On the Complexity of #CSP¢

Jiabao Lin
Shanghai University of Finance and Economics, China
jiabaolincs@gmail.com

—— Abstract

Counting CSP? is the counting constraint satisfaction problem (#CSP in short) restricted to the
instances where every variable occurs a multiple of d times. This paper revisits tractable structures
in #CSP and gives a complexity classification theorem for #CSP? with algebraic complex weights.
The result unifies affine functions (stabilizer states in quantum information theory) and related
variants such as the local affine functions, the discovery of which leads to all the recent progress on
the complexity of Holant problems.

The Holant is a framework that generalizes counting CSP. In the literature on Holant problems,
weighted constraints are often expressed as tensors (vectors) such that projections and linear
transformations help analyze the structure. This paper gives an example showing that different
classes of tensors distinguished by these algebraic operations may share the same closure property
under tensor product and contraction.
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1 Introduction

In the constraint satisfaction problem (CSP), constraints are specified by relations on a
finite domain D = {0,1,...,q — 1} with ¢ > 2. A relation R C D" can be seen as a function
fr: D™ — {0,1} where fgr(x) =1 if and only if x € R. To express weighted constraints,
we replace relations with complex-valued functions. Let C denote the set of algebraic
complex numbers. Throughout this paper, we refer to them simply as complex numbers.
Let F ={f1,..., fi} be a finite function set where f; : D™ — C with arity n; > 0. Then the
weighted counting CSP specified by the set F, denoted by #CSP(F), is defined as follows.
An input instance I of the problem consists of

A finite set of variables V = {z1, ..., x5, };

A finite set of constraints {(F},X1), ..., (Fm, Xm)} where F; € F and x; € V2iv(Fi) jg o

tuple of (not necessarily distinct) variables.
Following [4], we say that the instance I defines a function of arity n:

m

F](.Z‘l, ,xn) = HFZ‘(XZ‘).
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The output of the problem #CSP(F) is the following sum (also called the partition function):

Z(I) =Y Fi(x).

xeDbn

The problem is the counting version of a classical CSP, if we restrict F to functions with
range {0, 1}. Weighted constraints make the #CSP framework more expressive. For a binary
function f: D? — C, #CSP(f) is the problem of counting graph homomorphisms into the
graph on D with edge weights f(i,7). A wide range of graph parameters can be encoded
by graph homomorphisms (see, e.g. [22]), which also play an important role in statistical
physics.

The complexity of counting CSP has been intensively studied over the last two decades.
Bulatov [3] first gave a complexity dichotomy theorem for unweighted #CSPs: Each problem
is either solvable in polynomial time or proved to be #P-hard. Understanding the proof
requires knowledge of universal algebra. Later, Dyer and Richerby [18] found a new tractability
criterion and their proof is elementary. Based on the techniques developed for unweighted
#CSP, the dichotomy was generalized to cover nonnegative [6] and complex weights [4].
Given a function F : D* — C, we use FIY, for each t € [n] = {1,...,n}, to denote the
following function of arity t:

F(zy, ..., 20) = Z F(215 00y Bty T 1y o0y T

And for a function set F, we define the set
Wz = {FU| F is a function defined by an instance of #CSP(F) and 1 < t < arity of F}.

The dichotomy theorem for complex-weighted #CSP is stated as follows.

» Theorem 1 ([4]). Let F be a finite set of complez-valued functions. The problem #CSP(F)
is solvable in polynomial time if the set Wx satisfies three conditions: the Block Orthogonality
condition, the Type Partition condition, and the Mal’tsev condition. Otherwise #CSP(F) is
#P-hard.

Roughly speaking, the three conditions require the function defined by any instance to
be well-structured, such that the sum of function values can be computed by an efficient
algorithm instead of brute-force enumeration. Actually, even if a problem #CSP(F) is
#P-hard, it is still possible that the algorithm succeeds on a nontrivial subset of instances.
In this paper, we consider a special case denoted by #CSP?, which was first studied by
Huang and Lu [20].

» Definition 2. Let d > 1 be an integer and let F be a set of complex-valued functions.
The problem #CSPd(]:) is the restriction of #CSP(F) to the instances where every variable
occurs a multiple of d times.

By definition, if d = 1, then the problem #CSP%(F) is exactly #CSP(F). For a function
set F, ##CSPY(F) is a subproblem of #CSP(F). We consider a subset of Wx:

Wi = {FI| F is a function defined by an instance of #CSP4(F) and 1 < t < arity of F}.

A slight modification of the proof of Theorem 1 yields a unified dichotomy theorem for
the #CSP? family.
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» Theorem 3. Let d > 1 be an integer and let F be a finite set of complex-valued functions.
The problem #CSPd(f) is solvable in polynomial time if the set ij_— satisfies three conditions:
the Block Orthogonality condition, the Type Partition condition, and the Mal’tsev condition.
Otherwise #CSPY(F) is #P-hard.

The tractability criteria survive because, as mentioned before, they are imposed on
definable functions and hence not sensitive to how many times a variable appears in an
instance. Unfortunately, none of the three conditions is known to be decidable. It is desirable
to derive more explicit criteria for constraint functions instead of the functions “generated”
by them. However, closed-form formulas or a succinct description of the function values
might not exist for arbitrary domains. In graph homomorphisms with real or complex weights
[19, 5], the classification of binary functions is explicit but very complicated.

By the definition of #CSP, a variable can occurs arbitrarily many times in an instance.
However, in many graph satisfaction problems like matchings, vertices are viewed as con-
straints and edges as variables. That is, each variable appears exactly twice. Inspired by
holographic algorithms [24], Cai, Lu, and Xia [13] proposed the Holant framework.

» Definition 4. The problem Holant(F) is the restriction of #CSP(F) to the instances where
every variable occurs exactly twice.

On the one hand, the Holant is more expressive than #CSP because any #CSP(F)
is polynomial-time equivalent to the problem Holant(F U {EQ}) where EQ(z1, z2,23) =1
if z1 = x93 = x3 and otherwise EQ(z1,22,23) = 0. One the other hand, by definition,
Holant(F) is a subproblem of #CSP(F). The partition function of a bipartite Holant
instance is invariant under the operations of the linear group GL,(C) on constraint functions.
These operations are also called holographic transformations [24, 13], which turn out to be
one of the new sources of tractability [10, 21, 2, 23].

Early study of Holant problems has a similar flavor to that of #CSP (see, e.g. [17, 13, 12]).
Based on the dichotomy for a special family of Holant problems, Cai, Lu, and Xia [15] gave
an explicit criterion for complex-weighted #CSP on the Boolean domain {0,1} (Boolean
#CSP in short).

» Theorem 5 ([15]). Let F be a set of complez-valued functions on the Boolean domain.
Then the problem #CSP(F) is solvable in polynomial time if F C P or F C A. Otherwise
#CSP(F) is #P-hard.

The definitions of product-type functions P and affine functions A are given in Section 3.
Affine functions are discovered in the first paper on Holant problems [13], and recently these
functions are shown to be equivalent to Clifford gates and stabilizer circuits in quantum
computing [11, 1].

Significant progress has been made towards a complexity dichotomy for complex-weighted
Holant [7, 21, 2, 23, 14, 9]. However, it remains open even on the Boolean domain. Since it
was first proposed, the #CSP?¢ family becomes increasingly important in understanding the
relationship between Holant and #CSP. Cai, Lu, and Xia [16] proved a dichotomy theorem
for Boolean #CSP? and discovered a new tractable class called local affine functions (see
Definition 15). This result laid the foundation for all the recent progress on real or complex
Holant [2, 8, 23]. In fact, several major Holant dichotomies inevitably go through the #CSp?
family whose complexity, before Theorem 3, is known only for some special cases [20, 16, 8].
Moreover, the proofs of these results on #CSP? are complicated, partially because explicit
criteria are expected as in Theorem 5.
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Although Theorem 3 shows a complexity dichotomy, it is too general to say much about
the Boolean domain. Of course we can check the three conditions and derive a simplified
version, but there is a direct generalization of Theorem 5. Both product-type and affine
functions have a nice closure property: Wp C P and W4 C A. This fact and inspiration
from Theorem 3 lead to the following theorem.

» Theorem 6. Let d > 1 be an integer and let F be a set of complex-valued functions on the
Boolean domain. Then the problem #CSPd(]:) is solvable in polynomial time if W;l_- C?or
WL C A, Otherwise #CSPY(F) is #P-hard.

The remainder of this paper is organized as follows. In Section 2, we give a proof of
Theorem 3. In Section 3, a simple proof of Theorem 6 is presented. This theorem looks very
different from the previous results. For example, holographic transformations seem necessary
for the definition of the local affine functions and the algorithm that efficiently solves the
problem they define. It will be clear why these transformations disappear in Theorem 6.
Some concluding remarks appear in Section 4.

2 On General Finite Domains

This section is devoted to the proof Theorem 3. Most of the work was done in [4] and we
only show necessary modifications.

Throughout this section, we assume that functions and relations are defined on a fixed
finite domain D = {0,1,...,¢ — 1}. And we use F to denote a finite set of functions on D.
Let <t denote the polynomial-time Turing reductions.

» Lemma 7. For any finite set G C Wi, #CSP(G) <t #CSP*(F).

Proof. For any function f € G C W4, there exists some instance I of the problem #CSPd(]: )
such that f is exactly the function defined by I;. Note that Iy is of constant size, since G is
a finite set.

Let I; be an instance of the problem #CSP(G). We replace each constraint (f,x) € I
with the instance I (in variables x). Then we get a new instance Iy of the problem #CSP%(F)
because the sum of multiples of an integer d is still a multiple of d. It is easy to verify that
Z(I1) = Z(I3). The size of I is polynomial in that of I;. <

The readers can find the statements of the conditions of Theorem 1 in [4, Subsection 3.1].
We say that the function set ij_— violates any of the three conditions, if there exists a finite
set G C ij_— violates any of the three. The hardness part of Theorem 1 can be summarized
as follows.

» Lemma 8 (Lemmas 3.2, 3.4, 3.5 in [4]). If a finite function set G violates one of the three
conditions in Theorem 1, then the problem #CSP(G) is #P-hard.

Hardness Part of Theorem 3. Suppose that a finite set G C W;l_- violates any of the three
conditions. Then the problem #CSP(G) is #P-hard by Lemma 8. Moreover, #CSP?(F) is
#P-hard because #CSP(G) <t #CSP*(F). <

Now we consider the algorithmic part.
Consider a relation R C D™ and a map ¢ : D? — D. We say the relation R is closed
under the map ¢, if for any three tuples u = (u;),v = (v;),w = (w;) € R, it holds that

(QO('UQ, vlvwl)v SD(/U'Qv’UvaQ)v ceey @(unavn7wn)) € R.

In this case, we also say ¢ is a polymorphism of the relation R.
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» Definition 9 (Mal'tsev Polymorphism). Suppose that a relation R C D™ is closed under a
map ¢ : D3 — D. We say that ¢ is a Mal'tsev polymorphism of R, if

¢(a,b,0) = ¢(b,b,a) = a
for all a,b € D.

Given a function f, we use Ry denote the relation {x € D™ | f(x) # 0} (called the support
of f). And for every function f € W‘}_— of arity n > 2, a relation Qy C D?"~2 is defined as:

(x,¥) € Qf < f(x,%) and f(y,*) are both nonzero and linearly dependent,

where f(x,*) denotes the g-dimensional vector (f(x,0), f(x,1),..., f(x,¢ —1)). Now we
define the set

AL = {Ry| f € W} U{Qs| f € W of arity > 2}.

» Definition 10 (The Mal'tsev Condition). All the relations in A% have a common Mal’tsev
polymorphism.

We have the following lemma after checking the algorithm (say, denoted by .A) for
Theorem 1.

» Lemma 11. Suppose that the set W_‘;i- satisfies the three conditions. Then the algorithm A
can solve the problem #CSPd(}') in polynomial time if all the relations in AL U{Ry| f € F}
have a common Mal’tsev polymorphism.

In fact, the Mal’tsev condition already implies the condition in Lemma 11. This completes
the algorithmic part of Theorem 3.

» Lemma 12. Suppose that the Mal’tsev condition holds. Then all the relations in Ajlr U
{Ry| f € F} have a common Mal’tsev polymorphism.

Proof. The conclusion is trivial if d = 1, since F C Wx.

For any function f : D" — C, we consider the function f4(x) = (f(x))? for all x € D™.
The two functions f and f? have the same support: Ry = Rya. Then the conclusion follows
because f¢ € ij_— for every function f € F. <

Some remarks that may help the readers. A relation R C D™ with a Mal’tsev poly-
morphism can be of exponential size in n. However, Dyer and Richerby [18] showed that,
there is a succinct representation of R determined by the Mal'tsev polymorphism, called the
witness function, which has linear size in n. Here we do not introduce the definition of the
witness function. Given an instance I, the algorithm A starts with a witness function of the
support Rp,. The algorithm for constructing witness functions, by Dyer and Richerby, works
no matter how many times a variable occurs but only requires a Mal’tsev polymorphism
shared by all the relations Ry for f € F. Lemma 11 covers the requirement, which is
satisfied trivially when d = 1 since {Ry | f € F} C Ak. Later, the instance I is only used for

evaluating the function Fy at some points in D™. To compute the sum Z(I) = Y . pn Fr(x),

the algorithm A produces a data structure, called the row representation, for each F I[t]

(t € [n]). Now suppose that I is a #CSP? instance. By definition, FIM € W4 for all ¢ € [n].
To obtain the row representations, it is sufficient to impose the three conditions on Wj’—; under
which all the functions and relations involved in the computation are well-structured.

40:5
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3 On the Boolean Domain

In this section, all the functions and relations are defined on the Boolean domain D = {0, 1}.

We start with the definition of product-type functions and affine functions. Let EQ(z, y)
denote the equality function: EQ(z,y) = 1 if = y, otherwise EQ(z,y) = 0. And let
NE(z,y) denote the disequality function: NE(z,y) = 1 — EQ(z, y).

» Definition 13 (Product-Type Functions). A function is of product type if it is defined by
a #CSP instance where every constraint function is a unary function or the binary function
EQ or NE. Let P denote the set of all product-type functions.

A Boolean relation is affine if it is the set of solutions to a system of linear equations
over the field Z,. We say that f has affine support if its support is affine. Recall that the
support of f is the relation Ry = {x € {0,1}" | f(x) # 0}.

» Definition 14 (Affine Functions). A function f of arity n is affine if its support is affine
and there is a constant A € C such that for all x € Ry,

f(x)=\- iQ.

where 1 = +/—1 and Q is a homogeneous quadratic polynomial

Q(Il, ,JL‘n) = Zazzf + 2 Z bq;jiﬁil‘j
i=1

1<i<j<n
with a; € Zy and b;; € {0,1}. We use A to denote the set of all affine functions.

Proof of Theorem 6. Suppose that there are two functions f,g € WJ@_— (they can be the
same) such that f ¢ P and g ¢ A. By Theorem 5, the problem #CSP({f,g}) is #P-hard.
Then #CSP?(F) is also #P-hard since #CSP({f, g}) <t #CSP?(F) by Lemma 7.
Now we assume that W}’l_- CPor W}’l_- C A. In both cases, for any instance I, the function
Fy (say, of arity n) has affine support and the linear system for the support can be constructed
efficiently from that of the constraint functions. There are two cases:
Fr € . We can determine the variable dependence on the support: z; = x; or z; # x;
or they are independent. Then the evaluation of the partition function Z(I) reduces to a
trivial case where every constraint is unary.
Fr € A. We can obtain the explicit formula (in Definition 14) for the function Fy,
by evaluating it at O(n?) many points, using the instance I. Then the algorithm for
Theorem 5 is able to compute Z(I). See [15] for more details.
Therefore, the partition function is computable in polynomial time. |

The remainder of this section is devoted to the connection between Theorem 6 and the
dichotomy for Boolean #CSP? in [16]. Before this, we need to introduce some notations and
definitions.

A function of arity n > 2 can be expressed as a 2"~" x 2" matrix (0 < r < n), denoted
by M, (f). The rows and columns are indexed by x € {0,1}"™" and y € {0,1}", respectively,
and f(x,y) is the (x,y)'" entry of the matrix M, (f). In particular, when r = 0, M,.(f) is a
column vector of dimension 2™. In the following, we do not distinguish a function from its
matrix representations. The integer r will be clear in matrix multiplication.

Given two matrices A and B, we use A ® B to denote their tensor product.
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Let o = 1—\}; where i = /—1. Then o =i. And let M, = [} 0] for z € C. We define the

following set of functions:
A* = {MZ"g|g € A and n is the arity of g},

which is a tractable class for #CSP2.
Recall that Ry = {x € {0,1}"| f(x) # 0} for a function f of arity n.

» Definition 15 (Local Affine Functions). A function f (of arity n) is called local affine, if
for every element (s1,$2,...,8,) € Ry,

(Masi @ Masas @ -+ @ Masn ) f € A,
where o® =1 if s =0, o® =« if s = 1. The set of all local affine functions is denoted by L.

» Theorem 16 ([16]). Let F be a set of functions on the Boolean domain. If F C € for
C e {P,A, A L}, then the problem #CSP?(F) is solvable in polynomial time. Otherwise
#CSP?(F) is #P-hard.

Since the theorem above is a special case of Theorem 6, the two tractability criteria
should be compatible. In fact, we have the following observation.

» Lemma 17. If F C C for € € {P, A, A* L}, then W% C P or W% C A.

The algorithms in [16] for the two classes A* and £ start with local transformations
induced by the matrix M,, such that every constraint function of an instance I becomes
affine and hence the function F7 is also affine. However, as stated in Lemma 17, F} is already
affine. Before proving the lemma, we need some preparations.

» Lemma 18 (Closure Property). Let € =P or € = A, then Wx C C for any set F C C. In
particular, for any n-ary function f € C:

i ee forallt e n);

fx € € for any permutation T on [n], where fr(x1,22,....,2n) = f(Tr1)s Tr(2)s > Tr(n))-

Proof. We only show that g(x1,...,xn-1) = Zmne{o 1} flx1,.cypn_1,x,) € C for any n-ary
function f € €. The case € = A was proved in [11, Lemma 3.1]. Now suppose that f € P.
By the definition of product-type functions, it is sufficient to consider the case where f has
support

Ry C{(u1,...;un), (I —ug,...; 1 —uy,)} for some u; € {0,1}.
It then follows that Ry C {(u1,...,un—1), (1 —u1,...,; 1 —up_1)}. Thus g € P. <

» Lemma 19 (Closure under Matrix Multiplication). Let f € A be a function of arity n. And
let g € A be a function of arity m. Then it holds that

M, (f)Mp—r(g) € A,
for all 0 < r < min{n, m}.
Proof. For any 0 < r < min{n, m}, we consider the function of arity n +m — 2r:
{1y ooy Tp—ry Y1y ooy Yrm—re)

= Z f(xlw"'vxn—rvzla"'7ZT‘)g(Zla"'aZTay17"'7ym—T)-
21,...,2r€{0,1}

Then it follows that My,_.(h) = M, (f)My—r(g). By Lemma 18, we have h € A. <

ITCS 2021
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» Lemma 20 (Closure under Tensor Product). Let A, B € A be two matrices. Then AQB € A.

Proof. Let f,g € A be two functions such that A = M,.(f) and B = M,;(f) for some integers
r,t > 0. Consider the function

h(x,y,z,w) = f(x,2)g(y, W)
where z € {0,1}" and w € {0,1}". Then A ® B = M, (h). <

» Lemma 21. Let f be a function of arity n. Suppose that there exist matrices Ay, A, ..., A, €
{[§3]1r=0,1,2,3} where i = /=1, such that (A1 ® A2 ® - ® Ay,)f € A. Then f € A.

Proof. Set A= A; ® A3 ® --- ® A,,. The matrix A is invertible and A~ = Afl ® A;l ®
-+ ® Al € A by Lemma 20. Then it follows that f = (A71A)f = A~1(Af) € A, according
to Lemma 19. <

Now we are ready to prove Lemma 17.

Proof of Lemma 17. Due to the closure property of product-type and affine functions
(Lemma 18), the two cases F C A® and F C £ remain to be verified. Furthermore, by
Lemma 18, we only need to check the definable functions.

Let I be an instance of #CSPZ(]:). Suppose that the instance I has n variables
{x1,29, ..., 2} and m constraints {(f1,x1), (f2,%2), ..., (fm,Xm)}. Then the function de-
fined by I is

Fr(zy,...,zn) = fi(x1)fa(x2) - frn(Xim)-

Suppose that each variable x; occurs k; times in the instance /. By definition, k; is even for
each j € [n] and we set k = k1 + ko + -+ + kp.

Consider the function of arity k: g = f1 ® fo ® -+ ® fp,. There is a permutation 7 on [k]
such that

Fr(x1, s ®p) = Gu(X1y ey 1, 25 ey T2y ey Ty vey L) -
—
ky times ko times k, times
Suppose that F C L. We show that F; € A. If the function F7j is identically zero, then
we are done. Suppose not. Then there exist s1, S, ..., s, € {0,1} such that
Fr (81,82, 00y 8n) = Gu (81, 0y 81,82, cey 82, oey Spy ooy Si) 7 0.
—— —— N——

k1 times ko times k, times

By the definition of local affine functions, we have

(MEF @ M2k @ ... @ M2F)g. € A. (%)
The relation between the two functions F; and g, shows that

(MR @ MF2, @ - @ MF2 ) Fr e A

For each j € [n], Mjéj € {[6 ior] |r =0, 1,2,3}, since k; is even. By Lemma 21, we have
Fr e A.

Now suppose that F C A%. However, this case has been considered, because the relation
(*) holds by setting s; = so = --- = s,, = 1. This completes the proof. <
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4 Conclusion

Local affine functions partially reflect the difficulty in proving a Holant dichotomy: Nice
structures hide in strange supports and we lack powerful tools.

Theorem 3 and Theorem 6 give a unified complexity dichotomy for the whole #CSPd
family. Being abstract enough, they reveal that essentially there is no new tractable structure
for d > 1. This fact is obtained by considering barriers to efficient evaluations of the partition

functions, but not simply the set of constraint functions which defines the problem though.
Moreover, the proof of Theorem 6 is much simpler than those of the partial results on #CSP.

It is not clear whether or not the dichotomies in this paper can help the study of Holant
problems at large. They are much more conceptual than existing dichotomies and techniques
for the Holant.
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