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—— Abstract

A line of work initiated by Fortnow in 1997 has proven model-independent time-space lower bounds

for the SAT problem and related problems within the polynomial-time hierarchy. For example,
for the SAT problem, the state-of-the-art is that the problem cannot be solved by random-access
machines in 7° time and n°™") space simultaneously for ¢ < 2 cos(%) ~ 1.801.

We extend this lower bound approach to the quantum and randomized domains. Combining
Grover’s algorithm with components from SAT time-space lower bounds, we show that there are
problems verifiable in O(n) time with quantum Merlin-Arthur protocols that cannot be solved in

n° time and n°® space simultaneously for ¢ < %

~ 2.366, a super-quadratic time lower bound.
This result and the prior work on SAT can both be viewed as consequences of a more general formula
for time lower bounds against small-space algorithms, whose asymptotics we study in full.

We also show lower bounds against randomized algorithms: there are problems verifiable in
O(n) time with (classical) Merlin-Arthur protocols that cannot be solved in n® randomized time and
O(logn) space simultaneously for ¢ < 1.465, improving a result of Diehl. For quantum Merlin-Arthur

protocols, the lower bound in this setting can be improved to ¢ < 1.5.
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1 Introduction

A flagship problem in computational complexity is to prove lower bounds for the SAT problem.
While it is conjectured that no polynomial-time algorithms exist for SAT (in other words,
P # NP), not much progress has been made in that direction. Furthermore, several significant
barriers towards such a separation are known [3, 22, 1]. Therefore, approaches have centered
around proving weaker lower bounds on SAT first.
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A natural preliminary step in showing that no polynomial-time algorithm can decide
SAT is showing that no algorithms of logarithmic space can decide SAT, or in other words,
showing that L £ NP. Unlike the P vs. NP problem, the aforementioned complexity barriers
(arguably) do not apply as readily to L vs. NP, and concrete progress has been made.!

Following a line of work [11], R. Williams [25] proved that SAT (equivalently? NTIME[n],
nondeterministic linear time) cannot be decided by algorithms (even with constant-time
random access to their input and storage) using both n°() space and n¢ time, for ¢ <

7
the separation L # NP would follow immediately. In the following we use TS[n°] to denote

the class of languages decidable by n°(")-space algorithms using n° time.

All the aforementioned work builds on the alternation-trading proofs approach [27]. This
approach combines two elements: a speedup rule that reduces the runtime of an algorithm
by “adding a quantifier” (3 or V) to an alternating algorithm, and a slowdown rule that
uses a complexity theoretic assumption (for example, SAT € TS[n¢]) to “remove a quantifier”
and slightly increase the runtime of the resulting algorithm. Both rules yield inclusions of
complexity classes. Our ultimate goal is to contradict a time hierarchy theorem (e.g., proving
n'% time computations can be simulated in n% time) by applying these rules in a nice order,
and with appropriately chosen parameters.

One may hope that the constant ¢ from [25] can be made arbitrarily large, and eventually
show that L # NP. Unfortunately, in [7], R. Williams and S. Buss showed that no alternation-
trading proof based purely on the speedup and slowdown rules from that line of work could

2cos(Z) ~ 1.802. If one could show the same lower bound for arbitrarily large constant c,

improve on the exponent of [25].

Nevertheless, there is hope that alternation-trading proofs might yield stronger lower
bounds for problems harder than SAT. For example, R. Williams [27] showed that the
YoP-complete problem ¥3SAT is not in TS[n¢], for ¢ < 2.903. In this paper, we make
further progress in this direction. In particular, we focus on the quantum and randomized
analogues of NTIME[n], QCMATIME[n] and MATIME[n], obtaining stronger lower bounds
against both classes.> We believe our lower bound for QCMATIME[n] (Main Theorem 2)
to be particularly interesting because it yields a nontrivial separation between a quantum
complexity class and a classical complexity class without the need for oracles.* While there
are several results [6, 21, 24] demonstrating the power of quantum computation against very
restricted low-depth classical circuit models (NC®, AC?, ACY[2]) which also imply strong oracle
separation results, our result appears to be the first non-trivial lower bound for a quantum
class against the much more general random-access machine model (with simultaneous time
and space constraints).

1.1 Our Results

1.1.1 Generic slowdown rules and a lower bound for QCMATIME|[n]

For showing stronger lower bounds on QCMATIME(n|, our key observation is that the
stronger assumption QCMATIME[n] C TS[n¢] (compared to NTIME[n] C TS[n]) can be
applied to construct a stronger conditional slowdown rule. Formally, we generalize the

1
2
3

For example, there exist oracles relative to which the lower bounds in the following paragraph are false.
At least, up to polylogarithmic factors.

Recall that QCMA (quantum classical Merlin-Arthur) is essentially NP with a quantum verifier and MA
(Merlin-Arthur) is essentially NP with a randomized verifier.

By “nontrivial”, we mean a separation that does not immediately follow from known classical results.
For example, QCMATIME([n] € TS[n'-®] follows immediately from the classical lower bound NTIME[n] €
TS[n"8], but our result does not.

4
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previous framework of alternation-trading proofs by introducing the notion of a generic
slowdown rule (defined formally in Definition 11), which are slowdown rules parameterized
by a constant a € (0, 1] controlling the runtime cost associated with removing a quantifier.
Smaller values of a correspond to stronger slowdown rules. We prove the following theorem
showing how generic slowdown rules imply time-space lower bounds.

» Main Theorem 1. Fiz « € (0,1] and let C be a complexity class. Let ry be the largest root
of the polynomial P, () := o?x® — ax? — 2ax + 1. If C C TS[n¢] implies a generic slowdown

rule with parameters a and ¢, then C € TS[n] for ¢ < ry.

The assumption NTIME[n] C TS[n°| implies a slowdown rule with & = 1. The previous
NTIME[n] € TS[n] for ¢ < 2cos(%) lower bound [25] becomes an immediate corollary of
Main Theorem 1 if we take C = NTIME[n]. The stronger slowdown rule that we obtain from
the stronger assumption QCMATIME[n] C TS[n¢] has a = 2, which allows us to derive lower
bounds for larger values of c. In particular, we obtain the following lower bound for Quantum
(Classical) Merlin-Arthur linear time.

» Main Theorem 2. QCMATIME[n] € TS[n¢] for ¢ < 33 ~ 2.366.

The main advantage of the generic slowdown approach and Main Theorem 1 is that
improvements in slowdown rules translate immediately into stronger bounds against TS.
Figure 1 shows how the lower bound exponent we obtain changes as o does. As expected,
the lower bound exponent goes to infinity as « approaches zero, but we see that even modest
improvements in « yield substantially stronger bounds. We discuss potential applications
further in Section 1.3. In the full version of the paper, we show that this dependence between
the generic slowdown parameter and lower bound exponent is “optimal” for the tools we use,
extending the optimality theorem of Buss and Williams [7] to the general case while also
providing a shorter proof of their optimality theorem.

15
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Figure 1 The lower bound exponent as a function of the generic slowdown parameter a.

1.1.2 Lower bounds against randomized logspace

We also prove lower bounds against randomized logspace with two-sided error. While the
techniques used in this setting are similar, the results do not follow from Main Theorem 1,
so we state them separately. When discussing the randomized setting, we will slightly abuse
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notation by referring to the class of languages decidable by a logspace machine in n° time
as BPTS[n¢].> We prove lower bounds for both linear-time Merlin-Arthur protocols and
linear-time Classical-Merlin Quantum-Arthur protocols.

» Main Theorem 3. Let | ~ 1.465 be the largest root of the polynomial 3 — x? — 1. Then,
MATIME[n] Z BPTS[n] for ¢ < r1. Furthermore, QCMATIME[n] € BPTS[n®] for ¢ < 1.5.

Prior to this work, the state-of-the-art, due to [10, 8], was that MATIME[n] € BPTS[n¢]
for ¢ < /2 & 1.414. Observe that MATIME[t] C PPTIME[t?] because we can amplify Arthur’s
completeness and soundness to (1 — 27100t 271008) wwhile increasing the runtime of the verifier
by a factor of O(t), and we can union bound over Merlin’s strings.® A similar argument,
coupled with the quasilinear-time simulation of bounded-error quantum computation with
unbounded-error random computation of [23], shows that QCMATIME[t] C PPTIME[t?].
Therefore, pushing either of the lower bound exponents in Main Theorem 3 to beyond
2 would yield superlinear bounds for decision versions of counting-type problems (e.g.
MAJ-SAT) against randomized logspace. (Note it is known that #SAT requires O(n?) time
for randomized logspace [17].) While these results are admittedly incremental improvements,
they use some different ideas compared to previous works, and may be amenable to further
improvement (see Section 1.3 for more details).

The lower bounds of Main Theorem 2 and Main Theorem 3 actually hold for complexity
classes that are presumably even “smaller” than QCMATIME[n] and MATIME|[n]; we describe
these further in Section 2.

1.2 Techniques
1.2.1 Alternation-trading proofs

Many time-space lower bounds for SAT and related problems are proved via alternation-
trading proofs, which give a chain of inclusions of complexity classes. We will formally define
alternation-trading proofs in Section 2; for now, let us give a cursory explanation. An
alternation-trading proof consists of a sequence of containments of alternating complexity
classes. An alternating complexity class can be thought of as a “fine-grained” version of ;P
or II;P: it is a complexity class parameterized by (k + 1) positive constants bounding the
length of the output of each quantifier and the verifier runtime. For example,

(In?)(Vn?)TS[n’]

is an alternating complexity class. This notation refers to the class of languages decided by a
Yo machine where, on inputs of length n, the two quantifiers each quantify over O(nQ) bit
strings and the verifier runtime is O(n®).

In an alternation-trading proof, there are two main ways of passing from one alternating
complexity class to the next. The first is a speedup rule, which adds a quantifier to the
class, and decreases the verifier runtime. For example, a speedup rule might yield an inclusion
of the form

.. TSR C ... (Qn*)(=Qxzlog n) TS[n~*] (1)

5 We call this a “slight abuse” because we defined TS to be a class of languages decided using n°1) space,
whereas BPTS is defined with respect to O(logn) space.

6 By a union bound, there is a gap between the case where all 28 Merlin strings have a
accepting, and the case where a single Merlin string accepts with probability at least 1

27100 chance of

_ 9—100¢
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for some constant 0 < = < d and quantifier @ € {3,V}, where —Q denotes the opposite
quantifier and the ... refer to other quantifiers. Two important points to note are that (a)
the speedup rule is generally an unconditionally true inclusion and (b) the second quantifier
has only O(logn) bits.

The second major component of alternation-trading proofs is a slowdown rule, which
removes a quantifier and increases the verifier runtime. We will use slowdown rules that
hold conditioned on complexity-theoretic assumptions (that we will later contradict). For
example, the slowdown rule used to prove lower bounds on NTIME[n] can be informally
stated as follows: assuming NTIME[n] C TS[n°] for some ¢ > 0,

(@) (=Qn®)TS[n?] C ... (Qn®) TS[nemax(a:b.d)) (2)

where again @ € {3,V} and =@ denotes the opposite quantifier. This rule follows from an
application of padding/translation.

While the speedup and slowdown rules are themselves simple, the existing lower bounds
on NTIME[n| arise by applying these rules in a long intricate sequence, with appropriately
chosen parameters for the speedup rule applications. Ultimately, we aim to use slowdown and
speedup rules to exhibit a sequence of inclusions that shows (for example) that NTIME[n?] C
NTIME[n?] for d’ < d, contradicting the nondeterministic time hierarchy theorem and
demonstrating that our initial assumption must have been false.

All time-space lower bounds for SAT against random-access models of computation,
including the state-of-the-art bound [25], use an alternation-trading proof. This particular
proof will be a starting point for this work.

1.2.2 Generic slowdown rules

We start by introducing the notion of a generic slowdown rule. Generic slowdown rules
are parameterized by a constant a such that 0 < a < 1, along with a constant ¢ > 1 that
generally comes with an assumption being made. Informally, generic slowdown rules allow
us to — under an appropriate assumption — prove conditional inclusions of the form

. (QnM)(=Qn")TS[n?] C ... (Qn®)TS[poemax(abd)],

Observe that when o = 1 we recover (2), but when « < 1 we obtain stronger inclusions.

In Main Theorem 1, we use generic slowdowns in the alternation-trading proof from [25]
and characterize the lower bound we obtain as a function of the parameter « in our generic
slowdown rule. While the core idea of this proof is essentially the same as the presentation
of the proof in [27] (and the result can be thought of as “putting « everywhere”), our proof
technique is somewhat different. In the full version of the paper, this different approach
yields a shorter proof of optimality than the one presented by Buss and Williams [7].

1.2.3 A generic slowdown rule from Grover search

In order to apply Main Theorem 1 to ¢ = QCMATIME[n] and obtain a better lower bound for
QCMA, we show that the assumption QCMATIME[n] C TS[n¢] implies a generic slowdown
rule for a = % Recall that Grover’s algorithm lets us search a space of size N with only
O(V/N) quantum queries. We obtain our stronger slowdown rule by showing that Grover’s
algorithm can be used to more efficiently remove the (xlogn)-bit quantifiers that arise
after applications of the speedup rule, such as (1). In the NTIME vs TS setting, there are

two ways to remove an (zlogn)-bit quantifier. First, we could remove it with an O(n®)
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multiplicative blowup, by having the verifier exhaustively search through all strings of length
xlogn. However, naively running n® trials of an n¢~* computation would take n? time,
and our simulation would end up no faster than it was initially. Second, we may try to use
a slowdown rule as in (2), but this incurs a runtime cost that depends on ¢. This option
becomes expensive as we try to increase ¢ and prove stronger lower bounds. Our key insight
is that if our verifier is allowed to be quantum, Grover’s algorithm can be applied to perform
this quantifier elimination in only O(n®/?) extra time overhead, independent of ¢. Then,
by applying the assumption QCMATIME[n] C TS[n¢], we can remove this quantum verifier
along with the quantifier (3n®) and ultimately demonstrate the inclusions

(@) (@) TS [
C ... (Qn")(—Qn")(Qn")(~Qx log n) TS[n~*] Speedup Rule
C...(Qn*)(—Qn®)(Qn*)BQTIME[n4~ 2] Grover’s Algorithm
C...(Qn*)(~Qn®)TS[pemax®ed=3)] Assumption on QCMATIME|[n]

Letting x := 23—d, we obtain a generic slowdown rule with a = %

1.2.4 Lower bounds against randomized logspace

Some obstacles arise when trying to prove Main Theorem 3, which shows lower bounds against
BPTS. The main problem is that the usual speedup rules for deterministic computation
do not tell us how to use quantifiers to speedup randomized small-space computations.
Fortunately, this particular issue was resolved by Diehl and Van Melkebeek [10], who gave
a speedup rule for small-space randomized machines by coupling Nisan’s space-bounded
derandomization [20] with the Sipser-Gécs-Lautemann theorem [16]. This speedup rule,
while somewhat less efficient than the speedup rule for deterministic machines, is still enough
to obtain interesting superlinear time lower bounds. Applying this speedup rule, similar
arguments as used in Main Theorem 1 yield the desired lower bounds.

1.3 Future Work

As mentioned earlier, the main advantage of the generic slowdown framework and Main
Theorem 1 is that improvements in slowdown rules translate immediately into stronger
bounds against TS. To this end, we highlight two particularly interesting directions.

1. Is it possible to prove a “quantum speedup rule”, whereby the runtime of quantum
computations could be reduced by adding quantifiers (possibly over quantum states)?
Presently, we are forced to use a slowdown rule to remove a quantum verifier from an
alternating complexity class as soon as it is added. Having a quantum speedup rule would
enable us to work with the quantum verifier before removing it, drastically widening the
scope for potential alternation-trading proofs. It’s not hard to show that even certain
weak forms of a quantum speedup rule would improve the generic slowdown parameter «
we can obtain in the QCMA vs. TS setting. Speedup rules also have applications outside
complexity theory. For example, versions of speedup rules for low-space computation
appear in the construction of delegation schemes in cryptography [4, 13, 14], and quantum
speedup rules could play a part in extending such work to the quantum domain.
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2. Can we use the ideas of this paper to improve existing lower bounds on counting-type (#P
related) problems, such as #SAT and MAJ-SAT? For example, could our super-quadratic
time lower bound for QCMATIME[n] be somehow applied to obtain super-quadratic lower
bounds for #SAT as well? Because

MATIME[t] € QCMATIME[t] C PPTIME[t***()]

as discussed in Section 1.1.2, lower bounds on QCMATIME[n] and MATIME[n] do translate
to some lower bounds for counting problems against small-space. However, the known
reductions from classes like MA and QCMA to counting problems incur a quadratic
blowup. Furthermore, there is evidence that a quadratic blowup is necessary for black-box
techniques [8, 9]. As such, it appears we must either improve the lower bound exponent,
or prove that we can bypass the quadratic blowup outside of black-box settings.

1.4 Organization

Section 2 covers relevant background, especially on alternation-trading proofs. In Section 3,
we study alternation-trading proofs with generic slowdowns and prove Main Theorem 1. In
Section 4, we use Grover’s algorithm to prove Lemma 30, allowing us to obtain a generic
slowdown with a = % and prove Main Theorem 2. In Section 5, we prove Main Theorem 3.

2 Preliminaries

We assume familiarity with classical complexity and quantum computing on the levels of [2]
and [19], respectively.

2.1 Alternation-Trading Proofs

We start by defining various time-space complexity classes particular to this work. For a
simple example of an alternation-trading proof, see Section 2.1.1 of the full version.

» Definition 1. TS[t(n)] is the class of languages computable by a deterministic random-
access machine using space n°Y and time O(t(n)) on an n-bit input. BPTS[t(n)] is the class
of languages computable by a two-sided error randomized random-access machine using space
O(logn) and time O(t(n)) on an n-bit input.

Note that a randomized random-access machine with random access to its input has only
read-once access to its randomness.

» Definition 2. For positive constants {a;};>1 and {b;};>1 and quantifiers Q; € {3,V},
the alternating complexity class (Qn® )" (Qan®)% ... (Qn®)**TS[n? is the set of
languages decidable by a machine operating in the following fashion on an n-bit input.
Computation occurs in k + 1 stages. In the it stage, for 1 < i < k, the machine obtains
from Q; a string of length O(n%). It then uses an n°MV-space machine and O(n®) time to
compute O(n%) bits that are passed on to the next stage, taking as input the O(n®) bit string
from the quantifier and the O(nbifl)-bit input from the previous stage of computation. The
input to the first stage (i = 1) is the n-bit input string itself. The verifier at the end receives
an O(nP*)-bit input and uses a n°M-space machine and O(n?) time to compute the final
answer. The criteria for acceptance and rejection are analogous to those for XiP and 11 P.

Note that our notation obscures n°() factors everywhere, although we may occasionally
write out small factors for clarity. We index our b; differently from the notation of [27], as
our b; is their b; ;1. This difference will be immaterial.

50:7
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» Definition 3. Given an alternating complezity class (Q1n® )% ... (Qrn®)**TS[nd], we
will refer to n® as the verifier runtime.

» Lemma 4 (Speedup Lemma [18][15]). For every 0 < z < d,
TS[nd] C (Qn®)™**(®:V(=Qzx logn)  TS[n?].
Because our notation obscures n°™") factors, we may write this as
TS[n] € (Qn®)"X=) (~Qn) ! TS[n~). (3)

Proof. We will prove the lemma when @ = 3; the other case follows because TS[n?] is closed
under complementation. The idea is that we can break up the transcript of a deterministic
computation of length n into n® pieces each of length n?~*. Let M be an n? time machine
using n°M) space. On an n-bit input, our 35 machine will:

1. Existentially guess n® — 1 intermediate machine configurations Xi,..., X,=_1 of M,
each of size n°Y). These are passed, along with the input, to the next stage. This
corresponds to the (Qn®)™2*(®1) part of the class in (3).

2. Universally quantify over all intermediate configurations, picking one. There are n®
pieces so our quantifier only needs O(logn®) < O(n°) bits. If the quantifier picks the 7"
configuration, then we pass the state pair (X;_1,X;) (along with the input) on to the
next stage. We take X to be the initial configuration of M, and X,, to be the (WLOG
unique) accepting machine configuration. This corresponds to the (=Qn°)! part in (3).

3. Given input z and a pair of configurations (X,Y) of M, the verifier simulates M starting
at X for n%~7 steps, accepting if the configuration at the end is Y and rejecting otherwise.
This corresponds to the TS[n%?] part of (3).

This completes the proof. <

As an extension, we may derive the speedup rule that we will use throughout this paper.
» Corollary 5 (“Usual” Speedup Rule, [27]). For every 0 < x < d,

(@Qun™)" .. (Qun® ) TS[n]
C (anal)bl o (anmax(ak,x))max(bk,x)(QkJrlxlOg n)kaS[nd—ac].

Proof. Observe that we may merge together two quantifiers of the same type. Thus, taking
Q = Q in Lemma 4, we find that

(Qin™)" ... (Qrn)** TS[n]
C (@un™)" . (Qrn*)" (Qun® )™ (Qp 12 log )™ TS[n =]
C (anal)bl o (anmax(ak,x))max(bk,x)(Qk_HIlog n)bk-rs[ndfz]

where the second containment follows from Lemma 4. <

One might wonder whether we can do any better by also considering the containment
arising from taking ) = —-Qj in Lemma 4. It turns out that any alternation-trading proof
using this latter rule can be obtained with Corollary 5, and therefore we may safely ignore
this option. This is Lemma 3.2 of [27].

» Definition 6. We refer to the value x in an application of the speedup rule as the speedup
parameter for that application.
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In Section 5, we will work with alternating complexity classes with randomized space-
bounded verifiers, rather than deterministic ones. We will use a speedup rule due to Diehl
and van Melkebeek [10].

» Theorem 7 ([10]). BPTS[nd] C (Vn°)! (In®)™ax(=1) (Vzlogn)TS[nd—*].

A sketch of the proof is in the full version. Note again that our notation allows us to
hide n°™) factors. We chose not to obscure the last 2 logn bits, as they will be extremely
relevant later when we use Grover’s algorithm to remove O(logn)-bit quantifiers.

As before, we may express Theorem 7 as a rule that can be applied to alternating
complexity classes.

» Corollary 8 (The “Randomized” Speedup Rule). For every 0 < z < d,

(an‘“)b1 .. (an“"‘)b’*‘ BPTS[nd]
C (an‘“)b1 . (an“’“)bk (Qk“nz)ma"(b’“m)(Qka log n)b’“TS[ndfm}.

Note that unlike Corollary 5, which adds two quantifiers to speed up a deterministic
computation, Corollary 8 adds three”.
We've already introduced the usual slowdown lemma, which we restate for convenience.

» Lemma 9 (Slowdown Lemma [11]). Assume that NTIME[n] C TS[n°| for some ¢ > 1. Then
for all d > 1, NTIME[n?] U coNTIME[nd] C TS[n®d].

The slowdown rule follows from a padding argument and the observation that TS[n¢] is
closed under complementation.

» Corollary 10 (“Usual” Slowdown Rule [27]). Assuming NTIME[n] C TS[n¢], we have

(Qin™)™ ... (Qen™)** TS[n]

C (anm)bl o (Qkilnak—l)bk—lTs[nc'max(dvbkvak,bk—l)}.

Note that the exponent by_; is present in the maximum, because our assumption is
NTIME[n] C TS[n¢] rather than NTIME[n?] C TS[n] for all § > 0.

» Definition 11. Let c,a € R such that 0 < a <1 < c. A generic slowdown rule with
parameters o and c shows that

(anal)bl . (anak)kaS[nd] g (anal)bl . (Qk_lnak_l)bk_lTs[nomax(ad,bk,ak,bk_l)].

Intuitively, having a generic slowdown rule with parameters ¢ and « means that we can turn
classes like

V... VITIME[n]
into
V... VTIME[n~].

We are now ready to define alternation-trading proofs.

7 In both cases, the first quantifier is absorbed into the previous quantifier if one exists, in which case the
number of “new” quantifiers is one and two respectively.
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» Definition 12 ([27]). An alternation-trading proof is a list of alternating complexity

classes, where each subsequent class on the list is contained in the previous class. Fach class

is derived from the previous by applying one of the following rules.

1. If the class is TS[n?] (i.e., the verifier is deterministic and there are no quantifiers), we
may apply Lemma 4:

TS[nd) € (Fn®)™>*@1) (Ve logn)  TS[nd 7

for some x € (0,d).
2. If the class has at least one quantifier and the verifier is deterministic (i.e., the class ends
with TS[n?)), we may apply Corollary 5:

(@n™)* .. (Qrn™ )" TS[n]
C (anal )b1 o (anmax(ak,m))max(bk,m) (Qk—i—lx 1og ’I’L)bk Ts[nd—z]

for some x € (0,d).
3. If the class is BPTS[n?] (i.e., the verifier is randomized and there are no quantifiers), we
may apply Theorem 7:

BPTS[nd] C (In®) (vn®)™*@1 (32 log n) TS[n=?]

for some x € (0,d).
4. If the class has at least one quantifier and the verifier is randomized (i.e., the class ends
with BPTS[n?)), we may apply Corollary 8:

(Qin®)" ... (Qrn)*BPTS[n]
- (an‘“)b1 . (Q;m“"‘)b’c (Qkﬂnw)max(b’“@)(Qkalog n)b"TS[nd_”}

for some x € (0,d).
5. If the class has at least one quantifier, and a generic slowdown rule with parameters o
and c hold for the class, we may apply it:

o (Qrn )P (BP)TS[nY] C ... (Qr—1n®—1)P=1 (BP) TS[nemax(adbiai.br-1)]

We say that an alternation-trading proof shows a contradiction for c if it contains
an application of a speedup rule and the proof shows either TS[n?] C TS[nd/} ford <d or
BPTS[n4] C BPTS[n?] for d' < d.

Note that rules 3 and 4 only apply when proving lower bounds against BPTS.
The containment TS[n%] C TS[n?] for d > d’ does not automatically yield a contradiction®.
Fortunately however, we are still able to derive contradictions from this.

» Theorem 13 (Lemma 3.1 of [27]). If, under the assumption NTIME[n] C TS[n¢], there is
an alternation-trading proof with at least two inclusions showing that TS[n?) C TS[n'] for
d' < d, then the assumption must have been false and NTIME[n] € TS[n¢]

8 To apply the naive approach, we need a single machine in TS[nd] that can simulate everything in
TS[n?]. However, any fixed machine in TS[n?] cannot simulate things use more space than it does. If
our simulating machine in TS[n? uses space f(n) = n°®) then there is always a machine in TS[n? ]

that uses more space while still being n°M and our simulating machine cannot simulate this one.
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In Section 5, we will show that similar statements hold for BPTS in the contexts in which
we need them to hold, thus allowing us to derive contradictions from BPTS[n4] C BPTS[n?]
for d' <d.

» Definition 14 ([27]). An alternating complezity class (Q1n® )% ... (Qxn® ) (BP)TS[n
is orderly if for all i € [k], a; < b;.

» Lemma 15 ([27]). Any alternation-trading proof using rules from Definition 12 is orderly.

As noted by Buss and Williams [7], Lemma 15 implies that, when describing an alternation-
trading proof consisting of speedups and slowdowns, it is sufficient to only specify the {b;}
and disregard the {a;}. We will be somewhat more careful when we apply Grover’s algorithm
in the quantum setting, but when we can we will simplify our notation by writing only a single
exponent inside the parenthesis. Thus, we may abuse notation to write alternating complexity
classes in the form (Q;n®)...(Qxn)(BP)TS[n?], where the a; are then understood to be
the maxima of the corresponding pairs of exponents in the full notation.

» Definition 16 ([27]). A proof annotation is a way of specifying a sequence of applications
of speedup and slowdown rules. We write 1 to denote a speedup rule and 0 to denote a
(possibly generic) slowdown rule. When appropriate, we put a subscript under a 1 to denote
the speedup parameter used for that speedup rule application.

In this paper, we will work with alternation-trading proofs which apply only one slowdown
rule (many times). For such proofs, the sequence of speedups and slowdowns fully determines
whether the verifier is deterministic or randomized at a given line of the proof. This means
that, when specifying a proof annotation, we do not need to specify which speedup rule we
are applying between Corollary 5 and Corollary 8. When the verifier is randomized we must
apply Corollary 8, and when the verifier is deterministic we should always apply Corollary 5
as it is strictly more efficient than Corollary 8.

2.2 Computational Model

All functions used to bound runtime or space are assumed to be constructible in the given
resources. Our model for classical computation is the space-bounded random-access machine,
unless specified otherwise. Our proofs are robust to all notions of random access we know.

Our model for quantum computation will be that of Van Melkebeek and Watson [23], but
our results hold for any reasonable quantum model capable of obliviously applying unitaries
from a fixed universal set and with quantum random-access to the input.? Recall that if
x € {0,1}" is an input, an algorithm is said to have quantum random-access to z if it can
perform the transformation

doailiyb) = Y aili) @ @),

1€[n] i€[n]

where 4 is an index and z; denotes the bit at the i*" position of . The model of [23] is
capable of simulating all the usual models of quantum computing, and deals carefully with
issues like intermediate measurements and numerical precision.

9 Here, “obliviously” means that the unitaries applied depend only on the length of the input.
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2.3 Some Atypical Complexity Classes

We stated our lower bounds in Section 1 in terms of QCMA and MA. However, our results
actually hold for slightly smaller classes, which we describe below.

» Definition 17. The complezity class 3 - BQP is the set of languages L for which there
exists a BQP wverifier A such that
z el = (Fw)PrlA(z,w) =1] >
x4 L = (Vw)Pr[A(z,w) =1] <
We will write 3- BQP; . to denote 3- BQP where Arthur has completeness ¢ and soundness s.
We will write 3 - BQTIME[t(n)] to denote 3 - BQP where the length of Merlin’s proof and the
runtime of the verifier are both O(t(n)).

w0

We may define 3- BPP and 3 - BPTIME analogously.

» Remark 18. Note that, while 3- BQP C QCMA C QMA (respectively, 3 - BPP C MA), it is
not clear if 3- BQP = QCMA (3 BPP = MA) due to differences in the promise conditions. In
3-BQP, we require that the verifier A(x,w) lie in BQP, meaning that it satisfies the promise
on every input pair (z,w). On the other hand, in the “yes” case of QCMA (when a string x
is in the language), we require only that there exists a polynomial-sized witness y making the
verifier A(z,w) accept with probability exceeding % This does not preclude the existence of
a witness string w’ such that & < Pr[A(z,w) = 1] < 2.

3 Lower Bounds With Generic Slowdowns

We will start by introducing a method to reduce the verifier runtime of a class without
increasing any of the quantifier exponents, assuming that the verifier runtime isn’t too large.
This was the main feature in the alternation-trading proofs of [26] that allowed improvement
beyond the results of Lipton-Fortnow-Van Melkebeek-Viglas [11].

» Lemma 19 (Generalizes [26]). Let 0 < a <1 be a real number. Let ¢ be a positive real such
that ¢ < HTO‘ Given any class

o (Qrn®™)TS[n+1]

where cay < agy1 < %ak, there is a nonnegative integer N := N(ax) such that the

annotation (10)N0 with the appropriate speedup parameters proves that
- (QEn ) TS H] C L (Qun™)TS[n ] C ... TS[ne" ],

We prove this lemma in the full version. The use of a; as the speedup parameter in
Lemma 19 may seem arbitrary, but it will turn out that this is in fact the best speedup
parameter in this setting. Based on this lemma, we can define a new rule that we may use in
alternation-trading proofs.

» Definition 20. Consider an alternating complezity class (Q1n®) ... (Qxn®)TS[n?]. Given
0<a<1andc>0 satisfying c < H‘Ta, we define the wiggle rule with parameters a, c to
be the following:

If d < 25 ak, apply (14,0)* for t := [%—‘

Otherwise, do nothing.
We call an application of the wiggle rule proper if we are in the first case and improper
otherwise. In a proof annotation, when o and c are fixed, we will denote an
application of the wiggle rule by 2.
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It is worth remembering the ratio

ac
ac—1

as it will show up frequently in the remainder of this paper. Following the notation of
Definition 20, if the value of d (the verifier runtime exponent) for an alternating complexity
‘ (the exponent in the final quantifier), we may reduce the
verifier runtime to its smallest possible value cay with an application of Definition 20 and
Lemma 19, as the following corollary shows.

» Corollary 21 (Corollary of Lemma 19). Consider a class

(Qin™) ... (Qun™*)TS[n.

Given 0 < a < 1 and ¢ > 0 satisfying ¢ < T2 applying the wiggle rule (Definition 20) yields

a

the class:

(Q1n™) ... (QEn™)TS[nc*], 4
(Q1n) ... (Qin®)TS[n? otherwise.

We are now in a position to prove Main Theorem 1, which we restate for convenience.

» Main Theorem 1. Fiz « € (0,1] and let C be a complezity class. Let ry be the largest root
of the polynomial P, () := o?x® — ax? — 2ax + 1. If C C TS[n¢] implies a generic slowdown
rule with parameters « and c, then C € TS[n¢| for ¢ < ry.

We will use the following lemma in the proof of Main Theorem 1; its proof can be found
in the full version.

2

» Lemma 22. Ifr; and ro are the two largest roots of Py () := o2 — ax® — 2ax + 1 then

14+ vV1+4a 1+a
T<T1(OZ)< o

7'2(0[) <
for all a > 0.

Proof of Main Theorem 1. The lower bound will follow from applying the annotation
1%0(20)* as k — oo. (Recall that 2 denotes an application of the wiggle rule of Definition 20.)
We will choose speedup parameters {x;} so that the following sequence of inclusions is valid
and every application of the wiggle rule is proper.

TS[n] C (3n"™)(¥n"2) ... (Qkn™*)(Qryn™ ) TS[plI#1 7w =mn)] 1%0(20)"
C (Fn*)(Vn"2) ... (Qkn™)T [nac(d_”l_“_”'_“)] 0(20)]“
C (In®)(¥n®2) ... (Qrn®*)TS[nc ] 1%020(20)%!
C (In®)(Vn®) ... (Qp_1n"* l)TS[ k] 1%020(20)* 1
C (In)(Vn®2) ... (Qp_1n®1)TS[n® 1] 1%02020(20)F 2
1%02020(20)% 2
C TS[no<" 1]
In order to ensure a contradiction at the end, we will set x7 : . In order to ensure that

the first application of the wiggle rule is proper, we require that the {z;} satisfy

ac
Tp <= d—2T1— 20— —x <

ac(dizli.nil’k)<ac—1 ac—1

Tl (4)
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In order to ensure that we can apply the wiggle rule properly in all other steps, we require
that the {z;} satisfy

ac
ac—1

actz; < ST (5)
for all 2 <i<k.

The next claim lets us find valid speedup parameters {x;} for certain values of ¢ depending
on the number of iterations k that we allow in our annotation. The expression will look
somewhat hairy, but fortunately most of it will disappear in the limit as k& becomes large.

> Claim 23. Pick € > 0, and let 7 := —1=¢—_ There are choices of the speedup parameter

c(ac—1)"
x; such that the annotation 1¥0(20)* implies a contradiction for all ¢ satisfying

9 k1 Tk
ac” —

(6)

T—1 ac—1"

17—

i—1 1
Proof of Claim. Let z; := (%)Z T = ( L—c ) g% for ¢ > 2. Observe that all the

c(lac—1 c(ac—1)
x; are positive and satisfy the constraints of (5) for all 4. If we take d to be sufficiently large
we can ensure that every exponent in the proof exceeds 1. Therefore, if we can show that
our selection of {x;} satisfies the first constraint, (4), we will have a valid sequence of rules
and, by our choice of z; above, have derived a contradiction.
Plugging our choice of {z;} into (4) yields the constraint

d- % (1 + 2@5 toet <c(olw_—e1))k_l> < alc_—el ((qic_—el))k_l adc2) - (M

This is equivalent to

| Tk

T—1 ac—1"

0602 —

as desired. g

The lemma condition ¢ > Hv/1tda VQZHQ means that (c(ac —1))"" < 1. Now, let € := L and

allow k — oo in (6). Since 7 — (c(ac — 1)) ™" as k — 0o, we see that (6) becomes

achM <0 = o’ —ac? —20c+1<0
clac—1)—1

in the limit. More formally, we have shown that for every c satisfying this constraint, if we take
k to be large enough, then our choice of {z;} satisfies (4). The leading coefficient is positive
so we satisfy all the constraints (i.e. the alternation-trading proof shows a contradiction)
when c lies between the largest and second largest roots of this cubic. Implicitly, we require
c < H‘T‘l % so that the undesired terms
Lltda oo <y,

so that we can apply Lemma 19 and ¢ >

in (6) vanish. By Lemma 22, these are satisfied when Furthermore, if
C € TS[n] for some ¢’ then we automatically have C Z TS[n¢] for all ¢ < ¢ <

From Main Theorem 1, we immediately obtain the following corollary.
» Corollary 24 ([25]). For c < 2cos(%) =~ 1.801, NTIME[n] Z TS[n®].

Proof. Taking o = 1 (as this is normal slowdown) yields ¢® — ¢ — 2c + 1 < 0. The largest

root is 2 cos(Z), so we have NTIME[n] Z TS[n2¢os(¥)=(L)] <
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4 A Generic Slowdown Rule From Grover’s Algorithm

Now that we’ve proved the general case, we turn to an application. Observe that any
application of a speedup rule with parameter x results in an alternating complexity class
whose final quantifier is over zlogn bits, as this quantifier indexes over the n® states that it
receives from the penultimate quantifier. For example,

TS[n?] C (3n®)(Vxlogn) ' TS[n4~7].
Normally, we could remove the last quantifier with a slowdown rule, yielding the inclusion
TS[nd] C (anw)-l-s[nc-max(w,dfz,l)}. (9)

We could also remove the quantifier by having the deterministic verifier try all n® possible
strings it could receive, but this yields the useless inclusion TS[n?] C (3n*)TS[n4]. However,
if we allow alternating complexity classes with quantum verifiers rather than deterministic
verifiers, we can remove the last quantifier more efficiently. In particular, we can think of the
last quantifier as a search problem over a space of size N := n®. Classically, no blackbox
algorithm can search over N items with fewer than N queries in the worst case, but in the
quantum setting Grover’s algorithm lets us do this in O(\/N ) queries! This gives us, for
some informal notion of quantum time,

TS[n4] C (3n®)QTIME[n~2]. (10)

This method of quantifier removal allows us to remove quantifiers more efficiently than (9)
when c is large at the cost of introducing a quantum verifier. However, the quantum verifier
can be replaced with a deterministic verifier, under the assumption QCMATIME[n] C TS[n°]!
Ultimately, we will find that combining a speedup (adding one quantifier), (10) (removing
one quantifier), and the assumption (removing one quantifier) yields a generic slowdown rule
2

4.1 Review of Grover’s Algorithm

Given (quantum) query access to a function f: [N] — {0,1}, Grover’s algorithm tells us
whether or not there exists an o € [N] such that f(«a) = 1. For a given f, let S := {a €
[N]: f(c) = 1}. It turns out, per [12], that the probability of success of Grover search after

j iterations is sin?(2(j + 1)0) where 6 = sin~! 4/ ‘%l Regardless of %, a sufficiently large

random number of iterations should succeed with probability roughly %, which is the average
value of sin? z. The following lemma of [5] formalizes this.

» Lemma 25 ([5]). Let k be an arbitrary positive integer and let j be an integer chosen
uniformly at random from [0,k — 1]. If we observe the register after applying j Grover
iterations starting from the uniform state, the probability of obtaining a solution is at least %

1

» Corollary 26. Let j be an integer chosen uniformly at random from [0, (sin %)*1], If we

observe the register after applying j Grover iterations starting from the uniform state, the
probability of obtaining a solution is at least i,
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4.2 Using Grover’'s Algorithm to Invert RAMs

In order to apply Grover’s algorithm to remove the quantifier in expressions like (3log n) TS[n9]
— specifically, to perform Grover diffusion — we must be able to implement the relevant function
f € TS[n? in our quantum computational model. The following lemma converts the classical
random-access machine of f to a “normal form” that is more amenable to implementation in
a quantum computer. The workspace of A includes an input address register used to specify
which bit of the input the machine wishes to read and an input query bit which stores the
result of the most recent query of the input. Assume without loss of generality that the first
[logn] bits of the workspace hold the input address register, and bit [logn| + 1 holds the
current bit of input being read.

» Lemma 27 (Normal Form Circuit for Time-Space Bounded Computation). Let f be a function
computed by a random-access machine A in time t(n) and space s(n) on inputs of length n.
Then, there exists a sequence of uniform Boolean circuits Cy,...,C,, such that:
1. forall1 <i<r—1,C; has s inputs and s outputs,
2. Cy has no inputs and s outputs,
3. C, has s inputs and 1 output,
4. 371 |Ci| = O(ts*) where |C;| denotes the size of C;,
and furthermore

flyy=CroRoCr_qy0---0R0C, (11)
and

where R: {0,115 — {0,1}*() | on input z € {0,1}5(") sets ZMlogn]+1 = Yz122. 2108 n]
leaves the remainder of z unchanged. Here, we write s; to denote the j™ bit of a string s.

In Lemma 27, the circuits C; are used to simulate steps in the workspace of the machine,
and the function R perform random accesses to the n-bit input y, by setting its ([logn] +1)th
output bit to the bit of y whose index is specified by the first [logn] bits. Note that y is the
original length-n input to f and n may be much larger than s(n). Lemma 27, along with
Corollary 28 allow us to translate a RAM to a quantum circuit with s(n) wires and with
intermittent QRAM calls: the Boolean circuits {C;} can be replaced with quantum circuits
in the usual way and each R can be replaced by a QRAM call. Proofs of Lemma 27 and
Corollary 28 can be found in the full version.

» Corollary 28. Let f:{0,1}™ — {0,1} be a function computable in classical time t and
space s by a random-access machine. Then, the transformation |y)|0) — |y) |f(y)) can be
implemented by a quantum computer with quantum random-access to its input in time O(ts?).

We now state the main lemma of this subsection.

» Lemma 29 (Grover's Algorithm for Time-Space Bounded Computation). Given a function
f{0,1}™ — {0,1} that can be computed in classical time t and space s by a random-
access machine, there is a quantum algorithm taking time O(2% (ts®> +m)) that finds a value
a € {0,1}™ such that f(a) = 1, assuming one exists, with probability at least % In particular,
when m = xlogn,t =n s = O(logn), we obtain a time bound of O(n**+%).

Proof. (Sketch) We run Grover’s algorithm. Per Corollary 26, we need O(2%) Grover
iterations. Grover diffusion is dominated by the cost of implementing the function itself,
which by Corollary 28 is O(ts?). Inversion about the mean takes O(m) time. <
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4.3 Proving Main Theorem 2
We are now in a position to apply Grover’s algorithm to prove a generic slowdown rule.

> Lemma 30. If3-BQTIME, ,[n] C TS[n] then

R (Qk_lnak_l)bk—l (anak)kaS[nd] C... (Qk_lnak—l)bk_lTs[nc-max(ak,bk,bk—1,1,%)}.

Therefore, under the assumption 3 - BQTIME, ,[n] C TS[n®] we may apply a generic
slowdown rule with parameters a = % and c¢. Lemma 30 corresponds to the following sequence
of operations:

1. Classical Speedup (Corollary 5)
2. Grover’s algorithm to invert a classical function with classical input (Lemma 29)
3. Direct application of 3 - BQTIME[n] C TS[n]

Proof. By classical speedup, we have

. (Qrn®™)PE TSR C .. (Qpuax(an@)ymax(bew) (9, ) 2 log n)P* TS[R?7]. (12)

max(by,x)

Consider the function g: {0,1}" x {0,1}%1°em — {0, 1} which implements the
TS[n?=*] verifier from the right-hand-side of (12) given as inputs the n™*(x:2) hits of
output from the k" stage/quantifier and the (xlogn)-bit string chosen by the (k + 1)t
stage/quantifier. We will apply Lemma 29 to the function g, := g(z, -), where z is the output
from the k*" stage of the class (not the (k + 1)*" stage!). In particular, we can use Grover’s

algorithm to search over the space of possible values of the last quantifier of (zlogn) bits.

Thus, the inputs to g, are strings of length m = xlogn. The runtime of g, is O(ts?) by
Corollary 28, as g, just needs to evaluate the verifier on z (the output of the k" stage) and
a length m-input. Therefore, applying Lemma 29,

g o (Qk_lnak_1>bk_1 (anmax(ak’$))max(bk’m)BQT|ME[nd7%].

Without loss of generality, suppose that @ = 3. Then, we can continue the sequence of
inclusions as follows:

C .. (Qr—n™*)" 13 BQTIME[pmax(ar-bromd=3)]

c ... (Qkilnakq)bkqTs[nomax(bkq,ak,bmxvd—%l)}_

(Note we need a 1 in the maximum in the last equation, because our assumption 3 -
BQTIME, ;[n] € TS[n] only implies 3 - BQTIME[n®] C TS[n®] for § < 1.) To minimize the
2(10

exponent, we take x = =3¢, yielding the exponent in the lemma statement. |

» Remark 31. Note that in the proof of Lemma 30 we do not need to account for the
the n” exponent on the (k + 1) stage/quantifier when computing the the runtime of
g when preparing to apply Lemma 29. This is because the quantifier (Qg112 log n)b’c on
the right-hand-side of (12), which arises due to a speedup rule, has a by, in the exponent
only because it needs to copy and pass on the output of the k' stage. This is normally
necessary because the verifier on the right-hand-side of (12) needs to run from configuration
to configuration on the original verifier’s input and hence needs to be able to access the
original input (i.e., the input to the verifier on the left-hand-side of the inclusion). However,
by our definition of g,, we don’t need to worry about the cost of copying the output from
the k' stage z is itself the output of the k*" stage. We don’t need to copy and pass on the
original input because g, already has it! Put differently, because we're collapsing two stages
into one, we don’t need to expend time on computation that’s only used to pass input along.
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Note that every possible proof involving slowdown and Grover’s algorithm (Lemma 29) can
be carried out using Lemma 30 as the only rule for removing quantifiers, as we can only
apply Lemma 29 between a speedup and a slowdown. (More details on why are in the full
version.) Plugging o = % into Main Theorem 1, we obtain the following corollary.

> Corollary 32. 3-BQTIME, ,[n] Z TS[n] for c < 353 ~ 2.366.
Since 3 - BQTIME[n] € QCMATIME([n], this proves Main Theorem 2.

5 Lower Bounds Against BPTS

We turn to proving lower bounds against randomized algorithms. In this section, we will
use both Corollary 5 and Corollary 8 as speedup rules. The randomized slowdown rule is
straightforward.

» Lemma 33 (“Randomized” Slowdown Rule). Assuming 3-BPTIME[n] C BPTS[n|, we have
(@n™1)" ... (Qkn®™)"*BPTS[nY] C (Qun™)" ... Q1) h—1 BPTS[nemx(dok ek bk 1),

» Lemma 34. Suppose that, under the assumption 3 - BPTIME[n] C BPTS[n] for some c,
there is an alternation-trading proof with at least two inclusions proving that BPTS[nd] C
BPTS[n?] for d < d'. Then, the assumption is false.

A proof of this lemma can be found in the full version. Recall that by Lemma 15, we
may suppress some of the exponents when writing alternating complexity classes. We will do
so throughout the remainder of this section.

Now that we have the preliminaries out of the way, let us prove some lower bounds. The
first part of Main Theorem 3 is an immediate corollary of the following theorem.

» Theorem 35. 3- BPTIME[n] € TS[n¢] for ¢ < r1, where 11 &~ 1.466 is the largest root of
the polynomial x> — 2% —1 = 0.

Proof. Our analysis is similar to the proof of Main Theorem 1. The bound will arise by
applying the annotation 1¥0%+2 with the appropriate speedup parameters as k — co. We
will choose parameters {z;} so that the following sequence of inclusions is valid.

BPTS[n?] C (3n')(Vn™)(In®2) ... (Qun®*)(Qpy1n™ ) TS[p(d-1—22——2k)] 1kok+2
C (3nh)(Yn™)(3n2) ... (Qn®* )BPTS[pcld-m1—o2=—au)] 1%00"*!
C (Inh)(vn*) ... (Qrn™ )BPTS[n"*]
C (InH)(¥n™) ... (Qu_1n™1)BPTS[n< ] 1%000*
C (3n")(Vn™) ... (Qr_1n"*1)BPTS[n 1]
AN 1k000k—10
C (In")BPTS[ne ™
C BPTS[n< "] 1%0%+10

C BPTS[n?]
In order for all of the above inclusions to hold, we take

d —i
Ty = =t x; = (e(l — e))1 LX) =

d(1—e)l=?
cit2

for € := % This automatically satisfies all the constraints except for the one corresponding
to the third line, which requires
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As k — oo, several terms vanish. We are left with

1

l—-——— <0 = - -1<0.

B(1-1)

C

The largest root is at ¢ ~ 1.466. <

When we are allowed to introduce quantum operations and use Lemma 30, we can do

slightly better than this.

» Theorem 36. 3 - BQTIME[n] £ TS[n¢] for ¢ < 1.5.

The second part of Main Theorem 3 is an immediate corollary of the previous theorem.

Proof. (Sketch) Let d > 1.5. We have the following sequence of containments:

BPTS[n?] C (3n')(Vn

2 4
3

e

)(El%llogn)lTS[n ]

N

(3n')(Vn )BQTIME[n 7]
(3n")BPTS[n 5"

>,

N

where we’ve used Lemma 29 in the second inclusion. When ¢ < 1.5, we have % < 1. Thus,
we can repeat this procedure until we derive the inclusion

BPTS[n] C (3n!)BPTS[n¢]

N

BPTS[n?]

for d < d. To get a contradiction, we can apply the ideas of Lemma 34 modulo some

additional technical details that we relegate to the full version. |
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