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Abstract
The two-way finite automaton with quantum and classical states (2QCFA), defined by Ambainis and
Watrous, is a model of quantum computation whose quantum part is extremely limited; however, as
they showed, 2QCFA are surprisingly powerful: a 2QCFA with only a single-qubit can recognize the
language Lpal = {w ∈ {a, b}∗ : w is a palindrome} with bounded error in expected time 2O(n).

We prove that their result cannot be improved upon: a 2QCFA (of any size) cannot recognize
Lpal with bounded error in expected time 2o(n). This is the first example of a language that can be
recognized with bounded error by a 2QCFA in exponential time but not in subexponential time.
Moreover, we prove that a quantum Turing machine (QTM) running in space o(logn) and expected
time 2n1−Ω(1)

cannot recognize Lpal with bounded error; again, this is the first lower bound of
its kind. Far more generally, we establish a lower bound on the running time of any 2QCFA or
o(logn)-space QTM that recognizes any language L in terms of a natural “hardness measure” of L.
This allows us to exhibit a large family of languages for which we have asymptotically matching
lower and upper bounds on the running time of any such 2QCFA or QTM recognizer.
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1 Introduction

Quantum algorithms, such as Shor’s quantum polynomial time integer factorization algorithm
[31], Grover’s algorithm for unstructured search [16], and the linear system solver of Harrow,
Hassidim, and Lloyd [17], provide examples of natural problems on which quantum computers
seem to have an advantage over their classical counterparts. However, these algorithms are
designed to be run on a quantum computer that has the full power of a quantum Turing
machine, whereas current experimental quantum computers only possess a rather limited
quantum part. In particular, current state-of-the-art quantum computers have a very small
amount of quantum memory. For example, Google’s “Sycamor” quantum computer, used in
their famous recent quantum supremacy experiment [5], operates on only 53 qubits.

In this paper, we study the power quantum computers that have only a small amount of
memory. We begin by considering two-way finite automata with quantum and classical states
(2QCFA), originally defined by Ambainis and Watrous [2]. Informally, a 2QCFA is a two-way
deterministic finite automaton (2DFA) that has been augmented by a quantum register of
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constant size. 2QCFA are surprisingly powerful, as originally demonstrated by Ambainis
and Watrous, who showed that a 2QCFA, with only a single-qubit quantum register, can
recognize, with bounded error, the language Leq = {ambm : m ∈ N} in expected time O(n4)
and the language Lpal = {w ∈ {a, b}∗ : w is a palindrome} in expected time 2O(n). In a
recent paper [27], we presented further evidence of the power of few qubits by showing that
2QCFA are capable of recognizing many group word problems with bounded error.

It is known that 2QCFA are more powerful than 2DFA and two-way probabilistic finite
automata (2PFA). A 2DFA can only recognize regular languages [25]. A 2PFA can recognize
some nonregular languages with bounded error, given sufficient running time: in particular,
a 2PFA can recognize Leq with bounded error in expected time 2O(n) [13]. However, a 2PFA
cannot recognize Leq with bounded error in expected time 2o(n), by a result of Greenberg
and Weiss [14]; moreover, a 2PFA cannot recognize Lpal with bounded error in any time
bound [11]. More generally, the landmark result of Dwork and Stockmeyer [10] showed that
a 2PFA cannot recognize any nonregular language in expected time 2no(1) . In order to prove
this statement, they defined a particular “hardness measure” DL : N→ N of a language L.
They showed that, if a 2PFA recognizes some language L with bounded error in expected
time at most T (n) on all inputs of length at most n, then there is a positive real number a
(that depends only on the number of states of the 2PFA), such that T (n) = Ω

(
2DL(n)a) [10,

Lemma 4.3]; we will refer to this statement as the “Dwork-Stockmeyer lemma.”
Very little was known about the limitations of 2QCFA. Are there any languages that a

single-qubit 2QCFA can recognize with bounded error in expected exponential time but not
in expected subexponential time? In particular, is it possible for a single-qubit 2QCFA to
recognize Lpal in subexponential time, or perhaps even in polynomial time? More generally,
are there any languages that a 2QCFA (that is allowed to have a quantum register of any
constant size) can recognize with bounded error in exponential time but not in subexponential
time? These natural questions, to our knowledge, were all open (see, for instance, [2, 3, 39]
for previous discussions of these questions).

In this paper, we answer these and other related questions. We first prove an analogue of
the Dwork-Stockmeyer lemma for 2QCFA.

I Theorem 1. If a 2QCFA recognizes some language L with bounded error in expected time
at most T (n) on all inputs of length at most n, then there a positive real number a (that
depends only on the number of states of the 2QCFA), such that T (n) = Ω (DL(n)a).

This immediately implies that the result of Ambainis and Watrous [2] cannot be improved.

I Corollary 2. 2QCFA (of any size) cannot recognize Lpal with bounded error in time 2o(n).

One of the key tools used in our proof is a quantum version of Hennie’s [18] notion of
a crossing sequence, which may be of independent interest. Crossing sequences played an
important role in the aforementioned 2PFA results of Dwork and Stockmeyer [10] and of
Greenberg and Weiss [14]. We note that, while our lower bound on the running time of
a 2QCFA is exponentially weaker than the lower bound on the running time of a 2PFA
provided by the Dwork-Stockmeyer lemma, both lower bounds are in fact (asymptotically)
tight; the exponential difference provides yet another example of a situation in which quantum
computers have an exponential advantage over their classical counterparts. We also establish
a lower bound on the expected running time of a 2QCFA recognizer of L in terms of the
one-way deterministic communication complexity of testing membership in L.

We then generalize our results to prove a lower bound on the expected running time T (n)
of a quantum Turing machine (QTM) that uses sublogarithmic space (i.e., o(logn) space)
and recognizes a language L with bounded error, where this lower bound is also in terms
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of DL(n). In particular, we show that Lpal cannot be recognized with bounded error by
a QTM that uses sublogarithmic space and runs in expected time 2n1−Ω(1) . This result is
particularly intriguing, as Lpal can be recognized by a deterministic TM in O(logn) space
(and, trivially, polynomial time); therefore, Lpal provides an example of a natural problem
for which polynomial time quantum TMs have no (asymptotic) advantage over polynomial
time deterministic TMs in terms of the needed amount of space.

Furthermore, we show that the class of languages recognizable with bounded error by a
2QCFA in expected polynomial time is contained in L/poly. This result, which shows that
the class of languages recognizable by a particular quantum model is contained in the class of
languages recognizable by a particular classical model, is a type of dequantization result. It is
(qualitatively) similar to the Adleman-type [1] derandomization result BPL ⊆ L/poly, where
BPL denotes the class of languages recognizable with bounded error by a probabilistic Turing
machine (PTM) that uses O(logn) space and runs in expected polynomial time. The only
previous dequantization result was of a very different type: the class of languages recognizable
by a 2QCFA, or more generally a QTM that uses O(logn) space, with algebraic number
transition amplitudes (even with unbounded error and with no time bound), is contained
in DSPACE(O(log2 n)) [35]. This dequantization result is analogous to the derandomization
result: the class of languages recognizable by a PTM that uses O(logn) space (even with
unbounded error and with no time bound), is contained in DSPACE(O(log2 n)) [7].

We also investigate which group word problems can be recognized by 2QCFA or QTMs
with particular resource bounds. Informally, the word problem of a finitely generated group is
the problem of determining if the product of a sequence of elements of that group is equal to
the identity element. There is a deep connection between the algebraic properties of a finitely
generated group G and the complexity of its word problem WG, as has been demonstrated by
many famous results; for example, WG ∈ REG⇔ G is finite [4], WG ∈ CFL⇔ G is virtually
free [23, 9], WG ∈ NP ⇔ G is a subgroup of a finitely presented group with polynomial
Dehn function [6]. We have recently shown that if G is virtually abelian, then WG may be
recognized with bounded error by a single-qubit 2QCFA in polynomial time, and that, for
any group G in a certain broad class of groups of exponential growth, WG may be recognized
with bounded error by a 2QCFA in time 2O(n) [27].

We now show that, if G has exponential growth, then WG cannot be recognized by a
2QCFA with bounded error in time 2o(n), thereby providing a broad and natural class of
languages that may be recognized by a 2QCFA in time 2O(n) but not 2o(n). We also show
that, if WG is recognizable by a 2QCFA with bounded error in expected polynomial time,
then G must be virtually nilpotent (i.e., G must have polynomial growth), thereby obtaining
progress towards an exact classification of those word problems recognizable by a 2QCFA in
polynomial time. Furthermore, we show analogous results for sublogarithmic-space QTMs.

2 Preliminaries

2.1 Quantum Computation
In this section, we briefly recall the fundamentals of quantum computation needed in this
paper (see, for instance, [37, 24] for a more detailed presentation of the material in this
section). We begin by establishing some notation. Let V denote a finite-dimensional complex
Hilbert space with inner product 〈·, ·〉 : V × V → C. We use the standard Dirac bra-ket
notation throughout this paper. We denote elements of V by kets: |ψ〉, |ϕ〉, |q〉, etc. For the
ket |ψ〉 ∈ V , we define the corresponding bra 〈ψ| ∈ V ∗ to be the linear functional on V given
by 〈|ψ〉 , ·〉 : V → C. We write 〈ψ|ϕ〉 to denote 〈|ψ〉 , |ϕ〉〉. Let L(V ) denote the C-vector
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space consisting of all C-linear maps of the form A : V → V . For |ψ〉 , |ϕ〉 ∈ V , we define
|ψ〉 〈ϕ| ∈ L(V ) in the natural way: for |ρ〉 ∈ V , |ψ〉 〈ϕ| (|ρ〉) = |ψ〉 〈ϕ|ρ〉 = 〈ϕ|ρ〉 |ψ〉. Let
1V ∈ L(V ) denote the identity operator on V and let 0V ∈ L(V ) denote the zero operator
on V . For A ∈ L(V ), we define A† ∈ L(V ), the Hermitian transpose of A, to be the unique
element of L(V ) such that 〈A |ψ1〉 , |ψ2〉〉 = 〈|ψ1〉 , A† |ψ2〉, ∀ |ψ1〉 , |ψ2〉 ∈ V . Let Herm(V ) =
{A ∈ L(V ) : A = A†}, Pos(V ) = {A†A : A ∈ L(V )}, Proj(V ) = {A ∈ Pos(V ) : A2 = A},
U(V ) = {A ∈ L(V ) : AA† = 1V }, and Den(V ) = {A ∈ Pos(V ) : Tr(A) = 1} denote,
respectively, the set of Hermitian, positive semi-definite, projection, unitary, and density
operators on V .

A quantum register is specified by a finite set of quantum basis states Q = {q0, . . . , qk−1}.
Corresponding to these k quantum basis states is an orthonormal basis {|q0〉 , . . . , |qk−1〉}
of the finite-dimensional complex Hilbert space CQ ∼= Ck. The quantum register stores a
superposition |ψ〉 =

∑
q αq |q〉 ∈ CQ, where each αq ∈ C and

∑
q|αq|2 = 1; in other words, a

superposition |ψ〉 is simply an element of CQ of norm 1.
Following the original definition of Ambainis and Watrous [2], a 2QCFA may only

interact with its quantum register in two ways: by applying a unitary transformation or
performing a quantum measurement. If the quantum register is currently in the superposition
|ψ〉 ∈ CQ, then after applying the unitary transformation T ∈ U(CQ), the quantum register
will be in the superposition T |ψ〉. A von Neumann measurement is specified by some
P1, . . . , Pl ∈ Proj(CQ), such that PiPj = 0CQ , ∀i, j with i 6= j, and

∑
j Pj = 1CQ . Quantum

measurement is a probabilistic process where, if the quantum register is in the superposition
|ψ〉, then the result of the measurement has the value r ∈ {1, . . . , l} with probability ‖Pr |ψ〉‖2;
if the result is r, then the quantum register collapses to the superposition 1

‖Pr|ψ〉‖Pr |ψ〉. We
emphasize that quantum measurement changes the state of the quantum register.

An ensemble of pure states of the quantum register is a set {(pi, |ψi〉) : i ∈ I}, for
some index set I, where pi ∈ [0, 1] denotes the probability of the quantum register being in
the superposition |ψi〉, and

∑
i pi = 1. This ensemble corresponds to the density operator

A =
∑
i pi |ψi〉 〈ψi| ∈ Den(CQ). Of course, many distinct ensembles correspond to the density

operator A; however, all ensembles that correspond to a particular density operator will
behave the same, for our purposes (see, for instance, [24, Section 2.4] for a detailed discussion
of this phenomenon, and of the following claims). That is to say, for any ensemble described
by a density operator A ∈ Den(CQ), applying the transformation T ∈ U(CQ) produces an
ensemble described by the density operator TAT †. Similarly, when performing the von
Neumann measurement specified by some P1, . . . , Pl ∈ Proj(CQ), the probability that the
result of this measurement is r is given by Tr(PrAP †r ), and if the result is r then the ensemble
collapses to an ensemble described by the density operator 1

Tr(PrAP
†
r )
PrAP

†
r .

Let V and V ′ denote a pair of finite-dimensional complex Hilbert spaces. Let T(V, V ′)
denote the C-vector space consisting of all C-linear maps of the form Φ : L(V ) → L(V ′).
Define T(V ) = T(V, V ) and let 1L(V ) ∈ T(V ) denote the identity operator. Consider some Φ ∈
T(V, V ′). We say that Φ is positive if, ∀A ∈ Pos(V ), we have Φ(A) ∈ Pos(V ′). We say that Φ
is completely-positive if, for every finite-dimensional complex Hilbert space W , Φ⊗ 1L(W ) is
positive, where ⊗ denotes the tensor product. We say that Φ is trace-preserving if, ∀A ∈ L(V ),
we have Tr(Φ(A)) = Tr(A). If Φ is both completely-positive and trace-preserving, then we
say Φ is a quantum channel. Let Chan(V, V ′) = {Φ ∈ T(V, V ′) : Φ is a quantum channel}
denote the set of all such channels, and define Chan(V ) = Chan(V, V ).

As we wish for our lower bound to be a strong as possible, we wish to consider a
variant of the 2QCFA model that is as strong as possible; in particular, we will allow a
2QCFA to perform any physically realizable quantum operation on its quantum register.
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Following Watrous [35], a selective quantum operation E is specified by a set of operators
{Er,j : r ∈ R, j ∈ {1, . . . , l}} ⊆ L(CQ), where R is a finite set and l ∈ N≥1 (throughout the
paper, we write N≥1 to denote the positive natural numbers, R≥0 to denote the nonnegative
real numbers, etc.), such that

∑
r,j E

†
r,jEr,j = 1CQ . For r ∈ R, we define Φr ∈ T(CQ) such

that, Φr(A) =
∑
j Er,jAE

†
r,j , ∀A ∈ L(V ). Then, if the quantum register is described by some

density operator A ∈ Den(CQ), applying E will have result r ∈ R with probability Tr(Φr(A));
if the result is r, then the quantum register is described by density operator 1

Tr(Φr(A))Φr(A).
Both unitary transformations and von Neumann measurements are special cases of selective
quantum operations. For any E , one may always obtain a family of operators that represent
E with l ≤ |Q|2 [37, Theorem 2.22], and therefore with l = |Q|2 (by defining any extraneous
operators to be 0CQ). Let QuantOp(CQ, R) denote the set of all selective quantum operations
specified by some {Er,j : r ∈ R, j ∈ {1, . . . , |Q|2}} ⊆ L(CQ).

2.2 Definition of the 2QCFA Model
Next, we define two-way finite automata with quantum and classical states (2QCFA),
essentially following the original definition of Ambainis and Watrous [2], with a few alterations
that (potentially) make the model stronger. We wish to define the 2QCFA model to be as
strong as possible so that our lower bounds against this model are as general as possible.

Informally, a 2QCFA is a two-way DFA that has been augmented with a quantum register
of constant size; the machine may apply unitary transformations to the quantum register
and perform (perhaps many) measurements of its quantum register during its computation.
Formally, a 2QCFA is a 10-tuple, N = (Q,C,Σ, R, θ, δ, qstart, cstart, cacc, crej), where Q is a
finite set of quantum basis states, C is a finite set of classical states, Σ is a finite input
alphabet, R is a finite set that specifies the possible results of selective quantum operations,
θ and δ are the quantum and classical parts of the transition function, qstart ∈ Q is the
quantum start state, cstart ∈ C is the classical start state, and cacc, crej ∈ C, with cacc 6= crej,
specify the classical accept and reject states, respectively. We define #L,#R 6∈ Σ, with
#L 6= #R, to be special symbols that serve as a left and right end-marker, respectively;
we then define the tape alphabet Σ+ = Σ t {#L,#R}. Let Ĉ = C \ {cacc, crej} denote
the non-halting classical states. The components of the transition function are as follows:
θ : Ĉ × Σ+ → QuantOp(CQ, R) specifies the selective quantum operation that is to be
performed on the quantum register and δ : Ĉ × Σ+ ×R→ C × {−1, 0, 1} specifies how the
classical state and (classical) head position evolve.

On an input w = w1 · · ·wn ∈ Σ∗, with each wi ∈ Σ, the 2QCFA N operates as follows.
The machine has a read-only tape that contains the string #Lw1 · · ·wn#R. Initially, the
classic state of N is cstart, the quantum register is in the superposition |qstart〉, and the head
is at the left end of the tape, over the left end-marker #L. On each step of the computation,
if the classic state is currently c ∈ Ĉ and the head is over the symbol σ ∈ Σ+, N behaves as
follows. First, the selective quantum operation θ(c, σ) is performed on the quantum register
producing some result r ∈ R. If the result was r, and δ(c, σ, r) = (c′, d), where c′ ∈ C and
d ∈ {−1, 0, 1}, then the classical state becomes c′ and the head moves left (resp. stays put,
moves right) if d = −1 (resp. d = 0, d = 1).

Due to the fact that applying a selective quantum operation is a probabilistic process,
the computation of N on an input w is probabilistic. We say that a 2QCFA N recognizes a
language L with two-sided bounded error ε if, ∀w ∈ L, Pr[N accepts w] ≥ 1− ε, and, ∀w 6∈ L,
Pr[N accepts w] ≤ ε. We then define B2QCFA(k, d, T (n), ε) as the class of languages L for
which there is a 2QCFA, with at most k quantum basis states and at most d classical states,
that recognizes L with two-sided bounded error ε, and has expected running time at most
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T (n) on all inputs of length at most n. In order to make our lower bound as strong as
possible, we do not require N to halt with probability 1 on all w ∈ Σ∗ (i.e., we permit N to
reject an input by looping).

3 2QCFA Crossing Sequences

In this section, we develop a generalization of Hennie’s [18] notion of crossing sequences
to 2QCFA, in which we make use of several ideas from the 2PFA results of Dwork and
Stockmeyer [10] and Greenberg and Weiss [14]. This notion will play a key role in our proof
of a lower bound on the expected running time of a 2QCFA.

When a 2QCFA N = (Q,C,Σ, R, θ, δ, qstart, cstart, cacc, crej) is run on an input w =
w1 · · ·wn ∈ Σ∗, where each wi ∈ Σ, the tape consists of #Lw1 · · ·wn#R. One may describe
the configuration of a single probabilistic branch of N at any particular point in time by a
triple (A, c, h), where A ∈ Den(CQ) describes the current state of the quantum register, c ∈ C
is the current classical state, and h ∈ {0, . . . , n+ 1} is the current head position. To clarify,
each step of the computation of N involves applying a selective quantum operation, which
is a probabilistic process that produces a particular result r ∈ R with a certain probability
(depending on the operation that is performed and the state of the quantum register); that
is to say, the 2QCFA probabilistically branches, with a child for each r ∈ R.

We partition the input as w = xy, in some manner to be specified later. We then imagine
running N beginning in the configuration (A, c, |x|), where |x| denotes the length of the
string x (i.e., the head is initially over the rightmost symbol of #Lx). We wish to describe
the configuration (or, more accurately, ensemble of configurations) that N will be in when it
“finishes computing” on the prefix #Lx, either by “leaving” the string #Lx (by moving its
head right when over the rightmost symbol of #Lx), or by accepting or rejecting its input.
Of course, N may leave #Lx, then later reenter #Lx, then later leave #Lx again, and so on,
which will naturally lead to our notion of a crossing sequence. Note that the string y does
not affect this subcomputation as it occurs entirely within the prefix #Lx.

More generally, we consider the case in which N is run on the prefix #Lx, where N
starts in some ensemble of configurations {(pi, (Ai, ci, |x|)) : i ∈ I}, where the probability
of being in configuration (Ai, ci, |x|) is given by pi (note that the head position in each
configuration is over the rightmost symbol of #Lx); we call this ensemble a starting ensemble.
We then wish to describe the ensemble of configurations that N will be in when it “finishes
computing” on the prefix #Lx, (essentially) as defined above; we call this ensemble a stopping
ensemble1. Much as it was the case that an ensemble of pure states of a quantum register
can be described by a density operator, we may also describe an ensemble of configurations
of a 2QCFA using density operators. This will greatly simplify our definition and analysis of
the crossing sequence of a 2QCFA.

3.1 Describing Ensembles of Configurations of 2QCFA
The 2QCFA N posseses both a constant-sized quantum register, that is described by some
density operator at any particular point in time, and a constant-sized classical register, that
stores a classical state c ∈ C. We can naturally interpret each c ∈ C as an element |c〉 ∈ CC ,
of a special type; that is to say, each classical state c corresponds to some element |c〉 in the

1 We use the terms “starting ensemble” and “stopping ensemble” to make clear the similarity to the
notion of a “starting condition” and of a “stopping condition” used by Dwork and Stockmeyer [10] in
their 2PFA result.
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natural orthonormal basis of CC (whereas each superposition |ψ〉 of the quantum register
corresponds to an element of CQ of norm 1). One may also view N as possessing a head
register that stores a (classical) head position h ∈ Hx = {0, . . . , |x|+ 1} (when computing on
the prefix #Lx); of course, the size of this pseudo-register grows with the input prefix x. We
analogously interpret a head position h ∈ Hx as being the “classical” element |h〉 ∈ CHx . A
configuration (A, c, h) ∈ Den(CQ)× C ×Hx is then simply a state of the combined register,
which consists of the quantum, classical, and head registers.

We then consider an ensemble of configurations {(pi, (Ai, ci, hi)) : i ∈ I}, where pi denotes
the probability of being in configuration (Ai, ci, hi). We represent this ensemble (non-uniquely)
by the density operator Z =

∑
i

(
piAi ⊗ |ci〉 〈ci| ⊗ |hi〉 〈hi|

)
∈ Den(CQ ⊗ CC ⊗ CHx). Let

î(c, h) = {i ∈ I : (ci, hi) = (c, h)} denote the indices of those configurations in classical state c
and with head position h. We then define p : C ×Hx → [0, 1] such that p(c, h) =

∑
i∈̂i(c,h) pi

is the total probability of being in classical state c and having head position h. We define
A : C × Hx → Den(CQ) such that, if p(c, h) 6= 0, then A(c, h) =

∑
i∈̂i(c,h)

pi

p(c,h)Ai is the
density operator obtained by “merging” all density operators Ai that come from configurations
(Ai, ci, hi) with classical state ci = c and head position hi = h; if p(c, h) = 0, then we define
A(c, h) arbitrarily. Then Z =

∑
c,h

(
p(c, h)A(c, h)⊗|c〉 〈c|⊗|h〉 〈h|

)
. Let D̂en(CQ⊗CC⊗CHx)

denote the set of all density operators given by some Z of the above form (i.e., those density
operators that respect the fact that both the classical state and head position are classical).

We also consider the case in which we are only interested in the states of the quantum
and classical registers, but not the head position. We then analogously describe an ensemble
{(pi, (Ai, ci)) : i ∈ I} by Z =

∑
i

(
piAi⊗|ci〉 〈ci|

)
∈ Den(CQ⊗CC), and we define D̂en(CQ⊗

CC) to be the set of all such density operators. In a starting ensemble, all configurations
have the same head position: |x|. We define Ix ∈ T(CQ ⊗ CC ,CQ ⊗ CC ⊗ CHx) such that
Ix(Z) = Z ⊗ ||x|〉 〈|x||. Similarly, in a stopping ensemble, all configurations either have head
position |x|+ 1 or are accepting or rejecting configurations (in which the head position is
irrelevant). Let TrCHx = 1L(CQ⊗CC) ⊗ Tr ∈ T(CQ ⊗ CC ⊗ CHx ,CQ ⊗ CC) denote the partial
trace with respect to CHx .

3.2 Definition and Properties of 2QCFA Crossing Sequences
We now formally define the notion of a crossing sequence of a 2QCFA and prove certain
needed properties. We begin by establishing some notation.

I Definition 3. Consider a 2QCFA N = (Q,C,Σ, R, θ, δ, qstart, cstart, cacc, crej). For c ∈ Ĉ =
C \ {cacc, crej}, σ ∈ Σ+ = Σ t {#L,#R}, r ∈ R, and j ∈ J = {1, . . . , |Q|2}, we make the
following definitions.
(i) Define Ec,σ,r,j ∈ L(CQ) such that θ(c, σ) ∈ QuantOp(CQ, R) is described by {Ec,σ,r,j :

r ∈ R, j ∈ J}.
(ii) Define Φc,σ,r ∈ T(CQ) such that Φc,σ,r(A) =

∑
j Ec,σ,r,jAE

†
c,σ,r,j , ∀A ∈ L(CQ).

(iii) Let γc,σ,r ∈ C and dc,σ,r ∈ {−1, 0, 1} denote, respectively, the new classical state and the
motion of the head, if the result of applying θ(c, σ) is r; i.e., δ(c, σ, r) = (γc,σ,r, dc,σ,r).

Consider some x ∈ Σ∗. Let Ĥx = {0, . . . , |x|} denote the head positions corresponding
to the prefix #Lx, and let Hx = {0, . . . , |x| + 1} denote the set of possible positions the
head of N may be in until it “finishes computing” on the prefix #Lx. We define an operator
Sx ∈ T(CQ ⊗ CC ⊗ CHx) that describes a single step of the computation of N on #Lx,
as follows. If (c, h) ∈ Ĉ × Ĥx, then Sx(A ⊗ |c〉 〈c| ⊗ |h〉 〈h|) describes the ensemble of
configurations of N after running N for a single step beginning in the configuration (A, c, h);
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otherwise (i.e., if c ∈ {cacc, crej} or h = |x|+ 1, which means N has “finished computing” on
#Lx) Sx leaves the configuration unchanged. We will observe that Sx correctly describes
the behavior of N on an ensemble of configurations, and that Sx is a quantum channel.

I Definition 4. Using the notation of Definition 3, consider a 2QCFA N and a string x ∈ Σ∗.
Let xh ∈ Σ denote the symbol of x at position h, and let x0 = #L denote the left end-marker.
(i) For (c, h, r, j) ∈ C ×Hx ×R× J , define Ẽx,c,h,r,j ∈ L(CQ ⊗ CC ⊗ CHx) as follows.

Ẽx,c,h,r,j =

Ec,xh,r,j ⊗ |γc,xh,r〉 〈c| ⊗ |h+ dc,xh,r〉 〈h| , if (c, h) ∈ Ĉ × Ĥ
1√
|R||J|

1CQ ⊗ |c〉 〈c| ⊗ |h〉 〈h| , otherwise.

(ii) Define Sx ∈ T(CQ ⊗ CC ⊗ CHx) such that

Sx(Z) =
∑

(c,h,r,j)∈C×Hx×R×J

Ẽx,c,h,r,jZẼ
†
x,c,h,r,j , ∀Z ∈ L(CQ ⊗ CC ⊗ CHx).

I Lemma 5. Using the above notation, consider some x ∈ Σ∗ and (A, ĉ, ĥ) ∈ Den(CQ)× Ĉ×
Ĥx. Let Ẑ = A⊗ |ĉ〉 〈ĉ| ⊗

∣∣∣ĥ〉〈ĥ∣∣∣. Sx(Ẑ) describes the ensemble of configurations obtained

after running N for one step, beginning in the configuration (A, ĉ, ĥ), on input prefix #Lx.

Proof. Let R̃
x,̂c,̂h,A

= {r ∈ R : Tr(Φ
ĉ,x

ĥ
,r

(A)) 6= 0}. Note that A ∈ Den(CQ) ⊆ Pos(CQ),

which implies Φ
ĉ,xĥ,r

(A) ∈ Pos(CQ); therefore, we have Tr(Φ
ĉ,xĥ,r

(A)) = 0 precisely when
Φ
ĉ,xĥ,r

(A) = 0CQ . After running N as described, it is in an ensemble of configurations{(
Tr(Φ

ĉ,xĥ,r
(A)),

(
1

Tr(Φ
ĉ,xĥ,r

(A))Φ
ĉ,xĥ,r

(A), γ
ĉ,xĥ,r

, ĥ+ d
ĉ,xĥ,r

))
: r ∈ R̃

x,̂c,̂h,A

}
.

This ensemble of configurations is described by the density operator Ẑ ′ given by

Ẑ′ =
∑

r∈R̃
x,̂c,̂h,A

(
Tr(Φ

ĉ,x
ĥ

,r
(A))

Tr(Φ
ĉ,x

ĥ
,r

(A))Φ
ĉ,x

ĥ
,r

(A)⊗
∣∣∣γ

ĉ,x
ĥ

,r

〉〈
γ

ĉ,x
ĥ

,r

∣∣∣⊗ ∣∣∣ĥ+ d
ĉ,x

ĥ
,r

〉〈
ĥ+ d

ĉ,x
ĥ

,r

∣∣∣)

=
∑
r∈R

(
Φ

ĉ,x
ĥ

,r
(A)⊗

∣∣∣γ
ĉ,x

ĥ
,r

〉〈
γ

ĉ,x
ĥ

,r

∣∣∣⊗ ∣∣∣ĥ+ d
ĉ,x

ĥ
,r

〉〈
ĥ+ d

ĉ,x
ĥ

,r

∣∣∣) .
Let B

x,̂c,̂h,r
=
∣∣∣γĉ,xĥ,r

〉〈
γ
ĉ,xĥ,r

∣∣∣⊗ ∣∣∣ĥ+ d
ĉ,xĥ,r

〉〈
ĥ+ d

ĉ,xĥ,r

∣∣∣. If (c, h) ∈ Ĉ × Ĥx, then

Ẽx,c,h,r,jẐẼ
†
x,c,h,r,j = Ẽx,c,h,r,j

(
A⊗ |ĉ〉 〈ĉ| ⊗

∣∣∣ĥ〉〈ĥ∣∣∣) Ẽ†x,c,h,r,j

= Ec,xh,r,jAE
†
c,xh,r,j ⊗ |γc,xh,r〉 〈c|ĉ〉 〈ĉ|c〉 〈γc,xh,r| ⊗ |h+ dc,xh,r〉

〈
h|ĥ
〉〈

ĥ|h
〉
〈h+ dc,xh,r|

=

{
E

ĉ,x
ĥ

,r,j
AE†

ĉ,x
ĥ

,r,j
⊗B

x,̂c,̂h,r
, if (c, h) = (ĉ, ĥ)

0CQ⊗CC⊗CHx , otherwise.

If, instead, (c, h) 6∈ Ĉ × Ĥx, then Ẽx,c,h,r,jẐẼ†x,c,h,r,j = 0CQ⊗CC⊗CHx . Therefore

Sx(Ẑ) =
∑

(r,j)∈R×J

∑
(c,h)∈C×Hx

Ẽx,c,h,r,jẐẼ
†
x,c,h,r,j =

∑
(r,j)∈R×J

(
E

ĉ,x
ĥ

,r,j
AE†

ĉ,x
ĥ

,r,j
⊗B

x,̂c,̂h,r

)

=
∑
r∈R

((∑
j∈J

E
ĉ,x

ĥ
,r,j
AE†

ĉ,x
ĥ

,r,j

)
⊗B

x,̂c,̂h,r

)
=
∑
r∈R

(
Φ

ĉ,x
ĥ

,r
(A)⊗B

x,̂c,̂h,r

)
= Ẑ′. J
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I Lemma 6. Consider some x ∈ Σ∗ and Z ∈ D̂en(CQ ⊗ CC ⊗ CHx). If {(pi, (Ai, ci, hi)) :
i ∈ I} is some ensemble of configurations described by Z, then Sx(Z) describes the ensemble
of configurations obtained by replacing each configuration with (ci, hi) ∈ (Ĉ × Ĥx) by the
ensemble (scaled by pi) of configurations obtained by running N for one step beginning in the
configuration (Ai, ci, hi), and leaving each configuration with (ci, hi) 6∈ (Ĉ × Ĥx) unchanged.

Proof. This follows immediately from Lemma 5 and linearity. J

I Lemma 7. Sx ∈ Chan(CQ ⊗ CC ⊗ CHx), ∀x ∈ Σ∗.

Proof. {Ẽx,c,h,r,j : (c, h, r, j) ∈ C ×Hx ×R× J} is a Kraus representation of Sx; therefore,
Sx ∈ Chan(CQ ⊗ CC ⊗ CHx)⇔

∑
c,h,r,j

Ẽ†x,c,h,r,jẼx,c,h,r,j = 1 [37, Corollary 2.27]. This latter

statement follows from a straightforward calculation; see the full paper [26] for a proof. J

For m ∈ N, we define the m-truncated stopping ensemble as the ensemble of configura-
tions that N will be in when it “finishes computing” on #Lx, as defined earlier, with the
modification that if any particular branch of N runs for more than m steps, the computation
of that branch will be “interrupted” immediately before it attempts to perform the m+ 1st
step and instead immediately reject. To be clear, this truncation occurs only in the analysis
of N ; we do not modify the 2QCFA. The following truncation operator Tx, which terminates
all branches on which N has not yet “finished computing,” will help us do this.

I Definition 8. For (c, h) ∈ (C,Hx), let Êx,c,h = 1CQ ⊗ |c′〉 〈c| ⊗ |h〉 〈h|, where c′ = crej if
(c, h) ∈ Ĉ × Ĥx, and c′ = c otherwise. We then define Tx ∈ T(CQ ⊗ CC ⊗ CHx) such that
Tx(Z) =

∑
(c,h)∈C×Hx

Êx,c,hZÊ
†
x,c,h.

I Lemma 9. Using the above notation, the following statements hold.
(i) For any Z ∈ D̂en(CQ ⊗ CC ⊗ CHx), if {(pi, (Ai, ci, hi)) : i ∈ I} is any ensemble of

configurations described by Z, then Tx(Z) describes the ensemble of configurations
in which each configuration with (ci, hi) ∈ Ĉ × Ĥx is replaced by the configuration
(Ai, crej, hi) (i.e., all configurations in which N has not yet “finished computing” on
#Lx become rejecting configurations) and all other configurations are left unchanged.

(ii) Tx ∈ Chan(CQ ⊗ CC ⊗ CHx).

Proof.
(i) Immediate from definitions.
(ii) As in the proof of Lemma 7, we may straightforwardly show

∑
c,h Ê

†
x,c,hÊx,c,h =

1CQ⊗CC⊗CHx , which implies Tx ∈ Chan(CQ ⊗ CC ⊗ CHx) [37, Corollary 2.27]. J

The following operator converts starting ensembles to m-truncated stopping ensembles.

I Definition 10. For x ∈ Σ∗ and m ∈ N, we define the m-truncated transfer operator N
−−←⊃

x,m =
TrCHx ◦Tx◦Smx ◦Ix ∈ T(CQ⊗CC). For y ∈ Σ∗, we next consider the “dual case” of running N
on the suffix y#R beginning in some ensemble of configurations {(pi, (Ai, ci, |x|+ 1)) : i ∈ I}
(i.e., the head position of every configuration is over the leftmost symbol of y#R). We define
the notion of an m-truncated stopping ensemble, and all other notions, symmetrically. That
is to say, a branch of N “finishes computing” on y#R when it either “leaves” y#R (by
moving its head left from the leftmost symbol of y#R), or accepts or rejects the input, or
runs for more than m steps. We then define N

−−←⊃
y,m ∈ T(CQ⊗CC) as the corresponding “dual”

m-truncated transfer operator for y.
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I Lemma 11. Using the notation of Definition 10, the following statements hold.
(i) For Z ∈ D̂en(CQ⊗CC), if N is run on #Lx beginning in any ensemble of configurations

described by Ix(Z) (i.e., the head position of every configuration is over the rightmost
symbol of #Lx), then the m-truncated stopping ensemble is described by N

−−←⊃
x,m(Z).

(ii) For Z ∈ D̂en(CQ⊗CC), if N is run on y#R beginning in any ensemble of configurations
described by Ix+1(Z), then the m-truncated stopping ensemble is described by N

−−←⊃
y,m(Z).

(iii) We have N
−−←⊃

x,m, N
−−←⊃
y,m ∈ Chan(CQ ⊗ CC), ∀x, y ∈ Σ∗, ∀m ∈ N.

Proof.
(i) Immediate by Definition 10, Lemma 6, and Lemma 9(i).
(ii) Immediate by Definition 10, and analogous versions of Lemma 6, and Lemma 9(i).
(iii) By definition, N

−−←⊃
x,m = TrCHx ◦Tx ◦ Smx ◦ Ix. By Lemma 7 and Lemma 9(ii), we have

Sx, Tx ∈ Chan(CQ ⊗ CC ⊗ CHx). It is straightforward to see that Ix ∈ Chan(CQ ⊗
CC ,CQ ⊗ CC ⊗ CHx) and TrCHx ∈ Chan(CQ ⊗ CC ⊗ CHx ,CQ ⊗ CC) and that the
composition of quantum channels is a quantum channel (see, for instance, [37, Section
2.2]). The claim for N

−−←⊃
y,m follows by an analogous argument. J

Given a 2QCFA N , we produce an equivalent N ′ of a certain convenient form, in much
the same way that Dwork and Stockmeyer [10] converted a 2PFA to a convenient form. The
2QCFA N ′ is identical to N , except for the addition of two new classical states, c′start and c′,
where c′start will be the start state of N ′. On any input, N ′ will move its head to the right
until it reaches #R, performing the trivial transformation to its quantum register along the
way. When it reaches #R, N ′ will enter c′; then, N ′ will move its head to the left until it
reaches #L, again performing the trivial transformation to its quantum register. When it
reaches #L, N ′ will enter the original start state cstart and behave identically to N from this
point. For the remainder of the paper, we assume all 2QCFA have this form.

Finally, we define the m-truncated crossing sequence.

I Definition 12. For x, y ∈ Σ∗ and m ∈ N, the m-truncated crossing sequence of N with
respect to the (partitioned) input xy is the sequence Z1, Z2, . . . ∈ D̂en(CQ ⊗ CC), defined as
follows. The density operator Z1 describes the ensemble consisting of the single configuration
(of the quantum register and classical register) (|qstart〉 , cstart) that N is in when it first
crosses from #Lx into y#R, which is of this simple form due to the assumed form of N . The
sequence Z1, Z2, . . . is then obtained by starting with Z1 and alternately applying N

−−←⊃
y,m and

N
−−←⊃

x,m. To be precise,

Zi =


|qstart〉 〈qstart| ⊗ |cstart〉 〈cstart| , i = 1
N
−−←⊃
y,m(Zi−1), i > 1, i is even

N
−−←⊃

x,m(Zi−1), i > 1, i is odd.

I Remark. Note that the {Zi} that comprise a crossing sequence do not describe the ensemble
of configurations of N at particular points in time during its computation on the input xy;
instead, Zi describes the ensemble of configurations of the set of all the probabilistic branches
of N at the ith time each branch crosses between #Lx and y#R.

4 Lower Bounds on the Running Time of 2QCFA

Dwork and Stockmeyer proved a lower bound [10, Lemma 4.3] on the expected running
time T (n) of any 2PFA that recognizes any language L with bounded error, in terms of
their hardness measure DL(n). We prove that an analogous claim holds for any 2QCFA.
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The preceding quantum generalization of a crossing sequence plays a key role in the proof,
essentially taking the place of the Markov chains used both in the aforementioned result of
Dwork and Stockmeyer and in the earlier result of Greenberg and Weiss [14], which showed
that 2PFA cannot recognize Leq in subexponential time.

4.1 Nonregularity
For a language L, Dwork and Stockmeyer [10] defined a particular “hardness measure”
DL : N→ N, which they called the nonregularity of L, as follows. Let Σ be a finite alphabet,
L ⊆ Σ∗ a language, and n ∈ N. Let Σ≤n = {w ∈ Σ∗ : |w| ≤ n} denote the set of all
strings over Σ of length at most n and consider some x, x′ ∈ Σ≤n. We say that x and x′
are (L, n)-dissimilar, which we denote by writing x 6∼L,n x′, if ∃y ∈ Σ≤n−max(|x|,|x′|, such
that xy ∈ L ⇔ x′y 6∈ L. Recall the classic Myhill-Nerode inequivalence relation, in which
x, x′ ∈ Σ∗ are L-dissimilar if ∃y ∈ Σ∗, such that xy ∈ L ⇔ x′y 6∈ L. Then x, x′ ∈ Σ≤n are
(L, n)-dissimilar precisely when they are L-dissimilar, and the dissimilarity is witnessed by a
“short” string y. We then define DL(n) to be the largest h ∈ N such that ∃x1, . . . , xh ∈ Σ≤n
that are pairwise (L, n)-dissimilar (i.e., xi 6∼L,n xj , ∀i, j with i 6= j).

In fact, DL has been defined by many authors, both before and after Dwork and Stock-
meyer, who gave many different names to this quantity and who (repeatedly) rediscovered
certain basic facts about it; we refer the reader to the excellent paper of Shallit and Breitbart
[30] for a detailed history of the study of DL and related hardness measures.

4.2 A 2QCFA Analogue of the Dwork-Stockmeyer Lemma
We now prove that an analogue of the Dwork-Stockmeyer lemma holds for 2QCFA. The main
idea is as follows. Suppose the 2QCFA N recognizes L ⊆ Σ∗, with two-sided bounded error ε,
in expected time at most T (n). We show that, ifDL(n) is “large,” then, for anym ∈ N, we can
find x, x′ ∈ Σ≤n such that x 6∼L,n x′ and the distance between the corresponding m-truncated
transfer operators N

−−←⊃
x,m and N

−−←⊃
x′,m is “small.” By definition, ∃y ∈ Σ≤n−max(|x|,|x′|), such that

xy ∈ L⇔ x′y 6∈ L; note that xy, x′y ∈ Σ≤n. Without loss of generality, we assume xy ∈ L,
and hence x′y 6∈ L. We also show that, for m sufficiently large, if the distance between
N

−−←⊃
x,m and N

−−←⊃
x′,m is “small,” then the behavior of N on the partitioned inputs xy and x′y

will be similar; in particular, if T (n) is “small,” then Pr[N accepts xy] ≈ Pr[N accepts x′y].
However, as xy ∈ L, we must have Pr[N accepts xy] ≥ 1− ε, and as x′y 6∈ L, we must have
Pr[N accepts x′y] ≤ ε, which is impossible. This contradiction allows us to establish a lower
bound on T (n) in terms of DL(n). In this section, we formalize this idea.

Recall that the trace norm ‖·‖1 : L(V )→ R≥0 is given by ‖Z‖1 = Tr(
√
Z†Z), ∀Z ∈ L(V ),

and the induced trace norm ‖·‖1 : T(V, V ′) → R≥0, is given ‖Φ‖1 = sup{‖Φ(Z)‖1 : Z ∈
L(V ), ‖Z‖1 ≤ 1}, ∀Φ ∈ T(V, V ′). Suppose N is run on two distinct partitioned inputs xy
and x′y, producing two distinct m-truncated crossing sequences, following Definition 12. We
first show that if ‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1 is “small”, then these crossing sequences are similar.

I Lemma 13. Consider a 2QCFA N with quantum basis states Q, classical states C, and
input alphabet Σ. For x, x′, y ∈ Σ∗ and m ∈ N, let Z1, Z2, . . . ∈ D̂en(CQ ⊗ CC) (resp.
Z ′1, Z

′
2, . . . ∈ D̂en(CQ ⊗ CC)) denote the m-truncated crossing sequence obtained when N is

run on xy (resp. x′y). Then ‖Zi − Z ′i‖1 ≤ b i−1
2 c‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1, ∀i ∈ N≥1.

Proof. By definition, Z1 = |qstart〉 〈qstart| ⊗ |cstart〉 〈cstart| = Z ′1, and so ‖Z1 − Z ′1‖1 = 0.
Note that ‖Φ(Z)‖1 ≤ ‖Z‖1, ∀Z ∈ L(CQ ⊗ CC), ∀Φ ∈ Chan(CQ ⊗ CC) [37, Corollary
3.40]. Therefore, for any Φ ∈ Chan(CQ ⊗ CC) and any Z,Z ′ ∈ L(CQ ⊗ CC), we have
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‖Φ(Z) − Φ(Z ′)‖1 = ‖Φ(Z − Z ′)‖1 ≤ ‖Z − Z ′‖1. By Lemma 11(iii), N
−−←⊃

x,m, N
−−←⊃

x′,m, N
−−←⊃
y,m ∈

Chan(CQ ⊗ CC). For i even, Zi = N
−−←⊃
y,m(Zi−1) and Z ′i = N

−−←⊃
y,m(Z ′i−1). We then have

‖Zi − Z ′i‖1 = ‖N
−−←⊃
y,m(Zi−1)−N

−−←⊃
y,m(Z ′i−1)‖1 ≤ ‖Zi−1 − Z ′i−1‖1.

For odd i > 1, Zi = N
−−←⊃

x,m(Zi−1) and Z ′i = N
−−←⊃

x′,m(Z ′i−1). We have ‖Z‖1 = 1, ∀Z ∈
Den(CQ ⊗ CC), which implies ‖Φ(Z)‖1 ≤ ‖Φ‖1, ∀Φ ∈ T(CQ ⊗ CC). Therefore,

‖Zi − Z ′i‖1 = ‖N
−−←⊃

x,m(Zi−1)−N
−−←⊃

x′,m(Z ′i−1)‖1

≤ ‖N
−−←⊃

x,m(Zi−1)−N
−−←⊃

x,m(Z ′i−1)‖1 + ‖N
−−←⊃

x,m(Z ′i−1)−N
−−←⊃

x′,m(Z ′i−1)‖1

= ‖N
−−←⊃

x,m(Zi−1−Z ′i−1)‖1 +‖(N
−−←⊃

x,m−N
−−←⊃

x′,m)(Z ′i−1)‖1 ≤ ‖Zi−1−Z ′i−1‖1 +‖N
−−←⊃

x,m−N
−−←⊃

x′,m‖1
The claim then follows by induction on i ∈ N≥1. J

I Lemma 14. Consider a language L ⊆ Σ∗. Suppose L ∈ B2QCFA(k, d, T (n), ε), for some
k, d ∈ N≥2, T : N→ N, and ε ∈ [0, 1

2 ). If, for some n ∈ N, ∃x, x′ ∈ Σ≤n such that x 6∼L,n x′,
then T (n) ≥ (1−2ε)2

2 ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖
−1
1 , ∀m ≥ d 2

1−2εT (n)e.

Proof. By definition, x 6∼L,n x′ precisely when ∃y ∈ Σ∗ such that xy, x′y ∈ Σ≤n, and
xy ∈ L⇔ x′y 6∈ L. Fix such a y, and assume, without loss of generality, that xy ∈ L (and
hence x′y 6∈ L). For m ∈ N, suppose that, when N is run on the partitioned input xy (resp.
x′y), we obtain the m-truncated crossing sequence Zm,1, Zm,2, . . . ∈ D̂en(CQ ⊗ CC) (resp.
Z ′m,1, Z

′
m,2, . . . ∈ D̂en(CQ ⊗ CC)). For c ∈ C, let Ec = 1CQ ⊗ |c〉 〈c| ∈ L(CQ ⊗ CC). For

s ∈ N≥1, define pm,s, p′m,s : C → [0, 1] such that pm,s(c) = Tr(EcZm,sE†c) and p′m,s(c) =
Tr(EcZ ′m,sE†c ). Then, for any c ∈ C, Lemma 13 implies

|pm,s(c)− p′m,s(c)| = |Tr(EcZm,sE†c )− Tr(EcZ ′m,sE†c )| = |Tr(Ec(Zm,s − Z ′m,s)E†c )|

≤ ‖Zm,s − Z ′m,s‖1 ≤
s− 1

2 ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1.

Notice that pm,s(cacc) (resp. p′m,s(cacc)) is the probability that N accepts xy (resp. x′y)
within the first s times (on a given branch of the computation) the head of N crosses the
boundary between x (resp. x′) and y, where any branch that runs for more than m steps
between consecutive boundary crossings is forced to halt and reject immediately before
attempting to perform the m + 1st such step. Let pN (w) denote the probability that N
accepts an input w ∈ Σ∗, let pN (w, s) denote the probability that N accepts w within s

steps, and let hN (w, s) denote the probability that N halts on input w within s steps.
Note that x′y 6∈ L implies pN (x′y) ≤ ε. Clearly, p′m,s(cacc) ≤ pN (x′y), for any m and s,

as all branches that attempt to perform more than m steps (between consecutive crossings)
are considered to reject the input in the m-truncated crossing sequence. Suppose s ≤ m. Any
branch that runs for a total of at most s steps before halting is unaffected by m-truncation.
Moreover, if a branch accepts within s steps, it will certainly accept within s crossings
between #Lx and y#R. This implies pN (xy, s) ≤ pm,s(cacc). Therefore, if s ≤ m,

pN (xy, s) ≤ pm,s(cacc) ≤ p′m,s(cacc)+ |pm,s(cacc)−p′m,s(cacc)| ≤ ε+ s− 1
2 ‖N

−−←⊃
x,m−N

−−←⊃
x′,m‖1.

The expected running time of N on input xy is at most T (|xy|). By Markov’s inequality,
1− hN (xy, s) ≤ T (|xy|)

s . Note that xy ∈ L implies pN (xy) ≥ 1− ε. Thus, for any m ≥ s ≥ 1,

1− ε ≤ pN (xy) ≤ pN (xy, s) + (1− hN (xy, s)) ≤ ε+ s− 1
2 ‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1 + T (|xy|)

s
.
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Set s = d 2
1−2εT (n)e, and notice that |xy| ≤ n implies T (|xy|) ≤ T (n). For any m ≥ s,

1−2ε ≤
d 2

1−2εT (n)e − 1
2 ‖N

−−←⊃
x,m−N

−−←⊃
x′,m‖1+ T (|xy|)

d 2
1−2εT (n)e

≤ T (n)
1− 2ε‖N

−−←⊃
x,m−N

−−←⊃
x′,m‖1+ 1− 2ε

2 .

Therefore, T (n) ≥ (1−2ε)2

2 ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖
−1
1 , ∀m ≥

⌈
2

1−2εT (n)
⌉
. J

I Lemma 15. Consider a 2QCFA N = (Q,C,Σ, R, θ, δ, qstart, cstart, cacc, crej). Let k = |Q|
and d = |C|. Consider any finite X ⊆ Σ∗ such that |X| ≥ 2. Then ∀m ∈ N, ∃x, x′ ∈ X such
that x 6= x′ and ‖N

−−←⊃
x,m −N

−−←⊃
x′,m‖1 ≤ 4

√
2k4d2

(
|X|

1
k4d2 − 1

)−1
.

Proof. For q, q′ ∈ Q and c, c′ ∈ C, let Fq,q′,c,c′ = |q〉 〈q′| ⊗ |c〉 〈c′| ∈ L(CQ ⊗ CC). Let J :
T(CQ⊗CC)→ L(CQ⊗CC⊗CQ⊗CC) denote the Choi isomorphism, which is given by J(Φ) =∑

(q,q′,c,c′)∈Q2×C2 Fq,q′,c,c′⊗Φ(Fq,q′,c,c′),∀Φ ∈ T(CQ⊗CC). Consider any x ∈ Σ∗ and m ∈ N.
We first show that, if (c1, c2) 6= (c′1, c′2), then 〈q2c2|N

−−←⊃
x,m(Fq1,q′1,c1,c′1) |q′2c′2〉 = 0. To see this,

recall that, by Definition 10, N
−−←⊃

x,m = TrCHx ◦Tx◦Smx ◦Ix. If c1 6= c′1, then N
−−←⊃

x,m(Fq1,q′1,c1,c′1) =
0CQ⊗CC , which implies 〈q2c2|N

−−←⊃
x,m(Fq1,q′1,c1,c′1) |q′2c′2〉 = 0. If c2 6= c′2, then ∀Z ∈ L(CQ ⊗

CC ⊗ CHx), 〈q2c2|TrCHx (Tx(Z)) |q′2c′2〉 = 0, which implies 〈q2c2|N
−−←⊃

x,m(Fq1,q′1,c1,c′1) |q′2c′2〉 = 0.
Therefore, 〈q2c2|N

−−←⊃
x,m(Fq1,q′1,c1,c′1) |q′2c′2〉 is only potentially non-zero at the k4d2 ele-

ments where (c1, c2) = (c′1, c′2). By Lemma 11(iii), N
−−←⊃

x,m ∈ Chan(CQ ⊗ CC), which implies
J(N

−−←⊃
x,m) ∈ Pos(CQ ⊗ CC ⊗ CQ ⊗ CC) [37, Corollary 2.27]. Therefore, the elements where

(q1, q2) 6= (q′1, q′2) come in conjugate pairs, and the elements with (q1, q2) 6= (q′1, q′2) are
real. We define the function gN,m : Σ∗ → Rk4d2 such that gN,m(x) encodes all the po-
tentially non-zero 〈q2c2|N

−−←⊃
x,m(Fq1,q′1,c1,c′1) |q′2c′2〉, without redundancy (only encoding one

element of a conjugate pair). To be precise, the first k2d2 entries of gN,m(x) are given by
{〈q2c2|N

−−←⊃
x,m(Fq1,q1,c1,c1) |q2c2〉 : q1, q2 ∈ Q, c1, c2 ∈ C} ⊆ R. Establish some total order ≥

on Q, and let Q̂4 = {(q1, q
′
1, q2, q

′
2) ∈ Q4 : q′1 > q1 or (q′1 = q1 and q′2 > q2)}. The remaining

k4d2 − k2d2 entries are given by encoding each of the 1
2 (k4d2 − k2d2) potentially non-zero

entries {〈q2c2|N
−−←⊃

x,m(Fq1,q′1,c1,c1) |q′2c2〉 : (q1, q
′
1, q2, q

′
2) ∈ Q̂4, c1, c2 ∈ C} ⊆ C as the pair of

real numbers that comprise their real and imaginary parts.
Let h = k4d2. Let ‖·‖ : Rh → R≥0 denote the Euclidean 2-norm and ‖·‖2 : L(V )→ R≥0

denote the Schatten 2-norm. Note that ‖Φ‖1 ≤ ‖J(Φ)‖1, ∀Φ [37, Section 3.4]. We have,

‖N
−−←⊃

x,m−N
−−←⊃

x′,m‖1 ≤ ‖J(N
−−←⊃

x,m−N
−−←⊃

x′,m)‖1 ≤
√

rank(J(N −−←⊃
x,m −N

−−←⊃
x′,m))‖J(N

−−←⊃
x,m−N

−−←⊃
x′,m)‖2

≤
√
h‖J(N

−−←⊃
x,m)− J(N

−−←⊃
x′,m)‖2 ≤

√
2h‖gN,m(x)− gN,m(x′)‖.

Note that N
−−←⊃

x,m ∈ Chan(CQ⊗CC), which implies ‖N
−−←⊃

x,m‖1 = 1 [37, Corollary 3.40]. Then,
∀q, q′ ∈ Q,∀c ∈ C, we have ‖Fq,q′,c,c‖1 = 1, which implies ‖N

−−←⊃
x,m(Fq,q′,c,c)‖1 ≤ 1. Therefore,

‖gN,m(x)‖ ≤ ‖J(N
−−←⊃

x,m)‖2 ≤ ‖J(N
−−←⊃

x,m)‖1 ≤
∑

q,q′∈Q,c∈C
‖N

−−←⊃
x,m(Fq,q′,c,c)‖1 ≤ k2d =

√
h.

For v0 ∈ Rh and r ∈ R>0, let B(v0, r) = {v ∈ Rh : ‖v0 − v‖ ≤ r} denote the closed ball
centered at v0 of radius r in Rh, which has volume vol(B(v0, r)) = chr

h, for some constant
ch ∈ R>0. By the above, ‖gN,m(x)‖ ≤

√
h, which implies that B(gN,m(x), δ) ⊆ B(0,

√
h+ δ),

∀δ ∈ R>0. Suppose ∀x, x′ ∈ X with x 6= x′, we have B(gN,m(x), δ) ∩ B(gN,m(x′), δ) = ∅.
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Then tx∈XB(gN,m(x), δ) ⊆ B(0,
√
h + δ), which implies |X|chδh ≤ ch(

√
h + δ)h. Set

δ = 2
√
h

|X|1/h−1 . Then ∃x, x
′ ∈ X, with x 6= x′, such that B(gN,m(x), δ) ∩B(gN,m(x′), δ) 6= ∅,

which implies ‖gN,m(x)− gN,m(x′)‖ ≤ 2δ. Therefore,

‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1 ≤
√

2h‖gN,m(x)− gN,m(x′)‖ ≤
√

2h2δ ≤ 4
√

2k4d2
(
|X|

1
k4d2 − 1

)−1
.J

We now prove a 2QCFA analogue of the Dwork-Stockmeyer lemma.

I Theorem 16. If L ∈ B2QCFA(k, d, T (n), ε), for some k, d ∈ N≥2, T : N → N, and
ε ∈ [0, 1

2 ), then ∃N0 ∈ N such that T (n) ≥ (1−2ε)2

16
√

2k4d2DL(n)
1

k4d2 , ∀n ≥ N0.

Proof. Consider some L ⊆ Σ∗. By [10, Lemma 3.1], L ∈ REG ⇔ ∃b ∈ N≥1 such that
DL(n) ≤ b, ∀n ∈ N. Thus, if L ∈ REG, the claim is immediate (recall that T (n) ≥ n). Next,
suppose L 6∈ REG. For n ∈ N, define Xn = {x1, · · · , xDL(n)} ⊆ Σ≤n such that the xi are
pairwise (L, n)-dissimilar. As DL(n) is not bounded above by any constant, ∃N0 ∈ N such
that DL(N0) ≥ 2k4d2 . Then, ∀n ≥ N0, we have |Xn| = DL(n) ≥ DL(N0) ≥ 2k4d2 . Fix
n ≥ N0 and set m = d 1−2ε

2 T (n)e. By Lemma 15, ∃x, x′ ∈ Xn such that x 6= x′ and

‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖1 ≤ 4
√

2k4d2
(
|Xn|

1
k4d2 − 1

)−1
≤ 8
√

2k4d2|Xn|−
1

k4d2 = 8
√

2k4d2DL(n)−
1

k4d2 .

Fix such a pair x, x′, and note that x 6∼L,n x′, by construction. By Lemma 14,

T (n) ≥ (1− 2ε)2

2 ‖N
−−←⊃

x,m −N
−−←⊃

x′,m‖−1
1 ≥ (1− 2ε)2

16
√

2k4d2
DL(n)

1
k4d2 . J

4.3 2QCFA Running Time Lower Bounds and Complexity Class
Separations

Let B2QCFA(T (n)) = ∪k,d∈N≥2,ε∈[0, 12 )B2QCFA(k, d, T (n), ε) denote the class of languages
recognizable with two-sided bounded error by a 2QCFA with any constant number of
quantum and classical states, in expected time at most T (n). For a family T of functions
of the form T : N → N, let B2QCFA(T ) = ∪T∈T B2QCFA(T (n)). We then write, for
example, B2QCFA(2o(n)) to denote the union, taken over every function T : N → N such
that T (n) = 2o(n), of B2QCFA(T (n)). Let CL : N → N denote the one-way deterministic
communication complexity of testing membership in L; note that CL(n) = logDL(n),∀n [8].
We immediately obtain the following corollaries of Theorem 16.

I Corollary 17. If L ∈ B2QCFA(T (n)), then DL(n) = T (n)O(1) and CL(n) = O(log T (n)).

I Corollary 18. If a language L satisfies DL(n) = 2Ω(n), then L 6∈ B2QCFA(2o(n)).

Notice that DL(n) = 2O(n), for any L. We next exhibit a language for which DL(n) =
2Ω(n), thereby yielding a strong lower bound on the running time of any 2QCFA that
recognizes L. For w = w1 · · ·wn ∈ Σ∗, let wrev = wn · · ·w1 denote the reversal of the string
w. Let Lpal = {w ∈ {a, b}∗ : w = wrev} consist of all palindromes over the alphabet {a, b}.

I Corollary 19. Lpal 6∈ B2QCFA(2o(n)).

Proof. For n ∈ N, let Wn = {w ∈ {a, b}∗ : |w| = n} denote all words over the alphabet {a, b}
of length n. For any w,w′ ∈ Wn, with w 6= w′, we have |wwrev| = 2n = |w′wrev|, wwrev ∈
Lpal, and w′wrev 6∈ Lpal; therefore, w 6∼Lpal,2n w

′, ∀w,w′ ∈ Wn such that w 6= w′. This
implies that DLpal

(2n) ≥ |Wn| = 2n. Corollary 18 then implies Lpal 6∈ B2QCFA(T (n)). J



Z. Remscrim 39:15

We define BQE2QCFA = B2QCFA(2O(n)) to be the class of languages recognizable with
two-sided bounded error in expected exponential time (with linear exponent) by a 2QCFA.
Next, we say that a 2QCFA N recognizes a language L with negative one-sided bounded
error ε ∈ R>0 if, ∀w ∈ L, Pr[N accepts w] = 1, and, ∀w 6∈ L, Pr[N accepts w] ≤ ε. We
define coR2QCFA(k, d, T (n), ε) as the class of languages recognizable with negative one-sided
bounded error ε by a 2QCFA, with at most k quantum basis states and at most d classical
states, that has expected running time at most T (n) on all inputs of length at most n. We
define coR2QCFA(T (n)) and coRQE2QCFA analogously to the two-sided bounded error case.

Ambainis and Watrous [2] showed that Lpal ∈ coRQE2QCFA; in fact, their 2QCFA
recognizer for Lpal has only a single-qubit. Clearly, coR2QCFA(T (n)) ⊆ B2QCFA(T (n)), for
any T , and coRQE2QCFA ⊆ BQE2QCFA. Therefore, the class of languages recognizable by
a 2QCFA with bounded error in subexponential time is properly contained in the class of
languages recognizable by a 2QCFA in exponential time.

I Corollary 20. B2QCFA(2o(n)) ( BQE2QCFA and coR2QCFA(2o(n)) ( coRQE2QCFA.

We next define BQP2QCFA = B2QCFA(nO(1)) to be the class of languages recognizable
with two-sided bounded error in expected polynomial time by a 2QCFA. See the full
version [26] for a proof of the following corollary.

I Corollary 21. If L ∈ BQP2QCFA, then DL(n) = nO(1). Therefore, BQP2QCFA ⊆ L/poly.

Of course, there are many languages L for which one can establish a strong lower bound
on DL(n), and thereby establish a strong lower bound on the expected running time T (n) of
any 2QCFA that recognizes L. In Section 6, we consider the case in which L is the word
problem of a group, and we show that very strong lower bounds can be established on DL(n).
In the current section, we consider two especially interesting languages; the relevance of these
languages was brought to our attention by Richard Lipton (personal communication). For
p ∈ N, let 〈p〉2 ∈ {0, 1}∗ denote its binary representation; let Lprimes = {〈p〉2 : p is prime}.
Note that DLprimes

(n) = 2Ω(n) [29], which immediately implies the following.

I Corollary 22. Lprimes 6∈ B2QCFA(2o(n)).

Say a string w = w1 · · ·wn ∈ {0, 1}n has a length-3 arithmetic progression (3AP) if
∃i, j, k ∈ N such that 1 ≤ i < j < k ≤ n, j − i = k − j, and wi = wj = wk = 1;
let L3ap = {w ∈ {0, 1}∗ : w has a 3AP}. It is straightforward to show the lower bound
DL3ap

(n) = 2n1−o(1) , as well as the upper bound DL3ap
(n) = 2no(n) . Therefore, one obtains

the following lower bound on the running time of a 2QCFA that recognizes L3ap, which,
while still quite strong, is not as strong as that of Lpal or Lprimes.

I Corollary 23. L3ap 6∈ B2QCFA
(

2n1−Ω(1)
)
.

I Remark. While Lprimes and L3ap provide two more examples of natural languages for
which our method yields strong lower bound on the running time of any 2QCFA recognizer,
they also suggest the potential of proving a stronger lower bound for certain languages. That
is to say, for Lpal, one has (essentially) matching lower and upper bounds on the running
time of any 2QCFA recognizer; this is certainly not the case for Lprimes and L3ap. In fact,
we currently do not know if either Lprimes or L3ap can be recognized by a 2QCFA with
bounded error at all (i.e., regardless of time bound).
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4.4 Transition Amplitudes of 2QCFA
As in Definition 3, for some 2QCFA N = (Q,C,Σ, R, θ, δ, qstart, cstart, cacc, crej), let {Ec,σ,r,j :
r ∈ R, j ∈ J} ⊆ L(CQ) denote the set of operators that describe the selective quantum
operation θ(c, σ) ∈ QuantOp(CQ, R) that is applied to the quantum register when the classical
state of N is c ∈ Ĉ and the head of N is over the symbol σ ∈ Σ+. The transition amplitudes
of N are the set of numbers {〈q|Ec,σ,r,j |q′〉 : c ∈ Ĉ, σ ∈ Σ+, r ∈ R, j ∈ J, q, q′ ∈ Q} ⊆ C.

While other types of finite automata are often defined without any restriction on their
transition amplitudes, for 2QCFA, and other types of QFA, the allowed class of transition
amplitudes strongly affects the power of the model. For example, using non-computable tran-
sition amplitudes, a 2QCFA can recognize certain undecidable languages with bounded error
in expected polynomial time [28]. Our lower bound holds even in this setting of unrestricted
transition amplitudes. For F ⊆ C, we define complexity classes coR2QCFAF(k, d, T (n), ε),
coRQE2QCFAF, etc., that are variants of the corresponding complexity class in which the
2QCFA are restricted to have transition amplitudes in F. Using our terminology, Ambainis
and Watrous [2] showed that Lpal ∈ coRQE2QCFAQ, where Q denotes the algebraic numbers,
which are, arguably, the natural choice for the permitted class of transition amplitudes of a
quantum model of computation. Therefore, Lpal can be recognized with negative one-sided
bounded error by a single-qubit 2QCFA with transition amplitudes that are all algebraic
numbers in expected exponential time; however, Lpal cannot be recognized with two-sided
bounded error (and, therefore, not with one-sided bounded error) by a 2QCFA (of any
constant size) in subexponential time, regardless of the permitted transition amplitudes.

5 Lower Bounds on the Running Time of Small-Space QTMs

We next show that our technique also yields a lower bound on the expected running time of
a quantum Turing machine (QTM) that uses sublogarithmic space (i.e., o(logn) space). The
key idea is that a QTM M that uses S(n) space can be viewed as a sequence (Mn)n∈N of
2QCFA, where Mn has 2O(S(n)) (classical and quantum) states and Mn simulates M on all
inputs of length at most n (therefore, Mn and M have the same probability of acceptance
and the same expected running time on any such input). The techniques of the previous
section apply to 2QCFA with a sufficiently slowly growing number of states.

We consider the classically controlled space-bounded QTM model that allows intermediate
measurements, following the definition of Watrous [35]. While several such QTM models have
been defined, we focus on this model as we wish to prove our lower bound in the greatest
generality possible. We note that the definitions of such QTM models by, for instance,
Ta-Shma [32], Watrous [36, Section VII.2], and (essentially, without the use of random access)
van Melkebeek and Watson[22] are special cases of the QTM model that we consider. In
the case of time-bounded quantum computation, it is well-known that allowing a QTM
to perform intermediate measurements provably does not increase the power of the model;
very recently, this fact has also been shown to hold in the simultaneously time-bounded
and space-bounded setting [12]. Let BQTISP(T (n), S(n)) denote the class of languages
recognizable with bounded error by a QTM in time T (n) and space S(n). See the full version
[26] for a complete definition of the QTM model and a proof of the following theorem.

I Theorem 24. Suppose L ∈ BQTISP(T (n), S(n)), and suppose further that S(n) =
o(log logDL(n)). Then ∃b0 ∈ R>0 such that, T (n) = Ω

(
2−b0S(n)DL(n)2−b0S(n)).

I Corollary 25. If DL(n) = 2Ω(n), then L 6∈ BQTISP
(

2n1−Ω(1)
, o(logn)

)
. In particular,

Lpal 6∈ BQTISP
(

2n1−Ω(1)
, o(logn)

)
.
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I Remark. Of course, Lpal can be recognized by a deterministic TM in O(logn) space (and,
trivially, polynomial time). Therefore, the previous corollary exhibits a natural problem for
which polynomial time quantum TM cannot outperform polynomial time deterministic TM
in terms of the amount of space used.

6 The Word Problem of a Group

We begin by formally defining the word problem of a group; for further background, see,
for instance [21]. For a set S, let F (S) denote the free group on S. For sets S,R such that
R ⊆ F (S), let N denote the normal closure of R in F (S); for a group G, if G ∼= F (S)/N ,
then we say that G has presentation 〈S|R〉, which we denote by writing G = 〈S|R〉. Suppose
G = 〈S|R〉, with S finite; we now define WG=〈S|R〉, the word problem of G with respect to the
presentation 〈S|R〉. We define the set of formal inverses S−1, such that, for each s ∈ S, there
is a unique corresponding s−1 ∈ S−1, and S ∩ S−1 = ∅. Let Σ = S t S−1, let Σ∗ denote the
free monoid over Σ, and let φ : Σ∗ → G be the natural (monoid) homomorphism that takes
each string in Σ∗ to the element of G that it represents. We use 1G to denote the identity
element of G. Then WG=〈S|R〉 = φ−1(1G). Note that the definition of the word problem does
depend on the choice presentation. However, if L is any complexity class that is closed under
inverse homomorphism, then if 〈S|R〉 and 〈S′|R′〉 are both presentations of some group G,
and S and S′ are both finite, then WG=〈S|R〉 ∈ L ⇔WG=〈S′|R′〉 ∈ L [19]. As all complexity
classes considered in this paper are easily seen to be closed under inverse homomorphism, we
will simply write WG ∈ L to mean that WG=〈S|R〉 ∈ L, for every presentation G = 〈S|R〉,
with S finite. We note that the languages Lpal and Leq, which Ambainis and Watrous [2]
showed satisfy Lpal ∈ coRQE2QCFAQ and Leq ∈ BQP2QCFA, are closely related to the word
problems of the groups F2 and Z, respectively.

6.1 The Growth Rate of a Group and Nonregularity
Consider a group G = 〈S|R〉, with S finite. Define Σ and φ as in the previous section.
For g ∈ G, let lS(g) denote the smallest m ∈ N such that ∃σ1, . . . , σm ∈ Σ such that
g = φ(σ1 · · ·σm). For n ∈ N, we define BG,S(n) = {g ∈ G : lS(g) ≤ n} and we further define
βG,S(n) = |BG,S(n)|, which we call the growth rate of G with respect to S. The following
straightforward lemma demonstrates an important relationship between βG,S and DWG=〈S|R〉 .

I Lemma 26. Suppose G = 〈S|R〉 with S finite. Using the notation established above, let
WG := WG=〈S|R〉 = φ−1(1G) denote the word problem of G with respect to this presentation.
Then, ∀n ∈ N, DWG

(2n) ≥ βG,S(n).

Proof. Fix n ∈ N, let k = βG,S(n), and let BG,S(n) = {g1, . . . , gk}. For a string x =
x1 · · ·xm ∈ Σ∗, where each xj ∈ Σ, let |x| = m denote the (string) length of x and
define x−1 = x−1

m · · ·x−1
1 . Note that, ∀g ∈ G, lS(g) = minw∈φ−1(g)|w|. Therefore, for each

i ∈ {1, . . . , k} we may define wi ∈ φ−1(gi) such that |wi| = lS(gi). Observe that wiw−1
i ∈WG

and |wiw−1
i |= 2|wi|= 2lS(gi) ≤ 2n; moreover, for each j 6= i, we have wjw−1

i 6∈ WG and
|wjw−1

i | = |wj |+ |wi| = lS(gj) + lS(gi) ≤ 2n. Therefore, w1, . . . , wk are pairwise (WG, 2n)-
dissimilar, which implies DWG

(2n) ≥ k = βG,S(n). J

For a pair of non-decreasing functions f1, f2 : R≥0 → R≥0, we write f1 ≺ f2 if ∃C1, C2 ∈
R>0 such that ∀r ∈ R≥0, f1(r) ≤ C1f2(C1r+C2) +C2; we write f1 ∼ f2 if both f1 ≺ f2 and
f2 ≺ f1. Suppose 〈S|R〉 and 〈S′|R′〉 are both presentations of G, with S and S′ finite. It is
straightforward to show that βG,S and βG,S′ are non-decreasing, and that βG,S ∼ βG,S′ [21,
Proposition 6.2.4]. For this reason, we will simply write βG to denote the growth rate of G.
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I Definition 27. Suppose G is a finitely generated group. If βG ∼ (n 7→ en), we say G has
exponential growth. If ∃c ∈ R≥0 such that βG ≺ (n 7→ nc), we say G has polynomial growth.
Otherwise, we say G has intermediate growth. Note that, for any finitely generated group G,
we have βG ≺ (n 7→ en), and so the term “intermediate growth” is justified.

6.2 Word Problems Recognizable by 2QCFA and Small-Space QTMs
By making use of two very powerful results in group theory, the Tits’ Alternative [34] and
Gromov’s theorem on groups of polynomial growth [15], we exhibit useful lower bounds on
DWG

, which in turn allows us to show a strong lower bound on the expected running time
of a 2QCFA that recognizes WG. We obtain an analogous result for sublogarithmic-space
QTMs; see the full paper [26] for details.

I Theorem 28. For any finitely generated group G, the following statements hold.
(i) If WG ∈ B2QCFA(k, d, T (n), ε), then βG ≺ (n 7→ T (n)k4d2).
(ii) If G has exponential growth, then WG 6∈ B2QCFA(2o(n)).
(iii) If G is a linear group over a field of characteristic 0, and G is not virtually nilpotent,

then WG 6∈ B2QCFA(2o(n)).
(iv) If WG ∈ BQP2QCFA, then G is virtually nilpotent.

Proof.
(i) Follows immediately from Lemma 26 and Corollary 17.
(ii) Follows immediately from Definition 27 and part (i) of this theorem.
(iii) As a consequence of the famous Tits’ Alternative [34], every finitely generated linear

group over a field of characteristic 0 either has polynomial growth or exponential growth,
and has polynomial growth precisely when it is virtually nilpotent ([34, Corollary 1],[38]).
The claim then follows by part (ii) of this theorem.

(iv) If WG ∈ BQP2QCFA, then WG ∈ B2QCFA(k, d, nc, ε) for some k, d, c ∈ N≥1, ε ∈ [0, 1
2 ).

By part (i) of this theorem, βG ≺ (n 7→ nck
4d2), which implies G has polynomial growth.

By Gromov’s theorem on groups of polynomial growth [15], a finitely generated group
has polynomial growth precisely when it is virtually nilpotent. J

I Remark. All known G of intermediate growth have βG ∼ (n 7→ en
c), for some c ∈ (1/2, 1).

Therefore, a strong lower bound may be established on the running time of any 2QCFA that
recognizes WG, for any known group of intermediate growth.

Let GvAb (resp. GvNilp) denote the collection of all finitely generated virtually abelian
(resp. nilpotent) groups. Let U(k,Q) denote the group of k × k unitary matrices with
algebraic number entries, and let U consist of all finitely generated subgroups of any U(k,Q).
We have recently shown that if G ∈ U , then WG ∈ coRQE2QCFAQ [27, Corollary 1.4.1].
Observe that GvAb ⊆ U and that all groups in U are finitely generated linear groups over a
field of characteristic zero. Moreover, U ∩GvNilp = GvAb [33, Proposition 2.2]. We, therefore,
obtain the following corollary of Theorem 28, which exhibits a broad and natural class of
languages that a 2QCFA can recognize in exponential time, but not in subexponential time.

I Corollary 29. ∀G ∈ U \ GvAb, we have WG ∈ coRQE2QCFAQ but WG 6∈ B2QCFA(2o(n)).

We have also recently shown thatWG ∈ coRQP2QCFAQ(2) ⊆ BQP2QCFA, ∀G ∈ GvAb [27,
Theorem 1.2]. By Theorem 28, if WG ∈ BQP2QCFA, then G ∈ GvNilp. This naturally raises
the question of whether or not there is some G ∈ GvNilp \ GvAb such that WG ∈ BQP2QCFA.
Consider the (three-dimensional discrete) Heisenberg group H = 〈x, y, z|z = [x, y], [x, z] =
[y, z] = 1〉. WH is a natural choice for a potential “hard” word problem for 2QCFA, due
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to the lack of faithful finite-dimensional unitary representations of H (see [27] for further
discussion). We next show that if WH 6∈ BQP2QCFA, then we have a complete classification
of those word problems recognizable by 2QCFA in polynomial time.

I Proposition 30. If WH 6∈ BQP2QCFA, then WG ∈ BQP2QCFA⇔ G ∈ GvAb.

Proof. By the above discussion, it suffices to show the following claim: if WG ∈ BQP2QCFA,
for some G ∈ GvNilp \ GvAb, then WH ∈ BQP2QCFA. Begin by noting that ∀G ∈ GvNilp \
GvAb, G has a subgroup isomorphic to H [20, Theorem 12]. It is straightforward to see that
BQP2QCFA is closed under inverse homomorphism and intersection with regular languages.
Therefore, if WG ∈ BQP2QCFA, then WH ∈ BQP2QCFA [20, Lemma 2]. J
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