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Abstract
Suppose that P is a property that may be satisfied by a random code C ⊂ Σn. For example, for
some p ∈ (0, 1), P might be the property that there exist three elements of C that lie in some
Hamming ball of radius pn. We say that R∗ is the threshold rate for P if a random code of rate
R∗ + ε is very likely to satisfy P, while a random code of rate R∗ − ε is very unlikely to satisfy P.
While random codes are well-studied in coding theory, even the threshold rates for relatively simple
properties like the one above are not well understood.

We characterize threshold rates for a rich class of properties. These properties, like the example
above, are defined by the inclusion of specific sets of codewords which are also suitably “symmetric.”
For properties in this class, we show that the threshold rate is in fact equal to the lower bound
that a simple first-moment calculation obtains. Our techniques not only pin down the threshold
rate for the property P above, they give sharp bounds on the threshold rate for list-recovery in
several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for
list-recovery in general.
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5:2 Sharp Threshold Rates for Random Codes

1 Introduction

Random codes are ubiquitous in the theory of error correcting codes: when thinking about
the “right” trade-offs for a particular problem, a coding theorist’s first instinct may be to
try a random code. A random code here is simply a random set. That is, let C ⊆ Σn be
chosen so that each x ∈ Σn is included in C with probability |Σ|−n(1−R) for some parameter
R, which is called the (expected1) rate of the code C. Random codes are used in the proofs
of the Gilbert-Varshamov bound, Shannon’s channel coding theorem, and the list-decoding
capacity theorem, to name just a few. This success may lead to the intuition that random
codes are “easy” to analyze, and that the hard part is finding explicit constructions that
match (or in rare cases, exceed) the parameters of random codes. However, there is still
much we do not know about random codes, especially if we want extremely precise answers.

In particular, the question of threshold rates, of broader interest in probability theory, is
something that we do not understand well for random codes. In more detail, suppose that
P is a code property. For example, perhaps P is the property that there is some pair of
codewords c(1), c(2) ∈ C that both lie in some Hamming ball of radius pn. Or perhaps P is
the property that there are three codewords c(1), c(2), c(3) ∈ C that lie in such a Hamming
ball. A value R∗ ∈ (0, 1) is a threshold rate for P if a random code of rate R∗ + ε is very
likely to satisfy P, but a random code of rate R∗ − ε is very unlikely to satisfy C. For the
first example above, about pairs of codewords, the property in question is just the property
of the code having minimum distance less than 2pn, and this is not too hard to understand.
However, already for the second example above – called list-of-two decoding – the threshold
rate was not known.

1.1 Contributions

In this paper, we characterize threshold rates for a rich class of natural properties of random
codes. We apply our characterization to obtain threshold rates for list-of-two decoding,
as well as to properties like list-decoding and perfect hashing codes, and more generally to
list-recovery. We outline our contributions below.

A characterization of the threshold rate R∗ for symmetric properties

Suppose that P is a property defined by the inclusion of certain “bad” sets. For example, the
list-of-two decoding property described above is defined by the inclusion of three codewords
that lie in a radius-pn Hamming ball. For such properties that are also “symmetric enough,”
our main technical result, Theorem 1, characterizes the threshold rate R∗. Moreover, we
show that this threshold rate is exactly the same as the lower bound that one obtains from a
simple first-moment calculation! This is in contrast to recent work of [13] for random linear
codes, which shows that the corresponding first-moment calculation is not the correct answer
in that setting.

Part of our contribution is formalizing the correct notion of “symmetric enough.” As we
describe in the technical overview in Section 1.2, this definition turns out to be fairly subtle.
We also show in the full version of the paper, that this definition is necessary.

1 Throughout, we refer to R as the rate of the code, and drop the adjective “expected.”
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Estimates of R∗ for list-recovery

We give precise estimates of the threshold rate R∗ for list-recovery. We say that a code
C ⊆ Σn is (p, `, L)-list-recoverable if for all sets Ki ⊆ Σ (for 1 ≤ i ≤ n) with |Ki| ≤ `,

|{c ∈ C : Pri∼[n][ci 6∈ Ki] ≤ p}| < L.

List-recovery is a useful primitive in list-decoding, algorithm design, and pseudorandom-
ness (see, e.g., [15, 10, 16]). In particular, it generalizes the list-of-two decoding example
above (when ` = 1 and L = 3), as well as other interesting properties, such as list-decoding
and perfect hashing codes, discussed below.

Our characterization allows us to estimate or even exactly compute the threshold rate for
(p, `, L)-list-recovery in a wide variety of parameter regimes. To demonstrate this, we include
several results along these lines. First, in Section 4 (Corollary 38), we give estimates that
are quite sharp when q logL

L is small. In Section 5 (Lemma 40), we give an exact formula for
the case p = 0, which is relevant for perfect hashing codes. In Section 6 (Theorem 42(I)), we
give an exact formula for the case that L = 3 and ` = 1, relevant for list-of-two decoding.
Moreover, in Section 7 (Corollary 47) we use our characterization to develop an efficient
algorithm to compute the threshold rate up to an additive error of ε > 0; our algorithm runs
in time Op(Lq + poly(q, L, log(1/ε)).

List-of-two decoding and a separation between random codes and random linear
codes

We obtain new results for list-of-two decoding, the example discussed above. List-of-two
decoding is a special case of list-decoding, which itself the special case of list-recovery where
` = 1. We say that a code is (p, L)-list-decodable if there is no Hamming ball of radius
pn containing L codewords; list-of-two decoding is the special case of L = 3.2 We show in
Section 6 (Theorem 42) that the threshold rate for this question, for random binary codes, is
R∗ = 1− 1−h2(3p)+3p log2 3

3 . That is, above this rate, a random binary code is very likely to
have three codewords contained in a radius pn ball, while below this rate, the code most
likely avoids all such triples.

This result is interesting for two reasons. First, it demonstrates that our techniques
are refined enough to pin down the threshold rate in this parameter regime. Second, the
particular value of R∗ is interesting because it is different than the corresponding threshold
rate for random linear codes. A random linear code over Fq of rate R is a random linear
subspace of Fnq , of dimension Rn. The list-decodability of random linear codes has been
extensively studied, and it is known (e.g., [19, 7]) that the (p, L)-list-decoding threshold rate
for both random linear codes and random codes is 1−hq(p), for sufficiently large list sizes L.3

Limitations of random codes for perfect hashing

Another special case of list-recovery is perfect hashing codes. Suppose that |Σ| = q. A code
C ⊆ Σn is said to be a q-hash code if, for any set of q distinct codewords c(1), c(2), . . . , c(q) ∈ C,
there is at least one i ∈ [n] so that {c(1)

i , c
(2)
i , . . . , c

(q)
i } = Σ; that is, if the set of symbols that

2 It is called list-of-two decoding, even though L is three, because any Hamming ball contains at most two
codewords.

3 Here, hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x) is the q-ary entropy.
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5:4 Sharp Threshold Rates for Random Codes

appear in position i are all distinct. Thus, C is a q-hash code if and only if it is (0, q − 1, q)-
list-recoverable. As the name suggests, q-hash codes have applications in constructing small
perfect hash families, and it is a classical question to determine the largest rate possible for
a q-hash code.4

A simple random coding argument shows that a random code of rate R = 1
q logq 1

1−q!/qq −
o(1) is a q-hash code with high probability [5, 12]. However, it is still an area of active
research to do significantly better than this bound for any q. It is known that R < q!

qq−1 for
any q-hash code [5, 9], and for large q, there is a gap of a multiplicative factor of about q2

between these upper and lower bounds. Körner and Matron gave a construction that beats
the random bound for q = 3 [11], and recently Xing and Yuan gave a construction that beats
the random bound for infinitely many q’s [18]. One might have hoped that a random code
might in fact do better than the straightforward probabilistic argument (which follows from
a union bound). Unfortunately, our results show that this is not the case.

A broader view

Taking a broader view, threshold phenomena in other combinatorial domains, notably
random graphs and Boolean functions, have been the subject of extensive study at least since
Erdős and Rényi’s seminal work [3]. Some of the deeper results in this field (e.g. [6]), deal
simultaneously with a wide class of properties, rather than a specific one. Other works, such
as the recent [4], are general enough to cover not only multiple properties, but also multiple
domains. Our work (as with the work of [13], [8] on random linear codes, discussed below) is
not as general as these, but we are able to get more precise results. It would be interesting
to find a general framework that connects threshold phenomena in a variety of random code
models, with analogues from random graphs and other natural combinatorial structures.

1.2 Technical Overview
As mentioned above, we study properties defined by the inclusion of bad subsets. We organize
bad subsets of size b into matrices B ∈ Σn×b, interpreting the columns of B as the elements
of the set. We write “B ⊆ C” to mean that the columns of B are all contained in the code C.

As a running example – and also our motivating example – consider list recovery, defined
above. The property P of not being (p, `, L)-list-recoverable is defined by the inclusion
of “bad” matrices B ∈ Σn×L so that for some sets K1, . . . ,Kn ⊂ Σ of size at most `,
Pri∼[n][Bij /∈ Ki] ≤ p for each j ∈ [L]. Moreover we require the columns of B to be distinct.

Analyzing a property as a union of types

Following the approach of [13] for random linear codes, we group the bad matrices into types
based on their row distributions. That is, for a bad matrix B ∈ Σn×b, let τ denote the row
distribution

τ(v) = |{i ∈ [n] : Bi,? = v}|
n

,

where Bi,? denotes the i’th row of B. We say that B has type τ . Consider the set B of all
of the matrices of type τ ; equivalently, B is the set of matrices obtained by permuting the

4 A q-hash code naturally gives rise to a perfect hash family: suppose that C is a universe of items, and
define a hash function hi : C → Σ given by hi(c) = ci. Then the property of being a q-hash code is
equivalent to the property that, for any set of q items in the universe, there exists some hash function
hi for 1 ≤ i ≤ n that maps each item to a different value.
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rows of B. We note that possible types τ depend on n, because of divisibility constraints.
For simplicity, let us ignore these restrictions for now (we will deal with them later), and
suppose that a single type τ can appear for all n.

First-moment bound and main theorem

We can use a simple first-moment approach to give a lower bound on the threshold rate. In
more detail, the probability that a particular B is contained in C is q−nb(1−R), assuming
that B has b distinct columns. Using the fact that |B| ≈ qHq(τ)·n, where Hq(τ) is the base-q
entropy of τ (see Section 2), and applying a union bound over all B ∈ B, we see that the
probability that any B ∈ B is contained in C is at most

qnb(Hq(τ)−(1−R)).

Thus, if R ≤ 1− Hq(τ)
b − ε for some small ε > 0, it is very unlikely that τ will be represented

in C.
Now suppose that our collection of bad sets, which define the property P, is closed

under row permutations. This means that P can be represented as a collection T of types
τ ; note that the size of T is polynomial in n. Union bounding over all of these types, the
computation above shows that a random code C of rate R < 1−maxτ∈T Hq(τ)

b − ε will, with
high probability, not satisfy P.

The question is, could the rate be larger? Might it be the case that P still not satisfied
(with high probability) by a random code of rate R significantly larger than 1−maxτ Hq(τ)/b?
In [13], it was shown that the answer for random linear codes is “yes.” If P exhibits certain
linear structure, then it may be possible that a higher rate random linear code still does
not satisfy P with high probability. One may conjecture that something similar holds for
random codes.

Our main technical result, Theorem 30, is that, for random codes, for sufficiently symmetric
properties, the answer to this question is “no.” That is, the simple calculation above does
give the right answer for random codes!

I Theorem 1 (Informal; see Theorem 30 for the formal version). Let P be a “symmetric”
property defined by the inclusion of a type among the types in T . Let

R∗ = 1− maxτ∈T Hq(τ)
b

Then for all ε > 0, a random code of rate R ≥ R∗ + ε satisfies P with probability 1− o(1),
while a random code of rate R∗ − ε satisfies P with probability o(1).

Sketch of proof: second moment method

Below, we sketch the proof of Theorem 1, and explain what the assumption of “symmetry”
means. As noted above, it is straightforward to show that the threshold rate R∗ is at least
1−maxτ∈T Hq(τ)

b , so the challenge is to show that it is not larger. The proof of Theorem 1
uses the second-moment method to show that for any histogram type τ (we discuss histogram
types more below), a random code C of rate 1 − Hq(τ)/b + ε is very likely to contain
some matrix B with type τ . Thus, the threshold rate is at most 1−maxτ Hq(τ)/b, where
the maximum is over all histogram types τ that appear in T . Our eventual definition of
“symmetric” will guarantee that it is legitimate to restrict our attention to histogram types.

ITCS 2021



5:6 Sharp Threshold Rates for Random Codes

Histogram types and the meaning of “symmetry”

In order to apply the second moment method, we bound the variance of
∑
B∼τ 1[B ⊂ C],

where the sum is over all matrices B of type τ . This turns out to be possible when τ has the
following symmetry property: for any u ∈ Σb, and for any permutation π : [b]→ [b], it holds
that τ(u) = τ(π(u)), where π(u) denotes the corresponding coordinate permutation of u. We
call such a type τ a histogram-type (Definition 27) because the probability of a particular
vector u under τ depends only on the histogram of u.

A first attempt to formulate a definition of “symmetry” for Theorem 1 is thus to require
P to be defined by histogram types. This results in a true statement, but unfortunately it is
too restrictive: it is not hard to see that, for example, the property of not being list-decodable
contains types τ that are not histogram types. Fortunately, for the logic above to go through,
it is enough to show that T contains a type τ that is both a maximum entropy distribution
in T , and is also a histogram type. Thus, the assumption of “symmetry” we will use is that
T , the collection of types represented in the property P , forms a convex set. Then, using the
fact that P is defined by the inclusion of bad sets (which do not care about the order of the
columns in the corresponding matrices), we can always find a maximum entropy histogram
type by “symmetrizing” and taking a convex combination of column permutations of some
maximum entropy type τ . One might wonder if this symmetrization step (and the resulting
assumption about convexity) is necessary. In the full version of this paper show that it is.

Taking a limit as n → ∞

There is one more challenge to consider, which is that in the description above, we have
ignored the fact that we would like our characterization to work for a sequence of values
of n. However, a type τ only works for certain values of n due to divisibility restrictions.
To get around this, we work instead with a sequence of types τn which tend to τ . This
leads us to our final definition of “symmetric” (Definition 20). Suppose that P is a property
defined by the inclusion of size-b bad sets. Then for each n, there is some collection Tn of
bad types τn, each of which is a distribution on Σb. We say that P is symmetric if the sets
Tn approach some convex set T as n goes to infinity. The logic above then goes through to
give Theorem 1.

Applications to list-recovery

Finally, in order to apply Theorem 1, we need to understand the maximum entropy distribu-
tion τ for our property P . We do this for the property P of not being (p, `, L)-list-recoverable
in a variety of parameter regimes in Sections 4, 5 and 6, and along the way obtain our
results about list-of-two decoding and perfect hashing codes. Finally, in Section 7, we
use our framework to develop an algorithm to efficiently calculate the threshold rate for
(p, `, L)-list-recovery.

1.3 Organization
In Section 2, we introduce notation, and also set up the definitions we need about types,
thresholds, properties, and various notions of symmetry. We also introduce (non-)list-
recoverability as a property, and prove in Corollary 24 that it is symmetric.

In Section 3, we state and prove Theorem 30, the formal version of the characterization
theorem (Theorem 1 above). At the end of Section 3, we begin to apply Theorem 30 to
list-recovery, and in particular define several notions we will need to analyze list recovery in
the subsequent sections.
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In the remaining sections, we specialize to list-recovery. Note that the proofs of the claims
in the remaining sections are available in the full version. In Section 4, we develop bounds on
the threshold rate R∗ for list-recovery that are tight when (q logL)/L is small. In Section 5,
we compute the threshold rate R∗ exactly for zero-error list-recovery (that is, when p = 0),
and use this to compute the threshold rate for perfect hashing. In Section 6, we compute the
threshold rate R∗ for list-of-two decoding (e.g., list-recovery when ` = 1 and L = 3), and
use this to quantify the gap between random codes and random linear codes for list-of-two
decoding. Finally, in Section 7, we give an efficient algorithm to compute the threshold rate.

2 Preliminaries

First, we fix some basic notation. Throughout, we consider codes C ⊆ Σn of block length n
over an alphabet Σ, where |Σ| = q. When we use log(x) without an explicit base, we mean
log2(x). We use Hq to denote the base-q entropy: for a distribution τ ,

Hq(τ) := −
∑
x

τ(x) logq(τ(x)).

When q is clear from context, we will use H(τ) to denote Hq(τ). If u is a random variable
distributed according to τ , then we abuse notation slightly and define H(u) := H(τ). We
use hq(x) := x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x) to denote the q-ary entropy of
x ∈ (0, 1). Again, when q is clear from context we will use h(x) to denote hq(x).

For a vector x ∈ Σk and I ⊆ [k], we use xI to refer to the vector (xi)i∈I ∈ ΣI . Given a
vector u ∈ Σk and a permutation π : [k]→ [k], we let π(u) ∈ Σk denote the corresponding
coordinate permutation of u.

Given distributions τ, µ on the same finite set, we define their `∞-distance by

d∞(τ, µ) := max
x
|τ(x)− µ(x)| .

Given a set of distributions T , we define the `∞ distance from µ to T by

d∞(µ, T ) := inf
τ∈T

d∞(µ, τ) .

2.1 Basic notions
As mentioned in the introduction, we will organize our “bad” sets into matrices. We formalize
this with the following two definitions.

I Definition 2 (Matrices with distinct columns). Let Σn×b
distinct denote the collection of all

matrices B ∈ Σn×b such that each column of B is distinct.

I Definition 3 (Subsets as matrices). Let C ⊆ Σn be a code, and let B ∈ Σn×b be a matrix.
We write B ⊆ C to mean that each column of B is an element of C. If A ⊆ Σn, let
BA ⊆ Σn×|A| denote the collection all matrices B ∈ Σn×|A|distinct such that the columns of B are
the elements of A.

For completeness, we reiterate our definition of a random code from the introduction.

I Definition 4 (Random code). Let Σ be a finite set with q := |Σ| ≥ 2. For n ∈ N and
R ∈ [0, 1], let CnRC(R) denote an expected-rate R random code (over the alphabet Σ) C ⊆ Σn.
Namely, for each x ∈ Fnq we have Pr [x ∈ C] = q−n(1−R), and these events are independent
over all x.

ITCS 2021



5:8 Sharp Threshold Rates for Random Codes

We record a useful fact about random codes, which is the probability that any particular
matrix B is contained in one.

I Fact 5 (Probability that a random code contains a matrix). Let B ∈ Σn×b. Then,

Pr [B ⊆ CnRC(R)] = q−n(1−R)t,

where t is the number of distinct columns in B.

We study (noisy) list-recovery, which generalizes both the list-decoding and perfect
hashing examples mentioned in the introduction. We repeat the definition, so that we may
formally define a “bad” matrix for list-recovery.

I Definition 6 (Noisy list-recovery). Let p ∈ [0, 1], 1 ≤ ` ≤ q, and L ∈ N . Say that a matrix
B ∈ ΣL×ndistinct is (p, `, L)-bad for (p, `, L)-list-recovery if there exist sets Ki ⊆ Σ (1 ≤ i ≤ n),
each of size `, such that for every 1 ≤ j ≤ L,

Pri∼[n] [Bi,j /∈ Ki] ≤ p.

A code C ⊆ Σn is (p, `, L)-list-recoverable if it does not contain a (p, `, L)-bad matrix.

2.2 Monotone-increasing properties and thresholds
We study the threshold rate R∗ for random codes to satisfy certain properties. This was
discussed informally in the introduction and the definitions below formalize what “threshold
rate” means.

I Definition 7 (Monotone-increasing property). A code property P is monotone-increasing if
given a code C satisfying P, it holds that every code C ′ such that C ⊆ C ′ also satisfies P.

For example, the property of being not (p, `, L)-list-recoverable (that is, the property of
containing a (p, `, L)-bad matrix) is a monotone-increasing property.

I Definition 8 (Minimal-set). Let Pn be a monotone-increasing property of length-n codes.
A set A ⊆ Σn is a minimal element of Pn if A satisfies Pn but no strict subset of A satisfies
Pn. The minimal set for Pn is the collection of matrices⋃

A is a minimal element of Pn

BA.

For example, the minimal set for the property Pn of being not (p, `, L)-list-recoverable is
the set of (p, `, L)-bad matrices.

Note that a code satisfies Pn if and only if it contains some matrix belonging to the
minimal set of Pn. If P is a monotone-increasing property of codes, we define its associated
threshold rate by

RnRC(P) :=
{

sup
{
R ∈ [0, 1] : Pr [CnRC(R) satisfies P] ≤ 1

2
}

if there is such an R
0 otherwise.

I Remark 9. If P is monotone-increasing then the function Pr [CnRC(R)satisfies P] is
monotone-increasing in R. This can be proved by a standard coupling argument, akin
to [1, Thm. 2.1].
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I Definition 10 (Sharpness for random codes). A monotone-increasing property P is sharp
for random codes if

lim
n→∞

Pr [CnRC (RnRC(P)− ε) satisfies P] = 0

and

lim
n→∞

Pr [CnRC (RnRC(P) + ε) satisfies P] = 1

for every ε > 0.

2.3 Local and row-symmetric properties
As discussed in the introduction, we study properties that can be written as a union of
“types,” where each type corresponds to a row distribution τ of a matrix M . The following
definitions make this notion precise.

I Definition 11 (Row-permutation invariant collection of matrices). A collection of matrices
B ⊆ Σn×b is row-permutation invariant if, given a matrix B ∈ B, every row permutation of
B (that is, a matrix resulting from applying the same coordinate permutation to each column
of B) also belongs to B.

I Definition 12 (Local and row-symmetric properties). Let P = {Pn}n∈N be a monotone-
increasing property, and let Mn denote the minimal set of Pn.

If there exists some b ∈ N such that Mn ⊆ Σn×b for every n, we say that P is b-local.
If every Mn is row-permutation invariant, we say that P is row-symmetric.

I Remark 13. Every monotone-increasing property is trivially column-symmetric, in the
sense that permuting the columns of a matrix in Mn results in another matrix in Mn. This
naturally reflects the fact that containment of a matrix does not depend on the ordering of
the columns, and follows immediately from the definition of a minimal set.

Let B ∈ Σn×b, and consider the collection B of all row-permutations of B. Let τB denote
the row-distribution of B. That is, τ is the probability distribution, over Σb, of the row
Bi,?, where i is sampled uniformly from [n]. Observe that every matrix in B has the same
row-distribution as B. Moreover, B can be characterized as the set of all matrices with the
row distribution τB . These observations motivate the following definitions.

I Definition 14 (Type of a matrix). Let B ∈ Σn×b. We define its type τB as the distribution
of a uniformly random row of B. That is, τB is the distribution over Σb, such that

τB(x) = |{i ∈ [n] | Bi = x}|
n

for every x ∈ Σb. Let

T nb = {τB | B ∈ Σn×bdistinct}

denote the set of all possible types of n× b matrices with distinct columns. Given τ ∈ T nb , we
denote

Mτ = {B ∈ Σn×b | τB = τ}.

ITCS 2021



5:10 Sharp Threshold Rates for Random Codes

I Remark 15. The type of a matrix B ∈ Σn×b determines whether B ∈ Σn×bdistinct. Therefore,
for τ ∈ T nb ,

Mτ = {B ∈ Σn×bdistinct | τB = τ}.

The following fact now follows from the above discussion.

I Fact 16 (Decomposition of a row-permutation invariant collection). Let B ⊆ Σn×b be a
row-permutation invariant collection. Then, there exists a set of types T ⊆ Tn,b such that

B =
⋃
τ∈T

Mτ .

Note that a type in T nb is defined by the number of occurrences of each of |Σb| possible
rows, in a matrix consisting of n rows. In particular, each row occurs between 0 and n times.
Thus,

|T nb | ≤ (n+ 1)|Σ
b| = (n+ 1)q

b

.

Crucially for our purposes, this upper bound is polynomial in n.

2.4 Symmetric properties and convex approximations
I Definition 17. Let Tb denote the simplex of all probability distributions over Σb.

It is generally more convenient to work in Tb rather than T nb , since the former is continuous,
while the latter is discrete and involves certain divisibility conditions. This motivates the
following definition.

I Definition 18 (Permutation-closed type sets). A set T ⊆ Tb is called permutation-closed if
for every τ ∈ T and every permutation π : [b]→ [b], the distribution of π(u) (where u ∼ τ)
also belongs to T .

I Definition 19 (Approximating sets of types). Fix b ∈ N. Let {Tn}n∈N be a sequence of sets
of types, such that Tn ⊆ T nb . A (topologically) closed and permutation-closed set T ⊆ Tb is
an approximation for {Tn}n∈N if Tn ⊆ T for every n, and

lim
n→∞

max
τ∈T

d∞(τ, Tn) = 0.

I Definition 20 (Symmetric property and convex approximation). Let P = {Pn}n∈N be a
b-local, row-symmetric, monotone-increasing property. Due to Fact 16, for every n there
exists a set Tn ⊆ Tn,b such that the minimal set of Pn is

⋃
τ∈TnMτ . If the sequence {Tn}n∈N

has a convex approximation T , we say that T is a convex approximation for P. In this case,
we say that P is symmetric.

2.5 Non-list-recoverability as a property
Our motivating property is that of being not list-recoverable. In this section, we show that
non-(p, `, L)-list-recoverability is a symmetric property, and we define the convex set Tp,`,L
that is a convex approximation for it.

Fix p ∈ [0, 1], 1 ≤ ` ≤ q and L ∈ N. Let P = (Pn)n∈N denote the property of being not
(p, `, L)-list-recoverable. That is, a code C ⊆ Σn satisfies Pn if it contains a (p, `, L)-bad
matrix. We now show that P is a symmetric property.
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Clearly, P is monotone-increasing, and its minimal set is exactly the set of (p, `, L)-
bad matrices, which we denote Mn ⊆ Σn×L

distinct. It follows immediately that P is L-local.
Furthermore since the left-hand side of (6) is invariant to row-permutations of B, the
collection Mn is row-permutation invariant, and so P is row-symmetric.

Fact 16 says that we can write Mn =
⋃
τ∈Tn

p,`,L
Mτ for some Tnp,`,L ⊆ T nL . Indeed, (6)

yields the following description of T np,`,L: A type τ ∈ T nL belongs to Tnp,`,L if and only if there
exists a distribution ρ over ΣL ×

(Σ
`

)
such that, given (u,K) ∼ ρ, the following holds:

1. The distribution of u is τ .
2. For every 1 ≤ j ≤ L, it holds that Pr [uj /∈ K] ≤ p.
3. n · ρ((u,K)) ∈ N for every u and K.
To see this, let ρ be the joint distribution (Bi,Ki) for i uniformly sampled from [n], where
B and K are as in (6). Note that ρ must satisfy the three conditions above. In the other
direction, it is not hard to see that any such distribution ρ as above gives rise to a matrix of
type τ , satisfying (6).

We next construct a convex approximation for P. Let Tp,`,L denote the set of all types
τ ∈ TL for which there exists a distribution ρ satisfying Conditions 1 and 2, but not necessarily
Condition 3:

I Definition 21. Let 1 ≤ ` ≤ 1, L ∈ N and 0 ≤ p ≤ 1. Let τ be a distribution over ΣL. We
say that τ belongs to the set Tp,`,L if there exists a distribution ρ over ΣL ×

(Σ
L

)
such that:

1. If (u,K) ∼ ρ then the vector u is τ -distributed.
2. For every 1 ≤ j ≤ L it holds that

Pr(u,K)∼ρ [uj /∈ K] ≤ p.

Clearly, Tnp,`,L ⊆ Tp,`,L for all n ∈ N. It is also immediate to verify that Tp,`,L is
permutation-closed.

I Lemma 22. The set Tp,`,L is convex.

Proof. Let τ0, τ1 ∈ Tp,`,L. Let t ∈ [0, 1] and let τt denote the mixture distribution (1− t)τ0 +
tτ1. Let ρ0 and ρ1 be distributions over ΣL ×

(Σ
`

)
, satisfying Conditions 1 and 2 for τ0 and

τ1, respectively. Let ρt be the mixture distribution (1− t)ρ0 + tρ1. It is straightforward to
verify that ρt satisfies Conditions 1 and 2 with respect to τt. Hence, τt ∈ Tp,`,L. J

The following lemma, proven in the appendix of the full version of this paper, shows that
Tp,`,L satisfies (19). Namely, every type in Tp,`,L can be realized with low error as a type
from Tnp,`,L, for large enough n.

I Lemma 23.

lim
n→∞

sup
τ∈Tp,`,L

d∞(τ, Tnp,`,L) = 0.

We record the results of this section in the following corollary.

I Corollary 24. Being not (p, `, L)-list-recoverable is a symmetric property. Furthermore,
Tp,`,L is a convex approximation for this property.
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3 Characterization theorem

In this section, we prove our main characterization theorem, Theorem 1, which is formally
stated below as Theorem 30. Before stating and proving the theorem, we record a few useful
lemmas.

I Lemma 25 ([2, Lemma 2.2]). Let τ ∈ T nb . Then,

qH(τ)n · n−Oq,b(1) ≤ |Mτ | ≤ qH(τ)n.

I Lemma 26. Let M ⊆ Σn×b. Then,

|M | ≤ nq
b

· qn·maxB∈M H(τB).

Proof. Let T = {τB | B ∈M}. Note that

M ⊆
⋃
τ∈T

Mτ .

Thus,

|M | ≤
∑
τ∈T
|Mτ | ≤ |T | ·max

τ∈T
|Mτ | ≤ |Tn,b| ·max

τ∈T
|Mτ |.

The claim follows from (2.3) and Lemma 25. J

We say that a type is a histogram type if it is indifferent to the ordering of a given vector’s
entries, and thus, only cares about the histogram of the vector. Formally, we make the
following definition.

I Definition 27 (Histogram type). A type τ ∈ Tb is called a histogram-type if τ(u) = τ(π(u))
for every u ∈ Σb and every permutation π : [b]→ [b].

I Lemma 28. Let T ⊆ Tb be a closed, permutation-closed, convex, set of types. Then there
exists a histogram type τ ∈ T such that H(τ) = maxτ ′∈T H(τ ′).

Proof. Since T is closed and bounded, it is compact. Thus, there is some τ ′ ∈ T such that
H(τ ′) is maximal. Given a permutation π : [b]→ [b], let π(τ ′) denote the distribution of the
vector π(u), where u ∼ τ . Let

τ =
∑
π∈Symb

π(τ ′)
b! .

Since T is permutation-closed and convex, τ ∈ T . By concavity of entropy,

H(τ) ≥
∑
π∈Symb

H(π(τ ′))
b! =

∑
π∈Symk

H(τ ′)
b! = H(τ ′).

Thus, τ has maximum entropy in T , and is clearly a histogram-type. J

The following technical lemma, proven in the appendix of the full version, facilitates our
use of an approximation for a set of types.

I Lemma 29. Let τ, τ ′ ∈ Tb such that d∞(τ, τ ′) ≤ ε. Then,

|Hu∼τ (u | uI)−Hu∼τ ′(u | uI)| ≤ Ob,q
(
ε · log 1

ε

)
for any I ⊆ [b].
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We now prove that every monotone-increasing, local and row-symmetric property with a
convex approximation is sharp for random codes. Furthermore, we identify the threshold
rate as the maximal entropy in the approximating set.

I Theorem 30. Fix b ∈ N. Let P = {Pn}n∈N be a symmetric property with locality parameter
b, and let T be a convex approximation for P. Denote R∗ = 1− maxτ∈T H(τ)

b . Fix ε > 0 and
let R ∈ [0, 1]. The following now holds.
1. If R ≤ R∗ − ε then

lim
n→∞

Pr [CnRC(R) satisfies P] = 0.

2. If R ≥ R∗ + ε then

lim
n→∞

Pr [CnRC(R) satisfies P] = 1.

Proof. For b ∈ N and a matrix B ∈ Σb×n
distinct, let XB be an indicator variable for the event

that B ∈ CnRC(R). For a set M ⊆ Σb×ndistinct, let XM =
∑
B∈M XB . By Fact 5,

E [XM ] = |M | · q−n(1−R)b.

Let Mn denote the minimal set for Pn and let Tn = {τB | B ∈Mn}.
The first statement now follows from Markov’s inequality, (3), and Lemma 26:

Pr [C satisfies P] = Pr [∃B ∈Mn B ⊆ CnRC(R)]
≤ Pr [XM ≥ 1]
≤ E [XM ]

= |M | · q−n(1−R)b

≤ nq
b

· qn·maxτ∈Tn H(τ) · q−n(1−R)b

≤ nq
b

· qn·maxτ∈T H(τ) · q−n(1−R)b

≤ nq
b

· q−nbε ≤ e−Ω(n).

Above, we used the fact that Tn ⊆ T .
For the second statement, let τ ∈ T have maximum entropy. By definition 19, T is closed

and permutation-closed, in addition to being convex. Consequently, due to Lemma 28, we
may assume that τ is a histogram-type. Let τn ∈ Tn such that d∞(τ, τn) = on→∞(1). Our
plan is to use a second-moment argument to show that CnRC(R) likely contains a matrix of
type τn.

By (3) and Lemma 25,

E
[
XMτn

]
= |Mτn |q−n(1−R)b ≥ q(H(τn)−(1−R)b)+o(1) ≥ q(H(τ)−(1−R)b)+o(1).

We turn to bounding the variance of XMτn
. Fact 5 yields

Var
[
XMτn

]
=

∑
B,B′∈Mτn

(Pr [XB = XB′ = 1]− Pr [XB = 1] Pr [XB′ = 1])

=
∑

B,B′∈Mτn

(
q−n(1−R)(2b−α(B,B′)) − q−2n(1−R)b

)
≤

∑
B,B′∈Mτn

α(B,B′)≥1

q−n(1−R)(2b−α(B,B′))

where α(B,B′) is the number of columns in B′ that also appear in B.
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In order to bound this sum, we need an estimate on the number of pairs B,B′ with a
given α(B,B′). For 0 ≤ r ≤ b, let

Wr = {(B,B′) | B,B′ ∈Mτn and α(B,B′) = r}

and denote Sr = {τB‖B′ | (B,B′) ∈Wr}. Here, B‖B′ is the n× 2b matrix whose first (resp.
last) b columns are B (resp. B′). By Lemma 26,

|Wr| ≤ n2qb · qnmaxν∈Sr H(ν).

Let (B,B′) ∈ Wr and let ν = τB‖B′ . Assume without loss of generality that the first
r columns of B are identical to the first r columns of B′. Let u ∼ ν. Note that, since
B,B′ ∈Mτn , the random variables u[b] and u[2b]\[b] are both τn-distributed. Hence,

H(ν) = H(u) = H(u[2b]\[b]) +H(u[b] | u[2b]\[b]) = H(τn) +H(u[b] | u[2b]\[b])
≤ H(τn) +H(u[b] | u[r]) = H(τn) +H(u[b]\[r] | u[r]).

Lemma 29 yields

H(u[b]\[r] | u[r]) ≤ Hv∼τ (v[b]\[r] | v[r]) + o(1)

=
b∑

i=r+1
Hv∼τ (vi | v[i−1]) + o(1)

=
b∑

i=r+1
Hv∼τ (vb | v[i−1]) + o(1),

where the last equality is due to τ being a histogram-type. Writing

f(r) =
b∑

i=r+1
Hv∼τ (vb | v[i−1]),

we conclude that

H(ν) ≤ f(r) +H(τ) + o(1),

so that

|Wr| ≤ q(f(r)+H(τ))n+o(n),

and

Var
[
XMτn

]
≤

b∑
r=1
|Wr| · q−n(1−R)(2b−r) ≤

b∑
r=1

q(f(r)+H(τ)−(1−R)(2b−r))n+o(n)

≤ max
1≤r≤b

q(f(r)+H(τ)−(1−R)(2b−r))n+o(n).

By Chebyshev’s inequality,

Pr
[
XMτn

= 0
]
≤

Var
[
XMτn

]
E
[
XMτn

]2 ≤ max
1≤r≤b

q(f(r)−H(τ)+r(1−R))n+ob,q(n).

We claim that (f(r))br=0 is a convex sequence. Indeed,

f(r − 1) + f(r + 1)− 2f(r) = Hv∼τ (vb | v[r−1])−Hv∼τ (vb | v[r]) ≥ 0.
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Therefore, the maximum in the right-hand side of (3) is achieved either by r = 1 or r = b. In
the former case, note that

f(1) =
b∑
i=2

Hv∼τ (vb | v[i−1]) =
b∑
i=2

Hv∼τ (vi | v[i−1]) = Hv∼τ (v | v1)

≤ H(τ)−Hv∼τ (v1) ≤ H(τ) · b− 1
b

.

In the last inequality above, we used the fact that Hv∼τv1 = Hv∼τvi for all i ∈ [b], due to τ
being a histogram-type. Thus, for r = 1, the corresponding exponent in (3) is

(f(1)−H(τ) + (1−R))n ≤
(

(1−R)− H(τ)
b

)
n ≤ −εn.

In the latter case, since f(b) = 0, the exponent is

(−H(τ) + (1−R)b)n ≤ −εbn.

We conclude that

Pr [CnRC(R) does not satisfy P] ≤ Pr(XMρ
= 0) ≤ q−εn+o(n). J

Applying the framework to list-recovery

In the rest of the paper, we use Theorem 30 to compute the threshold rate for (p, `, L)
list-recovery in several different settings. In order to do that, we set up a few useful
definitions.

I Definition 31 (β(p, `, L) and T̄p,`,L). Given L ∈ N, ` ≤ L and p ∈ [0, 1), let T̄p,`,L denote
the set of all histogram-types in Tp,`,L. Let

β(p, `, L) = max
τ∈T̄p,`,L

H(τ).

Theorem 30 allows us to characterize the threshold rate for (p, `, L)-list recovery in terms
of β(p, `, L):

I Corollary 32. Fix L ∈ N, ` ≤ L and p ∈ [0, 1). The threshold rate for (p, `, L) list-recovery
is

R∗ = 1− β(p, `, L)
L

.

Proof. By Corollary 24 and Lemma 28,

β(p, `, L) = max
τ∈Tp,`,L

H(τ).

The claim now follows from Corollary 24 and Theorem 30. J

Finally, we introduce the following notation, which will be used for the rest of the paper.

I Definition 33 (P`(·) and Dd,`,L). Fix ` ≤ L. Given a vector v ∈ ΣL let

P`(v) = min
A∈(Σ

`)
|{i ∈ [L] | vi /∈ A}|

We use the notation Dd,`,L = {v ∈ ΣL | P`(v) = d}.
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4 Bounds on the threshold rate for noisy list-recovery

The main result in this section is an estimate of β(p, `, L) (Proposition 37 below), which
leads to an estimate on the threshold rate for list-recovery (Corollary 38). This estimate is
very sharp when q logL

L is small; in subsequent sections we will derive estimates which are
more precise for certain parameter regimes.

Before coming to these bounds, we begin with a few useful lemmas that bound |Dd,`,L|
and characterize T̄p,`,L.

I Lemma 34. Let r = 1− `
q and s = d

L . Suppose that s < r. Then,

(
q

rq

)(
L

sL

)( (1− s)L
(1− s)L
(1− r)q , . . .

(1− s)L
(1− r)q︸ ︷︷ ︸

`

)(
sL

sL

rq
, . . .

sL

rq︸ ︷︷ ︸
q−`

)
≤

|Dd,`,L| ≤
(
q

rq

)
·

(
sL∑
i=0

(
L

i

)
· ((1− r)q)L−i · (rq)i

)
.

Using Stirling’s approximation, Lemma 34 immediately yields the following.

I Corollary 35. In the setting of Lemma 34, suppose that s < r. Then,

logq |Dd,`,L| = L(1−DKLq (s ‖ r))±O(q logL),

where the underlying constant is universal.

In order to compute β(p, `, L), we will make use of the following characterization of
T̄p,`,L (Definition 31). Intuitively, this lemma says that a histogram-type τ is bad for
(p, `, L)-list-recovery if and only if it has many symbols inside the most frequent ` symbols in
expectation.

I Lemma 36. Let 1 ≤ ` ≤ q, L ∈ N and 0 ≤ p ≤ 1. Let τ be a distribution over ΣL and
suppose that τ is a histogram-type. Then, τ ∈ T̄p,`,L if and only if

E
u∼τ

[P`(u)] ≤ pL.

Now, we come to our estimate on the threshold rate for (p, `, L) list-recovery in the regime
where L→∞ and q ≤ o( logL

L ). We begin with the following proposition, which bounds the
quantity β(p, `, L).

I Proposition 37. Let r = 1− `
q and suppose that p ≤ r. Then,

β(p, `, L) = L(1−DKLq (p ‖ r))±O(q logL).

I Corollary 38. The threshold rate for (p, `, L) list-recovery of a random code is

R∗ =

DKLq (p ‖ r)±O
(
q logL
L

)
if p < r

0 if p ≥ r,

where r = 1− `
q .
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I Remark 39. To make sense of the threshold in Corollary 38, one can verify the identity

DKLq (p ‖ 1− `/q) = 1− p logq
(
q − `
p

)
− (1− p) logq

(
`

1− p

)
.

Substituting ` = 1, we find DKLq (p ‖ 1− 1/q) = 1− hq(p), agreeing with the list decoding
capacity theorem. For larger `, this expression agrees with the list-recovery capacity theorem,
as stated in e.g. [14].

5 Zero-error list-recovery and perfect hashing codes

In this section we analyze the threshold rate for zero-error list-recovery (that is, when p = 0),
and give a more precise version of Corollary 38 in this setting.

I Lemma 40. Let p∗ = |D0,`,L|/qL. The threshold rate for (0, `, L) list-recovery of a random
code is

R∗ =
− logq(p∗)

L
.

We use this to compute the threshold rate for a random code be to a perfect hash code,
which is the same as being (0, q − 1, q) list-recoverable.

I Corollary 41. The threshold rate for (0, q − 1, q) list-recovery of a random code is

R∗ = 1
q

logq
(

1
1− q!/qq

)
.

The corollary follows from the lemma in a straightforward manner by verifying that
|D0,q−1,q| = qq − q!.

6 List of two decoding of random and random linear codes

In this section, we study the list-of-2 decodability of two random ensembles of codes. In
detail, we precisely compute the threshold rate for (p, 3)-list-decoding for random codes
and for random linear codes. Denote by P the monotone increasing property of not being
(p, 3)-list-decodable. Note that we cannot immediately apply Corollary 38, as the error term
of O

(
q logL
L

)
is not negligible in this regime. We specialize to the case of q = 2, and recall

our convention that log denotes the base-2 logarithm. Recall from the introduction that
whenever p < 1/4 there exist (p, 3)-list-decodable codes with positive rate, but whenever
p > 1/4 the only (p, 3)-list-decodable codes are of bounded size, independent of n.

Our main result of this section is a demonstration that the list-of-2 decoding threshold
rate for random linear codes is in fact greater than the corresponding threshold rate for
random codes. This result demonstrates that our techniques are precise enough to allow us
to sharply delineate between different natural ensembles of codes.

In the following, CnRLC(R) denotes a random linear code of block length n and rate R.
We define the threshold rate for random linear codes in a manner analogous to the definition
for random codes:

RnRLC(P) :=
{

sup
{
R ∈ [0, 1] : Pr [CnRLC(R) satisfies P] ≤ 1

2
}

if there is such an R
0 otherwise.
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Figure 1 The threshold rate RRC (red) for (p, 3)-list-decodability of random codes, and the
threshold rate RRLC (blue, dashed) for (p, 3)-list-decodability of random linear codes. Note that,
uniformly over p, random linear codes have the greater threshold rate.

I Theorem 42. Let p ∈ (0, 1/4).
1. The threshold rate for (p, 3)-list-decoding for random codes satisfies

lim
n→∞

RnRC(P) = 1− 1 + h(3p) + 3p log 3
3 .

2. The threshold rate for (p, 3)-list-decoding for random linear codes satisfies

lim
n→∞

RnRLC(P) = 1− h(3p) + 3p log 3
2 .

Note that the threshold rate for random linear codes is greater than the threshold rate
for random codes, uniformly over p ∈ (0, 1/4). See Figure 1.

7 Computing the threshold rate for list-recovery efficiently

In the previous sections, we gave precise analytical expressions for the threshold rate for
list-recovery in certain parameter regimes. However, there are some regimes where these
bounds aren’t precise. In this section, we consider the question of computing the threshold
rate R∗ algorithmically, given p, ` and L. We use tools from the study of entropy-maximizing
distributions to develop a simple binary-search-based procedure to pinpoint R∗ up to
arbitrarily small additive error.

We begin with a lemma that shows that we can compute the cardinality |Dd,`,L| efficiently;
we will use this as a subroutine in our final algorithm.

I Lemma 43. Given 0 ≤ d ≤ L and 1 ≤ ` ≤ q, the cardinality |Dd,`,L| can be computed in
time

O ((L+ 1)q + poly(q, L)) .

We recall the following standard facts from the theory of entropy-maximizing distributions.
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I Lemma 44 ([17, Sec. 3]). Let Ω be a finite nonempty set, f : Ω→ R and t ∈ R. Let St
denote the set of all distributions τ over Ω such that Eω∼τ [f(ω)] = t. Let

F (t) = max
τ∈St

H(τ).

Then

F (t) = inf
α∈R

[
logq

(∑
ω∈Ω

qα·f(ω)

)
− αt

]
.

Furthermore:
1. If τ is the entropy maximizing distribution, then τ(ω) = τ(ω′) for every ω, ω′ ∈ Ω such

that f(ω) = f(ω′).
2. Let t∗ = Eω∼Uniform(Ω) [f(ω)]. Then, F (t∗) = log |Ω|, and F (t) is nondecreasing (resp.

nonincreasing) in the range t < t∗ (resp. t > t∗).
3. The function

logq

(∑
ω∈Ω

qα·f(ω)

)
− αt

is convex in α.

I Lemma 45. Let ` ≤ q, L ∈ N and 0 < p ≤ 1, and let t∗ = q−L ·
∑L
d=0 d · |Dd,`,L|. Then,

β(p, `, L) =

infα∈R
[
logq

(∑L
d=0 |Dd,`,L| · qαd

)
− αpL

]
if pL < t∗

L if pL ≥ t∗.

I Remark 46. In general, t
∗

L is slightly smaller than 1 − `
q . Thus, Lemma 45 extends the

range in which the threshold is 0 from
[
1− `

q , 1
]
(Corollary 38) to [t∗, 1].

I Corollary 47. There is an algorithm, that, given p, `, L and ε > 0, computes the threshold-
rate for (p, `, L)-list-recovery, within an additive error of ε. The runtime of this algorithm is
O
(
(L+ 1)q + poly(q, L, log 1

ε , β(p)
)
, where

β(p) =
{

log 1
p if p > 0

1 if p = 0.
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