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Abstract
We consider a generalization of the fundamental online metrical service systems (MSS) problem
where the feasible region can be transformed between requests. In this problem, which we call
T-MSS, an algorithm maintains a point in a metric space and has to serve a sequence of requests.
Each request is a map (transformation) 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡 between subsets 𝐴𝑡 and 𝐵𝑡 of the metric space.
To serve it, the algorithm has to go to a point 𝑎𝑡 ∈ 𝐴𝑡 , paying the distance from its previous position.
Then, the transformation is applied, modifying the algorithm’s state to 𝑓𝑡 (𝑎𝑡 ). Such transformations
can model, e.g., changes to the environment that are outside of an algorithm’s control, and we
therefore do not charge any additional cost to the algorithm when the transformation is applied.
The transformations also allow to model requests occurring in the 𝑘-taxi problem.

We show that for 𝛼-Lipschitz transformations, the competitive ratio is Θ(𝛼)𝑛−2 on 𝑛-point
metrics. Here, the upper bound is achieved by a deterministic algorithm and the lower bound
holds even for randomized algorithms. For the 𝑘-taxi problem, we prove a competitive ratio of
𝑂 ((𝑛 log 𝑘)2). For chasing convex bodies, we show that even with contracting transformations no
competitive algorithm exists.

The problem T-MSS has a striking connection to the following deep mathematical question:
Given a finite metric space 𝑀, what is the required cardinality of an extension 𝑀̂ ⊇ 𝑀 where each
partial isometry on 𝑀 extends to an automorphism? We give partial answers for special cases.
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1 Introduction

Metrical Service Systems (MSS) [13] is a fundamental online framework unifying countless
problems. It also has a central role in our understanding of online computation and competi-
tive analysis in general. In this problem we are given a metric space (𝑀, 𝑑). The points of
the metric represent possible states/configurations where an algorithm can serve requests;
the distance between the states represents the cost of moving from one configuration to
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21:2 Metrical Service Systems with Transformations

another. Each request consists of a subset of feasible states and the algorithm must serve
the request by moving to one of these states. The cost of the algorithm for a sequence of
requests is simply the total movement cost.

In the closely related problem of Metrical Task Systems (MTS) [8], each request is a cost
function 𝑐𝑡 : 𝑀 → R+ ∪ {∞}. The algorithm can move to any point 𝑥𝑡 , paying the movement
cost as well as service cost 𝑐𝑡 (𝑥𝑡 ). Note that MSS is equivalent to the special case of MTS
where cost functions only take values 0 and ∞, which already captures the essential difficulty
of MTS. 1 For deterministic algorithms, the competitive ratio on any 𝑛-point metric is 𝑛 − 1
for MSS [19] and 2𝑛 − 1 for MTS [8]. For randomized algorithms, it lies between 𝑂 (log2 𝑛)
[9, 15] and Ω(log 𝑛/log log 𝑛) [5, 6], and tight bounds of Θ(log 𝑛) are known for some metrics.
The MSS/MTS framework captures various central online problems such as paging, 𝑘-server,
convex body chasing, layered graph traversal, etc. The competitive ratio of MSS usually
serves as a first upper bound for the performance achievable for these special cases.

However, MSS fails to capture more dynamic environments in which configuration
changes that are outside of the algorithm’s control may occur. For example, new resources or
constraints may appear/disappear and modify the configurations. To capture such changes
we propose an extension for MSS that allows transformations over the configuration space.
For example, we may model the 𝑘-taxi problem2 by considering the possible configurations
of taxis in the metric. A movement of a taxi from the start to the destination of a request
simply corresponds to a transformation that maps any configuration that contains a taxi at
the start to a configuration with an additional taxi at the destination and one less taxi at
the start. As these changes are dictated to any solution, it is reasonable not to account any
cost for these changes both for the algorithm and for the offline (benchmark) solution. In
this work we initiate the study of Metrical Service Systems with Transformations (T-MSS),
a generalization of the standard Metrical Service Systems (MSS) problem. As before, we are
given a metric space (𝑀, 𝑑). In each round 𝑡, we get a function (transformation) 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡

that maps a subspace 𝐴𝑡 ⊆ 𝑀 of feasible states to a subspace 𝐵𝑡 ⊆ 𝑀. If 𝑏𝑡−1 ∈ 𝑀 is the
state of the algorithm before the request 𝑓𝑡 arrives, it has to choose one of the feasible
states 𝑎𝑡 ∈ 𝐴𝑡 and pays movement cost 𝑑 (𝑏𝑡−1, 𝑎𝑡 ). The new state of the algorithm is then
𝑏𝑡 := 𝑓𝑡 (𝑎𝑡 ). The classical MSS problem is thus the special case of T-MSS where 𝑓𝑡 is the
identity function on the set of feasible states at time 𝑡. In T-MSS we allow in addition to
identity transformations also more complex transformations. The high level question we
ask is:

I Open problem 1. What is the competitive ratio of the Metrical Service Systems with
Transformations problem for families of metric spaces and allowable transformations?

1.1 Our results and techniques
We give partial answers to the above question, obtaining upper and lower bounds on the
competitiveness for several interesting families of metric spaces and transformations. The
most general family of transformations we study are 𝛼-Lipschitz transformations. Our main
result is the following pair of (almost matching) upper and lower bounds for general metric
spaces and 𝛼-Lipschitz transformations.

1 Our results extend easily to the case where MTS requests are allowed, but we will stick to the MSS
view for the sake of simplicity.

2 In this problem, introduced by [17], there are 𝑘 taxis in a metric space. Each request is a pair of two
points, representing the start and destination of a travel request by a passenger. Serving a request is
done by selecting a taxi that travels first to its start and then its destination. In the hard version of the
problem, the cost is defined as the total distance traveled by the taxis without carrying a passenger.
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I Theorem 1. There exists a deterministic 2 max{2(𝛼 + 1), 6}𝑛−2-competitive algorithm for
T-MSS with 𝛼-Lipschitz transformations on any 𝑛-point metric space. Any algorithm for
T-MSS with 𝛼-Lipschitz transformations has competitive ratio at least min{𝛼+1, 𝛼2}𝑛−2, even
with randomization.

Although our results show an exponential lower bound (and an exponential upper
bound) for any 𝛼 > 1, they do not rule out linear/polynomial or with randomization even
polylogarithmic competitive ratios when the transformations are 1-Lipschitz (contractions).
Resolving the competitive ratio for this important family of transformations is one of the
most interesting remaining open questions. On the other hand, we show that even restricting
the transformations to be 1-Lipschitz is not always enough. In particular, when adding
contraction transformations to the convex body chasing problem (that can be modeled as a
special case of MSS on an infinite metric space) there exists no competitive algorithm even
in the easier nested case. By contrast, with isometry transformations the competitive ratios
𝑂 (𝑑) for the unrestricted problem and 𝑂 (

√︁
𝑑 log 𝑑) for the nested problem due to [20, 2, 10]

remain unchanged as R𝑑 is ultrahomogeneous (see following discussion for formal definitions).

I Theorem 2. There exists no online algorithm with finite competitive ratio for nested convex
body chasing with contractions in the plane, even with randomization.

As a byproduct of our results we also get a new competitive algorithm for the 𝑘-taxi
problem, which can be modeled as a T-MSS with isometry transformations.

I Theorem 3. There is a randomized 𝑂 ((𝑛 log 𝑘)2 log 𝑛)-competitive algorithm for the 𝑘-taxi
problem on 𝑛-point metrics.

This result is better than the previous best bound of 𝑂 (2𝑘 log 𝑛) whenever 𝑛 is subexpo-
nential in 𝑘 [14].

Extending partial isometries. As a basic tool to tackle T-MSS with general transformation,
we study the problem when the allowable transformations are isometries. A map 𝑓 : 𝐴→ 𝐵

for subsets 𝐴, 𝐵 ⊆ 𝑀 is called a partial isometry of 𝑀 if it is distance-preserving, i.e.,
𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) = 𝑑 (𝑥, 𝑦). A metric space 𝑀 is called ultrahomogeneous if every partial isometry
of 𝑀 extends to an automorphism of 𝑀. Notice that on ultrahomogeneous metric spaces, the
competitive ratio of T-MSS with isometry transformations is the same as the competitive
ratio of MSS: Indeed, when a partial isometry 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡 arrives, let 𝑓𝑡 be its extension to
an automorphism of 𝑀. In MSS, this request corresponds to the request 𝐴𝑡 followed by a
renaming of the points of the metric space according to 𝑓𝑡 . Clearly, isometric renaming of
points does not affect the competitive ratio.

If 𝑀 is not ultrahomogeneous, one could hope to extend 𝑀 to a larger metric space 𝑀̂
such that every partial isometry of 𝑀 extends to an automorphism of 𝑀̂. In this case, we
call 𝑀̂ a weakly ultrahomogeneous extension of 𝑀. For a family of metric spaces M we
define the blow-up as the supremum over all 𝑛-point metrics 𝑀 ∈ M – of the minimum
cardinality of a weakly ultrahomogeneous extension 𝑀̂ of 𝑀. If the blow-up can be bounded
as a function of 𝑛 it allows us to apply the (𝑛 − 1)-competitive deterministic algorithm or
the 𝑂 (log2 𝑛)-competitive randomized algorithm for MSS on the weakly ultrahomogeneous
extension to get competitive algorithms. We study the blow-up also for restricted families of
isometries. For example, we study swap isometries (defined on two points that are mapped
to one another). We call a metric space swap-homogeneous if every swap extends to an
automorphism. Swap-homogeneous metric spaces have the intuitive property that the metric
space “looks” the same at each point. Similar notions of metric space homogeneity have also
been studied in other contexts (see, e.g., [23]). The main question, which we consider to be
of independent interest, is thus:

ITCS 2021
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I Open problem 2. What is the blow-up for interesting families of metric spaces and partial
isometries?

Some results on weakly ultrahomogeneous extensions already exist, in particular that
every finite metric space has such an extension and it is of finite size [21, 22]. However, no
bounds on the size of the extensions as a function of 𝑛 are known, and hence these results do
not yield any bounds on the blow-up. We refer the reader to Section 5 for further discussion.
Some of the algorithms we design for T-MSS are using these new upper bounds that we prove
on the blow-up. The following theorem summarizes the upper and lower bounds we obtain.

I Theorem 4. The following bounds on the blow-up are tight.

Family of metric spaces Family of isometries Blow-up
Ultrametrics General 2𝑛−1

Ultrametrics: 𝑘 distinct non-zero distances General ≈
(
𝑛+𝑘−1

𝑘

)𝑘 3

Equally spaced points on a line General 2𝑛 − 2(
{0, . . . , 𝑘}𝐷 ,weighted ℓ1

)
Translations (2𝑘)𝐷

General metrics Swaps 2𝑛−1

Using the direct reduction above, we may get directly some interesting results for T-
MSS when transformations are isometries. For example, a randomized 𝑂 (𝑛2)-competitive
algorithm for ultrametrics and an 𝑂 (log2 𝑛)-competitive algorithm for equally spaced points
on a line.

The work function algorithm. The work function algorithm (WFA) is a classical algorithm
that achieves the optimal deterministic competitive ratio of 𝑛 − 1 for MSS on any 𝑛-point
metric (see [7] for a discussion on its history). The algorithm extends naturally to T-MSS (see
Section 2.1), and is a natural candidate algorithm to investigate. We prove that it is in fact
optimal for several special cases of the problem. The following result for ultrahomogeneous
ultrametrics is also used as part of our main algorithm for general metrics. We also prove that
on general metrics, WFA has a superlinear competitive ratio even for isometry transformations
(which are 1-Lipschitz). This may indicate that T-MSS has super linear competitive ratio
even for isometry transformations.

I Theorem 5. The work function algorithm (WFA) for T-MSS has competitive ratio
𝑛 − 1 on 𝑛-point ultrahomogeneous ultrametrics with 1-Lipschitz transformations.
2𝑛 − 3 on 𝑛-point metric spaces with swap transformations. No deterministic algorithm
has competitive ratio better than 2𝑛 − 3 for this problem.
𝜔(𝑛1.29) on some 𝑛-point metric space with isometry transformations, for each 𝑛.

1.2 Organization
In Section 2 we formally define T-MSS, and discuss the work function algorithm (WFA).
In Section 3 we design an algorithm for T-MSS on general metrics with competitive ratio
depending on the maximal Lipschitz constant of transformations, and prove an almost
matching lower bound (Theorem 1). As part of the algorithm we also show that WFA is
(𝑛−1)-competitive for ultrahomogeneous 𝑛-point ultrametrics and 1-Lipschitz transformations,
proving the first part of Theorem 5.

3 The precise blow-up is (𝑎 + 1)𝑏𝑎𝑘−𝑏 where 𝑎 = b 𝑛+𝑘−1
𝑘

c and 𝑏 = (𝑛 − 1) mod 𝑘.
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In Section 4 we show upper and lower bounds on the competitive ratio for several special
cases of T-MSS. In Section 4.1 we show that there exists no online algorithm with finite
competitive ratio for nested convex body chasing with contractions in the plane, even with
randomization (Theorem 2). In Section 4.2 we design a new randomized algorithm for the
𝑘-taxi problem (Theorem 3). In Section 4.3 we show matching upper and lower bounds
for swap transformations, proving the second part of Theorem 5. In Section 4.4 we show
a superlinear lower bound on the competitiveness of WFA for isometry transformations,
proving the third part of Theorem 5. Finally, in Section 5 we prove upper an lower bounds
on the blow-up for several families of metric spaces and transformations (Theorem 4). These
results are also used earlier in the proofs of Theorem 1 and Theorem 3.

2 Preliminaries

In Metrical Service Systems with Transformations (T-MSS), we are given a metric space
(𝑀, 𝑑) and an initial state 𝑏0 ∈ 𝑀. We denote by 𝑛 the number of points in the metric
space. In each round 𝑡, we get a function (transformation) 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡 that maps a subset
𝐴𝑡 ⊆ 𝑀 of feasible states to a subset 𝐵𝑡 ⊆ 𝑀. If 𝑏𝑡−1 ∈ 𝑀 is the state of the algorithm
before 𝑓𝑡 arrives, it has to choose one of the feasible states 𝑎𝑡 ∈ 𝐴𝑡 and pays movement cost
𝑑 (𝑏𝑡−1, 𝑎𝑡 ). The new state of the algorithm is then 𝑏𝑡 := 𝑓𝑡 (𝑎𝑡 ). The classical MSS problem
is thus a special case of T-MSS where 𝑓𝑡 is the identity function on the set of feasible states
at time 𝑡. In T-MSS we always allow the identity transformations (thereby ensuring that
T-MSS is a generalization of MSS) and in addition more complex transformations. We study
the following important families of transformations 𝑓 : 𝐴→ 𝐵 whose properties are defined
below.

Family of transformations Condition
𝛼–Lipschitz ∀𝑥, 𝑦 ∈ 𝐴 : 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝛼 · 𝑑 (𝑥, 𝑦)
1–Lipschitz (Contractions) ∀𝑥, 𝑦 ∈ 𝐴 : 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑑 (𝑥, 𝑦)
Isometries ∀𝑥, 𝑦 ∈ 𝐴 : 𝑑 ( 𝑓 (𝑥), 𝑓 (𝑦)) = 𝑑 (𝑥, 𝑦)
Swaps 𝐴 = {𝑎, 𝑏}, 𝑓 (𝑎) = 𝑏, 𝑓 (𝑏) = 𝑎
Translations 𝑀 is subset of a vector space. ∀𝑥 ∈ 𝐴 : 𝑓 (𝑥) = 𝑥 + 𝑣 for a vector 𝑣

We also study several families of metric spaces. An important family of metric spaces
are ultrametrics in which for every three points 𝑥, 𝑦, 𝑧 ∈ 𝑀, 𝑑 (𝑥, 𝑧) ≤ max{𝑑 (𝑥, 𝑦), 𝑑 (𝑦, 𝑧)}.
Ultrametric spaces may be viewed as the leaves of a rooted tree in which vertices with lowest
common ancestor at level 𝑖 have distance 𝐿𝑖, where 0 < 𝐿1 < 𝐿2 < · · · < 𝐿𝑘 are the possible
distances (where 𝑘 ≤ 𝑛 − 1).

2.1 The work function algorithm for T-MSS

The work function algorithm (WFA) achieves the optimal deterministic competitive ratio of
𝑛 − 1 for MSS on any 𝑛-point metric. This algorithm is defined as follows: Denote by 𝑝0 the
fixed initial state. For some request sequence and a state 𝑝 ∈ 𝑀, let 𝑤𝑡 (𝑝) be the minimal
cost to serve the first 𝑡 requests and then end up at 𝑝. The function 𝑤𝑡 is called the work
function at time 𝑡. We denote by W the set of all maps 𝑤 : 𝑀 → R+ that are 1-Lipschitz.
Notice that every work function is in W. The WFA for MSS is the algorithm that, at time 𝑡,
goes to a feasible state 𝑝𝑡 minimizing 𝑤𝑡 (𝑝𝑡 ) + 𝑑 (𝑝𝑡 , 𝑝𝑡−1).

ITCS 2021
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This algorithm extends naturally to T-MSS: Let 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡 be the 𝑡th transformation.
Let 𝑤𝑡 be defined as above and let 𝑤−

𝑡 (𝑝) be the minimal cost of serving the first 𝑡 − 1
requests, then moving to some state in 𝐴𝑡 and then moving to 𝑝. Let 𝑏𝑡−1 be the state of
the algorithm before time 𝑡. Upon the arrival of 𝑓𝑡 , the WFA first goes to a state

𝑎𝑡 ∈ arg min
𝑎∈𝐴𝑡

𝑤−
𝑡 (𝑎) + 𝑑 (𝑎, 𝑏𝑡−1)

and is then relocated to 𝑏𝑡 := 𝑓𝑡 (𝑎𝑡 ).
We say that a work function 𝑤 ∈ W is supported on a set 𝑆 ⊆ 𝑀 if 𝑤(𝑥) = min𝑠∈𝑆 𝑤(𝑠) + 𝑠𝑥

for each 𝑥 ∈ 𝑀. The (unique) minimal such set 𝑆 is called the support of 𝑤. Notice that 𝑤−
𝑡

is supported on 𝐴𝑡 and 𝑤𝑡 on 𝐵𝑡 .
The following lemma is a variant of a lemma that is ubiquitous in analyses of WFA for

other problems [13], adapted here to T-MSS:

I Lemma 6. Let 𝑀 be a metric space. Suppose there is a map Φ : W → R+ such that for
any 𝑥 ∈ 𝑀, time 𝑡 ≥ 1, 𝑤 ∈ W, and any sequence of work functions 𝑤0, 𝑤

−
1 , 𝑤1, 𝑤

−
2 , 𝑤2, . . .

arising for (a subclass of) T-MSS on 𝑀,

𝑤−
𝑡 (𝑥) − 𝑤𝑡−1 (𝑥) ≤ Φ(𝑤−

𝑡 ) −Φ(𝑤𝑡−1) (1)
Φ(𝑤−

𝑡 ) ≤ Φ(𝑤𝑡 ) (2)
Φ(𝑤) ≤ 𝜌𝑀 · min

𝑝∈𝑀
𝑤(𝑝) + 𝐶𝑀 , (3)

where 𝜌𝑀 and 𝐶𝑀 are constants depending only on 𝑀. Then WFA is (𝜌𝑀 − 1)-competitive
for (this subclass of) T-MSS on 𝑀.

Proof. We have

𝑤−
𝑡 (𝑏𝑡−1) = min

𝑎∈𝐴𝑡

𝑤−
𝑡 (𝑎) + 𝑑 (𝑎, 𝑏𝑡−1)

= 𝑤−
𝑡 (𝑎𝑡 ) + 𝑑 (𝑎𝑡 , 𝑏𝑡−1)

= 𝑤𝑡 (𝑏𝑡 ) + 𝑑 (𝑎𝑡 , 𝑏𝑡−1), (4)

where the first equation is by definition of 𝑤−
𝑡 and the second equation by definition of 𝑎𝑡 .

The cost of WFA is

costWFA =

𝑇∑︁
𝑡=1

𝑑 (𝑏𝑡−1, 𝑎𝑡 )

=

𝑇∑︁
𝑡=1

(
𝑤−
𝑡 (𝑏𝑡−1) − 𝑤𝑡 (𝑏𝑡 )

)
=

𝑇∑︁
𝑡=1

(
𝑤−
𝑡 (𝑏𝑡−1) − 𝑤𝑡−1 (𝑏𝑡−1) + 𝑤𝑡−1 (𝑏𝑡−1) − 𝑤𝑡 (𝑏𝑡 )

)
≤ Φ(𝑤𝑇 ) − 𝑤𝑇 (𝑏𝑇 )
≤ (𝜌𝑀 − 1) · min

𝑝∈𝑀
𝑤𝑇 (𝑝) + 𝐶𝑀 ,

where the second equation follows from (4), the first inequality uses (1), (2), Φ(𝑤0) ≥ 0 and
𝑤0 (𝑏0) = 0, and the second inequality uses (3). Since min𝑝∈𝑀 𝑤𝑇 (𝑝) is the optimal offline
cost, the lemma follows. J
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3 Competitivity for Lipschitz Transformations

In this Section we prove Theorem 1.

I Theorem 1. There exists a deterministic 2 max{2(𝛼 + 1), 6}𝑛−2-competitive algorithm for
T-MSS with 𝛼-Lipschitz transformations on any 𝑛-point metric space. Any algorithm for
T-MSS with 𝛼-Lipschitz transformations has competitive ratio at least min{𝛼+1, 𝛼2}𝑛−2, even
with randomization.

The proof of the upper bound consists of three main steps: First we give a reduction
to the case of 1-Lipschitz transformations in ultrametrics. Then we employ the fact that
ultrametrics admit an ultrahomogeneous extension of size 2𝑛−1, which will be proved later in
Section 5.2. Finally, we show that the WFA achieves the optimal competitive ratio of 𝑛 − 1
for this special case of 1-Lipschitz transformations on ultrahomogeneous ultrametrics.

3.1 From 𝜶-Lipschitz in general metrics to 1-Lipschitz in ultrametrics
For two metrics 𝑑 and 𝑑 defined on a set 𝑀, we say that 𝑑 is an 𝛼-distortion of 𝑑, for 𝛼 ≥ 1,
if for any 𝑥, 𝑦 ∈ 𝑀 we have 𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑦) ≤ 𝛼 · 𝑑 (𝑥, 𝑦).

I Lemma 7. Fix a constant 𝛼 ≥ 2 and an 𝑛-point metric space (𝑀, 𝑑). There is an ultrametric
𝑑 on 𝑀 that is an (𝛼 + 1)𝑛−2-distortion of 𝑑, and any transformation 𝑓 : 𝐴 ⊆ 𝑀 → 𝑀 that is
𝛼-Lipschitz with respect to 𝑑 is 1-Lipschitz with respect to 𝑑.

Proof. The idea is to group the edges (i.e., pairs of distinct elements) in 𝑀 into levels
according to their distance. In level 1 we start with the minimum distance edges, and
repeatedly add all edges which are within a factor 𝛼 of the largest level 1 edge until no more
are possible. We then continue, constructing level 𝑘 by starting with the shortest edge not in
a previous level, and then adding all edges within a factor 𝛼 of some edge already in level 𝑘.
Let 𝐿𝑘 be the longest distance of an edge in level 𝑘. We define 𝑑 by setting level 𝑘 edges to
have 𝑑-length 𝐿𝑘 .

Note that since 𝛼 ≥ 2, being connected by edges of level at most 𝑘 is an equivalence
relation for any 𝑘. Therefore, defining distances to be 𝐿𝑘 in level 𝑘 is a valid ultrametric.
Since no edge has length in any interval (𝐿𝑘 , 𝛼𝐿𝑘 ], any transformation that is 𝛼-Lipschitz
with respect to 𝑑 is 1-Lipschitz with respect to 𝑑.

It remains to argue that distances were increased by at most a factor (𝛼 + 1)𝑛−2 in going
from 𝑑 to 𝑑. We show it for the edges in level 𝑘. Actually we may assume without loss
of generality that 𝑘 = 1, because if not we may take all edges in levels up to 𝑘 − 1 and set
their distances to the shortest edge distance in level 𝑘. This is still a valid metric and the
case of level 1 in this new metric implies the case of level 𝑘 in the old metric. For the main
argument when 𝑘 = 1, consider adding the edges in order starting from an empty graph
on the 𝑛 points of 𝑀, giving an increasing seqence 𝐻0, 𝐻1, . . . of graphs. Exactly 𝑛 − 1 of
these edges decrease the number of connected components by 1 at the time they are added.
We call these edges critical and denote by 𝐷1 ≤ · · · ≤ 𝐷𝑛−1 their lengths. At any time, the
critical edges in 𝐻𝑡 form a spanning forest for 𝐻𝑡 . Therefore the maximum distance of any
edge in 𝐻𝑡 is at most the sum of the lengths of the critical edges in 𝐻𝑡 . Therefore the next
critical edge to be added has length

𝐷𝑠 ≤ 𝛼 ·
𝑠−1∑︁
𝑟=1

𝐷𝑟 .
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From this it is easy to see inductively that 𝐷𝑠 ≤ 𝛼(𝛼 + 1)𝑠−2𝐷1 for 𝑠 ≥ 2. This
means the maximum distance of any edge in 𝐻 is at most

∑
𝑠 𝐷𝑠 ≤ (𝛼 + 1)𝑛−2𝐷1 (since

there are 𝑛 − 1 critical edges). We remark that equality is achieved by the set of points
{0, 1, 𝛼 + 1, (𝛼 + 1)2, . . . , (𝛼 + 1)𝑛−2} ⊂ R. J

3.2 WFA for 1-Lipschitz transformations on ultrahomogeneous
ultrametrics

We now prove that WFA is (𝑛 − 1)-competitive for 1-Lipschitz transformations in ultraho-
mogeneous ultrametrics, thereby also proving the first statement of Theorem 5. Note that
this bound is optimal, since 𝑛 − 1 is also the exact competitive ratio of ordinary MSS on any
𝑛-point metric space.

I Lemma 8. Let (𝑀, 𝑑) be an ultrahomogeneous ultrametric with 𝑛 points. The WFA for
T-MSS on (𝑀, 𝑑) with 1-Lipschitz transformation is (𝑛 − 1)-competitive.

Proof. We use the same potential function that also yields (𝑛−1)-competitiveness for ordinary
MSS on general 𝑛-point metrics and (2𝑛 − 1)-competitiveness for MTS [7]:

Φ(𝑤) :=
∑︁
𝑝∈𝑀

𝑤(𝑝).

The bound (1) follows from the fact that 𝑤−
𝑡 (𝑝) −𝑤𝑡−1 (𝑝) ≥ 0 for all 𝑝. Bound (3) for 𝜌𝑀 = 𝑛

follows from the 1-Lipschitzness of 𝑤, choosing 𝐶𝑀 to be 𝑛 − 1 times the diameter of 𝑀.
For (2), we need to show that the sum of work function values is non-decreasing when

a transformation 𝑓𝑡 : 𝐴𝑡 → 𝐵𝑡 is applied. On a high level, the idea is as follows. The work
function 𝑤−

𝑡 before transformation is supported on 𝐴𝑡 , and the work function 𝑤𝑡 afterwards
on 𝐵𝑡 . Imagine for simplicity that the work function value of all support points were 0. Then
the work function value at other points is simply the distance from the support. Since 𝑓𝑡 is
1-Lipschitz, we can think of 𝐵𝑡 as a contracted version of the set 𝐴𝑡 (and since the metric
space is ultrahomogeneous, we can ignore the fact that 𝐵𝑡 might be located in a very different
part of the metric space than 𝐴𝑡). This shrinking of the support means that most other
points of the metric space tend to get further away from the support, and thus their work
function values tend to increase.

We now turn to a formal proof of inequality (2). Since 𝑀 is an ultrametric, we can view
it as the set of leaves of an ultrametric tree.

Denote by 𝑇𝑟 (𝑝) := {𝑥 ∈ 𝑀 : 𝑑 (𝑝, 𝑥) ≤ 𝑟} the ball of radius 𝑟 around 𝑝. Note that this is
the set of leaves of the subtree rooted at the highest ancestor of 𝑝 whose weight is at most 𝑟.
In particular, the sets 𝑇𝑟 (𝑝) form a laminar family. We claim for all 𝑎, 𝑎′ ∈ 𝐴𝑡 and 𝑟, 𝑟 ′ ≥ 0
that

𝑇𝑟 ( 𝑓𝑡 (𝑎)) ∩ 𝑇𝑟 ′ ( 𝑓𝑡 (𝑎′)) = ∅ =⇒ 𝑇𝑟 (𝑎) ∩ 𝑇𝑟 ′ (𝑎′) = ∅. (5)

To see this, suppose 𝑥 ∈ 𝑇𝑟 (𝑎) ∩ 𝑇𝑟 ′ (𝑎′) and say without loss of generality that 𝑟 ≤ 𝑟 ′. Then,
by the ultrametric inequality, 𝑑 (𝑎, 𝑎′) ≤ max{𝑑 (𝑎, 𝑥), 𝑑 (𝑎′, 𝑥)} ≤ 𝑟 ′. Since 𝑓𝑡 is 1-Lipschitz,
this also means that 𝑑 ( 𝑓𝑡 (𝑎), 𝑓𝑡 (𝑎′)) ≤ 𝑟 ′. But then 𝑓𝑡 (𝑎) ∈ 𝑇𝑟 ( 𝑓𝑡 (𝑎)) ∩ 𝑇𝑟 ′ ( 𝑓𝑡 (𝑎′)).

For 𝑦 ≥ 0 and a work function 𝑤 supported on a set 𝑆 ∈ 𝑀, its 𝑦-sublevel set is given by

𝑤−1 ( [0, 𝑦]) =
⋃
𝑠∈𝑆

𝑇𝑦−𝑤 (𝑠) (𝑠).
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Recall that 𝑤−
𝑡 is supported on 𝐴𝑡 , and note that 𝑤𝑡 is supported on a set 𝐵𝑡 ⊆ 𝐵𝑡 such that

∀𝑏 ∈ 𝐵𝑡∃𝑎𝑏 ∈ 𝐴𝑡 : 𝑓𝑡 (𝑎𝑏) = 𝑏 and 𝑤𝑡 (𝑏) = 𝑤−
𝑡 (𝑎𝑏).

Since the sets 𝑇𝑟 (𝑝) form a laminar family, we can choose for each 𝑦 ≥ 0 a subset 𝐵𝑦
𝑡 ⊆ 𝐵𝑡

such that

𝑤−1
𝑡 ( [0, 𝑦]) = ¤⋃

𝑏∈𝐵𝑦
𝑡

𝑇𝑦−𝑤𝑡 (𝑏) (𝑏)

is a disjoint union. Due to implication (5), this also means that

¤⋃
𝑏∈𝐵𝑦

𝑡

𝑇𝑦−𝑤−
𝑡 (𝑎𝑏) (𝑎𝑏)

is a disjoint union.
Now, the cardinality of the 𝑦-sublevel set of 𝑤𝑡 is bounded by

|𝑤−1
𝑡 ( [0, 𝑦]) | =

∑︁
𝑏∈𝐵𝑦

𝑡

|𝑇𝑦−𝑤𝑡 (𝑏) (𝑏) |

=
∑︁
𝑏∈𝐵𝑦

𝑡

|𝑇𝑦−𝑤−
𝑡 (𝑎𝑏) (𝑎𝑏) | (6)

=

������ ¤⋃
𝑏∈𝐵𝑦

𝑡

𝑇𝑦−𝑤−
𝑡 (𝑎𝑏) (𝑎𝑏)

������ (7)

≤
����� ⋃
𝑎∈𝐴𝑡

𝑇𝑦−𝑤−
𝑡 (𝑎) (𝑎)

�����
= | (𝑤−

𝑡 )−1 ( [0, 𝑦]) |,

where equation (6) uses the fact that since 𝑀 is ultrahomogeneous, balls of the same radius
have the same cardinality. Thus, for each 𝑦 ≥ 0 there are at least as many points whose 𝑤−

𝑡 -
value is at most 𝑦 as there are points whose 𝑤𝑡 -value is at most 𝑦. Therefore, if 𝑝1, 𝑝2, . . . , 𝑝𝑛
and 𝑝−1 , 𝑝

−
2 , . . . , 𝑝

−
𝑛 are two enumerations of 𝑀 by increasing 𝑤𝑡 - and 𝑤−

𝑡 -values, respectively,
then 𝑤−

𝑡 (𝑝−𝑖 )) ≤ 𝑤𝑡 (𝑝𝑖). Hence, inequality (2) follows. J

I Remark. One may wonder whether the guarantee of Lemma 8 is achieved more generally
for ultrahomogeneous metric (rather than ultrametric) spaces. The answer is negative:
Consider the 8-point metric space 𝑀 = {0, 2} × {0, 3} × {0, 4} with the ℓ1-norm. Since 𝑀
is isometric to the cube {0, 1}3 with a weighted ℓ1-norm, and all partial isometries on 𝑀

are translations, Theorem 4 (proved in Section 5.3) implies that 𝑀 is ultrahomogeneous.
Consider the work function 𝑤 supported {(0, 0, 0), (2, 3, 0)}, where it takes value 0. We
have Φ(𝑤) = 2 + 2 + 4 + 4 + 6 + 6 = 24. The updated work function 𝑤′ after contracting
{(0, 0, 0), (2, 3, 0)} to {(0, 0, 0), (0, 0, 4)} has Φ(𝑤′) = 2 · (2 + 3 + 5) = 20 < Φ(𝑤), meaning that
inequality (2) is violated. Crucially, property (5) that disjoint balls remain disjoint when their
centers are moved apart is violated on 𝑀. Using this observation, it is not hard to construct a
request sequence on 𝑀 where (1) is always tight for 𝑥 = 𝑏𝑡−1 and (2) is either tight or violated
for each request, and violated for a constant fraction of the requests. For such a request
sequence, the analysis in the proof of Lemma 6 yields a lower bound strictly larger than 𝑛− 1
on the competitive ratio of WFA for T-MSS on 𝑀 with 1-Lipschitz transformations.
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3.3 Putting it together
Given any 𝑛-point metric (𝑀, 𝑑), we obtain a 2 max{2𝛼 + 2, 6}𝑛−2-competitive deterministic
algorithm for T-MSS with 𝛼-Lipschitz transformations as follows: Making a multiplicative
error of max{𝛼 + 1, 3}𝑛−2, Lemma 7 allows us to assume that 𝑀 is an ultrametric and
transformations are 1-Lipschitz. By Theorem 4, it further admits a 2𝑛−1-point weakly
ultrahomogeneous extension (𝑀̂, 𝑑), and the proof of this statement in Theorem 4 actually
shows that (𝑀̂, 𝑑) is still an ultrametric and it is ultrahomogeneous (not just weakly).
Therefore, by Lemma 8, the WFA is 2𝑛−1-competitive on (𝑀̂, 𝑑). Overall, this gives a
competitive ratio of max{𝛼 + 1, 3}𝑛−22𝑛−1 = 2 max{2𝛼 + 2, 6}𝑛−2.

3.4 Lower bound for Lipschitz transformations
In this section we prove the lower bound part of Theorem 1 showing that any randomized
algorithm for T-MSS with 𝛼-Lipschitz transformations has competitive ratio at least min{𝛼 +
1, 𝛼2}𝑛−2.

Let 𝑚 := min{𝛼+1, 𝛼2}. Assume 𝛼 ≥ 1 since otherwise there is nothing to show. Consider
the graph with vertices 𝑝1, . . . , 𝑝𝑛 and edges from 𝑝1 to every vertex and between consecutive
vertices of lengths

𝑑 (𝑝1, 𝑝𝑖) := 𝑚𝑖−2 𝑖 = 2, . . . , 𝑛
𝑑 (𝑝𝑖 , 𝑝𝑖+1) := 𝛼𝑚𝑖−2 𝑖 = 2, . . . , 𝑛 − 1.

Note that these edge lengths satisfy the triangle inequality: When adding the vertices to
the graph in order, the addition of 𝑝𝑖 only creates the new triangle (𝑝1, 𝑝𝑖−1, 𝑝𝑖) with edge
lengths (𝑚𝑖−3, 𝛼𝑚𝑖−3, 𝑚𝑖−2). Since 1 ≤ 𝛼 ≤ 𝑚 ≤ 𝛼 + 1, it satisfies the triangle inequality.
Therefore, the shortest path extension of 𝑑 defines a valid metric.

Consider a T-MSS instance on this space with 𝑝1 as its initial state. For 𝑡 = 1, 2, . . . , 𝑛− 2,
we issue transformations

𝑓2𝑡−1 : {𝑝1, 𝑝𝑡+1} → {𝑝𝑡+1, 𝑝𝑡+2}
𝑓2𝑡 : {𝑝𝑡+1, 𝑝𝑡+2} → {𝑝1, 𝑝𝑡+2},

where each transformation maps the first (resp. second) point of the domain to the first
(resp. second) point of the codomain. Note that these maps are 𝛼-Lipschitz, using for 𝑓2𝑡
that 𝑚 ≤ 𝛼2. Then, we issue the final transformation

𝑓2𝑛−3 : {𝑥} → {𝑝1}

with 𝑥 chosen uniformly at random from {𝑝1, 𝑝𝑛}.
With probability 1/2, the online algorithm has to pay 𝑚𝑛−2 to move to 𝑥 when 𝑓2𝑛−3 is

issued. An offline algorithm can serve the sequence with expected cost 1/2: Before 𝑓1, it
either stays at 𝑝1 for cost 0 (if 𝑥 = 𝑝1) or moves from 𝑝1 to 𝑝2 for cost 1 (if 𝑥 = 𝑝𝑛), which
allows to serve the rest of the request sequence for free. Since the request sequence can be
repeated arbitrarily often (with a new random 𝑥), we conclude a lower bound of 𝑚𝑛−2 on the
competitive ratio.

4 Algorithms and Lower Bounds for Special Cases of T-MSS

In this section we show upper and lower bounds on the competitive ratio for T-MSS for special
cases. In Section 4.1 we show that there exists no online algorithm with finite competitive
ratio for nested convex body chasing with contractions in the plane, even with randomization.
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In Section 4.2 we design a new randomized algorithm for the 𝑘-taxi problem. In Section 4.3
we show upper and lower bounds for swap transformations. Finally, in Section 4.4 we show a
superlinear lower bound on the competitiveness of WFA for isometry transformations.

4.1 Contracting convex bodies are unchaseable
Here we show that nested convex body chasing with contractions has no competitive algorithm.
In nested convex body chasing, the requests form a nested sequence 𝐾0 ⊇ 𝐾1 ⊇ . . . of convex
sets in R𝑑. The player starts at 𝑥0 ∈ 𝐾0 and moves online to a point 𝑥𝑡 ∈ 𝐾𝑡 , paying
movement cost

∑
𝑡≥1 | |𝑥𝑡−1 − 𝑥𝑡 | |. This problem is a special case of the more general convex

body chasing problem which allows an arbitrary non-nested sequence 𝐾0, 𝐾1, . . . of convex
sets. This problem has received a lot of recent study without transformations and admits a
𝑑-competitive algorithm – see [3, 1, 11, 10, 2, 20]. Because R𝑑 is ultrahomogenous, it follows
that the 𝑑-competitive algorithm continues to apply with partial isometry transformations.

Here we show that with contraction transformations R𝑑 → R𝑑 there is no competitive
algorithm, even in the nested case for 𝑑 = 2 and with randomization. This gives a non-
trivial example in which contractions are provably harder than isometries. In fact all the
contractions we use are projections from 𝐾𝑡 to 𝐾𝑡+1. Our proof goes by reduction to a family
of 1-dimensional MTS problems known to have arbitrarily large competitive ratio. A related
reduction appeared in [12] to show that 2-server convex body chasing is impossible in 2
dimensions.

I Theorem 2. There exists no online algorithm with finite competitive ratio for nested convex
body chasing with contractions in the plane, even with randomization.

Proof. Fix a large integer 𝑛, a much larger integer 𝑀 = 𝑀 (𝑛) and a much larger 𝑁 = 𝑁 (𝑛).
We start with 𝐾0 = [0, 1] × [0, 𝑁] with starting point 𝑥0 = (0, 0). The projected convex
sets rotate modulo 3: At multiples of 3 we simply have 𝐾3𝑡 = [0, 1] × [𝑡, 𝑁] . Now, for a
sequence (𝑎1, . . . , 𝑎𝑁 ) of positive integers 𝑎𝑖 ∈ {1, 2, . . . , 𝑛} define the points 𝑝𝑡1 = ( 𝑎𝑡

𝑛
, 𝑡),

𝑝𝑡2 = ( 𝑎𝑡−1
𝑛
, 𝑡 + 1

𝑀𝑛
) and 𝑝𝑡3 = ( 𝑎𝑡+1

𝑛
, 𝑡 + 1

𝑀𝑛
). We define 𝐾3𝑡+1 by cutting from 𝐾3𝑡 along the

lines 𝑝𝑡1𝑝
𝑡
2 and 𝑝𝑡1𝑝

𝑡
3. We define 𝐾3𝑡+2 by also cutting along the line 𝑝𝑡2𝑝

𝑡
3. See Figure 1.

We take 𝑎𝑡 to be an adversarially chosen sequence of such integers, yielding an adversarial
nested chasing instance. For 𝑠 congruent to 0 or 2 modulo 3, we apply projection maps (which
are contractions) from 𝐾𝑠 onto 𝐾𝑠+1. Hence movement cost is incurred only on transitions
from 𝐾3𝑡+1 → 𝐾3𝑡+2.

The idea is that the resulting problem is approximately a 1-dimensional MTS, as without
loss of generality we may assume 𝑥3𝑡 is always on the upper boundary of 𝐾3𝑡 . It is easy
to see that, crucially, the horizontal movement induced by the projections is 𝑂 (𝑀−2) per
time-step - we will treat this as an additive error term. The vertical movement corresponds
to a metrical task system with cost functions given by 1

𝑀
𝑐𝑎𝑡 (𝑥) for

𝑐𝑎𝑡 (𝑥) =


0 if 𝑥 ≤ 𝑎𝑡−1

𝑛

min{|𝑥 − 𝑎𝑡−1
𝑛

|, |𝑥 − 𝑎𝑡+1
𝑛

|} if 𝑥 ∈ [ 𝑎𝑡−1
𝑛
,
𝑎𝑡+1
𝑛

]
0 if 𝑥 ≥ 𝑎𝑡+1

𝑛
.

First, by repeating values of 𝑎𝑡 in blocks of 𝑀, we can obtain an MTS which directly
uses cost functions 𝑐𝑎𝑡 (𝑥), now with an additive error 𝑂 (𝑀−1) per (block) time step for the
horizontal movement. Next we claim any randomized algorithm for this new MTS can be
assumed to stay on the finite set of values 𝑘

𝑛
for 𝑘 ∈ {0, 1, . . . , 𝑛}. Indeed, if a randomized

algorithm is at position 𝑘+𝛼
𝑛

for 𝛼 ∈ (0, 1) we can instead move to 𝑘
𝑛

with probability 1−𝛼 and
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𝑘+1
𝑛

with probability 𝛼. Moreover we can couple these roundings together by first sampling
𝑢 ∈ [0, 1] uniformly and rounding at all times based on whether 𝑢 ≤ 𝛼 or not. This turns
any algorithm into a randomized algorithm which stays on the values 𝑘

𝑛
and has the same

expected movement cost. Because the cost functions 𝑐𝑎𝑡 are affine on each interval ( 𝑘
𝑛
, 𝑘+1

𝑛
)

it results in the same expected service cost as well.
If the player is restricted to stay on the 𝑛 + 1 values 𝑘

𝑛
, the movement cost functions

𝑐𝑎𝑡 are 0 at all but one of these values. Hence by repeating requests 𝑂𝑛 (1) times to force
movement we may reinterpret this as an 𝑛-server problem on a metric space with 𝑛 + 1 points,
by taking the player’s location in the original problem to be the unique spot with no server.
It is well-known [5, 6] that the randomized competitive ratio of any 𝑛-server problem in a
metric space with at least 𝑛 + 1 points is Ω(log 𝑛/log log 𝑛). Finally, it is easy to see that
for any MTS on a finite state space with competitive ratio 𝐶, an additive error in cost of
𝑜(1) per time-step affects the competitive ratio by 𝑜(1). Therefore for any fixed 𝑛, taking
𝑀 → ∞ results eventually in an MTS with competitive ratio Ω(log 𝑛/log log 𝑛) even taking
the horizontal effects of the projection maps into account. Finally taking 𝑁 sufficiently large
to realize this competitive ratio gives the desired lower bound. J

Figure 1 To show that chasing nested convex bodies is impossible with contractions, we construct
shrinking sets as shown. Euclidean nearest-point projections are taken onto the sets 𝐾3𝑡+1, 𝐾3𝑡+3, so
that movement cost is incurred only in moving from 𝐾3𝑡+1 to 𝐾3𝑡+2. Up to the negligible horizontal
movements from projection, this results in a 1-dimensional metrical task system with unbounded
competitive ratio.

4.2 A poly(𝒏, log 𝒌)-competitive 𝒌-taxi algorithm

In the 𝑘-taxi problem, there are 𝑘 taxis located in a metric space (𝑀, 𝑑). A sequence of
requests arrives, where each request is a pair of points (𝑠𝑡 , 𝑑𝑡 ) ∈ 𝑀 × 𝑀, representing the
start and destination of a passenger request. Each request must be served upon its arrival
by sending a taxi to 𝑠𝑡 , from where it is relocated to 𝑑𝑡 . The cost is defined as the distance
travelled by taxis while not carrying a passenger, i.e., excluding the distances from 𝑠𝑡 to 𝑑𝑡 .

Note that the 𝑘-taxi problem is a special case of T-MSS: As the metric space for T-MSS,
we take the set of taxi configurations (i.e., 𝑘-point multisets of points in 𝑀), and the distance
between two configurations is the minimum cost of moving from one configuration to the
other. A taxi request (𝑠𝑡 , 𝑑𝑡 ) translates to the transformation that maps configurations
containing 𝑠𝑡 to the corresponding configurations with a taxi at 𝑠𝑡 replaced by a taxi at 𝑑𝑡 .
Observe that this transformation is an isometry in the configuration space.



S. Bubeck, N. Buchbinder, C. Coester, and M. Sellke 21:13

In principle, the size of a weakly ultrahomogeneous extension of the configuration space
would yield a bound on the competitive ratio of the 𝑘-taxi problem. However, we do not
know a bound on this blow-up in general. We overcome this obstacle as follows: First, we
apply a well-known embedding of the original 𝑘-taxi metric space into a tree (HST) metric.
Then, we consider the configuration space of this tree metric, whose metric is given by a
weighted ℓ1-norm. Moreover, the isometries corresponding to the 𝑘-taxi requests in this tree
metric are actually translations, and for this case, Theorem 4 yields a bound on the blow-up
(proved later in Section 5.3). The resulting algorithm has competitive ratio 𝑂 ((𝑛 log 𝑘)2 log 𝑛),
improving upon the previous bound of 𝑂 (2𝑘 log 𝑛) [14] whenever 𝑛 is sub-exponential in 𝑘.

I Theorem 3. There is a randomized 𝑂 ((𝑛 log 𝑘)2 log 𝑛)-competitive algorithm for the 𝑘-taxi
problem on 𝑛-point metrics.

Proof. By well-known techniques [4, 16], any 𝑛-point metric space can be embedded with
distortion 𝑂 (log 𝑛) into the set of leaves of a random (weighted) tree. It therefore suffices to
describe an 𝑂 ((𝑛 log 𝑘)2)-competitive algorithm for the 𝑘-taxi problem on the set L of leaves
of a tree with |L| = 𝑛. Notice that there is a tree T with only 𝑂 (𝑛) vertices that induces the
metric on L.

Let 𝑉 be the set of vertices of T excluding the root. For 𝑣 ∈ 𝑉 , let 𝑤𝑣 be the length of
the edge from 𝑣 to its parent. If we denote by 𝑥𝑣 the number of taxis in the subtree rooted
at 𝑣, then a configuration of 𝑘 taxis can be denoted by a point in 𝑀 := {0, . . . , 𝑘}𝑉 . Notice
that only some points in 𝑀 correspond to valid 𝑘-taxi configurations. The cost of moving
from configuration 𝑥 to configuration 𝑦 is given by the metric

𝑑 (𝑥, 𝑦) :=
∑︁
𝑣∈𝑉

𝑤𝑣 |𝑥𝑣 − 𝑦𝑣 |.

Thus, the 𝑘-taxi problem on T is a special case of T-MSS on (𝑀, 𝑑). A 𝑘-taxi request (𝑠𝑡 , 𝑑𝑡 )
corresponds to a translation by the vector that has 1-entries in coordinates of ancesters
of 𝑑𝑡 that are not ancestors of 𝑠𝑡 , −1-entries in coordinates of ancestors 𝑠𝑡 that are not
ancestors of 𝑑𝑡 , and 0 in the remaining coordinates. We therefore need to extend 𝑀 to a
space 𝑀̂ where these translations extend to automorphisms. As stated in Theorem 4 and
proved later in Section 5.3, such an extension 𝑀̂ of size (2𝑘) |𝑉 | exists. Thus, by running
an 𝑂 (log2 |𝑀̂ |)-competitive algorithm for 𝑀𝑆𝑆 on 𝑀̂ and treating each automorphism as
a renaming of the points of 𝑀̂, we obtain an algorithm for the 𝑘-taxi problem on T with
competitive ratio 𝑂 (log2 |𝑀̂ |) = 𝑂 ((𝑛 log 𝑘)2), where we used that |𝑉 | = 𝑂 (𝑛). Combined
with the 𝑂 (log 𝑛) loss due to the tree embedding, the theorem follows. J

4.3 Competitivity for swap transformations

In this section, we show tight bounds of 2𝑛 − 3 on the competitive ratio for T-MSS in general
metrics when each transformation is either the identity on its domain (recall that we always
allow identity transformations) or a swap, thereby proving the second part of Theorem 5.
The upper bound is achieved by the WFA.

Upper bound. For brevity, we will denote the distance between two points 𝑥, 𝑦 ∈ 𝑀 by 𝑥𝑦
instead of 𝑑 (𝑥, 𝑦). For 𝑋 ⊆ 𝑀 and 𝑥 ∈ 𝑀, we write 𝑋 − 𝑥 := 𝑋 \ {𝑥}. For a work function 𝑤

and 𝑥, 𝑦 ∈ 𝑀, let
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Ψ𝑥,𝑦 (𝑤) := cl(𝑀 − 𝑥 − 𝑦) +
∑︁

𝑝∈𝑀−𝑥−𝑦
min{𝑤(𝑥) + 𝑦𝑝, 𝑤(𝑦) + 𝑥𝑝}

Φ(𝑤) :=
∑︁
𝑝∈𝑀

𝑤(𝑝) + min
𝑥,𝑦∈𝑀

Ψ𝑥,𝑦 (𝑤)

Here, cl(𝑋) :=
∑

{𝑥,𝑦 }⊆𝑋 𝑥𝑦 denotes the size of the clique of 𝑋, i.e., the sum of all distances
between points in 𝑋. It suffices to show that Φ satisfies the properties of Lemma 6 with
𝜌𝑀 = 2𝑛 − 2.

Inequality (3) is immediate from the fact that Φ(𝑤) is a sum of 2𝑛 − 2 function values
of 𝑤 and a bounded number of distances of 𝑀, and each function value of 𝑤 differs from
min𝑥 𝑤(𝑥) by at most the diameter of 𝑀 due to the 1-Lipschitzness of 𝑤.

Inequality (1) follows from the fact that Φ(𝑤) contains the summand 𝑤(𝑥), the remaining
summands of Φ(𝑤) are non-decreasing in 𝑤, and 𝑤𝑡−1 ≤ 𝑤−

𝑡 pointwise.
Inequality (2) is trivial if 𝑓𝑡 is the identity on its domain, so it remains to consider the

case that 𝑓𝑡 : {𝑎, 𝑏} → {𝑎, 𝑏} is a swap. Both 𝑤−
𝑡 and 𝑤𝑡 are supported on {𝑎, 𝑏}. We first

show that if 𝑤 is supported on {𝑎, 𝑏}, then Ψ𝑥,𝑦 (𝑤) is minimized when {𝑥, 𝑦} = {𝑎, 𝑏}.
Let 𝑥 and 𝑦 be such that Ψ𝑥,𝑦 (𝑤) is minimized and suppose 𝑥 ∉ {𝑎, 𝑏}. Then we can

assume without loss of generality (by symmetry) that 𝑤(𝑥) = 𝑤(𝑎) + 𝑎𝑥. Then min{𝑤(𝑥) +
𝑦𝑎, 𝑤(𝑦) + 𝑥𝑎} = 𝑤(𝑦) + 𝑥𝑎. Thus,

Ψ𝑥,𝑦 (𝑤) = cl(𝑀 − 𝑥 − 𝑦) + 𝑤(𝑦) + 𝑥𝑎 +
∑︁

𝑝∈𝑀−𝑥−𝑦−𝑎
min{𝑤(𝑎) + 𝑎𝑥 + 𝑦𝑝, 𝑤(𝑦) + 𝑥𝑝}

≥ cl(𝑀 − 𝑥 − 𝑦) + 𝑤(𝑦) + 𝑥𝑎

+
∑︁

𝑝∈𝑀−𝑥−𝑦−𝑎
(𝑥𝑝 − 𝑎𝑝 + min{𝑤(𝑎) + 𝑦𝑝, 𝑤(𝑦) + 𝑎𝑝})

≥ cl(𝑀 − 𝑎 − 𝑦) +
∑︁

𝑝∈𝑀−𝑦−𝑎
min{𝑤(𝑎) + 𝑦𝑝, 𝑤(𝑦) + 𝑎𝑝}

= Ψ𝑎,𝑦 (𝑤).

Thus, Ψ𝑥,𝑦 (𝑤) is also minimized when 𝑥 = 𝑎. If 𝑦 ≠ 𝑏 and 𝑤(𝑦) = 𝑤(𝑏) + 𝑏𝑦, then the
symmetric argument shows that Ψ𝑥,𝑦 (𝑤) is minimized when {𝑥, 𝑦} = {𝑎, 𝑏}. Otherwise, if
𝑦 ≠ 𝑏, then 𝑤(𝑦) = 𝑤(𝑎) + 𝑎𝑦 since 𝑤 is supported on {𝑎, 𝑏}. Then

Ψ𝑎,𝑦 (𝑤) = cl(𝑀 − 𝑎 − 𝑦) +
∑︁

𝑝∈𝑀−𝑎−𝑦
min{𝑤(𝑎) + 𝑦𝑝, 𝑤(𝑎) + 𝑎𝑦 + 𝑎𝑝}

= cl(𝑀 − 𝑎) + (𝑛 − 2)𝑤(𝑎)

≥ cl(𝑀 − 𝑎 − 𝑏) +
∑︁

𝑝∈𝑀−𝑎−𝑏
min{𝑤(𝑎) + 𝑏𝑝, 𝑤(𝑏) + 𝑎𝑝}

= Ψ𝑎,𝑏 (𝑤).

Thus, it is indeed the case that min𝑥,𝑦 Ψ𝑥,𝑦 (𝑤) = Ψ𝑎,𝑏 (𝑤), for both 𝑤 = 𝑤−
𝑡 and 𝑤 = 𝑤𝑡 .

Hence,

Φ(𝑤−
𝑡 ) −Φ(𝑤𝑡 ) = 𝑤−

𝑡 (𝑎) + 𝑤−
𝑡 (𝑏) − 𝑤𝑡 (𝑎) − 𝑤𝑡 (𝑏)

+
∑︁

𝑝∈𝑀−𝑎−𝑏

(
𝑤−
𝑡 (𝑝) + min{𝑤−

𝑡 (𝑎) + 𝑏𝑝, 𝑤−
𝑡 (𝑏) + 𝑎𝑝}

)
−

∑︁
𝑝∈𝑀−𝑎−𝑏

(𝑤𝑡 (𝑝) + min{𝑤𝑡 (𝑎) + 𝑏𝑝, 𝑤𝑡 (𝑏) + 𝑎𝑝}) .

Since 𝑤𝑡 (𝑎) = 𝑤−
𝑡 (𝑏), 𝑤𝑡 (𝑏) = 𝑤−

𝑡 (𝑎), and 𝑤(𝑝) = min{𝑤(𝑎) + 𝑎𝑝, 𝑤(𝑏) + 𝑏𝑝} for 𝑤 = 𝑤−
𝑡 and

𝑤 = 𝑤𝑡 , everything cancels in the last sum and we obtain (2).
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Lower bound. Consider the metric with points 1, 2, . . . , 𝑛 where the distance from 1 to any
other point is 1 and the distance between any other two points is 2. The initial location of
the server is 1. For 𝑖 = 1, . . . , 𝑛 − 1, the 𝑖th request is the identity with domain 𝐴𝑖, where
𝐴1 := {2, 3, . . . , 𝑛} and for 𝑖 ≥ 2, 𝐴𝑖 is the subset of 𝐴𝑖−1 obtained by removing the location of
the online algorithm’s server before this request is issued. During these requests, the online
algorithm suffers cost 2𝑛 − 3, but an offline algorithm could immediately go to the one point
𝑝 in 𝐴𝑛−1 for cost 1. We issue one more request that swaps 𝑝 and 1 so as to return to the
initial configuration, allowing to repeat the procedure arbitrarily often.

4.4 Superlinear lower bound for WFA with isometries

In this section we show a superlinear lower bound of 𝜔(𝑛1.29) on the competitiveness of WFA
for T-MSS with isometry transformations, proving the third part of Theorem 5.

It suffices to show the the statement for values of 𝑛 that are a power of 4. Let 𝛼 ∈ N be
some large constant. For ℎ ∈ N0, we construct a 4ℎ-point metric space 𝑇ℎ by induction: The
space 𝑇0 is just a single point. For ℎ ≥ 1, space 𝑇ℎ is a disjoint union of four copies of 𝑇ℎ−1,
which we denote 𝑇0

ℎ−1, 𝑇
1
ℎ−1, 𝑇

2
ℎ−1, 𝑇

3
ℎ−1. For points 𝑥, 𝑦 from two different copies of 𝑇ℎ−1 we

define their distance as 𝛼ℎ if one of the copies is 𝑇0
ℎ−1 and as 2𝛼ℎ otherwise.

For a set 𝑋 ⊆ 𝑇ℎ−1 and 𝑖 = 0, 1, 2, 3, denote by 𝑋 𝑖 the copy of 𝑋 in 𝑇 𝑖
ℎ−1, and similarly if

𝑋 is a point rather than a set. We define a special point 𝑠ℎ ∈ 𝑇ℎ as follows: 𝑠0 is the single
point in 𝑇0. For ℎ ≥ 1, 𝑠ℎ := 𝑠0

ℎ−1.
We consider T-MSS on 𝑇ℎ when the server starts at 𝑠ℎ. Let 𝑤0 = 𝑑 ( · , 𝑠ℎ) be the initial

work function. We will construct a request sequence 𝜎ℎ during which WFA suffers cost
(6ℎ − 1)𝛼ℎ (1 − 𝑜(1)) as 𝛼 → ∞ and at whose end the work function is at most 𝛼ℎ + 𝑤0
pointwise, with WFA returning to 𝑠ℎ in the end. Since such a request sequence can be
repeated, it will imply that the competitive ratio is at least 6ℎ −1 = 𝑛(ln 6)/(ln 4) −1 = 𝜔(𝑛1.29).

For ℎ = 0, we simply choose the empty request sequence. Consider now ℎ ≥ 1. For a partial
isometry 𝑓 : 𝐴 → 𝐵 of 𝑇ℎ−1 and 𝑖 = 0, 1, 2, 3, denote by 𝑓 𝑖 : 𝐴𝑖 ∪⋃

𝑗≠𝑖 𝑇
𝑗

ℎ−1 → 𝐵𝑖 ∪⋃
𝑗≠𝑖 𝑇

𝑗

ℎ−1
the map that acts like 𝑓 on 𝐴𝑖 and is the identity on 𝑇 𝑗

ℎ−1 for 𝑗 ≠ 𝑖. Note that 𝑓 𝑖 is a partial
isometry of 𝑇ℎ. Denote by 𝜎𝑖

ℎ−1 the sequence obtained by extending each partial isometry in
𝜎ℎ−1 (the sequence from the induction hypothesis) in this way.

We construct 𝜎ℎ as follows: First, we issue 2𝛼 − 2 copies of 𝜎0
ℎ−1. Since each work

function 𝑤 during this sequence admits a point 𝑝 ∈ 𝑇0
ℎ−1 with 𝑤(𝑝) ≤ (2𝛼 − 2)𝛼ℎ−1, but

𝑤(𝑥) = 𝛼ℎ for all 𝑥 ∈ ⋃
𝑗≠0 𝑇

𝑗

ℎ−1, WFA will stay within 𝑇0
ℎ−1 during these requests, suffering

cost (6ℎ−1−1)2𝛼ℎ (1−𝑜(1)). Then we issue the identity request with domain {𝑠1
ℎ−1, 𝑠

2
ℎ−1, 𝑠

3
ℎ−1},

forcing the algorithm to move to one of these three points for cost 𝛼ℎ. By symmetry, we can
assume without loss of generality that WFA moves to 𝑠1

ℎ−1. We now issue 2𝛼 − 2 copies of
𝜎1
ℎ−1, followed by the identity request with domain {𝑠2

ℎ−1, 𝑠
3
ℎ−1}. Similarly to before, WFA

again suffers cost (6ℎ−1 − 1)2𝛼ℎ (1 − 𝑜(1)) and then moves to, say, 𝑠2
ℎ−1 for cost 2𝛼ℎ. Finally,

we issue 2𝛼 − 2 copies of 𝜎2
ℎ−1 followed by the request {𝑠3

ℎ−1} → {𝑠ℎ}, 𝑠3ℎ−1 ↦→ 𝑠ℎ, increasing
WFA’s cost by another (6ℎ−1 − 1)2𝛼ℎ (1 − 𝑜(1)) + 2𝛼ℎ. Overall, WFA suffers cost

(6ℎ−1 − 1) (2 + 2 + 2)𝛼ℎ (1 − 𝑜(1)) + (1 + 2 + 2)𝛼ℎ = (6ℎ − 1)𝛼ℎ (1 − 𝑜(1)),

as claimed. Moreover, the final work function is 𝛼ℎ + 𝑤0 because an offline algorithm could
move to 𝑠3

ℎ−1 for cost 𝛼ℎ at the start of the request sequence, suffer no cost during the rest
of the sequence, and be mapped back to 𝑠ℎ (for free) via the final request.
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5 Bounds on the Metric Extension Blow-up

In this section we prove upper an lower bounds on the blow-up for several families of metric
spaces and transformations, proving Theorem 4.

I Theorem 4. The following bounds on the blow-up are tight.

Family of metric spaces Family of isometries Blow-up
Ultrametrics General 2𝑛−1

Ultrametrics: 𝑘 distinct non-zero distances General ≈
(
𝑛+𝑘−1

𝑘

)𝑘 4

Equally spaced points on a line General 2𝑛 − 2(
{0, . . . , 𝑘}𝐷 ,weighted ℓ1

)
Translations (2𝑘)𝐷

General metrics Swaps 2𝑛−1

It was shown independently by Solecki [21] and Vershik [22] that every finite metric space
𝑀 admits a finite5 weakly ultrahomogeneous extension 𝑀̂. An elementary proof of this
result was presented very recently in [18]. However, the main part of the construction in [18]
consists of d𝑅e growing steps, where 𝑅 is the aspect ratio of 𝑀, and a naive bound on the
growth factor in the 𝑖th step alone is already doubly exponential in 𝑖. Thus, this does not
yield an upper bound on the cardinality of 𝑀̂ in terms of the cardinality of 𝑀, but only one
that also involves the aspect ratio. Thus, even though there exists a finite extension for any
𝑛-point metric, it is unclear whether its size can be bounded as a function of 𝑛. If not, this
would mean that the blow-up for general metrics and isometries is infinite.

5.1 General metrics with swap transformations
Let 𝑀 be an 𝑛-point metric. We will show how to extend 𝑀 to a 2𝑛−1-point space where
every swap extends to an automorphism. The tightness of this upper bound follows from the
lower bound for ultrametrics (with 𝑛 − 1 distinct distances) proved in Section 5.2. There, we
will show that even if only maps with 1-point domain need to extend to automorphisms, the
extended space may require cardinality 2𝑛−1.

We embed 𝑀 into the vector space 𝑀̂ = F𝑛−1
2 by enumerating the points 𝑝1, . . . , 𝑝𝑛 of 𝑀

in arbitrary order and defining the embedding 𝜑 : 𝑝𝑘 ↦→ (1𝑘−1, 0𝑛−𝑘 ). We choose the metric
on 𝑀̂ to extend that of 𝑀 and also be translation invariant, and explain just below why such
a choice exists. Now for 𝑥, 𝑦 ∈ F𝑛−1

2 , their swap is translation by (𝑥 + 𝑦). Since the metric on
𝑀̂ is translation invariant, this translation gives the desired extension to an automorphism
on 𝑀̂.

Now we explain why there exists such a translation invariant metric on 𝑀̂. We first
extend to a partial metric (𝑀̂, 𝑑) only by translation invariance, i.e., 𝑑 is the partial function
on 𝑀̂ × 𝑀̂ defined by 𝑑 (𝑥, 𝑦) = 𝑑 (𝑝𝑖 , 𝑝 𝑗 ) if 𝑥 − 𝑦 = 𝜑(𝑝𝑖) − 𝜑(𝑝 𝑗 ). Viewing 𝑑 as a weighted
graph 𝐺, the shortest path extension of 𝑑 is also translation invariant. Moreover, it gives a
valid metric on 𝑀̂ if and only if there is no cycle in 𝐺 violating the triangle inequality.

Now, the values 𝜑(𝑝𝑖) − 𝜑(𝑝 𝑗 ) ∈ 𝑀̂ range over vectors with a single continuous block of
1s. A cycle in 𝐺 consists of a multiset S of such vectors adding to 0. Viewing 𝜑(𝑝𝑖) − 𝜑(𝑝 𝑗 )
as an edge connecting 𝑝𝑖 and 𝑝 𝑗 , we claim that any such multiset S must correspond to a

4 The precise blow-up is (𝑎 + 1)𝑏𝑎𝑘−𝑏 where 𝑎 = b 𝑛+𝑘−1
𝑘

c and 𝑏 = (𝑛 − 1) mod 𝑘.
5 The existence of an infinite ultrahomogeneous metric space that extends every finite metric space, called

the Urysohn universal space, has been known since the 1920s.
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multigraph on 𝑀 with even degree at each vertex 𝑝𝑖. Indeed, for 𝑖 ≥ 2, the parity of the
degree at 𝑝𝑖 is the difference between the coordinates 𝑖 − 1 and 𝑖 in the summed vector, which
is 0 by definition (treat coordinate 𝑛 as being identically 0). Since the sum of degrees is even,
also 𝑝1 must have even degree. Therefore this multigraph has an Eulerian circuit and in
particular a cycle containing each edge. Since the edge weights are now exactly distances in
𝑀, we are done by applying the triangle inequality in 𝑀.

5.2 Ultrametrics
We consider ultrametrics with at most 𝑘 distinct non-zero distances. Note that any 𝑛-point
ultrametric has at most 𝑛 − 1 distinct distances, so the general bounds on ultrametrics follow
from the case 𝑘 = 𝑛 − 1.

Upper bound. Recall that ultrametric spaces may be viewed as the leaves of a rooted
tree in which vertices with lowest common ancestor at level 𝑖 have distance 𝐿𝑖, where
0 < 𝐿1 < 𝐿2 < · · · < 𝐿𝑘 are the possible distances.

We construct 𝑀̂ by augmenting the 𝑛-leaf tree corresponding to 𝑀 with additional
points to create a symmetric tree 𝑀̂ where partial isometries extend to automorphisms.
We claim this can be done with at most

(
𝑛+𝑘−1

𝑘

) 𝑘
total leaves. Indeed, the original tree’s

non-leaf vertices have 𝐶1, . . . , 𝐶 𝑗 children for some numbers satisfying
∑ 𝑗

𝑖=1 (𝐶 𝑗 − 1) = 𝑛 − 1.
Therefore letting 𝐸𝑖 be the maximal number of children for any vertex at level 𝑖, we have∑

𝑖 (𝐸𝑖 −1) ≤ 𝑛−1. We take 𝑀̂ to be the leaves of a fully symmetric tree in which every vertex
at level 𝑖 has 𝐸𝑖 children. It is clear that any partial isometry of this symmetric tree extends
to an automorphism. Moreover |𝑀̂ | = ∏

𝑖 𝐸𝑖. Given the constraint
∑𝑘

𝑖=1 (𝐸𝑖 − 1) ≤ 𝑛 − 1, the

bound |𝑀̂ | ≤
(
𝑛+𝑘−1

𝑘

) 𝑘
follows from AM-GM. Since each 𝐸𝑖 is an integer, the precise bound

is (𝑎 + 1)𝑏𝑎𝑘−𝑏 if 𝑛 − 1 = 𝑎𝑘 + 𝑏 for 𝑏 ∈ {0, 1, . . . , 𝑘 − 1}.

Lower bound. Let 𝑀0, . . . , 𝑀𝑘 be disjoint sets, where 𝑀0 = {𝑝0} is a singleton and
𝑀1, . . . , 𝑀𝑘 have cardinalities b 𝑛−1

𝑘
c or d 𝑛−1

𝑘
e such that the union 𝑀 := 𝑀0 ¤∪𝑀1 ¤∪ . . . ¤∪𝑀𝑘

has cardinality 𝑛. We define an ultrametric on 𝑀 by defining the distance between any two
distinct points 𝑥 ∈ 𝑀𝑖, 𝑦 ∈ 𝑀 𝑗 with 𝑖 ≤ 𝑗 to be 2 · 3 𝑗−1.

Let 𝑀̂ ⊇ 𝑀 be a weakly ultrahomogeneous extension of 𝑀. For a point 𝑥 ∈ 𝑀̂ and
𝑗 = 0, . . . , 𝑘, denote by 𝐵 𝑗 (𝑥) the set of points in 𝑀̂ within distance strictly less than 3 𝑗

from 𝑥. We claim that |𝐵 𝑗 (𝑝0) | ≥
∏ 𝑗

𝑖=1 ( |𝑀𝑖 | + 1) for each 𝑗 = 0, . . . , 𝑘. This implies that
|𝑀̂ | ≥ ∏𝑘

𝑖=1 ( |𝑀𝑖 | + 1) ≥ ∏𝑘
𝑖=1b 𝑛+𝑘−1

𝑘
c.

To prove the claim, we proceed by induction on 𝑗 . Clearly it is true for 𝑗 = 0. For 𝑗 ≥ 1,
consider the balls 𝐵 𝑗−1 (𝑝) for 𝑝 ∈ 𝑀 𝑗 ∪ {𝑝0}. By the triangle inequality, they are disjoint
and contained in 𝐵 𝑗 (𝑝0). Since for each 𝑝 ∈ 𝑀 𝑗 the map 𝑝0 ↦→ 𝑝 extends to an isomorphism,
they must also all have the same cardinality, which is at least

∏ 𝑗−1
𝑖=1 ( |𝑀𝑖 | +1) by the induction

hypothesis. Thus, 𝐵 𝑗 (𝑝0) has cardinality at least
∏ 𝑗

𝑖=1 ( |𝑀𝑖 | + 1).

5.3 The line and weighted ℓ1-norms with translations
The extension of 𝑛 equally spaced points on a line is simple: We extend it to a circle of
2𝑛 − 2 equally spaced points. It is easy to see that the circle is ultrahomogeneous because
any (partial) isometry is a combination of a rotation and possibly a reflexion. We will now
extend this idea to multiple dimensions.
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Consider the space 𝑀 := {0, 1, . . . , 𝑘}𝐷 with the distance given by the weighted ℓ1-norm
𝑑 (𝑥, 𝑦) :=

∑𝐷
𝑖=1 𝑤𝑖 |𝑥𝑖 − 𝑦𝑖 |, where 𝑤1, . . . , 𝑤𝐷 are arbitrary positive weights. As partial

isometries, we consider the family of translations 𝑥 → 𝑥 + 𝑣 that map a subset of 𝑀 to another
subset of 𝑀. We will show that the associated blow-up is precisely (2𝑘)𝐷. Note that the
lower bound for 𝐷 = 1 also yields a tight lower bound of 2𝑛 − 2 for the blow-up of equally
spaced points on a line,

Upper bound. Notice that any translation is a composition of translations of the form
𝑥 → 𝑥 + 𝑒𝑖 and their inverses, where 𝑒𝑖 ∈ {0, 1}𝐷 is the vector with a 1-entry in only the 𝑖th
coordinate. It therefore suffices to extend 𝑀 to a metric space 𝑀̂ where partial isometries of
this restricted type extend to global isometries.

We extend 𝑀 to the space 𝑀̂ = {0, . . . , 2𝑘 − 1}𝐷 and define a metric on 𝑀̂ by

𝑑 (𝑥, 𝑦) :=
𝐷∑︁
𝑖=1

𝑤𝑖 min{|𝑥𝑖 − 𝑦𝑖 |, 2𝑘 − |𝑥𝑖 − 𝑦𝑖 |}.

This is the metric induced by the weighted ℓ1-norm when viewing 𝑀̂ as a 𝐷-dimensional
torus. Clearly, 𝑑 extends 𝑑. Moreover, any isometry 𝑥 → 𝑥 + 𝑒𝑖 defined on a subset of
𝑀 extends to the automorphism 𝑥 → 𝑥 + 𝑒𝑖 mod 2𝑘 on 𝑀̂, where the “mod 2𝑘” is applied
coordinate-wise.

Lower bound. Let 𝐴0 := {0, 1, . . . , 𝑘} and 𝐴1 := {0, 1}. For a 0-1-string 𝑖1𝑖2 . . . 𝑖𝐷 , consider
the translation

𝑓𝑖1...𝑖𝐷 : 𝐴𝑖1 × · · · × 𝐴𝑖𝐷 → 𝑀

𝑥 ↦→ 𝑥 + (𝑘 − 1) · (𝑖1, . . . , 𝑖𝐷).

The choice of domain of 𝑓𝑖1...𝑖𝐷 is just to ensure that the image is still in 𝑀.
Let 𝑀̂ ⊇ 𝑀 be an extension of 𝑀 such that each 𝑓𝑖1...𝑖𝐷 extends to an automorphism

𝑓𝑖1...𝑖𝐷 of 𝑀̂.
Let 𝐶0 := {0, 1, . . . , 𝑘 − 1}, 𝐶1 := {1, 2, . . . , 𝑘} and 𝑆𝑖1...𝑖𝐷 := 𝑓𝑖1...𝑖𝐷 (𝐶𝑖1 × · · · × 𝐶𝑖𝐷 ).
Note that each set 𝑆𝑖1...𝑖𝐷 has cardinality 𝑘𝐷, and there are 2𝐷 such sets in total,

corresponding to the 2𝐷 possible 0-1-strings of length 𝐷. Thus, the lower bound of (2𝑘)𝐷 on
the cardinality of 𝑀̂ follows from the following claim.

B Claim 9. The sets 𝑆𝑖1...𝑖𝐷 are pairwise disjoint for different 0-1-strings 𝑖1 . . . 𝑖𝐷.

Proof. Let 𝑦 ∈ 𝑆𝑖1...𝑖𝐷 for some 0-1-string 𝑖1 . . . 𝑖𝐷. We will show that 𝑖1 . . . 𝑖𝐷 is uniquely
determined by 𝑦.

We can write 𝑦 = 𝑓𝑖1...𝑖𝐷 (𝑥) for some 𝑥 ∈ 𝑀. It suffices to show that 𝑖 𝑗 = 0 if and only if 𝑦
is closer to 𝑘 · 𝟙 − 𝑒 𝑗 than to 𝑘 · 𝟙, where 𝟙 denote the all-ones vector. Equivalently, we will
show that

𝑖 𝑗 = 0 ⇐⇒ 𝑑 (𝑥, 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙 − 𝑒 𝑗 )) < 𝑑 (𝑥, 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙)).

Note that the preimages 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙) and 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙 − 𝑒 𝑗 ) exist in 𝑀, and they differ only
in their 𝑗th entry.

If 𝑖 𝑗 = 0, then 𝑥 𝑗 ≤ 𝑘 − 1 (by definition of 𝐶𝑖 𝑗 ) and the 𝑗th entries of 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙 − 𝑒 𝑗 )
and 𝑓 −1

𝑖1...𝑖𝐷
(𝑘 · 𝟙) are 𝑘 − 1 and 𝑘, respectively. Thus, 𝑥 is closer to 𝑓 −1

𝑖1...𝑖𝐷
(𝑘 · 𝟙 − 𝑒 𝑗 ) than to

𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙).
If 𝑖 𝑗 = 1, then 𝑥 𝑗 ≥ 1 (by definition of 𝐶𝑖 𝑗 ) and the 𝑗th entries of 𝑓 −1

𝑖1...𝑖𝐷
(𝑘 · 𝟙 − 𝑒 𝑗 ) and

𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙) are 0 and 1, respectively. Thus, 𝑥 is further from 𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙 − 𝑒 𝑗 ) than from
𝑓 −1
𝑖1...𝑖𝐷

(𝑘 · 𝟙). C
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