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Abstract
The goal in reconfiguration problems is to compute a gradual transformation between two feasible
solutions of a problem such that all intermediate solutions are also feasible. In the Matching
Reconfiguration Problem (MRP), proposed in a pioneering work by Ito et al. from 2008, we are given
a graph G and two matchings M and M ′, and we are asked whether there is a sequence of matchings
in G starting with M and ending at M ′, each resulting from the previous one by either adding or
deleting a single edge in G, without ever going through a matching of size < min{|M |, |M ′|}−1. Ito et
al. gave a polynomial time algorithm for the problem, which uses the Edmonds-Gallai decomposition.

In this paper we introduce a natural generalization of the MRP that depends on an integer
parameter ∆ ≥ 1: here we are allowed to make ∆ changes to the current solution rather than
1 at each step of the transformation procedure. There is always a valid sequence of matchings
transforming M to M ′ if ∆ is sufficiently large, and naturally we would like to minimize ∆. We first
devise an optimal transformation procedure for unweighted matching with ∆ = 3, and then extend
it to weighted matchings to achieve asymptotically optimal guarantees. The running time of these
procedures is linear.

We further demonstrate the applicability of this generalized problem to dynamic graph matchings.
In this area, the number of changes to the maintained matching per update step (the recourse bound)
is an important quality measure. Nevertheless, the worst-case recourse bounds of almost all known
dynamic matching algorithms are prohibitively large, much larger than the corresponding update
times. We fill in this gap via a surprisingly simple black-box reduction: Any dynamic algorithm for
maintaining a β-approximate maximum cardinality matching with update time T , for any β ≥ 1, T
and ε > 0, can be transformed into an algorithm for maintaining a (β(1 + ε))-approximate maximum
cardinality matching with update time T + O(1/ε) and worst-case recourse bound O(1/ε). This
result generalizes for approximate maximum weight matching, where the update time and worst-case
recourse bound grow from T + O(1/ε) and O(1/ε) to T + O(ψ/ε) and O(ψ/ε), respectively; ψ is
the graph aspect-ratio. We complement this positive result by showing that, for β = 1 + ε, the
worst-case recourse bound of any algorithm produced by our reduction is optimal. As a corollary,
several key dynamic approximate matching algorithms – with poor worst-case recourse bounds – are
strengthened to achieve near-optimal worst-case recourse bounds with no loss in update time.
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1 Introduction

The study of graph algorithms is mostly concerned with the measure of (static) runtime.
Given a graph optimization problem, the standard objective is to design a fast (possibly
approximation) algorithm, and ideally complement it with a matching lower bound on the
runtime of any (approximation) algorithm for solving the problem. As an example, computing
(from scratch) a 2-approximate minimum vertex cover (VC) can be done trivially in linear
time, whereas a better-than-2 approximation for the minimum VC cannot be computed in
polynomial time under the unique games conjecture [46].

The current paper is motivated by a natural need arising in networks that are prone to
temporary or permanent changes. Such changes are sometimes part of the normal behavior
of the network, as in dynamic networks, but changes could also be the result of unpredictable
failures of nodes and edges, particularly in faulty networks. Consider a large-scale network
G = (V,E,w) for which we need to solve, perhaps approximately, some graph optimization
problem, and the underlying solution (e.g., a maximum matching) is being used for some
practical purpose (e.g., scheduling in packet switches) throughout a long time span. If the
network changes over time, the quality of the used solution may degrade until it is too poor
to be used in practice and it may even become infeasible.

Instead of the standard objectives of optimization, the questions that arise here concern
reoptimization: Can we “efficiently” transform one given solution (the source) to another
one (the target) under “real-life constraints”? The efficiency of the transformation procedure
could be measured in terms of running time, but in some applications making even small
changes to the currently used solution may incur huge costs, possibly much higher than
the runtime cost of computing (from scratch) a better solution; we shall use “procedure”
and “process” interchangeably. In particular, this is often the case whenever the edges of
the currently used solution are “hard-wired” in some physical sense, as in road networks.
Various real-life constraints or objectives may be studied; the one we focus on in this work
is that at any step (or every few steps) throughout the transformation process the current
solution should be both feasible and of quality no worse (by much) than that of either the
source or target solutions. This constraint is natural as it might be prohibitively expensive
or even impossible to carry out the transformation process instantaneously. Instead, the
transformation can be broken into phases each performing ≤ ∆ changes to the transformed
solution, where ∆ ≥ 1 is some parameter, so that the solution obtained at the end of each
phase – to be used instead of the source solution – is both feasible and of quality no (much)
worse than either the source or target. The transformed solution is to eventually coincide
with the target solution.

The arising reoptimization meta-problem generalizes the well-studied framework of recon-
figuration problems, which we discuss in Section 1.1. It is interesting from both practical and
theoretical perspectives, since even the most basic and well-understood optimization problems
become open in this setting. E.g., for the VC problem, given a better-than-2 approximate
target VC, can we transform to it from any source VC subject to the above constraints? This
is an example for a problem that is computationally hard in the standard sense but might be
easy from a reoptimization perspective. In contrast, perhaps computationally easy problems,
such as approximate maximum matching, are hard from a reoptimization perspective?

This meta-problem captures tension between (1) the global objective of transforming one
global solution to another, and (2) the local objective of transforming gradually while having
a feasible and high quality solution throughout the process. A similar tension is captured by
various models of computation that involve locality, including dynamic graph algorithms,
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distributed computing, property testing and local computation algorithms (LCA). The study
of the meta-problem presented here could borrow from these related research fields, but,
more importantly, we anticipate that it will also contribute to them; indeed, we present here
an application of this meta-problem to dynamic graph algorithms.

1.1 Graph Reconfiguration
The framework of reconfiguration problems has been subject to growing interest in recent
years. The term reconfiguration was coined in the work of Ito et al. [41], which unified earlier
related problems and terminology (see, e.g., [40, 31, 22]) into a single framework. The general
goal is to compute a transformation between two feasible solutions of a problem such that
all intermediate solutions are also feasible, where each pair of consecutive solutions need to
be adjacent under a fixed polynomially testable symmetric adjacency relation on the set of
feasible solutions. Such a transformation arises naturally in many contexts, such as solving
puzzles, motion planning, questions of evolvability (can genotype evolve into another one
via individual “adjacent” mutations?), and similarity of DNA sequences in computational
genomics and particularly gene editing, which is among the hottest scientific topics these
days; see the surveys of [58, 51] for further details. In most previous work, two solutions are
called adjacent if their symmetric difference has size 1. The most well-studied problem under
this framework is graph matching. For brevity, we shall only discuss here papers on graph
matching; see the surveys [58, 51] for discussions on other problems.

In the Matching Reconfiguration Problem (MRP), proposed in [41], we are given a
graph G and two matchings M and M ′, and we are asked whether there is a sequence of
matchings in G starting with M and ending at M ′, each resulting from the previous one by
either adding or deleting a single edge in G, without ever going through a matching of size
< min{|M |, |M ′|} − 1. Ito et al. gave a polynomial time algorithm for the problem, which
uses the Edmonds-Gallai decomposition. In particular, in some cases such a transformation
does not exist, and much of the difficulty is in the decision problem (decide if exists or
not). The problem of generalizing this algorithm for weighted matchings was proposed as an
open problem in [41], and remained open to date, partially since the algorithm of [41] for
unweighted matchings already relies on a rather intricate decomposition. The work of [41]
triggered interesting followups on MRP [44, 42, 39, 43, 21, 27]. In all these followups, the
symmetric difference between two adjacent matchings is rather strict: it is fixed by either 1 or
2 in [44, 42, 39, 27], whereas in the context of perfect matchings the symmmetric difference
is an alternating cycle of length 4 [21, 43]. Perhaps since the symmetric difference in all
the previous work is so strict, the goal was polynomial-time algorithms and hardness for
the problem. The natural generalization of parameterizing the symmetric difference by an
arbitrary ∆,∆ ≥ 1 – as in our reoptizmiation meta-problem, was not studied in prior work.

1.2 Our contribution
We study two fundamental graph matching problems under the aforementioned meta-problem:
(approximate) maximum cardinality matching (MCM) and maximum weight matching
(MWM). Our meta-problem is, in fact, inherently different than the original MRP. We are
not interested in the decision version of the problem – we take ∆ to be large enough so that a
transformation is guaranteed to exist. Thus we shift the focus from per-instance optimization
to existential optimization, and our goal is to optimize ∆ so that any source matching can
be transformed to any target matching by performing at most ∆ changes per step, while
never reaching a much worse matching than either the source or the target along the way.

ITCS 2021
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By “worse” we mean either in terms of size or weight, and we must indeed do a bit worse
in some cases even for large ∆; the original MRP formulation for unweighted matchings
allows to go down by 1 unit of size, and this slack is required also for large ∆. For weighted
graphs, naturally, a bigger slack is required. For both unweighted and weighted matchings,
we provide transformation procedures with near-optimal guarantees and linear running time.
Our results are summarized next; the transformation for approximate MWM (Theorem 2) is
the most technically challenging part of this work.

I Theorem 1 (MCM). For any source and target matchingsM andM′, one can transform
M into (a possibly superset of)M′ via a sequence of phases consisting of ≤ 3 operations each
(i.e., ∆ = 3), such that the matching at the end of each phase throughout this transformation
is a valid matching for G of size ≥ min{|M|, |M′| − 1}. The runtime of this transformation
procedure is O(|M|+ |M′|).

I Theorem 2 (MWM). For any source and target matchingsM andM′ with w(M′) > w(M),
and any ε > 0, one can transform M into (a possibly superset of) M′ via a sequence
of phases consisting of O( 1

ε ) operations each (i.e., ∆ = O( 1
ε )), such that the matching

obtained at the end of each phase throughout this transformation is a valid matching for G
of weight ≥ max{w(M)−W, (1− ε)w(M)}, where W = maxe∈M w(e). The runtime of this
transformation procedure is O(|M|+ |M′|).

I Remark. Theorem 2 assumes that w(M′) > w(M). This assumption is made without
loss of generality, since, if w(M′) ≤ w(M), we can apply a reversed transformation, so
that the matching will always be of weight ≥ max{w(M′) − W ′, (1 − ε)w(M′)}, where
W ′ = maxe∈M′ w(e).

In Section 5, we show that the guarantees provided by Theorems 1 and 2 are tight and
asymptotically tight, respectively. Although our results may lead to the impression that there
exists an efficient gradual transformation process to any graph optimization problem, we
briefly discuss in Section 7 two trivial hardness results for the minimum VC and maximum
independent set problems.

1.2.1 Application: A worst-case recourse bound for dynamic matching
algorithms

In the standard fully dynamic setting we start from an empty graph G0 on n fixed vertices,
and at each time step i a single edge (u, v) is either inserted to the graph Gi−1 or deleted
from it, resulting in graph Gi. In the vertex update setting we have vertex updates instead of
edge updates; this setting was mostly studied for bipartite graphs [24, 25, 14].

The problem of maintaining a large matching in fully dynamic graphs was subject to
intensive interest recently [52, 10, 50, 38, 53, 56, 18, 14, 29, 3, 32, 13]. The basic goal is to
devise an algorithm for maintaining a large matching while keeping a tab on the update time,
i.e., the time required to update the matching at each step. One may try to optimize the
amortized (average) update time of the algorithm or its worst-case (maximum) update time,
but both measures are defined with respect to a worst-case sequence of graphs.

“Maintaining” a matching with update time uT translates into maintaining a data
structure with update time uT , which answers queries regarding the matching with a low,
ideally constant, query time qT . For a queried vertex v the answer is the only matched edge
incident on v, or null if v is free, while for a queried edge e the answer is whether edge e
is matched or not. All queries made following the same update step i should be answered
consistently with respect to the same matching, hereafter the output matching (at step i),
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but queries made in the next update step i+ 1 may be answered with respect to a completely
different matching. Thus even if the worst-case update time is low, the output matching
may change significantly from one update step to the next; some natural scenarios where the
output matching changes significantly per update step are discussed in Section 2.

The number of changes (or replacements) to the output matching per update step is an
important measure of quality, sometimes referred to as the recourse bound, and the problem
of optimizing it has received growing attention recently [33, 30, 37, 25, 26, 14, 15, 2, 47]. In
applications such as job scheduling, web hosting, streaming content delivery, data storage
and hashing, a replacement of a matched edge by another one may be costly, possibly much
more than the runtime of computing these replacements. Moreover, when the recourse bound
is low, one can efficiently output all the changes to the matching following every update
step, which could be important in practical scenarios. In particular, a low recourse bound is
important when the matching algorithm is used as a black-box subroutine inside a larger
data structure or algorithm [17, 1]; see Section 2.3 for more details. We remark that the
recourse bound (generally defined as the number of changes to some underlying structure
per update step) has been well studied in the areas of dynamic and online algorithms for a
plethora of optimization problems besides graph matching, such as MIS, set cover, Steiner
tree, flow and scheduling; see [34, 36, 37, 9, 48, 6, 28, 35, 54], and the references therein.

There is a strong separation between the state-of-the-art amortized versus worst-case
bounds for dynamic matching algorithms, in terms of both the time and the recourse bounds.
A similar separation exists for numerous other problems, such as dynamic minimum spanning
forest. In various practical scenarios, particularly in systems designed to provide real-time
responses, a strict tab on the worst-case update time or on the worst-case recourse bound is
crucial, thus an algorithm with a low amortized guarantee but a high worst-case guarantee is
useless.

Despite the importance of the recourse bound measure, all known algorithms but one in
the area of dynamic matchings (described in detail in the full version [55]; see Appendix C
therein) provide no nontrivial worst-case recourse bounds whatsoever! The sole exception is
an algorithm for maintaining a maximal matching with a worst-case update time O(

√
m) and

a constant recourse bound [50]. In this paper we fill in this gap via a surprisingly simple yet
powerful black-box reduction (throughout β-MCM is a shortcut for β-approximate MCM):

I Theorem 3. Any dynamic algorithm maintaining a β-MCM with update time T ,1 for any
β ≥ 1, T and ε > 0, can be transformed into an algorithm maintaining a (β(1 + ε))-MCM
with update time T + O(1/ε) and worst-case recourse bound O(1/ε). If the original time
bound T is amortized/worst-case, so is the resulting time bound of T + O(1/ε), while the
recourse bound O(1/ε) always holds in the worst-case. This applies to the fully dynamic
setting under edge and/or vertex updates.

The proof of Theorem 3 is carried out in two steps. First we prove Theorem 1 by
showing a simple transformation process for any two matchingsM andM′ of the same static
graph. The second step of the proof, which is the key insight behind it, is that the gradual
transformation process can be used essentially as is in fully dynamic graphs, while incurring
a negligible loss to the size and approximation guarantee of the transformed matching.

In Section 6 we complement the positive result provided by Theorem 3 by proving that
the recourse bound O(1/ε) is optimal (up to a constant factor) in the regime β = 1 + ε.
In fact, the lower bound Ω(1/ε) on the recourse bound holds even in the amortized sense

1 Besides answering queries, we naturally assume that at any update step the entire matching can be
output within time (nearly) linear in its size. All known algorithms satisfy this assumption.
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and even in the incremental (insertion only) and decremental (deletion only) settings. For
larger values of β, taking ε to be a sufficiently small constant gives rise to an approximation
guarantee arbitrarily close to β with a constant recourse bound.

A corollary of Theorem 3. As a corollary of Theorem 3, all previous algorithms [38, 16,
53, 29, 3, 13, 59] with low worst-case update time are strengthened to achieve a worst-case
recourse bound of O(1/ε) with only an additive overhead of O(1/ε) to the update time.
(Some of these results were already strengthened in this way by using a previous version of
the current work, which was posted to arXiv in 2018.) Since the update time of all these
algorithms is larger than O(1/ε), we get a recourse bound of O(1/ε) with no loss whatsoever
in the update time! Moreover, all known algorithms with low amortized update time can be
strengthened in the same way; e.g., in SODA’19 [32] (cf. [24]) it was shown that one can
maintain a (1 + ε)-MCM in the incremental edge update setting with a constant (depending
exponentially on ε) amortized update time. While this algorithm yields a constant amortized
recourse bound, no nontrivial (i.e., o(n)) worst-case recourse bound was known for this
problem. Theorem 3 strengthens the result of [32] to maintain a (1+ε)-MCM with a constant
amortized update time and the optimal worst-case recourse bound of O(1/ε). Since the
recourse bound is an important measure of quality, this provides a significant contribution to
the area of dynamic matching algorithms.

Weighted matchings. The result of Theorem 3 can be generalized for approximate MWM
in graphs with bounded aspect ratio ψ, by using the much more intricate transformation
provided by Theorem 2 (compared to Theorem 1), as summarized in the next theorem. (The
aspect ratio ψ = ψ(G) of a weighted graph G = (V,E,w) is defined as ψ = maxe∈E w(e)

mine∈E w(e) .)

I Theorem 4. Any dynamic algorithm for maintaining a β-approximate MWM (shortly,
β-MWM) with update time T in a dynamic graph with aspect ratio always bounded by ψ,
for any β ≥ 1, T, ε > 0 and ψ, can be transformed into an algorithm for maintaining a
(β(1 + ε))-MWM with update time T +O(ψ/ε) and worst-case recourse bound O(ψ/ε). If the
original time bound T is amortized/worst-case, so is the resulting time bound of T +O(ψ/ε),
while the recourse bound O(ψ/ε) always holds in the worst-case. This applies to the fully
dynamic setting under edge and/or vertex updates.

Scenarios with high recourse bounds. There are various scenarios where high recourse
bounds may naturally arise. In such scenarios our reductions (Theorems 3 and 4) can
come into play to achieve low worst-case recourse bounds. Furthermore, although a direct
application of our reductions may only hurt the update time, we demonstrate the usefulness
of these reductions in achieving low update time bounds in some natural settings (where
we might not care at all about recourse bounds); this, we believe, provides another strong
motivation for our reductions. The details are provided in Section 2.

1.3 Related work
We discussed in Section 1.1 prior work on graph reconfiguration problems. Other than this
line of work, there are also inherently different lines of work on “reoptimiziation”, which
indeed can be interpreted broadly – there is an extensive and diverse body of research devoted
to various notions of reoptimization; see [57, 8, 23, 20, 7, 11, 12, 54, 19], and the references
therein. The common goal in all previous work on reoptimization (besides the one discussed
in Section 1.1 on reconfiguration) is to (efficiently) compute an exact or approximate solution
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to a new problem instance by using the solution for the old instance, where typically the
solution for the new instance should be close to the original one under certain distance
measure. Our work is inherently different than all such previous work, since our starting
point is that some solution to the new problem instance is given, and the goal is to compute a
gradual transformation process (subject to some constraints) between the two given solutions.
Also, our work is inherently different than previous work on reconfiguration, as explained in
Section 1.2.

1.4 Organization
We start (Section 2) with discussing some scenarios where high recourse bounds may naturally
arise. We continue (Section 3) by describing a basic scheme for dynamic approximate
matchings that was introduced in [38]. In Section 4.1 we present a simple transformation
process for MCM in static graphs, thus proving Theorem 1. This result is generalized
for MWM via a more intricate transformation process that proves Theorem 2, which is
deferred to the full version [55] (see Appendix D therein) due to space constraints. These
transformations, which apply to static graphs, are adapted to the fully dynamic setting in
Sections 4.2 and 4.3, thus proving Theorems 3 and 4, respectively. The optimality of these
transformations is discussed in Section 5. Our lower bound of Ω(1/ε) on the recourse bound
of (1 + ε)-MCMs is provided in Section 6. We conclude with a discussion in Section 7.

2 Scenarios with high recourse bounds

In this section we discuss some scenarios where high recourse bounds may naturally arise.
In all such scenarios our reductions (Theorems 3 and 4) can come into play to achieve low
worst-case recourse bounds; for clarity we focus in this discussion, sometimes implicitly, on
large (unweighted) matching, but the entire discussion carries over with very minor changes
to the generalized setting of weighted matchings.

Section 2.3 demonstrates that, although we may not care at all about recourse bounds,
maintaining a large (weight) matching with a low update time requires in some cases the
use of a dynamic matching algorithm with a low recourse bound; this is another situation
where our reductions can come into play, but more than that, we believe that it provides an
additional strong motivation for our reductions.

2.1 Randomized algorithms
Multiple matchings. Given a randomized algorithm for maintaining a large matching in
a dynamic graph, it may be advantageous to run multiple instances of the algorithm (say
polylog(n)), since this may increase the chances that at least one of those instances provides
a large matching with high probability (w.h.p.) at any point in time. Notice, however, that
it is not the same matching that is guaranteed to be large throughout the entire update
sequence, hence the ultimate algorithm (or data structure), which outputs the largest among
the polylog(n) matchings, may need to switch between a pool of possibly very different
matchings when going from one update step to the next. Thus even if the recourse bound of
the given randomized algorithm is low, and so each of the maintained matchings changes
gradually over time, we do not get any nontrivial recourse bound for the ultimate algorithm.

Large matchings. Sometimes the approximation guarantee of the given randomized al-
gorithm holds w.h.p. only when the matching is sufficiently large. This is the case with the
algorithm of [29] that achieves polylog(n) worst-case update time, where the approximation
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guarantee of 2 + ε holds w.h.p. only when the size of the matching is Ω(log5 n/ε4). To
perform efficiently, [29] also maintains a matching that is guaranteed to be maximal (and
thus provide a 2-MCM) when the maximum matching size is smaller than δ = O(log5 n/ε4),
via a deterministic procedure with a worst-case update time of O(δ). The ultimate algorithm
of [29] switches between the matching given by the randomized algorithm and that by the
deterministic procedure, taking the larger of the two. Thus even if the recourse bounds
of both the randomized algorithm and the deterministic procedure are low, the worst-case
recourse bound of the ultimate algorithm, which might be of the order of the “large matching”
threshold, could be very high. (The large matching threshold is the threshold on the matching
size above which a high probability bound on the approximation guarantee holds.) In [29]
the large matching threshold is δ = O(log5 n/ε4), so the recourse bound is reasonably low.
(This is not the bottleneck for the recourse bound of [29], as discussed next.) In general,
however, the large matching threshold may be significantly higher than polylog(n).

Long update sequences. For the probabilistic guarantees of a randomized dynamic al-
gorithm to hold w.h.p., the update sequence must be of bounded length. In particular,
polylogarithmic guarantees on the update time usually require that the length of the update
sequence will be polynomially bounded. This is the case with numerous dynamic graph
algorithms also outside the scope of graph matchings (cf. [45, 1]), and the basic idea is to
partition the update sequence into sub-sequences of polynomial length each and to run a
fresh instance of the dynamic algorithm in each sub-sequence. In the context of matchings,
the algorithm of [29] uses this approach. Notice, however, that an arbitrary sub-sequence
(other than the first) does not start from an empty graph. Hence, for the ultimate algorithm
of [29] to provide a low worst-case update time, it has to gradually construct the graph at
the beginning of each sub-sequence from scratch and maintain for it a new gradually growing
matching, while re-using the “old” matching used for the previous sub-sequence throughout
this gradual process. Once the gradually constructed graph coincides with the true graph,
the ultimate algorithm switches from the old matching to the new one. (See [29] for further
details.) While this approach guarantees that the worst-case update time of the algorithm is
in check, it does not provide any nontrivial worst-case recourse bound.

2.2 From amortized to worst-case

There are techniques for transforming algorithms with low amortized bounds into algorithms
with similar worst-case bounds. For approximate matchings, such a technique was first
presented in [38]. Alas, the transformed algorithms do not achieve any nontrivial worst-case
recourse bound; see Section 3 for details.

2.3 When low update time requires low recourse bound

When a dynamic matching algorithm is used as a black-box subroutine inside a larger data
structure or algorithm, a low recourse bound of the algorithm used as a subroutine is needed
for achieving a low update time for the larger algorithm. We next consider a natural question
motivating this need; one may refer to [17, 1] for additional motivation.

I Question 1. Given k dynamic matchings of a dynamic graph G, whose union is guaranteed
to contain a large matching for G at any time, for an arbitrary parameter k, can we combine
those k matchings into a large dynamic matching for G efficiently?
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This question may arise when there are physical limitations, such as memory constraints,
e.g., as captured by MapReduce-style computation, where the edges of the graph are
partitioned into k parties. More specifically, consider a fully dynamic graph G of huge scale,
for which we want to maintain a large matching with low update time. The edges of the
graph are dynamically partitioned into k parties due to memory constraints, each capable of
maintaining a large matching for the graph induced by its own edges with low update time,
and the only guarantee on those k dynamically changing matchings is the following global
one: The union of the k matchings at any point in time contains a large matching for the
entire dynamic graph G. (E.g., if we maintain at each update step the invariant that the
edges of G are partitioned across the k parties uniformly at random, such a global guarantee
can be provided via the framework of composable randomized coresets [49, 5, 4].)

This question may also arise when the input data set is noisy. Coping with noisy input
usually requires randomization, which may lead to high recourse bounds as discussed in
Section 2.1. Let us revisit the scenario where we run multiple instances of a randomized
dynamic algorithm with low update time; denote the number of such instances by k. If
the input is noisy, we may not be able to guarantee that at least one of the k maintained
matchings is large w.h.p. at any point in time, as suggested in Section 2.1. A weaker, more
reasonable assumption is that the union of those k matchings contains a large matching.

The key observation is that it is insufficient to maintain each of the k matchings with
low update time, even in the worst-case, as each such matching may change significantly
following a single update step, thereby changing significantly the union of those matchings.
“Feeding” this union to any dynamic matching algorithm would result with poor update time
bounds, even in the amortized sense. Consequently, to resolve Question 1, each of the k
maintained matchings must change gradually over time, or in other words, the underlying
algorithm(s) needed for maintaining those matchings should guarantee a low recourse bound.
A low amortized/worst-case recourse bound of the underlying algorithm(s) translates into a
low amortized/worst-case update time of the ultimate algorithm, provided of course that the
underlying algorithm(s) for maintaining those k matchings, as well as the dynamic matching
algorithm to which their union is fed, all achieve a low amortized/worst-case update time.

3 The scheme of [38]

This section provides a short overview of a basic scheme for dynamic approximate matchings
from [38]. Although such an overview is not required for proving Theorems 3 and 4, it is
instructive to provide it, as it shows that the scheme of [38] is insufficient for providing
any nontrivial worst-case recourse bound. Also, the scheme of [38] exploits a basic stability
property of matchings, which we use for proving Theorems 3 and 4, thus an overview of this
scheme may facilitate the understanding of our proof.

3.1 The amortization scheme of [38]
The stability property of matchings used in [38] is that the maximum matching size changes
by at most 1 following each update step. Thus if we have a β-MCM, for any β ≥ 1, the
approximation guarantee of the matching will remain close to β throughout a long update
sequence. Formally, the following lemma is a simple adaptation of Lemma 3.1 from [38];
its proof is given in Appendix E of the full version [55]. (Lemma 3.1 of [38] is stated for
approximation guarantee 1 + ε and for edge updates, whereas Lemma 5 here holds for any
approximation guarantee and also for vertex updates.)
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I Lemma 5. Let ε′ ≤ 1/2. Suppose Mt is a β-MCM for Gt, for any β ≥ 1. For
i = t, t+ 1, . . . , t+ bε′ · |Mt|c, letM(i)

t denote the matchingMt after removing from it all
edges that got deleted during updates t+ 1, . . . , i. ThenM(i)

t is a (β(1 + 2ε′))-MCM for Gi.

For concreteness, we shall focus on the regime of approximation guarantee 1 + ε, and
sketch the argument of [38] for maintaining a (1 + ε)-MCM in fully dynamic graphs. (As
Lemma 5 applies to any approximation guarantee β ≥ 1 + ε, it is readily verified that the
same argument carries over to any approximation guarantee.)

One can compute a (1 + ε/4)-MCM Mt at a certain update step t, and then re-use
the same matchingM(i)

t throughout all update steps i = t, t+ 1, . . . , t′ = t+ bε/4 · |Mt|c
(after removing from it all edges that got deleted from the graph between steps t and i). By
Lemma 5, assuming ε ≤ 1/2,M(i)

t provides a (1 + ε)-MCM for all graphs Gi. Next compute
a fresh (1 + ε/4)-MCM Mt′ following update step t′ and re-use it throughout all update
steps t′, t′ + 1, . . . , t′ + bε/4 · |Mt′ |c, and repeat. In this way the static time complexity
of computing a (1 + ε)-MCM M is amortized over 1 + bε/4 · |M|c = Ω(ε · |M|) update
steps. Note that the static computation time of an approximate matching is O(|M| · α/ε2),
where α is the arboricity bound; refer to Appendix F in the full version [55]. (This bound
on the static computation time was established in [53]; it reduces to O(|M| ·

√
m/ε2) and

O(|M| ·∆/ε2) for general graphs and graphs of degree bounded by ∆, respectively, which
are the bounds provided by [38].)

3.2 A Worst-Case Update time
In the amortization scheme of [38] described above, a (1 + ε/4)-MCMM is computed from
scratch, and then being re-used throughout bε/4 · |M|c additional update steps. The worst-
case update time is thus the static computation time of an approximate matching, namely,
O(|M| · α/ε2). To improve the worst-case guarantee, the tweak used in [38] is to simulate
the static approximate matching computation within a “time window” of 1 + bε/4 · |M|c
consecutive update steps, so that following each update step the algorithm simulates only
O(|M| · α/ε2)/(1 + bε/4 · |M|c = O(α · ε−3) steps of the static computation. During this
time window the gradually-computed matching, denoted byM′, is useless, so the previously-
computed matchingM is re-used as the output matching. This means that each matching is
re-used throughout a time window of twice as many update steps, hence the approximation
guarantee increases from 1+ε to 1+2ε, but we can reduce it back to 1+ε by a straightforward
scaling argument. Note that the gradually-computed matching does not include edges that
got deleted from the graph during the time window.

3.3 Recourse bounds
Consider an arbitrary time window used in the amortization scheme of [38], and note that the
same matching is being re-used throughout the entire window. Hence there are no changes to
the matching in the “interior” of the window except for those triggered by adversarial deletions,
which may trigger at most one change to the matching per update step. On the other hand,
at the start of any time window (except for the first), the output matching is switched from
the old matchingM to the new oneM′, which may require |M|+ |M′| replacements to the
output matching at that time. Note that the amortized number of replacements per update
step is quite low, being upper bounded by (|M|+ |M′|)/(1 + bε/4 · |M|c). In the regime of
approximation guarantee β = O(1), we have |M| = O(|M′|), hence the amortized recourse
bound is bounded by O(1/ε). For a general approximation guarantee β, the naive amortized
recourse bound is O(β/ε).
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On the negative side, the worst-case recourse bound may still be as high as |M|+ |M′|,
even after performing the above tweak. Indeed, that tweak only causes the time windows to
be twice longer, and it does not change the fact that once the computation ofM′ finishes, the
output matching is switched from the old matchingM to the new oneM′ instantaneously,
which may require |M|+ |M′| replacements to the output matching at that time.

4 Proofs of Theorems 3 and 4

This section is mostly devoted (see Sections 4.1 and 4.2) to the proof of Theorem 3. At the
end of this section (Section 4.3) we sketch the adjustments needed for deriving the result of
Theorem 4, whose proof follows along similar lines to those of Theorem 3.

4.1 A simple transformation in static graphs
This section is devoted to the proof of Theorem 1, which provides the first step in the
proof of Theorem 3. We remark that this proof can be viewed as a “warm up” to that of
Theorem 2 for MWM, which is deferred to the full version [55] (see Appendix D therein),
and is considerably more technically involved.

Let M and M′ be two matchings for the same graph G. Our goal is to gradually
transformM into (a possibly superset of)M′ via a sequence of constant-time operations to
be described next, each making at most 3 changes to the matching, such that the matching
obtained at any point throughout this transformation process is a valid matching for G of size
at least min{|M|, |M′| − 1}. It is technically convenient to denote byM∗ the transformed
matching, which is initialized asM at the outset, and being gradually transformed intoM′;
we refer toM andM′ as the source and target matchings, respectively. Each operation starts
by adding a single edge ofM′ \M∗ toM∗ and then removing fromM∗ the at most two
edges incident on the newly added edge; thus at most 3 changes to the matching are made
per operation. It is instructive to assume that |M′| > |M|, as the motivation for applying
this transformation, which will become clear in Section 4.2, is to increase the matching size;
in this case the size |M∗| of the transformed matchingM∗ never goes below the size |M| of
the source matchingM.

We say that an edge of M′ \M∗ that is incident on at most one edge of M∗ is good,
otherwise it is bad, being incident on two edges ofM∗. SinceM∗ has to be a valid matching
throughout the transformation process, adding a bad edge toM∗ must trigger the removal
of two edges from M∗. Thus if we keep adding bad edges to M∗, the size of M∗ may
halve throughout the transformation process. The following lemma shows that if all edges of
M′\M∗ are bad, the transformed matchingM∗ is at least as large as the target matchingM′.

I Lemma 6. If all edges ofM′ \M∗ are bad, then |M∗| ≥ |M′|.

Proof. Consider a bipartite graph L ∪R, where each vertex in L corresponds to an edge of
M′ \M∗ and each vertex in R corresponds to an edge ofM∗ \M′, and there is an edge
between a vertex in L and a vertex in R iff the corresponding matched edges share a common
vertex in the original graph. If all edges ofM′ \M∗ are bad, then any edge ofM′ \M∗ is
incident on two edges ofM∗, and sinceM′ is a valid matching, those two edges cannot be
inM′. In other words, the degree of each vertex in L is exactly 2. Also, the degree of each
vertex in R is at most 2, asM′ is a valid matching. It follows that |R| ≥ |L|, or in other
words |M∗ \M′| ≥ |M′ \M∗|, yielding |M∗| ≥ |M′|. J
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The transformation process is carried out as follows. At the outset we initializeM∗ =M
and compute the sets G and B of good and bad edges inM′ \M∗ =M′ \M within time
O(|M|+ |M′|) in the obvious way, and store them in doubly-linked lists. We keep mutual
pointers between each edge ofM∗ and its at most two incident edges in the corresponding
linked lists G and B. Then we perform a sequence of operations, where each operation starts
by adding an edge ofM′ \M∗ toM∗, giving precedence to good edges (i.e., adding a bad
edge toM∗ only when there are no good edges to add), and then removing fromM∗ the at
most two edges incident on the newly added edge. Following each such operation, we update
the lists G and B of good and bad edges inM′ \M∗ within constant time in the obvious way.
This process is repeated untilM′ \M∗ = ∅, at which stage we haveM∗ ⊇M′. Note that
the number of operations performed before emptyingM′ \M∗ is bounded by |M′|, since
each operation removes at least one edge fromM′ \M∗. It follows that the total runtime of
the transformation process is bounded by O(|M|+ |M′|).

It is immediate thatM∗ remains a valid matching throughout the transformation process,
as we pro-actively remove from it edges that share a common vertex with new edges added
to it. To complete the proof of Theorem 1 it remains to prove the following lemma.

I Lemma 7. At any moment in time we have |M∗| ≥ min{|M|, |M′| − 1}.

Proof. Suppose for contradiction that the lemma does not hold, and consider the first time
step t∗ throughout the transformation process in which |M∗| < min{|M|, |M′| − 1}. Since
initially |M∗| = |M| and as every addition of a good edge toM∗ triggers at most one edge
removal from it, time step t∗ must occur after an addition of a bad edge. Recall that a bad
edge is added toM∗ only when there are no good edges to add. Just before this addition we
have |M∗| ≥ |M′| by Lemma 6, thus we have |M∗| ≥ |M′| − 1 after adding that edge to
M∗ and removing the two edges incident on it from there, yielding a contradiction. J

I Remark 8. When |M| < |M′|, it is possible to gradually transform M to M′ without
ever being in deficit compared to the initial value ofM, i.e., |M∗| ≥ |M| throughout the
transformation process. However, if |M′| ≤ |M|, this no longer holds true; refer to Section
5.1 for more details.

4.2 The Fully Dynamic Setting
In this section we provide the second step in the proof of Theorem 3, showing that the simple
transformation process described in Section 4.1 for static graphs can be generalized for the
fully dynamic setting, thus completing the proof of Theorem 3.

Consider an arbitrary dynamic algorithm, Algorithm A, for maintaining a β-MCM with
an update time of T , for any β ≥ 1 and T . The matching maintained by Algorithm A,
denoted by MA

i , for i = 1, 2, . . ., may change significantly following a single update step.
All that is guaranteed by Algorithm A is that it can update the matching following every
update step within a time bound of T , either in the worst-case sense or in the amortized
sense, following which queries regarding the matching can be answered in (nearly) constant
time. Recall also that we assume that, for any update step i, the matchingMA

i provided by
Algorithm A at step i can be output within time (nearly) linear in the matching size.

Our goal is to output a matching M̃ = M̃i, for i = 1, 2, . . ., possibly very different from
MA = MA

i , which changes very slightly from one update step to the next. To this end,
the basic idea is to use the matching MA provided by Algorithm A at a certain update
step, and then re-use it (gradually removing from it edges that get deleted from the graph)
throughout a sufficiently long window of Θ(ε·|MA|) consecutive update steps, while gradually
transforming it into a larger matching, provided again by Algorithm A at some later step.
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The gradual transformation process is obtained by adapting the process described in
Section 4.1 for static graphs to the fully dynamic setting. Next, we describe this adaptation.
We assume that β = O(1); the case of a general β is addressed in Section 4.2.1.

Consider the beginning of a new time window, at some update step t. Denote the
matching provided by Algorithm A at that stage byM′ =MA

t and the matching output by
our algorithm byM = M̃t. Recall that the entire matchingM′ =MA

t can be output in time
(nearly) linear in its size, and we henceforth assume thatM′ is given as a list of edges. (For
concreteness, we assume that the time needed for storing the edges ofM′ in an appropriate
list is O(|M′|.) WhileM′ is guaranteed to provide a β-MCM at any update step, including
t, the approximation guarantee ofM may be worse. Nevertheless, we will show (Lemma
9) thatM provides a (β(1 + 2ε′))-MCM for Gt. Under the assumption that β = O(1), we
thus have |M| = O(|M′|). The length of the time window is W = Θ(ε · |M|), i.e., it starts
at update step t and ends at update step t′ = t + W − 1. During this time window, we
gradually transformM into (a possibly superset of)M′, using the transformation described in
Section 4.1 for static graphs; recall that the matching output throughout this transformation
process is denoted byM∗. We may assume that |M|, |M′| = Ω(1/ε), where the constant
hiding in the Ω-notation is sufficiently large; indeed, otherwise |M|+ |M′| = O(1/ε) and
there is no need to apply the transformation process, as the trivial worst-case recourse bound
is O(1/ε).

We will show (Lemma 9) that the output matching M̃i provides a (β(1 +O(ε))-MCM
at any update step i. Two simple adjustments are needed for adapting the transformed
matchingM∗ of the static setting to the fully dynamic setting:

To achieve a low worst-case recourse bound and guarantee that the overhead in the
update time (with respect to the original update time) is low in the worst-case, we cannot
carry out the entire computation at once (i.e. following a single update step), but should
rather simulate it gradually over the entire time window of the transformation process.
Specifically, recall that the transformation process for static graphs consists of two phases,
a preprocessing phase in which the matchingM′ =MA

t and the sets G and B of good and
bad edges inM′ \M are computed, and the actual transformation phase that transforms
M∗, which is initialized asM, into (a possibly superset of)M′. Each of these phases
requires time O(|M|+ |M′|) = O(|M|). The first phase does not make any replacements
toM∗, whereas the second phase consists of a sequence of at most |M′| constant-time
operations, each of which may trigger a constant number of replacements toM∗. The
computation of the first phase is simulated in the first W/2 update steps of the window,
performing O(|M|+ |M′|)/(W/2) = O(1/ε) computation steps and zero replacements to
M∗ following every update step. The computation of the second phase is simulated in
the second W/2 update steps of the window, performing O(|M|+ |M′|)/(W/2) = O(1/ε)
computation steps and replacements toM∗ following every update step.
Denote by M∗i the matching output at the ith update step by the resulting gradual
transformation process, which simulates O(1/ε) computation steps and replacements to
the output matching following every update step. WhileM∗i is a valid matching for the
(static) graph Gt at the beginning of the time window, some of its edges may get deleted
from the graph in subsequent update steps i = t + 1, t + 2, . . . , t′. Consequently, the
matching that we shall output for graph Gi, denoted by M̃i, is the one obtained from
M∗i by removing from it all edges that got deleted from the graph between steps t and i.

Once the current time window terminates, a new time window starts, and the same
transformation process is repeated, with M̃t′ serving asM andMA

t′ serving asM′. Since
all time windows are handled in the same way, it suffices to analyze the output matching of
the current time window, and this analysis would carry over to the entire update sequence.
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It is immediate that the output matching M̃i is a valid matching for any i = t, t+1, . . . , t′.
Moreover, since we make sure to simulate O(1/ε) computation steps and replacements
following every update step, the worst-case recourse bound of the resulting algorithm is
bounded by O(1/ε) and the update time is bounded by T +O(1/ε), where this time bound
is worst-case/amortized if the time bound T of Algorithm A is worst-case/amortized.

It is left to bound the approximation guarantee of the output matching M̃i. Recall that
W = Θ(ε · |M|), and write W = ε′ · |M|, with ε′ = Θ(ε). (We assume that ε is sufficiently
small so that ε′ ≤ 1/2. We need this restriction on ε′ to apply Lemma 5.)

I Lemma 9. M̃t and M̃t′ provide a (β(1+2ε′))-MCM for Gt and Gt′ , respectively. Moreover,
M̃i provides a (β((1 + 2ε′)2))-MCM for Gi, for any i = t, t+ 1, . . . , t′.

Proof. First, we bound the approximation guarantee of the matching M̃t′ , which is obtained
fromM∗t′ by removing from it all edges that got deleted from the graph throughout the time
window. By the description of the transformation process,M∗t′ is a superset ofM′, hence
M̃t′ is a superset of the matching obtained fromM′ by removing from it all edges that got
deleted throughout the time window. SinceM′ is a β-MCM for Gt, Lemma 5 implies that
M̃t′ is a (β(1 + 2ε′))-MCM for Gt′ . More generally, this argument shows that the matching
obtained at the end of any time window is a (β(1 + 2ε′))-MCM for the graph at that step.

Next, we argue that the matching obtained at the start of any time window (as described
above) is a (β(1 + 2ε′))-MCM for the graph at that step. This assertion is trivially true for
the first time window, where both the matching and the graph are empty. For any subsequent
time window, this assertion follows from the fact that the matching at the start of a new
time window is the one obtained at the end of the old time window, for which we have
already shown that the required approximation guarantee holds. It follows that M̃t =M is
a (β(1 + 2ε′))-MCM for Gt.

Finally, we bound the approximation guarantee of the output matching M̃i in the entire
time window. (It suffices to consider the interior of the window.) Lemma 7 implies that
|M∗i | ≥ min{|M|, |M′| − 1}, for any i = t, t+ 1, . . . , t′. We argue thatM∗i is a (β(1 + 2ε′))-
MCM for Gt. If |M∗i | ≥ |M|, then this assertion follows from the fact that M provides
such an approximation guarantee. We henceforth assume that |M∗i | ≥ |M′| − 1. Recall that
|M′| = Ω(1/ε) = Ω(1/ε′), where the constants hiding in the Ω-notation are sufficiently large,
hence removing a single edge fromM′ cannot hurt the approximation guarantee by more
than an additive factor of, say ε′, i.e., less than β(2ε′). Since M′ provides a β-MCM for
Gt, it follows thatM∗i is indeed a (β(1 + 2ε′))-MCM for Gt, which completes the proof of
the above assertion. Consequently, Lemma 5 implies that M̃i, which is obtained fromM∗i
by removing from it all edges that got deleted from the graph between steps t and i, is a
(β((1 + 2ε′)2))-MCM for Gi. J

4.2.1 A general approximation guarantee
In this section we consider the case of a general approximation parameter β ≥ 1. The
bound on the approximation guarantee of the output matching provided by Lemma 9,
namely (β((1 + 2ε′)2)), remains unchanged. Recalling that ε′ ≤ 1/2, it follows that the
size ofM′ cannot be larger than that ofM by more than a factor of (β((1 + 2ε′)2)) ≤ 2β.
Consequently, the number of computation steps and replacements performed per update
step, namely, O(|M|+ |M′|)/(W/2), is no longer bounded by O(1/ε), but rather by O(β/ε).
To achieve a bound of O(1/ε) for a general β, we shall use a matchingM′′ different from
M′, which includes a possibly small fraction of the edges ofM′. Recall that we can output
` arbitrary edges of the matching M′ = MA

t in time (nearly) linear in `, for any integer
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` = 1, 2, . . . , |M′|. LetM′′ be a matching that consists of (up to) 2|M| arbitrary edges ofM′;
that is, if |M′| > 2|M|,M′′ consists of 2|M| arbitrary edges ofM′, otherwiseM′′ =M′.
We argue thatM′′ is a β-MCM for Gt. Indeed, if |M′| > 2|M| the approximation guarantee
follows from the approximation guarantee ofM and the fact thatM′′ is twice larger than
M, whereas in the complementary case the approximation guarantee follows from that of
M′. In any case it is immediate that |M′′| = O(|M|). (For concreteness, we assume that
the time needed for storing the edges ofM′′ in an appropriate list is O(|M′′|) = O(|M|).)
We may henceforth carry out the entire transformation process withM′′ taking the role of
M′, and in this way guarantee that the number of computation steps and replacements to
the output matching performed per update step is reduced from O(β/ε) to O(1/ε).

4.3 Proof of Theorem 4

The proof of Theorem 4 is very similar to the one of Theorem 3. Specifically, we derive
Theorem 4 by making a couple of simple adjustments to the proof of Theorem 3 given above,
which we sketch next. First, instead of using the transformation of Theorem 1, we use the
one of Theorem 2, whose proof appears in Appendix D of the full version [55]. Second,
the stability property of unweighted matchings used in the proof of Theorem 3 is that the
maximum matching size changes by at most 1 following each update step. This stability
property enables us in the proof of Theorem 3 to consider a time window of W = Θ(ε · |M|)
update steps, so that any β-MCM computed at the beginning of the window will provide
(after removing from it all the edges that get deleted from the graph) a (β(1 + ε))-MCM
throughout the entire window, for any β ≥ 1. It is easy to see that this stability property
generalizes for weighted matchings, where the maximum matching weight may change by an
additive factor of at most ψ. (Recall that the aspect ratio of the dynamic graph is always
bounded by ψ; also, we may assume by scaling that the minimum edge weight is 1.) In order
to obtain a (β(1 + ε))-MWM throughout the entire time window, it suffices to consider a
time window of W ′ = W ′ψ = W/ψ = Θ(ε · |M|/ψ), i.e., a time window shorter than that used
for unweighted matchings by a factor of ψ, and as a result the update time of the resulting
algorithm will grow from T +O(1/ε) to T +O(ψ/ε) and the worst-case recourse bound will
grow from O(1/ε) to O(ψ/ε).

5 Optimality of our Transformations

5.1 Unweighted matchings

In the unweighted case, when |M| < |M′|, Theorem 1 states thatM can gradually transform
intoM′ without ever being in deficit compared to the initial value ofM, i.e., |M∗| ≥ |M|
throughout the entire transformation process. If |M′| ≤ |M|, however, this no longer
holds; in this case the theorem states that we’ll reach a deficit of at most 1 unit. To
see that this bound is tight, consider the case when |M| = |M′| and H = M⊕M′ is a
simple alternating cycle that consists of all edges inM andM′, and thus of length 2|M|.
Throughout any transformation process and until handling the last edge of the cycle, it must
be that |M∗| < |M| if ∆ < 2|M|.

I Remark. In fact, the same situation will occur if ∆ = 2. In the particular case of ∆ = 1,
we’ll be in deficit of up to 2 throughout the process – adding the first edge ofM′ requires us
to delete its two incident edges inM, which already leads to a deficit of 2 units.
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5.2 Weighted matchings
In the weighted case, quantifying this deficit throughout the process is more subtle, but
the worst-case scenario remains essentially the same: |M| = |M′|, all edges have weight
W and H =M⊕M′ is a simple alternating cycle that consists of all edges inM andM′.
Throughout any transformation process and until handling the last edge of the cycle, it
must be that w(M∗) ≤ w(M) −W if ∆ < 2|M|. In general, the deficit to the weight of
the matching is inverse linear in ∆, hence taking ∆ to be Θ(1/ε) ensures that the weight of
the matching throughout the process never goes below (1− ε)w(M). Interestingly, here a
similar situation occurs also when w(M′) > w(M). Specifically, consider the same example
as above but add η to each edge weight ofM′, i.e., assume that the edge weights ofM and
M′ are now W and W ′ = W + η, respectively. Then the deficit is no longer W as before
(for 1 < ∆ < 2|M|), but rather W − b∆/2c · η (for 1 < ∆ < 2|M|). Indeed, adding the first
edge ofM′ requires the deletion of its two incident edges inM, at which stage the deficit is
W − η; from that moment onwards, a single edge ofM is deleted so that another edge of
M′ can be added, which reduces η from the deficit each time. Therefore, if ∆ · η = W , the
deficit is always at least W/2, while w(M′) > w(M) +W/2. This scenario shows that the
bound of Theorem 2 is asymptotically tight.
I Remark. If ∆ = 1, we’ll be in deficit of 2W (rather than W ) throughout the process,
similarly to the unweighted case. In the degenerate case thatM andM′ consist of a single
edge each and ∆ = 1, the weight after the first edge deletion reduces to 0.

6 Optimality of the Recourse Bound

In this section we show that an approximation guarantee of (1 + ε) requires a recourse bound
of Ω(1/ε), even in the amortized sense and even in the incremental (insertion only) and
decremental (deletion only) settings. We only consider edge updates, but the argument
extends seamlessly to vertex updates. This lower bound of Ω(1/ε) on the recourse bound
does not depend on the update time of the algorithm in any way. Let us fix ε to be any
parameter satisfying ε = Ω(1/n), ε� 1, where n is the (fixed) number of vertices.

Consider a simple path P` = (v1, v2, . . . , v2`) of length 2`− 1, for an integer ` = c(1/ε)
such that ` ≥ 1 and c is a sufficiently small constant. (Thus P` spans at least two but no
more than n vertices.) There is a single maximum matchingMOPT

` for P`, of size `, which
is also the only (1 + ε)-MCM for P`. After adding the two edges (v0, v1) and (v2`, v2`+1) to
P`, the maximum matching MOPT

` for the old path P` does not provide a (1 + ε)-MCM
for the new path, (v0, v1, . . . , v2`+1), which we may rewrite as P`+1 = (v1, v2, . . . , v2(`+1)).
The only way to restore a (1 + ε)-approximation guarantee is by removing all ` edges of
MOPT

` and adding the remaining `+ 1 edges instead, which yieldsMOPT
`+1 . One may carry

out this argument repeatedly until the length of the path reaches, say, 4`− 1. The amortized
number of replacements to the matching per update step throughout this process is Ω(1/ε).
Moreover, the same amortized bound, up to a small constant factor, holds if we start from
an empty path instead of a path of length 2`− 1. We then delete all 4`− 1 edges of the final
path and start again from scratch, which may reduce the amortized bound by another small
constant. In this way we get an amortized recourse bound of Ω(1/ε) for the fully dynamic
setting.

To adapt this lower bound to the incremental setting, we construct n′ = Θ(ε · n) vertex-
disjoint copies P 1, P 2, . . . , Pn

′ of the aforementioned incremental path, one after another, in
the following way. Consider the ith copy P i, from the moment its length becomes 2`− 1 and
until it reaches 4`−1. If at any moment during this gradual construction of P i, the matching
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restricted to P i is not the (only) maximum matching for P i, we halt the construction of P i
and move on to constructing the (i + 1)th copy P i+1, and then subsequent copies, in the
same way. A copy whose construction started but was halted is called incomplete; otherwise
it is complete. (There are also empty copies, whose construction has not started yet.) For any
incomplete copy P j , the matching restricted to it is not the maximum matching for P j , hence
its approximation guarantee is worse than 1 + ε; more precisely, the approximation guarantee
provided by any matching other than the maximum matching for P j is at least 1 + c′ · ε, for a
constant c′ that can be made as large as we want by decreasing the aforementioned constant
c, or equivalently, `. (Recall that ` = c(1/ε).) If the matching restricted to P j is changed to
the maximum matching for P j at some later moment in time, we return to that incomplete
copy and resume its construction from where we left off, thereby temporarily suspending
the construction of some other copy Pj′ . The construction of P j may get halted again, in
which case we return to handling the temporarily suspended copy Pj′ , otherwise we return
to handling Pj′ only after the construction of P j is complete, and so forth. In this way we
maintain the invariant that the approximation guarantee of the matching restricted to any
incomplete copy (whose construction is not temporarily suspended) is at least 1 + c′ · ε, for a
sufficiently large constant c′. While incomplete copies may get completed later on, a complete
copy remains complete throughout the entire update sequence. At the end of the update
sequence no copy is empty or temporarily suspended, i.e., any copy at the end of the update
sequence is either incomplete or complete. The above argument implies that any complete
copy has an amortized recourse bound of Ω(1/ε), over the update steps restricted to that
copy. Observe also that at least a constant fraction of the n′ copies must be complete at the
end of the update sequence, otherwise the entire matching cannot provide a (1 + ε)-MCM
for the entire graph, i.e., the graph obtained from the union of these n′ copies. It follows
that the amortized recourse bound over the entire update sequence is Ω(1/ε).

The lower bound for the incremental setting can be extended to the decremental setting
using a symmetric argument to the one given above.

7 Discussion

This paper introduces a natural generalization of the MRP, and provides near-optimal
transformations for the problems of MCM and MWM.

One application of this meta-problem is to dynamic graph algorithms. In particular, by
building on our transformation for maximum cardinality matching we have shown that any
algorithm for maintaining a β-MCM can be transformed into an algorithm for maintaining a
β(1 + ε)-MCM with essentially the same update time as that of the original algorithm and
with a worst-case recourse bound of O(1/ε), for any β ≥ 1 and ε > 0. This recourse bound
is optimal for the regime β = 1 + ε. We also extended this result for weighted matchings,
but there is a linear dependence on the aspect-ratio of the graph in the update time and
recourse bounds. It would be interesting to improve this dependency to be polylogaritmic in
the aspect-ratio.

A natural direction for future work is to study additional basic graph problems under
this generalized framework. Although our positive results may lead to the impression that
there exists an efficient gradual transformation process to any optimization graph problem,
we conclude with a sketch of two trivial hardness results.

For the maximum independent set problem any gradual transformation process cannot
provide any nontrivial approximation guarantee, regardless of the approximation guarantees
of the source and target independent sets. To see this, denote the source approximate
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maximum independent set (the one we start from) by S and the target approximate maximum
independent set (the one we gradually transform into) by S ′, and suppose there is a complete
bipartite graph between S and S ′. Since we cannot add even a single vertex of S ′ to the
output independent set S∗ (which is initialized as S) before removing from it all vertices
of S and assuming each step of the transformation process makes only ∆ changes to S∗,
the approximation guarantee of the output independent set must reach Ω(|S ′|/∆) at some
moment throughout the transformation process. In other words, the approximation guarantee
may be arbitrarily large.

As another example, an analogous argument shows that for the minimum vertex cover
problem, any gradual transformation process cannot provide an approximation guarantee
better than |C|+|C

′|
|C′| > 2, where C and C′ are the source and target vertex covers, respectively.

On the other hand, one can easily see that the approximation guarantee throughout the
entire transformation process does not exceed |C|+|C

′|
|COP T | , where C

OPT is a minimum vertex
cover for the graph, by gradually adding all vertices of the target vertex cover C′ to the
output vertex cover C∗ (which is initialized as C), and later gradually removing the vertices
of C from the output vertex cover C∗.

These examples demonstrate a basic limitation of our generalized framework, and suggest
that further research of this framework is required. One interesting direction for further
research is studying the maximum independent set and minimum vertex cover problems
for bounded degree graphs; note that the trivial hardness results mentioned above do not
apply directly to bounded degree graphs. More generally, studying additional combinatorial
optimization problems under this framework may contribute to a deeper understanding of
its inherent limitations and strengths, and in particular, to finding additional applications of
this framework, possibly outside the area of dynamic matching algorithms.
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