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Abstract
Random walks on expanders are a central and versatile tool in pseudorandomness. If an arbitrary half
of the vertices of an expander graph are marked, known Chernoff bounds for expander walks imply
that the number M of marked vertices visited in a long n-step random walk strongly concentrates
around the expected n/2 value. Surprisingly, it was recently shown that the parity of M also has
exponentially small bias.

Is there a common unification of these results? What other statistics about M resemble the
binomial distribution (the Hamming weight of a random n-bit string)? To gain insight into such
questions, we analyze a simpler model called the sticky random walk. This model is a natural stepping
stone towards understanding expander random walks, and we also show that it is a necessary step.
The sticky random walk starts with a random bit and then each subsequent bit independently equals
the previous bit with probability (1 + λ)/2. Here λ is the proxy for the expander’s (second largest)
eigenvalue.

Using Krawtchouk expansion of functions, we derive several probabilistic results about the
sticky random walk. We show an asymptotically tight Θ(λ) bound on the total variation distance
between the (Hamming weight of the) sticky walk and the binomial distribution. We prove that
the correlation between the majority and parity bit of the sticky walk is bounded by O(n−1/4).
This lends hope to unifying Chernoff bounds and parity concentration, as well as establishing other
interesting statistical properties, of expander random walks.
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1 Introduction

Expander graphs and random walks on their vertices are an essential and widely employed
tool in pseudorandomness, and related areas like coding theory. In this paper, we are
interested in a particular simple random walk model where we mark half of the vertices of an
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48:2 Pseudobinomiality of the Sticky Random Walk

expander graph, and look at how many marked vertices an n-step random walk visits. This
model has already been explored in many influential works. In particular, expander Chernoff
bounds show that the number of marked vertices visited is concentrated around n/2 with
exponential tails [4, 7]. In his recent breakthrough construction of ε-balanced codes, Ta-Shma
[12] proved that the parity of the number of visited marked nodes has exponentially small
bias. This fact is quite striking since there are distributions on n bits that are (n− 1)-wise
independent yet have fixed parity, so one might not expect a sensitive function like parity to
exhibit such strong concentration for expander random walks in general.

Let w denote the bit string indicating which steps visit a marked node in an n-step
expander random walk starting at a random node. The above two results show nontrivial
properties that w shares with a purely random bit string. This naturally raises questions
about what other statistical similarities might hold between w and purely random strings.
For instance, are the parity bit and majority bit of w (almost) uncorrelated? This can
be viewed as a unification of the above-mentioned concentration results for the high order
bit and low order bit of the Hamming weight of w. More generally, given some arbitrary
symmetric property of w (i.e., one that only depends on its Hamming weight), how does
its probability deviate in an expander random walk compared to a purely random string?
What is the total variation distance (TVD) between the Hamming weight distribution of w

and the binomial distribution? Surprisingly, to the best of our knowledge, these and many
other similar questions relating to the “pseudobinomiality” properties of the weight of the
sequence w, seem unexplored.

Towards gaining insight into and making progress on such questions, we analyze a simpler
distribution over the n-bit strings called the sticky random walk as a necessary stepping
stone towards understanding the general expander walk. The sticky random walk S(n, λ) is
an n-step walk on a Markov chain with two states 0, 1. The start state is chosen uniformly
at random, and at each subsequent step, we stick to the same state with probability 1+λ

2 ,
and change states with probability 1−λ

2 . Let s be the n-bit string listing the states visited
by S(n, λ). The sticky random walk has served as a useful proxy for analyzing the actual
expander random walk. Chernoff bounds for a slight variant of the sticky random walk
imply similar bounds on the expander random walk, as explicitly pointed out by Kahale [7]
and also revisited in the recent work by Rao and Regev [10] who obtained tighter bounds.
Such a translation, however, only works for estimating the probability of monotone events.
For non-monotone functions like parity, it is not known if one can deduce bounds for the
expander random walk from their counterparts for the sticky random walk.

Nevertheless, understanding the simpler sticky random walk model is a meaningful first
step towards understanding the general expander walk model. In fact, it is a necessary step,
as there are expanders where the behavior of the random walk coincides with the sticky
walk (i.e., the sequences w and s above are identically distributed). We make this (probably
folklore) relationship between these two models explicit in Section 7 (see Theorem 4 below).

1.1 Our Results
We answer some of the questions proposed above in the case of the sticky random walk.
Our main technique is to represent (a function related to) the probability density function
of the Hamming weight of the sticky random walk in the basis of Krawtchouk functions.
The Krawtchouk basis is a handy choice to compare this distribution with the binomial
distribution. We show the following result on the TVD between these distributions in
Section 4. In all our results we think of λ as being fixed and the length of the walk n to be
growing.
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I Theorem 1. The total variation distance between the weight distribution of the sticky
random walk and the binomial distribution is Θ(λ).

Note that the above shows both an upper and lower bound. For the upper bound, we show
a stronger claim that an appropriately weighted `2 distance between the two distributions is
bounded from above by O(λ2) for λ small enough (the above then follows by Cauchy-Schwarz).
However, as λ→ 1, the `2 version of the bound fails to hold, and in fact we prove that this
distance grows exponentially in n for λ > 0.95 (Section 4.2). For the lower bound, the event
of the Hamming weight being in the range n/2±

√
n exhibits a Ω(λ) deviation in probability

between these two distributions.
Our next result (in Section 5) shows that the parity and majority bits of the sticky

random walk are uncorrelated (up to lower order terms).

I Theorem 2. The probability that the Hamming weight of an n-step sticky random walk is
even and larger than n/2 is 1

4 + o(1). The same result holds for the other three symmetric
cases.

The analysis hinges on an upper estimate for the probability that the sticky random walk
has weight exactly bn/2c, which is again obtained via the Krawtchouk expansion. We note
that the arguments for the parity bias from [12] and the Chernoff bound from [4] are quite
different. The above theorem hints that Krawtchouk functions might offer a more general
tool that can unify these two arguments.

Next, we verify that the residues of the Hamming weight of the sticky walk with respect
to any fixed modulus m are almost equidistributed (Section 6). This in particular shows
that for any fixed ` the ` least significant bits of the (binary representation of the) Hamming
weight of the sticky random walk are nearly uniformly distributed.

I Theorem 3. For any fixed m ≥ 2, the total variation distance between the residues modulo
m of the binomial random variable and the Hamming weight of the n-step sticky walk is at
most exp(−Ωm(n)).

Recall that Ta-Shma established such a result for the m = 2 case even for the expander
random walk [12]. We execute a similar analysis, albeit only for the sticky walk, using
m’th roots of unity (in the place ±1) to track the bias. We suspect extending this analysis
to adjacency matrices of expanders (instead of the 2 × 2 sticky walk transition matrix)
can establish this equidistribution result for general expander walks, though we have not
verified this.

Finally, the following confirms that analyzing sticky random walks is necessary in order
to establish the corresponding claim for expander random walks. We should note that the
graph family constructed does not fit the standard definition of an expander family, as
degree-boundedness of the graph is not enforced. This is not a significant issue as the analysis
of random walks on graphs always proceed by abstracting only the spectral properties of
the graph. Further, we believe sampling a sparse regular subgraph with a similar structure
should yield a similar claim for a bounded-degree expander family.

I Theorem 4. There is a family of regular graphs whose nontrivial eigenvalues are bounded
in magnitude by λ, half of whose vertices are marked, such that the bit string indicating
which steps of a random walk visits a marked vertex has the same distribution as the sticky
random walk.

We conclude the introduction by mentioning a very interesting work of Bazzi on pseudobi-
nomiality [1]. This work establishes an upper bound on the total variation distance between
the binomial distribution and the weight distribution of a δ-biased random sequence, based

ITCS 2021
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on the entropy of the latter distribution. One can show that the sticky random walk sequence
s is λ-biased (see Lemma 11). The bound on TVD in [1] is at best O(

√
δn) and is only

meaningful when the bias is tiny, which isn’t the case for the sticky random walk. Also,
calculating the entropy of the weight distribution of s seems as hard, if not harder, than
the Krawtchouk based calculations we use to directly bound the total variation distance in
Section 4. In fact, it could be the case that the best approach to estimate the entropy of the
weight distribution of the sticky random walk is via the entropy-difference bound [3] together
with our bound on total variation distance.

1.2 Open Problems
Our results give rise to some immediate follow-up questions. Can the weighted `2 bound
between the sticky and binomial distribution established in Lemma 13 be extended to give a
non-trivial bound (that is bounded away from 1) for any fixed λ < 1? Theorem 3 showed
that any fixed number of least significant bits of (the Hamming weight of) the sticky walk are
near uniform, but can this result be extended to other bits, for example the middle bit? Are
there other symmetric properties of the sticky walk that resemble purely random strings?

A more important family of questions relate to extending our results from the sticky
walk to the general expander walk model. Can the O(λ) TVD bound between the sticky
and binomial distribution established in Theorem 1 be lifted to the general expander walk
setting? Also, can the method of Krawtchouk functions used in Theorem 2 give insight
towards unifying the Chernoff and parity bias results for expander random walks? In general,
can we show distributions of various symmetric functions on expander walks are statistically
close to the corresponding distributions on random strings? Moment generating function
results from [7, 10] allow bounds or monotone symmetric functions to be lifted from the
sticky walk to the expander walk, but no relationships are known for non-monotone functions
like parity.

Recently, a TVD bound of O(λ log3/2(1/λ)) between the Hamming weight of the general
expander walk variant and the binomial distribution was proven using similar Fourier analytic
techniques [2]. Removing this lower order polylogarithmic factor of log3/2(1/λ) remains an
open problem. Theorem 4.8 in [2] also improved on Theorem 19 in this paper to an O(n−1/2)
bound for the general expander walk, which consequently implies a tighter O(n−1/2) bound
in the error term in Theorem 2. However, due to the lack of bit-flipping symmetry in the
general expander walk, the extension of Theorem 2 to the expander walk remains open.

2 Preliminaries

2.1 Conventions and Notation
Asymptotics. In our asymptotic analysis, we will take λ to be constant and observe
asymptotics as n→∞. Take o,O, ω,Ω to be the standard definitions. We will say f . g to
mean f ≤ Cg for some absolute constant C independent of n and λ. We also say f = g+O(h)
when we mean |f − g| ≤ O(h), and analogously for o,Ω, and ω. We also denote ∼ to be
shorthand for = (1 + o(1)).

Miscellaneous. For a bit string s, we will denote |s| to be the Hamming weight of s.
N (µ, σ2) is the Gaussian distribution with mean µ and variance σ2. We write Ber(p) to be
the Bernoulli distribution on {0, 1} where 1 has probability p and 0 has probability 1− p,
and write Bin(n, 1/2) to be the binomial distribution of

∑n
i=1 bi with independent choices of
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bi ∼ Ber(1/2). Let 1E represents the indicator variable of the event E. When written as a
function, 1S(i) is 1 if i ∈ S, and is 0 otherwise. [n] = {1, 2, . . . , n} denotes the set of the first
n positive integers, and [n]0 = {0} ∪ [n].

([n]
k

)
denotes the set of all size k subsets of [n].

2.2 Definitions

In this paper, we will work with distributions on [n]0 and see how close they are to one another.
For this reason, we state the standard definitions of the `p distance between distributions

I Definition 5 (`p Distance/TVD). Let Y and Z be distributions on [n]0. For p ≥ 1, we
define the `p distance between Y and Z to be

||Y − Z||p =
(

n∑
i=0
|Y (i)− Z(i)|p

)1/p

.

The total variation distance (TVD) between Y and Z is simply 1
2 ||Y − Z||1.

Of course the first type of distribution we should formally define is the sticky random
walk itself.

I Definition 6 (Sticky Random Walk). The sticky random walk S(n, λ) is a distribution
on n-bit strings s, where s1 ∼ Ber(1/2), and for 2 ≤ i ≤ n and b ∈ {0, 1}, we have
Pr[si = b|si−1 = b] = 1+λ

2 . In cases where n and λ are evident, only S may be used to denote
the distribution.

Define a bit string to be homogeneous if it only consists of 1’s or of 0’s. Given a bit string,
we define a run to be a homogeneous substring that isn’t a proper substring of another
homogeneous substring. Intuitively, the sticky walk can be seen as a Markov chain on two
states, where you stick to the same state with probability 1+λ

2 and transition to the other
with probability 1−λ

2 . Thus the probability of a string is really only dependent on how many
consecutive pair of bits are equal (equivalently the number of runs), rather than the precise
value of the bits. Another thing to note is that λ can be seen as a parameter measuring the
stickiness of a bit to its preceding one. Notice when λ = 0 there is no stickiness present, and
the sticky walk is just n independent coin flips.

2.3 Krawtchouk Functions

To analyze this sticky random walk, we heavily rely on the basis of Krawtchouk functions.
Hence we define these functions here and state some standard identities of these functions
without proof.

I Definition 7 (Krawtchouk Functions). The Krawtchouk function Kk : [n]0 → R is defined
to be

Kk(`) =
∑

y∈{0,1}n
|y|=k

(−1)α·y

for each integer 0 ≤ ` ≤ n and an arbitrary n-bit string α of Hamming weight ` (the specific
choice of α does not matter due to symmetry).

ITCS 2021
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It can be shown that these functions form an orthogonal basis of the functions mapping
[n]0 → R with respect to the inner product

〈f, g〉 = Eb∼Bin(n,1/2)[f(b)g(b)]. (1)

From the definition it is not hard to show that (e.g. Section 2.2 of [11]).

Eb∼Bin(n,1/2)[Kr(b)Ks(b)] = 0, (2)

which shows that the Krawtchouk functions indeed form an orthogonal basis with respect to
the inner product in (1). Furthermore, one can verify the following identities hold (see [11]).

Eb∼Bin(n,1/2)[Kk(b)2] =
(
n

k

)
(3)

(
n

`

)
Kk(`) =

(
n

k

)
K`(k). (4)

Identities (2) and (3) allow us to explicitly expand any function uniquely as a sum of
Krawtchouk functions.

I Proposition 8. For function f : [n]0 → R, there exists a unique expansion f(`) =∑n
k=0 f̂(k)Kk(`) where

f̂(k) = 1(
n
k

)Eb∼Bin(n,1/2)[f(b)Kk(b)]

for each integer 0 ≤ k ≤ n.

3 Using Krawtchouk Functions to Analyze the Sticky Walk

To help us analyze the sticky walk, we define the function p : [n]0 → R to be p(`) = Prs∼S [|s|=`]
(n`)2−n

,
and look at the Krawtchouk expansion. Doing so results in the following lemma.

I Lemma 9. We have

p̂(k) = 1(
n
k

)Es∼S [Kk(|s|)].

Proof. We just apply Proposition 8 to get that

p̂(k) = 1(
n
k

)Eb∼Bin(n,1/2)[p(b)Kk(b)]

= 1(
n
k

) n∑
b=0

(
n

b

)
2−np(b)Kk(b)

= 1(
n
k

) n∑
b=0

Pr
s∼S

[|s| = b]Kk(b)

= 1(
n
k

)Es∼S [Kk(|s|)]. J

What follows is a useful lemma that displays how Krawtchouk expanding p(`) can help
analyze probabilities of the sticky distribution.
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I Lemma 10. For s ∼ S(n, λ), we can evaluate

Pr[|s| = `] = 1
2n

n∑
k=0

K`(k)E[Kk(|s|)]

Proof. To estimate this probability, we can use Lemma 9 to find

Pr[|s| = `] =
(
n

`

)
2−np(`)

=
(
n
`

)
2n

n∑
k=0

p̂(k)Kk(`)

= 1
2n

n∑
k=0

(
n
`

)
Kk(`)E[Kk(|s|)](

n
k

)
= 1

2n
n∑
k=0

K`(k)E[Kk(|s|)]

where we used the reciprocity relation (4) at the end. J

Notice that these lemmas didn’t depend on the specific distribution S(n, λ), and so these
lemmas are applicable for arbitrary distributions on [n]0. For our purposes, the sticky walk
versions will be used for our analysis done in the next sections.

4 Total Variation Distance Bounds

4.1 Upper Bounding the TVD Between the Sticky and Binomial
Distribution

Upper bounding the TVD requires calculating the expectation of various sums and products
of sticky walk random variables. We will abstract out these calculations in the following
lemmas. Analogous expressions for the general expander walk model were also analyzed in
Lemmas 3.3 and 4.2 in Rao and Regev [10]. In particular, [10] gives upper bounds on these
quantities in the general expander walk, while we give exact values for the simpler sticky
walk.

I Lemma 11. Let s ∼ S(n, λ). For even-sized subsets A ⊂ [n] where a1 < · · · < am are the
elements of A in increasing order, define shift(A) =

∑|A|/2
i=1 (a2i − a2i−1) . For any A ⊂ [n],

we have

E

[∏
i∈A

(−1)si

]
=
{

0 |A| odd
λshift(A) |A| even

.

Proof. Since the sticky walk is a Markov chain where (−1)si has the same sign as (−1)si−1

with probability 1+λ
2 , we can rewrite these random variables in terms of a product of

independent random variables representing the transitions of the chain. In particular, we
define a new random variable u ∈ {0, 1}n, where u1 ∼ Ber(1/2) and ui ∼ Ber

( 1−λ
2
)
for

2 ≤ i ≤ n. One can easily check that (−1)si is the same random variable as
∏i
j=1(−1)uj =

(−1)
∑i

j=1
uj . Hence we have

E

[∏
i∈A

(−1)si

]
= E[(−1)

∑
i∈A

∑i

j=1
uj ] =

am∏
j=1

E[(−1)
∑

i∈A;i≥j
uj ]

ITCS 2021
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Note when |A| is odd, the factor when j = 1 is 0 since E[(−1)
∑

i∈A
u1 ] = E[(−1)u1 ] = 0.

Hence the total expectation is 0. Otherwise, when |A| is even, the j = 1 term is just
E[(−1)|A|u1 ] = 1. For j ≥ 2, one sees that if Aj = {i ∈ A : i ≥ j} is of odd cardinality,
then E[(−1)

∑
i∈A;i≥j

uj ] = E[(−1)uj ] = λ, and is 1 otherwise. The set of j such that |Aj | is
odd is simply the integers in (a1, a2] ∪ (a3, a4] ∪ · · · ∪ (am−1, am], of which there are shift(A).
Consequently, upon multiplying all the j factors, we derive that the expectation is λshift(A)

for |A| even. J

I Lemma 12. For all nonnegative integers k and s ∼ S(n, λ),

E[K2k(|s|)] =
∑n−k
m=k

(
m−1
k−1

)(
n−m
k

)
λm, and

E[K2k+1(|s|)] = 0

with the convention that
(−1
−1
)

= 1 and
(
j
−1
)

= 0 for j ≥ 0.

Proof. Using the definition, we rewrite

Kk(|s|) =
∑

α∈{0,1}n
|α|=k

(−1)
∑n

i=1
αisi =

∑
T∈([n]

k )
(−1)

∑
i∈T

si =
∑

T∈([n]
k )

∏
i∈T

(−1)si . (5)

Then from Lemma 11, we have

E[Kk(|s|)] =
∑

T∈([n]
k )

E

[∏
i∈T

(−1)si

]
=

0 k odd∑
T∈([n]

k ) λ
shift(T ) k even

.

We now evaluate

E[K2k(|s|)] =
∑

T∈([n]
2k)

λshift(T ) =
n−k∑
m=k

( ∑
T∈([n]

2k)
shift(T )=m

1
)
λm

Hence to prove the lemma, it suffices to show the number of subsets T ∈
([n]

2k
)
with shift(T ) =

m is
(
m−1
k−1

)(
n−m
k

)
. Let t1 < t2 < · · · < t2k be the elements of T . We claim the desired subsets

T are in bijection with a k-tuple (d1, . . . , dk) of positive integers summing to m, paired with
an n−m letter word consisting of n−m− k A’s and k B’s. To construct the pair from a
subset T , we can set di = t2i − t2i−1 and the n−m letter word to be At1−1CBAn−t2k where
C = ©k−1

i=1 (BAt2i+1−t2i−1) (◦ is concatenation). Since shift(T ) = m, the di are positive
integers summing to m, and the word can easily be verified to have n−m− k A’s and k B’s.

Now given a (d1, . . . , dk) and a word, we can construct a T with shift(T ) = m as follows.
The word will be of the form Aa1BAa2B · · ·AakBAak+1 where each ai ≥ 0. We then set
t1 = a1 + 1, and assign t2, . . . , t2k inductively as follows.

t2i = t2i−1 + di

t2i+1 = t2i + ai+1 + 1

Finally we set T = {ti}2k
i=1. It can then be verified all ti ∈ [n] and shift(T ) = m. In fact, one

can check the two constructed maps are inverses of each other. Hence we have established
the bijection and counting the number of such T is simply counting the number of k-tuples
and word pairs, which by standard counting methods is

(
m−1
k−1

)(
n−m
k

)
. The desired result

follows. J



V. Guruswami and V.M. Kumar 48:9

We are now ready to establish some upper bounds using the lemmas above. We first
upper bound the weighted `2 distance between the sticky walk and binomial distribution by
defining a suitable function and taking the Krawtchouk expansion.

I Lemma 13. Let s ∼ S(n, λ) for λ < .16 and define p(`) := Prs∼S [|s|=`]
(n`)2−n

. Then we have

Eb∼Bin(n,1/2)
[
(p(b)− 1)2] ≤ O(λ2) .

Proof. Let us write p(`) =
∑n
k=0 p̂(k)Kk(`) where

p̂(k) = 1(
n
k

)Eb∼Bin(n,1/2)[p(b)Kk(b)] (6)

from Proposition 8. From the definition, we can verify K0(`) = 1 for all `. Combining this
fact with (6) implies that p̂(0) = 1 too. Hence,

Eb∼Bin(n,1/2)[(p(b)− 1)2] = Eb∼Bin(n,1/2)

( n∑
k=1

p̂(k)Kk(b)
)2


=
n∑
k=1

p̂(k)2
(
n

k

)

=
n∑
k=1

1(
n
k

)E[Kk(|s|)]2 (7)

where only the diagonal terms of the square survive due to the orthogonality relations (2)
and (3). Adding the k = 0 term back in (7) will simply give the expression for E[p(b)2] (and
will be stated as a subsequent corollary).

From Lemma 12 and the generating function relation ( x
1−x )k =

∑
m≥k

(
m−1
k−1

)
xm,

Eb∼Bin(n,1/2)[(p(b)− 1)2] =
∑

1≤k≤n/2

1(
n
2k
) (n−k∑

m=k

(
m− 1
k − 1

)(
n−m
k

)
λm

)2

(8)

≤
∑

1≤k≤n/2

(
n
k

)2(
n
2k
) (n−k∑

m=k

(
m− 1
k − 1

)
λm

)2

≤
∑

1≤k≤n/2

(
n
k

)2(
n
2k
) ( λ

1− λ

)2k
(9)

With the following claim (whose proof will be deferred to the appendix) we can deduce a
lower bound.

B Claim 14. For 1 ≤ k ≤ n/2, we can bound (nk)2

( n2k)
≤ e3√2

4π2 · 42k.

Hence by combining (9) and Claim 14, we conclude

Eb∼Bin(n,1/2)[(p(b)− 1)2] ≤ e3√2
4π2

∑
1≤k≤n/2

(
4λ

1− λ

)2k

≤ 4e3√2
π2

λ2

(1− 5λ)(1 + 3λ)

<

(
λ

0.16

)2
,

which is a nontrivial O(λ2) bound that is strictly less than 1. J

ITCS 2021
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Remembering our prior observation that the sum in Equation (7) is 1 less than E[p(b)2],
we immediately get the following corollary.

I Corollary 15. Let s, p be defined as in Lemma 13. We can then bound

Eb∼Bin(n,1/2)[p(b)2] =
n∑
k=0

1(
n
k

)E[Kk(|s|)]2 ≤ 1 +O(λ2).

Going back to proving the main result of the section, the brunt of the work was actually
done in Lemma 13. We can now simply apply convexity to establish the desired TVD upper
bound between the sticky and binomial distribution.

I Theorem 16. Let s ∼ S(n, λ). We can then bound the TVD between S(n, λ) and
Bin(n, 1/2),

1
2

n∑
`=0

∣∣∣∣Pr[|s| = `]−
(
n

`

)
2−n

∣∣∣∣ ≤ O(λ).

Proof. By convexity, and then Lemma 13, we get
n∑
`=0

∣∣∣∣Pr[|s| = `]−
(
n

`

)
2−n

∣∣∣∣ = Eb∼Bin(n,1/2)[|p(b)−1|] ≤
√

Eb∼Bin(n,1/2)[(p(b)− 1)2] ≤ O(λ)

for λ < 0.16, and clearly the TVD is bounded by 1 for λ greater. J

4.2 Limitations to the Upper Bound Approach
Unfortunately, the weighted `2 distance studied in Lemma 13 blows up as λ approaches 1.
Looking at the term in the sum of Equation (8) when k = m = (1/2− ε)n for some ε > 0
(will be specified later), and applying the bounds

(
n
k

)k ≤ (nk) ≤ (nek )k yields

∑
1≤k≤n/2

1(
n
2k
) (n−k∑

m=k

(
m− 1
k − 1

)(
n−m
k

)
λm

)2

≥ 1(
n

(1−2ε)n
)((1/2 + ε)n

(1/2− ε)n

)2
λ(1/2−ε)n

≥
(
n

2εn

)−1((1/2 + ε)n
2εn

)2
λn/2

≥
(

λ1/2

(8eε)2ε

)n
For λ ≥ .94 and ε = .017, we have λ1/2 > .969 and (8eε)2ε < .967. Thus

Eb∼Bin(n,1/2)[(p(b)− 1)2] >
(
.969
.967

)n
which grows exponentially in n. Consequently, in order to show an O(λ) bound for all λ < 1,
an approach different from using the weighted `2 distance is required.

4.3 Showing the TVD Bound is Tight
Consider s ∼ S(n, λ) and N ∼ N (0, 1). Set Y i = (−1)si and let Y =

∑n
i=1(−1)si be the ±1

variant of the sticky distribution. Similarly, let bi ∼ Ber(1/2) for 1 ≤ i ≤ n. Set Zi = (−1)bi
and let Z =

∑n
i=1 Zi be the usual ±1 unbiased random walk. By the central limit theorem,

we already know Z√
n
→N in distribution as n→∞. We now state a similar result for Y ,

and defer the proof to the appendix, as it requires lengthy calculation of the moments.
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I Lemma 17. As n→∞, Y
√

1−λ
(1+λ)n →N in distribution.

With this lemma, we have a good understanding of Y , and can show the tightness of
the TVD bound. The suggestion to consider an event like |Y | ≤ O(

√
n) was made by Salil

Vadhan [13].

I Theorem 18. For Y and Z defined above as the ±1 version of the S(n, λ) walk and the
n-step unbiased walk, respectively, we have

|Pr[|Z| ≤
√
n]− Pr[|Y | ≤

√
n]| ≥ Ω(λ)

for λ < 1.

Proof. By Lemma 17, for ε <
∫ 1√

1−λ
1+λ

e−x
2
dx, there exists a constant N(ε) such that for

n > N(ε),

|Pr[|Z| ≤
√
n]− Pr[|Y | ≤

√
n]| =

∣∣∣∣Pr
[
|Z|√
n
≤ 1
]
− Pr

[
|Y |

√
1− λ

(1 + λ)n ≤
√

1− λ
1 + λ

]∣∣∣∣
≥ 2

∫ 1√
1−λ
1+λ

e−x
2
dx− ε

≥
∫ 1√

1−λ
1+λ

e−x
2
dx ≥ e−1

(
1−

√
1− λ
1 + λ

)
≥ λ

2e

where the last step follows from the easily verifiable inequality 1−
√

1−x
1+x ≥

x
2 for 0 ≤ x ≤ 1.

Hence we have demonstrated an event that gives an Ω(λ) gap between the distributions of
Y and Z for λ < 1. Since Y and Z are just shifted and dilated versions of the Hamming
weight of S(n, λ) and Bin(n, 1/2), respectively, we can deduce the TVD is Θ(λ) due to
Theorem 16. J

5 Parity and Majority of the Sticky Walk are Almost Uncorrelated

Following the spirit of how Ta-Shma [12] showed the bias of the parity of an expander walk
sampler is exponentially small, we show some parity events of the sticky random walk are
very close in probability to the corresponding probability under the binomial distribution. An
interesting question to consider is whether more refined events, such as whether the output
is even and above expectation is close to 1

4 . We show such results for the sticky distribution.
Note that from Theorem 16 we know the event probability in the sticky distribution will be
within O(λ) of 1

4 , but in this section, we derive an o(1) error bound.
Let s ∼ S(n, λ). We first demonstrate that similar to the binomial distribution,

Pr[|s| even] and Pr[|s| ≥ n/2] are close to 1/2. For the parity, we straightforwardly calculate

Pr[|s| even]− Pr[|s| odd] =
n∑
t=0

(−1)t Pr[|s| = t] = E[(−1)|s|] = λn/2 · 1n even (10)

using Lemma 11. Hence |Pr[|s| even] − 1
2 | ≤

λn/2

2 . Interestingly enough, this λn/2 bias is
also present in the parity bias calculation done by Ta-Shma for the expander walk in [12]
(Section 3.2). Furthermore, this calculation (combined with our work in Section 7) shows
that this error term cannot be improved to something smaller like λn.
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Let a be a string and let a be the string formed by toggling every bit of a. Notice that
Pr[s = a] = Pr[s = a] since the number of runs are the same in both strings. Summing over
all strings of Hamming weight t, we get the symmetric relation Pr[|s| = t] = Pr[|s| = n− t],
which directly implies Pr[|s| > n/2] = Pr[|s| < n/2]. In the case n is odd, we immediately
have Pr[|s| > n/2] = 1/2. When n is even, we have

Pr[|s| > n/2] = 1
2 −

Pr[|s| = n/2]
2 . (11)

We now prove a lemma that will help us bound Pr[|s| = n/2] in the sticky distribution.

I Theorem 19. For s ∼ S(n, λ), λ < 1/5, and b ∼ Bin(n, 1/2), we can bound

Pr[|s| = `] .
√

(1 +O(λ2)) Pr[b = `].

Proof. To estimate this probability, we can use Lemma 10 to find

Pr[|s| = `] = 1
2n

n∑
k=0

K`(k)E[Kk(|s|)] ≤ 1
2n

√√√√ n∑
k=0

(
n

k

)
K`(k)2

√√√√ n∑
k=0

E[Kk(|s|)]2(
n
k

) (12)

by Cauchy-Schwarz. Notice by Corollary 15,√√√√ n∑
k=0

E[Kk(|s|)]2(
n
k

) .
√

1 +O(λ2). (13)

Finally, by using Equation (3) we get√√√√ n∑
k=0

(
n

k

)
K`(k)2 =

√(
n

`

)
2n (14)

Combining (12), (13), and (14) yields

Pr[|s| = `] . 1
2n

√(
n

`

)
2n(1 +O(λ2)) =

√
(1 +O(λ2)) Pr[b = `]

as desired. J

Going back to (11), Theorem 19 with ` = n/2 now allows us to deduce

Pr[|s| > n/2] = 1
2 +O(n−1/4

√
1 + λ2).

Thus, we have shown that Pr[|s| even] and Pr[|s| > n/2] are near 1/2, which are properties
shared by purely random strings. However, we can go further and show a more refined
equidistribution result. One can calculate for b ∼ Bin(n, 1/2) that Pr[(|b| odd) ∧ (|b| >
n/2)] = 1

4 +O(n−1/2). We show an analogous result for the sticky walk, albeit with a worse
o(1) error term.

I Theorem 20. Let s ∼ S(n, λ). For a, b ∈ {0, 1}, denote the event

Eab = (|s| ≡ a (mod 2)) ∧ ((−1)b|s| > (−1)bn/2)

and pab = Pr[Eab]. Then pab = 1
4 +O(n−1/4√1 + λ2) for all a, b.
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Proof. We show the result for p00 (symmetric arguments work for any pab). We split
into cases when n is even and odd. When n is even, notice that due to the symmetry
Pr[|s| = t] = Pr[|s| = n − t], p00 = p01 and p10 = p11. Hence from (10) we have λn/2 ≥
|p10 + p11 − p01 − p00| = 2|p10 − p00|. From (11) and Theorem 19, we have p10 + p00 =
1
2 +O(n−1/4√1 + λ2), and so we can conclude p00 = 1

4 +O(n−1/4√1 + λ2) as desired.
When n is odd, a little more effort is required to exploit symmetry. Let S be the set of

n-bit strings having a run of size ≥ 2 which doesn’t contain the nth bit, and let T be the
set of n-bit strings having a run of size ≥ 2 which doesn’t contain the 1st bit. Consider the
map g : S → T defined by toggling the last bit of the first run of size ≥ 2. It can be easily
seen that g is a bijection. Note that for any s ∈ S, s and g(s) have the same probability
under the sticky walk distribution (the map preserves the number of runs in the string).
Furthermore, f changes the parity of the input string. The image of all strings in S with
even parity and Hamming weight > n/2 under g will be all strings in T with odd parity and
Hamming weight > n/2, along with some rogue strings in T with Hamming weight (n− 1)/2.
If we isolate these rogue cases, we can deduce, due to the fact g preserves probability, that

Pr[(s ∈ S) ∧ E00] = Pr[(s ∈ T ) ∧ E10] + Pr
[
(s ∈ S) ∧

(
|g(s)| = n− 1

2

)
∧ E00

]
≤ Pr[(s ∈ T ) ∧ E10] +O(n−1/4

√
1 + λ2) (15)

by Theorem 19 with ` = n−1
2 . Notice any n-bit string has probability measure at most

1
2
( 1+λ

2
)n−1 in the sticky distribution. Furthermore, there are only O(n) strings not contained

in S (such strings must be of form 0kA or 1kA where A is a binary string that alternates 0s
and 1s). Therefore we can bound

|Pr[(s ∈ S) ∧ E00]− Pr[E00]| ≤ Pr[s /∈ S] . n

(
1 + λ

2

)n
. (16)

An analogous argument with set T gives

|Pr[(s ∈ T ) ∧ E01]− Pr[E01]| . n

(
1 + λ

2

)n
. (17)

Combining (15), (16), and (17) using an application of the triangle inequality allows us
to bound

|p00 − p01| ≤ |Pr[E00]− Pr[(s ∈ S) ∧ E00]|+ |Pr[(s ∈ S) ∧ E00]− Pr[(s ∈ T ) ∧ E01]|
+ |Pr[(s ∈ T ) ∧ E01]− Pr[E01]|

. n−1/4
√

1 + λ2.

Since p00 + p01 = 1/2 for n odd, we can deduce p00 = 1
4 +O(n−1/4√1 + λ2). J

6 Sticky Walk Modulo m is Close to Uniform

In [12], Ta-Shma provides an argument on how the parity of the expander walk is unbiased.
In this section we use his method to show the sticky distribution modulo m is approximately
uniform for any fixed m and large n.

I Lemma 21. Fix λ < 1 and m ≥ 2. For any nontrivial m’th root of unity ζ 6= 1 and
s ∼ S(n, λ), we have |E[ζ |s|]| ≤ exp(−Ω(n)).
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Proof. One can verify E[ζ |s|] = 1ᵀMn1 where 1 is the unit vector with all coordinates equal
and

M =
( 1+λ

2
1−λ

2
1−λ

2
1+λ

2

)(
1 0
0 ζ

)
=
( 1+λ

2
1−λ

2 ζ
1−λ

2
1+λ

2 ζ

)
.

Let λ1, λ2 be the eigenvalues of M . If M is diagonalizable, we know 1ᵀMn1 = c1λ
n
1 + c2λ

n
2 ,

and if M is not diagonalizable we can write 1ᵀMn1 = (c1 + nc2)λn1 for constants c1 and c2
(this can be seen by writingM in Jordan normal form). Thus in either case, it suffices to show
the norm of both eigenvalues are strictly less than 1 to prove the lemma. From Gershgorin’s
circle theorem, we know the norms of the eigenvalues are at most 1+λ

2 + 1−λ
2 = 1.

Assume one eigenvalue has norm 1. Since the product of the eigenvalues is det(M) = λζ,
we deduce the eigenvalues are λz, ζ/z for some |z| = 1. Since λz+ζ/z = Tr(M) = 1+λ

2 (1+ζ),
we particularly know λz + ζ/z and 1 + ζ have the same argument angle.

If ζ 6= −1, we must have the quotient of these two complex numbers be real. Consequently

0 = λz + ζ/z

1 + ζ
−
(
λz + ζ/z

1 + ζ

)
= λz + ζ/z

1 + ζ
− λ/z + z/ζ

1 + 1/ζ = (λ− 1)(z − ζ/z)
1 + ζ

.

Since λ 6= 1, we have z = ζ/z and so the eigenvalues are λz, z. The trace is 1
2 (1 +λ)(1 + ζ) =

1
2 (1 + λ)(1 + z2), so

λz + z = 1
2(1 + λ)(1 + z2) ⇐⇒ z = 1 + z2

2 ⇐⇒ z = 1.

However ζ = z2 = 1, a contradiction.
If ζ = −1, then λz,−1/z are the eigenvalues. The trace is now zero, so λz = 1/z. Since

λ is a nonnegative real, taking norms of both sides implies λ = 1, a contradiction. Hence the
eigenvalues are indeed less than 1. J

Lemma 21 allows us to employ Lemma 4.2 in [9] (since all characters of Z/mZ are
χ(n) = ζn for some m’th root of unity ζ) to deduce the following.

I Theorem 22. Let Um be the uniform distribution over [m], and let Sm(n, λ) be the
distribution of |s| (mod m) over [m], where s ∼ S(n, λ). The `1 distance between these two
distributions can then be bounded by

||Um − Sm(n, λ)||1 ≤ exp(−Ω(n))

where the implied constants only depend on m.

7 Relationship Between the Sticky Walk and Expander Walk

Define a λ-expander1 to be a regular graph G such that all eigenvalues λ1 ≤ · · · ≤ λm
of the normalized adjacency matrix satisfy |λi| ≤ λ for 1 ≤ i ≤ m − 1. One of the main
motivations to study the sticky random walk is because of its perceived close relationship
with the distributions generated by expander walks. In particular, if (v1, . . . , vn) is a n-step

1 Unlike standard definitions, we do not restrict the degree of each vertex to be constant. The purpose of
this section is to show any analysis of expander walks cannot give better bounds than the sticky walk.
Since analyses on expander walks are based off of the spectral properties of the graph rather than its
degree, restriction of the degrees are unnecessary for our purposes.
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expander walk on a λ-expander G = (V,E), and W ⊂ V with |W | = |V |/2, we believe the
distribution (1v1∈W , . . . ,1vn∈W ) is linked to the sticky walk S(n, λ). In this section, we
demonstrate one direction of this relationship by explicitly constructing a λ-expander and
vertex subset W of half the size such that the distribution of (1v1∈W , . . . ,1vn∈W ) is precisely
S(n, λ).

I Theorem 23. There exists λ-expander G = (V,E) and vertex set W ⊂ V with |W | = |V |/2
such that if (v1, . . . , vn) is a random walk on G, the random n-bit string (1v1∈W , . . . ,1vn∈W ) ∼
S(n, λ).

Proof. For simplicity, assume λ is rational, and take integerm such that ( 1−λ
1+λ )m is an integer.

Let C0 and C1 be two m-cliques with an added self-loop at each vertex. Construct the graph
G by taking each vertex in C0 and connect it to ( 1−λ

1+λ )m vertices in C1 in a cyclic uniform
manner to make this graph 2m

1+λ -regular (i.e. if we arbitrarily number the vertices in C0 and
C1 from 1 to m, just connect vertex i in C0 with the C1 vertices i, i+ 1, . . . , i+ ( 1−λ

1+λ )m− 1
(mod m)). Note upon setting W = C1, a random walk on this expander resembles the sticky
random walk, because at each step, m edges will keep us in the same clique, and ( 1−λ

1+λ )m
will move us to the other, which gives us a 1+λ

2 chance of staying in the same clique and 1−λ
2

chance of moving to the other. Our aim is to now show the eigenvalues of the normalized
Laplacian, L, are within λ of 1.

To do so, we will first show all eigenvalues of L are ≤ 1 + λ, and then demonstrate
L has second smallest eigenvalue 1 − λ. Note that the second smallest eigenvalue is
minv⊥1,||v||2=1 v

ᵀLv, and the largest eigenvalue is wᵀLw, where w is the corresponding
normalized eigenvector of this largest eigenvalue. Since 1 ⊥ w, it suffices to show that for
v ∈ R2m with ||v||2 = 1 and v ⊥ 1, we have 1− λ ≤ vᵀLv ≤ 1 + λ. WLOG assume the first
m rows/columns are the vertices in C0 and the latter m are the vertices in C1. Let t = 1−λ

1+λm

and let v = (a1, . . . , am, b1, . . . , bm). Recall from the quadratic form version of the Laplacian
and by construction of G that

(m+ t)vᵀLv =
∑

1≤i<j≤m
(ai − aj)2 +

∑
1≤i<j≤m

(bi − bj)2 +
∑

1≤i≤m
0≤j<t

(ai − bi+j)2

where indices are taken modulo m. Since v ⊥ 1, we have

0 =
(

m∑
i=1

ai +
m∑
i=1

bi

)2

= 2m
(

m∑
i=1

a2
i +

m∑
i=1

b2
i

)
−

∑
1≤i<j≤m

(ai − aj)2

−
∑

1≤i<j≤m
(bi − bj)2 −

∑
1≤i≤m
0≤j<m

(ai − bi+j)2

= 2m||v||22 − (m+ t)vᵀLv −
∑

1≤i≤m
t≤j<m

(ai − bi+j)2

vᵀLv = 2m
m+ t

− 1
m+ t

∑
1≤i≤m
t≤j<m

(ai − bi+j)2 (18)
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For one side, we can trivially upper bound (18)

vᵀLv ≤ 2m
m+ t

= 1 + λ.

For the lower bound of (18), we can use Cauchy-Schwarz to get

vᵀLv ≥ 2m
m+ t

− 2
m+ t

∑
1≤i≤m
t≤j<m

(a2
i + b2

i+j)

= 2m
m+ t

− 2m− 2t
m+ t

||v||22

= 2m
m+ t

= 1− λ.

Hence we can conclude the nonzero eigenvalues of L are within λ of 1. Thus, G is indeed
a λ-expander that models a S(n, λ) sticky walk. J

Note that this construction gives a family of λ-expanders: one for each m where
(

1−λ
1+λ

)
m

is an integer. In order to extend the above theorem to degree-bounded expanders, we believe
replacing the cliques C0 and C1 with degree d expanders, and adding a random bi-regular
bipartite graph with degree

(
1−λ
1+λ

)
d between them will suffice, but we have not verified this.
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A Deferred Proofs

B Claim 14. For 1 ≤ k ≤ n/2, we can bound (nk)2

( n2k)
≤ e3√2

4π2 · 42k.

Proof. We can use Stirling’s approximation
√

2π
(
n
e

)n√
n ≤ n! ≤ e

(
n
e

)n√
n to bound(

n
k

)2(
n
2k
) = n!(2k)!(n− 2k)!

k!2(n− k)!2

≤ e3

4π2 ·
nn(2k)2k(n− 2k)n−2k

k2k(n− k)2n−2k

√
2n(n− 2k)
k(n− k)2

≤ e3

4π2 · 2
2k
(

n

n− k

)n(
n− 2k
n− k

)n−2k√2
k

≤ e3√2
4π2

(
2n
n− k

)2k

≤ e3√2
4π2 · 4

2k C

I Lemma 17. As n→∞, Y
√

1−λ
(1+λ)n →N in distribution.

Proof. The idea is to use the method of moments (see Theorem 8.6 of [6]), which states the
lemma can be deduced if all moments of Y approach the moments of N as n→∞. The odd
moments of the Gaussian distribution is zero, and the 2k’th moment is (2k − 1)!! := (2k)!

2kk! for

all k ≥ 1 (see [8]). Clearly E
[(

Y
√

1−λ
(1+λ)n

)2k+1
]

= 0 by the symmetry of Y .

It now remains to show that E
[(

Y
√

1−λ
(1+λ)n

)2k
]
→ (2k − 1)!! as n → ∞. Let Pk

denote the set of unordered partitions of k into positive parts, where we express each
partition as a multiset of positive integers A = [a1, . . . , am] where

∑m
i=1 ai = k. We define

g([a1, . . . , am]) = (
∑m

i=1
ai)!∏m

i=1
ai!

. By expanding (
∑n
i=1 Y i)2k, collecting terms with the same

multiset of degrees, and taking exponents modulo 2,

E[Y 2k] = E

( n∑
i=1

Y i

)2k
 =

∑
P∈P2k

g(P )E

 ∑
T∈( [n]

|P |)

|P |∏
i=1

Y pi
ti


=
∑
P∈P2k

g(P )E

 ∑
T∈( [n]

|P |)

∏
i;2-pi

Y ti

 (19)

where P = [p1, . . . , p|P |] and T = {t1, . . . , t|P |}. Now let Po and Pe be the multiset containing
all odd and even elements of P (with multiplicity), respectively. Define h([a1, . . . , am]) to
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be the number of ways to permute (a1, . . . , an) (e.g. g([1, 2, 2, 6]) = 12 since there are 12
ways of permuting (1, 2, 2, 6), g([2, 2, 2]) = 1, and g([1, 4, 5, 6]) = 24). By Equation 5 and
Lemma 12, we have

E

 ∑
T∈( [n]

|Po|)

∏
i∈T

Y i

 = E[K|Po|(|s|)] =
n−|Po|/2∑
m=|Po|/2

(
m− 1
|Po|/2− 1

)(
n−m
|Po|/2

)
λm.

With this, we can rewrite

E

 ∑
T∈( [n]

|P |)

∏
i;2-pi

Y ti

 = h(Pe)
(
n− |Po|
|Pe|

)
E

 ∑
T∈( [n]

|Po|)

∏
i∈T

Y i


= h(Pe)

(
n− |Po|
|Pe|

) n−|Po|/2∑
m=|Po|/2

(
m− 1
|Po|/2− 1

)(
n−m
|Po|/2

)
λm

∼ h(Pe)
n|Pe|

(|Pe|)!

n−|Po|/2∑
m=|Po|/2

(
m− 1
|Po|/2− 1

)
n|Po|/2

(|Po|/2)!λ
m

= n|P |−|Po|/2 · h(Pe)
(|Po|/2)!(|Pe|)!

n−|Po|/2∑
m=|Po|/2

(
m− 1
|Po|/2− 1

)
λm (20)

and so by combining (19) and (20), we have

E[Y 2k] ∼
∑
P∈P2k

n|P |−|Po|/2 · g(P )h(Pe)
(|Po|/2)!(|Pe|)!

n−|Po|/2∑
m=|Po|/2

(
m− 1
|Po|/2− 1

)
λm. (21)

We just have to look at the leading term of this sum, which is when |P | − |Po|/2 is
maximized (since |P2k|, g(P ), and h(Pe) don’t depend on n). Note

|P | − |Po|2 = (|Po|+ |Pe|)−
|Po|

2 = |Po|+ 2|Pe|
2 ≤

∑
p∈Po p+

∑
p∈Pe p

2 = k.

Hence the leading terms are when |P | − |Po|/2 = k, and these terms correspond to when
all elements of P are 1 or 2. In particular, the leading terms correspond to the multisets
P with 2r 1’s and k − r 2’s for 0 ≤ r ≤ k. In these cases, we can calculate |P | = k + r,
|Po| = 2r, h(Pe) = 1 and g(P ) = (2k)!

2k−r Hence from (21) we get

E[Y 2k] ∼
k∑
r=0

(2k)!
2k−rr!(k − r)!

(
n−r∑
m=r

(
m− 1
r − 1

)
λm

)
nk

= (2k − 1)!!
k∑
r=0

(
k

r

)
2r
(
n−r∑
m=r

(
m− 1
r − 1

)
λm

)
nk.

Consequently, we have the 2k’th moment of Y
√

1−λ
(1+λ)n is

∼ (2k − 1)!!
(

1− λ
1 + λ

)k k∑
r=0

(
k

r

)
2r
(
n−r∑
m=r

(
m− 1
r − 1

)
λm

)
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Taking n→∞ and evaluating the series with the well-known generating function identity
( x

1−x )r =
∑
m≥r

(
m−1
r−1
)
xm, we get that the 2k’th moment approaches

(2k − 1)!!
(

1− λ
1 + λ

)k k∑
r=0

(
k

r

)
2r
( ∞∑
m=r

(
m− 1
r − 1

)
λm

)

= (2k − 1)!!
(

1− λ
1 + λ

)k k∑
r=0

(
k

r

)(
2λ

1− λ

)r
= (2k − 1)!!

(
1− λ
1 + λ

)k (
1 + 2λ

1− λ

)k
= (2k − 1)!!.

Hence by the method of moments Y
√

1−λ
(1+λ)n →N in distribution as n→∞. J
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