
Interactive Proofs for Verifying Machine Learning
Shafi Goldwasser
University of California, Berkeley, CA, USA
https://simons.berkeley.edu/people/shafi-goldwasser
shafi.goldwasser@berkeley.edu

Guy N. Rothblum
Weizmann Institute of Science, Rehovot, Israel
https://guyrothblum.wordpress.com
rothblum@alum.mit.edu

Jonathan Shafer
University of California, Berkeley, CA, USA
https://shaferjo.com
shaferjo@berkeley.edu

Amir Yehudayoff
Technion – Israel Institute of Technology, Haifa, Israel
https://yehudayoff.net.technion.ac.il
amir.yehudayoff@gmail.com

Abstract
We consider the following question: using a source of labeled data and interaction with an untrusted
prover, what is the complexity of verifying that a given hypothesis is “approximately correct”? We
study interactive proof systems for PAC verification, where a verifier that interacts with a prover is
required to accept good hypotheses, and reject bad hypotheses. Both the verifier and the prover are
efficient and have access to labeled data samples from an unknown distribution. We are interested in
cases where the verifier can use significantly less data than is required for (agnostic) PAC learning,
or use a substantially cheaper data source (e.g., using only random samples for verification, even
though learning requires membership queries). We believe that today, when data and data-driven
algorithms are quickly gaining prominence, the question of verifying purported outcomes of data
analyses is very well-motivated.

We show three main results. First, we prove that for a specific hypothesis class, verification
is significantly cheaper than learning in terms of sample complexity, even if the verifier engages
with the prover only in a single-round (NP-like) protocol. Moreover, for this class we prove that
single-round verification is also significantly cheaper than testing closeness to the class. Second, for
the broad class of Fourier-sparse boolean functions, we show a multi-round (IP-like) verification
protocol, where the prover uses membership queries, and the verifier is able to assess the result while
only using random samples. Third, we show that verification is not always more efficient. Namely,
we show a class of functions where verification requires as many samples as learning does, up to a
logarithmic factor.

2012 ACM Subject Classification Theory of computation → Interactive proof systems; Theory of
computation → Machine learning theory

Keywords and phrases PAC learning, Fourier analysis of boolean functions, Complexity gaps,
Complexity lower bounds, Goldreich-Levin algorithm, Kushilevitz-Mansour algorithm, Distribution
testing

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.41

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/
2020/058.

© Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 41; pp. 41:1–41:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4728-1535
https://simons.berkeley.edu/people/shafi-goldwasser
mailto:shafi.goldwasser@berkeley.edu
https://orcid.org/0000-0001-5273-6472
https://guyrothblum.wordpress.com
mailto:rothblum@alum.mit.edu
https://orcid.org/0000-0002-1934-0051
https://shaferjo.com
mailto:shaferjo@berkeley.edu
https://orcid.org/0000-0002-0177-1814
https://yehudayoff.net.technion.ac.il
mailto:amir.yehudayoff@gmail.com
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://eccc.weizmann.ac.il/report/2020/058
https://eccc.weizmann.ac.il/report/2020/058
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Interactive Proofs for Verifying Machine Learning

Funding Shafi Goldwasser : Research was supported in part by DARPA under Contract No.
HR001120C0015.
Guy N. Rothblum: This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 819702).
Amir Yehudayoff : Research was supported by ISF grant No. 1162/15.

Acknowledgements The authors would like to thank Oded Ben-David, Eyal Ben-David, Alessandro
Chiesa, Constantinos Daskalakis, Oded Goldreich, Ankur Moitra, Ido Nachum, Orr Paradise and
Avishay Tal for insightful discussions and helpful references.

A simple idea underpins science: “trust, but verify”. Results should always be subject to
challenge from experiment. That simple but powerful idea has generated a vast body of
knowledge. Since its birth in the 17th century, modern science has changed the world beyond
recognition, and overwhelmingly for the better. But success can breed complacency. Modern
scientists are doing too much trusting and not enough verifying – to the detriment of the
whole of science, and of humanity.

The Economist, “How Science Goes Wrong” (2013)

1 Introduction

Data and data-driven algorithms are transforming science and society. State-of-the-art ma-
chine learning and statistical analysis algorithms use access to data at scales and granularities
that would have been unimaginable even a few years ago. From medical records and genomic
information to financial transactions and transportation networks, this revolution spans
scientific studies, commercial applications and the operation of governments. It holds trans-
formational promise, but also raises new concerns. If data analysis requires huge amounts
of data and computational power, how can one verify the correctness and accuracy of the
results? Might there be asymmetric cases, where performing the analysis is expensive, but
verification is cheap?

There are many types of statistical analyses, and many ways to formalize the notion of
verifying the outcome. In this work we focus on interactive proof systems [12] for verifying
supervised learning, as defined by the PAC model of learning [22]. Our emphasis throughout
is on access to the underlying data distribution as the critical resource: both quantitatively
(how many samples are used for learning versus for verification), and qualitatively (what
types of samples are used). We embark on tackling a series of new questions:

Suppose a learner (which we also call prover) claims to have arrived at a good hypothesis
with regard to an unknown data distribution by analyzing random samples from the distribu-
tion. Can one verify the quality of the hypothesis with respect to the unknown distribution
by using significantly fewer samples than the number needed to independently repeat the
analysis? The crucial difference between this question and questions that appear in the
property testing and distribution testing literature is that we allow the prover and verifier
to engage in an interactive communication protocol (see Section 1.1.1 for a comparison).
We are interested in the case where both the verifier and an honest prover are efficient (i.e.,
use polynomial runtime and sample complexity), and furthermore, a dishonest prover with
unbounded computational resources cannot fool the verifier:

I Question 1 (Runtime and sample complexity of learning vs. verifying). Are there machine
learning tasks for which the runtime and sample complexity of learning a good hypothesis is
significantly larger than the complexity of verifying a hypothesis provided by someone else?

S. Goldwasser, G.N. Rothblum, J. Shafer, and A. Yehudayoff 41:3

In the learning theory literature, various types of access to training data have been
considered, such as random samples, membership queries, and statistical queries. In the
real world, some types of access are more costly than others. Therefore, it is interesting to
consider whether it is possible to verify a hypothesis using a cheaper type of access than is
necessary for learning:

I Question 2 (Sample type of learning vs. verifying). Are there machine learning problems
where membership queries are necessary for finding a good hypothesis, but verification is
possible using random samples alone?

The answers to these fundamental questions are motivated by real-world applications. If
data analysis requires huge amounts of data and computational resources while verification
is a simpler task, then a natural approach for individuals and weaker entities would be to
delegate the data collection and analysis to more powerful entities. Going beyond machine
learning, this applies also to verifying the results of scientific studies without replicating the
entire experiment. We elaborate on these motivating applications in Section 1.2 below.

1.1 PAC Verification: A Proposed Model
Our primary focus in this work is verifying the results of agnostic supervised machine learning
algorithms that receive a labeled dataset, and aim to learn a classifier that predicts the labels
of unseen examples. We introduce a notion of interactive proof systems for verification of
PAC learning, which we call PAC Verification (see Definition 4). Here, the entity running the
learning algorithms (which we refer to as the prover or the learner) proves the correctness of
the results by engaging in an interactive communication protocol with a verifier. One special
case is where the prover only sends a single message constituting an (NP-like) certificate of
correctness. The honest prover should be able to convince the verifier to accept its proposed
hypothesis with high probability. A dishonest prover (even an unbounded one) should not be
able to convince the verifier to accept a hypothesis that is not sufficiently good (as defined
below), except with small probability over the verifier’s random coins and samples. The
proof system is interesting if the amount of resources used for verification is significantly
smaller than what is needed for performing the learning task. We are especially interested in
doubly-efficient proof systems [11], where the honest prover also runs in polynomial time.

More formally, let X be a set, and consider a distribution D over samples of the form
(x, y) where x ∈ X and y ∈ {0, 1}. Assume there is some hypothesis class H, which is a set
of functions X → {0, 1}, and we are interested in finding a function h ∈ H that predicts the
label y given a previously unseen x with high accuracy with respect to D. To capture this we
use the loss function LD(h) = P(x,y)∈D [h(x) 6= y]. Our goal is to design protocols consisting
of a prover and verifier that satisfy: (i) When the verifier interacts with an honest prover,
with high probability the verifier outputs a hypothesis h that is ε-good, meaning that

LD(h) ≤ LD(H) + ε, (1)

where LD(H) = inff∈H LD(f); (ii) For any (possibly dishonest and unbounded) prover, the
verifier can choose to reject the interaction, and with high probability the verifier will not
output a hypothesis that is not ε-good.

Observe that in the realizable case (or promise case), where we assume that LD(H) = 0,
one immediately obtains a strong result: given a hypothesis h̃ proposed by the prover, a
natural strategy for the verifier is to take a few samples from D, and accept if and only if
h̃ classifies at most, say, an 9

10ε-fraction of them incorrectly. From Hoeffding’s inequality,

ITCS 2021

41:4 Interactive Proofs for Verifying Machine Learning

taking O
(1
ε2

)
samples is sufficient to ensure that with probability at least 9

10 the empirical
loss1 of h̃ is ε

10 -close to the true loss. Therefore, if LD(h̃) ≤ 8
10ε then h̃ is accepted with

probability at least 9
10 , and if LD(h̃) > ε then h̃ is rejected with probability at least 9

10 . In
contrast, PAC learning a hypothesis that with probability at least 9

10 has loss at most ε
requires Ω

(
d
ε

)
samples, where the parameter d, which is the VC dimension of the class, can

be arbitrarily large.2 That is, in the realizable case there is a sample complexity and time
complexity separation of unbounded magnitude between learning and verifying. Furthermore,
this result holds also under the weaker assumption that LD(H) ≤ ε

2 .
Encouraged by this strong result, the present paper focuses on the agnostic case, where no

assumptions are made regarding LD(H). Here, things become more interesting, and deciding
whether a proposed hypothesis h̃ is ε-good is non-trivial. Indeed, the verifier can efficiently
estimate LD(h̃) using Hoeffding’s inequality as before, but estimating the term LD(H) on
the right hand side of (1) is considerably more challenging. If h̃ has a loss of say 15%, it
could be an amazingly-good hypothesis compared to the other members of H, or it could be
very poor. Distinguishing between these two cases may be difficult when H is a large and
complicated class.

1.1.1 Related Models
We discuss two related models studied in prior work, and their relationship to the PAC
verification model proposed in this work.

Property Testing. Goldreich, Goldwasser and Ron [9] initiated the study of a property
testing problem that naturally accompanies proper PAC learning: Given access to samples
from an unknown distribution D, decide whether LD(H) = 0 or LD(H) ≥ ε for some fixed
hypothesis class H. Further developments and variations appeared in Kearns and Ron [15]
and Balcan et. al [2]. Blum and Hu [4] consider tolerant closeness testing and a related
task of distance approximation (see [19]), where the algorithm is required to approximate
LD(H) up to a small additive error. As discussed above, the main challenge faced by the
verifier in PAC verification is approximating LD(H). However, there is a crucial difference
between testing and PAC verification: In addition to taking samples from D, the verifier in
PAC verification can also interact with a prover, and thus PAC verification can (potentially)
be easier than testing. Indeed, this difference is exemplified by the proper testing question,
where we only need to distinguish the zero-loss case from large loss. As discussed above,
proper PAC verification is trivial. Proper testing, one the other hand, can be a challenging
goal (and, indeed, has been the focus of a rich body of work). For the tolerant setting, we
prove a separation between testing and PAC verification: we show a hypothesis class for
which the help of the prover allows the verifier to save a (roughly) quadratic factor over the
number of samples that are required for closeness testing or distance approximation. See
Section 3 for further details.

Proofs of Proximity for Distributions. Chiesa and Gur [6] study interactive proof systems
for distribution testing. For some fixed property Π, the verifier receives samples from an
unknown distribution D, and interacts with a prover to decide whether D ∈ Π or whether D is
ε-far in total variation distance from any distribution in Π. While that work does not consider

1 I.e., the fraction of the samples that is misclassified.
2 See preliminaries in [13, Section 1.6.2] for more about VC dimension.

S. Goldwasser, G.N. Rothblum, J. Shafer, and A. Yehudayoff 41:5

machine learning, the question of verifying a lower bound ` on the loss of a hypothesis class
can be viewed as a special case of distribution testing, where Π = {D : LD(H) ≥ `}. Beyond
our focus on PAC verification, an important distinction between the works is that in Chiesa
and Gur’s model and results, the honest prover’s access to the distribution is unlimited – the
honest prover can have complete information about the distribution. In this paper, we focus
on doubly-efficient proofs, where the verifier and the honest prover must both be efficient in
the number of data samples they require. With real-world applications in mind, this focus
seems quite natural.3

We survey further related works in Section 1.5 in the full version of the paper [13].

1.2 Applications
The P vs. NP problem asks whether finding a solution ourselves is harder than verifying a
solution supplied by someone else. It is natural to ask a similar question in learning theory:
Are there machine learning problems for which learning a good hypothesis is harder than
verifying one proposed by someone else? We find this theoretical motivation compelling in
and of itself. Nevertheless, we now proceed to elaborate on a few more practical aspects of
this question.

1.2.1 Delegation of Learning
In a commercial context, consider a scenario in which a client is interested in developing
a machine learning (ML) model, and decides to outsource that task to a company P that
provides ML services. For example, P promises to train a deep neural net using a big server
farm. Furthermore, P claims to possess a large amount of high quality data that is not
available to the client, and promises to use that data for training.

How could the client ascertain that a model provided by P is actually a good model?
The client could use a general-purpose cryptographic delegation-of-computation protocol,
but that would be insufficient. Indeed, a general-purpose delegation protocol can only ensure
that P executed the computation as promised, but it cannot provide any guarantees about
the quality of the outcome, and in particular cannot ensure that the outcome is ε-good: If P
used skewed or otherwise low-quality training data (whether maliciously or inadvertently),
a general-purpose delegation protocol has no way of detecting that. Moreover, even if the
the data and the execution of the computation were both flawless, this still provides no
guarantees on the quality of the output, because an ML model might have poor performance
despite being trained as prescribed.4,5

A different solution could be to have P provide a proof to establish that its output is
indeed ε-good. In cases where the resource gap between learning and verifying is significant
enough, the client could cost-effectively verify the proof, obtaining sound guarantees on the
quality of the ML model it is purchasing from P .

3 In Chiesa and Gur’s setting, it would also be sufficient for the prover to only know the distribution up
to O(ε) total variation distance, and this can be achieved using random samples from the distribution.
However, the number of samples necessary for the prover would be linear in the domain size, which
is typically exponential, and so this approach would not work for constructing doubly-efficient PAC
verification protocols.

4 E.g., a neural network might get stuck at a local minimum.
5 Additionally, note that state-of-the-art delegation protocols are not efficient enough at present to make

it practicable to delegate intensive ML computations. See the survey by Walfish and Blumberg [23] for
progress and challenges in developing such systems.

ITCS 2021

41:6 Interactive Proofs for Verifying Machine Learning

1.2.2 Verification of Scientific Studies
It has been claimed that many or most published research findings are false [14]. Others refer
to an ongoing replication crisis [20, 7], where many scientific studies are hard or impossible
to replicate or reproduce [21, 3]. Addressing these issues is a scientific and societal priority.

There are many factors contributing to this problem, including: structural incentives
faced by researchers, scientific journals, referees, and funding bodies; the level of statistical
expertise among researchers and referees; differences in the sources of data used for studies
and their replication attempts; choice of standards of statistical significance; and norms
pertaining to the publication of detailed replicable experimental procedures and complete
datasets of experimental results.

We stress that the current paper does not touch on the majority of these issues, and
our discussion of the replication crisis (as well as our choice of quotation at the beginning
of the paper) does not by any means suggest that adoption of PAC verification protocols
will single-handedly solve all issues pertaining to replication. Rather, the contribution of
the current paper with respect to scientific replication is very specific: we suggest that for
some specific types of experiments, PAC verification can be used to design protocols that
allow to verify the results of an experiment in a manner that uses a quantitatively smaller
(or otherwise cheaper) set of independent experimental data than would be necessary for a
traditional replication that fully repeats the original experiment. In [13, Appendix A] we
list four such types of experiments. We argue that devising PAC verification protocols that
make scientific replication procedures even modestly cheaper for specific types of experiments
is a worthwhile endeavor that could help increase the amount of scientific replication or
verification that occurs, and decrease the prevalence of errors that remain undiscovered in
the scientific literature.

1.3 Our Setting
In this paper we consider the following form of interaction between a verifier and a prover.

Verifier

Oracle OV
[

h̃ or “reject”

Prover

Oracle OP
[

w1 = h̃

w2

. . .

. . .

wt

Figure 1 The verifier and prover each have access to an oracle, and they exchange messages with
each other. Eventually, the verifier outputs a hypothesis, or rejects the interaction. One natural case
is where the prover suggests a hypothesis h̃, and the verifier either accepts or rejects this suggestion.

Let H ⊆ {0, 1}X be a class of hypotheses, and let D be a distribution over X × {0, 1}.
The verifier and the prover each have access to an oracle, denoted OV and OP respectively.
In the simplest case, both oracles provide i.i.d. samples from D. That is, each time an oracle
is accessed, it returns a sample from D taken independently of all previous samples and

S. Goldwasser, G.N. Rothblum, J. Shafer, and A. Yehudayoff 41:7

events. In addition, the verifier and prover each have access to a (private) random coin value,
denoted ρV and ρP respectively, which are sampled from some known distributions over
{0, 1}∗ independently of each other and of all other events. During the interaction, the prover
and verifier take turns sending each other messages w1, w2, . . . , where wi ∈ {0, 1}∗ for all i.
Finally, at some point during the exchange of messages, V halts and outputs either “reject”
or a hypothesis h : X → {0, 1}. The goal of the verifier is to output an ε-good hypothesis,
meaning that

LD(h) ≤ LD(H) + ε.

A natural special case of interest is when the prover’s and verifier’s oracles provide sample
access to D. The prover can learn a “good” hypothesis h̃ : X → {0, 1} and send it to the
verifier as its first message, as in Figure 1 above. The prover and verifier then exchange
further messages, wherein the prover tries to convince the verifier that h̃ is ε-good, and the
verifier tries to asses the veracity of that claim. If the verifier is convinced, it outputs h̃,
otherwise it rejects.

We proceed with an informal definition of PAC verification (see full definitions in Sec-
tion 1.5). Before doing so, we first recall a relaxed variant of PAC learning, called semi-agnostic
PAC learning, where we allow a multiplicative slack of α ≥ 1 in the error guarantee.

I Definition (α-PAC Learnability – informal version of [13, Definition 1.22]). A class of
hypothesis H is α-PAC learnable (or semi-agnostic PAC learnable with parameter α) if there
exists an algorithm A such that for every distribution D and every ε, δ > 0, with probability
at least 1− δ, A outputs h that satisfies

LD(h) ≤ α · LD(H) + ε. (2)

PAC verification is the corresponding notion for interactive proof systems:

I Definition (α-PAC Verifiability – informal version of Definition 4). A class of hypothesis
H is α-PAC verifiable if there exists a pair of algorithms (P, V) that satisfy the following
conditions for every distribution D and every ε, δ > 0:

Completeness. After interacting with P , V outputs h such that with probability at least
1− δ, h 6= reject and h satisfies (2).
Soundness. After interacting with any (possibly unbounded) prover P ′, V outputs h
such that with probability at least 1− δ, either h = reject or h satisfies (2).

I Remark 1. We insist on double efficiency; that is, that the sample complexity and running
times of both V and P must be polynomial in 1

ε , log
(1
δ

)
, and perhaps also in some parameters

that depend on H, such as the VC dimension or Fourier sparsity of H. y

1.4 Overview of Results
In this paper, we start charting the landscape of machine learning problems with respect to
Questions 1 and 2 mentioned above. First, in Section 2 we provide evidence for an affirmative
answer to Questions 2. We show an interactive proof system that efficiently verifies the class
of Fourier-sparse boolean functions, where the prover uses an oracle that provides query
access, and the verifier uses an oracle that only provides random samples. In this proof
system, both the verifier and prover send and receive messages.

ITCS 2021

41:8 Interactive Proofs for Verifying Machine Learning

The class of Fourier-sparse functions is very broad, and includes decision trees, bounded-
depth boolean circuits and many other important classes of functions. Moreover, the result
is interesting because it supplements the widely-held learning parity with noise (LPN)
assumption, which entails that PAC learning this class from random samples alone without
the help of a prover is hard [5, 24].

I Lemma (Informal version of Lemma 14). Let H be the class of boolean functions {0, 1}n → R
that are t-sparse.6 Then H is 1-PAC verifiable with respect to the uniform distribution using
a verifier that has access only to random samples of the form (x, f(x)), and a prover that has
query access to f . The verifier in this protocol is not proper; the output is not necessarily
t-sparse, but it is poly(n, t)-sparse. The number of samples used by the verifier, the number of
queries made by the prover, and their running times are all bounded by poly

(
n, t, log

(1
δ

)
, 1
ε

)
.

Proof Idea. The proof uses two standard tools, albeit in a less-standard way. The first
standard tool is the Kushilevitz-Mansour algorithm [16], which can PAC learn any t-sparse
function using random samples, but only if the set of non-zero Fourier coefficients is known.
The second standard tool is the Goldreich-Levin algorithm [10] and [8, Section 2.5.2.3], which
can identify the set of non-zero Fourier coefficients, but requires query access in order to do
so. The protocol combines the two tools in a manner that overcomes the limitations of each
of them. First, the verifier executes the Goldreich-Levin algorithm, but whenever it needs
to query the target function, it requests that the prover perform the query and send back
the result. However, the verifier cannot trust the prover, and so the verifier engineers the
queries in such a way that the answers to a certain random subset of the queries are known
to the verifier based on its random sample access. This allows the verifier to detect dishonest
provers. When the Goldreich-Levin algorithm terminates and outputs the set of non-zero
coefficients, the verifier then feeds them as input to the Kushilevitz-Mansour algorithm to
find an ε-good hypothesis using its random sample access. J

In [13, Section 3] we formally answer Question 1 affirmatively by showing that a certain
simple class of functions (generalized thresholds) exhibits a quadratic gap in sample complexity
between learning and verifying:

I Lemma (Informal version of Lemma 15). There exists a sequence of classes of functions
T1, T2, T3, ... ⊆ {0, 1}R such that for any fixed ε, δ ∈ (0, 1

2):
(i) The class Td is proper 2-PAC verifiable, where both the verifier and prover have access

to random samples, and the verifier requires only Õ
(√

d
)
samples. Moreover, both the

prover and verifier are efficient.
(ii) PAC learning the class Td requires Ω(d) samples.

At this point, a perceptive reader would be justified in raising the following challenges.
Perhaps 2-PAC verification requires less samples than 1-PAC learning simply because of the
multiplicative slack factor of 2? Alternatively, perhaps the separation follows trivially from
property testing results: maybe it is possible to achieve 2-PAC verification simply by having
the verifier perform closeness testing using random samples, without needing the help of the
prover except for finding the candidate hypothesis? The second part of the lemma dismisses
both of these concerns.

6 A function f : {0, 1}n → R is t-sparse if it has at most t non-zero Fourier coefficients, namely
|{S ⊆ [n] : f̂(S) 6= 0}| ≤ t. See preliminaries in [13, Section 1.6.3] for further details.

S. Goldwasser, G.N. Rothblum, J. Shafer, and A. Yehudayoff 41:9

I Lemma (Informal version of Lemma 15 – Continued). Furthermore, for any fixed ε, δ ∈ (0, 1
2):

(iii) 2-PAC learning the class Td requires Ω̃(d) samples. This is true even if we assume that
LD(Td) > 0, where D is the underlying distribution.7

(iv) Testing whether LD(Td) ≤ α or LD(Td) ≥ β for any 0 < α < β < 1
2 with success

probability at least 1 − δ when D is an unknown distribution (without the help of a
prover) requires Ω̃ (d) random samples from D.

Proof Idea. (ii) follows from a standard application of [13, Theorem 1.13], because VC (Td) =
d. (iii) follows by a reduction from (iv). We prove (iv) by showing a further reduction from
the problem of approximating the support size of a distribution, and applying a lower bound
for that problem (see [13, Theorem 3.20]).

For (i), recall from the introduction that the difficulty in designing a PAC verification
proof system revolves around convincing the verifier that the term LD(H) in Equation (1) is
large. Therefore, we design our class Td such that it admits a simple certificate of loss, which
is a string that helps the verifier ascertain that LD(H) ≥ ` for some value `.

To see how that works, first consider the simple class T1 of monotone increasing threshold
functions R → {0, 1}, as in Figure 5a on page 17 below. Observe that if there are two
events A = [0, a) × {1} and B = [b, 1] × {0} such that a ≤ b and D(A) = D(B) = `, then
it must be the case that LD(T1) ≥ `. This is true because a ≤ b, and so if a monotone
increasing threshold classifies any point in A correctly it must classify all point in B incorrectly.
Furthermore, if the prover sends a description of A and B to the verifier, then the verifier can
check, using a constant number of samples, that each of these events has weight approximately
` with high probability.

This type of certificate of loss can be generalized to the class Td, in which each function
is a concatenation of d monotone increasing thresholds. A certificate of loss for Td is simply
a set of d certificates of loss {Ai, Bi}di=1, one for each of the d thresholds. The question
that arises at this point is how can the verifier verify d separate certificates while using only
Õ
(√

d
)
samples. This is performed using tools from distribution testing: the verifier checks

whether the distribution of “errors” in the sets specified by the certificates is close to the
prover’s claims. I.e., whether the “weight” of 1-labels in each Ai and 0-labels in each Bi in
the actual distribution, are close to the weights claimed by the prover. Using an identity
tester for distributions this can be done using O(

√
d) samples (note that the identity tester

need not be tolerant!). See [13, Theorem E.1] for further details. J

In contrast, in [13, Section 4] we show that verification is not always easier than learning:

I Lemma (Informal version of [13, Lemma 4.1]). There exists a sequence of classes H1,H2, . . .

such that:
It is possible to PAC learn the class Hd using Õ(d) samples.
For any interactive proof system that proper 1-PAC verifies Hd, in which the verifier uses
an oracle providing random samples, the verifier must use at least Ω(d) samples.

I Remark 2. The lower bound on the sample complexity of the verifier holds regardless of
what oracle is used by the prover. y

Proof Idea. We specify a set X of cardinality Ω(d2), and take Hd to be a randomly-chosen
subset of all the balanced functions X → {0, 1} (i.e., functions f such that |f−1(0)| =
|f−1(1)|). The sample complexity of PAC learning Hd follows from its VC dimension being

7 In the case where LD(Td) = 0, 2-PAC learning is the same as PAC learning, so the stronger lower bound
in (ii) applies.

ITCS 2021

41:10 Interactive Proofs for Verifying Machine Learning

Õ(d). For the lower bound, consider proper PAC verifying Hd in the special case where the
distribution D satisfies P(x,y)∈D [y = 1] = 1, but the marginal of D on X is unknown to the
verifier. Because every hypothesis in the class assigns the incorrect label 0 to precisely half
of the domain, a hypothesis achieves minimal loss if it assigns the 0 labels to a subset of size
|X |
2 that has minimal weight. Hence, the verifier must learn enough about the distribution

to identify a specific subset of size |X |2 with weight close to minimal. We show that doing so
requires Ω

(√
|X |
)

= Ω(d) samples. J

Finally, in [13, Section 5] we show that in the setting of semi-supervised learning, where
unlabeled samples are cheap, it is possible to perform PAC verification such that the verifier
requires significantly less labeled samples than are required for learning. This verification uses
a technique we call query delegation, and is efficient in terms of time complexity whenever
there exists an efficient ERM algorithm that PAC learns the class using random samples.

1.5 Definition of PAC Verification
In Section 1.3 we informally described the setting of this paper. Here, we complete that
discussion by providing a formal definition of PAC verification, which is the main object of
study in this paper.

I Notation 3. We write [V OV (xV), POP (xP)] for the random variable denoting the output
of the verifier V after interacting with a prover P , when V and P receive inputs xV and
xP respectively, and have access to oracles OV and OP respectively. The inputs xV and xP
can specify parameters of the interaction, such as the accuracy and confidence parameters
ε and δ. This random variable takes values in {0, 1}X ∪ {reject}, namely, it is either a
function X → {0, 1} or it is the value “reject”. The random variable depends on the (possibly
randomized) responses of the oracles, and on the random coins of V and P .

For a distribution D, we write V D (or PD) to denote use of an oracle that provides i.i.d.
samples from the distributions D. Likewise, for a function f , we write V f (or P f) to denote
use of an oracle that provides query access to f . That is, in each access to the oracle, V (or
P) sends some x ∈ X to the oracle, and receives the answer f(x).

We also write [V (SV , ρV), P (SP , ρP)] ∈ {0, 1}X ∪ {reject} to denote the deterministic
output of the verifier V after interacting with P in the case where V and P receive fixed
random coin values ρV and ρP respectively, and receive fixed samples SV and SP from their
oracles OV and OP respectively.

We are interested in classes H for which an ε-good hypothesis can always be verified
with high probability via this form of interaction between an efficient prover and verifier,
as formalized in the following definition. Note that the following definitions include an
additional multiplicative slack parameter α ≥ 1 in the error guarantee. This parameter does
not exist in the standard definition of PAC learning; the standard definition corresponds to
the case α = 1.

I Definition 4 (α-PAC Verifiability). Let H ⊆ {0, 1}X be a class of hypotheses, let D ⊆
∆(X × {0, 1}) be some family of distributions, and let α ≥ 1. We say that H is α-PAC
verifiable with respect to D using oracles OV and OP if there exists a pair of algorithms
(V, P) that satisfy the following conditions for every input ε, δ > 0:

Completeness. For any distribution D ∈ D, the random variable h := [V OV (ε, δ),
POP (ε, δ)] satisfies

P
[
h 6= reject ∧

(
LD(h) ≤ α · LD(H) + ε

)]
≥ 1− δ.

S. Goldwasser, G.N. Rothblum, J. Shafer, and A. Yehudayoff 41:11

Soundness. For any distribution D ∈ D and any (possibly unbounded) prover P ′, the
random variable h := [V OV (ε, δ), P ′OP (ε, δ)] satisfies

P
[
h 6= reject ∧

(
LD(h) > α · LD(H) + ε

)]
≤ δ.

I Remark 5. Some comments about this definition:
The behavior of the oracles OV and OP may depend on the specific underlying distribution
D ∈ D, which is unknown to the prover and verifier. For example, they may provide
samples from D.
We insist on double efficiency; that is, that the sample complexity and running times of
both V and P must be polynomial in 1

ε , log
(1
δ

)
, and perhaps also in some parameters

that depend on H, such as the VC dimension or Fourier sparsity of H.
If for every ε, δ > 0, and for any (possibly unbounded) prover P ′, the value h :=
[V OV (ε, δ), P ′OP (ε, δ)] satisfies h ∈ H∪ {reject} with probability 1 (i.e., V never outputs
a function that is not in H), then we say that H is proper α-PAC verifiable, and that the
proof system proper α-PAC verifies H. y

I Remark 6. An important type of learning (studied e.g. by Angluin [1] and Kushilevitz
and Mansour [16]) is learning with membership queries with respect to the uniform distribu-
tion. In this setting, the family D consists of distributions D such that: (1) the marginal
distribution of D over X is uniform; (2) D has a target function f : X → {1,−1} satisfying
P(x,y)∼D [y = f(x)] = 1.8 In Section 2, we will consider protocols for this type of learning
that have the form [V D, P f], such that the verifier has access to an oracle providing random
samples from a distribution D ∈ D, and the prover has access to an oracle providing query
access to f , the target function of D. This type of protocol models a real-world scenario
where P has qualitatively more powerful access to training data than V . y

2 Efficient Verification for the Class of Fourier-Sparse Functions

In Section 3 below we show that in some cases verification is strictly easier than learning
and closeness testing. The verification protocol presented there has a single round, where
the prover simply sends a hypothesis and a proof that it is (approximately) optimal. In this
section, we describe a multi-round protocol that demonstrates that interaction is helpful for
verification.

The interactive protocol we present PAC verifies the class of Fourier-sparse functions.
This is a broad class of functions, which includes decision trees, DNF formulas with small
clauses, and AC0 circuits.9 Every function f : {0, 1}n → R can be written as a linear
combination f =

∑
T⊆[n] f̂(T)χT .10 In Fourier-sparse functions, only a small number of

coefficients are non-zero. Note that according to the learning parity with noise (LPN)
assumption [5, 24] it is not possible to learn the Fourier-sparse functions efficiently using
random samples only.

An important technicality is that throughout this section we focus solely on PAC verifica-
tion with respect to families of distributions that have a uniform marginal over {0, 1}n, and
have a target function f : {0, 1}n → {1,−1} such that P(x,y)∼D [y = f(x)] = 1. See further
discussion in Remark 6 on page 11. In this setting, in order to learn f it is sufficient to
approximate its heavy Fourier coefficients.

8 Note that f is not necessarily a member of H, so this is still an agnostic (rather than realizable) case.
9 See Mansour [18, Section 5.2.2, Theorems 5.15 and 5.16]. (AC0 is the set of functions computable by
constant-depth boolean circuits with a polynomial number of AND, OR and NOT gates.)

10The real numbers f̂(T) are called Fourier coefficients, and the functions χT are called characters.

ITCS 2021

41:12 Interactive Proofs for Verifying Machine Learning

I Notation 7. Let f : {0, 1}n → R, and let τ ≥ 0. The set of τ -heavy coefficients of f is
f̂≥τ = {T ⊆ [n] : |f̂(T)| ≥ τ}.

Furthermore, approximating a single coefficient is easy given random samples from
the uniform distribution [13, Claim 2.11]. There are, however, an exponential number of
coefficients, so approximating all of them is not feasible. This is where verification comes
in. If the set of heavy coefficients is known, and if the function is Fourier-sparse, then one
can efficiently learn the function by approximating that particular set of coefficients. The
prover can provide the list of heavy coefficients, and then the verifier can learn the function
by approximating these coefficients.

The challenge that remains in designing such a verification protocol is to verify that the
provided list of heavy coefficients is correct. If the list contains some characters that are not
actually heavy, no harm is done.11 However, if a dishonest prover omits some of the heavy
coefficients from the list, how can the verifier detect this omission? The following result
provides an answer to this question.

I Lemma 8 (Interactive Goldreich-Levin). There exists an interactive proof system (V, P ∗)
as follows. For every n ∈ N, δ > 0, every τ ≥ 2− n

10 , every function f : {0, 1}n → {0, 1}, and
every prover P , let

LP = [V (S, n, τ, δ, ρV), P f (n, τ, δ, ρP)]

be a random variable denoting the output of V after interacting with the prover P , which
has query access to f , where S =

(
(x1, f(x1)), . . . , (xm, f(xm))

)
is a random sample with

x1, . . . , xm taken independently and uniformly from {0, 1}n, and ρV , ρP are strings of private
random coins. LP takes values that are either a collection of subsets of [n], or “reject”.
The following properties hold:

Completeness. P
[
LP∗ 6= reject ∧ f̂≥τ ⊆ LP∗

]
≥ 1− δ.

Soundness. For any (possibly unbounded) prover P ,

P
[
LP 6= reject ∧ f̂≥τ * LP

]
≤ δ.

Double efficiency. The verifier V uses at most O
(
n
τ log

(
n
τ

)
log
(1
δ

))
random samples

from f and runs in time poly
(
n, 1

τ , log
(1
δ

))
. The runtime of the prover P ∗, and the

number of queries it makes to f , are at most O
(
n3

τ5 log
(1
δ

))
. Whenever LP 6= reject, the

cardinality of LP is at most O
(
n2

τ5 log
(1
δ

))
.

All proofs for this section appear in Section 2 in the full version of the paper [13].
I Remark 9. In Section 1.5 we defined interactive proof systems specifically for PAC ver-
ification. The proof system in Lemma 8 is technically different. The verifier outputs a
collection of sets instead of a function, and it satisfies different completeness and soundness
conditions. y

The verifier V operates by simulating the Goldreich-Levin (GL) algorithm for finding
f̂≥τ . However, the GL algorithm requires query access to f , while V has access only to
random samples. To overcome this limitation, V delegates the task of querying f to the

11The verifier can approximate each coefficient in the list and discard of those that are not heavy.
Alternatively, the verifier can include the additional coefficients in its approximation of the target
function, because the approximation improves as the number of estimated coefficients grows (so long as
the list is polynomial in n).

S. Goldwasser, G.N. Rothblum, J. Shafer, and A. Yehudayoff 41:13

prover P , who does have the necessary query access. Because P is not trusted, V engineers
the set of queries it delegates to P in such a way that some random subset of them already
appear in the sample S which V has received as input. This allows V to independently verify
a random subset of the results sent by P , ensuring that a sufficiently dishonest prover is
discovered with high probability.

The Interactive Goldreich-Levin Protocol. The verifier for Lemma 8 uses Protocol 2 (IGL),
which repeatedly applies Protocol 3 (IGL-Iteration).

Protocol 2 Interactive Goldreich-Levin: IGL(n, τ, δ).

V performs the following:
r ←

⌈
(4n
τ + 1) log

(1
δ

)⌉
for i ∈ [r] do

Li ← IGL-Iteration(n, τ)
if Li = reject then

output reject
L←

⋃
i∈[r] Li

output L

Lemma 8 follows from two claims: Claim 10 says that if the prover is mostly honest, then
the output is correct. Claim 11 says that if the prover is too dishonest, it will be rejected.

B Claim 10 (Completeness of IGL). Consider an execution of IGL-Iteration(n, τ) for
τ ≥ 2− n

10 . For any prover P and any randomness ρP , if V did not reject, and the evaluations
provided by P were mostly honest, in the sense that ∀i ∈ [n] : Px∈H

[
f̃(x ⊕ ei) 6= f(x ⊕ ei)

]
≤

τ
4 , then P

[
f̂≥τ ⊆ L

]
≥ 1

2 , where the probability is over the sample S and the randomness ρV .
y

Proof Idea. We show that for every heavy coefficient T ∈ f̂≥τ , P [T /∈ L] ≤ τ2

4 . From a
union bound, this is sufficient to prove the claim, because Parseval’s identity implies that
|f̂≥τ | ≤ 1

τ2 . The main observation is that the Goldreich-Levin algorithm is resilient to some
adversarial noise. To see this, note that if T ∈ f̂≥τ , then Px∈{0,1}n [f(x) = `(x)] ≥ 1

2 + τ
2

for the linear function `(x) = ⊕i∈Txi (or its negation ¬`). Therefore, f agrees with ` with
probability at least 1

2 + τ
4 , even if a τ

4 -fraction of f ’s values are adversarially corrupted. Hence,
in the iteration of the outer loop in Step 4 in which yj = `(bj) for all j ∈ [k], the majority
function will output the correct value of f

(
xK ⊕ ei

)
⊕ yK = `(xK ⊕ ei) ⊕ `(xK) = `(ei), and

this results in T being added to the output set L. Some finer details are discussed in the full
version of the paper. J

B Claim 11 (Soundness of IGL). Consider an execution of IGL-Iteration(n, τ). For any
prover P and any randomness value ρP , if there exists i ∈ [n] for which P was too dishonest
in the sense that Px∈H

[
f̃(x ⊕ ei) 6= f(x ⊕ ei)

]
> τ

4 , then P [L = reject] ≥ τ
4n , where the

probability is over the sample S and the randomness ρV . y

12 For any j, ej is a vector in which the j-th entry is 1 and all other entries are 0.

ITCS 2021

41:14 Interactive Proofs for Verifying Machine Learning

Protocol 3 Interactive Goldreich-Levin Iteration: IGL-Iteration(n, τ).

Assumption: V receives a sample S =
(

(x1, f(x1)), . . . , (xm, f(xm))
)
such that

m =
⌈
log
(40n
τ4 + 1

)⌉
, for all i ∈ [m], xi ∈ {0, 1}n is chosen independently and

uniformly, and f(xi) ∈ {0, 1}.

1. V selects i∗ ∈ [n] uniformly at random, and then sends B to P , where B =
{b1, . . . , bk} ⊆ {0, 1}n is a basis chosen uniformly at random from the set of
bases of the subspace H = span({x1 ⊕ ei∗ , . . . , xm ⊕ ei∗}).12

2. P sends V the set {(x ⊕ ei, f̃(x ⊕ ei)) : i ∈ [n] ∧ x ∈ H}, where for any z, f̃(z)
is purportedly the value of f(z) obtained using P ’s query access to f .

3. V checks that for all i ∈ [m], the evaluation f(xi) provided by P equals that
which appeared in the sample S. If there are any discrepancies, V rejects the
interaction and terminates. Otherwise:

4. Let K = {K : ∅ (K ⊆ [k]}. V Performs the following computation and
outputs L:
L← ∅
for (y1, . . . , yk) ∈ {0, 1}k do

for K ∈ K do
xK ←

⊕
i∈K bi

yK ←
⊕

i∈K yi

for i ∈ [n] do
ai ← majorityK∈K

(
f̃
(
xK ⊕ ei

)
⊕ yK

)
add {i : ai = 1} and {i : ai = 0} to L

output L

Proof Idea. In Protocol 3, the verifier “hides” the sample it knows in the random subspace
H ⊕ ei∗ for an index i∗ ∈ [n] chosen uniformly at random. With probability at least 1

n , i
∗ is

an index for which the prover was too dishonest. If that is the case, then in expectation a
τ
4 -fraction of the prover’s answers on the known sample were dishonest, because the known
sample is a random subset of H ⊕ ei∗ . The claim now follows from Markov’s inequality. J

I Remark 12. It is possible to run all repetitions of the IGL protocol in parallel such that
only 2 messages are exchanged. y

Efficient Verification of Fourier-Sparse Functions. As a corollary of Lemma 8, we obtain
the following lemma, which is an interactive version of the Kushilevitz-Mansour algorithm
[16, 17, 18]. It says that the class of t-sparse boolean functions is efficiently PAC verifiable
with respect to the uniform distribution using an interactive proof system (Protocol 4) of
the form [V D, P f], where the prover has query access and the verifier has random samples .

Protocol 4 uses a procedure EstimateCoefficient [13, Algorithm 4] that estimates a
single fourier coefficient f̂(T) up to precision λ with confidence δ using

⌈
2 ln(2/δ)

λ2

⌉
random

samples. Note that the output of Protocol 4 is a function h : {0, 1}n → R, not necessarily a
boolean function.

S. Goldwasser, G.N. Rothblum, J. Shafer, and A. Yehudayoff 41:15

I Notation 13. Let X be a finite set. We write Dfunc
U (X) to denote the set of all distributions

D over X × {1,−1} that have the following two properties:
The marginal distribution of D over X is uniform. Namely,

∑
y∈{1,−1}D

(
(x, y)

)
= 1
|X |

for all x ∈ X .
D has a target function f : X → {1,−1} satisfying P(x,y)∼D [y = f(x)] = 1.

I Lemma 14. Let X = {0, 1}n, and let H be the class of functions X → R that are t-sparse.6
The class H is 1-PAC verifiable for any ε ≥ 4t · 2− n

10 with respect to Dfunc
U (X) by a proof

system in which the verifier has access to random samples from a distribution D ∈ Dfunc
U (X),

and the honest prover has oracle access to the target function f : X → {1,−1} of D. The
running time of both parties is at most poly

(
n, t, 1

ε , log
(1
δ

))
. The verifier in this protocol is

not proper; the output is not necessarily t-sparse, but it is poly
(
n, t, 1

ε , log
(1
δ

))
-sparse.

Protocol 4 PAC Verification of t-Sparse Functions: VerifyFourierSparse(n, t, ε, δ).

V performs the following:
τ ← ε

4t
L← IGL(n, τ, δ2)
if L = reject then

output reject
else

λ←
√

ε
8|L|

for T ∈ L do
αT ← EstimateCoefficient(T, λ, δ

2|L|)

h←
∑
T∈L αTχT

output h

Complete proofs appear in Section 2 in the full version of the paper [13].

3 Separation Between Learning, Testing, and PAC Verification

In this section we present the following gap in sample complexity between learning and
verification. Conceptually, the result tells us that at least in some scenarios, delegating a
learning task to an untrusted party is worthwhile, because verifying that their final result is
correct is significantly cheaper than finding that result ourselves.

I Lemma 15 (Separation Between Learning, Testing, and Verification). There exists a sequence
of classes of functions T1, T2, T3, ... ⊆ {0, 1}R such that for any fixed ε, δ ∈ (0, 1

2) all of the
following hold:
(i) Td is proper 2-PAC verifiable, where the verifier uses13

mV = O

(√
d log(d) log

(1
δ

)
ε6

)
random samples, the honest prover uses

13We believe that the dependence of mV on ε can be improved, see [13, Remark 3.15].

ITCS 2021

41:16 Interactive Proofs for Verifying Machine Learning

mP = O

(
d3 log2(d)

ε4 log
(
d

ε

)
+ d
√
d log(d)
ε2 log

(
1
δ

))
random samples, and each of them runs in time polynomial in its number of samples.14

(ii) Agnostic PAC learning Td requires Ω
(
d+log(1

δ)
ε2

)
samples.

(iii) If ε ≤ 1
32 then 2-PAC learning the class Td requires Ω

(
d

log(d)

)
samples. This is true

even if we assume that LD(Td) > 0, where D is the underlying distribution.
(iv) Testing whether LD(Td) ≤ α or LD(Td) ≥ β for any 0 < α < β < 1

2 with success
probability at least 1 − δ when D is an unknown distribution (without the help of a
prover) requires Ω

(
d

log(d)

)
random samples from D.

Our exposition in this section is partial, and aims only to convey the main ideas of part (i).
Complete formal proofs appear in [13, Section 3]. We show an MA-like proof system wherein
the prover sends a single message (h̃, C̃, ˜̀) such that allegedly h̃ is an ε-good hypothesis with
loss at most ˜̀> 0. C̃ ∈ {0, 1}∗ is a string called a certificate of loss, which helps the verifier
ascertain that H has a large loss with respect to the unknown distribution D. The verifier
operates as follows:15

Verifies that LD(h̃) ≤ ˜̀ with high probability. That is, it estimates the loss of h̃ with
respect to D, and checks that with high probability it is at most ˜̀.
Uses the certificate of loss C̃ to verify that with high probability, LD(H) ≥ ˜̀− ε. This
step is called verifying the certificate.

The class Td of multi-thresholds that satisfies Lemma 15 is illustrated in Figure 5, and is
defined as follows.

I Definition 16. For any d ∈ N, denote by Td the class of functions Td = {ft1,...,td :
t1, . . . , td ∈ R} where for all t1, . . . , td ∈ R and x ∈ [0, d], the function ft1,...,td : R→ {0, 1}
is given by

ft1,...,td(x) =
{

0 x < tdxe

1 x ≥ tdxe,

and ft1,...,td vanishes on the complement of [0, d].

I Remark 17. For convenience, we present the separation result with respect to functions
defined over R, we assume that the marginal distribution of the samples on R is absolutely
continuous with respect to the Lebesgue measure, and we ignore issues relating to the
representation of real numbers in computations and protocol messages. This provides for
a smoother exposition of the ideas. In [13, Appendix C], we show how the results can be
discretized. y

We first present the certificate structure for the class of threshold functions, namely Td
with d = 1. Certificates of loss for T1 are easy to visualize, and they induce a proof system
for PAC verifying T1 that is complete, sounds, and doubly efficient. However, verifying
certificates for T1 requires as much resources as PAC learning T1 without the help of a prover.
The next step is to show that these certificates generalize to the class Td of multi-thresholds,
and that for Td there indeed is a gap in sample complexity between verifying and learning.

14 Subsequent unpublished work by JS and Saachi Mutreja suggests that it is possible to strengthen this
to obtain 1-PAC verification with better sample complexity bounds.

15We provide a more detailed description of the verification procedure below, and in [13, Claim 3.14].

S. Goldwasser, G.N. Rothblum, J. Shafer, and A. Yehudayoff 41:17

0 1
3

2
3

1

0

1
f1/3

(a) The function f1/3 ∈ T1. T1 consists
of monotone increasing threshold func-
tions [0, 1]→ {0, 1}.

0 1
2

t 1

0

1 A

B

ft

(b) Structure of a simple certificate of loss for T1.
The set A is labeled with 1, and B is labeled 0.
The depicted threshold ft happens to misclassify
both A and B, but it is just one possible threshold.

0 1 2 3 . . .
d

0

1

t1 t2 t3 td

(c) Example of a function in Td.

Figure 5 The class Td of multi-thresholds, with the special case T1 and its certificate structure.

Certificates of loss for T1. Consider two sets A ⊆ [0, 1]× {1} and B ⊆ [0, 1]× {0}, such
that all the points in A are located to the left of all the points in B, as in Figure 5b. Because
we only allow thresholds that are monotone increasing, a threshold that labels any point in
A correctly must label all points of B incorrectly, and vice versa. Hence, any threshold must
have loss at least min{D(A),D(B)}. Estimating D(A) and D(B) is easy (by Hoeffding’s
inequality). Formally:

I Definition 18. Let D ∈ ∆([0, 1]× {0, 1}) be a distribution and `, η ≥ 0. A certificate of
loss at least ` for class T1 is a pair (a, b) where 0 < a ≤ b < 1.

We say that the certificate is η-valid with respect to distribution D if the events A =
[0, a)× {1} and B = [b, 1]× {0} satisfy |D(A)− `|+ |D(B)− `| ≤ η.

B Claim 19 ([13, Claims 3.5 and 3.4]). Let D ∈ ∆([0, 1] × {0, 1}) be a distribution and
`, η ≥ 0.

Soundness. If D has a certificate of loss at least ` which is η-valid with respect to D, then
LD(T1) ≥ `− η.
Completeness. If LD(T1) = ` then there exists a 0-valid certificate of loss at least `

2 with
respect to D. y

ITCS 2021

41:18 Interactive Proofs for Verifying Machine Learning

Certificates of loss for Td with d > 1. A certificate of loss is simply a collection of d
certificates of loss for T1, one for each unit interval in [0, d]. Standard techniques from
VC theory show that it is possible to efficiently generate certificates for Td for a particular
distribution using Õ(d2) samples [13, Claim 3.13]. This is more expensive than learning
the class Td, but it may be worthwhile seeing as the verifier can apply techniques from
distribution testing to verify purported certificates using only Õ(

√
d) samples – which is

cheaper than learning [13, Claim 3.14].
Further discussion and complete proofs of Lemma 15(ii)-(iv), including the lower bound

for closeness testing, appear in the full version of the paper [13].

4 Directions for Future Work

This work initializes the study of verification in the context of machine learning. We have
seen separations between the sample complexity of verification versus learning and testing, a
protocol that uses interaction to efficiently learn sparse boolean functions, and have seen
that in some cases the sample complexities of verification and learning are the same.

Building a theory that can help guide verification procedures is a main objective for future
research. A specific approach is to identify dimension-like quantities that describe the sample
complexity of verification, similarly to role VC dimension plays in characterizing learnability.
A different approach is to understand the trade-offs between the various resources in the
system – the amount of time, space and samples used by the prover and the verifier, as well
as the amount of interaction between the parties.

From a practical perspective, we described potential applications for delegation of machine
learning, and for verification of experimental data. It seems beneficial to build efficient
verification protocols for machine learning problems that are commonly used in practice,
and for the types of scientific experiments mentioned in [13, Appendix A]. This would have
commercial and scientific applications.

There are also some technical improvements that we find interesting. For example, is
there a simple way to improve the MA-like protocol for the multi-thresholds class Td to
achieve 1-PAC verification (instead of 2-PAC verification)?

Finally, seeing as learning verification is still a new concept, it would be good to consider
alternative formal definitions, investigate how robust our definition is, and discuss what the
“right” definition should be.

Additional directions are discussed in Section 6 in the full version of the paper [13]. J

References
1 Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,

75(2):87–106, 1987. doi:10.1016/0890-5401(87)90052-6.
2 Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing.

In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 21–30. IEEE Computer Society, 2012.
doi:10.1109/FOCS.2012.64.

3 C. Glenn Begley and Lee M. Ellis. Raise standards for preclinical cancer research. Nature,
483(7391):531–533, 2012.

4 Avrim Blum and Lunjia Hu. Active tolerant testing. In Sébastien Bubeck, Vianney Perchet,
and Philippe Rigollet, editors, Conference On Learning Theory, COLT 2018, Stockholm,
Sweden, 6-9 July 2018, volume 75 of Proceedings of Machine Learning Research, pages 474–497.
PMLR, 2018. URL: http://proceedings.mlr.press/v75/blum18a.html.

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/FOCS.2012.64
http://proceedings.mlr.press/v75/blum18a.html

S. Goldwasser, G.N. Rothblum, J. Shafer, and A. Yehudayoff 41:19

5 Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

6 Alessandro Chiesa and Tom Gur. Proofs of proximity for distribution testing. In 9th Innovations
in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge,
MA, USA, pages 53:1–53:14, 2018. doi:10.4230/LIPIcs.ITCS.2018.53.

7 Fiona Fidler and John Wilcox. Reproducibility of scientific results. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
winter 2018 edition, 2018.

8 Oded Goldreich. Foundations of cryptography: volume 1, basic tools. Cambridge university
press, 2007.

9 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

10 Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 25–32.
ACM, 1989.

11 Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015. doi:10.1145/2699436.

12 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

13 Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive
proofs for verifying machine learning. Electron. Colloquium Comput. Complex., 27:58, 2020.
URL: https://eccc.weizmann.ac.il/report/2020/058.

14 John PA Ioannidis. Why most published research findings are false. PLoS medicine, 2(8):e124,
2005.

15 Michael J. Kearns and Dana Ron. Testing problems with sublearning sample complexity. J.
Comput. Syst. Sci., 61(3):428–456, 2000. doi:10.1006/jcss.1999.1656.

16 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier spectrum.
SIAM Journal on Computing, 22(6):1331–1348, 1993.

17 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,
and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

18 Yishay Mansour. Learning boolean functions via the Fourier transform. In Theoretical advances
in neural computation and learning, pages 391–424. Springer, 1994.

19 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006. doi:10.1016/j.jcss.2006.03.
002.

20 Harold Pashler and Eric-Jan Wagenmakers. Editors’ introduction to the special section on
replicability in psychological science: A crisis of confidence? Perspectives on Psychological
Science, 7(6):528–530, 2012.

21 Florian Prinz, Thomas Schlange, and Khusru Asadullah. Believe it or not: how much can we
rely on published data on potential drug targets? Nature reviews Drug discovery, 10(9):712–712,
2011.

22 Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

23 Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting them.
Commun. ACM, 58(2):74–84, 2015. doi:10.1145/2641562.

24 Yu Yu and John Steinberger. Pseudorandom functions in almost constant depth from low-noise
LPN. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 154–183. Springer, 2016.

ITCS 2021

https://doi.org/10.4230/LIPIcs.ITCS.2018.53
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/2699436
https://eccc.weizmann.ac.il/report/2020/058
https://doi.org/10.1006/jcss.1999.1656
https://doi.org/10.1016/j.jcss.2006.03.002
https://doi.org/10.1016/j.jcss.2006.03.002
https://doi.org/10.1145/2641562

	Introduction
	PAC Verification: A Proposed Model
	Related Models

	Applications
	Delegation of Learning
	Verification of Scientific Studies

	Our Setting
	Overview of Results
	Definition of PAC Verification

	Efficient Verification for the Class of Fourier-Sparse Functions
	Separation Between Learning, Testing, and PAC Verification
	Directions for Future Work

