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—— Abstract

We study the communication complexity of computing functions F' : {0,1}" x {0,1}" — {0,1} in
the memoryless communication model. Here, Alice is given z € {0,1}", Bob is given y € {0,1}" and
their goal is to compute F(zx,y) subject to the following constraint: at every round, Alice receives a
message from Bob and her reply to Bob solely depends on the message received and her input = (in
particular, her reply is independent of the information from the previous rounds); the same applies
to Bob. The cost of computing F' in this model is the mazimum number of bits exchanged in any
round between Alice and Bob (on the worst case input x,y). In this paper, we also consider variants
of our memoryless model wherein one party is allowed to have memory, the parties are allowed to
communicate quantum bits, only one player is allowed to send messages. We show that some of
these different variants of our memoryless communication model capture the garden-hose model of
computation by Buhrman et al. (ITCS’13), space-bounded communication complexity by Brody
et al. (ITCS’13) and the overlay communication complexity by Papakonstantinou et al. (CCC’14).
Thus the memoryless communication complexity model provides a unified framework to study all
these space-bounded communication complexity models.

We establish the following main results: (1) We show that the memoryless communication
complexity of F' equals the logarithm of the size of the smallest bipartite branching program
computing F (up to a factor 2); (2) We show that memoryless communication complexity equals
garden-hose model of computation; (3) We exhibit various exponential separations between these
memoryless communication models.

We end with an intriguing open question: can we find an explicit function F' and universal
constant ¢ > 1 for which the memoryless communication complexity is at least clogn? Note that
¢ > 2+ ¢ would imply a Q(n*¢) lower bound for general formula size, improving upon the best
lower bound by Neéiporuk [33].
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1 Introduction

Yao [44] introduced the model of communication complexity in 1979 and ever since its
introduction, communication complexity has played a pivotal role in understanding various
problems in theoretical computer science. In its most general form in this model, the goal is
the following: there are two separated parties usually referred to as Alice and Bob, Alice
is given an n-bit string x € {0,1}" and similarly Bob is given y € {0,1}" and together
they want to compute F'(x,y) where F': {0,1}™ x {0,1}" — {0, 1} is a function known to
both of them. Here Alice and Bob are given unlimited computational time and memory
and the cost of any communication protocol between Alice and Bob is the total number of
bits exchanged between them. Clearly a trivial protocol is Alice sends her input = to Bob
who can then compute F(z,y), which takes n bits of communication. Naturally, the goal
in communication complexity is to minimize the number of bits of communication between
them before computing F'(x,y). The deterministic communication complexity of a function F'
(denoted D(F)) is defined as the total number of bits of communication before they can
decide F'(x,y) on the worst-case inputs z, y.

Since its introduction there have been various works that have extended the standard
deterministic communication model to the setting where Alice and Bob are allowed to share
randomness and need to output F'(x,y) with high probability (probability taken over the
randomness in the protocol). Apart from this there have been studies on non-deterministic
communication complexity [42], quantum communication complexity [43] (wherein Alice and
Bob are allowed to share guantum bits and possibly have shared entanglement), unbounded
error commaunication complexity [36] and their variants. One-way variants have also been
considered where only Alice sends messages to Bob. Study of these different models of commu-
nication complexity and their variants have provided many important results in the fields of
VLSI [34], circuit lower bounds [22], algorithms [1], data structures [32], property testing [7],
streaming algorithms [6], computational complexity [8], extended formulations [18].!

1.1 Background

Space-bounded communication complexity. In the context of our current understanding of
computation, the study of space required to solve a problem is a central topic in complexity
theory. Several space-bounded models such as width-bounded branching programs [28],
limited depth circuits, straight line protocols [29] have been widely studied in this context.
In this direction variants of communication complexity have also been analyzed to better
understand communication-space trade-offs [23, 26, 28]. In particular, the relation between
space-bounded computation and communication complexity was formally initiated by Brody
et al. [11] who considered the following question: what happens if we change the standard
communication model such that, in each step of communication, Alice and Bob are limited
in their ability to store the information from the previous rounds (which includes their
private memory and messages exchanged). In this direction, they introduced a new model
wherein Alice and Bob each are allowed to store at most s(n) bits of memory and showed
that unlike the standard communication complexity, in this model super-linear lower bounds
on the amount of communication is possible.? Brody et al. mainly studied the one-way
communication complexity variant of this limited memory model in which Bob can have two

! For more on communication complexity and its applications, we refer the interested reader to the
standard textbooks for communication complexity [27, 31].
2 We remark that the separations obtained by [11] were for non-Boolean functions.
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types of memory: an oblivious memory (depends only on Alice’s message) and a non-oblivious
memory (for computation). With these definitions, they obtained memory hierarchy theorems
for such communication models analogous to the space hierarchy theorem in the Turing
machine world.

Overlay communication complexity. Subsequently, Papakonstantinou, et al. [35] defined a
similar space-bounded one-way communication model wherein Alice has unlimited memory
and Bob has either no memory or constant-sized memory. At each round, messages from
Alice to Bob consist of at most ¢(n) bits and the complexity of computing F' is the maximum
t(n) required over all inputs to F'. They characterized the complexity in this model by an
elegant combinatorial object called the rectangle overlay (which is defined in Section 4.2).
They also managed to establish connections between their model and the well-known com-
munication complexity polynomial hierarchy, introduced by Babai, Frankl and Simon [3].
Papakonstantinou et al. [35] showed that the message length in their model corresponds to
the oblivious memory in a variant of space-bounded model, introduced by Brody et al. [11],
where Bob only has access to an oblivious memory.

Garden-hose model. Another seemingly unrelated complexity model, the garden-hose
complexity was introduced by Buhrman et al. [15] to understand quantum attacks on
position-based cryptographic schemes (see Section 5.1 for a formal definition). Polynomial size
garden-hose complexity is known to be equivalent to Turing machine log-space computations
with pre-processing. In the garden-hose model two distributed players Alice and Bob use
several pipes to send water back and forth and compute Boolean functions based on whose side
the water spills. Garden-hose model was shown to have many connections to well-established
complexity models like formulas, branching programs and circuits. A long-standing open
question in this area is, is there an explicit function on n bits whose garden-hose complexity
is super-linear in n?

Branching programs. Another unrelated computation model is the branching program.
Understanding the size of De Morgan formulas that compute Boolean functions has a long
history. In particular, there has been tremendous research in understanding lower bounds on
size of De Morgan formulas computing a Boolean function. Similar to formulas, branching
programs have also been well-studied in complexity theory. For both branching programs
and formulas, we have explicit functions which achieve quadratic (in input size) lower bounds
on the size of the branching program/formula computing them. A few years ago, Tal [40]
considered bipartite formulas for F: X x Y — {0,1} (where each internal node computes
an arbitrary function on either X or Y, but not both) and showed that the inner product
function requires quadratic-sized formulas to compute. In the same spirit as Tal’s result, a
natural open question is, is there an explicit bipartite function which requires super-linear
sized bipartite branching programs to compute?

Given these different models of computation, all exploring the effects on computation
under various restrictions, a natural question is, can we view all of them in a unified way:

Is there a model of communication that captures all the above computational models?

In this work we introduce a very simple and new framework called the memoryless
communication complexity which captures all the computational models mentioned above.
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1.2 Memoryless Communication Models

We introduce a natural model of communication complexity which we call the memoryless
communication complezity. Here, like the standard communication complexity, there are
two parties Alice and Bob given z,y respectively and they need to compute F'(x,y), where
F:{0,1}™ x {0,1}™ — {0, 1} is known to both of them. However, we tweak the standard
communication model in the following two ways: The first change is that Alice is “memoryless”,
i.e., at every round Alice computes the next message to send solely based on only her input z
and the message received from Bob in this round. She does not remember the entire transcript
of messages that were communicated in the previous rounds and also forgets all the private
computation she did in the previous rounds. Similarly Bob computes a message which he
sends to Alice, based only on his input y and the message received from Alice in the current
round. After Bob sends his message, he also forgets the message received and all his private
computations. Alice and Bob repeat this procedure for a certain number of rounds before
one of them outputs F(z,y).

The second crucial change in the memoryless communication model is that the cost of
computing F' in this model is the size of the largest message communicated between Alice
and Bob in any round of the protocol (here size refers to the number of bits in the message).
Intuitively, we are interested in knowing what is the size of a re-writable message register
(passed back and forth between Alice and Bob) sufficient to compute a function F' on all
inputs z and y, wherein Alice and Bob do not have any additional memory to remember
information between rounds. We denote the memoryless communication cost of computing
F as NM(F) (where NM stands for “no-memory”). We believe this communication model
is very natural and as far as we are aware this memoryless communication model wasn’t
defined and studied before in the classical literature.

Being more formal, we say F : {0,1}" x {0,1}" — {0,1} can be computed in the
memoryless communication model with complexity ¢, if the following is true. For every
z,y € {0,1}" there exists functions {fx, g, : {0,1}* — {0,1}*} such that, on input z,y, Alice
and Bob use f, and g, respectively to run the following protocol: the first message in the
protocol is f,(0%) from Alice to Bob and thereafter, for every message mp Bob receives, he
replies with deterministic m’ = g,(mp) and similarly for every message ma Alice receives
she replies with m” = f,(ma). The protocol terminates when the transcript is (1'~1b) at
which point they output b as their guess for F(z,y); and we say the protocol computes F if
for every x,y, the output b equals F(z,y). NM(F) is defined as the smallest ¢ that suffices
to compute F (using the protocol above) for every z,y € {0,1}"™.

It is worth noting that in the memoryless communication protocol, Alice and Bob do not
even have access to clocks and hence cannot tell in which round they are in (without looking
at the message register). Hence, every memoryless protocol can be viewed as Alice and Bob
applying deterministic functions (depending on their inputs) which map incoming messages
to out-going messages. Also note that unlike the standard communication complexity, where
a single bit-message register suffices for computing all functions (since everyone has memory),
in the NM model because of the memoryless-ness we need more than a single bit register for
computing almost all functions.

For better understanding, let us look at a protocol for the standard equality function
defined as EQ,, : {0,1}" x {0,1}" — {0,1} where EQ,(z,y) = 1 if and only if = y. It
is well-known that D(EQ,) = n. In our model, we show that NM(EQ,,) < logn + 1: for
i =1,...,n, at the ith round, Alice sends the (logn + 1)-bit message (i, z;) and Bob returns
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(i, [x; = y;]),® Alice increments i and repeats this protocol for n rounds. In case Bob finds
an i for which z; # y;, he outputs 0, if not after n rounds they output 1. Note that this
protocol didn’t require Alice and Bob to have any memory and the length of the longest
message in this protocol was logn + 1. We discuss more protocols later in the paper and
formally describe the memoryless communication model in Section 3.

Variants of the memoryless model. Apart from the memoryless communication complexity,
we will also look at the “memory-nomemory communication complexity” wherein Alice is
allowed to have memory (i.e., Alice can know which round she is in, can remember the
entire transcript and her private computations of each round) whereas Bob doesn’t have any
memory during the protocol. The goal of the players remains to compute a function F' and
the cost of these protocols (denoted by M(F)) is still defined as the smallest size of a message
register required between them on the worst inputs. Apart from this, we will also consider
the quantum analogues of these two communication models wherein the only difference is
that Alice and Bob are allowed to send quantum bits. We formally describe these models of
communication in Section 3. In order to aid the reader we first set up some notation which
we use to describe our results: for F': {0,1}" x {0,1}" — {0,1}, let
1. NM(F) be the memoryless communication complexity of computing F' wherein Alice and
Bob both do not have any memory.
2. M(F) be the memory-nomemory communication complexity of computing F' where Alice
has memory and Bob doesn’t have memory
Apart from these, we will also allow quantum bits of communication between Alice and Bob
and the complexities in these models are denoted by QNM(F') and QM(F'). Additionally, we
will consider the one-way communication variants wherein only Alice can send messages to Bob
and the complexities in these models are denoted by NM™ (F), M~ (F),QNM™ (F), QM (F).

1.3 OQOur Contributions

The main contribution in this paper is to first define the model of the memoryless communic-
ation complexity and consider various variants of this model (only some of which were looked
at before in the literature). We emphasize that we view our main contribution as a new simple
communication model that provides a conceptual — rather than technical — contribution
to studying space complexity, bipartite branching programs and garden-hose complexity
under a single model. Given the vast amount of research in the field of communication
complexity, we believe that our memoryless model is a very natural model of computation.
We now state of various connections between our memoryless communication model and
other computational models.

1. Characterization in terms of branching programs. It is well-known that standard
models of communication complexity are characterized by the so-called (monochromatic)
“rectangles” that partition the communication matrix of the function Alice and Bob are trying
to compute. In the study of the memoryless model, Papakonstantinou et al. [35] specifically
consider the memory-nomemory model of communication complexity wherein Alice has a
memory and Bob doesn’t and they are restricted to one-way communication from Alice
to Bob. They show a beautiful combinatorial rectangle-overlay characterization (denoted

3 Here [-] is the indicator of an event in the parenthesis.
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RO(F)) of the memory-no memory communication model.* One natural idea is to improve
the RO(F') complexity to a more fine-grained rectangle measure that could potentially also
characterize NM(F'), but this doesn’t seem to be true. The fact that both Alice and Bob do
not have memory, doesn’t allow them to “narrow” down into a rectangle allowing them to
compute the function, instead they narrow down into a set of rectangles. This motivates
the question, is there a natural characterization of even the memoryless communication
model, in which both Alice and Bob do not have memory? Here we answer this in the
positive. We provide a characterization of memoryless communication complexity using
branching programs. In particular, we show that for every F : {0,1}" x {0,1}" — {0,1},
the memoryless complexity NM(F') is (up to a factor 2) equal to the logarithm of the size of
the smallest bipartite branching program computing F.> We give a proof of this statement
in Theorem 14.

2. Characterization in terms of garden-hose complexity. The garden-hose model of
computation was introduced by Buhrman et al. [15] to understand quantum attacks on
position-based cryptographic schemes. It is a playful communication model where two players
compute a function with set of pipes, hoses and water going back-and-forth through them.
Alice and Bob start with s pipes and based on their private inputs “match” some of the
openings of the pipes on their respective sides. Alice also connects a water tap to one of the
open pipes. Then based on which side the water spills they decide on the function value.
Naturally they want to minimize the number of pipes required over all possible inputs and
the garden-hose complexity GH(F') is defined to be the minimum number of pipes required
to compute F' this way. Given its puzzle-like structure, there have been several works to
understand this model and various connections between the garden-hose model and other
branches of theoretical computer science were established [15, 25, 39, 14, 16, 38, 17].

On the other hand, space-bounded communication complexity was introduced by Brody
et al. [11] to study the effects on communication complexity when they players are limited
in their ability to store information from previous rounds. Here Alice and Bob each have
at most s(n) bits of memory. Based on their private inputs z,y they want to compute the
function in a manner in which at each round Alice receives a single bit message from Bob
and based on her input x, the incoming message mp and her previous s(n)-bit register
content, she computes a new s(n)-bit register and decides whether to stop and output 0/1
or to continue. Bob does the same. space-bounded communication complexity SM(F') of
computing a function F' is the minimum register size s(n) required to compute the function
on the hardest input.

It was already shown by [11] that for every function, the logarithm of the garden-
hose complexity and the space-bounded communication complexity is factor 2 related.
It is also easy to show that our newly defined memoryless communication complexity is
also factor 2 related to the space-bounded communication complexity by [11]: NM(F) <
2-SM(F)+1, and SM(F) < NM(F) + logNM(F'). We give a proof of this statement in
Lemma 20. Thus it immediately follows that the logarithm of the garden-hose complexity
and the memoryless communication complexity of any function is also at most factor 3
related. However we improve this relation using an elegant trick of [30] that allows one to
make computations reversible; and thereby show that for every function F';, NM(F') and
GH(F) are equal up to an additive term 4.

log GH(F') — 4 < NM(F) < log GH(F).

4 This rectangle-overlay complexity is formally defined in Section 4.2.
5 We defer the formal definition of such branching programs to Section 2 and Section 4.2.



S. Arunachalam and S. Podder

We give a proof of this in Theorem 21. Hence, the memoryless communication complex-
ity model provides a clean framework for studying all these apparently different looking
computational models.

As an immediate application of this new characterization of the garden-hose model, we get
a better upper bound for the garden-hose complexity of the indirect storage access function.

» Definition 1 (Indirect Storage Access). Let n > 4 and m > 2 be such that n = 2m +
log (m/(logm)). The Indirect storage access function I1SA, : {0,1}"™ — {0,1} is defined

on the input string (Z,41,...,Yox,Z) where k = log (%), 7€ {0,1}™, 5 € {0,1}lee™,
7€ {0,1}F. Then ISAL(Z, 41, -, Yar, Z) is evaluated as follows: compute a = Int(z) € [2¥],
then compute b = Int(¥,) € [m] and output p.

For the communication complexity version Alice gets ¥,z and Bob gets iy, ..., Ysr, they

want to compute ISAL(Z, 1, ..., Yo, Z).

It was conjectured in [25] that the Indirect Storage Access function has garden-hose
complexity Q(n?). This function is known to have €2(n?) lower bound for the branching
program [41] and thus is believed to be hard for garden-hose model in general.® But it is easy
to see that NM(ISA) < logn: Alice sends Z to Bob who then replies with #is(.). Finally Alice
computes the output. Thus using the memoryless-garden-hose equivalence (in Theorem 21)
we immediately get GH(ISA) < 16n (thereby refuting the conjecture of [25]).

3. Separating these models. We then establish the following inequalities relating the
various models of communication complexity.”

M(F) < NM(F) =1logGH(F) < M™(F) < NM~(F)
VI *VI I VI VI
QM(F) QNM(F) 2-S(F) QM7 (F) QNMT(F)

Furthermore, except the inequality marked by (x), we show the existence of various functions
F:{0,1}" x {0,1}" — {0, 1} for which every inequality is exponentially weak. In order to
prove these exponential separations we use various variants of well-known functions such as in-
ner product, disjointness, Boolean hidden matching problem, gap-hamming distance problem.
Giving exponential separations between quantum and classical communication complexity® is
an extensively studied subject [13, 12, 21, 4, 20] and in this paper we show such separations
can also be obtained in the memoryless models. We provide the proof in Theorems 17 and 18.

In this paper, we are not been able to give a large separation between QNM and NM,
primarily because all lower bound techniques we have for NM seem to apply for QNM as
well, e.g., the deterministic one-way communication complexity and the non-deterministic
communication complexity?. The only “trivial” separation we can give is a factor-2 gap

In a typical garden-hose protocol for computing ISA,,, Alice uses m pipes to describe Z to Bob (each
pipe for a different value of ). Bob can then use another set of m pipes to send #ine(-) to Alice. But
since ¥;s need to be unique it appears that Bob needs m set of such m pipes in the worst case. This
many-to-one mapping seems unavoidable and hard to tackle in the garden-hose model in general. Hence
ISA,, appears to have an Q(n2) garden-hose complexity.

Some of the inequalities are straightforward but we explicitly state it for completeness.

These exponential separations are in the standard communication model where the communication
complexity is the total number of bits or qubits exchanged between Alice and Bob.

We note that [15] defined a quantum version of the garden-hose model which differs from the classical
model only by the ability of the players to have pre-shared entanglements. They used it to exhibit an
exponential classical-quantum separation. Our definition of the quantum version of the memoryless
model is a more natural generalization which involves exchanging quantum registers. Thus their
exponential separation does not imply a similar separation in our model.

61:7
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between QNM and NM using the standard idea of super-dense coding (which in fact applies
to all classical memoryless protocols). Observe that by our our garden-hose characterization
earlier, this factor-2 separation translates to a quadratic separation between “quantum-
garden-hose” model and the classical garden-hose model.

Since NM(F’) is at most M~ (F') for any F', memory-no memory communication complexity
can be use to design garden-hose protocols. Using this method we obtain a sub-quadratic
garden-hose protocol for computing the function Disjointness with quadratic universe which
was conjecture to have a quadratic complexity in [25]. We discuss this protocol in Section 5.1.

4. Towards obtaining better formula bounds. Finally, it was shown by Klauck and
Podder [25] that any formulae of size s consisting of arbitrary fan-in 2 gates (i.e., formulae
over the binary basis of fan-in 2 gates) can be simulated by a garden-hose protocol of size s'+¢
for any arbitrary € > 0. In this work, we show that an arbitrary garden-hose protocol can be
simulated by a memoryless protocol without any additional loss, i.e., a size s garden-hose
protocol can be turned into a memoryless protocol of size log s. In particular, putting together
these two connections, it implies that a size s formula can be turned into a memoryless
protocol of size (1 + &) logs. Thus our result provides a new way of proving formulae size
lower bound for arbitrary function F by analyzing the memoryless protocol of F.1° The
best known lower bound for formulae size (over the basis of all fan-in 2 gate) is Q(n?/logn),
due to Neéiporuk from 1966 [33]. Analogous to the Karchmer-Wigderson games [24] and
Goldman and Hastad [22] techniques which uses communication complexity framework to
prove circuit lower bounds our new communication complexity framework is a new tool for
proving formulae size lower bounds. We note that in the memoryless model, constants really
matter, e.g., a lower bound of logn is not same as a lower bound of 2logn as the former
would give an n lower bound, whereas the latter will yield an n? lower bound for the formula
size. This is similar, in flavour, to the circuit depth lower bound where it took several decades
of research to get from the trivial logn lower bound to the sophisticated 3logn lower bound
by Héstad [22]. In formula size terminology this translate to going from n to n3.

Brody et al. [11] conjectured that the problem of reachability in a graph requires Q(log® n)
non-oblivious memory. However as we have mentioned earlier the space-bounded communica-
tion complexity and the memoryless communication complexity of any function are equal up
to a constant factor. Thus proving this conjecture would imply the same lower bound on the

logn formula-size lower bound

memoryless communication complexity and in turn imply an n
for reachability, which would be a break-through in complexity theory. In fact, because of the
same general formula to memoryless communication simulation, showing even a (2 + £) logn

lower bound for reachability would be very interesting.

Finally an additional benefit to our characterization is the following: information theory
has been used extensively to understand communication complexity [5, 6, 19, 10, 9] (just
to cite a few references). As far as we are aware, usage of information theoretic techniques
haven’t been explored when understanding the models of computation such as formula
size, branching programs and garden-hose model. We believe our characterization using
memoryless communication model might be an avenue to use information-theoretic ideas to
prove stronger lower bounds in these areas.

10 Here, the inputs z,y are distributed among two players and their goal is to compute (F o g)(z,y) where
g is a constant-sized gadget.
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Open questions. In this work, our main contribution has been to describe a seemingly-
simple model of communication complexity and characterize its complexity using branching
programs. We believe that our work could open up a new direction of research and results in
this direction. Towards this, here we mention the natural open question (referring the reader
to the full version for more open questions): Is there a function F' : {0,1}" x {0,1}" — {0,1}
and a universal constant ¢ > 1 for which we have NM(F) > clogn. In particular, there are
two consequences of such a result: (a) Using our relation to garden-hose model in Section 5.1,
such a function will lead to the first super-linear n¢ lower bound for garden-hose complexity,
(b) using our characterized to branching programs, this would result in the first super-linear
n¢ lower bound for bipartite branching programs (analogous to Tal’s first super-linear lower
bound on bipartite formula size!! of inner-product [40]). Also if we could show this for
¢ > 2+ ¢, this would imply a Q(n?*¢) lower bound for general formula size, improving upon
the best lower bound by Neciporuk [33]. One possible candidate function which we haven’t

been to rule out is the distributed 3-clique function: suppose Alice is given z € {0, 1}(3) and
n

Bob is given y € {0, 1}(2) We view their inputs as jointly labelling of the (}) edges of a
graph on n vertices, then does the graph with edges labelled by = & y have a triangle? Also,
what is the complexity of the k-clique problem?

2 Preliminaries

Notation. Let [n] ={1,...,n}. For x € {0,1}", let Int(z) € {0,...,2™ — 1} be the integer
representation of the n-bit string z. We now define a few standard functions which we use
often in this paper. The equality function EQ,, : {0,1}" — {0,1}" — {0,1} is defined as
EQ.(z,y) = 1if and only if 2 = y. The disjointness function DISJ,, defined as DISJ,,(z,y) =0
if and only if there exists ¢ such that x; = y; = 1. The inner product function IP,, is defined
as IP(z,y) = >, ;- y; (mod 2) (where - is the standard bit-wise product).

We now define formulae, branching programs and refer the interested reader to Wegener’s
book [41] for more on the subject.

» Definition 2 (Branching programs (BP)). A branching program for computing a Boolean
function f:{0,1}"™ — {0,1} is a directed acyclic graph with a source node labelled S and
two sink nodes labelled 0 and 1. Every node except the source and sink nodes are labelled
by an input variable x;. The out-degree of every node is two and the edges are labelled by 0
and 1. The source node has in-degree O and the sink nodes have out-degree 0. The size of a
branching program is the number of nodes in it. We say a branching program computes f if
for all z € f=1(1) (resp. x € f=1(0)) the algorithm starts from the source, and depending on
the value of x; € {0,1} at each node the algorithm either moves left or right and eventually
reaches the 1-sink (resp. 0-sink) node. We denote BP(f) as the size (i.e., the number of
nodes) of the smallest branching program that computes f for all z € {0,1}".

' Note that no super-linear lower bound is known for bipartite formulas that use all gates with fan-in 2
(in particular XOR gates).
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3 Memoryless Communication Complexity

In this section we define memoryless communication complexity model and its variants.

3.1 Deterministic Memoryless Communication Model

The crucial difference between the memoryless communication model and standard commu-
nication model is that, at any round of the communication protocol Alice and Bob do not
have memory to remember previous transcripts and their private computations from the
previous rounds. We now make this formal.

» Definition 3 (Two-way Deterministic memoryless communication complexity). Let F :
{0,1}™ x {0,1}™ — {0,1}. Here there are two parties Alice and Bob whose goal is to
compute F. Every s-bit memoryless protocol is defined by a set of functions { fz}zefo,1}n
and {gy}ye{o,13» wherein fz, g, :{0,1}° — {0,1}*. On input x,y to Alice and Bob respect-
wely a memoryless protocol is defined as follows: at every round Alice obtains a message
mp € {0,1}® from Bob, she computes ma = fy(mpg) € {0,1}* and sends m4 to Bob. On
receiving ma, Bob computes m'y = gy(ma) and replies with m'y € {0,1}° to Alice. They
alternately continue doing this for every round until the protocol ends. Without loss of gener-
ality we assume the protocol ends once ma,mp € {1°710,1°711}, then the function output is
given by the last bit. So, once the transcript is 1°~1b, Alice and Bob output F(x,y) = b.'?

We say a protocol Pp computes F' correctly if for every (x,y), Bob outputs F(x,y). We
let cost(Pg,x,y) be the smallest s for which Pr computes F on input (x,y). Additionally,
we let

cost(Pr) = max cost(Pr, z,y)

z,Y

and the memoryless communication complexity of computing F in this model is defined as
NM(F') = min cost(Pr),
Pr

where is the minimum is taken over all protocols Pr that compute F correctly.

We crucially remark that in the memoryless model, the players do not even have access
to a clock and hence they cannot tell which round of the protocol they are in. At every
round they just compute their local functions { f}., {gy}y on the message they received and
proceed according to the output of these functions.

One-way Deterministic Memoryless Model. Similar to the definition above, one can define
the one-way memoryless communication complexity wherein only Alice is allowed to send
messages to Bob and the remaining aspects of this model is the same as Definition 3. We
denote the complexity in this model by NM™ (F). It is easy to see that since Alice does not
have any memory she cannot send multi-round messages to Bob as there is no way for her
to remember in which round she is in. Also Bob cannot send messages back to Alice for
her to keep a clock. Hence all the information from Alice to Bob has to be conveyed in a
single round. Thus one-way memoryless communication complexity is equal to the standard
deterministic one-way communication complexity.'3

» Fact 4. For all function F we have NM™ (F) = D7 (F).

12 Without loss of generality, we assume that the first message is between Alice and Bob and she sends
f2(0°) € {0,1}° to Bob.

13 Without loss of generality, in any one-way standard communication complexity protocol of cost ¢ Alice
can send all the ¢ bits in a single round.
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3.2 Deterministic Memory-No Memory Communication Model

We now consider another variant of the memoryless communication model wherein one party
is allowed to have a memory but the other party doesn’t. In this paper, we always assume
that Alice has a memory and call this setup the memory no-memory model. In this work, we

will not consider the other case wherein Bob has a memory and Alice doesn’t have a memory.

Note that this setting is asymmetric i.e., there exists functions for which the complexity of
the function can differ based on whether Alice or Bob has the memory.

Two-way Memory-No Memory Communication Model. Here the players are allowed to
send messages in both directions. For a function F : {0,1}" x {0,1}"™ — {0,1}, we denote
the complexity in this model as M(F'). Observe that M(F) is trivially upper bounded by
logn for every F': for every i € [n], Alice can send ¢ and Bob replies with y;. Since Alice
has memory, after n rounds she has complete knowledge of y € {0,1}" and computes F(x,y)
locally and sends it to Bob.

One-way Memory-No Memory Communication Model. Here we allow only Alice to send
messages to Bob. Since Alice has a memory she can send multiple messages one after another,
but Bob cannot reply to her messages. Hence, after receiving any message Bob computes
the function g,(-) € {0,1, L} and if he obtains {0, 1}, he outputs 0 or 1, and continues if he
obtains L. We denote the communication complexity in this model by M~ (F"). This model
was formally studied by Papakonstantinou et al. [35] as overlay communication complexity
(we discuss their main contributions in Section 4).

Finally, we can also have a model where both players have memory and hence both players
can remember the whole transcript of the computation. This is exactly the widely-studied
standard communication complexity except that the complexity measure here is the size of
the largest transcript (so the complexity in our model is just 1 since they could exchange a
single bit for n rounds and compute an arbitrary function on 2n bits) and the latter counts
the total number of bits exchanged in a protocol.

Quantum memoryless Models. Here we introduce the quantum memoryless communication
model. There are a few ways one can define the quantum extension of the classical memoryless
model. We find the following exposition the simplest to explain. This quantum communication
model is defined exactly as the classical memoryless model except that Alice and Bob
are allowed to communicate quantum states. A T round quantum protocol consists of
the following: Alice and Bob have local k-qubit memories A, B respectively,'* they share
a m-qubit message register M and for every round they perform a g-outcome POVM
P ={P,...,P,} for ¢ =2" (which could potentially depend on their respective inputs
and y). Let {Us}req0,137, {Vytye{o.13» be the set of (m + k)-dimensional unitaries acting on
(A,M) and (B, M) respectively (this is analogous to the look-up tables {f;, g, : {0,1}™ —
{0,1}™}, yeqo,13» used by Alice and Bob in the classical memoryless protocol). Let 1y =
(A, M) be the all-0 mixed state. Then, the quantum protocol between Alice and Bob can be
written as follows: on input z,y to Alice and Bob respectively, on the ith round (for i > 1)
Alice sends 1; for odd i and Bob replies with ;1 defined as follows:

Y = Tra(Z o Ugthi—1) ® 0)(0]g,

where &2 o U,1;_1 is the post-measurement state after performing the POVM £ on the
state Up;—1 and Tr4(+) refers to taking the partial trace of register A. Similarly, define

14 After each round of communication, these registers are set to the all-0 register.
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Y; = 0)(0[a@Tre(Z o Uyt:),

where Trg(-) takes the partial trace of register B. Intuitively, the states ¢; (similarly 1;11)
can be thought of as follows: after applying unitaries U, to the registers (A, M), Alice applies
the g-outcome POVM &£ which results in a classical outcome and post-measurement state on
the registers (A, M) and she discards her private memory register and initializes the register B
in the all-0 state. The quantum communication protocol terminates at the ¢th round once the
g-outcome POVM 2 results in the classical outcome {(1™7*,b)}peqo,13.'> After they obtain
this classical output, Alice and Bob output b. We say a protocol computes F' if for every
x,y € {0,1}™, with probability at least 2/3 (probability taken over the randomness in the
protocol), after a certain number of rounds the POVM measurement results in (1”1, F(x,y)).
The complexity of computing F' in the quantum memoryless model, denoted QNM(F) is
the smallest m such that there is a m-qubit message protocol that computes F'. As defined
before, we also let QM ™ (F) (resp. QNM ™ (F)) to be the model in which Alice has a memory
(has no memory) and Bob doesn’t have a memory and the communication happens from
Alice to Bob.

Note that unlike the classical case, with quantum messages there is no apparent way for
the players to know with certainty if they have received a designated terminal state (and
whether they should stop and output 0/1) without disturbing the message content. Thus a
natural choice is to integrate a partial measurement of the message register at each round
into the definition.

Notation. For the remaining part of the paper we abuse notation by letting NM(F"), QNM(F’)
denote the memoryless complezity of computing F' and we let NM model (resp. QNM model)
be the memoryless communication model (resp. quantum memoryless communication model).
Additionally, we omit explicitly writing that Alice and Bob exchange the final message
151 f(x,y) once either parties have computed f(z,y) (on input z,y respectively).

4 Understanding and characterization of memoryless models

We now state a few observations and relations regarding the memoryless communication mod-
els.

» Fact 5. For every F :{0,1}" x {0,1}" — {0,1}, we have M(F) < NM(F) < 2M~(F) <
2NM7 (F).

We refer the reader to the full version of the paper for the proof. As we mentioned earlier,
our main contribution in this paper is the memoryless NM model of communication. We saw
in Fact 4 that NM ™ (F) is equal to the standard one-way deterministic communication com-
plexity of computing F'. The M~ (F') model was introduced and studied by Papakonstantinou
et al. [35]. Additionally observe that the strongest model of communication complexity M(F)
is small for every function F'.

» Fact 6. For every F : {0,1}™ x {0,1}" — {0, 1}, we have M(F) < logn.

5 We remark that a good quantum communication protocol should be such that for every i € [T], the
probability of obtaining (1™ 7%, 1@ F(x,y)) when measuring 1; using the POVM £ should be < 1/3.
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To see this, observe that in the M model (i.e., two-way memory-no memory model), on the
ith round, Alice sends i € [n] and Bob (who doesn’t have memory) sends the message y; to
Alice. Alice stores y; and increments ¢ to ¢ + 1 and repeats. After n rounds Alice simply has
the entire y and computes F(z,y) on her own (note that F' is known to both Alice and Bob).
Below we give few protocols in the NM model to give more intuition of this model.

Algorithms in the memoryless model. In the introduction we described a logn + 1 protocol
for the equality function. Below we describe a protocol for the inner product function. For
the inner product function IP,,, a simple protocol is as follows: For i =1,...,n, on the ith

round, Alice sends (i, Ti, Z;;E x; - y; (mod 2)) which takes logn + 2 bits and Bob replies

with (i, @4 S22 @ - g + @i - i (mod 2)) - (i,xi,Z;:O zi - i (mod 2))_16 They repeat
this protocol for n rounds and after the nth round, they have computed IP,,(z,y). Hence
NM(IP,,) <logn + 2. Now we describe a protocol for the disjointness function DISJ,,. Here
a logn protocol is as follows: Alice sends the first coordinate ¢ € [n] for which z; = 1 and
Bob outputs 0 if y; = 1, if not Bob replies with the first j after 4 for which y; = 1 and they
repeat this procedure until ¢ or j equals n. It is not hard to see that DISJ, (z,y) = 0 if
and only if there exists k for which x; = yr = 1 in which case Alice and Bob will find such
(smallest) k in the protocol above, if not the protocol will run for at most n rounds and they
decide that DISJ,,(z,y) = 1. We now mention a non-trivial protocol in the NM model for
the majority function defined as MAJ, (z,y) = [>_, x; - y; > n/2 + 1]. A trivial protocol for
MAJ,, is similar to the IP,, protocol, on the (i + 1)th round, Alice sends (,x;, Y . ;¥;)
(without the (mod 2)) and Bob replies with (4, z;, Z?:ll x; - y;). Note that this protocol
takes 2logn + 1 bits (logn for sending the index i € [n] and logn to store Y " | x; - y; € [n]).
Apriori this seems the best one can do, but interestingly using intricate ideas from number
theory there exists a nlog® n [37, 25] garden-hose protocol for computing MAJ,,. Plugging
this in with Theorem 21 we get a protocol of cost logn + 3loglogn for computing MAJ,, in
the NM model.

An interesting question is, are these protocols for IP,,, EQ,,, DISJ,,, MAJ,, optimal? Are
there more efficient protocols possibly with constant bits of communication in each round?
In order to understand this, in the next section we show that the memoryless communication
complexity is lower bounded by the standard deterministic one-way communication complexity.
Using this connection, we can show the tightness of the first three protocols. Additionally,
we show that NM(MAJ,,) > log n, thus the exact status of NM(MAJ,,) € {logn,...,logn +
3loglogn} remains an intriguing open question.

4.1 Lower bounds on memoryless communication complexity

In the introduction, we mentioned that it is an interesting open question to find an explicit
function F' for which NM(F) > 2logn. Unfortunately we do not even know of an explicit
function for which we can prove lower bounds better than logn + w(1) (we discuss more
about this in the open questions). However, it is not hard to show that for a random function
F, the memoryless communication complexity of F' is large.

» Lemma 7. Let F: {0,1}" x{0,1}" — {0,1} be a random function. Then, NM(F) = Q(n).

16 Technically Bob need not send back the bit x;.
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The proof is via a simple counting argument. We refer the reader to the full version of
the paper for the definition. We remark that similar ideas used in this lemma can be used
to show that for all s < s’, there exists functions that can be computed using s’ bits of
communication in each round but not s bits of communication. This gives rise to a space
hierarchy theorem for the NM model.

4.1.1 Deterministic one-way communication complexity and memoryless
complexity

We now give a very simple lower bound technique for the memoryless communication model
in terms of deterministic one-way communication. Although this lower bound is “almost
immediate”, as we mentioned in the introduction, it already gives us non-trivial lower bounds
on the NM complexity of certain functions.

» Fact 8.
NM(F) > log (DH(F)/log DH(F)>, and QNM(F) > Q(log (DH(F)/log DH(F))).

Using this lemma, we immediately get the following corollary.

» Corollary 9. Let n > 2. Then NM(EQ,,), NM(IP,.), NM(DISJ,.), NM(MAJ,), NM(Index),
NM(BHM) is Q(logn). Similarly, we have QNM complezity of these functions are Q(logn).

This corollary follows immediately from Fact 8 because the detereministic-one way commu-
nication complexity of these functions are at least n (by a simple adverserial argument),
thereby showing that the (logn)-bit protocols we described in the beginning of this section
for the first three of these functions is close-to-optimal. However one drawback of Fact 8 is it
cannot be used to prove a lower bound that is better than logn since D7 (F) < n for every
function F : {0,1}™ x {0,1}™ — {0, 1}.

4.2 Characterization of memoryless communication

Papakonstantinou et al. [35] consider the memory-nomemory model of communication
complexity wherein Alice has a memory and Bob doesn’t and they are restricted to one-way
communication from Alice to Bob. They show a beautiful combinatorial rectangle-overlay
characterization (denoted RO(F)) of the M~ model. We refer the reader to the full version
of the paper for the definition.

One of the main results of [35] was the following characterization.

» Theorem 10 ([35]). For every F', we have logRO(F) < M~ (F) < 2log RO(F).

A natural question following their work is, can we even characterize our new general framework
of communication complexity wherein both Alice and Bob do not have memory and the
communication can be two-way. Generalizing the rectangle-based characterization of [35] to
our setting seemed non-trivial because in our communication model the memoryless-ness
of the protocol doesn’t seem to provide any meaningful way to split the communication
matrix into partitions or overlays (as far as we could analyze). Instead we characterize our
communication model in terms of bipartite branching programs, which we define below.'”

7 For a definition of general branching program (BP), refer to Section 2.
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» Definition 11 (Bipartite Branching Program (BBP)). Let F': {0,1}™ x {0,1}" — {0,1}. 4
bipartite branching program is a BP that computes F in the following way: for every (z,y),
each node in the branching program is either labelled by a function f; € F ={f; : {0,1}" —
{0,1}}i or by g; € 4 = {g; : {0,1}™ — {0,1}};; the output edge is labelled by O or 1 and the
output of the function in the node label decides which edge to follow. The size of a BBP is the
number of nodes in it. We define BBP(F) as the size of the smallest program that computes
F for all (z,y) € {0,1}".

Observe that in a BBP every node no longer just queries z € {0,1}"™ at an arbitrary
index ¢ (like in the standard BP), but instead is allowed to compute an arbitrary Boolean
function on x or y. Of course, another natural generalization of BBP is, why should the
nodes of the program just compute Boolean-valued functions? We now define the generalized
BBP wherein each node can have out-degree k (instead of out-degree 2 in the case of BBP
and BP).

» Definition 12 (Generalized Bipartite Branching Program (GBBP)). Let k > 1. A generalized
bipartite branching program is a BBP that computes F in the following way: for every
(z,y), each node in the branching program can have out-degree k and labelled by the node
fie F={fi : {0,1}" = [k]}s, or by g; € 4 = {g; : {0,1}" — [k]};; the output edges are
labelled by {1,...,k} and the output of the function in the node label decides which edge to
follow. The size of a GBBP is the number of nodes in it. We define GBBP(F) as the size of
the smallest program that computes F for all (x,y) € {0,1}?".

We now show that the generalized bipartite branching programs are not much more powerful

than bipartite branching programs, in fact these complexity measures are quadratically related.

» Fact 13. For F:{0,1}" x {0,1}" — {0, 1}, we have GBBP(F) < BBP(F) < GBBP(F)2.

It is not clear if the quadratic factor loss in the simulation above is necessary and we
leave it as an open question. We are now ready to prove our main theorem relating NM
communication model and bipartite branching programs.

» Theorem 14. For every F, we have §log BBP(F) < NM(F) < log BBP(F).

We refer the reader to the full version of the paper for the proof. Earlier we saw that
GBBP is polynomially related to BBP. We now observe that both these measures can be

exponentially smaller than standard branching program size.'®

» Fact 15. The parity function PARITY ,(z,y) = >, x; ® y; (mod 2) gives an exponential
separation between generalized bipartite branching programs and branching programs.

Time Space Trade-off for Memoryless. Finally, we mention a connection between our
communication model and time-space trade-offs. In particular, what are the functions that
can be computed if we limit the number of rounds in the memoryless protocol? Earlier
we saw that, an arbitrary memoryless protocol of cost s for computing a function F' could
consist of at most 2°7! rounds of message exchanges. If sending one message takes one unit
of time, we can ask whether it is possible to simultaneously reduce the message size s and
the time t required to compute a function. The fact below gives a time-space trade-off in
terms of deterministic communication complexity.

18 The function we use here is the standard function that separates bipartite formula size from formula
size.
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» Fact 16. For every k > 1 and function F : {0,1}" x {0,1}" — {0, 1}, we have NM(F) >
D(F)/k, where NMy(F) is the NM communication complexity of computing F with at most k
rounds of communication, and D(F) is the standard deterministic communication complexity.

It is not hard to now see that the number of rounds in an NM(F') protocol corresponds
to the depth of the generalized bipartite branching program computing F'. So an immediate
corollary of the fact above is, even for simple functions such as equality, inner product, if we
restrict the depth of GBBP to be o(n), then we can show exponential-size lower bounds on
such GBBPs computing these functions. Similarly note that one can separate QNM and NM
model of communication if we bound the number of rounds: consider the problem where Alice
and Bob get z,y € {0,1}" respectively promised that, x = y or Hamming distance between
x,y is n/2. In this case, clearly NMy(F) > n/k (from the fact above), which in particular
means that constant-round NM protocols need to send Q(n) bits. In contrast, in the QNM
model, Alice could simply send O(1) copies of a fingerprint state |¢,) = ﬁ > (=1)%ig) (in
a single round) and due to the promise, Bob can perform swap test between |13),[1,) and
decide if = y or the Hamming distance is n/2 with probability 1.

5 Relations between memoryless communication models

In this section, we show that there exists exponential separations between the four memoryless
communication models defined in Section 3 (and in particular, Fact 5).

» Theorem 17. There exists functions F for which the following inequalities (as shown in
Fact 5) is exponentially weak'® M(F) < NM(F) < 2M~(F) < 2NM7(F).

We refer the reader to the full version of the paper for the definition. We now ex-
hibit exponential separations between the quantum and classical memoryless models of
communication complexity.

» Theorem 18. There exist functions F' : D — {0,1} where D C {0,1}" x {0,1}" for
which the following inequalities are exponentially weak: (i) QNM™(F) < NM7(F), (ii)
QM7 (F) < M (F), (iii) QM(F) < M(F).20

We refer the reader to the full version of the paper for the definition. One drawback
in the exponential separations above is that we allow a quantum protocol to err with
constant probability but require the classical protocols to be correct with probability 1. We
remark that except the second inequality, the remaining inequalities also show exponential
separations between the randomized memoryless model (wherein Alice and Bob have public
randomness and are allowed to err in computing the function) versus the corresponding
quantum memoryless model. A natural question is to extend these separations even when
the classical model is allowed to err with probability at least 1/3.

5.1 Relating the Garden-hose model, Space-bounded communication
complexity and Memoryless complexity

In this section, we show that the memoryless communication complexity NM(F") of a Boolean
function F' is equal to the logarithm of the garden-hose complexity up to an additive constant
and is equal to the space-bounded communication complexity up to factor 2. But first we
briefly define the garden-hose model and the space-bounded communication complexity model.

9We remark that the functions exhibiting these exponential separations are different for the three
inequalities.
20 Again, the functions exhibiting these separations are different for the three inequalities.
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Garden-hose model [15]. In the garden-hose model of computation, Alice and Bob are
neighbours (who cannot communicate) and have few pipes going across the boundary of their
gardens. Based on their private inputs z,y and a function F : {0,1}" x {0,1}" — {0,1}
known to both, the players connect some of the opening of the pipes on their respective
sides with garden-hoses. Additionally, Alice connects a tap to one of the pipes on her side.
Naturally, based on the garden-hose connections, water travels back and forth through some
of the pipes and finally spills on either Alice’s or Bob’s side, based on which they decide if
a function F' on input z,y evaluates to 0 or 1. It is easy to show that Alice and Bob can
compute every function using this game. The garden-hose complexity GH(F') is defined to
be the minimum number of pipes required to compute F' this way for all possible inputs
x,1y to Alice and Bob. For more on garden-hose complexity, we refer the interested reader
to [15, 25, 38, 39].

Space-bounded communication complexity [11]. Alice and Bob each have at most s(n)
bits of memory. Based on their private inputs z,y they want to compute the function
F:{0,1}" x {0,1}" — {0,1} in the following manner: At each round Alice receives a single
bit message mp € {0, 1} from Bob and based on her input z, the incoming message mp
and her previous s(n)-bit register content, she computes a new s(n)-bit register and decides
whether to stop and output 0/1 or to continue. Bob does the same. At the beginning of
the game, the register contents of both players are set to the all-zero strings. The game
then starts by Alice sending the first message and continues until one of players outputs
0/1. space-bounded communication complexity SM(F') of computing a function F' is the
minimum register size s(n) required to compute F' on the worst possible input (z,y). Brody
et al. [11] claimed that space-bounded communication complexity is equal to the garden-hose
communication complexity upto factor 2.

> Claim 19 ([11]). For every function F' there exists constants ¢ € (0,1),d € N* such that
¢ 2MIF) < GH(F) < 225M(I)+2 4 g,

We show the following relation between
» Lemma 20. For every function F, NM(F) < 2SM(F) + 1, SM(F) < NM(F') + log NM(F')

We refer the reader to the full version of the paper for a proof. Using the Claim 19 and
Lemma 20 we can conclude that the logarithm of the garden-hose complexity is equal to the
memoryless NM complexity up to factor 2. This seems interesting already given we can connect
these two models, but in the NM model, even factor-2s are important since they are related to
formula lower bounds. Now we show that it is possible to further tighten the relation in the
lemma above. Below we show that NM is actually equivalent to the logarithm of the garden-
hose complexity up to an additive term of 4. The first observation relating the garden-hose
model and memoryless communication complexity is that, the garden-hose model is exactly
the NM communication model, except that in addition to the memoryless-ness of Alice and
Bob, there is a bijection between the incoming and the outgoing messages of both players (i.e.,
the local functions Alice and Bob apply {f, : {0,1}* — {0,1}*},,{g, : {0,1}* — {0,1}°},
are bijective functions. We now state and prove the theorem which shows how GH is related
to the standard memoryless communication model.

» Theorem 21. For F, we have log GH(F') —4 < NM(F') < log GH(F)).

We refer the reader to the full version of the paper for a proof. Interestingly, Theorem 21
together with Theorem 17 gives us a way to construct a garden-hose protocol using an M~
protocol and, as we will see below, this could result in potentially stronger upper bound on
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the garden-hose model. In an earlier work of Klauck and Podder [25], it was conjectured that
the disjointness function with input size m = n-2logn (i.e., with set size n and universe size
n?) has a quadratic lower bound €(m?) in the garden-hose model. Here, we show that GH
protocol for this problem has cost O(m?/ log? m). Although the improvement is only by a
logarithmic-factor, we believe that this complexity can be reduced further which we leave as
an open question.

Disjointness with quadratic universe: Alice and Bob are given n numbers each from [n?] as
am =mn-2logn long bit strings. Their goal is to check if all of their 2n numbers are unique.
Without loss we can assume that the n numbers on the respective sides of Alice and Bob are
unique, if not they can check it locally and output 0 without any communication. Then an
M~ protocol for computing this function is as follows: Alice keeps sending all her numbers
to Bob one by one (using her local memory to keep track of which numbers she has already
sent). This requires 2logn size message register on every round. Bob upon receiving any
number from Alice, checks if any number of his side matches the number received. If there is
a match he outputs 0, else he continues. For the last message Alice sends the number along
with a special marker. Bob performs his usual check and output 1 if the check passes and
the marker is present. Clearly the cost of this protocol is 2logn and thus from Theorem 21
the garden-hose protocol for computing this function has cost n?. Since the input size is
m =n - 2logn, the cost of the garden-hose protocol is O(m?/log? m).
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