As a step towards resolving this open problem, in the
full version of the paper, we present a simple distributed implementation of a sequential
approximation algorithm of Cairo et al. [15] for diameter, radius and eccentricities with the
following parameters.

I Theorem 9. For any k ∈ N, there exist algorithms that compute (2 − 1
2k )-approximate

diameter and radius and (3 − 4
2k+1 )-approximate eccentricities on unweighted, undirected

graphs, that have running time of Õ(n
1

k+1 +D) rounds w.h.p.

Bi-chromatic Diameter and Radius. To the best of our knowledge, no previous results
regarding bi-chromatic distance parameters are known in distributed settings. Roughly
speaking, these variants are defined using only distances between pairs of nodes in S × T
where S, T ⊆ V, T = V \S. DST ,RST respectively denote the ST -diameter maxs∈S,t∈T d(s, t)
and the ST -radius mins∈S maxt∈T d(s, t) (also see Section 2.1). In the following, T (SSSP )
refers to the distributed complexity of exact weighted SSSP. The proofs of these theorems
can be found in the full version of the paper

I Theorem 10. There is an algorithm with complexity Õ(
√
n+D) that given an undirected,

unweighted graph G = (V,E), and sets S ⊆ V, T = V \S, w.h.p. computes a value D∗ST such
that 3DST

5 − 6
5 ≤ D

∗
ST ≤ DST .

I Theorem 11. There is an algorithm with complexity T (SSSP ) that given an undirected
graph G = (V,E), and sets S ⊆ V, T = V \S, computes a value D∗ such that DST

2 −W/2 ≤
D∗ ≤ DST . Here W is the minimum edge weight in S × T .

We remark that using very similar algorithms to the ones of Theorem 10 and Theorem 11,
one can obtain the following results, whose proofs we omit due to similarity to the main
ideas in the proofs we provide for the above two theorems.
I Remark 12. There are algorithms with complexity Õ(

√
n+D) that given an undirected,

unweighted graph G = (V,E), and sets S, T ⊆ V , compute w.h.p. the following.
1. A value R∗ST such that RST ≤ R∗ST ≤ 5RST

3 + 5
3 , in the case that S = V \T .

2. A 2-approximation to all ST -eccentricities.
3. A 2-approximation to RST .
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I Remark 13. There are algorithms with complexity T (SSSP ) that given an undirected
graph G = (V,E), and sets S, T ⊆ V , compute the following.
1. A value R∗ST such that RST ≤ R∗ST ≤ 2RST +W , in the case that S = V \T . Here W is

the minimum edge weight in S × T .
2. A 3-approximation to all ST -eccentricities.
3. A 3-approximation to RST .

We complement these upper bounds with several lower bounds. We show that in the
weighted case, one cannot hope to do better than a 5

3 -approximation for bi-chromatic diameter
with O(n1−ε) rounds for some ε > 0. Additionally, as a step towards realizing the complexity
of finding a better than 2-approximation for directed diameter, we show that for bi-chromatic
diameter, in which one is tasked with finding the largest distance between a pair of nodes
in different sets of a given partition of the graph, finding such an approximation is a hard
task. Formally, we prove the following theorems in the full version of the paper due to lack
of space.

I Theorem 14. For all constant ε > 0, there is no o( n
log3 n

) round algorithm for computing
a ( 5

3 − ε)-approximation to the bi-chromatic diameter in an unweighted, undirected graph.

I Theorem 15. For all constant ε > 0, there is no o( n
log2 n

) round algorithm for computing
a (2− ε)-approximation to the bi-chromatic diameter in a directed graph.

Finally, we show that for both the directed and weighted cases, any approximation of the
bi-chromatic diameter requires Ω̃(

√
n+D) rounds. The weighted case is proved as part of

Theorem 7. In the full version of the paper we prove separately the directed case, which is
stated formally as follows.

I Theorem 16. Given any positive function α(n), any algorithm (even randomized) computing
an α(n)-approximation to the bi-chromatic diameter in a given directed graph G requires
Ω̃(
√
n+D) rounds.

1.2 Additional related work
The state of the art algorithm for 3/2-approximation of unweighted, undirected diameter
[40] was preceded by a significant number of works. Notable examples are Holzer’s and
Wattenhofer’s algorithm computing a 3/2-approximation of the diameter in undirected,
unweighted graphs in O(n3/4 +D) rounds [42], and the independent work of Peleg et al. [53],
which achieves the same approximation in O(D

√
n logn) rounds. Later, Lenzen and Peleg [50]

improved this upper bound to O(
√
n logn+D).

Approximations to more concrete variants of distance computations such as APSP
and SSSP have been extensively studied in the CONGEST as well. Examples include
the deterministic (1 + o(1))-approximation to APSP by Nanongkai [52], and the (1 + ε)-
approximation algorithm for SSSP of Becker et al. [13]. The near optimal algorithm of
Bernstein and Nanongkai for APSP [14] was preceded by a series of papers that set to realize
the complexity of APSP in CONGEST [5, 6, 8, 30, 43]. Given that [14] is a randomized Las
Vegas algorithm, there remains a gap between between the best known deterministic and
randomized algorithms for APSP, with the deterministic state of the art being Õ(n4/3) [7].
For SSSP, the state of the art algorithm of [21] was also preceded by a series of improvements
[13,30,31,34,37,38,48,52] from the folklore O(n) Bellman-Ford algorithm.

Approximations to distance computations have been studied in various distributed
settings, such as the congested clique model. Starting from [18], which presented the first
non trivial algorithms for both exact, and approximated APSP in the model. From there

OPODIS 2020



30:8 Distributed Distance Approximation

a series of works designed more and more efficient algorithms for approximating distances
in the model [13, 17, 20, 26, 31, 32, 36], with the most recent work being the poly(log logn)
approximations for APSP and Multi Source Shourtest Paths [27].

Conditional hardness results for these parameters are very well-studied in the sequential
setting, within fine-grained complexity, under assumptions such as the Strong Exponential
Time Hypothesis (SETH) [44]. For details, see e.g., the work of Backurs et al. [11] or the
survey by Vassilevska Williams [56]. Returning to the CONGEST model, in some topologies
such as planar graphs, work by Li and Parter [51] showed that the diameter of an unweighted,
undirected graph can even be computed in a sublinear number of rounds.

The lower bound framework for reducing 2-party communication complexity to CONGEST
was introduced by Peleg and Rubinovich in [54], in which they show that any algorithm
solving the minimum spanning tree (MST) problem has round complexity Ω̃(

√
n + D).

Since then, there has been a surge of lower bounds for the CONGEST model employing this
framework; examples include [2, 10, 23, 25, 28, 33]. In an independent concurrent work, [9]
show another angle of the landscape of the complexity of diameter approximation, proving
that for any constant ε > 0, any algorithm approximating the diameter of a given unweighted,
undirected graph, within a factor of ( 3

5 +ε), ( 4
7 +ε), or ( 6

11 +ε), must have a round complexity
of at least Ω̃(n1/3), Ω̃(n1/4), or Ω̃(n1/6), respectively.

2 Preliminaries

2.1 The Model & Definitions
This paper considers the CONGEST model of computation. In this model, a synchronized
network of n nodes is represented by an undirected, unweighted, simple graph G = (V,E). In
each round, each node can send a different message of O(logn) bits to each of its neighbors.

Next, we define the network parameters that we discuss in the paper.

I Definition 17. Given a weighted, directed graph G = (V,E), denote by d(u, v) the weight
of the lightest directed path starting at node u and ending at node v. If there is no such path,
we define d(u, v) =∞. Here, the weight of a path P is the sum of the weights of its edges.
The eccentricity ecc(u) of a node u is defined to be max

v∈V
d(u, v). The radius r of G is defined

to be min
v∈V

ecc(v). The diameter D of G is defined to be max
v∈V

ecc(v).

The ST variants of these distance parameters are defined as follows.

I Definition 18 (ST and bi-chromatic diameter, radius and eccentricities.). Given a weighted
graph G = (V,E), and two non empty subsets S, T ⊆ V , given v ∈ S, we define its ST -
eccentricity by ecc(v) = max

u∈T
d(v, u). We define the ST -diameter of G to be DST = max

v∈S
ecc(v).

The ST -radius of G is defined to be RST = min
v∈S

ecc(v). When S = V \T , the ST parameters
are called bi-chromatic.

2.2 The Communication Complexity Framework
The high level idea of applying the framework of reductions from 2-party communication
complexity to obtain lower bounds in the CONGEST model is as follows. We pick some
function f : {0, 1}k ×{0, 1}k → {0, 1}, and then reduce any efficient communication protocol
for it to an efficient CONGEST algorithm for the discussed problem. We start with our two
players Alice (A) and Bob (B), each of them respectively receives a binary string of length k
denoted by x, y ∈ {0, 1}k.
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We construct a graph G = (V,E) we call the fixed graph construction, and we partition the
set of vertices V into the sets VA, VB . We call the cut induced by VA, VB the communication
cut, and we denote the number of edges in this cut by |cut|.

Now, given x and the graph G[VA] (i.e., the subgraph of G induced by VA), Alice modifies
the graph G[VA] in any way that may depend only on x, and Bob does the same with y and
G[VB ]. Denote the resulting graph by Gx,y, and denote its number of nodes by n.

The resulting graph Gx,y should be constructed such that it has some property P (e.g.
radius at least 3) iff f(x, y) = 1. Now, assuming there is an algorithm Alg in the CONGEST
model that decides P in T rounds, Alice and Bob can simulate this algorithm on Gx,y, and
the only communication required between them is for simulating messages that are sent
on edges in the communication cut. Thus, Alice and bob can simulate Alg(Gx,y) while
communicating O(T · |cut| · logn) bits of communication. Furthermore, by the property of
Gx,y, deciding P on Gx,y allows them to compute f(x, y) with O(T · |cut| · logn) bits of
communication. Therefore, a lower bound on the communication complexity of f , implies a
lower bound on T , which is the round complexity of the distributed algorithm.

We next elaborate on the functions f that we use in our reductions.

I Definition 19 (The Set Disjointness Problem (Disj) [55]). Alice and Bob receive subsets
X,Y ⊆ [n], respectively, represented as binary vectors of length n. Their goal is to decide
whether X ∩ Y = ∅.

It is known by [12, 47, 55] that the randomized communication complexity of Disj on
inputs of size n is Ω(n).

I Definition 20 (The Tribes (ListDISJ) Problem [45]). Alice and Bob are given sets Ai, Bi ∈
{0, 1}N for each i ∈ [N ]. They must output 1 if and only if there is some i such that Ai and
Bi are disjoint, i.e. there is no j such that Aij = Bij = 1. We treat the inputs x and y as
binary strings of length N2, such that x = A1 ◦ ... ◦AN , y = B1 ◦ ... ◦BN . Here, ◦ refers to
string concatenation.

The Tribes function is defined in [45], where a lower bound of Ω(N2) communication bits
is proved, even for randomized protocols.

The full version of the paper contains discussion of additional functions which are employed
to prove the results not present in this version.

3 Approximation Algorithms

3.1 Approximations for weighted directed variants
In this section, we prove our approximation algorithms, starting with the connection between
the complexity of SSSP and approximating distance parameters. Formally, we prove the
following theorem, and then we deduce Corollaries 2, 3, and 4.

Theorem 1 For any ε ≥ 0, given a (1 + ε)-approximation algorithm Aε for weighted and
directed SSSP running in T (n, ε,D) rounds, there exists an algorithm for (2 + ε3 + 3ε2 + 4ε)-
approximate diameter, radius, and all eccentricities in Õ(T (n, ε,D) +D) rounds on weighted,
directed graphs.

We briefly remind the reader of the discussion in the introduction regarding the theorem.
In order to obtain fast algorithms and maintaining the quality of the approximation, we
generalize the notion of pseudo-center defined by Choudhary and Gold [22] into approximate
pseudo-center. We show how to compute such a set of small size, and we show that such a
set suffices to obtain the approximations detailed in Theorem 1.
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I Definition 21. A α-approximate pseudo-center is a set C of nodes such that for all nodes
v ∈ V , ecc(v) ≥ maxu∈V minc∈C {d(c, u)/α}.

We begin by showing that we can compute a small approximate pseudo-center efficiently.

I Lemma 22. Given a (1 + ε)-approximate, T (n, ε,D)-round SSSP algorithm Aε, there is a
Las Vegas algorithm to compute a (1 + ε)2-approximate pseudo-center of size O(log2(n)) of a
graph G = (V,E) in Õ(T (n, ε,D)) rounds of communication, with high probability.

Proof. Let the set C begin empty, and let W begin as the set V . Throughout the proof,
running Aε outward (inward) from a vertex v ∈ V means computing the distances from v to
the rest of the nodes (to v from the rest of the nodes). We repeat the following until W is
empty:

Assign each node in W to a set S independently with probability min {1, 24 log(n)/|W |}.
Resample if |S| < 8 logn or |S| > 36 logn.
Run Aε outward from each node in S, and for all u ∈ V , compute estimated distances
dAε

(S, u) = mins∈S {dAε
(s, u)}.

Let a be the node with the largest estimated distance from S. Then, we broadcast
dAε

(S, a) to all nodes in the graph using some BFS tree.
Run Aε inward from a, and remove all nodes u where dAε(u, a) ≥ dAε(S, a) from W .
Add S to C.

First, we argue that C is a (1 + ε)2-approximate pseudo-center. We only remove a
node u from W when dAε

(u, a) ≥ dAε
(S, a) for some sample S. Let a∗ be the node that is

truly farthest from S; then dAε
(S, a) ≥ d(S, a∗)/(1 + ε) ≥ maxx∈V minc∈C {d(c, x)/(1 + ε)},

because S ⊆ C. We also note that by similarly bounding the error of Aε, it holds that
dAε(u, a) ≤ (1 + ε)d(u, a) ≤ (1 + ε)ecc(u), so we may conclude that

(1 + ε)ecc(u) ≥ max
x∈V

min
c∈C
{d(c, x)/(1 + ε)}.

In other words, ecc(u) ≥ maxx∈V minc∈C
{
d(c, x)/(1 + ε)2}, which meets the definition of a

(1 + ε)2-pseudo-center.
Next, we argue that each iteration requires Õ(T (n, ε,D)) rounds. Using a Chernoff bound,

it is simple to show that in each round, 8 logn ≤ |S| ≤ 36 logn with probability at least
1− 1/n4, so we expect to resample a sub-constant number of times. We then run Aε from
each node in S and we run it again once to the node a, for a total of O(logn · T (n, ε,D))
rounds. The rest of each iteration involves a constant number of broadcasts that take O(D)
rounds in total.

Finally, we argue that with high probability, we only have O(logn) iterations in our
algorithm. We do this by showing that in iteration i, the size of W reduces by at least half
with high probability, i.e. |Wi|/2 ≥ |Wi+1|. Consider the set X ⊆Wi of |Wi|/2 nodes with
the smallest dAε

(u, a), u ∈Wi. Note that Si is a randomly sampled subset of Wi of size at
least 8 logn, and thus intersects X with probability at least (1− 1/n5), as argued in Lemma
23 below [22] with no further assumptions.

All nodes in Wi\X are at least as far as any node in that intersection under Aε, by
definition. This implies that for all u ∈Wi\X, dAε(u, a) ≥ dAε(S, a), which implies that all
|Wi|/2 nodes of Wi\X will be removed from Wi in iteration i. J

I Lemma 23 (Lemma 2.1 in [22]). Let U be a universe set of size at most n, and let
S1, ..., Sn ⊆ U such that |Si| ≥ L for each i ∈ [n]. Let c be some constant and r = n(c+1) lnn

L .
Let S ⊆ U be a random subset of size r, then it holds that S ∩Si 6= ∅ for all i with probability
1− n−c.
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Now that we showed how to compute an approximate pseudo-center, we show that it is
sufficient for approximating the distance parameters as claimed.

I Lemma 24. Given a (1 + ε)2-approximate pseudo-center C and a (1 + ε)-approximate
SSSP algorithm Aε taking T (n, ε,D) rounds, we may compute (2+ε3 +3ε2 +4ε)-approximate
eccentricities for all nodes in O(|C| · T (n, ε,D) +D) rounds.

Proof. First, we run Aε to and from each node in C, so that each node v ∈ V stores dAε(c, v)
and dAε

(v, c) for all c ∈ C. Each node u internally determines minc∈C {dAε
(c, u)}. Then,

using aggregation over a BFS tree, the nodes determine, and then broadcast the value
DAε

(C) := maxu∈V minc∈C {dAε
(c, u)}. Thus, the aggregation takes O(D) rounds. Each

node v approximates its eccentricity as maxc∈C {dAε
(v, c)}+DAε

(C).
First, note that this estimate is at least the true eccentricity of v, as each computed

distance represents some path in the graph, and in this distance a path can go from v to any
node in C and then any node in V .

We argue that this is a (2 + ε3 + 3ε2 + 4ε)-approximation. The estimated distance
maxc∈C {dAε

(v, c)} is at most (1 + ε) · ecc(v), because Aε overestimates by at most a factor
of 1 + ε. By our definition of (1 + ε)2-approximate pseudo-center, D(C) ≤ (1 + ε)2ecc(v).
Our estimate DAε

(C) is at most (1 + ε) · D(C), so DAε
(C) ≤ (1 + ε)3ecc(v). Thus,

maxc∈C {dAε(v, c)}+DAε(C) ≤ (1 + ε+ (1 + ε)3) · ecc(v) = (2 + ε3 + 3ε2 + 4ε) · ecc(v).
We compute Aε twice for each element of C, and broadcast a constant number of values

to all nodes, so the total number of rounds is O(|C| · T (n, ε,D) +D). J

Proof of Theorem 1. Applying Lemma 22 and Lemma 24, given a (1 + ε)-approximate
algorithm Aε for SSSP running in T (n, ε,D) rounds, we may compute (2 + ε3 + 3ε2 + 4ε)-
approximations for all eccentricities in O(log2(n) · T (n, ε,D) +D) rounds. J

Using the (1 + ε)-approximate SSSP algorithms of [13, 34], which run in Õ((
√
n+D)/ε)

rounds on weighted, undirected graphs and Õ((
√
nD1/4 +D)/ε) rounds on weighted, directed

graphs respectively, we achieve the following corollaries:

I Corollary 2. For any ε = 1/polylog(n), there exists an algorithm for (2 + ε)-approximate
diameter, radius and all eccentricities running in Õ(

√
n+D) rounds on nonnegative weighted

graphs, with n nodes and hop-diameter D.

I Corollary 3. For any ε = 1/polylog(n), there exists an algorithm for (2 + ε)-approximate
diameter, radius and all eccentricities running in Õ(

√
nD1/4 +D) rounds on nonnegative

weighted, directed graphs, with n nodes and hop-diameter D.

Using the exact SSSP algorithm of [21], which runs in Õ(
√
nD1/4 +D) rounds, we obtain

the following corollary.

I Corollary 4. There exists an algorithm for 2-approximate radius, diameter and all eccent-
ricities running in Õ(

√
nD1/4 +D) rounds on nonnegative weighted, directed graphs, with n

nodes and hop-diameter D.

4 Hardness of Approximation

In this section, we prove the lower bound results of the paper. As stated, we use reductions
from 2-party communication complexity. To formalize the reductions, we restate the following
definition from Censor-Hillel et al. [19].
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I Definition 25 (Family of Lower Bound Graphs). Given integers K and n, a Boolean function
f : {0, 1}K × {0, 1}K → {0, 1} and some Boolean graph property or predicate denoted P ,
a set of graphs

{
Gx,y = (V,Ex,y) | x, y ∈ {0, 1}K

}
is called a family of lower bound graphs

with respect to f and P if the following hold:
1. The set of vertices V is the same for all the graphs in the family, and we denote by

VA, VB a fixed partition of the vertices.
2. Given x, y ∈ {0, 1}K , the only part of the graph which is allowed to be dependent on x

(by adding edges or weights, no adding vertices) is G[VA].
3. Given x, y ∈ {0, 1}K , the only part of the graph which is allowed to be dependent on y

(by adding edges or weights, no adding vertices) is G[VB ].
4. Gx,y satisfies P if and only if f(x, y) = 1.
The set of edges E(VA, VB) is denoted by Ecut, and is the same for all graphs in the family.

We use the following theorem whose proof can be found in Censor-Hillel et al. [19], with
CCR(f) denoting the randomized communication complexity of f .

I Theorem 26. Fix a function f : {0, 1}K × {0, 1}K → {0, 1} and a predicate P . If there
exists a family of lower bound graphs {Gx,y} w.r.t f and P , then every randomized algorithm
for deciding P takes Ω(CCR(f)/(|Ecut| logn)) rounds.

4.1 Lower bounds for radius
We start with proving our two lower bounds for weighted or directed radius approximations.

We divide the proof of Theorem 5 into two cases which we prove separately. We prove
the weighted case here, and the proof of the directed case appears in the full version of the
paper.

Theorem 5 [Weighted case] For any ε = 1/poly(n), (2− ε)-approximation of the radius
of a weighted graph with n nodes requires Ω(n/ logn) rounds, even when the graph has
constant hop-diameter.

Proof. We reduce from the Tribes problem with vector sets A and B of size N . This
construction is similar to that of [41, Theorem 7].

Figure 1 illustrates our family of lower bound graphs. We construct four cliques
A0, A1, B0, B1 of size N , where the edges of the cliques have weight t, a value we will
set later. Let Ki be the ith node in clique K. Add two nodes cA and cB .

Connect all nodes in A0 to cA with edges of weight t, and connect all nodes in B0 to cB
with edges of weight t. Connect cA and cB with an edge of weight 1. For all i ∈ [N ] and
b ∈ {0, 1}, connect Abi and Bbi with an edge of weight 1. Connect A0

i and A1
j with an edge of

weight t if and only if Ai[j] = 0. Connect B0
i and B1

j with an edge of weight t if and only if
Bi[j] = 0. Alice will simulate the nodes A0 ∪ A1 ∪ {cA}, and Bob will simulate the nodes
B0 ∪B1 ∪ {cB}.

First, we claim that if (A,B) is a “yes” instance of Tribes, then the radius is at most
t+ 2. To show this, note that in this case, there must be some i such that the ith vectors
of A and B are orthogonal. Consider the node A0

i . It may reach in distance at most t+ 1
all nodes in B0 ∪A0, via a clique edge and an edge in the matching between A0 and B0. It
may also reach {cA, cB} in at most t+ 1. It may also reach all nodes in A1 ∪B1 in distance
at most t + 2, because for any j where Ai[j] = 0 or Bi[j] = 0, either A0

i may reach A1
j in

distance t or B0
i may reach B1

j in distance t. Since Ai and Bi are orthogonal, this is true for
all j. Thus the eccentricity of A0

i is at most t+ 2, which upper-bounds the radius.
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Figure 1 Sketch of Theorem 5, weighted case construction. Bold lines represent edges of weight t.

Second, we claim that if (A,B) is a “no” instance of Tribes, then the radius is at least 2t.
To see this, first note that cA and cB have eccentricity at least 2t, because that is the shortest
possible distance between them and B1 ∪A1. By the same argument, the eccentricity of all
nodes in A1 ∪B1 is also at least 2t. For all i, Ai and Bi are not orthogonal, which means
that for all i there is some j such that neither A0

i nor B0
i has an edge to B1

j or A1
j . Clearly

any other path from B0
i or A0

i to B1
j or A1

j is at least of length 2t, via a clique edge of weight
t. Thus the eccentricities of all nodes are at least 2t, so the radius is at least 2t.

We set t =
⌈ 4
ε

⌉
so that a (2 − ε)-approximate radius algorithm needs to distinguish

between t+ 2 and 2t. The constructed graph GA,B has n = O(N) nodes with a cut of size
O(n), which by Theorem 26 and the lower bound of Ω(N2) for the communication complexity
of Tribes, implies that the radius algorithm requires Ω(n/ logn) rounds. J
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