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Abstract
Delegation covers a broad class of problems in which a principal doesn’t have the resources or
expertise necessary to complete a task by themselves, so they delegate the task to an agent whose
interests may not be aligned with their own. Stochastic probing describes problems in which we are
tasked with maximizing expected utility by “probing” known distributions for acceptable solutions
subject to certain constraints. In this work, we combine the concepts of delegation and stochastic
probing into a single mechanism design framework which we term delegated stochastic probing.
We study how much a principal loses by delegating a stochastic probing problem, compared to
their utility in the non-delegated solution. Our model and results are heavily inspired by the
work of Kleinberg and Kleinberg in “Delegated Search Approximates Efficient Search.” Building
on their work, we show that there exists a connection between delegated stochastic probing and
generalized prophet inequalities, which provides us with constant-factor deterministic mechanisms
for a large class of delegated stochastic probing problems. We also explore randomized mechanisms
in a simple delegated probing setting, and show that they outperform deterministic mechanisms in
some instances but not in the worst case.
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1 Introduction

The division of labor and responsibility, based on expertise, is a defining characteristic of
efficient organizations and productive economies. In the context of economic decision-making,
such division often manifests through delegation scenarios of the following form: A decision
maker (the principal), facing a multivariate decision beset by constraints and uncertainties,
tasks an expert (the agent) with collecting data, exploring the space of feasible decisions,
and proposing a solution.

As a running example, consider the leadership of a firm delegating some or all of its
hiring decisions to an outside recruitment agency. When the principal and the agent have
misaligned utilities – such as when the agency must balance the firm’s preferences with
its own preferences over, or obligations towards, potential hires – the principal faces a
mechanism design problem termed optimal delegation (see e.g. [14, 3]). When the underlying
optimization problem involves multiple inter-dependent decisions, such as when hiring a
team which must collectively cover a particular set of skills, and when data collection is
constrained by logistical or budget considerations, the problem being delegated fits in the
framework of stochastic probing, broadly construed (see e.g. [26]).
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37:2 Delegated Stochastic Probing

The present paper is concerned with the above-described marriage of optimal delegation
and stochastic probing. We restrict attention to protocols without payments, drawing our
inspiration from the recent work of Kleinberg and Kleinberg [16]. The underlying (non-
delegated) problem faced by the principal in their “distributional model” is the following:
facing n i.i.d rewards, select the ex-post best draw. As for their “binary model”, there are n
random rewards with binary support, and a cost associated with sampling each; the goal is
to adaptively sample the rewards and select one, with the goal of maximizing the ex-post
selected reward less sampling costs. For both models, they show that delegating the problem
results in a loss of at most half the principal’s utility. Their analysis in both cases is through
a reduction to the (classical) single-choice prophet inequality problem, and in particular to
the threshold stopping rule of Samuel-Cahn [25].

Both the distributional and binary models of [16] can be viewed as stochastic probing
problems, the former being trivial in the absence of delegation, and the latter corresponding
to a special case of the well-studied box problem of Weitzman [27]. A number of stochastic
probing problems have been known to reduce to contention resolution schemes (e.g. [10, 11,
7, 1, 9]), which in turn reduce to generalizations of the prophet inequality [21]. This suggests
that the results of [16] might apply more broadly.

It is this suggestive thread which we pull on in this paper, unraveling what is indeed a
broader phenomenon. We study optimal delegation for a fairly general class of stochastic
probing problems with combinatorial constraints, and obtain delegation mechanisms which
approximate, up to a constant, the principal’s non-delegated utility. Building on recent
progress in the literature on stochastic optimization, our results reduce delegated stochastic
probing to generalized prophet inequalities of a particular “greedy” form, as well as to the
notion of adaptivity gap (e.g. [4, 5]).

1.1 Our Model
Our model features a collection of elements, each of which is associated with a (random) utility
for each of the principal and the agent. We assume that different elements are independently
distributed, though the principal’s and the agent’s utilities for the same element may be
correlated. We allow constraining both the sampled and the selected set of elements via
outer and inner constraints, respectively. Each constraint is a downwards-closed set system
on the ground set of elements. A probing algorithm for an instance of our model adaptively
probes some set of elements subject to the outer constraint, learning their associated utilities
in the process. The algorithm then selects as its solution a subset of the probed elements
satisfying the inner constraint. We assume that, for both the principal and the agent, utility
for a solution is the sum of its per-element utilities.

To situate the non-game-theoretic component of our model within the literature on
stochastic probing problems, note that we allow an arbitrary utility distribution for each
element, rather than a binary-support distribution characterizing “feasibility”. Moreover,
unlike “probe and commit” models, we also allow our algorithm to select its solution after
all probes are complete. In both these respects, our model is akin to the stochastic multi-
value probing model of [5]. As for our game-theoretic modeling, we assume that the utility
distributions, as well as the inner and outer constraints, are common knowledge. The realized
utilities, however, are only observed by the agent upon probing.

In the traditional (non-delegation) setting, the principal implements the probing algorithm
optimizing her own utility, in expectation. In the delegation setting, the principal and agent
engage in the following Stackelberg game. The principal moves first by committing to a
policy, or mechanism. Such a policy is a (possibly randomized) map from a set of signals
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to solutions satisfying the inner constraint, with each element in the solution labeled with
its (presumptive) utility for both the principal and the agent. Moving second, the agent
probes some set of elements subject to the outer constraint, and maps the observed utilities
to a signal. The outcome of the game is then the solution which results from applying the
principal’s policy to the agent’s signal. We assume that the principal and agent utilities are
additive across elements in the solution, so long as it is labeled with the true per-element
utilities. Otherwise, we assume that the principal can detect this discrepancy and effectively
“quit” the game, imposing a utility of zero for both parties. We adopt the perspective of the
principal, who seeks a policy maximizing her expected utility. The agent, naturally, responds
with a strategy maximizing his own expected utility given the policy.

By an argument analogous to that in [16], which we prove in our general setting for
completeness’ sake, we can restrict attention to single-proposal mechanisms. In a deterministic
single-proposal mechanism, the set of signals is a “menu” of acceptable (labeled) solutions
satisfying the inner constraint, as well as a “null” signal which in our setting we can take to
be the empty set. The agent, facing such a mechanism, without loss simply implements a
probing algorithm to compute a “proposed” solution, tagging each element in the solution
with its observed utilities, and ensuring that the solution is acceptable to the principal. We
also consider randomized single-proposal mechanisms, where the menu consists of acceptable
lotteries (i.e., distributions) over (labeled) solutions, and an agent’s probing algorithm
proposes a lottery on the menu.

1.2 Our Results
We study delegation mechanisms which approximate the principal’s non-delegated utility. We
refer to the best multiplicative approximation factor as the delegation gap of the associated
instance.

Our main set of results concern the design of deterministic single-proposal mechanisms
which prove constant delegation gaps for natural classes of inner and outer constraints. Our
approach is modular, and reduces a (constructive) αβ bound on the delegation gap to a
(constructive) α generalized prophet inequality of a particular form on the inner constraint,
and a (constructive) bound of β on the adaptivity gap associated with the outer constraint
and the rank function of the inner constraint. Drawing on recent work in [9], which derives
prophet inequalities of our required form, and in [4, 5], which bounds the adaptivity gap, we
obtain constant bounds on the delegation gap for instances of our model with a variety of
inner and outer constraints such as matroids and their intersections, among others.

We also begin an exploration of randomized single-proposal mechanisms, where the
principal’s menu consists of acceptable lotteries over solutions. We show that, even in the
simple setting of no outer constraint and a 1-uniform inner constraint, there are instances for
which randomized mechanisms significantly outperform optimal deterministic ones. Neverthe-
less, there exist worst-case instances where both deterministic and randomized mechanisms
suffer a 1/2 delegation gap. We leave open whether randomized mechanisms can lead to
better bounds on the worst-case delegation gap for more intricate classes of inner and outer
constraints.

1.3 Additional Discussion of Related Work
Since the economic literature on delegation is extensive, we only describe a select sample here.
The groundwork for the formal study of optimal delegation in economics was initially laid by
Holstrom [14, 13]. Subsequent work in economics has considered a variety of optimization

ITCS 2021



37:4 Delegated Stochastic Probing

problems as the task being delegated (e.g. [2, 23, 3]). We mention the work of Kovac and
Mylovanov [18] as being related to our results in Section 5: To our knowledge, they were the
first to examine the power of randomized mechanisms for delegation.

Most relevant to the present paper is the aforementioned work of Kleinberg and Klein-
berg [16], who examine approximations for optimal delegation. Their distributional model is
closely related to the model of Armstrong and Vickers [3], and the optimization problem
being delegated in their binary model is a special case of Weitzman’s box problem [27]. Both
optimization problems fit nicely in the general literature on stochastic probing (see e.g. [26]),
motivating our examination of delegated stochastic probing more broadly.

Also related is the recent work of Khodabakhsh et al [15], who consider a very general
model of delegation with discrete actions and states of the world, and an agent who fully
observes the state (no outer constraints or sampling costs). They show optimal delegation
to be NP-hard and examine limited “bias” assumptions under which simple threshold
mechanisms are approximately optimal. Notably, they don’t impose sampling constraints
on the agent and their approximations are with respect to the optimal delegation policy
rather than the optimal non-delegated policy. For these reasons, our results are not directly
comparable.

The optimization problems being delegated in our model fit in the broad class of stochastic
probing problems. We do not attempt a thorough accounting of this literature, and instead
refer the reader to related work discussions in [26, 5]. To our knowledge, the term “stochastic
probing” was originally coined by Gupta and Nagarajan [10], though their binary probe-
and-commit model is quite different from ours. More closely related to us are the models of
[5, 4], which capture stochastic probing problems with multi-valued reward distributions, no
commitment, and combinatorial inner and outer constraints.

As previously mentioned, our work draws on the literature on prophet inequalities.
The foundational result in this setting is the (single-choice) prophet inequality of Krengel,
Sucheston, and Garling [19, 20]. Generalized prophet inequalities, with respect to various
combinatorial constraints, adversaries, and arrival models, have received much attention in the
last decade (e.g. [12, 17, 8, 9]); the associated body of work is large, and we recommend the
survey by [22]. Closely related to generalized prophet inequalities are contention resolution
schemes (see e.g. [6, 9, 1]), with reductions going in both directions [21]. Key to our
results are the “greedy” generalized prophet inequalities, derived through “greedy” contention
resolution, by Feldman et al [9].

Finally, we briefly elaborate on the relationship between our model and the two models
of Kleinberg and Kleinberg [16]. The natural variant of their binary model which replaces
sampling costs with combinatorial constraints on the set of samples (outer constraints, in
our nomenclature) fits squarely in our model. Their distributional model, which allows n
i.i.d. samples from a distribution over utility pairs, initially appears to be a special case of
ours. However, our principal is afforded additional power through their ability to distinguish
elements by name alone. Nevertheless, we recover their main result as a special case of ours
by observing that our mechanism treats elements symmetrically.

2 Preliminaries

Sections 2.1, 2.2, and 2.3 include brief introductions to some of the key ideas and notations
used in this paper. Notably, Section 2.2 defines the key notion of “greedy” prophet inequalities.
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2.1 Set Systems
A set system is a pair (E, I) where E is a finite set of elements and I ⊆ 2E is a family
of feasible sets. We focus on downwards-closed set systems, satisfying the following two
conditions: (1) ∅ ∈ I, i.e. the empty set is feasible, and (2) if T ∈ I then S ∈ I for all S ⊆ T ,
i.e. any subset of a feasible set is feasible. Matroids, matching constraints, and knapsack
constraints are all examples of downwards-closed set systems.

For a set system M = (E, I) and F ⊆ E, we use M|F = (F, I ∩ 2F ) to denote the
restriction ofM to F .

2.2 Prophet Inequalities
A generalized prophet inequality problem is given by a set system M = (E, I), and for
each element e ∈ E an independent random variable Xe supported on the nonnegative real
numbers. Here we adopt the perspective of a gambler, who is givenM and the distributions
of the random variables {Xe}e∈E in advance, then encounters the elements E in an order
chosen by an adversary. On encountering e, the gambler observes the realization xe of
the random variable Xe, and must immediately decide whether to accept e, subject to the
accepted set S of elements remaining feasible inM. The gambler seeks to maximize his utility
x(S) =

∑
e∈S xe, and in particular to compete with a prophet who knows the realization of

all random variables in advance. If the gambler can guarantee an α fraction of the prophet’s
utility in expectation, we say that we obtain a generalized prophet inequality with a factor
of α.

For each possible realization xe of Xe, we refer to the pair (e, xe) ∈ E×R+ as an outcome.
When the gambler accepts e ∈ E given a realization xe of Xe, we also say the gambler accepts
the outcome (e, xe).

Although it is most common to consider an adversary who fixes an order of the elements
upfront, some recent work has investigated much more powerful adversaries [17, 9]. In this
paper, we are interested in the almighty adversary, who knows in advance the realizations of
all random variables as well as any random coin flips used by the gambler’s strategy. The
almighty adversary can perfectly predict the future and choose a truly worst-case ordering.

Key to our results is the notion of a “greedy” strategy for the gambler. We take inspiration
from [9], who defined greedy online contention resolution schemes, and extend their definition
to prophet inequality problems.

I Definition 2.1. Fix any instance of a generalized prophet inequality problem. A greedy
strategy for the gambler is described by a downwards-closed family A ⊆ 2E×R+ of sets of
outcomes. A gambler following greedy strategy A accepts an outcome (e, xe) if and only if
the set of all accepted outcomes remains in A.

We note that Samuel-Cahn’s [25] threshold rule for the single-choice prophet inequality is
greedy, and its competitive factor of 1

2 holds for the almighty adversary [24]. More generally,
Feldman et al. [9] show that there exist constant-factor greedy prophet inequalities against
the almighty adversary for many classes of constraints.

2.3 Adaptivity Gap
Another key notion we will use is the adaptivity gap for stochastic set function optimization
problems. For a detailed introduction, see [4].

We consider maximizing a stochastic set function f : 2E → R+ constrained by a
downwards-closed set system M = (E, I). We assume f is determined by a collection
{Xe}e∈E of independent random variables, with the stipulation that f(S) does not depend
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on any random variables Xe for which e /∈ S.1 We are tasked with “probing” some S ⊆ E,
feasible forM, with the goal of maximizing f(S). An adaptive algorithm for this problem
probes elements one at a time, where probing e results in learning the realization of Xe.
Such an algorithm can use the realizations of probed variables to decide on a next element to
probe. A non-adaptive algorithm chooses the set S all at once, independently of the random
variables {Xe}e∈E . The adaptivity gap is the minimum (worst-case) ratio of the expected
value of the optimal non-adaptive algorithm versus the expected value of the optimal adaptive
algorithm.

In [4], Asadpour and Nazerzadeh showed that the adaptivity gap for instances with
monotone submodular functions and matroid constraints is 1 − 1

e . Furthermore, they
provided an efficient non-adaptive algorithm that achieves this bound. Finally, in [5], Bradac
et al. showed that the adaptivity gap is constant for instances with “prefix-closed” constraints
(which include all downward-closed constraints) and functions that are the weighted rank
function of the intersection of a constant number of matroids.

3 Model

3.1 Formal Definition
I Definition 3.1. An instance I of the delegated stochastic probing problem consists of: two
players, which we will call the principal and the agent; a ground set of elements E; mutually
independent distributions µe with support in R+ × R+ for each element e ∈ E; an outer
constraint Mout = (E, Iout) with feasible sets Iout; and an inner constraint Min = (E, Iin)
with feasible sets Iin.

Given such an instance, we will additionally define: (Xe, Ye) ∼ µe as random variables
denoting the utilities for the principal and agent of element e; Ω as the set of outcomes (e, x, y)
for all e ∈ E and all (x, y) ∈ supp(µe); and Ωin ⊆ 2Ω as the family of all sets of outcomes
whose elements are distinct and feasible in the inner constraint. For convenience, we will also
overload notation by considering x and y to be utility functions for the principal and agent.
Given any subset of outcomes T ⊆ Ω, let x(T ) =

∑
(e,x,y)∈T x and y(T ) =

∑
(e,x,y)∈T y

be the total utility of outcomes in T . Similarly for any subset of elements F ⊆ E, let
x(F ) =

∑
e∈F Xe and y(F ) =

∑
e∈F Ye be random variables representing the randomized

total utility of elements in F .
A natural mechanism that the principal might choose to implement is called a single-

proposal mechanism. Here, the principal describes the space of solutions she is willing to
accept, and then the agent uses this information to search the solution space and propose a
single feasible solution.

In the deterministic single-proposal setting, the principal first commits to a family of sets
of outcomes R ⊆ Ωin and announces R to the agent. The sets in R are called acceptable,
and the principal’s choice of R is called their policy (or mechanism). After learning R, the
agent will select elements to probe, so long as each element is probed at most once and the
set of probed elements is feasible inMout. We allow the agent to probe adaptively, deciding
what to do next based on previously probed elements. Let’s say that they probe elements
F ⊆ E and obtain outcomes S ⊆ Ω. The agent will then choose some set of outcomes T ⊆ Ω
and propose it to the principal. If T is acceptable and also a subset of S then the principal
and agent receive x(T ) and y(T ) utility, respectively. Otherwise, they both receive 0 utility.

1 In other words, one can evaluate f(S) given access to the realizations of the random variables {Xe}e∈S .
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In the above-described mechanism design setting, we assume that both the principal and
agent act to maximize their expected utility. We also assume that all parameters of the
problem, except for the realizations of the random variables, are common knowledge.

We note that, similar to the setup in [16], our model assumes that our agent cannot
benefit from lying, say by labeling an element e with utilities other than Xe and Ye, or by
proposing an element he has not probed. We argue that this is a natural assumption to
make: In many applications we foresee (e.g., a firm hiring an employee, or exploring some
mergers), a proposal will be accompanied by an easy to verify proof of the claimed utilities
(e.g., in the form of a CV for the applicant, or a detailed analysis of the merger).

As in [16], we compare delegation mechanisms against the optimal non-delegated strategy.
By non-delegated strategy, we mean the strategy of the principal when they act as both the
principal and agent (i.e. they have power to probe and propose as well as accept outcomes).

Given any F ⊆ E, let u(F ) be the optimal utility of the non-delegating principal when
they probe elements in F and accept their own favorite set of outcomes, and let vR(F ) be
the utility of the delegating principal with policy R when the agent probes elements in F
and proposes their favorite acceptable set of outcomes. We can write u and vR as

u(F ) = max
G⊆F,G∈Iin

x(G)

vR(F ) = x

(
argmax

G⊆F,ΩG∈R
y(G)

)
,

where ΩG ⊆ Ω is the set of outcomes from the probed set of elements G. In the case of ties
in the definition of vR, our results hold for arbitrary (even adversarial) tie-breaking.

I Definition 3.2. Fix any instance of delegated stochastic probing. Let F ∗ be a random
variable containing the elements probed by an optimal adaptive non-delegating principal, and
let F ∗R be a random variable containing the elements probed by an optimal adaptive agent
under policy R. Then for any policy R and α ∈ [0, 1], we say that R is an α-policy for this
instance if

E vR(F ∗R) ≥ αEu(F ∗).

I Definition 3.3. The delegation gap of a family of instances of delegated stochastic probing
is the minimum, over all instances in the family, of the maximum α such that there exists
an α-policy for that instance. This gap measures the fraction of the principal’s non-delegated
utility they can achieve when delegating.

3.2 Signaling Mechanisms
Having formally defined the model, we will now describe a broad generalization of single-
proposal mechanisms, called signaling mechanisms, and show that these mechanisms don’t
provide the principal with any additional power. Note that this discussion is inspired by
Section 2.2 from [16], and we simply extend their work to our model.

A signaling mechanism allows the principal to ask the agent for more (or different)
information than just a proposed solution. The principal will then take this information
and transform it into a solution, which they will accept. One might suspect that expanding
the space of mechanisms in this way would give the principal more power. However, as we
will show, this isn’t the case even for a broad class of delegation models, which we will now
define formally.
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I Definition 3.4. An instance of the generalized delegation problem consists of two players
called the principal and the agent, a state space S, a solution space Ψ, a set P of probing
strategies for the agent, a signaling function σ which maps P×S to strings, a utility function
x : S × P ×Ψ → R+ for the principal, and a utility function y : S × P ×Ψ → R+ for the
agent. We require that there is a null solution ⊥ ∈ Ψ such that xs,p(⊥) = ys,p(⊥) = 0 for all
s ∈ S and p ∈ P.

We assume the state of the world is some s ∈ S a-priori unknown to the principal and
the agent, though they may have prior information. The agent obtains information about s
by applying a probing strategy p ∈ P to obtain a signal σp(s). For a state s ∈ S, a probing
strategy p ∈ P chosen by the agent, and a solution ψ ∈ Ψ, we associate a utility of xs,p(ψ)
and ys,p(ψ) for the principal and the agent, respectively.

We note that the above definition generalizes the delegation problems of Definition 3.1.
In particular: the state space S represents all possible realizations of per-element utilities of
the principal and the agent; the solution space Ψ is the family of feasible subsets of outcomes
Ωin, where ⊥ is the empty set of outcomes; P corresponds to probing algorithms which
respect the outer constraint; σp(s) is the set of outcomes obtained by invoking algorithm
p in state s; both utility functions depend on the state s ∈ S and the probing algorithm
p ∈ P , evaluating to 0 for solutions ψ that are inconsistent with the state s, or if the probing
algorithm p applied to s does not the probe the elements in ψ.

Given a generalized delegation problem, we define signaling mechanisms as follows.

I Definition 3.5. Fix some instance of the generalized delegation problem. A signaling
mechanism proceeds in the following manner. The principal starts by choosing some signal
space Σ of strings and a solution function ψ : Σ→ Ψ, and the agent responds by choosing
a probing strategy p ∈ P and a reporting function τ from strings to Σ. Once these choices
have been made, the agent will probe the underlying state s to obtain a signal σ = σp(s), then
transform this into a new signal τ = τ(σ) which he reports to the principal. The principal
maps the reported signal to a solution ψ(τ), which they will accept.

Notice that this model can be made to capture the design of randomized delegation
mechanisms by extending Ψ to the space ∆(Ψ) of distributions (henceforth lotteries) over
solutions, and extending both utility functions to lotteries by taking expectations.

We contrast this broad definition of signaling mechanisms with the comparatively simple
single-proposal mechanisms.

I Definition 3.6. Fix an instance of the generalized delegation problem. A single-proposal
mechanism is a special case of signaling mechanism in which the principal chooses some set
R ⊆ Ψ of acceptable outcomes, then sets Σ = Ψ and ψ(R) = R if R ∈ R and ψ(R) = ⊥
otherwise.

Intuitively, in a single proposal mechanism the principal declares a menu of acceptable
solutions. The agent then proposes a solution, which is accepted if it is on the menu, and
replaced with the null solution otherwise. Now we will show that single-proposal mechanisms
are just as powerful as signaling mechanisms. In particular, for every signaling mechanism
there is a single-proposal mechanism which selects the same solution and the same probing
strategy for each state of nature, at equilibrium. This lemma is a simple extension of [16,
Lemma 1] to the our generalized delegation model.

I Lemma 3.7. Fix an instance of the generalized delegation problem, as well as the agent’s
prior distribution µ on states S. For any signaling mechanism M = (Σ, ψ) and a correspond-
ing best response strategy (p, τ) for the agent, there exists a single-proposal mechanism M ′ =
(Σ′, ψ′) and a corresponding best response (p, τ ′) such that (ψ ◦ τ ◦ σp)(s) = (ψ′ ◦ τ ′ ◦ σp)(s)
for all states s ∈ S.
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Proof. Take any signaling mechanism M = (Σ, ψ) with best response (p, τ) by the agent.
Let R = ψ(Σ) be the set of all possible outputs from this mechanism and let M ′ = (Σ′, ψ′)
be the single-proposal mechanism defined by R, i.e. Σ′ = Ψ and ψ′ is such that ψ′(R) = R

if R ∈ R and ψ′(R) = ⊥ otherwise. Finally, let τ ′ = ψ ◦ τ .
Notice that the range of τ ′ is contained in ψ(Σ) = R, so by definition of ψ′ and τ ′ it

follows that ψ ◦ τ = ψ′ ◦ τ ′. Therefore, it is also the case that (ψ ◦ τ ◦σp)(s) = (ψ′ ◦ τ ′ ◦σp)(s)
for all s ∈ S. Now we must show that (p, τ ′) is a best-response strategy to mechanism M ′.
Consider any valid alternative strategy (p∗, τ∗). We aim to show that

E
s
ys,p∗(ψ′ ◦ τ∗ ◦ σp∗)(s) ≤ E

s
ys,p(ψ′ ◦ τ ′ ◦ σp)(s). (1)

First, we can assume without loss of generality that τ∗ always outputs a solution in R
because ψ′ produces ⊥ (and a utility of 0) for all proposals in Ψ \R. Then ψ′ ◦ τ∗ = τ∗ and,
by definition of R, we can write τ∗ = ψ ◦ τ̂ for some function τ̂ from strings to Σ. Then
the left hand side of (1) becomes the expected utility of response (p∗, τ̂) against mechanism
M = (Σ, ψ):

E ys,p∗(ψ′ ◦ τ∗ ◦ σp∗)(s) = E ys,p∗(ψ ◦ τ̂ ◦ σp∗)(s)

whereas the right hand side of (1) is the expected utility of response (p, τ) against M :

E ys,p(ψ′ ◦ τ ′ ◦ σp)(s) = E ys,p(ψ ◦ τ ◦ σp)(s).

Since (p, τ) is a best response for this mechanism, the desired inequality (1) follows. J

4 Deterministic Mechanisms

In this section, we will consider deterministic single-proposal mechanisms for delegated
stochastic probing problems, as defined in Section 3.1. This is in contrast to randomized
mechanisms which we will define later in Section 5. We will show that large classes of these
problems have constant-factor policies, and therefore constant-factor delegation gaps.

The focus of this section is on Theorem 4.1 and Theorem 4.5, which together give
us a general method of constructing competitive delegation policies from certain prophet
inequalities and adaptivity gaps. In particular, Corollary 4.4 gives us constant-factor policies
for delegated stochastic probing with no outer constraint and an inner constraint which
is the intersection of a constant number of matroid, knapsack, and matching constraints.
Similarly, Corollary 4.8 gives us constant-factor policies for delegated stochastic probing with
any downwards-closed outer constraint and an inner constraint which is the intersection of a
constant number of matroids.

4.1 Inner Constraint Delegation
We will now consider instances of delegated stochastic probing for which there is no outer
constraint. We will then combine the results from this section with Theorem 4.5 to get
solutions to delegation problems with both inner and outer constraints.

To simulate the lack of an outer constraint, we will consider instances of delegation for
which the outer constraint is the trivial set system in which all subsets of the elements are
feasible. For any ground set E of elements, we will write this trivial set system as M∗E ,
omitting the subscript when the set of elements E is clear from context.
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I Theorem 4.1. Given an instance I = (E,M∗,Min) of delegated stochastic probing without
outer constraints, let J be an instance of the prophet inequality problem with random variables
Xe for all e ∈ E and constraint Min. If there exists an α-factor greedy strategy for J against
the almighty adversary, then there exists a deterministic α-policy for I. Furthermore, the
proof is constructive when given the strategy for J .

Proof. First, we have by our choice of J that the expected utility of the prophet in J is
equal to the expected utility of the non-delegating principal in I. Notice that the principal
has no outer constraint, so we can assume without loss of generality that they probe all
elements. Then the prophet and non-delegating principal both get exactly

E max
T∈Min

x(T ).

Now consider the gambler’s α-factor greedy strategy, which consists of some collection
A ⊆ 2E×R+ of “acceptable” sets of outcomes. We will define the delegating principal’s policy
as follows

R = {{(e, x, y) : (e, x) ∈ A, y ∈ R+} : A ∈ A} .

Notice that policy R is exactly the same as strategy A, just translated into the language of
delegation.

Now we will show that the utility of the delegating principal with policy R is at least
the utility of the gambler with greedy strategy A. In the prophet inequality, the almighty
adversary can order the random variables such that the gambler always gets their least
favorite among all maximal acceptable sets (the set is always maximal because the gambler’s
strategy is greedy). Compare this with delegation, where the agent knows the result of all
probed elements as well as the principal’s acceptable sets R. Since the agent has non-negative
utility for all outcomes, we can assume without loss of generality that they will always propose
a maximal acceptable set. For every corresponding set of realizations in each problem, the
gambler will receive the maximal set in A of minimum value and the principal will receive
some maximal set in R. Since we defined R to correspond directly with A, the principal’s
value must be at least as large as the gambler’s. This is true of all possible realizations, so R
must be an α-policy for I. J

We note that by construction of the principal’s policy R, this theorem holds even when
the principal is unaware of the agent’s utility values y. This is comparable to the reduction
in [16] which similarly worked regardless of the principal’s knowledge of the agent’s utilities.

Unfortunately, applications of this theorem rely on the existence of competitive strategies
against the almighty adversary, which is a very strong condition. It is natural to ask whether
it’s really necessary in the reduction for the adversary to be almighty. We provide some
evidence that this is indeed necessary by considering the special case of a 1-uniform inner
matroid. In this case, it’s easy to construct instances for which the utility of the principal
and agent sum to a constant value for all outcomes, i.e. Xe + Ye = c for all e and some
constant c. In such an instance, the agent’s goals are directly opposed to the principal’s,
so the agent will always propose the principal’s least favorite acceptable outcome. In the
corresponding instance of the prophet inequality, the almighty adversary can guarantee that
the gambler chooses their least favorite acceptable outcome, while weaker adversaries (that
don’t know the realizations of variables) cannot enforce the same guarantee.

Using some known greedy prophet inequalities against the almighty adversary, we get the
following corollaries.
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I Corollary 4.2. There exist deterministic 1
2 -policies for delegated stochastic probing problems

with no outer constraint and a 1-uniform inner constraint.

Proof. This follows from the existence of 1
2 threshold rules (such as Samuel-Cahn’s median

rule [25]) for the 1-uniform prophet inequality against the almighty adversary. J

I Corollary 4.3. There exist constant-factor deterministic policies for delegated stochastic
probing problems with no outer constraint and three classes of inner constraints. These factors
are: 1

4 for matroid constraints, 1
2e ≈ 0.1839 for matching constraints, and 3

2 −
√

2 ≈ 0.0857
for knapsack constraints.

Proof. This corollary is largely based on results from [9]. By combining [9, Theorem 1.8]
with [9, Observation 1.6] and optimizing the parameters, we get randomized greedy online
contention resolution schemes (OCRS) for three aforementioned constraint systems with
the same factors listed above. Then, applying [9, Theorem 1.12], each randomized greedy
OCRS corresponds to a randomized greedy prophet inequality against the almighty adversary
with the same approximation factor. Since the adversary is almighty, they can predict any
randomness in our strategy. Therefore, the randomized strategy is no better than the best
deterministic strategy, and there must exist some deterministic strategy achieving the same
factor. Finally, we apply our Theorem 4.1 to turn the prophet inequality strategy into a
delegation policy with the same factor. J

I Corollary 4.4. There exist constant-factor deterministic policies for delegated stochastic
probing problems with no outer constraint and an inner constraint that is the intersection of
a constant number of matroid, knapsack, and matching constraints.

Proof. We use [9, Corollary 1.13] along with the same reasoning as Corollary 4.3. J

We note that it is open whether there exists a 1
2 -OCRS for matroids against the almighty

adversary [21]. The existence of such an OCRS, if greedy, would imply the existence of
1
2 -policy for delegated stochastic probing with a matroid inner constraint and no outer
constraint.

Although Corollary 4.2 applies to a model very similar to the distributional delegation
model from [16], our principal has the additional power of being able to distinguish between
otherwise identical elements by their name alone. However, by observing that Theorem 4.1
turns greedy prophet inequalities that don’t distinguish between identical elements into
delegation policies that also don’t distinguish between identical elements, we can derive
delegation policies that recover the 1

2 -factor guarantee from [16] for their distributional model.
We leave the details for Section A.1.

4.2 Outer Constraint Delegation
Using the adaptivity gap from Section 2.3, we will now show that there are large classes
of delegated stochastic probing problems with nontrivial outer constraints for which the
principal can achieve, in expectation, a constant-factor of their non-delegated optimal utility.

I Theorem 4.5. Let I = (E,Mout,Min) be an instance of delegated stochastic probing.
Suppose that, for all F ∈ Iout, there exists a deterministic α-policy for the restriction
IF = (F,M∗F ,Min|F ) of instance I to F . Suppose also that the adaptivity gap for weighted
rank functions of Min on set system Mout is at least β. Then there exists a deterministic
αβ-policy for instance I.
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Proof. Given any set of elements F ⊆ E, we can write the utility of the non-delegating
principal who probes F as

u(F ) = max
G⊆F,G∈Iin

x(G)

and the utility of the delegating principal with policy R who probes F as

vR(F ) = x

(
argmax

G⊆F,ΩG∈R
y(G)

)
,

where ΩG ⊆ Ω is the set of outcomes from the probed elements G.
Notice that for any fixed set of realizations from all random variables, u is just the

weighted rank function of set system Min. Therefore, by the adaptivity gap for such a
function over set systemMout, there exists a fixed set F ∈ Iout such that

Eu(F ) ≥ β Eu(E∗), (2)

where E∗ ∈ Iout is a random variable representing the optimal set of elements selected by
an adaptive non-delegating principal. Notice that expectation is also over the randomness
of E∗.

Now we will consider the same delegation instance with access to only the elements in F ,
i.e. instance (F,Mout|F,Min|F ). Since F ∈ Iout, the outer matroid doesn’t restrict probing
at all and this instance is equivalent to IF = (F,M∗F ,Min|F ). By our assumption, this
problem has some α-approximate delegation policy. Let R be one such policy. Then we have

E vR(F ) ≥ αEu(F ). (3)

Since R contains outcomes only from elements in F , an agent restricted to R in the
original instance I has no incentive to probe elements outside of F . Because F ∈ Iout, the
agent can probe all of F . Therefore, we can assume without loss of generality that an optimal
adaptive strategy will choose to probe exactly the elements in F . Then

E vR(E∗R) = E vR(F ), (4)

where E∗R ⊆ E is a random variable containing exactly the elements probed by an optimal
adaptive agent when when restricted to acceptable set R in the original instance I.

Combining (2), (3), and (4), we get the desired inequality:

E vR(E∗R) = E vR(F )
≥ αEu(F )
≥ αβ Eu(E∗). J

I Corollary 4.6. There exist deterministic 1
2
(
1− 1

e

)
≈ 0.3160-policies for delegated stochastic

probing problems with matroid outer constraints and a 1-uniform inner constraint.

Proof. By Corollary 4.2, there is a 1
2 -policy for any instance of delegated stochastic probing

with a 1-uniform inner constraint and no outer constraint. Every restriction of our present
instance I to some independent set F of the outer matroid is of this form.

From [4], we have a 1− 1
e adaptivity gap for stochastic submodular on matroid constraints.

Since the weighted rank function of any matroid is submodular, the adaptivity gap of weighted
rank functions of the inner 1-uniform matroid constraint on the outer matroid constraint is
also 1− 1

e .
Therefore, the conditions of Theorem 4.5 hold with α = 1

2 and β = 1− 1
e , and we get the

desired factor. J
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I Corollary 4.7. There exist deterministic 1
4
(
1− 1

e

)
≈ 0.1580-policies for delegated stochastic

probing problems with matroid outer and inner constraints.

Proof. Similar to Corollary 4.6, we use the 1− 1
e adaptivity gap for submodular functions

over matroid constraints along with Corollary 4.3. J

I Corollary 4.8. There exist constant-factor deterministic policies for delegated stochastic
probing with any downward-closed outer constraint and an inner constraint which is the
intersection of a constant number of matroids.

Proof. By [5, Theorem 1.2], we have constant-factor adaptivity gaps for weighted rank
functions of the intersection of a constant number of matroids over “prefix-closed” constraints,
which include all downward-closed constraints. By Corollary 4.4, we have constant-factor
policies for delegated stochastic probing with no outer constraint and an inner constraint
which is the intersection of a constant number of matroids. Combining these results with
Theorem 4.5, we get the desired constant factors. J

5 Lottery Mechanisms

One natural generalization of the delegated stochastic probing model defined in section 3.1 is
to allow the principal to use randomized mechanisms. For example, one may consider the
generalization of single-proposal mechanisms which attaches a probability pR to each set of
outcomes R ⊆ Ωin, and accepts a proposed set R with precisely that probability (and accepts
the empty set otherwise). More general lotteries (i.e. with non-binary support) are also
possible. It’s then natural to ask whether there exist instances for which some randomized
policy does better than all deterministic ones. Even further, we can ask whether there exists
a randomized policy that strictly outperforms deterministic ones in the worst case. In other
words, can randomization give us a strictly better delegation gap?

In this section, we will broadly discuss randomized mechanisms and then consider the
special case of delegation with 1-uniform inner constraints and no outer constraints. In this
special case, there exist instances for which randomization significantly helps the principal,
and there are worst-case instances in which the delegation gap of 1

2 is tight for randomized
mechanisms as well as deterministic ones. Before getting to these results, we will discuss
methods of randomization and then formalize what we mean by a randomized mechanism.

There are two obvious ways that the single-proposal mechanism can be randomized. The
first is for the principal to sample a deterministic policy R from some distribution and
then run the single proposal mechanism defined by R. However, noticing that our model of
delegation is a Stackelberg game, we can conclude that there always exists a pure optimal
strategy for the principal, so this type of randomization doesn’t give the principal any more
power.

The second type of randomness is for the policy itself to be a set of acceptable distributions
over sets of outcomes (i.e. a menu of lotteries), from which the agent may propose one. The
principal then samples a set of outcomes from the proposed lottery. This expands the space
of mechanisms, conceivably affording the principal more power in influencing the agent’s
behavior. We will focus on these randomized mechanisms for the rest of this section.

I Definition 5.1. A lottery mechanism is a randomized mechanism for delegated stochastic
probing consisting of a set R of distributions, or lotteries, each with support in Ωin. After the
set of acceptable lotteries R is selected and announced to the agent, the delegated stochastic
probing mechanism proceeds largely the same. The agent probes outcomes S and proposes
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one of the lotteries L ∈ R. The principal then samples a set of outcomes T ∼ L from that
lottery. If T ⊆ S, then the principal and agent receive x(T ) and y(T ) utility, respectively.
Otherwise, they both receive 0 utility.

We note that this sort of mechanism is a generalized single-proposal mechanism in the
sense of Section 3.2: Each lottery represents a solution and an agent’s expected utility for
a lottery represents their utility for that solution. Therefore, Lemma 3.7 applies to lottery
mechanisms as well.

5.1 Power of Lotteries
The increased power of lottery mechanisms means that for some instances of delegated
stochastic probing there exist lottery policies that provide the principal with a better
expected utility than the best deterministic policies. In fact, we will show that there are
instances for which some lottery policies nearly achieve the principal’s non-delegated expected
utility, while the best deterministic policies achieve only about half of this value.

First, we will make the observation that it never benefits the principal to declare two
lotteries in R with identical support but different distributions. This is because the principal
knows the utility function of the agent and can predict which lottery the agent will prefer.
Therefore, we can assume that for any given support, the principal will declare at most one
lottery.

I Proposition 5.2. For all 0 < ε < 1, there exists an instance of delegated stochastic probing
for which the best lottery mechanisms achieve 2−3ε+2ε2

2−ε of the principal’s non-delegated
expected utility, while the best deterministic mechanisms achieve 1

2−ε of the principal’s
non-delegated expected utility. As ε approaches 0, the former approaches 1 while the latter
approaches 1

2 .

Proof. Consider an instance with elements E = {1, 2}, a 1-uniform matroid inner constraint,
no outer constraint, and distributions for elements 1 and 2 as detailed in Table 1.

Table 1 Each row represents a single outcome and contains its name, element e, utilities x and y,
and the probability that it is probed from element e.

Outcome Element e Utility x Utility y Probability Pe[(x, y)]
ω0 1 0 0 1− ε
ω1 1 1/ε 1− ε ε

ω2 2 1 1 1

Since there are no outer constraints we assume that both elements are probed. The
non-delegating principal can accept ω1 when it appears and accept ω2 otherwise. This gives
them an expected utility of ε/ε+ 1− ε = 2− ε. By enumerating all deterministic policies, we
can confirm that the best such policy gives the delegating principal an expected utility of 1.
Therefore, the best deterministic policy achieves 1

2−ε of the principal’s non-delegated utility.
Now consider a lottery policy with lotteries A and B such that PA[ω1] = 1, PB [ω2] = 1−2ε,

and PB [ω0] = 2ε. We can quickly verify that this gives the delegating principal an expected
utility of 2−3ε+2ε2. Therefore, at least one lottery policy achieves 2−3ε+2ε2

2−ε of the principal’s
non-delegated utility. J

Unfortunately, there is good reason not to be too optimistic about the increased power of
lottery mechanisms. As we will now show, there also exist instances for which the best lottery
policies and the best deterministic policies all achieve approximately half of the principal’s
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non-delegated expected utility. Since Corollary 4.2 gives us a deterministic 1
2 -policy, this

tells us that, in the worst case, the factor 1
2 is tight even for lottery policies in the special

case of no outer constraint and a 1-uniform inner constraint.

I Proposition 5.3. For all 0 < ε < 1, there exists an instance of delegated stochastic probing
with a 1-uniform inner constraint and no outer constraint for which the best lottery policies
and the best deterministic policies all achieve 1

2−ε of the principal’s non-delegated expected
utility. As ε approaches 0, this approaches 1

2 .

Proof. Consider an instance with elements E = {1, 2}, a 1-uniform matroid inner constraint,
no outer constraint, and distributions for elements 1 and 2 as detailed in Table 2.

Table 2 Each row represents a single outcome and contains its name, element e, utilities x and y,
and the probability that it is probed from element e. Notice that this instance is identical to the
one from Table 1 except for the agent’s utility for outcome ω1.

Outcome Element e Utility x Utility y Probability Pe[(x, y)]
ω0 1 0 0 1− ε
ω1 1 1/ε 0 ε

ω2 2 1 1 1

In the case of ties, we assume that the agent prefers to break ties first in the principal’s
favor and then arbitrarily among any remaining ties. This assumption serves only to simplify
the proof, and can be avoided with careful modifications to the utility table.

The non-delegating principal can accept ω1 = (1, 1/ε, 0) when it appears and accept
ω2 = (2, 1, 1) otherwise. This gives them an expected utility of ε/ε + 1 − ε = 2 − ε. By
enumerating all deterministic policies, we can confirm that the best such policy gives the
delegating principal an expected utility of 1. Therefore, the best deterministic policy achieves

1
2−ε of the principal’s non-delegated utility.

Finding the best menu of lotteries takes slightly more work. Since the inner constraint is
1-uniform, each lottery is supported on singletons as well as the empty set. Recall also that
we can restrict attention to menus where no two lotteries have the same support. We claim
that we can further restrict attention to menus with exactly two lotteries A and B, with A
supported on {ω0, ω2} and B supported on {ω1, ω2}. To see this, observe that:
1. Shifting all probability mass from the empty set to ω0 or ω1 in any lottery does not affect

the agent’s utility and can only increase the principal’s utility. In the case of tie-breaking,
the principal’s favorite remaining lottery is no worse than before.

2. If there is a lottery with both ω0 and ω1 in its support, shifting all probability mass from
one of these outcomes to the other does not affect the agent’s utility, and in at least one
direction this shift of probability mass will make the policy no worse for the principal.
Again, in the case of tie-breaking, the principal’s favorite remaining lottery is no worse
than before.

3. A menu without lottery A is no better than the same menu with lottery A for which all
probability mass of A is assigned to ω0. Similarly, a menu without lottery B is no better
than the same menu with lottery B for which all probability mass of B is assigned to ω1.

Parametrizing the probability of each outcome, we get: PA[ω2] = a, PA[ω0] = 1 − a,
PB[ω2] = b, and PB[ω1] = 1 − b for some a, b ∈ [0, 1]. No matter what the agent probes
({ω0, ω2} or {ω1, ω2}), their favorite lottery is B if b ≥ a and A otherwise. If we choose b ≥ a,
the delegating principal gets expected utility ε(b+ (1− b)/ε) + (1− ε) · b = 1. Otherwise, the
principal gets ε · a+ (1− ε) · a = a, which can be made as large as 1 for a = 1. Therefore,
the best lottery policy achieves 1

2−ε of the principal’s non-delegated utility. J
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6 Open Questions

Due to this novel combination of delegation with stochastic probing, we believe that this
paper ultimately opens up many more questions than it answers. In this section, we will
make some of these questions explicit.

While we focused on the existence of constant-factor delegation policies regardless of
their computational complexity, applying these solutions to practical problems requires
some guarantee that they can be easily computed and represented. Are there delegated
stochastic probing problems for which constant-factor policies are NP-hard to compute in
general? Are there special cases for which constant-factor policies can always be computed
in polynomial time?
In Section 5, we showed that the constant given in Corollary 4.2 is tight. Are the other
factors given in Section 4.1 tight? We note that this is related to an open question by
[21] about 1

2 prophet inequalities on matroids against the almighty adversary.
Are the constant factors given in Section 4.2 tight? Due to the broad applicability of
adaptivity gaps, our method is unlikely to take advantage of special structure that may
be present in delegated stochastic probing problems. Therefore, it seems probable that
better constants exist, but we make no claim to a conjecture.
Our model assumes that probing is always zero-cost, so it doesn’t generalize the binary
model from [16] or the box problem of [27]. It’s natural to ask whether we can get
constant-factor delegation gaps with probing costs in addition to (or as a replacement
for) outer constraints.
Our model doesn’t allow the principal to incentivize the agent with transfers (such as
payments), so it’s natural to ask how such an extension to the model could improve the
principal’s worst-case guarantees.
If the principal is delegating to multiple agents simultaneously, can they get better
worst-case guarantees than delegating to a single agent? We note that there are many
ways to define this formally. For example, a stronger principal may be able to define
different acceptable sets for each agent whereas a weaker principal may be forced to
declare one acceptable set for all agents.
It’s not hard to imagine practical applications of stochastic probing for which elements
are not independently distributed. Can we get competitive guarantees even in the absence
of the independence assumption?
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A Appendix

A.1 Symmetric Delegation Policies
While our model is not a direct generalization of the distributional model used by Kleinberg
and Kleinberg, we can obtain a generalization by considering delegated stochastic probing
with a restricted class of policies, which we call symmetric policies. Given this variant, we
can recover the 1

2 factor that they obtained. First, we need to define some notation and
terminology.

Given any object X (such as a set, tuple, or recursive combination of the two) containing
atomic elements E, we can consider the operation of taking two elements e1, e2 ∈ E and
swapping all instances of e1 and e2 in X. More generally, for any permutation π of elements
in E, we can consider rewriting all elements e to π(e) simultaneously. We will denote the
object obtained from this operation as X[E → π(E)].

I Definition A.1. Fix an instance of delegated stochastic probing with elements E, outer
constraint Mout, and inner constraint Min. We say that a subset of elements F ⊆ E

are symmetric if µe = µf for all e, f ∈ F and for all permutations π on F we have that
Min[F → π(F )] =Min and Mout[F → π(F )] =Mout.

I Definition A.2. Fix an instance of delegated stochastic probing with elements E, outer
constraint Mout, and inner constraint Min. We say that a policy R is symmetric if
R[F → π(F )] = R for all symmetric sets of elements F ⊆ E and all permutations π

on F .

Intuitively, symmetric elements are ones which are identical in everything except name.
Then symmetric policies are ones that don’t distinguish between symmetric elements. Using
this intuition, we will now consider the problem of delegated stochastic probing with k

identically distributed elements E, a 1-uniform inner constraint, and no outer constraint.
Given any such instance, it’s easy to see that all elements E are symmetric. Notice the
similarity between such an instance and the distributional model. The only difference is
that our principal has the power to distinguish between outcomes sampled from different
elements. However, if the principal is restricted to symmetric policies, then their policy
cannot distinguish between different elements, so it must characterize acceptable outcomes
based only on their (x, y) utility. This is equivalent to the distributional model.

There are also natural definitions of symmetric elements and strategies in the prophet
inequality problem.

I Definition A.3. Fix an instance of the prophet inequality problem with elements E and
feasibility constraint M. We say that a subset of elements F ⊆ E are symmetric if Xe and
Xf are identically distributed for all e, f ∈ F and for all permutations π on F we have that
M[F → π(F )] =M.

I Definition A.4. Fix an instance of the prophet inequality problem with elements E and
feasibility constraint M. We say that a strategy A is symmetric if A[F → π(F )] = A for all
symmetric sets of elements F ⊆ E and all permutations π on F .

Given these definitions, we will show that Theorem 4.1 actually transforms symmetric
greedy prophet inequalities against the almighty adversary into symmetric delegation policies.
This is stated formally in Proposition A.5.
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I Proposition A.5. Given an instance I = (E,M∗,Min) of delegated stochastic probing
without outer constraints, let J be an instance of the prophet inequality problem with random
variables Xe for all e ∈ E and constraint Min. If there exists a symmetric α-factor greedy
strategy for J against the almighty adversary, then there exists a symmetric deterministic
α-policy for I. Furthermore, the proof is constructive when given the strategy for J .

Proof. The proof is identical to the proof of Theorem 4.1, but we observe that the greedy
strategy A for prophet inequality problem J is symmetric, so the policy R derived from A
must also be symmetric by construction. J

Since the 1
2 prophet inequality used in Corollary 4.2 is a threshold policy, it must be

symmetric. Therefore, we have a symmetric 1
2 -policy for delegated stochastic probing

problems with no outer constraint and a 1-uniform inner constraint. This recovers a 1
2 -factor

for the distributional model of [16], as well as for the slight generalization of this model with
multiple distributions and a separate cardinality constraint for each one.
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