
Multi-Threshold Asynchronous Reliable Broadcast
and Consensus
Martin Hirt
Department of Computer Science, ETH Zürich, Switzerland
hirt@inf.ethz.ch

Ard Kastrati
Department of Information Technology and Electrical Engineering, ETH Zürich, Switzerland
akastrati@ethz.ch

Chen-Da Liu-Zhang
Department of Computer Science, ETH Zürich, Switzerland
lichen@inf.ethz.ch

Abstract
Classical protocols for reliable broadcast and consensus provide security guarantees as long as the
number of corrupted parties f is bounded by a single given threshold t. If f > t, these protocols are
completely deemed insecure. We consider the relaxed notion of multi-threshold reliable broadcast and
consensus where validity, consistency and termination are guaranteed as long as f ≤ tv, f ≤ tc and
f ≤ tt respectively. For consensus, we consider both variants of (1− ε)-consensus and almost-surely
terminating consensus, where termination is guaranteed with probability (1− ε) and 1, respectively.
We give a very complete characterization for these primitives in the asynchronous setting and with
no signatures:

Multi-threshold reliable broadcast is possible if and only if max{tc, tv}+ 2tt < n.
Multi-threshold almost-surely consensus is possible if max{tc, tv}+ 2tt < n, 2tv + tt < n and
tt < n/3. Assuming a global coin, it is possible if and only if max{tc, tv} + 2tt < n and
2tv + tt < n.
Multi-threshold (1− ε)-consensus is possible if and only if max{tc, tv}+ 2tt < n and 2tv + tt < n.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols; Theory of
computation → Distributed algorithms; Security and privacy → Cryptography

Keywords and phrases broadcast, byzantine agreement, multi-threshold

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.6

Related Version A full version of the paper is available at https://eprint.iacr.org/2020/958.

This paper is eligible for best student paper award.

1 Introduction

Consensus and reliable broadcast are fundamental building blocks in fault-tolerant distributed
computing. Consensus allows a set of parties, each holding an input, to agree on a common
value v′, where, if all honest parties hold the same input v, v′ = v. Reliable broadcast allows
a designated party, called the sender, to consistently distribute a value v among a set of
recipients such that all honest recipients output v in case the sender is honest. If the sender
is dishonest, either all honest recipients output the same value or none of them terminates.
Both primitives are used typically in the design of more complex applications, including
multi-party computation, verifiable secret-sharing or voting, just to name a few.

The first consensus protocol was introduced in the seminal work of Lamport et al. [21] for
the model where parties have access to a complete network of point-to-point authenticated
channels, and where at most t < n/3 parties are corrupted. Reliable broadcast was first

© Martin Hirt, Ard Kastrati, and Chen-Da Liu-Zhang;
licensed under Creative Commons License CC-BY

24th International Conference on Principles of Distributed Systems (OPODIS 2020).
Editors: Quentin Bramas, Rotem Oshman, and Paolo Romano; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hirt@inf.ethz.ch
mailto:akastrati@ethz.ch
mailto:lichen@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.OPODIS.2020.6
https://eprint.iacr.org/2020/958
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Multi-Threshold Asynchronous Reliable Broadcast and Consensus

introduced by Bracha [6] as a useful primitive to construct building blocks in asynchronous
environments. Since then, both primitives has been extensively studied in many different
settings [7, 8, 6, 2, 25].

Most known fault-tolerant distributed protocols provide security guarantees in an all-or-
nothing fashion: if up to t parties are corrupted, all security guarantees remain. However,
if more than t parties are corrupted, the protocols do not provide any security guarantees.
Multi-threshold protocols (also known as hybrid security) provide different security guarantees
depending on the amount of corruption, thereby allowing a graceful degradation of security.

In this work, we consider consensus and reliable broadcast protocols with separate
thresholds tv, tc and tt for validity, consistency and termination, respectively. For consensus,
we consider both variants of (1−ε)-consensus and almost-surely terminating consensus, where
termination is guaranteed with probability (1− ε) and 1, respectively.

Such multi-threshold primitives are not only of theoretical interest, but are also motivated
by its use as core primitives in the design of more involved applications. In particular,
they are used as a central building block in the recent line of works [26, 22], that leverage
synchronous multi-party computation and consensus protocols to achieve responsiveness,
where parties obtain output as fast as the network allows, given that the amount of corruption
is low enough.

Our protocols work without the use of signatures and in the purely asynchronous model
without the need to make any timing assumptions. Our contributions give a very complete
picture of feasibility and impossibility results, which can be summarized as follows:

Multi-threshold reliable broadcast is possible if and only if max{tc, tv}+ 2tt < n.
Multi-threshold almost-surely consensus is possible if max{tc, tv}+ 2tt < n, 2tv + tt < n

and tt < n/3. The first two conditions are shown to be necessary as well. The question
whether tt < n/3 is necessary is left as an open problem. However, we give a protocol
assuming a global coin that does not require this condition.
Multi-threshold (1 − ε)-consensus is possible if and only if max{tc, tv} + 2tt < n and
2tv + tt < n.

The impossibility proofs are simple and follow the lines of [9].

1.1 Related Work
There is a large literature devoted to achieving different types of hybrid security guarantees
under different settings for agreement primitives and multi-party computation (MPC). We
are only able to list an incomplete summary of related work.

The work in [11] provides constructions in the synchronous model for Byzantine broadcast
with extended validity or consistency, where Byzantine broadcast is achieved up to a threshold
t, and validity / consistency is achieved up to an extended threshold T ≥ t, and then apply
such constructions to achieve multi-party computation with full security up to t corruptions,
and unanimous abort up to T ≥ t. The above constructions exists if and only if t = 0 or
t+ 2T < n. The works in [19, 20] focus on the question of achieving multi-party computation
with full security under an honest majority, and security with abort under a dishonest
majority. The line of works in [13, 24] provide constructions that achieve trade-offs that
include information-theoretic security up to a certain threshold, and computational security
up to a larger threshold, with different types of guarantees. A different line of works provide
security against different types of corruption (also known as mixed adversaries). The works
[12, 18] consider multi-party computation protocols where security holds even when up to tp,
tf , ta parties can be passively, fail-stop, actively corrupted, respectively. Finally, there are
works that combine mixed adversaries with hybrid security [16, 17, 15].



M. Hirt, A. Kastrati, and C.-D. Liu-Zhang 6:3

A recent line of works [23, 26, 22] achieve trade-offs between responsiveness, where parties
obtain output as fast as the network allows, and other security guarantees, for consensus,
SMR and MPC, assuming a synchronous network. The work [14] considers to networks that
tolerate some level of disconnection between the parties, as long as there is a connected
component with an honest majority of the parties. Finally, the works [3, 4, 5] provide
protocols that achieve security guarantees under a synchronous network up to ts corruptions,
and under an asynchronous network up to ta corruptions.

1.2 Comparison to Prior Work
As mentioned above, some works use as building blocks multi-threshold asynchronous
consensus and reliable broadcast primitives. In particular, the works in [23, 14, 22] make use
of an asynchronous multi-threshold consensus protocol with increased validity and consistency.
Their constructions differ from ours in two aspects: 1) they operate in a setting where parties
have access to a public-key infrastructure and 2) their constructions inherently require that
the termination threshold is below n/3.

The constructions for consensus and reliable broadcast in [3, 4] considers different
thresholds. In [3], the authors design a consensus protocol with increased validity with
termination (where validity also ensures termination in case of pre-agreement) assuming a
global common coin, based on the protocol in [25]. Similarly, in [4], the authors provide a
construction for reliable broadcast with two thresholds allowing for validity with termination
in the honest sender case, and consistency with reliable termination (where either all honest
parties terminate or none), in the dishonest sender case. We provide constructions without
assuming a global coin, which in addition allow to have the termination threshold above
validity and consistency.

2 Model

We consider a setting in which parties have access to a complete network of authenticated
channels. The adversary has full control over the network and can schedule the messages in
an arbitrary manner. However, each message must be eventually delivered. Moreover, we
consider the setting where parties do not have any setup available.

We consider an adaptive adversary who can gradually corrupt parties and take full control
over them. Note, however, that our impossibility proofs hold even against a static adversary
that is assumed to choose the corrupted parties at the beginning of the protocol execution.
We require our protocols to be unconditionally secure, meaning that security holds even
against a computationally unbounded adversary. On the other hand, our impossibility results
hold even against a computationally bounded adversary.

In the protocols we say that a party terminates when it stops participating in the protocol.
Note that we distinguish between outputting and terminating, in the sense that a party
might output a value but still continue participating.

3 Multi-Threshold Reliable Broadcast

Reliable broadcast is a fundamental primitive in distributed computing which allows a sender
to consistently distribute a message towards a set of recipients. We consider a setting with
n+ 1 parties, one sender S and n recipients R = {R1, ..., Rn}. Let us denote the number of
corrupted recipients (not including the sender) at the end of the protocol execution by f .

OPODIS 2020



6:4 Multi-Threshold Asynchronous Reliable Broadcast and Consensus

I Definition 1 (Reliable Broadcast). LetM be a finite message space and f be the number
of corrupted recipients at the end of the execution. A protocol π where initially the sender S
has an input m ∈M and every recipient Ri upon termination outputs mi ∈M, is a reliable
broadcast protocol, with respect to thresholds tc, tv, and tt, if it satisfies the following:

Consistency. If f ≤ tc, then every honest recipient that terminates outputs the same
message. That is, ∃m′ ∈M : ∀ honest Ri that terminate mi = m′.
Validity. If f ≤ tv and the sender is honest, then every honest recipient Ri that
terminates outputs the sender’s message. That is, ∀ honest Ri that terminate mi = m.
Termination.
1. An honest sender always terminates.
2. If f ≤ tt and an honest recipient terminates, then every honest recipient eventually

terminates.
3. If f ≤ tt and the sender is honest, then eventually every honest recipient terminates.

3.1 Protocol
We present a reliable broadcast protocol with respect to thresholds tc, tv and tt, as long as
max{tv, tc}+ 2tt < n. The protocol is a generalization of Bracha’s broadcast protocol [6].

Protocol Πtc,tv,tt
rbc

The sender S holds input m ∈M. Upon termination every recipient Ri ∈ R outputs a message.
Code for the sender S
1. Send the message (MSG, m) to all recipients in R and terminate.
Code for recipient Ri ∈ R
1. Upon receiving first (MSG, m) from the sender, send (ECHO, m) to all recipients.
2. Upon receiving (ECHO, m′) from n− tt parties that agree on the value m′ ∈M, send

(READY, m′) to all recipients.
3. Upon receiving (READY, m′) from max{tv, tc} + 1 parties that agree on the value

m′ ∈M, send (READY, m′) to all recipients.
4. Upon receiving (READY, m′) or (TERMINATE) from n − tt parties from which at

least max{tv, tc}+ 1 are READY messages and (they all) agree on the value m′ ∈M,
send (TERMINATE), output m′ and terminate.

I Lemma 2. If f ≤ max{tv, tc}, ∀m′ ∈ M the first honest recipient that sends (READY,
m′) received at least n− tt (ECHO, m′) messages.

Proof. For any m′ ∈M, (READY, m′) messages are sent by honest recipients either in line
2 or 3 of the recipient’s code. However, ∀m′ ∈M the first (READY, m′) message can only
be sent in line 2. This is due to the fact that if f ≤ max{tv, tc}, line 3 implies that there
must be some other honest recipient that previously sent a (READY, m′) message too. J

I Lemma 3. If f ≤ max{tv, tc}, the messages (READY, m′) sent by honest recipients
are consistent. That is, there ∃m′′ ∈M such that for every honest recipient Ri that sends
(READY, m′), m′ = m′′.

Proof. Suppose not; let Ri and Rj be the first honest recipients that send (READY, m′)
and (READY, m′′) with m′ 6= m′′. Due to Lemma 2, Ri received at least n − tt (ECHO,
m′) messages whereas Rj received at least n− tt (ECHO, m′′) messages. It follows, at least
2(n− tt)− n = n− 2tt > max{tv, tc} players dishonestly sent inconsistent ECHO messages
to Ri and Rj . However, each honest recipient sends an ECHO message at most once and
there are at most f ≤ max{tv, tc} dishonest recipients. A contradiction. J



M. Hirt, A. Kastrati, and C.-D. Liu-Zhang 6:5

I Lemma 4. If f ≤ max{tv, tc} and an honest sender broadcasts m, for every honest
recipient that sends (READY, m′), m′ = m.

Proof. Suppose not; Let Ri be the first honest recipient that sends (READY, m′) with
m′ 6= m. Due to Lemma 2, Ri received at least n − tt (ECHO, m′) messages. However,
in case the sender is honest and broadcasts m every honest recipient will ECHO only the
sender’s value (m). Hence there can be at most f ≤ max{tv, tc} < n− tt (ECHO, m′) with
m 6= m′. A contradiction. J

I Lemma 5. If f ≤ tt and an honest recipient terminates, then every honest recipient
eventually terminates.

Proof. Let Ri be the first honest recipient that terminates. Then, Ri received (READY, m′)
or (TERMINATE) from n− tt messages from which at least max{tv, tc}+ 1 are READY
messages. Furthermore, all READY messages agree on m′. Under the assumption that no
other honest recipient has terminated so far, we know that no (TERMINATE) messages were
sent from the honest recipients. Hence, by taking into account that n− tt > max{tv, tc}+ tt
and f ≤ tt, it follows that at least max{tv, tc} + 1 recipients have sent (READY, m′) to
all other parties. Every honest recipient will eventually either receive these (READY, m′)
messages and send a (READY, m′) as well or terminate before receiving them and send a
(TERMINATE) message instead. Since there are at least n− tt honest recipients, it follows
that eventually every honest recipient Rl that didn’t terminate yet will receive n−tt messages
(READY, m′) or (TERMINATE) from which at least max{tv, tc}+ 1 are READY messages
and they all agree on m′. Thus, every honest Rl eventually terminates as well. J

I Lemma 6. If f ≤ tt and the sender is honest, at least one honest recipient eventually
terminates.

Proof. Since every honest recipient echoes the sender’s value, there will be at least n− tt
(ECHO, m) messages. Similarly, since there are n− tt (ECHO, m) messages in the network,
every honest recipient will eventually send a (READY, m). Finally, since there are n− tt
(READY, m) messages in the network, at least one honest recipient will terminate. J

I Theorem 7. Let 0 ≤ tc, tv, tt < n. Πtc,tv,tt
rbc is a multi-threshold broadcast according to

Definition 1 if max{tv, tc}+ 2tt < n.

Proof.
Consistency & Validity. Assume f ≤ max{tv, tc}. Every honest recipient that outputs a
message, has received at least max{tv, tc}+ 1 (READY, m). Since f ≤ max{tv, tc}, it
follows at least one is sent from an honest party. From Lemma 3 we know that READY
messages are consistent, hence we achieve consistency. From Lemma 4 we know that the
READY messages from honest parties contain only the sender’s value, hence we achieve
validity.
Termination. We prove the three termination properties from the Definition 1.
1. For the first requirement, it is trivial to see that an honest sender always terminates.
2. The second requirement is proven in Lemma 5.
3. For the third requirement, from Lemma 6 we know that if the sender is honest, at least

one honest recipient terminates. We can apply Lemma 5 again, and see that every
honest recipient terminates. J

OPODIS 2020



6:6 Multi-Threshold Asynchronous Reliable Broadcast and Consensus

3.2 Impossibility Proofs
In this section, we show that the protocol Πtc,tv,tt

rbc presented above is optimal. That is, there
is no reliable broadcast protocol with max{tv, tc}+ 2tt ≥ n, where tc, tv, tt ≥ 0. We prove
each bound separately.

∣∣B∣∣ = tt
∣∣A∣∣ = tt

S

∣∣C∣∣ = tc

0

∣∣B∣∣ = tt
∣∣A∣∣ = tt

S

∣∣C∣∣ = tc

1

Figure 1 The same configuration can be viewed as: a) (in red) two independent runs of the
protocol on the left and the right side, where messages between A and B are delayed: One where
the sender has input 0 and one where the sender has input 1; b) (in blue) the sender and the set C
is corrupted and behaves differently towards A and B.

I Theorem 8. There exists no multi-threshold broadcast protocol with tc + 2tt ≥ n.

Proof. Suppose not; let π be a multi-threshold broadcast protocol with tc + 2tt = n. We
partition the set of all recipients into three sets A, B and C with size

∣∣A∣∣ =
∣∣B∣∣ = tt and∣∣C∣∣ = tc. We build the network as in Figure 1.

Figure 1(in red) on the left side, we can see an independent run where all parties are
honest and messages between A and B are delayed by the scheduler. Since A and B are
of size tt, all parties terminate with an output. Moreover, since all parties are honest, the
output is 0. In particular, parties in A output 0. Similarly, B outputs 1 on the right side.

Now consider an attacker that corrupts the sender and C, and emulates the protocol
as in the scenario in Figure 1(in blue). Since this configuration is exactly the same as the
red one, A outputs 0 and B outputs 1. This results in a contradiction to the consistency
property of the multi-threshold broadcast. J

I Theorem 9. For any tv > 0, there is no multi-threshold broadcast protocol with tv+2tt ≥ n.

Proof. Suppose not; let π be a multi-threshold broadcast protocol with tv + 2tt = n. We
partition the set of all recipients into three sets A, B and C with

∣∣A∣∣ =
∣∣B∣∣ = tt and

∣∣C∣∣ = tv.
We build the a configuration as in Figure 2.

Consider Figure 2(in red), on the left side, where messages between S and B, or between
A and B are delayed. Since B is of size tt, all parties must output a value without waiting
for the messages from B (as B could be corrupted). Moreover, since all parties are honest, A
and C output 0. Furthermore, since C outputs 0, because of the second requirement of the
termination of broadcast – if one recipient terminates, then every recipient terminates – B
outputs 0 as well. Note that A and S have together size tt + 1, but the second requirement
of termination requires B to terminate even if the sender is corrupted. The same argument
can be applied on the right side of Figure 2(in red).



M. Hirt, A. Kastrati, and C.-D. Liu-Zhang 6:7

S
∣∣C∣∣ = tv

∣∣B∣∣ = tt
∣∣A∣∣ = tt

0
S

∣∣C∣∣ = tv

∣∣B∣∣ = tt
∣∣A∣∣ = tt

1

Figure 2 The same configuration can be viewed as: a) (in red) two independent runs of the
protocol on the left and the right side, where messages between A and B are delayed, and also
between S and B. One where the sender has input 0 and one where the sender has input 1; b) (in
blue) the set C is corrupted and behaves differently towards S and A on the left side and differently
towards B on the right side.

Now, consider an attacker that corrupts the parties in C and emulates the protocol as in
the scenario in Figure 2(in blue). Because both scenarios are the same setup, A outputs 0 on
the left side, whereas B outputs 1 on the right side. Thus, validity is violated. J

4 Almost-Surely Multi-Threshold Consensus

Stated in simple terms, consensus allows a set of parties to agree on a common value. More
formally, the protocol starts with every party having an input and ends with every party
having a consistent output. Moreover, if every honest party starts with the same input, they
keep it. Due to the FLP impossibility proof [10], non-terminating executions are inevitable
for every consensus protocol. Hence, we require the parties to terminate only with probability
1, termed in the literature as almost-surely terminating consensus.

I Definition 10 (Consensus). Let M be a finite message space and f be the number of
corrupted parties at the end of the execution. A protocol π where initially each party has
an input xi ∈ M and finally every party Pi upon termination has an output yi ∈ M, is a
consensus protocol, with respect to thresholds tc, tv, tt, if it satisfies the following:

Consistency. If f ≤ tc, then the output of every honest party is the same value. That
is, ∃y ∈M : ∀ honest Pi that output yi = y.
Validity. If f ≤ tv and every honest party has the same input value x ∈M, then the
output of every honest party Pi is x. That is, ∀ honest Pi that output yi = x.
Termination. If f ≤ tt, then with probability 1 eventually every honest party outputs
and terminates.

In the following, we present a multi-threshold consensus protocol with respect to thresholds
tc, tv and tt, where max{tc, tv}+ 2tt < n, 2tv + tt < n and tt < n/3. In the full version, we
also show that the bounds max{tc, tv} + 2tt < n and 2tv + tt < n are required. We leave
the feasibility of almost-surely multi-threshold consensus with tt ≥ n/3 as an open question.
However, in the full version we provide a construction that overcomes the n/3 bound for the
case where parties have access to a global coin.

OPODIS 2020



6:8 Multi-Threshold Asynchronous Reliable Broadcast and Consensus

The protocol is an adaptation of Bracha’s consensus [6] protocol. The main idea of
Bracha’s consensus is to use a reliable broadcast primitive and build a correctness enforcement
scheme, where only messages that are intended by the protocol design are accepted. The only
difference in our protocol is that we plug our multi-threshold broadcast protocol described in
the previous section into the correctness enforcement scheme proposed by Bracha. We choose
to use a multi-threshold reliable broadcast Πts,ts,tt

rbc that achieves validity and consistency up
to ts = n− 2tt − 1 corruptions (which is achievable since ts + 2tt < n). Note that tt < n/3
implies that ts ≥ tt.

4.1 Multi-Threshold Correctness Enforcement
For completeness and readability of our protocols, we include a summary of the correctness
enforcement mechanism. Further details can be found in [6]. The following constructions
and proof techniques are very similar to [6] with the only difference that we plug our
multi-threshold broadcast protocol Πts,ts,tt

rbc . Furthermore, we assume ts ≥ tt.

Round-Based Asynchronous Protocols. We consider protocols that are composed by
rounds. In each round k, every party uses the multi-threshold broadcast protocol to send a
value to all parties. Subsequently, every party waits to receive a set S of the values (of size at
most n− tt) and computes a new value according to some function F k(·) for the next round.

Validation Sets. Each party Pi keeps for each round k a set of values Vki , called a validation
set, with the values that are broadcast in round k. Each value xi broadcasted in round k by
Pi is stored as (Pi, k, xi). When a value is broadcast by some party at round k + 1, every
party checks locally whether there exists a subset of values in Vki that explains the broadcast
value. That is, Vki is defined as follows:

For k = 1, (Pj , 1, xj) ∈ V1
i if xj is received by Pi from a multi-threshold broadcast

protocol with sender Pj at round 1.
For k > 1, (Pj , k, xj) ∈ Vki , if xj is received by Pi from a multi-threshold broadcast protocol
with sender Pj at round k, and there is a subset S ⊆ Vk−1

i such that xj = F k−1(S).

We say a party Pi validates a message xj in round k if (Pj , k, xj) ∈ Vki . The parties
update their V sets whenever they validate a message. If a party Pi outputs a value during
a broadcast protocol but the message is still not validated it is ignored in the protocol,
although it is stored for future validation.

Protocol A round with correctness enforcement

Code for the party Pi with input xi at round k

1. Multi-Threshold Broadcast(xi) to all the parties.
2. Wait until a set S of messages have been validated.
3. Set xi = F k(S).

We state a list of lemmas that are guaranteed from the correctness enforcement mechanism.
The proofs will appear in the full version of the paper.

I Lemma 11. If f ≤ ts, in every round k of the protocol the added values in the validation
sets of all honest parties are consistent. That is:

∀ honest Pi, Pj : ∀Pl : (Pl, k, xl) ∈ Vki ∧ (Pl, k, x̃l) ∈ Vkj =⇒ xl = x̃l



M. Hirt, A. Kastrati, and C.-D. Liu-Zhang 6:9

I Lemma 12. If f ≤ ts and an honest sender Pi broadcasts (Pi, k, xi) in a round k of the
protocol, the validation sets of all honest parties contain only the sender’s value. That is:

∀ honest Pi, Pj : (Pi, k, xi) ∈ Vkj =⇒ Pi broadcast xi in round k.

I Lemma 13. If f ≤ tt every party will eventually go from round k to round k + 1.

4.2 Protocol
We describe the protocol, which is a generalization of Bracha’s consensus [6]. The protocol
executes in parallel the two sub-protocols ’Reaching agreement’ and ’Termination’.

Protocol Πtc,tv,tt
as−con

Input. Every party Pi holds input xi.
Variable. yi = ⊥.
Reaching agreement.

Code for the party Pi at phase k.
1. Πts,ts,tt

rbc (xi). Wait until n− tt messages are validated.
xi = majority of the validated elements.

2. Πts,ts,tt
rbc (xi). Wait until n− tt messages are validated.
If all of the validated messages have the same value x, xi = (propose, x)
Otherwise, keep the same xi.

3. Πts,ts,tt
rbc (xi). Wait until n− tt messages are validated.

a. If at least n − tt of the validated messages have the same value (propose, x), then
update yi = x and run the ’Reaching agreement code’ for only one more phase.

b. Else if at least tt + 1 of the validated messages have the same value (propose, x), then
xi = x.

c. Otherwise, choose 0 or 1 with probability 1/2 for xi (coin toss).
4. Go to phase k + 1.

Termination.
Upon updating yi, send (READY, yi) to all parties.
Upon receiving (READY, m′) messages from max{tc, tv} + 1 parties that agree on the
value m′, send (READY, m′) to all parties.
Upon receiving (READY, m′) from n− tt parties that agree on the value m′, output m′

and terminate.

I Lemma 14. If f ≤ ts, it is impossible for an honest party to propose 0 and an honest
party to propose 1 in the same phase k.

Proof. The proof is by contradiction. Suppose parties Pi and Pj propose 0 and 1, respectively,
in phase k. Thus in line 2 of phase k, Pi validated n − tt messages with value 0 and Pj
validated n − tt messages with value 1. Since n − 2tt > 0, it follows that Pi and Pj have
inconsistent messages in their validation sets, which contradicts Lemma 11. J

We say that a phase k is x-fixed (for x ∈ {0, 1}), if honest parties that starts phase k
validate only x as an input value broadcast by any party.

I Lemma 15. If f ≤ ts and an honest party Pi updates yi = x ∈ {0, 1} at some phase k,
phase k + 1 is x-fixed.

Proof. Suppose that some party Pi updates yi = x ∈ {0, 1} at phase k. Pi must have
validated at least n− tt proposals for x in step 3 of phase k. Let Pj be any party that starts
phase k+ 1. In phase k, since Pi validated n− tt proposals for x and tt < n/3, Pj must have

OPODIS 2020



6:10 Multi-Threshold Asynchronous Reliable Broadcast and Consensus

validated at least tt + 1 for x. Moreover by Lemma 14, Pj does not validate any proposals
for x′ 6= x. So any Pj can only set its variable xj to x in step 3. Hence, no honest party can
validate x′ 6= x in the next phase as an input. Therefore, phase k + 1 is x-fixed. J

I Lemma 16. If a phase k is x-fixed then every honest party Pi that reaches step 3 of the
phase k updates yi = x at the end of the phase.

Proof. Suppose a phase k is x-fixed. Then, all honest parties validate only x as an input
value. Hence, every honest party can only propose x as their input. Consider a party Pi that
reaches step 3 of phase k. Clearly, Pi can only validate proposals with x. Hence, from line 3
of the reaching agreement part of the protocol we can see that Pi updates yi = x. J

I Lemma 17 (Liveness). If f ≤ tt and if no honest party updated yi, the parties will eventually
go from phase k to phase k + 1.

Proof. Immediate from Lemma 13. J

I Lemma 18. If f ≤ tt every honest party with probability 1 will update yi to the same
value.

Proof. First note that we assume tt ≤ ts. By Lemma 17, as long as no party updates yi,
honest parties don’t get stuck in any round. Every honest party that doesn’t update yi in
phase k, sets its value xi for the next phase either based on step 3(ii) or step 3(iii). Let Pi
be the first honest party that completed round 3k + 3. There are two cases:

Party Pi has validated at least one (propose, x). With probability p ≥ 1/2n−tt all honest
parties that toss a coin choose x. By Lemma 14, the remaining honest parties that set
their value deterministically, are forced to set their value to x.
Party Pi has validated no (propose, x). Since Pi validated n− tt messages and tt < n/3,
no other honest party Pj can validate more than tt values of the form (propose, x). Hence,
every honest party tosses a coin. The probability that every honest party tosses the same
value is again p ≥ 1/2n−tt .

Hence, in either case after each phase the probability that honest parties have the same
value is greater or equal then 1/2n−tt . If at some phase k every honest party has the same
value then it follows that in the next round there can be at most tt parties will input x̄ (the
ones that maliciously change the outcome of the local coin). However, by Lemma 15 (note
that we have tt ≤ ts) and since n− 2tt > tt, it follows that the majority of each subset of
size n− tt in the next round will result in x. Hence, next phase is x-fixed. By Lemma 16 it
follows that every honest party will update yi after that phase. Hence, after round k the
probability of not updating yi is (1− p)k. As k goes to infinity, the probability goes to 0. J

I Theorem 19. Let 0 ≤ tc, tv, tt < n. Πtc,tv,tt
as−con is an almost-surely terminating multi-threshold

consensus (see Definition 10) if max{tc, tv}+ 2tt < n, 2tv + tt < n and tt < n/3.

Proof. Validity. Suppose all honest parties have the same input x. In the first round, since
there are at most f ≤ tv, at most tv elements with value x̄ can be broadcast by corrupted
parties. By Lemma 15 (note that tv ≤ max{tc, tv} = ts) and since n − tt − tv > tv,
it follows that honest parties can only validate x as the outcome of the first round.
Hence, the first phase is x-fixed. Due to Lemma 16, it follows that every honest party
updates yi = x at the end of the first phase. Furthermore, by applying Lemma 15 and 16
recursively, one can easily see that once a phase is x-fixed it always remains so. Hence,
parties can never change the value. Furthermore, in the termination part of the protocol
it is not hard to see that READY messages are unique (see Section 3 for a detailed proof)
and contain only x. Hence, every honest party that outputs, outputs x.



M. Hirt, A. Kastrati, and C.-D. Liu-Zhang 6:11

Consistency. Suppose some party Pi and Pj update different values yi = x and yj = x′

in phase k and k′ respectively. There are two cases:
1. k = k′. Since a party can update a value in phase k only if that value was proposed

in round k, it follows both x and x′ were proposed in phase k. By Lemma 14 this is
impossible.

2. k < k′. Since Pi updates yi in phase k then due to Lemma 15 phase k + 1 is x-fixed.
Similar to previous arguments, by applying Lemma 15 and 16 recursively, one can
easily see that once a phase is x-fixed it always remains so. It follows that all parties
can only update yi = x in the next phases.

This proves that the update of yi by all parties is unique. In return this implies that
READY messages are unique as well. By similar arguments as in Section 3, it is not hard
to see that the consistency is achieved also in the termination part of the protocol.
Almost-Surely Termination. From Lemma 18 it follows that with probability 1 every
honest party will update yi to the same value (say x). Since, after updating yi = x

parties take part only in one more round, with probability 1 every honest party will “get
out” of the infinite loop. By simply setting the message spaceM = {0, 1} one can easily
prove now termination similar to Section 3. It follows, like in multi-threshold broadcast
protocol, every party will eventually send the same (READY, x) with x ∈ {0, 1}. Hence
eventually there will be n− tt (READY, x) messages that agree on a value and thus at
least an honest party with probability 1 terminates. Again, similar to broadcast one can
see that if an honest party terminates, then every honest party eventually terminates.
Thus with probability 1 eventually everyone terminates. J

5 (1− ε) Multi-Threshold Consensus

The general idea in the previous section is to use randomness such that by chance the parties
reach agreement. Once they do, agreement is preserved. However, in the regime where
tt ≥ n/3, the following challenges arise. First, note that if tt ≥ n/3 and max{tc, tv}+2tt < n,
then max{tc, tv} < tt. As a consequence, there is a region where the multi-threshold broadcast
protocol only guarantees termination, but does not guarantee the consistency and validity
of the outputs. This is problematic, because the adversary can change the outputs of each
broadcast instance such that no messages are validated in the correctness enforcement scheme.
As a consequence, parties get stuck in a phase and never terminate. The second challenge is
with respect to the coin. If tt ≥ n/3, even when all honest parties obtain the same value
v as local coin, the adversary can schedule messages so that the majority decision among
n− tt values is inconsistent among the parties. Finally, as pointed out in [1], the correctness
proof for n/3 ≤ tt < n/2 is more subtle and requires reasoning about two consecutive
phases. Moreover, they show that the global-variant of Ben-Or doesn’t work for the case
n/3 ≤ tt < n/2.

We overcome the first challenge by plugging in a detectable broadcast primitive into the
correctness enforcement mechanism, which allows parties to eventually detect misbehavior
in the case where they obtain different values. The second challenge is resolved by cycling
through all sets S of tt + 1 parties, where only parties in S sample a random coin. This
way, if all parties in S are honest and chooses the same local coin, then everyone adopts the
same value. Finally, the last challenge is resolved by adding one round for each phase, which
allows to analyse the phases independently of each other.

OPODIS 2020



6:12 Multi-Threshold Asynchronous Reliable Broadcast and Consensus

With these techniques, we construct a (1 − ε) multi-threshold consensus protocol if
max{tc, tv} + 2tt < n and 2tv + tt < n, where termination holds with probability (1 − ε)
(instead of 1). The bounds are optimal (see the full version).In contrast to the almost-surely-
terminating version, it is possible to achieve this notion with tt ≥ n/3. The number of rounds
depends on the error ε. For negligible ε, the number of rounds is exponential in n.

I Definition 20 ((1−ε)-Consensus). The consistency and validity property of (1−ε)-consensus
are the same as in Definition 10. We only change the termination property.

Termination. If f ≤ tt, then with probability 1 − ε eventually every honest party
outputs and terminates.

5.1 Detectable Correctness Enforcement
As mentioned, if tt > max{tv, tc}, in the region where the adversary corrupts max{tv, tc} <
f ≤ tt, the multi-threshold broadcast does not guarantee any consistency among messages,
allowing the adversary to make parties reach a state where no messages are validated and
thus all honest parties get stuck. Instead, we use a detectable multi-threshold broadcast,
which guarantees consistent outputs when f ≤ max{tc, tv} as in multi-threshold broadcast,
but in addition allows parties to detect potential misbehavior if f ≤ tt. Note, however, that
we don’t require termination, i.e., parties may need to run forever. The protocol is based on
the one in Section 3, so we defer its description and analysis to the full version. Plugging
the detectable multi-threshold broadcast in the correctness enforcement results in detectable
correctness enforcement, where the properties of correctness enforcement hold or parties
detect Byzantine behavior.

I Definition 21 (Detectable Multi-Threshold Broadcast). LetM be a finite message space
and f be the number of corrupted parties. A protocol π, where initially the sender S has an
input message m ∈M and subsequently every recipient Ri ∈ R potentially outputs a message
mi ∈M and/or a detection flag DETECT, is a detectable multi-threshold broadcast protocol
with respect to thresholds tc, tv and tt, if it satisfies the following:

Consistency. If f ≤ tc, ∃m′ ∈M : ∀ honest Ri that output the message mi, the value
of mi = m′. Furthermore, no honest recipient Ri outputs the detection flag DETECT.
Validity. If f ≤ tv and the sender is honest, ∀ honest Ri that output the message mi,
the value of mi = m. Furthermore, no honest recipient Ri outputs the detection flag
DETECT.
Totality-or-Detection.
1. If f ≤ tt and an honest recipient outputs the message m′ ∈M then eventually every

honest recipient outputs the message m′ or every honest recipient outputs the detection
flag DETECT.

2. If f ≤ tt and the sender is honest, then eventually every honest recipient outputs the
message m or every honest recipient outputs the detection flag DETECT.

Notation. We say that “Pi detects Byzantine behaviour” to denote that Pi outputs the
detection flag DETECT in an execution of detectable multi-threshold broadcast. Note that
detectable multi-threshold broadcast guarantees that either all honest recipients eventually
output DETECT, or none of them does.

5.2 Common Coin
In the protocol from Section 4, parties toss a coin until they reach by chance agreement. If
tt ≥ n/3, the adversary can maliciously change the local coins for some of the parties and
break termination. We show a protocol that allows parties to output the same value, even if



M. Hirt, A. Kastrati, and C.-D. Liu-Zhang 6:13

the adversary changes the outcome of the local coin of some of the parties. If tt < n/3, this
is easily done by allowing each party to broadcast a random value and choosing the majority
among the n− tt values that are received. For n/3 ≤ tt < n/2, one cannot take the majority
value. The idea is to let only a subset R of tt + 1 parties toss a local coin:

Protocol Coin(R), f ≤ tt < n/2,
∣∣R∣∣ = tt + 1

1. If Pi ∈ R: choose 0 or 1 with probability 1/2 and detectable-broadcast the outcome to
everyone.

2. Every party outputs the value of the first broadcast that output.

If all the parties in R are honest and toss the same coin, then every party outputs the
same value. During the consensus protocol, we cycle through all subsets of size tt + 1. If
tt < n/2, one of them contains only honest parties, and in that phase, if all parties toss the
same coin (we denote it a lucky phase), all honest parties obtain the same value.

5.3 Protocol
The protocol is very similar to the one in Section 4, but with four changes: 1) it is executed
a fixed number of phases, 2) the broadcast protocols are replaced by detectable broadcast
protocols (allowing parties for detectable correctness enforcement), 3) the coin is replaced by
the one in Section 5.2 and 4) a termination protocol which works even if tt > max{tc, tv}. In
addition, the protocol has a special initial majority round that allows for a simpler analysis
of validity and one lock-round for each phase that allows the deterministic value of a phase
to be fixed before the coins are revealed.

The intuition behind fixing the number of phases is that if the protocol runs indefinitely, it
may happen that some messages are never scheduled: even though the detectable broadcast
eventually detects misbehavior, such messages are never scheduled because there are always
other messages that the adversary can schedule1. However, this cannot happen if the number
of phases is fixed. Setting a “large enough” number of phases suffices for parties to reach
agreement with probability (1−ε), unless the adversary misbehaved in a detectable broadcast
protocol, in which case parties detect it and eventually reach agreement.

We call a batch B an iteration over all subsets of size tt + 1, i.e. B =
(
n

tt+1
)
. We set an

upper bound K + 1 on the number of batches (hence we have (K + 1)B phases in total), so
that the probability that parties are not in agreement after (K + 1)B phases is at most ε.

Protocol Πtc,tv,tt
(1−ε)−con

Input. Every party Pi holds input xi ∈ {0, 1}.
Variable. yi = ⊥.
Initial majority round // This initial round is necessary to ensure validity.

Detectable-Broadcast(xi) to every party. Wait until n− tt messages have been validated.
Set xi = majority of the n− tt validated messages.

Reaching agreement. Repeat at most K + 1 times: // K + 1 batches.
For every subset R of size

∣∣R∣∣ = tt + 1 do: // we call this loop one batch.
1. Detectable-Broadcast(xi) to every party. Wait until n− tt messages have been validated.

1 This is the main challenge that one needs to overcome to design an almost-surely terminating consensus
for tt ≥ n/3.

OPODIS 2020



6:14 Multi-Threshold Asynchronous Reliable Broadcast and Consensus

If all validated messages have the same value x, update xi = (lock, x), else update
xi = (lock, ?).

2. Detectable-Broadcast(xi) to every party. Wait until n− tt messages have been validated.
If all messages are (lock, x) with the same x ∈ {0, 1}, update xi = (propose, x), else
update xi = (propose, ?).

3. Set ci = Coin(R).
4. Detectable-Broadcast(xi) to every party. Wait until n− tt messages have been validated.

If all messages are (propose, x) with x ∈ {0, 1}, update yi = x.
Else if at least one of the messages is (propose, x) with x ∈ {0, 1}, then xi = x.
Otherwise, set xi = ci.

Termination.
Upon updating yi, send (READY, yi) to all parties.
Upon detecting a Byzantine behaviour, send (READY, ⊥) to all parties.
Upon receiving (READY, d′) messages from max{tc, tv}+ 1 parties that agree on the value
m′ ∈ {0, 1,⊥} during the consensus protocol, send (READY, m′) to all parties.
Upon receiving (READY, m′) or (TERMINATE) from n− tt parties from which at least
max{tv, tc} + 1 are READY messages and (they all) agree on the value m′ ∈ {0, 1,⊥},
send (TERMINATE) to all recipients, output m′ and terminate.

A formal analysis of the protocol can be found in the full version of the paper. Intuitively,
if f ≤ max{tc, tv}, correctness enforcement ensures the same properties as in the protocol
Πtc,tv,tt

as−con, making the proofs of validity and consistency similar to those. However, the
termination property involves a bit more careful analysis. The idea is that either each honest
party Pi updates to the same value yi = y, or Byzantine behavior is detected. This is because
with high probability, there is a phase where honest parties reach agreement by chance (they
obtain the same value from the coin, and the coin coincides with the deterministic value of
that phase), unless the adversary tampered the outputs from a detectable broadcast protocol
in which case it will eventually be detected. As a result, one can argue that there is an honest
party that terminates (every honest party eventually sends the same READY message),
which in turn implies that eventually everyone terminates by a similar argument as for the
broadcast protocol in Section 3.

References

1 Marcos K. Aguilera and Sam Toueg. The correctness proof of Ben-Or’s randomized consensus
algorithm. Distributed Computing, 25(5):371–381, 2012. doi:10.1007/s00446-012-0162-z.

2 Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In Proceedings of the Second Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pages 27–30. ACM, 1983. doi:10.1145/
800221.806707.

3 Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal asyn-
chronous fallback guarantees. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part I, volume 11891 of LNCS, pages 131–150. Springer, Heidelberg, December 2019.
doi:10.1007/978-3-030-36030-6_6.

4 Erica Blum, Jonathan Katz, and Julian Loss. Network-agnostic state machine replication.
Cryptology ePrint Archive, Report 2020/142, 2020. URL: https://eprint.iacr.org/2020/
142.

5 Erica Blum, Chen-Da Liu-Zhang, and Julian Loss. Always have a backup plan: Fully secure
synchronous mpc with asynchronous fallback. In Daniele Micciancio and Thomas Ristenpart,

https://doi.org/10.1007/s00446-012-0162-z
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/800221.806707
https://doi.org/10.1007/978-3-030-36030-6_6
https://eprint.iacr.org/2020/142
https://eprint.iacr.org/2020/142


M. Hirt, A. Kastrati, and C.-D. Liu-Zhang 6:15

editors, Advances in Cryptology - CRYPTO 2020, pages 707–731, Cham, 2020. Springer
International Publishing.

6 Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

7 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

8 Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine
agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

9 Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. In Michael A. Malcolm and H. Raymond Strong, editors, 4th
ACM PODC, pages 59–70. ACM, August 1985. doi:10.1145/323596.323602.

10 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985. doi:10.1145/
3149.214121.

11 Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger. Two-threshold broad-
cast and detectable multi-party computation. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 51–67. Springer, Heidelberg, May 2003. doi:10.1007/3-540-39200-9_4.

12 Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy in
unconditional multi-party computation (extended abstract). In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 121–136. Springer, Heidelberg, August 1998.
doi:10.1007/BFb0055724.

13 Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party computation with
hybrid security. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 419–438. Springer, Heidelberg, May 2004. doi:10.1007/
978-3-540-24676-3_25.

14 Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of
LNCS, pages 499–529. Springer, Heidelberg, August 2019. doi:10.1007/978-3-030-26948-7_
18.

15 Martin Hirt, Christoph Lucas, and Ueli Maurer. A dynamic tradeoff between active and
passive corruptions in secure multi-party computation. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 203–219. Springer, Heidelberg,
August 2013. doi:10.1007/978-3-642-40084-1_12.

16 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Graceful degradation in
multi-party computation (extended abstract). In Serge Fehr, editor, ICITS 11, volume 6673 of
LNCS, pages 163–180. Springer, Heidelberg, May 2011. doi:10.1007/978-3-642-20728-0_15.

17 Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Passive corruption in
statistical multi-party computation - (extended abstract). In Adam Smith, editor, ICITS
12, volume 7412 of LNCS, pages 129–146. Springer, Heidelberg, August 2012. doi:10.1007/
978-3-642-32284-6_8.

18 Martin Hirt, Ueli M. Maurer, and Vassilis Zikas. MPC vs. SFE: Unconditional and computa-
tional security. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages
1–18. Springer, Heidelberg, December 2008. doi:10.1007/978-3-540-89255-7_1.

19 Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy with
guaranteed output delivery in secure multiparty computation. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 483–500. Springer, Heidelberg, August 2006.
doi:10.1007/11818175_29.

20 Jonathan Katz. On achieving the “best of both worlds” in secure multiparty computation. In
David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 11–20. ACM Press, June
2007. doi:10.1145/1250790.1250793.

21 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

OPODIS 2020

https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/323596.323602
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/3-540-39200-9_4
https://doi.org/10.1007/BFb0055724
https://doi.org/10.1007/978-3-540-24676-3_25
https://doi.org/10.1007/978-3-540-24676-3_25
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-642-40084-1_12
https://doi.org/10.1007/978-3-642-20728-0_15
https://doi.org/10.1007/978-3-642-32284-6_8
https://doi.org/10.1007/978-3-642-32284-6_8
https://doi.org/10.1007/978-3-540-89255-7_1
https://doi.org/10.1007/11818175_29
https://doi.org/10.1145/1250790.1250793


6:16 Multi-Threshold Asynchronous Reliable Broadcast and Consensus

22 Chen-Da Liu-Zhang, Julian Loss, Ueli Maurer, Tal Moran, and Daniel Tschudi. MPC with
synchronous security and asynchronous responsiveness. In Annual International Conference
on the Theory and Application of Cryptology and Information Security - ASIACRYPT 2020,
2020. to appear.

23 Julian Loss and Tal Moran. Combining asynchronous and synchronous byzantine agreement:
The best of both worlds. Cryptology ePrint Archive, Report 2018/235, 2018. URL: https:
//eprint.iacr.org/2018/235.

24 Christoph Lucas, Dominik Raub, and Ueli M. Maurer. Hybrid-secure MPC: trading information-
theoretic robustness for computational privacy. In Andréa W. Richa and Rachid Guerraoui,
editors, 29th ACM PODC, pages 219–228. ACM, July 2010. doi:10.1145/1835698.1835747.

25 Achour Mostéfaoui, Moumen Hamouma, and Michel Raynal. Signature-free asynchronous
Byzantine consensus with t < n/3 and O(n2) messages. In ACM Symposium on Principles of
Distributed Computing, pages 2–9. ACM, 2014. doi:10.1145/2611462.2611468.

26 Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821
of LNCS, pages 3–33. Springer, Heidelberg, 2018. doi:10.1007/978-3-319-78375-8_1.

https://eprint.iacr.org/2018/235
https://eprint.iacr.org/2018/235
https://doi.org/10.1145/1835698.1835747
https://doi.org/10.1145/2611462.2611468
https://doi.org/10.1007/978-3-319-78375-8_1

