Heterogeneous Paxos
Isaac Sheff

Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbriicken, Germany
https://IsaacSheff.com
isheff@mpi-sws.org

Xinwen Wang

Cornell University, Ithaca, NY, USA
https://www.cs.cornell.edu/~xinwen/
xinwen@cs.cornell.edu

Robbert van Renesse

Cornell University, Ithaca, NY, USA
https://www.cs.cornell.edu/home/rvr/
rvr@cs.cornell.edu

Andrew C. Myers

Cornell University, Ithaca, NY, USA
https://www.cs.cornell.edu/andru/
andru@cs.cornell.edu

—— Abstract

In distributed systems, a group of learners achieve consensus when, by observing the output of

some acceptors, they all arrive at the same value. Consensus is crucial for ordering transactions in
failure-tolerant systems. Traditional consensus algorithms are homogeneous in three ways:

all learners are treated equally,

all acceptors are treated equally, and

all failures are treated equally.
These assumptions, however, are unsuitable for cross-domain applications, including blockchains,
where not all acceptors are equally trustworthy, and not all learners have the same assumptions
and priorities. We present the first consensus algorithm to be heterogeneous in all three respects.
Learners set their own mixed failure tolerances over differently trusted sets of acceptors. We express
these assumptions in a novel Learner Graph, and demonstrate sufficient conditions for consensus.

We present Heterogeneous Pazos, an extension of Byzantine Paxos. Heterogeneous Paxos achieves
consensus for any viable Learner Graph in best-case three message sends, which is optimal. We
present a proof-of-concept implementation and demonstrate how tailoring for heterogeneous scenarios
can save resources and reduce latency.

2012 ACM Subject Classification Computer systems organization — Redundancy; Computer
systems organization — Availability; Computer systems organization — Reliability; Computer
systems organization — Peer-to-peer architectures; Theory of computation — Distributed algorithms;
Information systems — Remote replication

Keywords and phrases Consensus, Trust, Heterogeneous Trust
Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.5
Related Version Technical Report at https://arxiv.org/abs/2011.08253 [47].

Supplementary Material Implementation source: https://github.com/isheff/charlotte-public

1 Introduction

The rise of blockchain systems has renewed interest in the classic problem of consensus, but
traditional consensus protocols are not designed for the highly decentralized, heterogeneous
environment of blockchains. In a Consensus protocol, processes called learners try to decide
on the same value, based on the outputs of some set of processes called acceptors, some of

© Isaac Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C. Myers;
37 licensed under Creative Commons License CC-BY

24th International Conference on Principles of Distributed Systems (OPODIS 2020).

Editors: Quentin Bramas, Rotem Oshman, and Paolo Romano; Article No. 5; pp. 5:1-5:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7822-1503
https://IsaacSheff.com
mailto:isheff@mpi-sws.org
https://orcid.org/0000-0003-2958-6589
https://www.cs.cornell.edu/~xinwen/
mailto:xinwen@cs.cornell.edu
https://orcid.org/0000-0003-3598-0283
https://www.cs.cornell.edu/home/rvr/
mailto:rvr@cs.cornell.edu
https://orcid.org/0000-0001-5819-7588
https://www.cs.cornell.edu/andru/
mailto:andru@cs.cornell.edu
https://doi.org/10.4230/LIPIcs.OPODIS.2020.5
https://arxiv.org/abs/2011.08253
https://github.com/isheff/charlotte-public
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

Heterogeneous Paxos

Figure 1 Illustration of the scenario in § 1.1. Blue learners are drawn as blue eyes, red learners
as red, outlined eyes. Blue acceptors are drawn as blue circles, red acceptors as red, outlined circles,
and third parties as black circles. The light solid blue region holds a quorum for the blue learners,
and the striped red holds a quorum for the red learners.

whom may fail. (In our model, learners send no messages, and so they cannot fail.) Consensus
is a vital part of any fault-tolerant system maintaining strongly consistent state, such as
Datastores [14, 9], Blockchains [41, 20, 16], or indeed anything which orders transactions.
Traditionally, consensus protocols have been homogeneous along three distinct dimensions:
Homogeneous acceptors. Traditional systems tolerate some number f of failed acceptors,
but acceptors are interchangeable. Prior work including “failure-prone sets” [38, 27]
explores heterogeneous acceptors.
Homogeneous failures. Systems are traditionally designed to tolerate either purely
Byzantine or purely crash failures. There is no distinction between failure scenarios in
which the same acceptors fail, but possibly in different ways. However, some projects
have explored heterogeneous, or “mixed” failures [48, 13, 33].
Homogeneous learners. All learners make the same assumptions, so system guarantees
apply either to all learners, or to none. Systems with heterogeneous learners include
Cobalt [36] and Stellar [39, 35, 21].

Blockchain systems can violate homogeneity on all three dimensions. Permissioned
blockchain systems like Hyperledger [1], J.P. Morgan’s Quorum [2], and R3’s Corda [26]
exist specifically to facilitate atomic transactions between mutually distrusting businesses. A
crucial part of setting up any implementation has been settling on a set of equally trustworthy,
failure-independent acceptors. These setups are complicated by the reality that different
parties make different assumptions about whom to trust, and how.

Defining heterogeneous consensus poses challenges not covered by homogeneous definitions,
particularly with respect to learners. How should learners express their failure tolerances?
When different learners expect different possible failures, when do they need to agree? If
a learner’s failure assumptions are wrong, does it have any guarantees? No failure models
developed for one or two dimensions of heterogeneity easily compose to describe all three.

Failure models developed for one or two dimensions of heterogeneity do not easily compose
to describe all three, but our new trust model, the Learner Graph (§ 3), can express the
precise trust assumptions of learners in terms of diverse acceptors and failures. Compared
to trying to find a homogeneous setup agreeable to all learners, finding a learner graph
for which consensus is possible is strictly more permissive. In fact, the learner graph is
substantially more expressive than the models used in prior heterogeneous learner consensus
work, including Stellar’s slices [39] or Cobalt’s essential subsets [36]. Building on our learner
graph, we present the first fully heterogeneous consensus protocol. It generalizes Paxos to be
heterogeneous along all three dimensions.

Heterogeneity allows acceptors to tailor a consensus protocol for the specific requirements
of learners, rather than trying to force every learner to agree whenever any pair demand to
agree. This increased flexibility can save time and resources, or even make consensus possible
where it was not before, as we now show with an example.

I. Sheff, X. Wang, R. van Renesse, and A. C. Myers

1.1 Example

Suppose organizations Blue Org and Red Org want to agree on a value, such as the order of
transactions involving both of their databases or blockchains. The people at Blue Org are blue
learners: they want to decide on a value subject to their failure assumptions. Likewise, the
people at Red Org are red learners with their own assumptions. While neither organization’s
learners believe their own organization’s acceptors (machines) are Byzantine, they do not
trust the other organization’s acceptors at all. To help achieve consensus, they enlist three
trustworthy third-party acceptors. Figure 1 illustrates this situation.

All learners want to agree so long as there are no Byzantine failures. However, no learner
is willing to lose liveness (never decide on a value) if only one of its own acceptors has crashed,
one third-party acceptor is Byzantine, and all the other organization’s learners are Byzantine.
Furthermore, learners within the same organization expect never to disagree, so long as none
of their own organization’s acceptors are Byzantine.

Unfortunately, existing protocols cannot satisfy these learners. Stellar [39], for instance,
has one of the most expressive heterogeneous models available, but it cannot express hetero-
geneous failures. It cannot express blue and red learners’ desire to terminate if a third-party
acceptor crashes, but not necessarily agree a third-party acceptor is Byzantine. Our work
enables a heterogeneous consensus protocol that satisfies all learners.

1.2 Heterogeneous Paxos

Heterogeneous Paxos, our novel generalization of Byzantine Paxos achieves consensus in
a fully heterogeneous setting (§ 5), with precisely defined conditions under which learners
are guaranteed safety and liveness. Heterogeneous Paxos inherits Paxos’ optimal 3-message-
send best-case latency, making it especially good for latency-sensitive applications with
geodistributed acceptors, including blockchains. We have implemented this protocol and
used it to construct several permissioned blockchains [21]. We demonstrate the savings in
latency and resources that arise from tailoring consensus to specific learners’ constraints.

1.3 Contributions

The Learner Graph offers a general way to express heterogeneous trust assumptions in
all three dimensions (§ 3).

We formally generalize the traditional consensus properties (Validity, Agreement,
and Termination) for the fully heterogeneous setting (§ 4).

Heterogeneous Paxos is the first consensus protocol with heterogeneous learners,
heterogeneous acceptors, and heterogeneous failures (§ 5). It also inherits Paxos’ optimal
3-message-send best-case latency.

Experimental results from our implementation of Heterogeneous Paxos demonstrate
its use to construct permissioned blockchains with previously unobtainable security and
performance properties (§ 6).

2 System Model

We consider a closed-world (or permissioned) system consisting of a fixed set of acceptors, a
fixed set of proposers, and a fixed set of learners. Proposers and acceptors can send messages
to other acceptors and learners. Some predetermined, but unknown set of acceptors are
faulty (we assume a non-adaptive adversary). Faults include crash failures, which are not
live (they can stop at any time without detection), and Byzantine failures, which are neither
live nor safe (they can behave arbitrarily).

5:3

OPODIS 2020

5:4

Heterogeneous Paxos

» Definition 1 (Live). A live acceptor eventually sends every message required by the protocol.

» Definition 2 (Safe). A safe acceptor will not send messages unless they are required by the
protocol, and will send messages only in the order specified by the protocol.

Learners set the conditions under which they expect to agree. They want to decide values,
and to be guaranteed agreement under certain conditions. While learners can make bad
assumptions, since they do not send messages, they cannot misbehave, and so there are no
“faulty learners.”

Network. Network communication is point-to-point and reliable: if a live acceptor sends a
message to another live acceptor, or to a learner, the message arrives. We adopt a slight
weakening of partial synchrony [18]: after some unknown global stabilization time (GST),
all messages between live acceptors arrive within some unknown latency bound A. In
Heterogeneous Paxos, live acceptors send all messages to all acceptors and learners, but
Byzantine acceptors may equivocate, sending messages to different recipients in different
orders, with unbounded delays. We assume that messages carry effectively unbreakable
cryptographic signatures, and that acceptors are identified by public keys. We also assume
messages can reference other messages by collision-resistant hash: if one message contains
a hash of another, it uniquely identifies the message it is referencing [42].

Consensus. The purpose of consensus is for each learner to decide on exactly one value,
and for all learners to decide on the same value. Here, execution refers to a specific instance
of consensus: the actions of a specific set of acceptors during some time frame. A protocol
refers to the instructions that safe acceptors follow during an execution.

An execution of consensus begins when proposers propose candidate values, in the form of
a message received by a correct acceptor. (No consensus can make guarantees about proposed
values only known to crashed or Byzantine acceptors.) Proposers might be clients sending
requests into the system. We make no assumptions about proposer correctness for safety
properties, but to guarantee liveness, we will assume that acceptors can act as proposers
as well (i.e. proposers are a superset of acceptors). After receiving some messages from
acceptors, each learner eventually decides on a single value.

Traditionally, consensus requires three properties [19]:

Validity: if a learner decides p, then p was proposed.!

Agreement: if learner a decides value v, and learner b decides value v’, then v = v'.

Termination: all learners eventually decide.
In § 4, we generalize these properties to account for heterogeneity.

3 The Learner Graph

We characterize learners’ failure assumptions with a novel construct called a learner graph.
The learner graph is a general way to characterize trust assumptions for heterogeneous
consensus. It can encompass most existing formulations, including Stellar’s “slices” [39] and
Cobalt’s “essential sets” [36]. We discuss other formulations in § 7.

» Definition 3 (Learner Graph). A learner graph is an undirected graph in which vertices are
learners, each labeled with the conditions under which they must terminate (§ 4.3 formally
defines termination). Each pair of learners is connected by an edge, labeled with the conditions
under which those learners must agree (§ 4.2 formally defines agreement).

1 Correia, Neves, and Verissimo list several popular validity conditions. Ours corresponds to MCV2 [15]

I. Sheff, X. Wang, R. van Renesse, and A. C. Myers

3.1 Quorums

A quorum is a set of acceptors sufficient to make a learner decide: even if everything else has
crashed [32], if a quorum are behaving correctly, a learner will eventually decide. In a learner
graph, each learner a is labeled with a set of quorums (),. The learner requires termination
precisely when at least one quorum are all live.

Within a specific execution, we assume some (unknown) set of pre-determined acceptors
are actually live. We call this set L.

3.2 Safe Sets

To characterize the conditions under which two learners want to agree, we need to express
all possible failures they anticipate. Surprisingly, crash failures cannot cause disagreement:
any disagreement that occurs when some acceptor has crashed could also occur if the same
acceptor were correct, but very slow, and did not act until after the learner decided. Therefore,
for agreement purposes, each tolerable failure scenario is characterized by a safe set (usually

written s), the set of acceptors who are safe, meaning they act only according to the protocol.

Between any pair of learners a and b in the learner graph, we label the edge between them
with a set of safe sets a—b: so long as one of the safe sets in a—b indeed comprises only safe
acceptors, the learners demand agreement.

Within a specific execution, we assume some (unknown) set of pre-determined acceptors
are actually safe. We call this set S. We do not require it, but systems often assume that
S C L, since a Byzantine acceptor [31] may choose not to send messages.

3.2.1 Subset of Tolerable Failures

We generally assume that a subset of tolerable failures is always tolerated:

- 4o €Qa = [Uqq € Qq

» Assumption 4. Subset il ties:
p ubset of failures properties Vi scab = 2Us € ab

One might imagine, for example, two learners who demand agreement if two acceptors fail,
but not if only one acceptor fails. However, we have no guarantee on time: if two acceptors
are indeed faulty, one might act normally for an indefinite time, so the system would act as
though only one has failed, and we will have to guarantee agreement.

3.2.2 Generalized Learner Graph Labels

It is possible to generalize the labels of learners and learner graph edges, and characterize
quorums (conditions under which a learner must terminate) and safe sets (conditions under
which pairs of learners must agree) as more detailed formal models (e.g., modeling network
synchrony failures). All consensus failure models of which we are aware can be formalized
using learner graphs with generalized labels. Heterogeneous Paxos works with any model of
labels, so long as each label can be mapped (not necessarily uniquely) to a set of quorums
for each learner, and a set of safe sets for each edge. For simplicity, in this work, we define
labels as a set of quorums for each learner, and a set of safe sets for each edge.

3.3 Example

Consider our example from § 1.1 and Figure 1. All learners want to agree when all acceptors
are safe. However, each learner demands termination (it must eventually decide on a value)
even when one of its own acceptors has crashed, and one third part as well as all the

5:5

OPODIS 2020

5:6

Heterogeneous Paxos

Figure 2 Learner Graph from § 3.3: Learners are eyes, with darker blue learners on the left, and
outlined red learners on the right. Edge labels display one safe set for which the learners want to
agree (unsafe acceptors are marked with a devil). The center label represents all edges between
red and blue learners. Learner labels display one quorum for which the learner wants to terminate
(crashed acceptors are marked with a skull). In each label, blue acceptors are blue circles, red
acceptors are red, outlined circles, and third-party acceptors are black circles.

other organization’s acceptors have failed as well. Furthermore, learners within the same
organization expect never to disagree, so long as none of their own organization’s acceptors
are Byzantine: neither organization tolerates the other, or third-party acceptors, creating
internal disagreement. In Figure 2, we diagram the learner graph. For space reasons, we
draw each label with only one quorum or one safe set.

3.4 Agreement is Transitive and Symmetric

Agreement (formally defined in § 4.2) is symmetric, so learner graphs are undirected (a—b =
b—a). Agreement is also transitive: if a agrees with b and b agrees with ¢, then a agrees with
c. As a result, a and ¢ must agree whenever both the conditions a—b and b—c are met. When
learners’ requirements reflect this assumption, we call the resulting learner graph condensed.
We describe how to condense a learner graph in § 3.5 of [47].

» Definition 5 (Condensed Learner Graph (CLG)). A learner graph G is condensed iff:
Ya,b,c. (a=bNb—) C a—c

Self-Edges. A CLG describes when a learner a agrees with itself (i.e., if it decides twice,
both decisions must have the same value): a—a.

» Lemma 6 (Self-agreement). A learner must agree with itself in order to agree with anyone:
a—b C a—a

Proof. Follows from Definition 5, and the fact that the CLG is undirected (§ 3.4) <

3.5 Liveness Bounds from Safety

Given the conditions under which learners want to agree, we can derive a (sufficient) bound
on the quorums they require to terminate. In other words, given labels for the edges in the
learners graph, we can bound the labels for the vertices.

As we will cover in more detail in § 5.1, each of a learner’s quorums must intersect
its neighbors quorums at a safe acceptor. As a result, we can construct a sufficient set of
quorums for each learner in a CLG as follows: for each edge of the learner, each quorum
includes a majority of acceptors from a each of the safety sets.

I. Sheff, X. Wang, R. van Renesse, and A. C. Myers

3.6 Safety Bounds from Liveness

Given the conditions under which learners want to terminate, we can derive a (necessary)
bound on the safe sets they can require on each of their edges. As we will cover in more
detail in § 5.1, each of a learner’s quorums must intersect its neighbors quorums at a safe
acceptor. As a result, safe sets can be assembled for each edge in a CLG as follows: each set

includes one acceptor from the intersection of each pair of quorums (one from each learner).

4 Heterogeneous Consensus

We now define our novel heterogeneous generalization of traditional consensus properties.

4.1 Validity

Intuitively, a consensus protocol shouldn’t allow learners to always decide some predetermined
value. Validity is the same in heterogeneous and homogeneous settings.

» Definition 7 (Heterogeneous Validity).
A consensus execution is valid if all values learners decide were proposed in that execution.
A consensus protocol is valid if all possible executions are valid.

4.2 Agreement

Our generalization of Agreement from the homogeneous setting to a heterogeneous one is the
key insight that makes our conception of heterogeneous consensus possible. It generalizes
not only the traditional homogeneous approach, but also the “intact nodes” concept from
Stellar [39], and “linked nodes” from Cobalt [36].

» Definition 8 (Entangled). In an execution, two learners are entangled if their failure
assumptions matched the failures that actually happen: Entangled(a,b) = S € a—b

In the example (§ 1.1), if one third-party acceptor were Byzantine, the blue learners would
be entangled with each other, and similarly with the red learners, but no blue learners would
be entangled with red learners. It is possible for failures to divide the learners into separate
groups, which may then decide different values even if they agree among themselves.

» Definition 9 (Heterogeneous Agreement).
Within an execution, two learners have agreement if all decisions for either learner have
the same value.
A heterogeneous consensus protocol has agreement if, for all possible executions of that
protocol, all entangled pairs of learners have agreement.

In Heterogeneous Paxos, as in many other protocols, learners decide on a value whenever
certain conditions are met for that value: learners can even decide multiple times. If there
aren’t too many failures, a learner is guaranteed to decide the same value every time. Because
learners send no messages, they cannot fail, but they can make incorrect assumptions. Within
the context of an execution, entanglement neatly defines when a learner is accurate, meaning
it cannot decide different values.

» Definition 10 (Accurate Learner). is entangled with itself: Accurate(a) = Entangled(a, a)

In the example (§ 1.1), if one third-party acceptor were Byzantine, then the blue and red
learners would be accurate, but if a blue acceptor were also Byzantine, the blue learners
would not be accurate (although the red learners would still be accurate).

5:7

OPODIS 2020

5:8

1
2

Heterogeneous Paxos

learner_inittal_state:
known_messages = {}

acceptor_initial_state: 1
known_messages = {} 2
recently_received = {} 3
1+ learner_on_receipt (m):

acceptor_on_receipt (m): for r€m.refs:

for re€murefs: 6 while r ¢ known_messages:
while 7 ¢ known_messages: 7 wait ()
wait () s known_messages U= {m}
atomic: 9 for S C known_messages:
if m ¢ known_messages: 10 if Decisionggq¢(SU{m}):
forward m to all acceptors and learners . decide (V(m))

recently_received U= {m}
known_messages U= {m}
if m has type 1la:
z = new 1b(refs = recently_received)
recently_received = {}
on_receipt (2)
if m has type 1b and b(m) == maxicknown_messages D(T)
for learner € learners:
z = new 2a(refs = recently_received, lrn = learner)
if WellFormed(z):
recently_received = {}
on_receipt(z)

Figure 3 Pseudo-code for Acceptor (left) and Learner (right). § 5 defines message structure (§ 5.2),
WellFormed (Assumption 26), b() (Definition 19), V() (Definition 20), and Decision() (Defini-
tion 21).

4.3 Termination

Termination has no well agreed-upon definition for the heterogeneous setting, as it does
not generalize easily from the homogeneous one. A heterogeneous consensus protocol is
specified in terms of the (possibly differing) conditions under which each learner is guaranteed
termination (§ 3). For example, in our prior work on Heterogeneous Fast Consensus, we
distinguish between “gurus,” learners with accurate failure assumptions, and “chumps,” who
hold inaccurate assumptions [45]; Stellar calls them “intact” and “befouled” [39]. When
discussing termination properties, we use the following terminology:

» Definition 11 (Termination).

Within an execution, a learner has termination if it eventually decides.

A heterogeneous consensus protocol has termination if, for all possible executions of that

protocol, all learners with a safe and live quorum have termination.
Protocols can only guarantee termination under specific network assumptions, and varying
notions of “eventually” [19, 29, 40]. Following in the footsteps of Dwork et al. [18], Hetero-
geneous Paxos guarantees Validity and Agreement in a fully asynchronous network, and
termination in a partially synchronous network (Assumption 31). Furthermore, as in all
other consensus protocols, if there are too many acceptor failures, some learners may not
terminate. Specifically, a learner will decide (terminate) if at least one of its quorums is live.

» Definition 12 (Terminating Learner). has a live, safe quorum: Terminating(a) = LUS € Q,

5 Heterogeneous Paxos

Heterogeneous Paxos is a consensus protocol (§ 2) based on Byzantine Paxos, Lamport’s
Byzantine-fault-tolerant [31] variant of Paxos [28, 29] using a simulated leader [30]. This
protocol is conceptually simpler than Practical Byzantine Fault Tolerance [10]. When all
learners have the same failure assumptions, Heterogeneous Paxos is exactly Byzantine Paxos.

I. Sheff, X. Wang, R. van Renesse, and A. C. Myers

Byzantine Paxos was originally written as a sequence of changes from crash-tolerant
Paxos [30, 28]. We were able to construct a complete version of Byzantine Paxos in such a way

that we could describe Heterogeneous Paxos with only a few additions, highlighted in pale blue.

To our knowledge, without the portions highlighted in pale blue this is also the most direct
description of the Byzantine Paxos via Simulated Leader protocol in the literature. Figure 3
presents pseudocode for Heterogeneous Paxos acceptors and learners.
Informally, Heterogeneous Paxos proceeds as a series of (possibly overlapping) phases
corresponding to three types of messages, traditionally called Ia, 1b, and 2a:
Proposers send la messages, each carrying a value and unique ballot number (stage
identifier), to acceptors.
Acceptors send 1b messages to each other to communicate that they’ve received a fa
(line 15 of Figure 3).
When an acceptor receives a 1b message for the highest ballot number it has seen from
a learner a’s quorum of acceptors, it sends a 2a message labeled with a and that ballot
number (line 20 of Figure 3). There is one exception (Well Formed in Figure 3): once a
safe acceptor sends a 2a message m for a learner a, it never sends a 2a message with a
different value for a learner b, unless:
It knows that a quorum of acceptors has seen 2a messages with learner a and ballot
number higher than m.
Or it has seen Byzantine behavior that proves a and b do not have to agree.

A learner a decides when it receives 2a messages with the same ballot number from one
of its quorums of acceptors (line 11 on the right of Figure 3).

Proposers can restart the protocol at any time, with a new ballot number. Acceptor
and Learner behavior in Heterogeneous Paxos is described in Figure 3. We now describe
their sub-functions, including message construction (§ 5.2), Well Formed (Assumption 26),
b() (Definition 19), V() (Definition 20), and Decision() (Definition 21).

Key Insight. Intuitively, Heterogeneous Paxos operates much like Byzantine Paxos, except
that all acceptors execute the final phase separately for each learner. The shared phases
allow learners to agree when possible, while the replicated final phase allows different learners
to decide under different conditions. § 8 of [47] describes several heterogeneous consensus
scenarios, as well as quorums for each learner.

5.1 Valid Learner Graph

Naturally, there are bounds on the learner graphs for which Heterogeneous Paxos can provide
guarantees. Unlike traditional consensus, in a Heterogeneous Consensus learner graph, each
learner a has its own set of quorums @),. These describe the learner’s termination constraints:
it may not terminate if all of its quorums contain a non-live acceptor (Definition 12). The
notion of a walid learner graph generalizes the homogeneous assumption that every pair of
quorums have a safe acceptor in their intersection.

Homogeneous Byzantine Paxos guarantees agreement (§ 4.2) when all pairs of quorums
have > 1 safe acceptor in their intersection. The heterogeneous case has a similar requirement:

» Definition 13 (Valid Learner Graph). A learner graph is valid iff for each pair of learners a
and b, whenever they must agree, all of their quorums feature at least one safe acceptor in
their intersection: s € a—bAq, € Qu Ay € Qpy = quNaqpNs#D

5:9

OPODIS 2020

5:10

Heterogeneous Paxos

5.2 Messaging

Acceptors send messages to each other. Live acceptors echo all messages sent and received
to all other acceptors and learners, so if one live acceptor receives a message, all acceptors
eventually receive it. When safe acceptors receive a message, they process and send resulting
messages specified by the protocol atomically: they do not receive messages between sending
results to other acceptors. Safe acceptors also receive any messages they send to themselves
immediately: they receive no other messages between sending and receiving.

Each message x contains a cryptographic signature allowing anyone to identify the signer:

» Definition 14 (Message Signer). Sig(x:message)= the acceptor or proposer that signed
We can define Sig() over sets of messages, to mean the set of signers of those messages:
» Definition 15 (Message Set Signers). Sig(x : set) = { Sig(m) ‘ meuzx }

Furthermore, each message x carries references to 0 or more other messages, z.7efs. These
references are by hash, ensuring both the absence of cycles in the reference graph and that it
is possible to know exactly when one message references another [42]. In each message, safe
acceptors reference each message they received since the last message they sent. Since all
messages sent are sent to all acceptors, and safe acceptors receive messages sent to themselves
immediately, each message a safe acceptor sends transitively references all messages it has
ever sent or received. Safe acceptors delay receipt of any message until they have received all
messages it references. This ensures they receive, for example, a la for a given ballot before
receiving any 1bs for that ballot.

Each message has a unique ID and an identifiable type: la,1b, or 2a. A 2a message z
has one type-specific field: z.lrn specifies a learner. A la message y has two type-specific
fields: y.value is a proposed value, and y.ballot is a natural number specific to this proposal.

We assume that each 1a has a unique ballot number, which could be accomplished by
including signature information in the least significant bits of the ballot number:

» Assumption 16 (Unique ballot assumption). z:1la Ay:la A z.ballot = y.ballot = z =y

5.3 Machinery

To describe Heterogeneous Paxos, we require some mathematical machinery.

Transitive References. We define Tran(z) to be the transitive closure of message x’s
references. Intuitively, these are all the messages in the “causal past” of x.

» Definition 17. Tran(z) £ {2} U U’rnE:Irureifs Tran(m)

Getla: It is useful to refer to the la that started the ballot of a message: the highest
ballot number la in its transitive references.

» Definition 18. Getla(z) £ argmax m.ballot
m:1a€ Tran(x)

Ballot Numbers. The ballot number of a la is part of the message, and the ballot number
of anything else is the highest ballot number among the Ias it (transitively) references.

» Definition 19. b(x) = Getla(z).ballot

I. Sheff, X. Wang, R. van Renesse, and A. C. Myers

Value. The value of a la is part of the message, and the value of anything else is the value
of the highest ballot 1a among the messages it (transitively) references.

» Definition 20. V(z) £ Getla(z).value

Decisions. A learner decides when it has observed a set of 2a messages with the same
ballot, sent by a quorum of acceptors. We call such a set a decision:

» Definition 21. Decision,(q,) = Sig(q.) € Qu AV{z,y} C qu. b(z)=b(y) Az.lrn=aAx:2a

Messages in a decision share a ballot (and therefore a value), so we extend our value
function to include decisions: Decision,(q,) = V(q,) = V(m) ‘ m € qq

Although decisions are not messages, applications might send decisions in other messages
as a kind of “proof of consensus.” This is how the Heterogeneous Paxos integrity attestations
work in our prototype blockchains (§ 6).

Caught. Some behavior can create proof that an acceptor is Byzantine. Unlike Byzantine
Paxos, our acceptors and learners must adapt to Byzantine behavior. We say that an acceptor
p is Caught in a message x if the transitive references of the messages include evidence such
as two messages, m and m’, both signed by p, in which neither is featured in the other’s
transitive references (safe acceptors transitively reference all prior messages).

» Definition 22. Caught(z) £ { Sig(m) {m,m'} € Tran(z) A Sig(m) = Sz'g(m’)}
AN m & Tran(m’) A m’ & Tran(m)

Connected. When some acceptors are proved Byzantine, clearly some learners need not
agree, meaning that S isn’t in the edge between them in the CLG: at least one acceptor in
each safe set in the edge is proven Byzantine. Homogeneous learners are always connected
unless there are so many failures no consensus is required.

» Definition 23. Con,(z) £ { b |s€a-be CLG A sN Caught(x) =0 }

It is clear that disconnected learners may not agree, and so each 2a message = will have
some implications only for learners still connected to its specified learner: Con, ;- (2).

Quorums in Messages. 2a messages reference quorums of messages with the same value
and ballot. A 2a’s quorums are formed from fresh 1b messages with the same ballot and
value (we define fresh in Definition 28).

» Definition 24. ¢(x:2a) £ {m ‘ m:1b A freshx’h,n(m) A m € Tran(xz) N b(m) = b(l)}

Buried messages. A 2q message can become irrelevant if, after a time, an entire quorum of
acceptors has seen 2as with different values, the same learner, and higher ballot numbers.
We call such a 2a buried (in the context of some later message y):

» Definition 25.

) : T -)
Buried(x - %a,y) 2 {Sig(m) m € Tran(y) N z:2a A {x,z} C Tran(m) } .

AV(z) £ V() A b(2) > b(x) A zlrn = z.drn

5:11

OPODIS 2020

5:12

Heterogeneous Paxos

Well-Formedness. In addition to the basic message layout, 2a and 1b messages must be
well-formed. No 2a should have an invalid quorum upon creation, and no acceptor should
create a 2a unless it sent one of the 1b messages in the 2a. Similarly, no 1b should reference
any message with the same ballot number besides a Ia (safe acceptors make 1bs as soon as
they receive a fa). Acceptors and learners should ignore messages that are not well-formed.

» Assumption 26 (Well-Formedness Assumption).

x:1b Ny € Tran(x) A x#y N y# Getla(z) = bly) # b(x)
z:2a= q(2) €Q_ ., N Sig(z) € Sig(q(z))

Connected 2a messages. Entangled learners must agree, but learners that are not connected
are not entangled, so they need not agree. Intuitively, a 1b message references a 2a message
to demonstrate that some learner may have decided some value. For learner a, it can be
useful to find the set of 2a messages from the same sender as a message = (and sent earlier)
which are still unburied, and for learners connected to a. The 1b cannot be used to make
any new 2a messages for learner a that have values different from these 2a messages.

> Definition 27. ConZas,(x) A{ m| m:2a A m € Tran(x) A Sigim) = Szg(ar)}

= Buried(m,x) A m.rn € Con, ()

Fresh 1b messages. Acceptors send a 1b message whenever they receive a 1a message
with a ballot number higher than they have yet seen. However, this does not mean that the
1b’s value (which is the same as the 1a’s) agrees with that of 2a messages the acceptor has
already sent. We call a 1b message fresh (with respect to a learner) when its value agrees
with that of unburied 2a messages the acceptor has sent.

» Definition 28. fresh (: 1b) £Ym € ConZas,(z). V(z) = V(m)

5.4 Ballots

Heterogeneous Paxos can be thought of as taking place in stages identified by natural numbers
called ballots. § 5.6.3 of [47] describes one way to construct unique ballot numbers.

Multiple Ballots. Proposers construct new la messages (with a value and a unique ballot
number), and send them to all acceptors. Just like in Homogeneous Byzantine Consensus,
it is possible for a ballot to fail: after some number of ballots, it may be the case that all
messages have arrived, the protocol in Figure 3 doesn’t require any acceptor to send any
further messages, and yet no learner has decided. For this reason, it is necessary to start a
new ballot when an old one is failing.

One way to handle this is to leave the responsibility at the proposers: if a proposer
proposes a ballot, and learners don’t decide for a while, then the proposer should propose
again. Randomized exponential backoff can be used to allow clients to adapt to the unknown
delay in a partially synchronous [18] network without flooding the system.

Another way is to have acceptors propose after a ballot has failed: when sufficiently many
1b messages for a given ballot are collected, but none are fresh, an acceptor could send a new
la. There are subtleties to ensuring liveness, which we discuss in § 6.4.1 of [47].

I. Sheff, X. Wang, R. van Renesse, and A. C. Myers

5.5 Safety

Under our assumptions (§ 5.2 of [47]), Heterogeneous Paxos has the safety properties of
Validity and Agreement (proofs in § 6.2 of [47] and § 6.3 of [47]):

» Theorem 29 (Validity). Heterogeneous Pazos is Valid (Definition 7):
Decision,(q.) = 3z : 1a. V(z) = V(q,)

» Theorem 30 (Agreement). Heterogeneous Paxos has Agreement (Definition 9):
Entangled(a, b) A Decision,(q,) N Decisiony(qp) = V(ga) = Vigw)

5.6 Liveness

Heterogeneous Paxos, and indeed Byzantine Paxos, rely on a weak network assumption to
guarantee termination. The assumption is complex precisely because it is weak; a simpler
but stronger assumption, such as a partially synchronous network, would suffice.

» Assumption 31 (Network Assumption). To guarantee that a learner a decides, we assume
that for some quorum q, € Q, of safe and live acceptors:
Eventually, there will be 13 consecutive periods of any duration, with no time in between,
numbered 0 through 12, such that any message sent to a or an acceptor in q, before one
period begins is delivered before it ends.
If an acceptor in q, sends a message in between receiving two messages m and (and it
receives no other messages in between), and m is delivered in some period n, then the
message is sent in period n.
No 1a message except x, y, and z is delivered to any acceptor in q, during any period.
x 18 delivered to an acceptor in q, in period 0, y is delivered to an acceptor in q, in period
4, and z s delivered to an acceptor in q, in period 9.
V(y) = V(z) is the value of the highest ballot 2a known to any acceptor in q, at the end
of period 3.
b(x) is greater than any ballot number of any message delivered to any acceptor in q,
before period 0, and b(x) < b(y) < b(z).
This assumption is only necessary for termination, not any safety property. We prove our
termination theorem in § 6.4.1 of [47].

» Theorem 32 (Termination). If Assumption 31 holds for learner a, then a has Termina-
tion (Definition 11). Specifically, after period 12: Terminating(a) = 3q..Decision,(q,) If
Assumption 31 holds for all terminating learners, then Heterogeneous Pazos has Termination.

A partially synchronous network is one in which, after some point in time, there exists some
(possibly unknown) constant latency A such that all sent messages arrive within A [18]. We
explain elsewhere how to add artificial message receipt delays to Heterogeneous Paxos in
order to guarantee Assumption 31 in a partially synchronous network (§ 6.4.2 of [47]).

6 Implementation

Since Heterogeneous Paxos is designed for cross-domain applications where different parties
have different trust assumptions, it is well-suited for blockchains. We constructed a variety
of example blockchains using the Charlotte framework [46], which allows for pluggable
integrity (consensus) mechanisms. Our servers are implemented in 1,704 lines of open-source
Java. Charlotte uses 256-bit SHA3 hashes, P256 elliptic curve signatures, protobufs [43] for
marshaling, and gRPC [24] for transmitting messages over TLS 1.3 channels.

5:13

OPODIS 2020

5:14

Heterogeneous Paxos

To explore the performance of Heterogeneous Paxos, we created several blockchains with
different CLGs (§ 3). The results (§ 9.3 of [47]) show that heterogeneous configurations save
resources and latency compared with homogeneous configurations tolerating the same failures.
For instance, in our example configuration § 1.1, a Homogeneous configuration tolerating
similar failures would cost an extra 7 unnecessary acceptors, increasing latency overhead by
51% relative to Heterogeneous Paxos. 2a messages include a quorum of 256-bit message hashes,
so they expand linearly with quorum size, as does the cost of unmarshaling and verifying the
signatures of the messages referenced. In all experiments, however, computational overhead
was dominated by the theoretical minimum (simulated) geodistributed network latency.

7 Related Work

Heterogeneous Acceptors and Failures. Heterogeneous Paxos is based on Leslie Lamport’s
Byzantine-fault-tolerant variant [30] of Paxos [28]. Byzantine Paxos supports heterogeneous
acceptors because it uses quorums: not all acceptors need be of equal worth, but all
quorums are. Although Lamport does not describe it explicitly, Byzantine Paxos can have
heterogeneous, or mized [48], failures, so long as quorum intersections have a safe acceptor
and at least one quorum is safe and live.

Many papers have investigated hybrid failure models [48, 13, 7, 33] in which different
consensus protocol acceptors can have different failure modes, including crash failures and
Byzantine failures (heterogeneous failures). These papers typically investigate how many
failures in each class can be tolerated. Other papers have looked at system models in which
different acceptors may be more or less likely to fail [22, 38], or where failures are dependent
(heterogeneous acceptors) [27, 17, 25].

Further generalizations are possible. Our Learner Graph uses only safe and live acceptors,
but its labels might be generalized to support other failure types such as rational failures [3].
We have only considered learners that all make the same (weak) synchrony assumption, but
others have studied learners with heterogeneous network assumptions [5, 37].

Heterogeneous Learners. Unlike ours, most related work conflates learners and acceptors.
Early related work on “Consensus with Unknown Participants” [11, 23, 4] defines protocols
in which each participant knows only a subset of other participants, inducing a “who-
knows-whom” digraph; this work identifies properties of this graph that must hold to
achieve consensus. Not every participant knows all participants, but trust assumptions are
homogeneous: participants have the same beliefs about trustworthiness of other participants.

Our prior work describes [45] a heterogeneous failure model in which different participants
may have different failure assumptions about other participants. We distinguished learners
whose failure assumptions are accurate from those whose failure assumptions are inaccurate
and we specified a heterogeneous consensus protocol in terms of the possibly different
conditions under which each learner is guaranteed agreement. The paper constructs a
heterogeneous consensus protocol that meets the requirements of all learners using lattice-
based information flow to analyze and prove protocol properties.

Heterogeneous learners became of interest to blockchain implementations based on voting
protocols where open membership was desirable. Ripple (XRP) [44] was the earliest blockchain
to attempt support for heterogeneous learners. Originally, each learner had its own Unique
Node List (UNL), the set of acceptors that it partially trusts and uses for making decisions.
An acceptor in more UNLs is implicitly more influential. The protocol was updated because
of correctness issues [12], and support for diverse UNLs was all but eliminated. Ripple has

I. Sheff, X. Wang, R. van Renesse, and A. C. Myers

proposed a protocol called Cobalt [36], in which each learner specifies a set of acceptors they
partially trust, and it works if those sets intersect “enough.” Cobalt does not account for
heterogeneous failures, and only limited acceptor heterogeneity.

The Stellar Consensus [39, 34, 35] blockchain protocol supports both heterogeneous
learners and acceptors, although it does not distinguish the two; each learner specifies a
set of “quorum slices.” Like Cobalt, Stellar does not account for heterogeneous failures.
Neither Stellar nor Cobalt match Heterogeneous Paxos’ best-case latency. Heterogeneous
Paxos inherits Byzantine Paxos’ 3-message-send best case latency, which is optimal for a
consensus tolerating [%] — 1 failures in the homogeneous Byzantine case or [%] — 1 failures
in the homogeneous crash case [6]. However, both Cobalt and Stellar are designed for an
“open-world” model, where not all acceptors and learners are known in advance. We have
not yet adapted Heterogeneous Paxos to an open-world setting.

The heterogeneous learner models of Cobalt and Stellar have been studied in detail by
Garcia-Pérez and Gotsman [21]. Cachin and Tackmann examine Stellar-style asymmetric
trust models, including in shared-memory environments [8]. However, neither paper separates
learners from acceptors, attempts to solve consensus, or considers heterogeneous failures; the
Learner Graph is more general.

Like our work, Flexible BFT [37] distinguishes learners from acceptors and accounts for
both heterogeneous learners and heterogeneous failures. It does not allow heterogeneous
acceptors: they are interchangeable, and quorums are specified by size. Flexible BFT also
has optimal best-case latency. It does not support crash failures, but introduces a new failure
type called alive-but-corrupt for acceptors interested in violating safety but not liveness.

8 Conclusion

Heterogeneous Paxos is the first consensus protocol with heterogeneous acceptors, failures,
and learners. It is based on the Learner Graph, a new and expressive way to capture learners’
diverse failure-tolerance assumptions. Heterogeneous consensus facilitates a more nuanced
approach that can save time and resources, or even make previously unachievable consensus
possible. Heterogeneous Paxos is proven correct against our new generalization of consensus
for heterogeneous settings. This approach is well-suited to systems spanning heterogeneous
trust domains; for example, we demonstrate working blockchains with heterogeneous trust.

Future work may expand learner graphs to represent even more types of failures. Hetero-
geneous Paxos may be extended to allow for changing configurations, or improved efficiency
in terms of bandwidth and computational overhead. New protocols can also make use of our
definition of heterogeneous consensus, perhaps adding new guarantees such as probabilistic
termination in asynchronous networks.

—— References

1 An introduction to Hyperledger, 2018.

2 Quorum whitepaper, 2018.

3 A.S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. Martin, and C. Porth. BAR fault tolerance
for cooperative services. In SOSP, pages 45-58, 2005.

4 E. A. Alchieri, A. N. Bessani, J. Silva Fraga, and F. Greve. Byzantine consensus with unknown
participants. In OPODIS, pages 22—40, 2008.

5 E. Blum, J. Katz, and J. Loss. Synchronous consensus with optimal asynchronous fallback
guarantees. In Theory of Cryptography, pages 131-150, 2019.

6 G. Bracha and S. Toueg. Resilient consensus protocols. In PODC, pages 12-26, 1983.

5:15

OPODIS 2020

https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
http://dx.doi.org/10.1145/1095810.1095816
http://dx.doi.org/10.1145/1095810.1095816
http://dx.doi.org/10.1007/978-3-540-92221-6_4
http://dx.doi.org/10.1007/978-3-540-92221-6_4
http://dx.doi.org/10.1145/800221.806706

5:16

Heterogeneous Paxos

10
11

12

13

14

15

16

17

18

19

20
21

22
23

24
25
26
27

28
29
30
31
32
33
34
35

36
37

C. Cachin and M. Backes. Reliable broadcast in a computational hybrid model with byzantine
faults, crashes, and recoveries. In DSN, 2003.

C. Cachin and B. Tackmann. Asymmetric distributed trust. In OPODIS, 2019.

B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, and H. Simitci et al. Windows Azure Storage: a highly available cloud storage service
with strong consistency. In SOSP, 2011.

M. Castro and B. Liskov. Practical Byzantine fault tolerance. In OSDI, 1999.

D. Cavin, Y. Sasson, and A. Schiper. Consensus with unknown participants or fundamental
self-organization. In ADHOC-NOW, 2004.

B. Chase and E. MacBrough. Analysis of the XRP ledger consensus protocol. CoRR,
abs/1802.07242, 2018.

A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche. Upright
cluster services. In SOSP, pages 277-290, 2009.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, and P. Hochschild et al. Spanner: Google’s globally distributed database. TOCS,
31(3):8, 2013.

M. Correia, N. Neves, and P. Verissimo. From consensus to atomic broadcast: Time-free
byzantine-resistant protocols without signatures. Comput. J., 49:82-96, January 2006.

K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E. Shi,
E. G. Sirer, D. Song, and R. Wattenhofer. On scaling decentralized blockchains. In Financial
Cryptography and Data Security, 2016.

C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann. The disagreement power
of an adversary. Distributed Computing, 24:137-147, November 2011.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. J.
ACM, 35(2):288-323, April 1988.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374-382, April 1985.

Ethereum Foundation. Ethereum white paper. Technical report, Ethereum Foundation, 2018.
A. Garcia-Pérez and A. Gotsman. Federated byzantine quorum systems. In OPODIS, pages
17:1-17:16, 2018.

D. K. Gifford. Weighted voting for replicated data. In SOSP, 1979.

F. Greve and S. Tixeuil. Knowledge connectivity vs. synchrony requirements for fault-tolerant
agreement in unknown networks. In DSN, pages 82-91, 2007.

grpc: A high performance, open-source universal RPC framework. https://grpc.io, 2018.
R. Guerraoui and M. Vukoli¢. Refined quorum systems. In PODC, 2007.

M. Hearn and R. G. Brown. Corda: A distributed ledger. Technical report, r3, 2019.

F. Junqueira and K. Marzullo. Designing algorithms for dependent process failures. In
Workshop on Future Directions in Distributed Computing, pages 24—28, 2003.

L. Lamport. The Part-time Parliament. TOCS, 16(2):133-169, May 1998.

L. Lamport. Paxos made simple. Technical report, Microsoft Research, December 2001.

L. Lamport. Byzantizing Paxos by refinement. In DISC, pages 211-224, 2011.

L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM Trans. on
Programming Languages and Systems, 4(3):382-401, July 1982.

B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed data storage system.
Technical report, Xerox Palo Alto Research Center, Palo Alto, CA, 1979.

S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic. XFT: Practical fault tolerance beyond
crashes. In OSDI, 2016.

M. Lokhava, G. Losa, D. Mazieres, G. Hoare, N. P. E. Barry, E. Gafni, J. Jové, R. Malinowsky,
and J. M. McCaleb. Fast and secure global payments with Stellar. In SOSP, 2019.

G. Losa, E. Gafni, and D. Maziéres. Stellar consensus by instantiation. In DISC, 2019.

E. MacBrough. Cobalt: BFT governance in open networks. CoRR, abs/1802.07240, 2018.
D. Malkhi, K. Nayak, and L. Ren. Flexible byzantine fault tolerance. In CCS, 2019.

https://doi.ieeecomputersociety.org/10.1109/DSN.2003.1209914
https://doi.ieeecomputersociety.org/10.1109/DSN.2003.1209914
https://drops.dagstuhl.de/opus/volltexte/2020/11793/
http://dx.doi.org/10.1007/978-3-540-28634-9_11
http://dx.doi.org/10.1007/978-3-540-28634-9_11
http://arxiv.org/abs/1802.07242
http://www.cs.utexas.edu/users/lorenzo/papers/clement-sosp09.pdf
http://www.cs.utexas.edu/users/lorenzo/papers/clement-sosp09.pdf
https://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf
http://dx.doi.org/10.1007/s00446-010-0122-4
http://dx.doi.org/10.1007/s00446-010-0122-4
http://dx.doi.org/10.1145/42282.42283
https://github.com/ethereum/wiki/wiki/White-Paper
http://drops.dagstuhl.de/opus/volltexte/2018/10077
http://dx.doi.org/10.1109/DSN.2007.61
http://dx.doi.org/10.1109/DSN.2007.61
https://grpc.io
https://grpc.io
http://dx.doi.org/10.1145/1281100.1281120
https://www.r3.com/reports/corda-technical-whitepaper/
http://dx.doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://lamport.azurewebsites.net/tla/byzsimple.pdf
http://research.microsoft.com/en-us/um/people/blampson/21-crashrecovery/Abstract.html
https://www.usenix.org/system/files/conference/osdi16/osdi16-liu.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-liu.pdf
http://delivery.acm.org/10.1145/3360000/3359636/p80-lokhava.pdf
http://arxiv.org/abs/1802.07240
http://dx.doi.org/10.1145/3319535.3354225

I. Sheff, X. Wang, R. van Renesse, and A. C. Myers

38
39

40
41
42
43
44
45
46

47

48

D. Malkhi and M. Reiter. Byzantine quorum systems. In STOC, 1997.

D. Mazieres. The Stellar consensus protocol: A federated model for internet-level consensus.
https://www.stellar.org, April 2015.

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The Honey Badger of BFT protocols. In
CCS, pages 31-42, 2016.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

B. Preneel. Collision resistance. In Encyclopedia of Cryptography and Security, 2011.
Protocol buffers. https://developers.google.com/protocol-buffers/, 2018.

D. Schwartz, N. Youngs, and A. Britto. The Ripple protocol consensus algorithm. Technical
report, Ripple Labs Inc, 2014.

I. Sheff, R. van Renesse, and A. C. Myers. Distributed protocols and heterogeneous trust.
CoRR, abs/1412.3136(arXiv:1412.3136), December 2014.

I. Sheff, X. Wang, H. Ni, R. van Renesse, and A. C. Myers. Charlotte: Composable authenti-
cated distributed data structures, technical report, 2019.

I. Sheff, X. Wang, R. van Renesse, and A. C. Myers. Heterogeneous Paxos: Technical report,
2020.

H. Siu, Y. Chin, and W. Yang. Byzantine agreement in the presence of mixed faults on
processors and links. Parallel and Distributed Systems, 9(4), April 1998.

5:17

OPODIS 2020

https://www.stellar.org
https://www.stellar.org
http://dx.doi.org/10.1145/2976749.2978399
http://dx.doi.org/10.1007/978-1-4419-5906-5_565
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://ripple.com/files/ripple_consensus_whitepaper.pdf
http://arxiv.org/abs/1412.3136
http://arxiv.org/abs/1905.03888
http://arxiv.org/abs/1905.03888
http://arxiv.org/abs/2011.08253
http://dx.doi.org/10.1109/71.667895
http://dx.doi.org/10.1109/71.667895

	Introduction
	Example
	Heterogeneous Paxos
	Contributions

	System Model
	The Learner Graph
	Quorums
	Safe Sets
	Subset of Tolerable Failures
	Generalized Learner Graph Labels

	Example
	Agreement is Transitive and Symmetric
	Liveness Bounds from Safety
	Safety Bounds from Liveness

	Heterogeneous Consensus
	Validity
	Agreement
	Termination

	Heterogeneous Paxos
	Valid Learner Graph
	Messaging
	Machinery
	Ballots
	Safety
	Liveness

	Implementation
	Related Work
	Conclusion

