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Abstract
We identify several genres of search problems beyond NP for which existence of solutions is
guaranteed. One class that seems especially rich in such problems is PEPP (for “polynomial empty
pigeonhole principle”), which includes problems related to existence theorems proved through the
union bound, such as finding a bit string that is far from all codewords, finding an explicit rigid
matrix, as well as a problem we call Complexity, capturing Complexity Theory’s quest. When the
union bound is generous, in that solutions constitute at least a polynomial fraction of the domain,
we have a family of seemingly weaker classes α-PEPP, which are inside FPNP|poly. Higher in
the hierarchy, we identify the constructive version of the Sauer-Shelah lemma and the appropriate
generalization of PPP that contains it, as well as the problem of finding a king in a tournament (a
vertex k such that all other vertices are defeated by k, or by somebody k defeated).
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1 Introduction

The complexity of total functions has emerged over the past three decades as an intriguing
and productive branch of Complexity Theory. Subclasses of TFNP, the set of all total
functions in FNP, have been defined and studied: PLS, PPP, PPA, PPAD, PPADS,
and CLS. These classes are replete with natural problems, several of which turned out to be
complete for the corresponding class, see e.g. [9, 10].

Each of these classes corresponds naturally to a very simple existential argument. For
example, PLS is the class of all total functions whose proof of totality relies on the fact that
every finite dag must have a sink, while PPAD captures this true existential statement: “If
a finite directed graph has an unbalanced node (i.e., a node whose in-degree differs from its
out-degree), then it must have another unbalanced node.” The class of total functions PPP
(for “polynomial pigeonhole principle”) captures the well known fact that “if there are more
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44:2 Total Functions in the Polynomial Hierarchy

pigeons than pigeonholes, there must be a pigeonhole with two or more pigeons.” This latter
complexity class has attracted much attention due to its close connections to cryptography,
and there has been recent progress towards natural complete problems [5, 22, 14].

More recently a logic-inspired class PTFNP (for “provable TFNP”) was identified
containing all of the above classes [11], its definition motivated by the existential proof point
of view described above. It was also pointed out in [11] that finitariness is necessary for the
definition of a meaningful class of total functions, in that any non-finitary existence theorem
– that is, one that also holds for infinite structures – results in a computational problem that
is provably easy. Also recently, an intriguing link between the possibility of TFNP-hardness
and average-case hardness was discovered [12].

The simple statement on which PPP is based has a very natural “dual” variant, call it
the empty pigeonhole principle, namely: “if there are more pigeonholes than pigeons, then
there must be an empty pigeonhole.” Concretely, given a circuit C mapping [2n − 1] to [2n]1,
find a bit string of length n that is not in C’s range. Call this problem Empty. One could
even define a class based on the empty pigeonhole principle, call it PEPP (for “polynomial
empty pigeonhole principle,” the set of all total function problems polynomial-time reducible
to Empty). At first sight, PEPP may seem very close to PPP – identical, perhaps? – until
one notices that PEPP is not obviously in NP! For PPP, one can guess and check the
offending pigeonhole and the two pigeons in it – but for PEPP? Once the empty pigeonhole
has been guessed, proving it is empty requires one to look at all pigeons. An alternation of
quantifiers appears to be at work!

In this paper we introduce a hierarchy of total search problems analogous to the polynomial
hierarchy of decision problems. TFNP is the first level of the hierarchy, and the class PEPP
just defined is at the second level of this hierarchy, denoted TFΣ2. Actually, we shall soon
see that there are natural and interesting search problems occupying the third level of the
hierarchy. (For the formal definition of TFΣi and some basic facts about this hierarchy, see
the Appendix.)

The first result we prove in this direction is that, despite the apparent similarity and
“symmetry” outlined above, PEPP contains PPP – and in fact, all of FNP (Theorem 1;
the proof is easy).

Empty and PEPP are closely associated with the familiar probabilistic argument known
as the union bound. There is a formal way to see this: Consider a generic instance of Empty,
that is, a circuit C mapping [2n − 1] to [2n]; the task is to find a possible output in [2n] not
in the circuit’s range. Interpret now an input x as x = yz, where |z| = n−m and |y| = m,
and where y encodes a “bad event” – in the sense of the union bound – with probability
2−m (2−m − 2−n for one of the events), while z indexes the 2n−m (respectively, 2n−m − 1)
elements of the whole probability space of size 2n that constitute the bad event. Hence, the
empty pigeonhole principle can be interpreted as the union bound. Many of the important
natural problems in PEPP correspond to existential proofs through the union bound, or
more generally through counting.

One of these problems is Remote Point: Given a code – generically, a circuit mapping
[2k] to [2n] where k < n and the codewords are the range of the circuit – find an n-bit string
that is far from all codewords (as far in Hamming distance, that is, as is guaranteed by the
union bound). It is not hard to see that Remote Point is PPEP-complete. The important
open problem here is the complexity of the special case of Remote Point in which the
circuit is a linear function in GF2; this is a much studied problem [2].

1 We denote the set {0, 1, · · · ,M − 1} by [M ]. We shall see that it is easy to construct circuits with
arbitrary integer domains and ranges.
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Other natural problems in PEPP capture interesting aspects of complexity. To start
with the more indirect one, Rigid Matrix Completion is the following problem: find a
rigid matrix in GFn×n2 (that is, an n× n matrix whose rank cannot collapse to something
tiny by manipulating very few entries, details supplied later) given several of its entries.
Rigid matrices have been shown [24] to be abundant, and to capture logarithmic-depth
circuit complexity, while their explicit construction has remained an important open problem
since Valiant’s paper. We define the relevant problem as a completion variant of the explicit
construction problem – that is, part of the matrix is specified – to overcome a familiar
impediment: without a binary input of some substantial length, one is dealing with a sparse
problem, and current techniques seem unable to fathom the complexity of such problems
(see the related work subsection for a further discussion of this). A second problem in the
same vein, Ramsey-Erdős completion, embodies Erdős’s famous 1959 proof that the n-th
Ramsey number is at least 2n2 .

Complexity is a problem asking, given a bit string of length n, to find an explicit Boolean
function with logn inputs which requires Ω( n

log2 n
) gates – that is, an explicit exponential

lower bound. The problem is, again, defined through a circuit. The circuit interprets its
input gates as the representation of a circuit with logn inputs and O( n

log2 n
) gates, where

besides the usual Boolean gates we also allow oracle gates with fan-in logn. The output of
the circuit is the Boolean function computed by this circuit, encoded as a bit string of length
2logn = n. The input to the problem (on the basis of which the circuit is constructed and
the computation of the circuit is carried out) is also interpreted as an oracle, encoding in its
n bits the answers to all possible oracle inputs. The task is to discover an n-bit string that is
not in the range of this circuit under this oracle – that is to say, a Boolean function with
logn variables which therefore requires Ω( n

log2 n
) gates to be computed with the given oracle.

The oracle here is needed, again, to render a sparse function exponentially dense.
Is this problem PEPP-complete, or otherwise hard in a demonstrable sense? This is an

important problem left open in this paper. We are aware of one immediate obstacle: it turns
out that many of the problems we discussed above, Complexity among them, belong in a
significantly weakened subclass of PEPP. Let α be a positive quantity, possibly a function of
n, and define the class α-PEPP (pronounced abundant PEPP) to be the variant in which
the given circuit does not map [2n] to [2n + 1], but instead [2n] to [(1 +α) · 2n + 1]; evidently,
PEPP = 0-PEPP, while many of the problems in PEPP discussed are known to belong to
α-PEPP for some constant α. In particular, we denote 1-PEPP by APEPP, circuits with
twice as many outputs than inputs.

We prove two theorems on α-PEPP. First, we establish that the precise value of α
is in some sense irrelevant, in that any class α-PEPP with α between 1

poly and poly can
be reduced to any other such class through FPNP reductions (Theorem 7; it is not known
whether polynomial time reductions are possible here). Second, it turns out that for α ≥ 1

poly ,
for any problem in α-PEPP with n input gates there is a small set of outputs (strings of
length dn log(1 + α)e) such that, for any input, one of them is an empty pigeonhole. (The
proof is by – what else? – the union bound.) It follows that α-PEPP is contained in
FZPPNP – functional ZPP (Monte Carlo algorithms) with a satisfiability oracle – and,
analogously to Adleman’s theorem [1], that α-PEPP is contained in FPNP|poly, FPNP

with polynomial advice; we see no reason why PEPP = 0-PEPP should be so confined.
So far we have been discussing problems and classes in TFΣ2, the next level after TFNP

of what can be called the polynomial total function hierarchy. It turns out that there are
also interesting problems further up. Shattering is the following problem: we are given a
circuit C with k input gates and n output gates, which is supposed to represent a family of

ITCS 2021
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2k subsets of [n]. We must return either a collision in this circuit, establishing that the family
has fewer than 2k distinct sets; or otherwise a d-subset of [n], call it D, which is shattered
by the family – that is, every subset of D can be written as D ∩ C(x) for some set C(x) in
the family; such a set is guaranteed to exist by the Sauer-Shelah lemma [19, 21, 25], as long
as C has no collisions and k is large enough as a function of n and d. Notice immediately
that there are two alternations of quantifiers in this existential result: there is a set D such
that for every subset G of D there is an output C(x) of C such that G = D ∩ C(x): we are
in the class TFΣ3! In fact, we show that Shattering belongs to a very natural subclass
of TFΣ3: it belongs to PPPΣ2 , the pigeonhole principle class when the function mapping
pigeons to pigeonholes can use a Σ2 oracle in its computations.

We present another TFΣ3 problem, which we denote as King: given a tournament
(succinctly described by a circuit), find a vertex v such that every other vertex is reachable
from v by a directed path of length one or two. The proof that such a vertex must exist is a
local-search argument dating back to the 1950’s [15], but the potential function used in the
proof is #P-hard to compute, hence the King problem does not evidently belong to any
natural subclass of TFΣ3 such as PLSΣ2 .

Related Work
The difficulty of making existential arguments based on the union bound constructive has in
fact been a fundamental problem in Complexity Theory and combinatorics for over seven
decades. Already in 1947, after Erdős published his paper proving Ramsey lower bounds via
the probabilistic method, he recognized the difficulty of matching this with a constructive
proof, and offered a $100 prize to anyone who could do so [8]. Two years after that, Shannon
used the union bound to give a nonconstructive proof that some functions require exponential
size circuits, and also noted the difficulty in finding constructive proofs of size lower bounds
for explicit functions, comparing it to the difficulty of proving that particular numbers are
transcendental [20]. At this time, “constructive” was a rather informal concept, but a few
decades later Complexity Theory offered us a plausible definition: a constructive proof is
an algorithm that constructs an object with the desired properties from scratch, in time
polynomial in the size of the object. Over time, an important research tradition in Complexity
Theory has developed around such explicit construction problems, pertaining mostly to the
construction of computational devices (pseudorandom generators, randomness extractors,
exponentially hard Boolean functions in the worst or average case, etc.) whose existence is
guaranteed by the union bound. Many celebrated results in this domain compare the difficulty
of such explicit construction problems through, essentially, reductions [24, 17, 13, 6, 23]. In
particular, already in 1977 Les Valiant [24] showed that an explicit construction of a rigid
matrix would imply an explicit Boolean function requiring shallow circuits of superlinear
size – a reduction between two explicit construction problems whose corresponding existence
proofs rely on the union bound. Next, Nisan and Wigderson established in 1995 that an
explicit pseudorandom generator can be constructed in polynomial time, given an explicit
construction of a truth table which is hard to approximate for exponentially large circuits,
and Impagliazzo and Wigderson [13] showed a decade later that such hard-to-approximate
truth tables can in fact be constructed in polynomial time from truth tables which are very
hard to compute in the worst case. More recently, an equivalence has been shown between
the explicit construction of randomness dispersers and the construction of Ramsey graphs,
and a significant body of work has been devoted to deriving more efficient constructions of
such objects [8, 6].
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Many results in this realm can be reformulated as reductions between total function
problems in a particular subclass of APEPP, which could be called SAPEPP (for “sparse
APEPP”). Every problem in SAPEPP is defined by a polynomial-time Turing machine-
computable function M : {0, 1}∗ 7→ {0, 1}∗ such thatfor all x ∈ {0, 1}∗, |M(x)| = f(|x|),
where f(n) > n. The total search problem associated with M asks: given n in unary, find
a bit string y of length f(n) such that for all x with |x| = n, M(x) 6= y. That SAPEPP
is a subset of APEPP follows easily from the basic fact that any fixed polynomial-time
Turing machine with a given input length can be rendered as a Boolean circuit in time
polynomial in the input length. For a concrete example, for the problem of explicitly
constructing a truth table for a function [N ]→ {0, 1} which requires circuits of size greater
than N

3 logN , M is a machine which transforms concisely encoded circuits of size N
3 logN into

truth tables, and f(n) = n+ 1. The associated function problem in SAPPEP, which could
be called Sparse Complexity, seeks the explicit construction of a hard Boolean function; a
polynomial-time solution for this problem would imply, among other tectonic consequences,
that P = BPP [13].

2 The Problems in PEPP

Empty is the following search problem: Given a circuit C with Boolean gates mapping
[2n − 1] to [2n], find a y ∈ [2n] such that y 6= C(x) for all x ∈ [2n − 1].

I Remark. In this paper, we shall blur the distinction between bitstrings and binary integers.
Our Boolean circuits have a domain and range whose cardinality is not necessarily a power of
two, which may seem peculiar. In this paper we shall consider Boolean circuits mapping [M ]
to [N ], where M,N are arbitrary integers greater than one. Such a circuit C has dlogMe
inputs and dlogNe outputs, and for all x C(x) is defined to be C(M − 1) if x ≥ M , and
also for all x C(x) = N − 1 whenever the value computed by C on input x (or on input
M − 1 if x ≥ M) is at least N . Hence, Empty can be defined in terms of any circuit
C : [M ] 7→ [M + 1] – or even C : [M ] 7→ [N ] as long as M < N . For larger N the problem
may be easier, but it is reducible to Empty (as long as logN ≤ poly logM).

Coming back to Empty, we can now define a class of total functions PEPP as all total
functions that are polynomial-time reducible to Empty. One rather immediate – and yet a
little surprising – fact to observe about PEPP is the following:

I Theorem 1. FNP ⊆ PEPP.

Proof. We prove that Sat can be reduced to Empty. Let φ be a CNF formula with n

variables, without loss of generality not satisfied by the all-true truth assignment. Consider
now the following polynomially computable function C from [2n − 1] to [2n]: For every truth
assignment t different from the all-true one 1n, C tests whether t satisfies φ. If it does, then
C(t) = 1n, and if it does not then C(t) = t. Now, if we could solve Empty, that is, if we could
find a solution s ∈ [2n] not in the range of C, then we would have solved the Sat problem
for φ: If s 6= 1n then φ is satisfiable and s satisfies it; otherwise, φ is unsatisfiable. J

This result suggests that PEPP is genuinely a subclass of TFΣ2, the generalization of
TFNP to the first level of the polynomial hierarchy. Once we are dealing with TFΣ2, it
is tempting to define classes such as PEPP as the set of all problems that can be reduced
through FPNP reductions – not just polynomial-time reductions – to a specific problem, such
as Empty in the case of PEPP. This option becomes relevant when dealing with α-PEPP
in the next subsection.

ITCS 2021



44:6 Total Functions in the Polynomial Hierarchy

As we sketched in the introduction, Empty and PEPP can be alternatively thought
as a computationally constructive form of the union bound. A most prominent and early
use of the union bound is in Shannon’s work on codes. The following problem motivated by
Shannon’s construction has been recently identified: Given a code, which generically means
a circuit C mapping [M ] to [N ] with N > M , find a bitstring x ∈ [N ] whose Hamming
distance from any codeword y, that is, any y such that y = C(z) for some z ∈ [M ] is at
least d, where d is the largest integer such that the Hamming ball of radius d− 1 has fewer
than N/M elements. This is known as the Remote Point problem, studied extensively in
Complexity and Cryptography [2, 3, 4].

I Proposition 2. Remote Point is in PEPP.

Proof. Its proof of totality is an application of the union bound. J

In fact, Remote Point is strictly speaking PEPP-complete, because any instance of
Empty is also an instance of Remote Point with d = 1.

Another natural problem lying in PEPP comes from the fact that graphs of bounded
degree have logarithmic diameter. One way to capture this is through the problem Remote
Vertex: given a directed graph on [N ] with vertices of outdegree at most 2, specified by
circuits CL, CR : [N ]→ [N ] which output the “left” and “right” successors of a given node
respectively, find a vertex whose distance from the all-zero vertex is at least logN .

I Proposition 3. Remote Vertex is in PEPP.

Proof. Consider the circuit that takes as input a string s ∈ {L,R}∗ of length 0 ≤ |s| ≤
logN − 1, and outputs the vertex we arrive at by starting with the all-zero vertex and
repeatedly applying CL or CR to the current input based on the next character in s. This
circuit maps each path of length at most logN − 1 starting at the all-zero vertex to its
endpoint, a vertex in [N ]. As there are that are at most N − 1 such paths, this is a valid
instance of Empty, whose solution is indeed a remote vertex. J

One can define several variants of Remote Vertex using other implicit representations
of graphs, for example the representations for undirected and directed graphs used to define
the canonical problems of bounded degree for PPA and PPAD [18]. Both of these variants
reduce to the version of Remote Vertex defined above.

Next we introduce two problems in PEPP capturing two other classical applications of
the union bound. In δ-Rigid Matrix Completion, where 0 < δ < 1

3 , we are given the
first dlogne rows of an n × n matrix with elements in GF2. We seek to complete this to
a full matrix in GFn×n2 that is δ-rigid: it cannot be turned into a matrix of rank ≤ δn by
changing nδ or fewer entries in each row.

Why do we have to phrase the quest for the rigid matrix as a completion problem? The
reason is that the alternative (“Given n, find an n×n rigid matrix”) is a sparse problem, that
is, it has a polynomially (in n) many instances of length ≤ n, which places it in complexity
limbo, see e.g. [16]; alternatively, if n is given in binary, then the problem is even more
ill-posed since an exponentially long output is required2.

To see that δ-Rigid Matrix Completion reduces to Empty, let N = 2n2−n logn denote
the total number of possible completions of the matrix, and let M denote the number of
pairs (L, S) where L is a n × n matrix of rank at most δn and S is a matrix that has at

2 A related question is, how large should be the given part of the matrix in order to avoid sparsity? Giving
the first row is not enough, since there are, up to isomorphism, n+ 1 such rows, and a similar argument
precludes finitely many rows. With logn rows in the input, the problem is arguably no longer sparse.
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most nδ ones per row. There are at most 22δn2 choices for L and at most
(
n
nδ

)n
< 2n1+δ logn

choices for S, hence M < 22δn2+n1+δ logn. Now consider the circuit C : [M ] 7→ [N ] that takes
an input in [M ], interprets it as the encoding of a pair (L, S), computes the sum L+ S, and
outputs the element of [N ] encoding this sum if it is a completion of the given matrix, or
else it outputs an arbitrary element of [N ], for example the element representing the trivial
matrix completion that sets all remaining entries of the given matrix to zero. Note that
M < N as long as n is large enough that (1− 2δ)n2 > (n1+δ + n) logn. Any element of [N ]
not in the range of C must be the encoding of a matrix completion that cannot be expressed
in the form L+ S, hence is rigid.

Ramsey-Erdős completion is the problem of finding an n-node graph with no inde-
pendent set of size k = 4dlogne and no clique of this size, given the connectivity of ` = dlogne
nodes in the graph.

There are N = 2(n−`2 ) completions of the given graph. The completions containing a
clique or independent set of size k are parameterized by tuples (A, b, x) where A is a vertex
set of size k, b is a bit indicating whether A forms a clique or independent set, and x is
a bitstring indicating which edges belong to the completion, excluding those having both
endpoints in A and those having one endpoint among the ` vertices whose connectivity is
given in the problem input. There are

(
n
k

)
possible values for A, 2 possible values for b, and

at most 2(n−`2 )−(k−`2 ) possible values for x, hence at most M =
(
n
k

)
21+(n−`2 )−(k−`2 ) possible

values for the triple (A, b, x). When k = 4` and ` = dlogne, it follows from a standard
calculation that M < N .

We have established this result:

I Proposition 4. δ-Rigid Matrix Completion and Ramsey-Erdős completion are in
PEPP.

Of these problems Ramsey-Erdős completion seems the easiest computationally, as it
belongs in a variant of BPP in which nO(logn) computations are allowed.

2.1 The Problem Complexity
The field of Circuit Complexity is about identifying a Boolean function with v variables
requiring a number of gates that grows faster than polynomially in v. It is well known since
Shannon’s union bound proof [20] that almost all Boolean functions with v variables have
complexity at least 2

cv
log v for some c > 0; however, no explicit function of complexity that is

not O(v) is known.
We can now define Complexity: given a bitstring x of length n, find a Boolean function

with v = blognc+ 1 inputs which cannot be computed by an x-oracle circuit with c · n
log2 n

gates, where c > 0 is a fixed constant. Here, by “x-oracle circuit” we mean a Boolean circuit
which, besides the traditional And, Or, Not gates also has an Oracle gate, with fan-in
blognc, which when its inputs are the bits b1, . . . , bblognc, the value of the gate is the b+ 1-th
bit of x, where b < n is the integer spelled by the bits.

We shall assume that, for each k, ` > 0, we have a standard representation Rk,` of such
oracle circuits, where k is the number of inputs to the circuit and ` is the fan-in of the oracle
gates. Rk,` is a partial function (that is, possibly undefined) from bitstrings to circuits, such
that:

Every x-oracle circuit K has at least one bitstring z such that Rk,`(z) = K.
Given z, K = Rk,`(z) can be decoded in polynomial time.
If K has g gates, the length of all z’s such that Rk,`(z) = K is at most c · g log2 g, where
c is a constant.

ITCS 2021



44:8 Total Functions in the Polynomial Hierarchy

It is easy to see that these desiderata are satisfied by several standard and natural represent-
ations (for example, encoding every bit by two bits to create delimiters, encoding gate names
by binary integers ≤ g and similarly with gate types, and finally encoding the adjacency
lists of the circuit graph). The extra log g in the last item is due to the oracle gate, whose
adjacency list requires log2 g bits.

Coming back to Complexity, it is, evidently, a computational problem that captures
certain aspects of Complexity Theory. We shall show that it is a total problem, and in fact
one in the class PEPP.

The argument is essentially Shannon’s: given input x of length n, we construct a circuit
Cx implementing the following polynomial-time (in n) algorithm: on any input y also of
length n, Cx interprets y as a binary representation of an x-oracle circuit Ky = Rk,`(y) with
k = blognc + 1 input gates and fan-in ` = blognc, and goes on to construct it (if Rk,`(y)
is undefined, Cx outputs a default string). Next, Cx simulates Ky consecutively on each
possible input in [2blognc+1]. The output of Cx is then the concatenation of these 2blognc+1

bits output by the circuit Ky, in the order in which they were produced.
In other words, the circuit Cx maps M = [2n] (all inputs y of length n) to N = 22blognc+1

possible outputs, and it is clear that N > M . Therefore, if we were able to solve Empty and
obtain a possible output not realized by any possible input, we would be able to find the
table of a Boolean function with blognc+ 1 inputs which cannot be represented by n bits,
and therefore requires Ω( n

log2 n
) gates. This completes the proof of the following result:

I Proposition 5. Complexity is in PEPP.

2.2 Wasteful counting and α-PEPP

When the union bound is used to prove the existence of objects with a certain property by
showing that a random object satisfies the property with positive probability, this success
probability is typically not exponentially small. The reason is that this genre of existence
proof seems inherently wasteful: the union bound adds probabilities of events that typically
overlap, while counting objects such as non-rigid matrices and circuits typically counts the
same object many times (for example, all permutations of gate names), and there seems to be
no way to be accurate enough. To capture the complexity of the search problems implied by
union bound arguments with a significant “margin of error”, we define a family of complexity
classes α-PEPP, parameterized by a function α : N→ R+.

The complexity class α-PEPP is defined to consist of all total functions that are
polynomial-time reducible to the following α-Empty problem. An instance of α-Empty is
given by a bitstring of length n interpreted as a description of a circuit C mapping [M ] to
[N ], where N/M > 1 + α. The search problem is to find y ∈ [N ] such that y 6= C(x) for all
x ∈ [M ].

Note that 0-PEPP = PEPP. The complexity class 1-PEPP, which we will denote
by APEPP in the sequel, contains most of the search problems introduced earlier in this
section.

I Proposition 6. The problems δ-Rigid Matrix Completion, Ramsey-Erdős comple-
tion, and Complexity all belong to APEPP.

Proof. Above, we presented reductions from δ-Rigid Matrix Completion, Ramsey-
Erdős Completion, and Complexity to Empty with the following parameters.
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For a δ-Rigid Matrix Completion instance of size n×n, the reduction yields a circuit
of size poly(n) mapping [M ] to [N ], where M = 22δn2+n1+δ lognand N = 2n2−n logn,

N/M = 2(1−2δ)n2−(n1+δ+n) logn.

The ratio N/M exceeds 2 when δ < 1
3 , n > 125.

For a Ramsey-Erdős Completion instance with n vertices, the reduction yields a
circuit of size poly(n) mapping [M ] to [N ], where M =

(
n

4dlogne
)
21+(n−dlogne

2 )−(3dlogne
2 ),

N = 2(n−dlogne
2 ),

N

M
= 2(3dlogne

2 )−1(
n

4dlogne
) .

The ratio N/M exceeds 2 when n > 8.
For a Complexity instance of length n, the reduction yields a circuit of size poly(n)
mapping [M ] to [N ], where M = 2n, N = 22blognc+1 ,

N/M = 22blognc+1−n.

The ratio N/M is greater than 2 for all n ∈ N.3
Thus, the reductions presented earlier verify that all three problems belong to APEPP. J

It seems unlikely that APEPP contains a PEPP-complete problem, due to the following
upper bound on the complexity of APEPP.

I Theorem 7. For any function α(n) > 1
poly(n) , we have α-PEPP ⊆ FZPPNP ⊆

FPNP|poly where FZPP denotes functional ZPP.

Proof. First we show α-Empty ∈ FZPPNP. Consider a circuit C mapping [M ] to [N ],
where N/M > 1 + α. Let R(C) denote the range of C, i.e. the set of all y ∈ [N ] such that
there exists x ∈ [M ] with C(x) = y. The probability that a random y ∈ [N ] belongs to R(C)
is at most M/N < 1/(1 +α). Hence, if k = dn/αe and y1, y2, . . . , yk are independent random
elements of [N ], the probability that {y1, . . . , yk} ⊆ R(C) is less than (1 + α)−k < e−n.
Consider an algorithm that randomly samples the yi, and queries an NP oracle whether
there exists x ∈ [M ] such that C(x) = yi, and outputs the first yi for which the oracle
confirms no such x exists: this shows α-Empty ∈ FZPPNP.

To see the second inclusion of the theorem, suppose an algorithm that uses randomness
r, |r| ≤ poly(n) fails with probability < e−n for any length n input. By the union bound, a
random sample of r has positive probability of containing a valid solution to every length-n
input instance. In fact, this probability is greater than 1− 2n · e−n. Hence, there exists an
advice string such that for every length-n instance, the algorithm finds a correct output. J

We conclude this section by showing a collapse of the complexity classes α-PEPP for
1

poly(n) ≤ α(n) ≤ 2poly(n) under FPNP reductions.

3 Actually, the ratio is greater than or equal to 2 for all n, but it is equals 2 when n+ 1 is a power of 2.
Since the definition of α-Empty requires the strict inequality N/M > 1 + α, we need to correct for this
technicality with a small modification in the definition of Complexity, tweaking the problem definition
to use a slightly smaller constant c so that all circuits of the appropriate size or less can be encoded in
n− 1 bits, instead of n.

ITCS 2021



44:10 Total Functions in the Polynomial Hierarchy

I Theorem 8. If 1
poly(n) ≤ α(n) ≤ 2poly(n), then α-PEPP and APEPP are equivalent

under FPNP reductions.

Proof. For any positive integers N, k, let T : [Nk] → [N ]k denote the function that takes
the binary representation of a number x ∈ [Nk], writes x in base N as a sequence of k digits
(each an element of [N ]), and outputs the binary string obtained by concatenating the binary
representations of each of these k base-N digits.

Suppose β(n), γ(n) : N→ R+ are any two functions such that

k(n) ∆= dlog1+β(n)(1 + γ(n))e ≤ poly(n).

We can reduce β-Empty to γ-Empty as follows. Given a length-n bitstring describing a
circuit that computes a function C : [M ]→ [N ], let k = k(n) and construct the description of
a circuit that computes the function C ′ : [Mk]→ [Nk] defined via the following composition:

[Mk] T−→ [M ]k Ck−→ [N ]k T−1

−→ [Nk].

Here Ck denotes the function that applies C to each element of a k-tuple.
Assuming N/M > 1 + β(n), we have Nk/Mk > (1 + β(n))k ≥ 1 + γ(n), by the definition

of k. Hence, by solving an instance of γ-Empty and applying the function T , we obtain a
k-tuple (y1, . . . , yk) that is not in the range of the function Ck : [M ]k → [N ]k. Now, given
an NP oracle, we can proceed as in the proof of Theorem 7 to find y ∈ [N ] such that for
all x ∈ [M ], y 6= C(x). Namely, for 1 ≤ i ≤ k one queries the NP oracle to find out if
there exists some xi ∈ [M ] such that C(xi) = yi. If such an xi existed for each i, then
Ck(x1, . . . , xk) would equal (y1, . . . , yk) contradicting our assumption that (y1, . . . , yk) is not
in the range of Ck. Therefore, for at least one value of i the oracle will answer that no
xi ∈ [M ] satisfies C(xi) = yi, and we can output this yi as a solution of the given β-Empty
instance.

We have shown a FPNP reduction from β-PEPP to γ-PEPP whenever log1+β(n)(1 +
γ(n)) = poly(n). If 1

poly(n) ≤ α(n) ≤ 2poly(n), then a reduction from α-PEPP to APEPP
is obtained by taking β = α and γ ≡ 1, and a reduction from APEPP to α-PEPP is
obtained by taking β ≡ 1 and γ = α. J

3 The Shattering Problem

We recall the definition of shattering, an important notion in finite set theory and classical
learning theory:

I Definition 9. A family of sets over some finite universe, F = {s1, s2, . . .}, shatters a set s
if for every subset t ⊆ s, there exists si ∈ F such that t = s ∩ si.

The famous Sauer-Shelah lemma guarantees shattering properties if the family is large
enough. Here it is stated in its “strong” form:

I Theorem 10 (Sauer-Shelah Lemma, Strong). A family F of finite sets shatters at least |F |
sets.

The more well-known statement of the Sauer-Shelah lemma is the weak form, which
follows from the above:

I Corollary 11 (Sauer-Shelah Lemma, Weak). If a family of sets F over a universe of n
elements satisfies |F | >

∑d−1
i=0

(
n
i

)
, then F must shatter a set of cardinality at least d.

Proof. (Of the weak form from the strong form:) There are at most
∑d−1
i=0

(
n
i

)
sets in an

n-element universe that have size less than d. J
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It is natural to consider the search problem resulting from this lemma: given a family of
sets over n elements, which can be represented as n bit strings, find a large shattered set.
This search problem is interesting for two reasons: first, its standard proof uses a counting
argument that is, in essence, non-constructive, and second, it involves multiple alternations:
given a family find the set (exists) such that for all subsets there exists a corresponding set
in the family. In fact, this has one more alternation than all the problems we have considered
previously, which belong in TFΣ2. Instead, this belongs in TFΣ3.

I Definition 12. Let BinomSum(n, d) denote
∑d−1
i=0

(
n
i

)
.

I Definition 13. In the Shattering problem, we are given as inputs parameters n, d,
and k > log(BinomSum(n, d)), and a circuit computing a function C : {0, 1}k → {0, 1}n,
representing 2k indexed sets the collection of which we will denote F . The search problem is
to output either a pair of indices x1 6= x2 such that C(x1) = C(x2) (a collision, in which case
the premise of the Sauer-Shelah lemma is not satisfied), or a subset Y ⊆ [n] of size |Y | = d

that is shattered by the F , the range of C.

The following is now clear:

I Proposition 14. Shattering is in TFΣ3.

Proof. Consider the Turing Machine M((n, d, k, C), s, (u, i)), which:
1. checks that k > log(BinomSum(n, d));
2. checks whether s is a string representing a tuple x1, x2 of k-bit strings, in which case it

accepts if C(x1) = C(x2) and rejects otherwise;
3. checks whether s is an n-bit string, in which case it accepts if s∩ u = s∩C(i) and rejects

otherwise.
Clearly, s solves Shattering on the input (n, d, k, C) when the conditions of the Sauer-Shelah
lemma are not satisfied, or, if ∀u∃i s.t. M((n, d, k, C), s, (u, i)) = 1. That Shattering is
total is a consequence of the Sauer-Shelah lemma. J

More interestingly, we can place Shattering in a generalization of PPP that lies within
TFΣ3:

I Theorem 15. Shattering is in PPPΣ2

The main technical result is the following lemma, from which the theorem follows naturally.

I Lemma 16. Using a Σ2 oracle, one can compute a polynomial time function M mapping
distinct sets in F to distinct sets shattered by F .

Proof (Lemma 16, informal). M is defined recursively on the size of F . For collections of
size |F | = 1, the single element of F is mapped to the empty set which is certainly shattered
by F .

Assume now that M(F ′) is defined for all collections F ′ of size |F ′| < |F | (i.e. M defined
for collection of size 1, . . . , |F | − 1). We show how to define M on F , first with an informal
argument.

Suppose we have identified an element x that is in at least one but not all sets of F . Then
we can write F = F0 ∪ F1, dividing F into collections F0 of sets containing x, and F1 of sets
that do not contain x.

Since |F0|, |F1| < |F |, by induction there exists M0 : F0 → {0, 1}n and M1 : F1 → {0, 1}n
mapping each subcollection to sets shattered by that subcollection. Define M : F → {0, 1}n
as follows:
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1. For s ∈ F1, reuse the shattered set, i.e. let F (s) = F1(s).
2. For s ∈ F0, if ∀s′ ∈ F1,M1(s′) 6= M0(s), we reuse the label for s, i.e. M(s) = M0(s). If
∃s′ ∈ F1 such that M1(s′) = M0(s), then it must be that F shatters both M0(s) and
M0(s) ∪ x. Hence we can assign M(s) = M0(s) ∪ x

In the informal construction above, we assumed that x is in some but not all sets of F .
To define M consistently, we go through all elements in the universe {0, 1, . . . , n−1} in order,
and we divide F into those sets that contain the element and those that don’t – since these
sets are n-bit strings, we divide them into those strings with 1 in the first coordinate, and
those with 0 in first coordinate). It is possible that one side is empty and the other is all
of F ; in this case, we continue splitting by containment of subsequent elements. When one
side is empty, then all labels assigned to sets in the non-empty side are reused. This gives a
way to build a complete binary tree of subfamilies starting with F at level 0, and where the
i+ 1-st level comes from splitting the previous level by containment of element i. M then is
built recursively from the leaves up. J

Proof (Lemma 16). We describe how to compute M(s) for a given s ∈ F . Define Tn to be
the labeled binary tree with 2n leaves representing n-bit strings; level i contains nodes labelled
by the 2i binary strings of length i, and the children of a node labelled with s ∈ {0, 1}i is
s · 0 and s · 1.

The idea is to go up Tn, beginning from the leaf representing set s, computing
y(n), , y(n−1), . . . , y1. This path is unique and has length n; denote this path with P , and its
nodes as P (n), . . . , P (0), from leaf to root (we will interchangeably use P (i) to refer to both
a node in Tn, and its associated label, a string of length i).
1. When we begin at node P (n) we initialize y with the empty set label yn = 0n

2. Assume we have traversed Tn up to level i, i.e. P (i).
3. If the node P (i) is the right child of P (i− 1), move up to P (i− 1) with y(i−1) := yi.
4. For P (i) that is the left child of P (i− 1), denote the right child of P (i− 1) (sibling of

P (i)) and its label as P ′(i), and denote by FP ′(i) the subcollection of sets in F that have
the label P ′(i) as its prefix (i.e., those sets that agree on the inclusion/exclusion decisions
of the first i elements represented by node P ′(i)). We check whether FP ′(i) also shatters
yi, in which case we reuse yi but flipping bit i to 1, i.e. y(i−1) := yi; y(i−1)

i := 1. Whether
FP ′(i) (or any particular subfamily corresponding to a node in Tn) shatters y can be
established in O(i) time: the algorithm checks whether ∀z ∈ {0, 1}n∃w ∈ {0, 1}k(C(w) ∈
FP ′(i))∧ (z ∩ y = C(w)∩ y). This can be determined with one call to the Σ2 oracle. Note
that C(w) ∈ FP ′(i) can be represented as an ∧ of i equalities.

The following invariant is maintained throughout the algorithm: after completing level i,
FP (i) shatters yi. This is clearly true at level n. With level i completed, if the algorithm
assigns yi−1 = yi, the invariant is maintained as y does not change. The only way yi−1

changes is if yi−1
1 = 1; this implies both FP (i) and FP ′(i) shattered yi.

If |F | = 1 (the range of C is one set), assigning the empty set to the lone element is
correct. For s 6= s′ in the range of C, let P (i) be their lowest common ancestor in level
i < n. Denote its children as P (i+ 1) and P ′(i+ 1); without loss of generality, P (i) is on
the path for s and P ′(i) is on the path for s′. Consider the algorithm at level i+ 1 when run
on both inputs to compute the shattered sets y and y′: if y(i+1) 6= y′(i+1), they will remain
different for the remainder of the algorithm since at level j we can only change the j-th bit.
If y(i+1) = y′(i+1), then both P (i+ 1) and P ′(i+ 1) shatter y(i+1) so the algorithm will set
yi 6= y′i. J
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Proof (Lemma 16 =⇒ Theorem). Given an instance C of Shattering, we shall describe
an instance H of PigeonholeΣ2 – that is, a hashing circuit with k input gates and 2k − 1
possible outputs, whose computation makes calls to a Σ2 oracle – which solves this instance.
First, the circuit H determines through an oracle call if C has a collision, and, if it does –
two strings x, y ∈ [2k] such that x > y and C(x) = C(y) – it computes a perturbation of the
identity permutation on [2k] which exposes the collision: H maps x to y, if x 6= 2k − 1 it
maps 2k − 1 to x, and H is the identity on all other strings.

If C has no collision, then on input x ∈ [2k] H first computes the distinct set C(x) and
then implements the lemma to compute the corresponding set M(C(x)) shattered by the C
family of sets. If the set M(C(x)) if smaller than d, the computation ends here and the set
is output, in a representation which encodes subsets of [n] in order of increasing size; since
by assumption 2k − 1 ≥ BinomSum(n, d), any set smaller than d can be represented. If the
set is of size d or larger, then the first d− 1 elements of the set are output. This completes
the reduction. J

It turns out that TFΣ3 contains another natural problem aside from Shattering, based
on a simple fact in graph theory dating back to the 1950’s [15].

I Definition 17. A vertex v in a digraph G is called a king if every vertex can be reached
from v by a path of length at most 2.

I Definition 18. A digraph G is called a tournament if for every pair of distinct vertices
u, v ∈ G, exactly one of the directed edges (u, v) or (v, u) is present in G.

I Lemma 19. Every tournament has a king [15].

Proof. Given a vertex v, will say that the court of v is the set of vertices reachable from v in
exactly one step, and the domain of v is the set of vertices reachable from v in exactly 1 or 2
steps. By definition, a king is a vertex whose domain contains all other vertices. Starting
with an arbitrary vertex v, we can now locate a king as follows: if the domain of v contains
all other vertices then v is a king and we are done. Otherwise there exists a u 6= v outside the
domain of v, and we continue our search from u. To see that this iterative process terminates,
note that at each step the size of the court of our current vertex strictly increases: if u is
outside the domain of v, u’s court must contain at least every element of v’s court, and must
also contain v. J

This gives rise to the following total search problem King: given a tournament, represented
as a circuit C : {0, 1}n × {0, 1}n → {0, 1} determining if the directed edge (u, v) is present,
find either a king or a pair of inputs x 6= y such that C(x, y) = C(y, x) (proving that C does
not define a tournament). Since King seeks a vertex k such that for all other vertices v
there is an intermediate vertex i which is reachable from k in one or zero steps, and such
that (i, v) is an edge, this alternation of quantifiers implies the following:

I Proposition 20. King is in TFΣ3.

The proof of Lemma 19 showing the totality of KING is eerily reminiscent of familiar
totality arguments for the class PLS. In PLS, the input is an implicitly defined directed graph,
along with a polynomial time “potential function” mapping vertices to natural numbers,
such that the potential is strictly increasing along edges. The goal is to find a vertex with no
outgoing edges, and the potential function gives us a syntactic guarantee that the underlying
graph is acyclic and therefore that such a vertex must exist. In the case of King, we have a
similar situation. Given a circuit defining a tournament, we can generate another implicitly
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defined graph which has a directed edge (v, u) if and only if u is outside the domain of v, and
a potential function which assigns each vertex a potential equal to the size of its court. A
vertex with no outgoing edges in this graph will be a king, and since the potential increases
along edges, such a vertex must exist. If both the “edge function” (the function finding an
outgoing edge of a vertex or telling us that none exists) and the potential function were
computable in Σ2, this would place King in PLSΣ2 . However, it seems that only the edge
function has this property: computing the potential requires solving a rather generic counting
problem. This leaves us in a curious situation, where the proof that a solution exists uses an
implicit potential function, but directly computing the potential is seemingly harder than
finding a solution. We do not know of another natural total function with this property.

4 Discussion and Open Problems

We have introduced a polynomial hierarchy of total functions, whose first couple of levels are
populated with interesting computational problems and complexity subclasses with intriguing
structural properties. Naturally, a host of questions remain:

Does the total function hierarchy behave in similar ways as the polynomial hierarchy
– for example, does it collapse upwards? As we have mentioned, the answer to this
question is already known, modulo relativization, and it is negative: there are oracles
with respect to which TFNP = FP and yet TFΣ2 6= FPNP [7]. We have not explored
how this result extends to higher levels. After a preprint of this article was posted online,
Ofer Grossman showed us a sketch of an argument that, if TFNP = TFΣ2, then the
decisional polynomial hierarchy does collapse (Ofer Grossman, personal communication).
This can be shown to imply that the total function hierarchy collapses.
A very striking apparent difference between TFNP and TFΣ2 is the dearth of diversity
in the latter. There are half a dozen apparently distinct complexity subclasses of TFNP,
corresponding to natural genres of existence proofs. In contrast, in TFΣ2 we have
identified PPEP, but – despite some intense daydreaming – no other credible class. For
example, recall that PLS is the class of all problems in TFNP reducible to Sink: “Given
the circuit representation of a DAG, find a sink” (details of the representation omitted).
It is natural to ask – and we did: “How about the problem Source? It is in TFΣ2, of
course, but does it define its own class?” It turns out that Source is in PEPP...
For TFNP, the invention of new natural subclasses is impeded by the result in [11],
establishing, through Herbrand’s Theorem, that any such subclass capturing a style
of existence proofs in first-order logic must correspond to a finitary property of first-
order structures: one that is false for infinite structures. How about the logic formulae
corresponding to TFΣ2? These would be the so-called Schönfinkel-Bernays formulae
(first-order formulae preceded by a sequence of quantifiers of the form ∀∗∃∗), a much
studied class in Logic but also in Complexity (it had been known since the 1930s that
this is a decidable class). Is there a result restricting the usefulness of such formulae in
characterizing total search problems, analogous to – but perhaps stricter than – Herbrand’s
theorem for existentially quantified (Herbrand) formulas?
Is Complexity complete for APEPP under PNP reductions? This would be a tremend-
ously interesting result. Naturally, any finer completeness result for Complexity would
be even more exciting.
Is Remote Point with large d complete for APEPP under PNP reductions? That
would be very interesting as well – especially if it holds true even in the special case in
which the code is linear.
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The SAPEPP class, as defined in the related work subsection, encompasses some of
the most important problems in Complexity Theory. Sparsity complicates proving these
problems intractable, and yet we know already some fascinating reductions between them.
Does SAPEPP have natural complete problems? Is Sparse Complexity complete
for it?
The problem King encompasses a novel aspect of total functions related to local optimality.
Problems in the class PLS are presented in terms of an implicit DAG defined in terms
of an edge function and a potential function. Higher in the hierarchy, King is defined
only in terms of an edge function, while the DAG property is established through an
extraneous proof, that is, a proof not encoded in the instance’s description in terms of
an explicit potential function. Unless #P is in the polynomial hierarchy, King does not
appear to belong in PLSΣ2 : it is a problem in TFΣ3 whose totality follows from a local
optimality argument, and yet one that is sui generis, in a class in and by itself. Are there
such problems in TFNP?
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A Total Function Polynomial Hierarchy

I Definition 21 (TFNP). A relation R(x, y) is in TFNP if it is polynomial and total (for
every x there exists y such that (x, y) is in the relation) and there exists a polynomial time
Turing machine M such that M(x, y) accepts iff R(x, y) holds.

I Definition 22 (TFΣ2). A relation R(x, y) is in TFΣ2 if it polynomial, total, and there
exists a polynomial time Turing machine M and polynomial p(n) such that R(x, y) ⇐⇒
∀z ∈ {0, 1}p(|x|)M(x, y, z) accepts.

I Definition 23 (TFΣi). A relation R(x, y) is in TFΣi if it polynomial, total, and there
exists a polynomial time Turing machine M and polynomials p(n)1, . . . , p(n)i−1 such that
R(x, y) ⇐⇒ ∀z1 ∈ {0, 1}p(|x|)1∃z2 ∈ {0, 1}p(|x|)2∀z3 ∈ {0, 1}p(|x|)3 · · ·M(x, y, z1, z2, z3, · · · ,
zi−1) accepts.

At this point one may ask, what about a TFΠi? Could we define total function complexity
classes where the first quantifier is an exists? It turns out that such a definition results in a
complexity class that is polynomial-time reducible to TFΣi−1 and vice versa, and hence,
does not capture anything new. In this way, the total function hierarchy is different from its
decision-problem analogue, where, by the way of oracles, Σi−1 6= Πi 6= Σi.

I Proposition 24. Let R(x, y) be a polynomial, total relation such that there exists a
polynomial time Turing machineM and polynomials p1(n), . . . , pi−1(n) such that R(x, y) ⇐⇒
∃z1 ∈ {0, 1}p1(|x|)∀z2 ∈ {0, 1}p2(|x|)∃z3 ∈ {0, 1}p3(|x|) · · ·M(x, y, z1, z2, z3, · · · , zi−1) accepts.
Every search problem in TFΣi−1 can expressed with such a relation, and the search problem
for any such relation is polynomial-time reducible to TFΣi−1.

Proof. The fact that any search problem in TFΣi−1 can expressed with such a relation
(one that starts with ∃) is trivial: the relation is the same, and one can reuse the TFΣi−1
Turing Machine M , simply by ignoring z1. On the other hand, given a R(x, y) as above,
by totality for every x there is a y such that there exists z satisfying the rest of the
condition; hence, the relation R(x, (y, z)) defined by R(x, (y, z)) ⇐⇒ ∀z2 ∈ {0, 1}p(|x|)2∃z3 ∈
{0, 1}p(|x|)3 · · ·M(x, y, z1, z2, z3, · · · ) is total, and is clearly in TFΣi−1. Hence one can solve
R(x, y) with one call to a TFΣi−1oracle, obtaining a pair (y, z) and discarding z. J

In other words, the total function polynomial hierarchy does not have “two symmetric
sides” like the classical one, but is a single tower of classes.

Finally, analogously to the decision problem polynomial hierarchy, the total function poly-
nomial hierarchy can be understood through oracles; TFΣi ⊆ TFNPΣi−1 , and TFNPΣi−1

is polynomial time reducible to TFΣi.

I Theorem 25. TFΣi ⊆ TFNPΣi−1 ≤PT TFΣi, where the latter class indicates
TFNPΣi−1problems where the verifying Turing Machine has access to a Σi−1 oracle.

Proof. We present the proof for TFΣ2; the proof for other levels is analogous. The
trivial direction is that TFΣ2 ⊆ TFNPΣ1 . For a relation R(x, y) with verifying machine
M(x, y, z) we define a TFNPΣ1 machine M ′(x, y) which issues a single Σ1 query for
whether ∀zM(x, y, z) accepts, and outputs the answer. For the other direction, let R(x, y)
be a TFNPΣ1 relation with verifying Turing Machine MΣ1(x, y) which makes at most
p(|x|) oracle queries in its computation, each of length at most p(|x|). Define R′(x, (y,a, z))
where a ∈ {0, 1}p(|x|), z ∈ {0, 1}2p(|x|) by whether w ∈ {0, 1}2p(|x|)M ′(x, (y,a, z,w)) accepts,
where M ′ only accepts if:
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1. M(x, y) is an accepting computation given oracle answers a;
2. if the i-th oracle answer in a is a yes answer, then the i-th string in z is a satisfying

assignment to the i-th query in the computation M(x, y) (possibly using only a prefix of
z);

3. if the i-th oracle answer in a is a no answer, then the i-th string in w does not satisfy
the i-th query in the computation M(x, y).

Indeed, R(x, y) ⇐⇒ ∃a, zR′(x, (y,a, z)), and the latter is a TFΣ2 relation; to reduce R to
R′, compute R′ and discard a, z. J
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