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—— Abstract
Let G be a cycle graph and let Vi,...,V,, be a partition of its vertex set into m sets. An independent
set S of G is said to fairly represent the partition if [S N V;| > § - |Vi| — 1 for all i € [m]. It is known
that for every cycle and every partition of its vertex set, there exists an independent set that fairly
represents the partition (Aharoni et al., A Journey through Discrete Math., 2017). We prove that
the problem of finding such an independent set is PPA-complete. As an application, we show that
the problem of finding a monochromatic edge in a Schrijver graph, given a succinct representation
of a coloring that uses fewer colors than its chromatic number, is PPA-complete as well. The work is
motivated by the computational aspects of the “cycle plus triangles” problem and of its extensions.
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1 Introduction

In 1986, Du, Hsu, and Hwang [19] conjectured that if a graph on 3n vertices is the disjoint
union of a Hamilton cycle of length 3n and n pairwise vertex-disjoint triangles then its
independence number is n. The conjecture has become known as the “cycle plus triangles”
problem and has been strengthened by Erdos [20], who conjectured that such a graph is
3-colorable. Fleischner and Stiebitz [26] confirmed these conjectures in a strong form and
proved, using an algebraic approach of Alon and Tarsi [6], that such a graph is in fact
3-choosable. Their proof can also be viewed as an application of Alon’s Combinatorial
Nullstellensatz technique [4]. Slightly later, an alternative elementary proof of the 3-coloring
result was given by Sachs [39]. However, none of these proofs supplies an efficient algorithm
that given a graph on 3n vertices whose set of edges is the disjoint union of a Hamilton cycle
and n pairwise vertex-disjoint triangles finds a 3-coloring of the graph or an independent
set of size n. Questions on the computational aspects of the problem were posed in several
works over the years (see, e.g., [27, 5, 9, 1]).

A natural extension of the problem of Du et al. [19] is the following. Let G be a cycle and
let V1, ..., V,, be a partition of its vertex set into m sets. We are interested in an independent
set of G that (almost) fairly represents the given partition, that is, an independent set S
of G satisfying [SNV;| > 5 - |[Vi| =1 for all i € [m] = {1,...,m}. The existence of such
an independent set was proved in a recent work of Aharoni, Alon, Berger, Chudnovsky,
Kotlar, Loebl, and Ziv [1]. For the special case where all the sets V; are of size 3, the proof
technique of Aharoni et al. [1] allowed them to show that there are two disjoint independent
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sets that fairly represent the partition, providing a new proof of a stronger form of the
original conjecture of Du et al. [19]. The results of [1] were extended in a work of Alishahi
and Meunier [3] who proved the following,.

» Theorem 1 ([3]). Let G be a cycle on n vertices and let V1, ..., V,, be a partition of its
vertex set into m sets. Suppose that n and m have the same parity. Then, there exist two
disjoint independent sets S1 and Sy of G covering all vertices but one from each V; such that
for each j € {1,2}, it holds that |S; N V;| > % -|V;| = 1 for all i € [m].

As shown by Black et al. [10], analogues of Theorem 1 for paths and for partitions into sets
of odd sizes can also be proved using the approach of Aharoni et al. [1].

It is interesting to mention that although the statements of Theorem 1 and of its
aforementioned variants are purely combinatorial, all of their known proofs are based on tools
from topology. The use of topological methods in combinatorics was initiated by Lovasz [32]
who applied the Borsuk-Ulam theorem [11] from algebraic topology to prove a conjecture
of Kneser [31] on the chromatic number of Kneser graphs. For integers n > 2k, the Kneser
graph K(n,k) is the graph whose vertices are all the k-subsets of [n] where two sets are
adjacent if they are disjoint. It was proved in [32] that the chromatic number of K (n,k)
is m — 2k + 2, a result that was strengthened and generalized by several researchers (see,
e.g., [34, Chapter 3]). One such strengthening was obtained by Schrijver [40], who studied the
subgraph of K (n, k) induced by the collection of all k-subsets of [n] with no two consecutive
elements modulo n. This graph is denoted by S(n, k) and is commonly referred to as the
Schrijver graph. It was proved in [40], again by a topological argument, that the chromatic
number of S(n, k) is equal to that of K(n, k). As for Theorem 1, the proof of Alishahi and
Meunier [3] employs the Octahdral Tucker lemma that was applied by Matousek [33] in an
alternative proof of Kneser’s conjecture and can be viewed as a combinatorial formulation of
the Borsuk-Ulam theorem (see also [42]). The approach of Aharoni et al. [1] and of Black et
al. [10], however, is based on a direct application of the chromatic number of the Schrijver
graph. As before, these proofs are not constructive, in the sense that they do not suggest
efficient algorithms for the corresponding search problems. Understanding the computational
complexity of these problems is the main motivation for the current work.

In 1994, Papadimitriou [38] has initiated the study of the complexity of total search
problems in view of the mathematical argument that lies at the existence proof of their
solutions. Let TFNP be the complexity class, defined in [35], of total search problems in
NP, that is, the class of search problems in which a solution is guaranteed to exist and
can be verified in polynomial running-time. Papadimitriou has introduced in [38] several
subclasses of TFNP, each of which consists of the total search problems that can be reduced
to a problem that represents some mathematical argument. For example, the class PPA
(Polynomial Parity Argument) corresponds to the simple fact that every graph with maximum
degree 2 that has a vertex of degree 1 must have another degree 1 vertex. Hence, PPA is
defined as the class of all problems in TFNP that can be efficiently reduced to the LEAF
problem, in which given a succinct representation of a graph with maximum degree 2 and
given a vertex of degree 1 in the graph, the goal is to find another such vertex. The class
PPAD (Polynomial Parity Argument in Directed graphs) is defined similarly with respect to
directed graphs. Another complexity class defined in [38] is PPP (Polynomial Pigeonhole
Principle) whose underlying mathematical argument is the pigeonhole principle. Additional
examples of complexity classes defined in this way are PLS (Polynomial Local Search) [30],
CLS (Continuous Local Search) [15], and EOPL (End of Potential Line) [21].

The complexity class PPAD is known to perfectly capture the complexity of many im-
portant search problems. Notable examples of PPAD-complete problems are those associated
with Sperner’s lemma [38, 12], the Nash Equilibrium theorem [13, 14], the Envy-Free Cake
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Cutting theorem [18], and the Hairy Ball theorem [29]. For PPA, the undirected analogue of
PPAD, until recently there were not known complete problems that are “natural”, i.e., do not
involve circuits and Turing machines in their definitions. In the last few years, the situation
was changed following a breakthrough result of Filos-Ratsikas and Goldberg [23, 24], who
proved that the Consensus Halving problem with inverse-polynomial precision parameter
is PPA-complete (see also [25]) and used it to derive the PPA-completeness of the classical
Splitting Necklace with two thieves and Discrete Sandwich problems. This was obtained
building on the PPA-hardness, proved by Aisenberg, Bonet, and Buss [2], of the search
problem associated with Tucker’s lemma. The variant of the problem that corresponds to
the Octahedral Tucker lemma was suggested for study by Palvolgyi [37] and proved to be
PPA-complete by Deng, Feng, and Kulkarni [17]. Additional PPA-complete problems, related
to the Combinatorial Nullstellensatz and the Chevalley-Warning theorem, were provided by
Belovs et al. [8].

1.1 Our Contribution

The present work initiates the study of the complexity of finding independent sets that fairly
represent a given partition of the vertex set of a cycle. It is motivated by the computational
aspects of combinatorial existence statements, such as the “cycle plus triangles” conjecture
of Du et al. [19] proved by Fleischner and Stiebitz [26] and its extensions by Aharoni et
al. [1], Alishahi and Meunier [3], and Black et al. [10]. As mentioned before, the challenge of
understanding the complexity of the corresponding search problems was explicitly raised by
several authors, including Fleischner and Stiebitz [27], Alon [5], and Aharoni et al. [1]. In
this work we demonstrate that this research avenue may illuminate interesting connections
between this family of problems and the complexity class PPA.

We start by introducing the Fair Independent Set in Cycle Problem, which we denote by
FAIR-IS-CYCLE and define as follows.

» Definition 2 (Fair Independent Set in Cycle Problem). In the FAIR-IS-CYCLE problem, the
input consists of a cycle G and a partition Vi, ..., Vy, of its vertex set into m sets. The goal
is to find an independent set S of G satisfying |SNV;| > 1 |V;| =1 for all i € [m].

The existence of a solution to every input of FAIR-IS-CYCLE is guaranteed by a result
of Aharoni et al. [1, Theorem 1.8]. Since such a solution can be verified in polynomial

running-time, the total search problem FAIR-IS-CYCLE lies in the complexity class TFNP.

We prove that the class PPA captures the complexity of the problem.
» Theorem 3. The FAIR-IS-CYCLE problem is PPA-complete.

In view of the “cycle plus triangles” problem of Du et al. [19], it would be interesting to
understand the complexity of the FAIR-IS-CYCLE problem restricted to partitions into sets
of size 3. While Theorem 3 immediately implies that this restricted problem lies in PPA, the
question of determining its precise complexity remains open.

We proceed by considering the search problem associated with Theorem 1. In the Fair
Splitting of Cycle Problem, denoted FAIR-SPLIT-CYCLE, we are given a cycle and a partition
of its vertex set and the goal is to find two disjoint independent sets that fairly represent the
partition and cover all vertices but one from every part of the partition. We define below an
approximation version of this problem, in which the fairness requirement is replaced with
the relaxed notion of e-fairness, where the independent sets should include at least % —¢
fraction of the vertices of every part.
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» Definition 4 (Approximate Fair Splitting of Cycle Problem). In the e-FAIR-SPLIT-CYCLE
problem with parameter € > 0, the input consists of a cycle G on n vertices and a partition
Vi,...,Vin of its vertex set into m sets, such that n and m have the same parity. The goal
s to find two disjoint independent sets S1 and Sy of G covering all vertices but one from
each V; such that for each j € {1,2}, it holds that |S; NV;| > (3 —¢) - [V;| =1 for alli € [m].
For e =0, the problem is denoted by FAIR-SPLIT-CYCLE.

The existence of a solution to every input of e-FAIR-SPLIT-CYCLE, already for ¢ = 0, is
guaranteed by Theorem 1 proved in [3]. For e = 0, it can be seen that FAIR-SPLIT-CYCLE is
at least as hard as FAIR-IS-CYCLE. Yet, it turns out that FAIR-SPLIT-CYCLE lies in PPA
and is thus also PPA-complete.

» Theorem 5. The FAIR-SPLIT-CYCLE problem is PPA-complete.
For the approximation version of the problem, we provide the following hardness result.

» Theorem 6. There exists a constant € > 0 for which the e-FAIR-SPLIT-CYCLE problem is
PPAD-hard.

We finally consider the complexity of the SCHRIJVER problem. In this problem we are
given a succinct representation of a coloring of the Schrijver graph S(n, k) with n—2k+1 colors,
which is one less than its chromatic number [40], and the goal is to find a monochromatic
edge (see Definition 16). The study of the SCHRIJVER problem is motivated by a question
raised by Deng et al. [17] regarding the complexity of the analogue problem for Kneser
graphs. Note that the latter is not harder than the SCHRIJVER problem, because S(n, k) is a
subgraph of K(n, k) with the same chromatic number. As an application of our Theorem 3,
we prove the following.

» Theorem 7. The SCHRIJVER problem is PPA-complete.

1.2 Overview of Proofs

To obtain our results we present a chain of reductions, as described in Figure 1. Our
starting point is the Consensus Halving problem with precision parameter €, in which given a
collection of m probability measures on the interval [0, 1] the goal is to partition the interval
into two pieces using relatively few cuts, so that each of the measures has the same mass
on the two pieces up to an error of £ (see Definition 8). It is known that every input to
this problem has a solution with at most m cuts even for e = 0 [41] (see also [28, 7]). The
problem of finding a solution is PPA-hard when ¢ is inverse-polynomial in m [23, 24, 25] and
PPAD-hard when ¢ is some positive constant [22].

In Section 2, we reduce the Consensus Halving problem to an intermediate variant of
the e-FAIR-SPLIT-CYCLE problem, which we call e-FAIR-SPLIT-PATH' (see Definition 12).
Then, we use this reduction to obtain our hardness results for the FAIR-IS-CYCLE and
FAIR-SPLIT-CYCLE problems. The reduction borrows a discretization argument that was
used in [23] to reduce the Consensus Halving problem to the Splitting Necklace problem
with two thieves. This argument enables us to transform a Consensus Halving instance into
a path and a partition of its vertex set, for which the goal is to partition the path using
relatively few cuts into two parts, each of which contains roughly half of the vertices of every
set in the partition. In order to relate this problem to independent sets that fairly represent
the partition, we need an additional simple trick. Between every two consecutive vertices of
the path we add a new vertex and put all the new vertices in a new set added to the partition
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Figure 1 Chain of reductions.

of the vertex set. We then argue, roughly speaking, that two disjoint independent sets in the
obtained path, which fairly represent the partition and cover almost all of the vertices, can
be used to obtain a solution to the original instance. The high-level idea is that those few
vertices that are uncovered by the two independent sets can be viewed as cuts, and every path
between two such vertices alternates between the two given independent sets. By construction,
it means that only one of the two independent sets contains in such a path original vertices
(that is, vertices that were not added in the last phase of the reduction), hence every such
path can be naturally assigned to one of the two pieces required by the Consensus Halving
problem. Combining our reduction with the known hardness results of Consensus Halving, we
derive the PPA-hardness of FAIR-IS-CYCLE and FAIR-SPLIT-CYCLE and the PPAD-hardness
of e-FAIR-SPLIT-CYCLE for a constant € > 0, as needed for Theorems 3, 5, and 6.

In Section 3, we introduce and study the SCHRIJVER problem. We reduce the

FAIR-IS-CYCLE problem to the SCHRIJVER problem, implying that the latter is PPA-hard.

The reduction follows an argument of Aharoni et al. [1] who used the chromatic number of the

Schrijver graph [40] to prove the existence of the independent set required in FAIR-IS-CYCLE.

Finally, employing arguments of Meunier [36] and Alishahi and Meunier [3], we reduce the
SCHRIJVER and FAIR-SPLIT-CYCLE problems to the search problem associated with the
Octahedral Tucker lemma (see Definition 18). Since it is known, already from [38], that this
problem lies in PPA, we get that FAIR-IS-CYCLE, FAIR-SPLIT-CYCLE, and SCHRIJVER are
all members of PPA, completing the proofs of Theorems 3, 5, and 7.

We remark that one could consider analogues of the FAIR-IS-CYCLE and
FAIR-SPLIT-CYCLE problems for paths rather than for cycles and obtain similar results. We
have chosen to focus here on the cycle setting, motivated by the computational aspects of
the “cycle plus triangles” problem [19, 20, 26].

2  Fair Independent Sets in Cycles

In this section we prove our hardness results for the FAIR-IS-CYCLE and FAIR-SPLIT-CYCLE
problems. We first recall the definition of the Consensus Halving problem and gather some of
the hardness results known for it. Then, we present an efficient reduction from this problem
to an intermediate problem, which is used to obtain the hardness results of Theorems 3, 5,
and 6.
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2.1 Consensus Halving

Consider the following variant of the Consensus Halving problem, denoted CON-HALVING.

» Definition 8 (Consensus Halving Problem). In the e-CON-HALVING(m,{) problem with
precision parameter € = e(m), the input consists of m probability measures i1, ..., fm ON
the interval I = 1[0, 1], given by their density functions. The goal is to partition the interval I
using at most £ cuts into two (not necessarily connected) pieces I and I~ so that for every
i € [m] it holds that |p;(I") — p;(I7)] <e.

For ¢ > m, every input of e-CON-HALVING(m, ) has a solution even for ¢ = 0 [41]. We state
below two hardness results known for CON-HALVING. Here, a function on an interval is said
to be piecewise constant if its domain can be partitioned into a finite set of intervals such
that the function is constant on each of them. We refer to the intervals of the partition on
which the function is nonzero as the blocks of the function.

» Theorem 9 ([23, 24, 25]). There exists an inverse-polynomial € = £(m) such that for every
constant ¢ > 0, the e-CON-HALVING(m, m + ¢) problem, restricted to inputs with piecewise
constant density functions with at most 2 blocks, is PPA-hard.

» Theorem 10 ([22]). There exist an absolute constant € > 0 and a polynomial p such that
for every constant ¢ > 0, the e-CON-HALVING(m,m + ¢) problem, restricted to inputs with
piecewise constant density functions with at most p(m) blocks, is PPAD-hard.

» Remark 11. We note that, as explained in [25], the constant ¢ given in Theorems 9 and 10
can be replaced by m!'~ for any constant o > 0. This stronger hardness, however, is not
required to obtain our results. We also note that our results do not rely on the fact that the
hardness given in Theorem 9 holds for instances with density functions with at most 2 blocks,
as proved in [25], rather than polynomially many blocks as was previously proved in [24].

2.2 The Main Reduction

To obtain our hardness results for the FAIR-IS-CYCLE and FAIR-SPLIT-CYCLE problems,
we consider the following intermediate problem.

» Definition 12. In the e-FAIR-SPLIT-PATH problem with parameter ¢ > 0, the input
consists of a path G and a partition Vi, ..., V,, of its vertex set into m sets such that |V;| is
odd for all i € [m]. The goal is to find two disjoint independent sets S1 and Sy of G covering
all but at most m of the vertices of G such that

SinVile [ —e) Vil =1, +¢) - W]
for all i € [m]. When ¢ = 0, the problem is denoted by FAIR-SPLIT-PATH .

Note that the e-FAIR-SPLIT-PATH' problem differs from the e-FAIR-SPLIT-CYCLE problem
(see Definition 4) in the following respects: (a) The input graph is a path rather than a cycle,
(b) an e-fairness property is required only for the independent set .S; rather than for both
S7 and Ss, (c) there is no requirement regarding the sets V; to which the vertices that are
uncovered by S7 and Sy belong, and (d) the sets V; are required to be of odd sizes. Yet,
it is easy to check that Theorem 1 implies that every instance of the e-FAIR-SPLIT-PATH’
problem has a solution already for ¢ = 0.
We turn to prove the following.
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» Theorem 13. Let p be a polynomial and suppose that ¢ = e(m) is bounded from below by
some inverse-polynomial in m. Then, the e-CON-HALVING(m, m + 1) problem, restricted to
inputs with piecewise constant density functions with at most p(m) blocks, is polynomial-time
reducible to the §-FAIR-SPLIT-PATH problem.

Proof. Consider an instance of e-CON-HALVING(m,m + 1) consisting of m probability

measures [i1,..., [, on the interval I = [0, 1], given by their piecewise constant density
functions g1, . . ., gm, each of which has at most p(m) blocks. The reduction constructs an
instance of %—FAIR—SPLIT—PATH', namely, a path G and a partition Vi, ..., V1 of its vertex

set into m + 1 sets of odd sizes.

We start with a high-level description of the reduction. The reduction associates with
every density function g; a collection V; of vertices located in the (at most p(m)) intervals
on which g; is nonzero. To do so, we partition every block of g; into sub-intervals such that
the measure of p; on each of them is §, where § > 0 is some small parameter (assuming, for
now, that the measure of p; on every block is an integer multiple of ¢). At the middle of
every such sub-interval we locate a vertex and put it in V;. Then, we construct a path G
that alternates between the vertices of V3 U --- U V,, ordered according to their locations
in I and additional vertices which we put in another set V;,11. We also take care of the
requirement that each |V;] is odd.

The intuitive idea behind this reduction is the following. Suppose that we are given a
solution to the constructed instance, i.e., two disjoint independent sets S7 and Sy of the path
G covering all but m + 1 of the vertices such that S; contains roughly half of the vertices of
V; for each i € [m 4 1]. Observe that by removing from G the m + 1 vertices that do not
belong to S7 U .Ss, we essentially get a partition of the vertices of S; U Se into m + 2 paths.
Since S; and Ss are independent sets in G, it follows that each such path alternates between
S1 and Se. However, recalling that G alternates between V3 U --- UV, and V,, 41, it follows
that ignoring the vertices of V;,, 11, each such path contains either only vertices of S1 or only
vertices of Sy. Now, one can view the m + 1 locations of the vertices that do not belong to
S1 U Sy as cuts in the interval I which partition it into m + 2 sub-intervals, each of which
includes vertices from either S; or Sy (again, ignoring the vertices of V,,y1). Let I™ and I~

be the pieces of I obtained from the sub-intervals that correspond to S; and Ss respectively.

Since the number of vertices from V; in every path is approximately proportional to the
measure of u; in the corresponding sub-interval, it can be shown that the probability measure
of u; on I'™ is approximately % This yields that the probability measure p; is approximately
equal on the pieces I'T and I, as needed for the CON-HALVING(m, m + 1) problem.

We turn to the formal description of the reduction. Define 6 = 0

72p(ma)+m+3). The

reduction acts as follows.

1. For every i € [m], do the following:
We are given a partition of the interval I into intervals such that on at most p(m) of
them the function g; is equal to a nonzero value and is zero everywhere else. For every
such interval, let v denote the volume of g; on it, and divide it into [v/d] sub-intervals
of volume § each, possibly besides the last one whose volume might be smaller. We
refer to a sub-interval of volume smaller than § as an ‘mperfect sub-interval. The
number of imperfect sub-intervals associated with g; is clearly at most p(m). At the
middle point of every sub-interval of g;, locate a vertex and put it in the set V.
If the number of vertices in V; is even, then add another vertex to V; and locate it
arbitrarily in I.
Note that, by p;(I) = 1, we have

Vil -6 € [L,1+ (p(m) + 1) - 3. (1)
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2. Consider the path on the vertices of V3 U --- UV, ordered according to their locations in
the interval I, breaking ties arbitrarily.

3. Add a new vertex before every vertex in this path, locate it at the middle of the sub-
interval between its two adjacent vertices (where the first new vertex is located at 0), and
put these new vertices in the set V,, 1. If the number of vertices in V;,, 41 is even then
add one more vertex to the end of the path, locate it at 1, and put it in V11 as well.
Denote by G the obtained path, and note that G alternates between V3 U ---UV,, and
an+1.

4. The output of the reduction is the path G and the partition Vi,..., V41 of its vertex
set V into m + 1 sets. By construction, |V;| is odd for every i € [m + 1].

It is easy to verify that the reduction can be implemented in polynomial running-time. Indeed,

every density function g; is piecewise constant with at most p(m) blocks, hence for every

i € [m] the number of vertices that the reduction defines for V; is at most 1/6 4+ p(m) + 1,

and the latter is polynomial in the input size because of the definition of § and the fact that e

is at least inverse-polynomial in m. The additional set V,,,+1 doubles the number of vertices,

possibly with one extra vertex, preserving the construction polynomial in the input size.
We turn to prove the correctness of the reduction, that is, that a solution to the

constructed instance of %—FAIR—SPLIT—PATH/ can be used to efficiently compute a solution

to the original instance of e-CON-HALVING(m, m + 1). Suppose we are given a solution to

%—FAIR—SPLIT—PATH’ for the path G and the partition Vi, ..., V41 of its vertex set V. Such

a solution consists of two disjoint independent sets S1 and Sy of G covering all but at most

m + 1 of the vertices of G such that

Sinvile [ -5 Vil -1, (3 +5)- Vi @

for all i € [m + 1]. Put S5 =V \ (S1 US2). It can be assumed that |S3| = m + 1 (otherwise,
remove some arbitrary vertices from Ss). Denote the vertices of S3 by wuq, ..., u,1q ordered
according to their order in G. Let Pi,..., Py,4+2 be the m 4 2 paths obtained from G by
removing the vertices of S3 (where some of the paths might be empty). Since S; and Sy are
independent sets, every path P; alternates between S; and S,. By our construction, this
implies that in every path P; either the vertices of Sy are from V' \ V,,,41 and those of Sy
are from V,, 11, or the vertices of Sy are from V' \ V,,,11 and those of S; are from V,,,11. We
define b; = 1 in the former case and b; = 2 in the latter. Thus, for every ¢ € [m], the number
of vertices of V; that appear in the paths P; with b; = 1 is precisely |S1 N V;|.

Now, let B1,...,Bm+1 € I be the locations of the vertices uq,...,u;,41 in the interval
I as defined by the reduction. We interpret these locations as m + 1 cuts of the interval I.
Set fp = 0 and Sy, 42 = 1, and for every j € [m + 2|, let I; denote the interval [5;_1, 3;].
Consider the partition of I into two pieces I and I~, where I includes all the parts I;
with b; = 1 and I~ includes all the parts I; with b; = 2. We claim that this partition,
which is obtained using m + 1 cuts in I, forms a valid solution to the original instance
of e-CoN-HALVING(m,m + 1). To this end, we show that for every ¢ € [m] it holds that
\ui(IT) — 3| < £, which is equivalent to |p;(IT) — p;(I7)] <e.

Fix some i € [m]. We turn to estimate the quantity u;(I™), i.e., the total measure of
i on the intervals I; with b; = 1. By our construction, every vertex of V; corresponds
to a sub-interval whose measure by p; is ¢ (except for at most p(m) + 1 of them). Since
the intervals of I correspond to the paths P; whose vertices in V' \ V41 are precisely the
vertices of S1 \ Vini1, one would expect p;(IT) to measure the number of vertices in Sy N V;,
with a contribution of § per every such vertex. This suggests an estimation of |S; N V;|-d for
wi(IT). However, several issues might prevent from this estimation to be accurate:
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The set V; might include vertices that correspond to imperfect sub-intervals whose measure
by p; is smaller than §. Since there are at most p(m) such vertices in V;, they can cause
an error of at most p(m) - § in the above estimation.
To make sure that |V;] is odd, the reduction might add one extra vertex to V;. This might
cause an error of at most ¢ in the above estimation.
The precise locations §; of the cuts of I might fall inside sub-intervals that correspond
to vertices of V;. Since the sub-intervals that correspond to vertices of V; are disjoint,
every such cut can cause an error of at most J in the above estimation, and since there
are m + 1 cuts the error here is bounded by (m + 1) - 4.
We conclude that p;(I") differs from the aforementioned estimation |S; N'V;|-§ by not more
than (p(m) +m + 2) - §. Combining (1) and (2), it can be verified that

1510Vl 6= &| < 5+ (plm) +1) 5,
hence
() =4 < |wlrt) = 1Sunvil-o| + [Isunvil-6 - 4
< (p(m) +m+2)-54 5+ (p(m) +1) -9
= £+ @2p(m)+m+3)-0=35,
where the last equality holds by the definition of §. This completes the proof. <

2.3 Hardness of Fair-1S-Cycle and Fair-Split-Cycle

Equipped with Theorem 13, we are ready to derive the hardness of the FAIR-IS-CYCLE and
FAIR-SPLIT-CYCLE problems (see Definitions 2 and 4).

» Corollary 14. The FAIR-IS-CYCLE problem is PPA-hard.

Proof. By Theorem 9, the e-CON-HALVING(m,m + 1) problem is PPA-hard for input
density functions that are piecewise constant with at most 2 blocks, where ¢ = &(m)
is inverse-polynomial. By Theorem 13, this problem is polynomial-time reducible to the
£-FAIR-SPLIT-PATH' problem, implying that FAIR-SPLIT-PATH', with € = 0, is PPA-hard.
Hence, to prove the corollary, it suffices to show that FAIR-SPLIT-PATH’ is polynomial-time
reducible to FAIR-IS-CYCLE.

Consider an instance of FAIR-SPLIT-PATH’, that is, a path G on n vertices and a partition
Vi,..., Vi of its vertex set into m sets such that |V;| is odd for all 4 € [m]. The reduction
simply returns the cycle G’, obtained from the path G by connecting its endpoints by an
edge, and the same partition Vi, ..., V,, of its vertex set. For correctness, suppose that we
are given a solution to this instance of FAIR-IS-CYCLE, i.e., an independent set S; of G’
satisfying |S1 N Vi| > 3 - |V;| — 1 for all i € [m]. Since each |V;| is odd, it can be assumed
that [S1 NV;| =1 - (|V;| — 1) for all i € [m] (by removing some vertices from S if needed),
implying that

m

_m 1 : _n—m
|&\—§|Smm|—;2(\%|—1)— -

=1

For every vertex of S; consider the vertex that follows it in the cycle G’ (say, oriented
clockwise), and let S5 be the set of vertices that follow those of Sy. Since S is an independent
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set in G’, we get that Sy is another independent set in G’ which is disjoint from S and has
the same size. We obtain that
n—m

[S1USa = [S1] + (82| =2 —;
hence S7 and Sy are two disjoint independent sets of G’ covering all but m of its vertices. In
particular, S; and Sy are independent sets in the path G, and as such, they form a valid
solution to the FAIR-SPLIT-PATH instance. This solution can clearly be constructed in
polynomial running-time given S7, completing the proof. |

=n—m,

The following simple lemma allows us to derive the PPA-hardness of FAIR-SPLIT-CYCLE.

» Lemma 15. The FAIR-IS-CYCLE problem is polynomial-time reducible to
FAIR-SPLIT-CYCLE.

Proof. Consider an instance of FAIR-IS-CYCLE, that is, a cycle G on n vertices and a
partition Vp,...,V,, of its vertex set into m sets. If n and m have the same parity then the
reduction returns the input as is. Otherwise, there exists some i € [m] for which the size of
V; is even. In this case, the reduction adds to the cycle G’ a new vertex located between two
arbitrary consecutive vertices and puts it in V;. Now, the number of vertices and the number
of sets in the partition have the same parity, so the reduction can output the obtained cycle
and partition.

A solution to the constructed instance of FAIR-SPLIT-CYCLE involves two disjoint inde-
pendent sets that fairly represent the partition. Clearly, at least one of the sets does not
include the two neighbors of the vertex that was possibly added to G. Letting S denote the
set of vertices of G in this set, we get that S is independent in G, and it is easy to check
that [SNV;| > 1 - |V;| — 1 for all i € [m], so we are done. <

We end this section with a proof of Theorem 6.

Proof of Theorem 6. By Theorem 10, the e-CON-HALVING(m,m + 1) problem is PPAD-
hard for input density functions that are piecewise constant with at most p(m) blocks,
where p is a polynomial and ¢ is a positive constant. Applying Theorem 13, we get
that the %—FAIR—SPLIT—PATH/ problem is PPAD-hard. To complete the proof, we show
that for every € > 0 the e-FAIR-SPLIT-PATH' problem is polynomial-time reducible to the
e-FAIR-SPLIT-CYCLE problem.

Consider again the reduction that given a path G and a partition Vi, ..., V,, of its vertex
set into sets of odd sizes returns the cycle G/, obtained from the path G by connecting its
endpoints by an edge, and the same partition Vi,...,V,,. Since the sets of the partition have
odd sizes, it follows that the number of vertices and the number of sets in the partition have the
same parity, hence the reduction provides an appropriate instance of the e-FAIR-SPLIT-CYCLE
problem.

For correctness, consider a solution to the constructed instance, i.e., two disjoint inde-
pendent sets S; and Ss of G’ covering all vertices but one from each part V; such that for
each j € {1,2}, it holds that |S; N Vi| > (3 —¢) - |Vi| — 1 for all i € [m]. We claim that
51 and Ss form a valid solution to the original e-FAIR-SPLIT-PATH' instance. Indeed, an
independent set in G’ is also an independent set in G. In addition, the set S satisfies
SiNVil € [(3—¢) Vil —1,(3 +¢) - |Vi]] for all i € [m], where the upper bound holds

2
because

$10Vil = Vil = 1S N Vil =1 Vil = (3 &) - [l = 1) =1 = (3 +2) - Vil

This completes the proof. <
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3 The Schrijver Problem

In this section we introduce and study the SCHRIJVER problem, a natural analogue of the
Kneser problem defined by Deng et al. [17].

We start with some definitions. A set A C [n] is said to be stable if it does not contain
two consecutive elements modulo n (that is, if ¢ € A then i +1 ¢ A, and if n € A then
1 ¢ A). In other words, a stable subset of [n] is an independent set in the cycle on n vertices
with the numbering from 1 to n along the cycle. For integers n > 2k, let ([Z])Stab denote the
collection of all stable k-subsets of [n]. Recall that the Schrijver graph S(n, k) is the graph
on the vertex set ([Z])stab, where two sets are adjacent if they are disjoint. We define the
search problem SCHRIJVER as follows.

» Definition 16 (Schrijver Graph Problem). In the SCHRIJVER problem, the input consists of
a Boolean circuit that represents a coloring

c: ([Z])Stab — [n—2k+1]

of the Schrijver graph S(n, k) using n — 2k + 1 colors, where n and k are integers satisfying
n > 2k. The goal is to find a monochromatic edge, i.e., two disjoint sets Sy, 59 € <[Z]>

stab
such that ¢(S1) = ¢(S2).

As mentioned earlier, it was proved by Schrijver [40] that the chromatic number of S(n, k) is
precisely n — 2k + 2. Therefore, every input to the SCHRIJVER problem has a solution.

3.1 From Fair-1S-Cycle to Schrijver

The following theorem is used to obtain the hardness result for the SCHRIJVER problem. The
proof applies an argument of [1] (see also [10]).

» Theorem 17. The FAIR-IS-CYCLE problem is polynomial-time reducible to the SCHRIJVER
problem.

Proof. Consider an instance of the FAIR-IS-CYCLE problem, namely, a cycle G and a
partition V,. .., V;, of its vertex set into m sets. For every i € [m], let V/ be the set obtained
from V; by removing one arbitrary vertex if |V;| is even, and let V/ = V; otherwise. Since
the size of every set V' is odd, we can write |V/| = 2r; + 1 for an integer r; > 0. Let G’
be the cycle obtained from G by removing the vertices that do not belong to the sets V/
and connecting the remaining vertices according to their order in G. Letting n denote the
number of vertices in G’, it can be assumed that its vertex set is [n] with the numbering
from 1 to n along the cycle. Put k = Y_." | r;, and notice that n = 2k 4+ m. Define a coloring
¢ of the Schrijver graph S(n, k) as follows. The color ¢(S) of a vertex S € ([Z])Smb is defined
as the smallest integer ¢ € [m] for which |SNV]/| > r; in case that such an ¢ exists, and m +1
otherwise. This gives us a coloring of S(n, k) with n — 2k + 1 colors, and thus an instance of
the SCHRIJVER problem. It can be seen that a Boolean circuit that computes the coloring ¢
can be constructed in polynomial running-time.

To prove the correctness of the reduction, consider a solution to the constructed
SCHRIJVER instance, i.e., two disjoint sets S1,S2 € ([Z])stab with ¢(S1) = ¢(S2). It is
impossible that for some ¢ € [m] it holds that |Sy N V| > r; and |Se NV/| > r;, because
Sy and Sy are disjoint and |V/| = 2r; + 1. It follows that ¢(S1) = ¢(S2) = m + 1, meaning
that |[S1 NV/| < r; and [So NV/| < r; for all ¢ € [m]. Since |S1| = |S2| = k, it follows that
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|S1NV/| =r; and |SeNV/| = r; for all i € [m], hence S7 and Ss are two disjoint independent
sets of G’ covering all vertices but one from each V; and for each j € {1,2}, we have
1S;NV/|=3-([V/]|=1) = §-|Vi|—1for all i € [m]. Since Sy and S, are also independent sets
of the original cycle G, each of them forms a valid solution to the FAIR-IS-CYCLE instance,
completing the proof. <

3.2 Membership in PPA

We now show that the SCHRIJVER and FAIR-SPLIT-CYCLE problems lie in PPA by reductions
to the search problem associated with the Octahderal Tucker lemma. The reductions follow
the proofs of the corresponding mathematical statements by Meunier [36] and by Alishahi
and Meunier [3]. The proofs can be found in the full version of the paper.

We start with some notation (following [16, Section 2]). The partial order < on the
set {4+, —,0} is defined by 0 < 4+ and by 0 < —, where + and — are incomparable. The
definition is extended to vectors, so that for two vectors z,y in {+, —,0}", we have z < y if
for all ¢ € [n] it holds that x; < y; (equivalently, x; = y; whenever x; # 0). The Octahedral
Tucker lemma, given implicitly in [33] and explicitly in [42], asserts that for every function
A {4+, =01\ {0} = {£1,...,£(n — 1)} satisfying A(—z) = —A(x) for all z, there exist
vectors x,y such that x < y and A(z) = —A(y). This guarantees the existence of a solution
to every input of the following search problem, denoted OCTAHEDRAL-TUCKER.

» Definition 18 (Octahedral Tucker Problem). In the OCTAHEDRAL-TUCKER problem, the
input consists of a Boolean circuit that represents a function X : {+,—,0}" \ {0} —
{£1,£2,...,£(n — 1)} satisfying \N(—x) = —X(z) for all xz. The goal is to find vectors
x,y such that x 2y and A\(z) = —\(y).

The OCTAHEDRAL-TUCKER problem is known to be PPA-complete [17], where its membership
in PPA follows already from [38] (see also [17, Appendix A]).

» Proposition 19 ([38]). The OCTAHEDRAL-TUCKER problem lies in PPA.

The SCHRIJVER problem is reduced to OCTAHEDRAL-TUCKER, applying an argument
of [36]. The proof is omitted.

» Theorem 20. SCHRIJVER is polynomial-time reducible to OCTAHEDRAL-'TUCKER.

The FAIR-SPLIT-CYCLE problem (see Definition 4) is reduced to OCTAHEDRAL-TUCKER,
applying an argument of [3]. The proof is omitted.

» Theorem 21. FAIR-SPLIT-CYCLE is polynomial-time reducible to OCTAHEDRAL-TUCKER.

3.3 Putting All Together

The presented reductions complete the proofs of our results. Indeed, the FAIR-IS-CYCLE prob-
lem is PPA-hard by Corollary 14, and is polynomial-time reducible to the FAIR-SPLIT-CYCLE
and SCHRIJVER problems by Lemma 15 and Theorem 17 respectively. By Theorems 20
and 21, each of the two is efficiently reducible to the OCTAHEDRAL-TUCKER problem, which
by Proposition 19 lies in PPA. Tt thus follows that all of these problems are PPA-complete
(see Figure 1), confirming Theorems 3, 5, and 7.
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