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Abstract
In this paper, we study the quantum identity testing problem, i.e., testing whether two given
quantum states are identical, and quantum independence testing problem, i.e., testing whether
a given multipartite quantum state is in tensor product form. For the quantum identity testing
problem of D(Cd) system, we provide a deterministic measurement scheme that uses O( d

2

ε2 ) copies
via independent measurements with d being the dimension of the state and ε being the additive error.
For the independence testing problem D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdm) system, we show that the sample
complexity is Θ̃( Πm

i=1di

ε2 ) via collective measurements, and O( Πm
i=1d

2
i

ε2 ) via independent measurements.
If randomized choice of independent measurements are allowed, the sample complexity is Θ( d

3/2

ε2 )

for the quantum identity testing problem, and Θ̃( Πm
i=1d

3/2
i

ε2 ) for the quantum independence testing
problem.
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1 Introduction

1.1 Classical Property Testing
The ability to test whether an unknown object satisfies a hypothetical model based on observed
data plays a particularly important role in science [50]. Initially proposed by Rubinfeld and
Sudan [60, 61] to test algebraic properties of polynomials, the concept of property testing
has been extended to many objects of computer science: graphs, Boolean functions, and
so on [41, 40]. Property testing and distribution testing are intricately connected. At the
beginning of this century, Batu et al. introduced the problem of testing properties associated
with discrete probability distributions [14, 15]. In other words, how many samples from a
collection of probability distributions are needed to determine whether those distributions
satisfy a particular property with high confidence? Over the past two decades, this area has
become an extremely well-studied and successful branch of property testing due in part to
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the ongoing data science revolution. Never have computationally-efficient algorithms, a.k.a,
testers, that can identify and/or classify properties using as few samples as possible been in
higher demand.

A direct approach to distribution property testing is to reconstruct the given distributions
from sufficiently many samples. It is well known that, after taking Θ(ε−2 · d) samples from a
d-dimensional probability distribution p, the empirical distribution is, with high probability,
ε-close to p in total variance distance [29, pages 10 and 31]. Therefore, finding algorithms
that use o(d) samples for testing problems is highly desirable. Surprisingly, algorithms using
less number of samples than Θ(ε−2 · d) exist for many important properties.

The equality, or identity, of distributions is a central problem in this branch of study,
and one that is frequently revisited with different approaches due to its importance. In an
important work [40], Goldreich and Ron found that the `2 norm can be estimated from
O(ε−2 ·

√
d) samples. This led to an algorithm for uniformity testing, i.e., to determine

whether a probability distribution is a uniform using O(ε−4 ·
√
d) samples. Paninski [58] and

Valiant and Valiant [63] showed that the complexity of uniformity is Θ(ε−2 ·
√
d). If one

distribution is an arbitrary known distribution, Batu et al. [14, 13] presented an `2-identity
tester and used it to build an `1 estimator using O(ε−2 ·

√
d log d) samples; later in [65],

Valiant and Valiant showed the sample complexity of this problem is Θ(ε−2 ·
√
d). If both

distributions are unknown, Batu et al. provided a tester in [14] using O(ε−8/3 · d2/3 log d)
samples; In 2014, Chan et al., in [23], showed the complexity of the identity testing is
Θ(max(ε−2 ·

√
d, ε−4/3 · d2/3)).

The idea of identity testing has been extensively explored in studying other property
testing problems. Independence testing and conditional independence testing are among
the most important ones. In [13], Batu et al presented an independence tester for bipartite
independence testing over [d1] × [d2] with a sample complexity of Õ(d2/3

1 d
1/3
2 ) · Poly(ε−1),

for d1 ≥ d2. Levi, Ron and Rubinfeld in [51] showed a lower bound Ω(
√
d1d2) for all d1 ≥ d2

and Ω(d2/3
1 d

1/3
2 ) for d1 = Ω(d2 log d2). Acharya et al. [6] introduced a tester for multipartite

independence testing over ×mj=1[dj ] with sample complexity O(ε−2·
√

Πm
j=1dj + ε−2 ·

∑m
j=1 dj).

In their important work [31], Diakonikolas and Kane demonstrated a unified approach
to resolve the sample complexity of a wide variety of testing problems based on their
alternative proof for identity testing. In particular, they showed that the sample complexity
of independence tesing is Θ(maxk{ε−2√

Πm
j=1dj , ε

−4/3 · d2/3
k Πm

j=1d
1/3
j }). Canonne et al. [22]

initiated the study of the conditional independence within property testing framework.
Notably, for the very important [2]× [2]× [n], they showed that the sample complexity for
this problem is Θ(max{ε−2 ·

√
n,min{ε−1 · n7/8, ε−8/7 · n6/7}}).

Besides the mentioned works, a very incomplete list of works of distributional property
testing includes [12, 15, 68, 5, 64, 51, 46, 26, 32, 48, 66, 70, 30, 67, 28, 39, 33, 7, 21, 27, 34, 24],
and two excellent surveys include more [59, 20].

1.2 Quantum Property Testing
Quantum property testing has been extensively studied. At this stage of development of
quantum computation, testing the properties of new devices as they are built is a basic
problem as illustrated in Montanaro and de Wolf’s comprehensive survey [53]. A standard
quantum device outputs some known d-dimensional (mixed) state σ ∈ D(Cd) but inevitably,
the results are noisy such that the actual output state ρ ∈ D(Cd) is not equal σ, maybe not
even close to. Similar to property testing with classical distributions, properties of ρ need to
be verified by accessing the device, say, m times, to derive ρ⊗m.
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Starting from the very basic problem of quantum state tomography, a fundamental
problem is to decide how many copies of an unknown mixed quantum state ρ ∈ D(Cd)
is necessary and sufficient to output a good approximation of ρ in trace distance, with
high probability. This problem has been studied extensively since the birth of quantum
information theory. The main-stream approach is through independent measurement, i.e.,
measurement on each copy of the state. A sequence of work [42, 36, 69, 49] is dedicated to
showing that O(ε−2 · d3) copies are sufficient in an `1 distance of no more than ε. Haah et al.
[44] showed that this is tight for independent measurement. For joint measurement, Haah et
al. [44] proved that O(ε−1 · d2 log(ε−1 · d)) copies are sufficient to obtain an infidelity of no
more than ε, which can be regarded as a quantum generalization of Sanov’s theorem [62].
By combining the lower bound of [44] and upper bound of [56, 57], the sample complexity of
state tomography with joint measurement is Θ̃(ε−2 · d2) in a `1 distance error of less than ε
with high probability.

A more direct approach to quantum property testing is to estimate ρ by sampling from
ρ⊗m, which also means one could check any property of interest. However, like classical
property testing, this idea is not optimal for a general property. One problem that has
received much attention is quantum identity testing. Suppose we are given query access
to two states ρ, σ ∈ D(Cd), and we want to test whether they are equal or have a large
`1 distance. For practical purposes, the results from cases where σ is a known pure state
have been extensively studied, in the independent measurement setting [37, 25, 10]. [55]
solved the problem, in the joint measurement setting, where σ is a maximally mixed state
case by showing that Θ(ε−2 · d) copies are necessary and sufficient. Importantly, the sample
complexity of the general problem was proven to be Θ(ε−2 ·d) in [18] by providing an efficient
`2 distance estimator between two unknown quantum states.

In [4], Aaronson initialized the study of the learnability of quantum state, whose goal
is to output good estimations of a set of measurements simultaneously. In [1], Aaronson
provided an efficient procedure of the quantum shadow tomography. A connection between
quantum learning and differential privacy was established in [3]. In [2], the online learning of
quantum states was studied.

Entanglement is a ubiquitous phenomenon in quantum information theory. A multipartite
pure state |ψ〉 ∈ (Cd)⊗m is not entangled if it can be written as |ψ〉 = ⊗mj=1 |ψj〉 for some
|ψj〉 ∈ Cd. Pure entanglement testing was first discussed by Mintert et al [52]. Harrow and
Montanaro [45] subsequently proved that O(ε−2) copies are sufficient and used that to study
the quantum complexity theory. In [17], it was proved that Ω(d2/ε2) copies are necessary to
test separability of quantum states in Cd ⊗ Cd for not small ε.

Acharya et al. [8] estimated the von Neumann entropy of general quantum states. Gross
et al. [43] showed that “stabilizerness” can be tested efficiently. One research direction is to
study the potential speed-up of distributional property testing using quantum algorithms
where the distribution is given in the form of a quantum oracle [16, 38].

1.3 Measurement Schemes
A significant difference between quantum property testing and classical property testing
is the way the objects are sampled. In classical property testing, each sample is output
with a classical index according to the probability distribution and given a fixed number
of samples, the output string obeys the product probability distribution. However, with
quantum property testing, the sampling methods have much richer structures. This difference
together with others prevents the potential to design algorithms for quantum property testing
from ingenious ideas and techniques of distribution testing.

ITCS 2021
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Measurement Complexity Dimension Implementation
Joint Low dm Hard even in the future

Independent Medium d Available in the future

Among the many available sampling methods for quantum property testing (given a fixed
number of copies, says k, of the states ρ ∈ D(Cd)), the two listed in Table 1 are of particular
interests, i.e., joint measurement, and independent measurement. Joint measurement, the
most general, allows arbitrary measurements of Cdm . Independent measurement only allows
non-adaptive measurements on each copy of ρ, which results in, n measurements of Cd.

Joint measurement has the potential to provide the optimal number of samples, but there
are two caveats. “Optimal” joint measurement algorithms usually require an exponential
number of copies of the quantum state to produce optimal results. They are also based on
the assumption of noiseless, universal quantum computation on the exponential number of
copies of the quantum state. For instance, the optimal tomography algorithms of k-qubit
quantum state in [44, 56, 57] require a joint measurement on Θ(ε−2 ·k22k) qubits. Even in the
future when quantum computers become a reality, implementing optimal joint measurement
would be extremely hard given these conditions. General independent measurements are not
feasible with currently-available technology. To implement a two-outcome measurement on
the k-qubit system, one needs to implement a k + 1 qubit unitary. Implementing a general
k + 1 qubit unitary requires a circuit consisting of at least Ω(4k) elementary gates, which
could also be hard.

In this paper, we study the quantum identity testing problem, i.e., testing whether two
given quantum states are identical, and the quantum independence testing problem, i.e.,
testing whether a given multipartite quantum state is in tensor product form. For the
quantum identity testing problem of D(Cd) system, we provide a measurement scheme that
uses O(d

2

ε2 ) copies via independent measurements with d being the dimension of the state and
ε being the additive error. For the independence testing problem D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdm)
system, we show that the sample complexity is Θ̃(Πm

i=1di

ε2 ) via collective measurements, and
O(Πm

i=1d
2
i

ε2 ) via independent measurements. Further, we initialize the study of the property
testing problems of classical-quantum states, motivated by the potential applications of
classical-quantum states. Our main tool is a measurement that “preserves” the `2 distance,
which invokes an immediate connection between quantum and classical property testing.

1.4 Our contributions
Identify whether two quantum states are equal or not is called quantum identity testing
problem.

I Problem 1. Given two unknown quantum mixed states ρ, σ ∈ D(Cd), they satisfy either
ρ = σ or ||ρ − σ||1 > ε for a given ε > 0. How many copies of ρ and σ are needed to
distinguish these two cases, with high probability?

This problem under joint measurement setting is solved in [18]. In this paper, we study
this problem using independent measurement. To reach this goal, we observe the following
lemma. It maintains interesting relations between the `2 distance of quantum states and the
`2 distance of the generated corresponding probability distributions. Given that `2 distance
plays a central role in classical property testing [31], our approach invokes an immediate
connection between quantum and classical property testing. Previous research into quantum
property testing has always been in isolation of classical property testing, whereas this scheme
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opens up the potential to design quantum property tester from ingenious ideas and techniques
of distribution testing. Further, this is a fixed measurement scheme that does not depend on
the property to be tested, which makes our algorithms a perfect fit for implementation with
current experiments.

I Lemma 2. For d being power of 2, there is a measurement

M = (M1,M2, . . . ,Md(d+1)) : D(Cd) 7→ ∆(d(d+ 1))

whose outcome lies in ∆(d(d+ 1)), the d(d+ 1)-dimensional probability simplex, such that,
for any quantum states ρ, σ ∈ D(Cd)

||p− q||2 = ||ρ− σ||2
d+ 1 , ||p||2, ||q||2 ≤

√
2

d+ 1 , (1)

where p = (p1, p2, . . . , pd(d+1)) and q = (q1, q2, . . . , qd(d+1)) with pi = Tr(ρMi) and qi =
Tr(σMi).

We employ mutually unbiased bases (MUB) to construct such measurement. MUB in Hilbert
space Cd are two orthonormal bases {|e1〉, . . . , |ed〉} and {|f1〉, . . . , |fd〉} such that the square
of the magnitude of the inner product between any basis states |ej〉 and |fk〉 equals the
inverse of the dimension d. These bases are unbiased in the following sense: if a system is
prepared in a state belonging to one of the bases, then all outcomes of the measurement with
respect to the other basis are predicted to occur with equal probability.

For d = 2n, there are 2n + 1 mutually unbiased bases in Cd. Therefore, the density
matrices of these MUBs form a linear basis of D(Cd) in this case. Each measurement operator
Mi is proportional to a density matrix of a MUB element. Therefore, after the measurement,
there is no more information left because applying measurement in other MUB basis would
output uniform distribution.

The upper bound of `2 norms of the output probability distribution is essential in designing
an efficient quantum tester by lifting classical property tester because a small `2 norms
ensures that the tester could use a smaller number of samples for the distributional identity
testing problem as illustrated in [31], and distributional independence testing problem studied
in [22].

Using Lemma 2 and the result of classical property testing, a tester using independent
measurement for Problem 2 can be obtained as follows.

I Theorem 3. For ρ, σ ∈ D(Cd), O(ε−2 · d2) copies are sufficient to distinguish via determ-
inistic independent measurements, with at least a 2

3 probability of success, the cases where
ρ = σ from the cases where ||ρ− σ||1 > ε.

This is better than directly using the SWAP test which uses O(d
2

ε4 ) copies, although the
SWAP test is already a joint measurement.

Entanglement is a central feature in quantum information science. Certification of
entanglement has received great amount of effort. This motivates us to study the following
quantum independence testing problem.

I Problem 4. Given an unknown quantum mixed states ρ ∈ D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn),
they satisfy either ρ = σ1 ⊗ σ2 ⊗ · · · ⊗ σn for some σi ∈ D(Cdi) or for all σi ∈ D(Cdi),
||ρ − σ1 ⊗ σ2 ⊗ · · · ⊗ σn||1 > ε for a given ε > 0. How many copies of ρ are needed to
distinguish these two cases, with high probability?

ITCS 2021
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The above `1 identity testers for independent measurement together with the `1 identity
tester of [18] for joint measurement enable us to derive the following result.

I Theorem 5. The sample complexity of quantum independence testing problem for n-qubit
quantum state is Θ(ε−2 · 2n).

For general n-partite system D(Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn) with d1 ≥ d2 ≥ · · · ≥ dn, the
sample complexity of quantum independence testing problem is Θ̃(ε−2 · Πn

i=1di) with joint
measurements; and O(ε−2 ·Πn

i=1d
2
i ) with deterministic independent measurements, where Θ̃

hides a factor between (log3 d1 · log log d1)−1 and 1.

In n-qubit system, the lower bound of the quantum independence for joint measurement
comes from a reduction from determining whether a given state is a maximally mixed state.

In a general system, the lower bound is derived using an additional technique called
dimension splitting which regards a d1-dimensional system as log d1 qubits system.

1.5 Other Results
It is widely believed that the fully-fledged quantum computer will be controlled through a
classical system. Therefore, the data generated by quantum computers would be modeled
by classical-quantum states, e.g., classical collections of quantum states. The importance of
classical-quantum states also comes from its central role in studying quantum communication
complexity [47, 9]. In classical property testing, Levi, Ron, and Rubinfeld initialized the
study of property testing of collections of distributions in their pioneering work [51]. This
motivates us to study the property testing problems of classical-quantum states.

In the query model, there are m states ρ1, ρ2, · · · , ρn. We can choose 1 ≤ i ≤ n to
obtain a copy of ρi. A motivation of studying this model is the quantum state preparation.
Suppose there are different ways of generating a quantum state. We want to know whether
these methods all work well. This problem can be formulated as the independence testing of
collections of quantum states.

I Problem 6. Given unknown quantum mixed states ρ1, ρ2, · · · , ρm ∈ D(Cd1⊗Cd2⊗· · ·⊗Cdn)
and a given distribution p = (p1, p2, · · · , pm), they satisfy either there exist σk,i ∈ D(Cdk )
for 1 ≤ k ≤ n such that for all 1 ≤ i ≤ m ρi = ⊗nk=1σk,i, or for any σk,i ∈ D(Cdk ),∑m
i=1 pi||ρi −⊗nk=1σk,i||1 > ε, for a given ε > 0. How many queries are needed to distinguish

these two cases, with high probability?

Combing the framework in [31] and our independece testers, we obtain

I Theorem 7. The sample complexity of the independence testing of collections of quantum
states is Θ̃(ε−2 · d) with joint measurement; O(ε−2 · d2) with determinstic independent
measurement.

Like their classical counterparts, the complexity does not depend on the number of states
n. Similarly, this idea can be used for the independence testing of collections of quantum
states.

In further work, we explore the problem of testing conditional independence with classical-
quantum-quantum states. This question naturally arises in studying distributed quantum
computing. One typical example is environment assisted entanglement distribution. Suppose
ρABC is a tripartite state. We want to reach the goal of sharing a bipartite state σAB. C
should perform a measurement on its system, now the state becomes classical-quantum-
quantum.
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I Problem 8. Given an unknown classical-quantum-quantum mixed states

ρABC =
m∑
i=1

pmρAB,i ⊗ |i〉〈i| ∈ D(Cd1 ⊗ Cd2)⊗∆(C)

with ∆(C) being the probabilistic simplex of C and |C| = m and |i〉 being a basis of C, we want
to distinguish whether ρABC is conditional independence, that is ρ =

∑m
i=1 pmρA,i⊗ρB,i⊗|i〉〈i|,

or for any conditional independent classical-quantum-quantum state σABC ||ρ − σ||1 > ε,
for a given ε > 0. How many queries are needed to distinguish these two cases, with high
probability?

This problem is a generalization of the independence testing of collections of quantum
states in the sense that the prior coefficient of the `1 distance is not given explicitly but
may be approximated through sampling. One motivation for studying this problem is a
simplified version of the conditional independence of general tripartite quantum states, which
a fundamental concept in theoretical physics and quantum information theory.

More specifically, we modify the `2 estimator developed in [18] for joint measurement and
develop a finer `2 estimator for independent measurement. Then we plug that estimator into
the classical conditional independence testing framework developed in [22].

I Theorem 9. For classical-quantum-quantum state ρABC ∈ D(Cd1 ⊗ Cd2) ⊗ ∆(C), the
sample complexity of testing whether A and B are conditionally independent given C is

O(max{
√
nd1d2
ε2 ,min{d

4
7
1 d

4
7
2 n

6
7

ε
8
7

,
√
d1d2n

7
8

ε }}) with joint measurement; and

O(max{
√
nd2

1d
2
2

ε2 ,min{d
6
7
1 d

6
7
2 n

6
7

ε
8
7

,
d

3
4
1 d

3
4
2 n

7
8

ε }}) with independent measurement.

1.6 Organization of this paper
Section 2 recalls the basic definitions of distance with discrete distributions and quantum
states and presents some formal tools from earlier work that are used here. In Section 3, we
state technical lemmata about the independence and conditional independence of quantum
states. Section 4 demonstrates Lemma 2. Section 5 contains the results of identity testing and
Theorems 3. In Section 6, we discuss the advantage of using random choice of independent
measurements. Detail proofs of Lemmata, Theorem 7 and Theorem 9 can be found in the
full version [71].

2 Preliminaries

This section begins with some standard notations and definitions used throughout the paper.

2.1 Basic facts for probability distributions
For m ∈ N, [m] denotes the set {1, · · · ,m}, and log denotes the binary logarithm. A probab-
ility distribution over discrete domain Ω is a function p : Ω 7→ [0, 1] such that

∑
ω∈Ω p(ω) = 1.

|Ω| is the cardinality of set Ω. ∆(Ω) denotes the set of probability distributions over Ω,
i.e., the probability simplex of Ω. The marginal distributions p1 ∈ ∆(A) and p2 ∈ ∆(B)
of a bipartite distribution p1,2 ∈ ∆(A × B) can be defined as p1(a) =

∑
b∈B p1,2(a, b),

p1(b) =
∑
a∈A p1,2(a, b). The product distribution q1 ⊗ q2 of distributions q1 ∈ ∆(A) and

q2 ∈ ∆(B) can be defined as [q1 ⊗ q2](a, b) = q1(a)q2(b), for every (a, b) ∈ A×B.
The `1 distance between two distributions p, q ∈ ∆(Ω) is ||p− q||1 =

∑
ω∈Ω |p(ω)− q(ω)|,

and their `2 distance is ||p− q||2 =
√∑

ω∈Ω(p(ω)− q(ω))2.

ITCS 2021
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2.2 Basic quantum mechanics
An isolated physical system is associated with a Hilbert space, which is called the state space.
A pure state of a quantum system is a normalized vector in its state space, and a mixed
state is represented by a density operator on the state space. Here, a density operator ρ on
d-dimensional Hilbert space Cd is a semi-definite positive linear operator such that Tr(ρ) = 1.
We let

D(Cd) = {ρ : ρ is d−dimensional density operator of Cd}

denote the set of quantum states.
The reduced quantum state of a bipartite mixed state ρ1,2 ∈ D(Cd1 ⊗Cd2) on the second

system is the density operators ρ2 := Tr1 ρ1,2 =
∑
i〈i|A|i〉, where {|i〉} is the orthonormal

basis of Cd1 . The partial trace of ρ1 := Tr2 ρ1,2 can be similarly defined, note that partial
trace functions are also independent of the selected orthonormal basis. This definition can
be directly generalized into multipartite quantum states.

2.3 Quantum measurement
A positive-operator valued measure (POVM) is a measure whose values are non-negative
self-adjoint operators in a Hilbert space Cd, which is described by a collection of matrices
{Mi} with Mi ≥ 0 and

∑
iMi = Id. If the state of a quantum system was ρ immediately

before measurement {Mi} was performed on it, then the probability of that result i recurring
is p(i) = Tr(Miρ).

2.4 `1 distance
`1 distance is used to characterize the difference between quantum states. The `1 distance
between ρ and σ is defined as ||ρ− σ||1 ≡ Tr|ρ− σ| where |A| ≡

√
A†A is the positive square

root of A†A.
Given a general operator A, the `1 norm is defined as ||A||1 = Tr|A|. And Lemma 10

always applies:

I Lemma 10 ([54]). The `1 distance is decreasing under partial trace. That is

||ρ1 − σ1||1, ||ρ2 − σ2||1 ≤ ||ρ1,2 − σ1,2||1.

Their `2 distance is defined as ||ρ − σ||2 =
√

Tr(ρ− σ)2. For ρ, σ ∈ D(Cd), we have the
following relation between `1 and `2 distances, ||ρ− σ||2 ≤ ||ρ− σ||1 ≤

√
d||ρ− σ||2. Given a

subset P ( D(Cd), the `1 distance between ρ and P is defined as ||ρ−P||1 = infσ∈P ||ρ−σ||1.
If ||ρ− P||1 > ε, we say that ρ is ε-far from P; otherwise, it is ε-close.

2.5 Mutually unbiased bases
In quantum information theory, mutually unbiased bases (MUB) in d-dimensional Hilbert
space are two orthonormal bases {|e1〉, . . . , |ed〉} and {|f1〉, . . . , |fd〉} such that the square of
the magnitude of the inner product between any basis states |ej〉 and |fk〉 equals the inverse
of the dimension d:

|〈ej |fk〉|2 = 1
d
, ∀j, k ∈ {1, . . . , d}.

These bases are unbiased in the following sense: if a system is prepared in a state belonging
to one of the bases, then all outcomes of the measurement with respect to the other basis
will occur with equal probability. It is known that, for d = pn with prime p, there exists
d+ 1 MUBs [35].
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2.6 Quantum property testing

Let D(Cd) denote the set of mixed states in Hilbert space Cd, and let a known T ⊂ D(Cd)
be the working domain of the quantum states. In a standard of property testing scenario, a
testing algorithm for a property P ⊂ T would be an algorithm that, when granted access
to independent samples from an unknown quantum state ρ ∈ T as well as an `1 distance
parameter of 0 < ε ≤ 1, outputs either “Yes” or “No”, with the following guarantees:

If ρ ∈ P, then it outputs “Yes” with a probability of at least 2
3 .

If ρ is ε-far from P, then it outputs “No” with a probability of at least 2
3 .

Our interest is in designing computational efficient algorithms with the smallest sample
complexity (i.e., the smallest number of samples drawn of ρ.).

Confidence of 2
3 is not essential here, it could be replaced by any constant greater than 1

2 .
This would only change the sample complexity by a multiplicative constant. According to the
Chernoff bound, the probability of success becomes 1− 2−Ω(k), after repeating the algorithm
k times.

2.7 Tools from earlier work

The following results were established in earlier work, and are used within this paper.

I Theorem 11 ([11]). The Pauli group Pk = {I,X, Y, Z}⊗n of order 4n can be divided into
2n + 1 Abelian subgroups with an order of 2n, say, G0, . . . , G2n such that Gi

⋂
Gj = {I⊗n2 }

for i 6= j. Each subgroup can be simultaneously diagonalizable by a corresponding basis. All
these 2n + 1 bases form 2n + 1 MUBs.

I Theorem 12 ([55, 18]). 100 d
ε2 copies are sufficient and 0.15 d

ε2 copies are necessary to test
whether ρ ∈ D(Cd) is the maximally mixed state Id

d or ||ρ − Id

d ||1 > ε with at least a 2/3
probability of success. Generally, O( dε2 ) copies of ρ and σ are sufficient to test whether ρ = σ

or ||ρ− σ||1 > ε

Algorithm 1 A Mixness Test.

Input: 100 d
ε2 copies of ρ ∈ D(Cd)

Output: “Yes” with a probability of at least 2
3 if ρ = Id

d ; and “No” with a
probability of at least 2

3 if ||ρ− Id

d ||1 > ε.

Algorithm 2 A Identity Test with Joint Measurement.

Input: O( dε2 ) copies of ρ ∈ D(Cd) and O( dε2 ) copies of σ ∈ D(Cd)
Output: “Yes” with a probability of at least 2

3 if ρ = σ; and “No” with a probability
of at least 2

3 if ||ρ− σ||1 > ε.

I Theorem 13 ([23]). For n-dimensional probability distributions of p and q, O( bε2 ) samples
are sufficient to distinguish, with at least a 2

3 probability, the cases where p = q from the
cases where ||p− q||2 > ε, where b ≥ ||p||2, ||q||2.

Algorithm 3 An `2 norm Identity Test.

Input: O( bε2 ) copies of p and O( bε2 ) copies of q
Output: “Yes” with probability at least 2

3 if p = q, “No” with probability at least 2
3

if ||p− q||2 > ε.
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3 Quantum Independence and Technical Lemmata

3.1 Bipartite independence and approximate independence
We say that ρ1,2 ∈ D(Cd ⊗ Cd2) is independent if ρ1,2 = σ1 ⊗ σ2 for some σi ∈ D(Cdi). One
can directly verify that, if ρ1,2 is independent, then ρ = ρ1 ⊗ ρ2 with ρ1 and ρ2 being the
reduced density matrices of ρ1,2.

We say that ρ is ε-independent with respect to the `1 distance if there is an independent
state σ such that ||ρ− σ||1 ≤ ε. We say that ρ is ε-far from being independent with respect
to the `1 distance if ||ρ− σ||1 > ε for any independent state σ.

I Proposition 14. Let ρ and σ be bipartite states of D(Cd ⊗ Cd2). If ||ρ− σ||1 ≤ ε/3 and σ
is independent, then ||ρ− ρ1 ⊗ ρ2||1 ≤ ε.

I Lemma 15. ||ρ1 ⊗ ρ2 − σ1 ⊗ σ2||1 ≤ ||ρ1 − σ1||1 + ||ρ2 − σ2||1.

3.2 Multipartite independence and approximate independence
We say that ρ ∈ D(Cd ⊗ Cd2 ⊗ · · · ⊗ Cdn) is n-partite independent if ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn,
and that ρ is ε-independent with respect to the `1 distance if there is a state σ that is
m-partite independent and ||ρ − σ||1 ≤ ε. We say that ρ is ε-far from being independent
with respect to the `1 distance if ||ρ− σ||1 > ε for any m-partite independent state σ .

I Proposition 16. Let ρ and σ be n-partite states, if ||ρ − σ||1 ≤ ε, and σ is m-partite
independent, then ||ρ− ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn||1 ≤ (n+ 1)ε.

I Lemma 17. ||ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn − σ1 ⊗ σ2 ⊗ · · · ⊗ σn||1 ≤
∑n
i=1 ||ρi − σi||1.

Proposition 18 establishes a connection between bipartite independence and multipartite
independence. Specifically, it shows that if an n-partite state is close to bipartite independence
in any 1 versus n− 1 cut, it is close to being n partite independent.

I Proposition 18. Let ρ be an n-partite states. If for any 1 ≤ i ≤ n, there exists a state σ(i)
i

of party i, and a state ψ[n]\{i} of parties [n] \ {i} such that ||ρ− σ(i)
i ⊗ ψ[n]\{i}||1 ≤ ε, then

||ρ− ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn||1 ≤ 5nε.

4 Connections between Quantum Property Testing and Distribution
Testing

Mutually unbiased bases (MUBs) are used to map the quantum states of D(Cd) into d(d+ 1)
dimensional probability distributions. Without loss of generality, assume d = 2n, and we let
the Pauli group Pk = {I,X, Y, Z}⊗n be to the order of 4n. According to Theorem 11, any
state ρ ∈ D(Cd) can be written as

ρ =
∑
P∈Pn

ηpP = Id
d

+
d∑
a=0

∑
P∈Ga,
P 6=Id

ηpP = Id
d

+
∑
i,j

µi,j |βi,j〉〈βi,j |,

where Ga are the Abelian subgroups with an order of 2n = d such that ∪Ga = Pn and
Ga

⋂
Gb = {I⊗n2 } for a 6= b. The equation is due to the simultaneous spectrum decomposition

of Ga through the MUBs bases. That is, for 0 ≤ i 6= s ≤ d, 1 ≤ j, t ≤ d,

|〈βi,j , βs,t〉| =
1√
d
.
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In addition, it is verifiable that
∑d
j=1 µi,j = 0 for all i by the traceless property of P 6= Id.

Therefore, we can obtain the following constraint on µi,j using
∑d
j=1 µi,j = 0 for all i,

Tr ρ2 = Tr Id
d2 +

∑
i,j,s,t

µi,jµs,t|〈βi,j , βs,t〉|2 = 1
d

+
∑
i,j

µ2
i,j ≤ 1.

M = {Mij = |βi,j〉〈βi,j |
d+1 : 0 ≤ i ≤ d, 1 ≤ j ≤ d} can be used to map the d-dimensional

quantum state ρ into a d(d+ 1) dimensional probabilistic distribution. The corresponding
probability distribution p = (p(0, 1), . . . , p(d, d)) satisfies

p(i, j) = Tr(ρ|βi,j〉〈βi,j |)
d+ 1 =

µi,j + 1
d

d+ 1 ,

note that other terms are orthogonal or cancel out due to the property of MUBs and the
equations

∑d
j=1 µi,j = 0 for all i.

Then the `2 norm of p can be bounded with

√∑
i,j(µi,j + 1

d )2

d+ 1 =

√∑
i,j µ

2
i,j + d(d+1)

d2 +
2
∑

i,j
µi,j

d

d+ 1 =

√∑
i,j µ

2
i,j + d+1

d

d+ 1 ≤
√

2
d+ 1 .

More importantly, this map preserves the `2 distance, in the sense that the `2 distance
between the image probability distributions is exactly the same as the `2 distance between
the pre-image quantum states with a scaling of 1

d+1 .

For any two states ρ = Id

d +
∑
i,j µi,j |βi,j〉〈βi,j | and σ = Id

d +
∑
i,j νi,j |βi,j〉〈βi,j |, we have

that

||ρ− σ||2 = ||
∑
i,j

(µi,j − νi,j)|βi,j〉〈βi,j |||2 =
√∑

i,j

(µi,j − νi,j)2,

where the other terms are orthogonal or cancel out due to the property of MUBs and the
equation

∑d
j=1 µi,j = 0 for all i.

Using the measurementM, the corresponding probability distributions can be obtained:
p = (p(0, 1), . . . , p(d, d)) and q = (q(0, 1), . . . , q(d, d)) with

p(i, j) = Tr(ρ|βi,j〉〈βi,j |)
d+ 1 =

µi,j + 1
d

d+ 1 , q(i, j) = Tr(σ|βi,j〉〈βi,j |)
d+ 1 =

νi,j + 1
d

d+ 1 .

The following equality proves Lemma 2. ||p− q||2 =

√∑
i,j

(µi,j−νi,j)2

d+1 = ||ρ−σ||2
d+1 .
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5 Quantum State Certification

The connections developed in Section 4, together with the `2-identity tester of probability
distributions provided in [23], also make efficient identity testing of quantum states possible.

Proof of Theorem 3. First map the state into probability distributions, say p and q, through
independent measurement with Theorem 2, and follow by executing Algorithm 4.

Algorithm 4 A Identity Test with Independent Measurement.

Input: O(d
2

ε2 ) copies of ρ ∈ D(Cd) and O( dε2 ) copies of σ ∈ D(Cd)
Output: “Yes” with a probability of at least 2

3 if ρ = σ; and “No” with a probability
of at least 2

3 if ||ρ− σ||1 > ε.
1 Run Algorithm 3 to distinguish between p = q and ||p− q||2 ≥ ε√

d(d+1) ;
/* p and q are the probability distributions obtained by measuring ρ

and σ through the independent measurement with Theorem 2,
respectively. */

According to ||p − q||2 = ||ρ−σ||2
d+1 , we only need to distinguish cases where p = q from

cases where ||p − q||2 ≥ ||ρ−σ||1√
d(d+1) ≥

ε√
d(d+1) . Choosing b =

√
2

d+1 ≥ ||p||2, ||q||2 and invoking
Theorem 13, we have

O( b

( ε√
d(d+1) )2 ) = O(d

2

ε2
)

which is a sufficient number of copies. J

According to [44], the sample complexity for tomography is ρ ∈ D(Cd) is Θ(d
3

ε2 ), which
makes Algorithm 4 a better choice for identity testing after tomography.

As mentioned in the introduction, Algorithm 4 should be significantly easier to implement
because it does not demand noiseless, universal quantum computation with an exponential
number of qubits.

6 Independence Testing

The goal of independence testing is to determine whether a fixed multipartite state ρ is
independent, i.e., in tensor product form, or far from being independent. Hence, in this
section, we outline a series of testing algorithms and almost matching lower bounds in joint
measurement setting, and independent measurement setting.

We start with an algorithm for the bipartite case of Theorem 5.
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Algorithm 5 A Bipartite Independence Testing with Joint Measurement.

Input: n = O(d1d2
ε2 ) copies of ρ ∈ D(Cd1 ⊗ Cd2)

Output: “Yes” with a probability of at least 2
3 if ρ is independent; and “No” with a

probability of at least 2
3 if ||ρ− σ||1 > ε for any independent σ.

1 Use n
3 copies of ρ to generate ρ1;

/* Trace out system 2 */
2 Use n

3 copies of ρ to generate ρ2;
/* Trace out system 1 */

3 Run Algorithm 2 on n
3 copies of ρ and n

3 copies of ρ1 ⊗ ρ2 with the parameter ε/3;

Proof. The correctness of this algorithm accords with Theorem 1 by note that
If ρ is independent, then ρ = ρ1 ⊗ ρ2, and this algorithm will output “Yes” with high
probability.
If ||ρ− σ||1 > ε for any independent σ, then ||ρ− ρ1 ⊗ ρ2||1 > ε/3 by Proposition 14, and
this algorithm will output “No” with high probability.

We can derive an independent measurement tester by replacing the identity tester in Al-
gorithm 2 with Algorithm 4. From a similar analysis to the above, O(d

2
1d

2
2

ε2 ) is a sufficient
number of copies. J

The obvious generalization of the bipartite independence testing to m-partite would
work using bipartite independence in any n− 1 parties versus 1 party. Our goal is to test
independence in this scenario with an accuracy of O( εn ) and at least a 1− 1

n2 probability of
success. The correctness of the algorithm follows from Proposition 18, and the generalization
incurs anO(n3 logn) factor. For constant n, O(n3 logn) is still constant. Thus, the complexity
of the different algorithm variants would be O(Πn

i=1di

ε2 ) with joint measurement, and O(Πn
i=1d

2
i

ε2 )
with independent measurement. With a super-constant n, algorithms could be built that
achieve the same complexity using Diakonikolas and Kane’s [31] recursion idea coupled with
our previous bipartite independence tester.

We only prove the lower bound part of Theorem 5 for bipartite systems here. The general
version can be proved similarly. In cases where d1 and d2 are both very large, the bound is
derived from the mixness test of Theorem 12 in [55], where the constant 2000 comes from the
upper and lower bound of the constant in that theorem. To deal with “unbalanced” cases
where only d1 or d2 is small–here, let us says d2–we split the d1 system into many systems of
dimension d2, which transforms the original unbalance of a bipartite problem into a problem
of “balanced” multipartite independence testing. Then, we use Proposition 18.

Proof. First, note that it suffices to consider cases where d1d2 are sufficiently large. To show
the lower bound for a general d1 and d2, assume there is an algorithm, Algorithm A, that
uses f(d1, d2, ε) copies to decide whether a given ρ ∈ D(Cd1 ⊗ Cd2) is independent or ε-far
from being independent with at least a 2/3 probability of successful. By using Algorithm A
as an oracle, the following algorithm can distinguish cases where ρ = Id1

d1
⊗ Id2

d2
from cases

where ||ρ− Id1
d1
⊗ Id2

d2
||1 > ε for any t > 1.

To see this algorithm to succeed at detecting whether ρ is maximally mixed with high
probability, note that: If ρ = Id1

d1
⊗ Id2

d2
, in Line 1, the algorithm will output ρ1 = Id1

d1
with a

probability of at least 20
27 ; in Line 5, the algorithm will output ρ2 = Id2

d2
with a probability

of at least 27
28 ; in Line 9, ρ will be independent with a probability of at least 28

30 . Overall,
Algorithm 6 will output “Yes” with a probability of at least 2

3 .

ITCS 2021



11:14 Quantum Identity Testing and Independence Testing

If ||ρ− Id1
d1
⊗ Id2

d2
||1 > ε, then one of the following three statements will be true: ρ1 is ε/t-far

from Id1
d1

; or ρ2 is (t−1)ε
4t -far from Id2

d2
; or ρ is (t−1)ε

4t -far from being independent. Otherwise,
assume that there exists an σ1 and an σ2, such that ||ρ−σ1⊗σ1||1 < (t−1)ε

4t , ||ρ1−
Id1
d1
||1 < ε

t

and ||ρ2 −
Id2
d2
||1 < (t−1)ε

4t . According to Proposition 14, we have ||ρ− ρ1 ⊗ ρ2||1 < 3(t−1)ε
4t .

Then by the triangle inequality and Lemma 15, we have

||ρ− Id1

d1
⊗ Id2

d2
||1 ≤ ||ρ− ρ1 ⊗ ρ1||1 + ||Id1

d1
⊗ Id2

d2
− ρ1 ⊗ ρ1||1 < ε.

Contradiction! Therefore, in this case, the algorithm outputs “No” with a probability of at
least min{ 20

27 ,
27
28 ,

28
30} >

2
3 .

Algorithm 6 A Bipartite Identity test A for a maximally mixed state.

Input: n = 100f(d1, d2,
(t−1)ε

4t ) + 300t2 d1
ε2 + Θ( d2

t2(t−1)2ε2 ) copies of ρ ∈ D(Cd1 ⊗ Cd2)
Output: “Yes” with a probability of at least 2

3 if ρ = Id1
d1
⊗ Id2

d2
; and “No” with a

probability of at least 2
3 if ||ρ− Id1

d1
⊗ Id2

d2
||1 > ε.

1 Repeat Algorithm 1, with 100t2 d1
ε2 copies of ρ, three times to test whether ρ1 = Id1

d1

or ||ρ1 −
Id1
d1
||1 > ε/t with at least a 20

27 probability of success;
2 if “No” then
3 Return “No”;
4 else
5 Employ Algorithm 1 with Θ( t2d2

(t−1)2ε2 ) copies of ρ to test whether ρ2 = Id2
d2

or
||ρ1 −

Id1
d1
||1 > (t−1)ε

4t with at least a 27
28 probability of success;

6 if “No” then
7 Return “No”;
8 else
9 Run Algorithm A 100 times to test whether ρ is independent or is (t−1)ε

4t -far
from being independent with at least a 28

30 probability of success;
10 if “Yes” then
11 Return “Yes”;
12 else
13 Return “No”;

This algorithm uses n = 100f(d1, d2,
(t−1)ε

4t ) + 300t2 d1
ε2 + Θ( t2d2

(t−1)2ε2 ) copies of ρ. Invoking
Theorem 12, we know that 0.15d1d2

ε2 copies are necessary to test, with at least a 2/3 probability
of success, whether ρ is the maximally mixed state or whether it is ε-far.

We must have

100f(d1, d2,
(t− 1)ε

4t ) + 300t2 d1

ε2
+ Θ(t2 d2

(t− 1)2ε2
) ≥ 0.15d1d2

ε2
.

If d1 and d2 are both sufficiently large, we can choose a constant t such that 300t2 d1
ε2 +

Θ(t2 d2
(t−1)2ε2 ) = o(d1d2

ε2 ), which implies

f(d1, d2, ε) ≥ Ω( 16t2d1d2

(t− 1)2ε2
) = Ω(d1d2

ε2
).



N. Yu 11:15

If d1 is sufficiently large and d2 is not sufficiently large but d2 > 2000, we can choose
t =

√
2000.5
2000 , then

f(d1, d2, cε) ≥ 0.15d1d2

ε2
− 300t2 d1

ε2
+ Ω(t2 d2

(t− 1)2ε2
) = Ω(d1

ε2
) = Ω(d1d2

ε2
),

with the constant c = t−1
4t . Thus, for d2 > 2000,

f(d1, d2, ε) ≥ Ω(d1d2

ε2
).

The above technique does not work with a small d2, because the number of copies required to
test a d1 system 300t2 d1

ε2 and the number of copies required to test a total system of 0.15d1d2
ε2

are of the same order.
To deal with this unbalanced case, we develped a dimension splitting technique that

transforms bipartite independence into k-partite independence. First observe that the sample
complexity for independence testing in D(Cd1 ⊗ Cd2) is no less than the sample complexity
for an independence test of D(Cd ⊗ C2) for d = 2[log d1] ≤ d1. Therefore, without loss of
generality, assume that d2 = 2 and d1 = 2k instead of d2 ≤ 2000, and that d1 is sufficiently
large.

We still assume that there is an Algorithm A that uses f(2k, 2, ε) copies to decide, with
at least a 2/3 probability of success, whether a given ρ ∈ D(C2k×2k ⊗ C2×2) is independent
or ε-far from independent in the 2k and 2 bipartitions. Any such ρ can be regarded as a
k+ 1 qubit state, and the qubit systems will be labeled as S = {1, 2, . . . , k, k+ 1}. ρi denotes
the reduced density matrix of the i-th qubit of ρ. Algorithm A is a bipartite independence
tester for a k + 1 qubit system in the bipartition of k qubits and 1 qubit. In the following,
Algorithm A is applied as a black box to the bipartition i and S \ {i} for any i to test the
identity of ρ and Id1

d1
⊗ Id2

d2
.

Algorithm 7 A Bipartite Identity Test B for a maximally mixed state.

Input: n = Θ[(k + 1) log kf(2k, 2, ε
6(k+1) )] + Θ[(k + 1) log k (k+1)2

ε2 ] copies of ρ.
Output: “Yes” with a probability of at least 2

3 if ρ = ⊗k+1
i=1 ⊗

I2
2 ; and “No” with a

probability of at least 2
3 if ||ρ−⊗k+1

i=1 ⊗
I2
2 ||1 > ε.

1 for i← 1 to k + 1 do
2 Repeat Algorithm 1, with Θ( (k+1)2

ε2 ) copies of ρ each time, Θ(log k) times to test
whether ρi = I2

2 or ||ρi − I2
2 ||1 >

ε
6(k+1) at least a 1− 1

k2 probability of success;
3 if No then
4 Return “No”;
5 else
6 Run Algorithm A Θ(log k) times, with f(2k, 2, ε

6(k+1) ) copies each time, to
test whether ρ is independent or ε

6(k+1) -far from being independent in the
bipartition {i} and S \ {i} with at least a 1− 1

k2 probability of success;
7 if No then
8 Return “No”;

9 Return “Yes”;

To see this algorithm succeed in detecting whether ρ is maximally mixed with high
probability, we note that
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If ρ = Id1
d1
⊗ Id2

d2
, then ρi = I2

2 when ρ is regarded as a k+ 1 qubit state. It is independent
in any bipartition {i} and S \ {i}. For each i, the passing probability of the test ρi = I2

2 is at
least 1− 1

k2 . For each i, the passing probability of the independence test in the bipartition
{i} and S \ {i} is at least 1− 1

k2 . In total, Algorithm 7 will accept with a probability of at
least (1− 1

k2 )O(k) = 1− o(1) > 2
3 .

If ||ρ− Id1
d1
⊗ Id2

d2
||1 > ε, at least one of the following two statements is true:

||ρi − I2
2 ||1 >

ε
6(k+1) for some 1 ≤ i ≤ k + 1; and/or

ρ is ε
6(k+1) -far from independent in the bipartition {i} and S \ {i} for some 1 ≤ i ≤ k+ 1.

Otherwise, ||ρi − I2
2 ||1 ≤

ε
6(k+1) and ρ is ε

6(k+1) close to being independent in the bipartition
{i} and S \ {i} for all 1 ≤ i ≤ k + 1.

According to Proposition 18, we have

||ρ− ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk+1||1 ≤ 5(k + 1) ε

6(k + 1) = 5ε
6 .

By Lemma 17, we have

||ρ− Id1

d1
⊗ Id2

d2
||1

= ||ρ− I2
2 ⊗

I2
2 ⊗ · · · ⊗

I2
2 ||1

≤ ||ρ− ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk+1||1 + ||I22 ⊗
I2
2 ⊗ · · · ⊗

I2
2 − ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk+1||1

≤ 5ε
6 +

k+1∑
i=1
||ρi −

I2
2 ||1

≤ ε.

Contradiction! Therefore, the algorithm outputs “No” with a probability of at least 1− 1
k2 >

2
3

in this case.
Invoking Theorem 12, we know that Θ(d1d2

ε2 ) = Θ( 2k+1

ε2 ) copies are necessary to test
whether ρ is a maximally mixed state or ε-far with at least a 2/3 probability of success.
Algorithm 7 uses Θ[(k+ 1) log kf(2k, 2, ε

6(k+1) )] + Θ[(k+ 1) log k (k+1)2

ε2 ] copies of ρ. We must
have

Θ[(k + 1) log kf(2k, 2, ε

6(k + 1))] + Θ[(k + 1) log k (k + 1)2

ε2
] ≥ Θ(2k+1

ε2
)

⇒ f(2k, 2, ε

6(k + 1)) ≥ Θ( 2k

k log kε2 )

⇒ f(2k, 2, ε) ≥ Θ( 2k

k3 log kε2 )

⇒ f(d1, d2, ε) = Ω( d1

log3 d1 log log d1ε2
) = Ω( d1d2

log3 d2 log log d1ε2
)

That is, if d2 is a small constant, Ω( d1d2
ε2 log3 d1 log log d1

) copies are necessary to test the inde-
pendence of ρ ∈ D(Cd1 ⊗ Cd2). J

7 Discussion

If we can use random measurements, a fewer number of copies are needed for quantum
identity testing and independence testing.
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In [19], it is proved that using non-adaptive independent measurements, to test whether
a quantum state ρ ∈ D(Cd) is equal to or ε-far in trace distance from the maximally mixed
state, Ω(d

3/2

ε2 ), and this complexity can be achieved via Haar-random orthogonal POVMs.
The measurement can be implemented by randomly choosing a unitary U applied on ρ

and measuring UρU† in computational basis many times. The last step is to test whether
the resulting d-dimensional probability dsitribution pU is equal to or ε√

d
-far from uniform

distribution u. The correctness of this algorithm comes from the concentration of measure
and

EU ||pU − u||22 =
||ρ− I

d ||
2
2

d+ 1 .

This method can be used to the general quantum identity testing problem: Randomly
choosing a unitary U applied on ρ and σ respectively, then measuring UρU† and UσU† in
computational basis many times. The last step is to test whether the resulting d-dimensional
probability dsitributions pU and qU are equal or ε√

d
-far. One can verify

EU ||pU − qU ||22 = ||ρ− σ||
2
2

d+ 1 ,

and

EU ||pU ||22, ||qU ||22 ≤ O( 1
d+ 1).

Using concentration of measure, we know that ||pU − qU ||22 ≥
||ρ−σ||22

2d+1 and ||pU ||22, ||qU ||22 ≤
O( 1

d+1 ) are valid with high probability. The rest is to run Algorithm 3 from [23] with O(d
3/2

ε2 )
samples. We can conclude that

I Theorem 19. The sample complexity of quantum identity testing is Θ(d
3/2

ε2 ) for non-
adaptive independent measurements.

This continuous randomness can be discretized by randomly choosing the MUB basis presented
in Section 4.

Plug in our method of quantum independence testing, we know that

I Theorem 20. The sample complexity of quantum independence testing of D(Cd1 ⊗ Cd2 ⊗
· · · ⊗ Cdm) is Θ̃(Πm

i=1d
3/2
i

ε2 ) for non-adaptive independent measurements.
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