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Abstract
We formulate a new hardness assumption, the Strongish Planted Clique Hypothesis (SPCH), which
postulates that any algorithm for planted clique must run in time nΩ(logn) (so that the state-of-the-art
running time of nO(logn) is optimal up to a constant in the exponent).

We provide two sets of applications of the new hypothesis. First, we show that SPCH implies
(nearly) tight inapproximability results for the following well-studied problems in terms of the
parameter k: Densest k-Subgraph, Smallest k-Edge Subgraph, Densest k-Subhypergraph, Steiner
k-Forest, and Directed Steiner Network with k terminal pairs. For example, we show, under SPCH,
that no polynomial time algorithm achieves o(k)-approximation for Densest k-Subgraph. This
inapproximability ratio improves upon the previous best ko(1) factor from (Chalermsook et al.,
FOCS 2017). Furthermore, our lower bounds hold even against fixed-parameter tractable algorithms
with parameter k.

Our second application focuses on the complexity of graph pattern detection. For both induced
and non-induced graph pattern detection, we prove hardness results under SPCH, improving the
running time lower bounds obtained by (Dalirrooyfard et al., STOC 2019) under the Exponential
Time Hypothesis.
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1 Introduction

The last couple of decades have seen dramatic advances in our understanding of parameter-
ized, fine-grained, and average-case complexity. To a large extent, this progress has been
enabled by bolder computational hardness assumptions, beyond the classical P 6= NP. Two
notable assumptions in these fields are the Exponential Time Hypothesis and the Planted
Clique Hypothesis. In this paper we propose a new hypothesis, the Strongish Planted Clique
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10:2 The Strongish Planted Clique Hypothesis and Its Consequences

Hypothesis, which strengthens the Planted Clique Hypothesis in the style of the Exponen-
tial Time Hypothesis. We show that this hypothesis has interesting implications in the
parameterized complexity of both approximation problems and graph pattern detection.

Exponential Time Hypothesis. The Exponential Time Hypothesis (ETH) [69] is a pess-
imistic version of P 6= NP which postulates that solving 3-SAT on n variables requires
time 2Ω(n). In other words, the running times of the state-of-the-art (and the brute-force)
algorithms for 3-SAT are optimal up to a constant factor in the exponent. ETH has im-
portant applications in parameterized complexity (e.g. [30, 82, 80, 46, 48]) and hardness
of approximation (e.g. [26, 25, 92, 84, 87, 52]). In the past several years, further progress
was achieved by assuming stronger variants of ETH such as the Strong ETH (SETH) in
fine-grained complexity [70, 95], Gap-ETH in parameterized complexity [31, 23, 83], and
ETH for PPAD in Algorithmic Game Theory [9, 91].

Planed Clique Hypothesis. In the Planted κ-Clique Problem, the goal is to distinguish (with
high probability) between graphs sampled from one of the following distributions: Uniformly
at random1; and uniformly at random, with an added κ-clique. While statistically it is easy
to distinguish the two distributions for κ as little as 2.1 log(n), the Planted Clique Hypothesis
(PCH) postulates that no polynomial time algorithm can solve this problem, even for κ as
large as o(

√
n). The history of this problem goes back to Karp [73] and Jerrum [71], and in the

past decade it has been popular as a hardness assumption for both worst-case [8, 68, 3, 10, 20]
and average-case [17, 66, 18, 63, 29, 27] problems. A simple nΘ(log(n))-time algorithm for
the planted-κ-clique problem non-deterministically guesses ` = Θ(log(n)) vertices from the
clique, and then checks whether all of their common neighbors form a clique. There are
several other algorithms that also solve this problem in time nΘ(log(n)) [60, 59, 86, 13], but
no faster algorithm is known for κ = O(n0.49).

Strongish Planted Clique Hypothesis

In analogy to the Exponential Time Hypothesis for 3-SAT, we propose the following hypothesis,
which postulates that the state-of-the-art algorithms for the Planted Clique Problem are
optimal up to a constant factor in the exponent. A Strong Planted Clique Hypothesis, in
analogy with SETH, would specify a precise constant in the exponent – our hypothesis is
merely Strong-ish. We let G(n, p) denote the Erdős-Rényi distribution with parameter p, and
G(n, p, κ) denote the Erdős-Rényi distribution with a planted κ-clique.

I Hypothesis 1 (Strongish Planted Clique Hypothesis (SPCH)). There exists a constant
δ ∈ (0, 1

2 ) such that no no(logn)-time algorithm A satisfies both of the following:
(Completeness) PrG∼G(n, 1

2 ,dnδe)[A(G) = 1] ≥ 2/3.
(Soundness) PrG∼G(n, 1

2 )[A(G) = 1] ≤ 1/3.
In addition to the lack of algorithmic progress toward refuting this hypothesis, we note that
nΘ(log(n)) is in fact provably optimal for the Sum-of-Squares hierarchy [11], which captures
the state-of-the-art algorithmic techniques for a number of average-case problems. It is also
known to be tight for statistical algorithms [62, 28].

1 I.e. from the Erdős-Rényi (ER) distribution over n-vertex graphs where each edge appears independently
with probability 1/2.
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1.1 Our Contributions: Hardness results from Strongish Planted Clique
Hypothesis

Our main technical contributions are in exploring the implications of our new SPCH in
parameterized complexity. We prove two types of hardness results: hardness of approximation,
and hardness of (exact) graph pattern detection. Due to the rich literature for each problem we
consider, we will only mention the most relevant results here and defer a more comprehensive
discussion to Section 1.4.

1.1.1 Hardness of approximation from SPCH
At the heart of our work is the study of the Densest k-Subgraph problem, in which we
are given an undirected graph G = (V,E) and a positive integer k. The goal is to output
a subset S ⊆ V of k vertices that induces as many edges as possible. There is a trivial
O(k)-approximation for the problem: return an arbitrary set of bk/2c edges. We show that
assuming SPCH, this algorithm is optimal:

I Theorem 2. Assuming the Strongish Planted Clique Hypothesis (Hypothesis 1), there
is no f(k) · poly(n)-time algorithm that can approximate Densest k-Subgraph on n-vertex
graphs to within a factor o(k) for any function f . Furthermore, this holds even in the perfect
completeness case where the input graph is promised to contain a k-clique.

Theorem 2 improves upon the inapproximability ratio of ko(1) shown in [31] under Gap-ETH.
The approximability of Densest k-Subgraph is known to be intimately related to that

of numerous other problems. As such, our tight hardness of approximation for Densest
k-Subgraph immediately implies several tight approximability results as corollaries, which
we list below.

Smallest k-Edge Subgraph: given an undirected graph G = (V,E) and a positive integer
k, find a smallest subset S ⊆ V that induces at least k edges. For this problem, the
trivial solution that chooses k edges arbitrarily is an O(

√
k)-approximation since even

the optimum requires at least
√
k vertices. We show that this is tight (Corollary 11): no

fixed-parameter tractable (FPT) (in k) algorithm can achieve o(
√
k) approximation ratio.

Steiner k-Forest (aka k-Forest): given an edge-weighted undirected graph G = (V,E), a
set {(s1, t1), . . . , (s`, t`)} of demand pairs and a positive integer k, the goal is to find a
(not necessarily induced) subgraph of G with smallest total edge weight that connects at
least k demand pairs. In Corollary 12, we show that no FPT (in k) algorithm can achieve
o(
√
k) approximation ratio. This matches the O(

√
k)-approximation algorithm by Gupta

et al. [65].
Directed Steiner Network (aka Directed Steiner Forest): given an edge-weighted directed
graph G = (V,E) and a set {(s1, t1), . . . , (sk, tk)} of k demand pairs, the goal is to find a
(not necessarily induced) subgraph of G with smallest total edge weight in which ti is
reachable from si for all i = 1, . . . , k. We prove that no FPT (in k) algorithm achieves
o(
√
k)-approximation (Corollary 14). This nearly matches the best known polynomial

algorithms by Chekuri et al. [35] and Feldman et al. [61], both of which achieve a
O(k1/2+ε)-approximation for any constant ε > 0. Our bound improves upon a k1/4−o(1)

ratio from [52] under Gap-ETH.
Densest k-Subhypergraph: given a hypergraph G = (V,E) and a positive integer k, output
a k-size subset S ⊆ V that maximizes the number of hyperedges fully contained in
S. The trivial algorithm that outputs any hyperedge (of size at most k) obtains a 2k-
approximation. We prove a matching lower bound (Theorem 15): no 2o(k)-approximation
FPT (in k) algorithm exists. This resolves an open question posed by Cygan et al. [45],
assuming SPCH.

ITCS 2021
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1.1.2 Hardness of graph pattern detection from SPCH
Graph Pattern Detection, also known as Subgraph Isomorphism and closely related to Motif
Discovery, is a fundamental problem in graph algorithms: Given a host graph G and a
pattern graph H, decide whether G contains a subgraph S isomorphic to H. There are two
main variants of this problem, where S is either required to be induced or not-necessarily-
induced. For both variants, there is a brute-force nO(k)-time algorithm. We prove matching
SPCH-hardness for both variants. In addition to beating the ETH-based state-of-the-art
for these results, we highlight that our reductions to graph pattern detection problems are
extremely simple (in contrast to the prior work).

For induced subgraph detection, we prove the following:

I Theorem 3. Assuming the Strongish Planted Clique Hypothesis (Hypothesis 1), for every
k-node pattern H, there is no algorithm that solves the induced pattern detection problem on
n-vertex graphs in time f(k) · no(k) for any function f .

Our nΩ(k) lower bound for all patterns can be compared to recent work of [48], who proved:
(i) nΩ(log(k)) lower bound for every pattern assuming ETH; (ii) nΩ(

√
k) lower bound for every

pattern assuming ETH and the Hadwiger conjecture; and (iii) nΩ(k/ log(k)) lower bound for
most patterns.2

For not-necessarily-induced subgraph detection, it is no longer true that every pattern is
hard (e.g. it is trivial to find a not-necessarily-induced subgraph isomorphic to an independent
set). But we prove (Corollary 10) that for most patterns3 detection requires nΩ(k) time
assuming SPCH. For comparison, [48] proved that under ETH, not-necessarily-induced
subgraph detection requires nΩ(ω(H)) time, where ω(H) denotes the clique number of the
pattern H. (Note that ω(H) = Θ(log k) for most patterns.)

k-biclique detection. For the special case where the pattern is a k-biclique, our aforemen-
tioned nΩ(k) hardness for non-induced subgraph detection rules out even constant factor
approximations (Corollary 9). This improves over nΩ(

√
k) lower bounds under ETH for the

exact case [80] or Gap-ETH for approximation [31].

Densest k-Subgraph. We obtain our pattern detection result by first showing a nΩ(k)

running time bound for O(1)-approximating Densest k-Subgraph (Theorem 8). This improves
upon the previous lower bound who give a running time lower bound of nΩ(log k) assuming
Gap-ETH [31]. The aforementioned lower bounds for pattern detection follow almost trivially
from our running time lower bound for Densest k-Subgraph; see Sections 3.2 and 3.3 for
more detail.

1.2 Techniques
The starting point for all of our reductions is a randomized graph product: starting with an
instance G of the planted clique problem on n vertices and any integers ` ≤ n and N , we
produce a graph G′ by taking its vertices to be N randomly sampled subsets S1, . . . , SN of `
vertices each, and we add an edge on Si, Sj if and only if their union induces a clique in G.

2 In the sense of a pattern sampled randomly from G(k, 1/2).
3 in particular any pattern with a constant fraction of the

(
k
2

)
possible edges.
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The randomized graph product [16] (and its derandomized variant [4]) has a long history
in proving hardness of approximating Maximum Clique. While not stated explicitly, it was
also used to prove parameterized inapproximability of Densest k-Subgraph in [31]. As we will
explain in more detail below, the main difference between our proof and previous works lie
in the soundness, where we appeal to the fact that G ∼ G(n, 1/2) to achieve tighter bounds.

Since we would like to prove hardness of approximating Densest k-Subgraph in the perfect
completeness case, our goal is to show (for appropriately chosen values of N, `) that

(Completeness) if G contains a large clique, then with high probability so does G′, and,
(Soundness) if G is random, then G′ does not have small dense subgraphs (with high
probability).

For the completeness, if the starting graph G has a κ-clique, then the set of Si that fall
entirely within the κ-clique will form a clique in G′ (the expected size is (κn )` ·N). This part
of the proof is exactly the same as that in the aforementioned previous works.

To prove soundness, we calculate the probability that a specific γk-dense k-subgraph
appears in G′, then take a union bound over all ≤

(
N
k

)
· 2(k2) possible such subgraphs. Our

simple argument hinges on showing that a k-subgraph with γk2 edges in G′ induces (with
high probability) at least Ω(γk2`2) edges in G, and since any such set of edges appears in G
with probability at most 2−Ω(γk2`2), by choosing ` sufficiently large we can beat this union
bound. To argue that small subgraphs with m edges in G′ induce small subgraphs with
Ω(m`2) edges in G, we use that the randomly chosen Si (for an appropriate choice of N � n`

and k∗ sufficiently small) form a disperser: the union of any t ≤ k∗ of the Si contains Ω(t`)
vertices of G with high probability.4 This implies that for k ≤ k∗, each k-subgraph of G′
corresponds to a union of k pairwise mostly-non-overlapping subsets of ` vertices. Now,
since each edge between mostly non-overlapping sets in G′ corresponds to a Ω(`)-clique in
G, this in turn can be used to show that any k-subgraph of G′ with density γk corresponds
to a subgraph of G with Ω(γk2`2) edges. In this way we rule out the existence of γk-dense
k-subgraphs in G′ (with high probability).

By carefully choosing the parameters N , `, γ, to control the completeness, soundness, and
reduction size, we get a fine-grained reduction from Planted κ-Clique to Densest k-Subgraph.
Our results for other problems are obtained via direct reductions from the Densest k-Subgraph
problem.

We end by stressing that our new soundness proof gives a strong quantitative improvement
over prior results, which is what enables us to achieve kΩ(1) inapproximability. Specifically,
the previous soundness proof from [31] – in turn adapted from [84] – relies on showing that
the graph is t-biclique-free for some t ∈ N; they then apply the so-called Kovari-Sos-Turan
theorem [77] to deduce that any k-subgraph contains at most O(k2−1/t) edges. Notice that this
gap is only O(k1/t), and t cannot be a constant as otherwise the completeness and soundness
case can be distinguished in time nO(t) = poly(n). As a result, their technique cannot yield
an kΩ(1)-factor inapproximability for Densest k-Subgraph. Similarly, the techniques from [31]
cannot give a running time lower bound of the form nω(log k) for O(1)-approximation of
Densest k-Subgraph. The reason is that, to get a constant gap bounded from one, they need
to select t = O(log k). Once again, this is in contrast to our technique which yields a tight
running time lower bound of nΩ(k) in this setting, although our proof requires a different
starting hardness result (from SPCH).

4 The fact that the randomized graph product yields a disperser has been used in previous works as well,
see e.g. [16, 98, 31].

ITCS 2021
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1.3 Discussion and Open Questions

In this work, we have proposed the Strongish Planted Clique Hypothesis, and used it prove
several tight hardness of approximation or running time lower bound results. One direction
for future investigation is to use SPCH to derive other interesting lower bounds.

Another intriguing question directly related to our hardness of approximation results is
whether we can strengthen the inapproximability factors from kΩ(1) to nΩ(1). Whether it is
hard to approximate Densest k-Subgraph to within a nΩ(1) factor is a well-known open problem
and is related to some other conjectures, such as the Sliding-Scaling Conjecture [14]5. As
such, it would be interesting if one can prove this hardness under some plausible assumption.
We remark that an attempt has been made in this direction, using the so-called “Log-
Density Threshold” approach [21], which posits a heuristic for predicting which average-case
Densest-k-Subgraph problems are hard. The approach has also been applied to other related
questions [39, 40, 42]. Nonetheless, there is still little evidence that these average-case DkS
problems are indeed hard; not even lower bounds against strong SDP relaxations are known,
although there are some matching lower bounds against LP hierarchies [22, 41].

Finally, it is of course interesting to either refute or find more evidence supporting the
Strongish Planted Clique Hypothesis. As stated earlier, the current best supporting evidence
is the Sum-of-Squares lower bound from [11]. Can such a lower bound be extended to, e.g.,
rule out any semi-definite programs of size no(logn) (à la [79] for CSPs)?

1.4 Other Related Works

Historically, postulating hardness for average-case problems has been helpful in illuminating
the landscape for hardness of approximation, beginning with Feige’s seminal random-3-SAT
hypothesis [57] and its numerous consequences (e.g. [50]). See also [49, 2, 7, 12].

As discussed briefly above, the Planted Clique Hypothesis (PCH), which states that
there is no polynomial-time algorithm for planted clique, has many known consequences for
hardness of approximation. We draw attention in particular to the work of [3], which also
obtains hardness of approximation results based on PCH. But even assuming the SPCH,
their results can only rule out npolylog(κ)-time algorithms for 2log(κ)2/3 -approximating densest-
κ-subgraph for κ = nΩ(1). Their reduction also uses a graph product, but the set of vertices
of their new graph G′ contains all `-size subsets of vertices of G. In contrast, we employ the
randomized graph product, where we only randomly pick some `-size subsets – this allows us
to better control the instance size blowup, which turns out to be crucial for obtaining our
tight inapproximability and running time results.

Below we discuss in more detail the previous works for each of the problems studied here.

Densest k-Subgraph. The problem is well-studied in the approximation algorithms lit-
erature (e.g. [58, 76, 21]). The best known polynomial time algorithm [21] achieves an
approximation ratio of O(n1/4+ε) for any ε > 0. Even though the NP-hardness of Densest
k-Subgraph follows immediately from that of k-Clique [74], no NP-hardness of approximation
of Densest k-Subgraph even for a small factor of 1.001 is known. Nonetheless, several hardness
of approximation results are known under stronger assumptions [57, 75, 90, 3, 12, 25, 84].

5 Specifically, from a reduction of [34], nΩ(1)-factor hardness of approximation of Densest k-Subgraph
also implies that of the Label Cover problem.
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Among these, only [3, 12] and [84] yield super-constant inapproximability ratios. Specific-
ally, [3] rules out 2O((logn)2/3)-approximation in polynomial time under a hypothesis similar
to SPCH, [84] rules out no(1/poly log logn)-approximation under ETH, and [12] rules out nO(1)

approximations under a strong conjecture regarding the optimality of semidefinite programs
for solving every random CSP.

Our hardness result holds even in the so-called perfect completeness case, where we
are promised that the graph G contains a k-clique. In this case, a quasi-polynomial time
approximation scheme exists [60]. Braverman et al. [25] showed that this is tight: there
exists a constant ε > 0 for which (1 + ε)-approximation of Densest k-Subgraph in the perfect
completeness case requires nΩ̃(logn)-time assuming ETH. We remark that the hardness
from [84] also applies in the perfect completeness case, but it only rules out polynomial time
algorithms.

For the parameterized version of the problem, its W[1]-hardness follows immediately
from that of k-Clique [54]. Chalermsook et al. [31] showed that no ko(1)-approximation is
achievable in FPT time, unless Gap-ETH is false. This hardness also holds in the perfect
completeness case, and yields a running time lower bound of nΩ(log k) for any constant factor
approximation.

k-Biclique. Similar to Densest k-Subgraph, while the NP-hardness for the exact version of
k-Biclique has long been known (e.g. [72]), even 1.001-factor NP-hardness of approximation
has not yet been proved although inapproximability results under stronger assumptions
are known [57, 75, 19, 85]. Specifically, under strengthened variants of the Unique Games
Conjecture, the problem is hard to approximate to within a factor of n1−ε for any ε > 0 [19, 85].

On the parameterized complexity front, whether k-Biclique is FPT (in k) was a well-
known open question (see e.g. [55]). This was resolved by Lin [80] who showed that the
problem is W[1]-hard and further provided a running time lower bound of nΩ(

√
k) under ETH.

As stated above, this running time lower bound was extended to rule out any constant factor
approximation in [31] under Gap-ETH. Furthermore, [31] showed that no o(k)-approximation
exists in FPT time.

Smallest k-Edge Subgraph. Most of the hardness of approximation for Densest k-Subgraph
easily translates to Smallest k-Edge Subgraph as well, with a polynomial loss in the factor of
approximation. For example, the hardness from [84] implies that Smallest k-Edge Subgraph
cannot be approximated to within a factor of n1/poly log logn in polynomial time, assuming
ETH. On the other hand, Chlamtac et al. [39] devised an O(n3−2

√
2+ε)-approximation

algorithm for any constant ε > 0 for the problem; this remains the best known approximation
algorithm for the problem.

Densest k-Subhypergraph. Apart from the hardness results inherited from Densest k-
Subgraph, not much is known about Densest k-Subhypergraph. Specifically, the only new
hardness is that of Applebaum [6], who showed that the problem is hard to approximate
to within nε for some constant ε > 0, assuming a certain cryptographic assumption; this
holds even when each hyperedge has a constant size. On the other hand, the only (non-
trivial) approximation algorithm is that of Chlamtac et al. [37] which achieves O(n0.698)-
approximation when the hypergraph is 3-uniform.

Steiner k-Forest. The Steiner k-Forest problem is a generalization of several well-known
problems, including the Steiner Tree problem and the k-Minimum Spanning Tree problem.
This problem was first explicitly defined in [67] and subsequently studied in [93, 65, 51].

ITCS 2021
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In terms of the number of vertices n of the input graph, the best known approximation
ratio achievable in polynomial time is O(

√
n) [65] (assuming that k ≤ poly(n)); furthermore,

when edge weights are uniform, a better approximation ratio of O(n0.449) is achievable in
polynomial time [51]. On the other hand, as stated earlier, in terms of k, the best known
approximation ratio is O(

√
k) [65].

A reduction in [67] together with W[1]-hardness of k-Clique [54] implies that Steiner
k-Forest is W[1]-hard with respect to the parameter k. We are not aware of any further
parameterized complexity study of this problem (with respect to parameter k).

Directed Steiner Network. Several polynomial time approximation algorithms have been
proposed for the Directed Steiner Network problem [33, 35, 61, 15, 38, 1]; in terms of the
number of vertices n of the input graph the best known approximation ratio is O(n2/3+ε) [15]
and in terms of k the best known ratio is O(k1/2+ε) for any constant ε > 0 [35, 61]. On
the hardness front, Dodis and Khanna [53] shows that the problem is quasi-NP-hard to
approximate to within a factor of 2(logn)1−ε for any constant ε > 0. Furthermore, Guo et
al. [64] show that the exact version of the problem is W[1]-hard with respect to parameter k.
Later, [52] rules out even k1/4−o(1)-approximation in FPT time, under Gap-ETH.

Graph Pattern Detection. As discussed earlier, [48] give ETH-based hardness results for
graph pattern detection, both in the induced and non-induced case. The complexity for
many special patterns has also been considered, e.g. k-cliques, k-bicliques (mentioned above),
and k-cycles (e.g. [5, 97, 47, 48, 81]). A k-clique can be detected in time O(ndk/3eω) using
fast matrix multiplication [89], and the k-Clique Conjecture in Fine-Grained Complexity
postulates that this is essentially optimal [95]. Any other pattern over k vertices can be
detected in time O(nk−1), without using fast matrix multiplication [24]. There is also an
extensive body of work on counting the number of occurrences of a pattern in a host graph
(e.g. [88, 78, 94, 96, 44, 43]).

Preliminaries and Notation
For a natural number n ∈ N, we use [n] to denote the set of integers up to n, [n] = {1, . . . , n}.
We will use the abbreviation “w.h.p.” to mean “with high probability.”

For an undirected graphG = (V,E), we use degG(v) to denote the degree of a vertex v ∈ V ,
and min-deg(G) to denote minv∈V (G) degG(v). For a subset S ⊆ V , we use G[S] = (V,E[S])
to denote the induced subgraph of G on subset S.

The density of G, denoted by den(G), is defined as |E|/|V |. We use den≤k(G) to denote
maxS⊆V,|S|≤k den(G[S]), the maximum density of subgraphs of G of at most k vertices.

2 Randomized Graph Product

In this section we formally define our reduction, and analyze its soundness and completeness in
terms of the reduction parameters (in later sections we instantiate the parameters differently
for each target bound). Our reduction takes as input a graph and applies the randomized
graph product [16], described in Figure 1. We use RPN,`(G) to denote the distribution of
outputs of the above reduction on input graph G.

We will show that for well-chosen N and `, the randomized graph product RPN,` reduces
the planted nδ-clique problem to densest-k subgraph for k = k(N, `, δ, n). That is, a sample
from RPN,` ◦ G(n, 1

2 ) has no dense k-subgraph with probability close to 1, and if on the other
hand G is a graph with an nδ-clique, then a sample from RPN,`(G) has a dense k-subgraphs
with probability close to 1.
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Input: n-vertex Graph G = (V,E), positive integers N, `.
Output: Graph G′ = (V ′, E′).
The graph G′ is constructed as follows.
1. For each i ∈ [N ], sample Si ⊆ V by independently sampling ` vertices uniformly

from V .
2. Let V ′ = {S1, . . . , SN}.
3. For every distinct i, j ∈ [N ], include (Si, Sj) in E′ iff Si ∪ Sj induces a clique in G.

Figure 1 Randomized Graph Product [16].

2.1 Completeness
We first prove that applying the randomized graph product to a graph with a large clique
results in a graph with a large clique.

I Lemma 4 (Completeness). Suppose that δ ∈ (0, 1), N, `, k ∈ N are such that N ≥ 10k ·
n(1−δ)` and k ≥ 20. If G contains a clique of size dnδe, then

Pr
G′∼RPN,`(G)

[G′ contains a k-clique ] ≥ 0.9.

Proof. Let C ⊆ V be the dnδe-size clique in G. For each i ∈ [N ], Pr[Si ⊆ C] =
(
dnδe
n

)`
≥

n−(1−δ)`. By our lower bound on N , the expected number of indices i ∈ [N ] such that Si ⊆ C
is at least 10k, and thus a Chernoff bound implies that with probability 1− exp(−4k) ≥ 0.9,
there exists at least k indices i ∈ [N ] such that Si ⊆ C. By definition of the randomized
graph product RPN,`, these subsets form a clique in G′. J

2.2 Soundness
We now prove that if we apply the randomized graph product to a graph drawn from G(n, 1

2 ),
with high probability the resulting graph has no small subgraphs which are too dense.

I Lemma 5 (Soundness). Suppose that δ ∈ (0, 1), N, `, k ∈ N are such that N ≤ 1000k ·
n(1−δ)`, ` ≥ k ≥ 20 and n0.99δ ≥ k`. If G is drawn from G(n, 1

2 ), then

Pr
G∼G(n, 1

2 )
G′∼RPN,`(G)

[
den≤k(G′) ≤ 107 logn

`δ2

]
≥ 0.9.

We will use the following observation that allows us to translate a large-density graph to
a subgraph with large minimum degree. This observation is folklore and appears e.g. in [32].

I Observation 6. For any H = (VH , GH), there exists S′ ⊆ VH such that min-deg(H[S′]) ≥
den(H).

Another auxiliary lemma that is useful for us is that for any subset M ⊆ [N ] not too
large, the size of the union |∪j∈MSj | is not too small relative to |M | · `. This lemma is also
standard and has been used in prior works (e.g. [16, 98, 31]).

I Lemma 7. Suppose N ≤ 1000`n(1−δ)`, 20 ≤ `. Then with probability at least 0.95 over
a sample G′ ∼ RPN,` ◦ G(n, 1

2 ), G′ = ({Si}i∈[N ], E
′), the following event occurs: for every

M ⊆ [N ] with |M | ≤ n0.99δ/`, we have |
⋃
i∈M Si| ≥ 0.01δ|M |`.
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10:10 The Strongish Planted Clique Hypothesis and Its Consequences

The proofs of both Observation 6 and Lemma 7 are included in the full version. We now
prove the soundness guarantee.

Proof of Lemma 5. We will assume that the event in Lemma 7 occurs and show that
conditioned on this event, under the randomness of G, with probability 0.95 all k-subgraphs
of G′ have density at most d := 107 logn/(`δ2). Lemma 5 then follows immediately since
(0.95)2 > 0.9.

Consider any J ⊆ [N ] of size k′ ≤ k. For brevity, let F(J) denote the set of all graphs
whose vertices are Sj for j ∈ J and the minimum degree is at least d. For each F =
({Sj}j∈J , EF ) ∈ F(J), let EG(F ) denote

⋃
{Sj ,Sj′}∈EF

{{u, v} | u ∈ Sj , v ∈ Sj′ and u 6= v},
or in words, the set of edges of G which have one endpoint in Sj and one endpoint in Sj′ for
an edge (Sj , Sj′) ∈ EF . Observe that

Pr
G

[G′[{Sj}j∈J ] = F ] ≤ Pr
G

[EG(F ) ⊆ E] = 2−|E
G(F )|, (1)

where the inequality follows by definition of the randomized graph product – since (Si, Sj)
is an edge if and only if Si ∪ Sj is a clique in G, the event G′[{Sj}j∈J ] = F contains the
event EG(F ) ⊆ E – and the final equality follows because G ∼ G(n, 1

2 ). To bound |EG(F )|,
let VG(F ) := ∪j∈JSj .

Since we have conditioned on the event in Lemma 7 occurring,6 we have |VG(F )| ≥
0.01δk′`. Now, consider any v ∈ VG(F ); from definition of VG(F ), v ∈ Sj for some j ∈ J .
Since F ∈ F(J), Sj must have at least d neighbors in F . Let Sj1 , . . . , Sjd′ denote Sj ’s
neighbors in F , with d′ ≥ d. By applying the bound in Lemma 7, we have |Sj1 ∪ · · · ∪Sjd′ | ≥
0.01δd′` ≥ 0.01δd`. In other words, v has degree at least 0.01δd`− 1 ≥ 0.005δd` in the graph
(VG(F ), EG(F )). This implies that

|EG(F )| ≥ 1
2 (0.01δk′`) (0.005δd`) ≥ 10−5δ2k′d`2.

Plugging the above bound back into (1), we have

Pr
G

[G′[{Sj}j∈J ] = F ] ≤ 2−10−5δ2k′d`2
(2)

We can use the above inequality to bound the probability that {Sj}j∈J induces a subgraph
with minimum degree at least d as follows:

Pr[min-deg(G′[{Sj}j∈J ]) ≥ d] =
∑

F∈F(J)

Pr
G

[G′[{Sj}j∈J ] = F ]
(2)
≤ 2(k′)2

· 2−10−5δ2k′d`2

≤ 2−10−6δ2k′d`2
.

where the first inequality follows because there are at most 2(k′)2 subgraphs of an k′-vertex
graph, and to obtain the final inequality we have applied that ` ≥ k ≥ k′ and d ≥ 107/(δ2`).

Applying Observation 6, the existence of a k-subgraph with density at least d would
imply the existence of some J ⊆ [N ] with |J | ≤ k and minimum degree at least d. Taking
union bound over all J ⊆ [N ] of size at most k and applying our above bound, we have

Pr[den≤k(G)] ≤
k∑

k′=1
Nk′ · 2−10−6δ2k′d`2

=
k∑

k′=1

(
N · 2−10−6δ2d`2

)k′

6 Note that |J | = k′ ≤ k ≤ n0.99δ/` by our assumption and hence J satisfies the condition in Lemma 7.
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≤
k∑

k′=1

(
8 · n · 2−10−6δ2d`

)k′`
≤

k∑
k′=1

0.01k
′` ≤ 0.95,

where to obtain the second line we use that N ≤ 1000kn(1−δ)` and that ` ≥ k ≥ 20, and in
the final line we use that d ≥ 107 logn/(`δ)2. This completes our proof. J

3 Tight Running Time Lower Bounds

In this section, we prove our tight running time lower bounds for O(1)-approximating Densest
k-Subgraph, O(1)-approximating k-Biclique and (exact) Graph Pattern Detection.

3.1 Constant Approximation for Densest k-Subgraph
We start with the nΩ(k) running time lower bound for O(1)-approximating Densest k-
Subgraph, from which the remaining results easily follow. We remark that this running time
lower bound improves upon that of nΩ(log k), which is implicit in [31].

I Theorem 8. Assuming Hypothesis 1, for any constant C > 0, there is no f(k) · no(k)-time
algorithm that can approximate Densest k-Subgraph to within a factor C for any function f .
Furthermore, this holds even in the perfect completeness case where the input graph is
promised to contain a k-clique.

We will prove Theorem 8 by simply selecting an appropriate setting of parameters
for the randomized graph product. Specifically, we will let ` = O(C logn/k) and N =
nO(`) = no(logn); the generic soundness lemma (Lemma 5) then implies that the density
of any k-subgraph in the soundness case is at most O(k/C) which yields the desired C

inapproximability factor.

Proof of Theorem 8. We will reduce the problem of distinguishing samples from G(n, 1
2 ) vs.

G(n, 1
2 , dn

δe) to approximating Densest k-subgraph.
For C the constant specified in the statement of the theorem, choose ` = d 108C logn

δ2k e and
N = d100kn(1−δ)`e, so that d = 107 logn

`δ2 ≤ k
10C . Given a graph G, we sample G′ ∼ RPN,`(G).

Completeness: If G ∼ G(n, 1
2 , dn

δe), then by Lemma 4 and since N ≥ 10kn(1−δ)`, we have
that with probability at least 1− exp(−4k) ≥ 0.9, G′ = RPN,`(G) has a k-clique, and so
den≤k(G′) ≥ k − 1.

Soundness: For any 20 ≤ k ≤ ` and any δ bounded away from 0, we clearly satisfy the
requirement of Lemma 5 that k` ≤ n0.99δ and that N ≤ 1000kn(1−δ)` for any sufficiently
large n. Hence, if G ∼ G(n, 1

2 ), applying the Lemma to G′ ∼ RPN,`(G) we have that
with probability at least 0.9, den≤k(G′) ≤ d ≤ k

10C .

Thus, any algorithm which approximates Densest k-subgraph up to a factor of C in
time f(k)N εk can solve the planted dnδe-clique problem in time f(k)(100kn(1−δ)`)εk =
g(k)n

(1−δ)δ2C
108 ε logn for g(k) = f(k)(100k)εk. This contradicts Hypothesis 1 whenever

limn→∞ ε = 0. Choosing k to be a sufficiently slowly growing function of n, for any ε

decreasing in k we have a contradiction of the Hypothesis. This concludes the proof. J
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3.2 O(1)-Approximation for k-Biclique
Recall that a k-biclique, denoted by Kk,k, is a complete bipartite graph where each side has
exactly k vertices. In the k-Biclique problem, we are given an undirected graph G and a
positive integer k. Further, we are promised that G contains a Kk,k as a subgraph. Our goal
is to output a balanced biclique in G of size as large as possible. (Note that we say that an
algorithm achieves α-approximation if the output biclique has size at least k/α.)

We prove the following tight running time lower bound for O(1)-approximation of k-
Biclique:

I Corollary 9. Assuming Hypothesis 1, for any constant C > 0, there is no f(k) · no(k)-
time algorithm that can approximate k-Biclique to within a factor C for any function f .
Furthermore, this holds even when we are promised that the input graph contains a 2k-clique.

Proof. Suppose contrapositively that there is an f(k) · no(k)-time algorithm A that can
approximate k-Biclique to within a factor of C for some function f . We may use it to
approximate Densest k-Subgraph with perfect completeness as follows. On a given instance
(G, k) of Densest k-Subgraph with perfect completeness, we run our algorithm A on (G, bk/2c).
From the approximation guarantee of A, we will find a t-Biclique for t ≥ bk/2c/C ≥ k

4C . By
taking this biclique together with arbitrary (k − 2t) additional vertices, we find a subset of
size k that induces at least t2 ≥ k2

16C2 edges. Hence, we have found a 16C2-approximation
for Densest k-Subgraph in time f(k) · no(k), which by Theorem 8 violates Hypothesis 1. J

3.3 Pattern detection
Theorem 8 also yields the following corollary for the running time of pattern detection:

I Corollary 10. Assuming Hypothesis 1, for almost all k-node patterns H, the not necessarily
induced pattern detection problem cannot be solved in time f(k) · no(k).

In the statement of Corollary 10, by “almost all k-node patterns” we mean w.h.p. over
H ∼ G(k, 1/2).7

Proof. By standard concentration inequalities, most H ∼ G(k, 1
2 ) have average degree

k
2 ± o(k). For such a pattern H, an algorithm that solves the not necessarily induced
pattern detection problem also gives O(1)-approximation for Densest k-Subgraph. Hence,
the corollary immediately follows from Theorem 8. J

I Theorem (Restatement of Theorem 3). Assuming the Strongish Planted Clique Hypothesis
(Hypothesis 1), for every k-node pattern H, there is no algorithm that solves the induced
pattern detection problem on n-vertex graphs in time f(k) · no(k) for any function f .

Proof. We assume that H is at least k
4 -dense (that is, has average degree at least k

2 ). This
is without loss of generality as otherwise, we may take the complement of H – for induced
pattern detection the complexity is the same.

We start our reduction from an instance G of Densest k-Subgraph as in Theorem 8. We
randomly color all the vertices of G in k colors, one for each vertex of H. We construct a
graph G′ from G by keeping edge (u, v) ∈ G if and only if u, v are have different colors, and
the vertices in H corresponding to those colors share an edge. (Note that we do not add any
edges.)

7 It may be more natural to sample uniformly from all unlabeled k-node patterns, but w.h.p. a graph
drawn from G(k, 1/2) has no non-trivial automorphisms [56], so the two notions of “almost all k-node
patterns” are in fact equivalent.
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Completeness: If G has a k-clique, with probability at least k−k it has k different colors. In
this case, the same vertices in G′ will form an induced copy of H.

Soundness: If G does not have a k
4 -dense k-subgraph, this remains true after removing edges.

Hence G′ also does not contain any k
4 -dense k-subgraph – and in particular no copy of H.

As a result, if we can solve the induced pattern detection problem in time f(k) ·no(k), we can
achieve 4-approximation for Densest k-Subgraph with probability k−k in time f(k) · no(k).
By repeating this construction 100 · kk times, we can achieve 4-approximation for Densest
k-Subgraph with probability 0.99 in time O(f(k) · kk) · no(k). Together with Theorem 8, this
concludes our proof. J

4 Tight Inapproximability Results

In this section, we prove tight inapproximability results for Densest k-Subgraph, Smallest
k-Edge Subgraph, Steiner k-Forest, Directed Steiner Network, and Densest k-Subhypergraph.

4.1 Densest k-Subgraph
We start with the o(k)-factor hardness of Densest k-Subgraph (Theorem 2), from which our
other results follow. The proof of Theorem 2 is once again via selecting an appropriate setting
of parameters for the randomized graph product. Specifically, we will select ` = O((logn) ·
g(k)/k) where g(k) = o(k) is the assumed approximation ratio and N = nO(`) = no(logn); the
generic soundness lemma (Lemma 5) then implies that the density of any k-vertex subgraph
in the soundness case is at most k/g(k) as desired. The arguments are formalized below.

Proof of Theorem 2. We will reduce the problem of distinguishing samples from G(n, 1
2 ) vs.

G(n, 1
2 , dn

δe) to approximating Densest k-subgraph on an N vertex graph.
Let g(k) ≤ k be any function growing with k. Choose ` = d 108g(k) logn

δ2k e and N =
d100kn(1−δ)`e, so that d = 107 logn

`δ2 ≤ k
10g(k) . Given a graph G, we sample G′ ∼ RPN,`(G).

Completeness: If G ∼ G(n, 1
2 , dn

δe), then just as in the proof of Theorem 8, Lemma 4
implies that with probability at least 0.9, G′ = RPN,`(G) has a k-clique.

Soundness: For any 20 ≤ k ≤ ` and δ bounded away from 0, we satisfy the requirements
of Lemma 5 (just as in the proof of Theorem 8). Applying the lemma, if G ∼ G(n, 1

2 ),
we conclude that with probability at least 0.9, den≤k(G′) ≤ d ≤ k

10g(k) . This means that

any k-vertex subgraph of G′ contains at most k2

10g(k) <
(k2)
g(k) edges.

Hence, any algorithm which approximates Densest k-subgraph within g(k) in time
f(k)poly(N) can solve the planted dnδe-clique problem in time f(k) · poly(100kn(1−δ)`) =

h(k)·poly
(
n

(1−δ)δ2

108
g(k)
k logn

)
for h(k) = f(k)poly(100k). Choosing k to be a sufficiently slowly

growing function of n, for any function g(k) with limn→0
g(k)
k = 0 we have a contradiction of

Hypothesis 1, as desired. J

4.2 Smallest k-Edge Subgraph
I Corollary 11. Assuming Hypothesis 1, there is no f(k) · poly(n)-time algorithm that can
approximate Smallest k-Edge Subgraph to within a factor o(

√
k) for any function f .

We prove the above corollary by reducing from Densest k-Subgraph; we remark here
that similar reductions between the two problems are folklore and have appeared before in
literature, e.g. in [67]. Hence, we defer the proof to the full version of the paper.
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4.3 Steiner k-Forest
I Corollary 12. Assuming Hypothesis 1, there is no f(k) · poly(n)-time algorithm that can
approximate Steiner k-Forest to within a factor o(

√
k) for any function f .

Corollary 12 immediately follows from Corollary 11 via the following reduction:

I Theorem 13 ([67, Theorem 6.2]). If there is an f(k) · poly(n)-time g(k)-approximation
algorithm for Steiner k-Forest, then there is an f(k) · poly(n)-time g(k)-approximation
algorithm for Smallest k-Edge Subgraph.

4.4 Directed Steiner Network
I Corollary 14. Assuming Hypothesis 1, there is no f(k) · poly(n)-time algorithm that can
approximate Directed Steiner Network with k terminal pairs to within a factor o(

√
k) for any

function f .

Corollary 14 is shown via a reduction from Smallest p-Edge Subgraph, which is similar to
the reduction from the Label Cover problem by Dodis and Khanna [53] that was also used
in subsequent works [36, 52]. The proof is deferred to the full version.

4.5 Densest k-Subhypergraph
I Theorem 15. Assuming Hypothesis 1, there is no f(k) · poly(n)-time algorithm that can
approximate Densest k-Subhypergraph to within a factor 2o(k) for any function f .

The proof of our inapproximability for Densest k-Subhypergraph (Theorem 15) is unlike
the others in this section: instead of starting from the inapproximability of Densest k-Subgraph
(Theorem 2), we will start from the tight running time lower bound for O(1)-approximate
k-Biclique (Corollary 9).

4.5.1 A Combinatorial Lemma
Before we describe our reduction, let us prove the following lemma, which bounds the number
of (induced) copies of K`,` in a Kt,t-free graph for ` < t. This is a generalized setting of the
classic Kovari-Sos-Turan (KST) theorem [77], which applies only to the case ` = 1. Note
that, due to the parameters of interest in our reduction, we only prove a good bound for large
`; for ` = 1, the bound in our lemma is trivial (and hence weaker than the KST theorem).

I Lemma 16. Let κ, t, ` be positive integers such that ` < t ≤ κ/16. Then, for any κ-vertex
Kt,t-free graph H, the number of (not necessarily induced) copies of K`,` in H is at most(

2 · e− `2
16t

)
·
(
κ
`

)(
κ−`
`

)
.

Proof. Let V denote the vertex set of H. We will count the number of copies of K`,t in H
in two ways. First, for every subset S ∈

(
V
`

)
, the number of (`, t)-bicliques of the form (S, T )

where T ∈
(
V
t

)
is
(|N(S)|

t

)
where N(S) denote the set of common neighbors of S. Hence, in

total the number of (`, t)-bicliques in H is
∑
S∈(V` )

(|N(S)|
t

)
. On the other hand, for every

set T ∈
(
V
t

)
, we must have |N(T )| ≤ t− 1 since H does not contain Kt,t. As a result, the

number of (`, t)-bicliques of the form (S, T ) for a fixed T is at most
(
t−1
`

)
. That is, in total,

there can be at most
(
κ
t

)(
t−1
`

)
copies of K`,t in the graph. This implies that(

κ

t

)(
t− 1
`

)
≥
∑
S∈(V` )

(
|N(S)|
t

)
. (3)
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For brevity, let λ denote (κ− `)/t, γ denote λ−`/(2t) and let x denote γ · κ+ (1− γ) · t
(note x is chosen so that x−t

κ−t = γ). Let us now classify S ∈
(
A
`

)
into two groups: those with

|N(S)| ≥ x and those with |N(S)| < x. That is, we define

S≥x :=
{
S ∈

(
V

`

)∣∣∣∣|N(S)| ≥ x
}
, and S<x :=

{
S ∈

(
V

`

)∣∣∣∣|N(S)| < x

}
.

From (3), we have
(
κ
t

)(
t−1
`

)
≥
∑
S∈S≥x

(|N(S)|
t

)
≥ |S≥x| ·

(dxe
t

)
. Rearranging, we have

|S≥x| ≤
(
t−1
`

)(
κ
t

)(dxe
t

) ≤
(
t− 1
`

)(
κ− t
x− t

)t
=
(
t− 1
`

)
γ−t ≤

(
κ

`

)(
t− 1
κ

)`
γ−t

≤
(
κ

`

)
λ−`γ−t

=
(
κ

`

)
λ−`/2 ≤

(
κ

`

)
2−`/2, (4)

where the last line follows because t, ` ≤ 1
3κ.

Let us now count the number of K`,` in H. For each fixed S ∈
(
V
`

)
, the number of K`,`

of the form (S, T ) where T ∈
(
V
`

)
is exactly

(|N(S)|
`

)
. Thus, the total number of K`,` in G is∑

S∈(V` )
(|N(S)|

`

)
. This term can be further bounded by

∑
S∈(V` )

(
|N(S)|
`

)
=

∑
S∈S≥x

(
|N(S)|
`

)
+
∑

S∈S<x

(
|N(S)|
`

)

≤ |S≥x|
(
κ− `
`

)
+ |S<x|

(
x

`

)
(4)
≤ 2−`/2

(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
bxc
`

)
≤ 2−`/2

(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
κ− `
`

)
·
(

x

κ− `

)`
≤ 2−`/2

(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
κ− `
`

)
·
(

1− (1− γ)(κ− t)− `
κ− `

)`
= 2−`/2

(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
κ− `
`

)
·

(
1−

(1− γ − `
κ−t )(κ− t)

κ− `

)`
(From ` < t ≤ κ/2) ≤ 2−`/2

(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
κ− `
`

)
· (1− 0.5(1− γ − 2`/κ))`

≤ 2−`/2
(
κ

`

)(
κ− `
`

)
+
(
κ

`

)(
κ− `
`

)
· e−0.5`(1−γ−2`/κ) (5)

Consider the term (1− γ − 2`/κ). We can bound it as follows:

(1− γ − 2`/κ) =
(

1− 1
λ`/2t

− 2`
κ

)
(From λ = (κ− `)/t ≥ 2) ≥

(
1− 0.5`/2t − 2`

κ

)
(Bernoulli inequality) ≥

(
1−

(
1− `

4t

)
− 2`
κ

)
=
(
`

4t −
2`
κ

)
≥ `

8t .
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Plugging this back into (5), we have∑
S∈(A`)

(
|N(S)|
`

)
≤
(
κ

`

)(
κ− `
`

)
·
(

2−`/2 + e−
`2
16t

) (From `<t)
≤

(
κ

`

)(
κ− `
`

)
·
(

2 · e− `2
16t

)
,

which concludes our proof. J

4.5.2 Proof of Theorem 15
Proof of Theorem 15. Suppose contrapositively that there is an f(ρ) · poly(n)-time 2ρ/g(ρ)-
approximation algorithm A for Densest ρ-Subhypergraph where g = ω(1). We will construct
an algorithm B that achieves O(1)-approximation for k-Biclique with the promise that a
2k-Clique exists in time h(k) · no(k) for some function h. Theorem 15 then follows from
Corollary 9.

We define B on input (G = (V,E), k) as follows:
Let ρ = 2k and ` = dρ/g(ρ)0.1e.
Construct a hypergraph G′ with the same vertex set as G, and we add a hyperedge
e = {u1, . . . , u2`} to G′ for all distinct u1, . . . , u2` ∈ V that induce a 2`-clique in G.
Run A on (G′, ρ). Let S be A’s output.
Use brute force to find a maximum balanced biclique in S and output it.

Notice that algorithm B runs in time (f(2k) + 2O(k)) · nO(`) = (f(2k) + 2O(k)) · no(k) as
desired, where the term 2O(k) comes from the last step.

Next, we claim that, when k is sufficiently large, the output biclique has size at least
t := bk/8c, which would give us the desired O(1)-approximation ratio. Suppose for the sake
of contradiction that this is not true, i.e. that the induced graph G[S] is Kt,t-free.

For any sufficiently large k, we have ` < t. Hence, we may apply Lemma 16, which gives
the following upper bound on the number of not-necessarily induced copies of K`,` in G[S]:(

2 · e− `2
16t

)
·
(

2k
`

)(
2k − `
`

)
≤ e−Ω(k/g(k)0.2) ·

(
2k
`

)(
2k − `
`

)
.

However, since each hyperedge e = {u1, . . . , u2`} corresponds to
(2`
`

)
copies of K`,`, the

number of hyperedges fully contained in S is thus at most

e−Ω(k/g(k)0.2) ·
(

2k
`

)(
2k − `
`

)
/

(
2`
`

)
= e−Ω(k/g(k)0.2) ·

(
2k
2`

)
,

which is less than 2−ρ/g(ρ) ·
(2k

2`
)
for any sufficiently large k. This contradicts the approximation

guarantee of A since the optimal solution (i.e. the 2k-clique) contains
(2k

2`
)
hyperedges. J
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