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—— Abstract

Blockchain is a disruptive new technology introduced around a decade ago. It can be viewed as a
method for recording timestamped transactions in a public database. Most of blockchain protocols
do not scale well, i.e., they cannot process quickly large amounts of transactions. A natural idea to
deal with this problem is to use the blockchain only as a timestamping service, i.e., to hash several
transactions txi, ..., tT, into one short string, and just put this string on the blockchain, while at
the same time posting the hashed transactions tzi, ..., tz, to some public place on the Internet
(“off-chain”). In this way the transactions tz; remain timestamped, but the amount of data put
on the blockchain is greatly reduced. This idea was introduced in 2017 under the name Plasma
by Poon and Buterin. Shortly after this proposal, several variants of Plasma have been proposed.
They are typically built on top of the Ethereum blockchain, as they strongly rely on so-called smart
contracts (in order to resolve disputes between the users if some of them start cheating). Plasmas
are an example of so-called off-chain protocols.

In this work we initiate the study of the inherent limitations of Plasma protocols. More
concretely, we show that in every Plasma system the adversary can either (a) force the honest
parties to communicate a lot with the blockchain, even though they did not intend to (this is
traditionally called mass exit); or (b) an honest party that wants to leave the system needs to quickly
communicate large amounts of data to the blockchain. What makes these attacks particularly hard
to handle in real life is that these attacks do not have so-called uniquely attributable faults, i.e. the
smart contract cannot determine which party is malicious, and hence cannot force it to pay the fees
for the blockchain interaction. An important implication of our result is that the benefits of two of
the most prominent Plasma types, called Plasma Cash and Fungible Plasma, cannot be achieved
simultaneously.

Besides of the direct implications on real-life cryptocurrency research, we believe that this work
may open up a new line of theoretical research, as, up to our knowledge, this is the first work that
provides an impossibility result in the area of off-chain protocols.
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1 Introduction

What does it mean to timestamp a digital document? Haber and Stornetta in their seminal
paper [17] define timestamping as a method to certify when a given document was created.
In many settings the timestamped document T remains secret after it was timestamped,
until its creator decides to make it public. This is often because of efficiency reasons — for
example in the scheme of [17] what is really timestamped is the cryptographic hash! H(T)
(not T'), which leads to savings in communication between 7’s creator and the timestamping
service. Sometimes the secrecy of T is actually a desired feature. According to [29] several
researchers in the past (including Galileo Galilei and Isaac Newton) have used ad-hoc methods
to timestamp their research ideas before publishing them, in order to later claim priority.

Recently, in the context of blockchain, timestamping has been used in a slightly different
way. Namely, in the paper that introduced this technology [25], the “timestamping” mechan-
ism is such that T’s creator does not only get a proof that 7" has been created at a given time,
but also that it has been made public at this time. Let us call this kind of scheme public
timestamping, and let us refer to the former type of timestamping as secret timestamping.
The public timestamping feature of blockchain has been one of the main reasons why this
technology attracted so much attention. In fact one of the first projects that use blockchain
for purposes other than purely financial was Namecoin that used the timestamping to create
a decentralized domain name system (see, e.g., [19] for more on this project).

In many cases timestamping is expensive, and its costs grow linearly with the length of
the timestamped document. This is especially true for blockchain-based solutions, where all
parties in the network need to reach consensus about what document was published and
when. For example, Bitcoin (the blockchain system introduced in [25]) can process at most
around 1MB of data per 10 minutes. In Ethereum, which is another very popular blockchain
system [31] “timestamping” a word of 32 bytes cost currently around USD 0.80. A similar
problem appears in several other blockchain protocols. We give a short introduction to
blockchain in Sec. 1.1. For a moment let us just say that typical blockchains come with
their own virtual currencies (also called cryptocurrencies). In the most standard case the
“timestamped” messages define financial transfers between the network participants, and are
hence called transactions. We will refer to timestamping a transaction as posting it on the
blockchain.

To summarize, from the efficiency point of view the secret timestamping is better than
the public one (as only hashes need to be timestamped). From the security perspective these
two types of timestamping are incomparable as the fact that the timestamped document
T needs to be published can be considered to be both an advantage and a disadvantage,
depending on the particular application. For example, one could argue that considering
timestamped hashes of academic papers as being sufficient evidence for claiming priority
would slow down scientific progress, as it would disincentive making the papers public (until,
say, the author writes down all followup papers that build upon the timestamped paper).

L In this paper we assume reader’s familiarity with basic cryptographic notions such as hash functions,
negligible functions, etc. For an introduction to this topic see, e.g., [20].
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A natural question therefore is as follows. Suppose we have access to a timestamping
service that is expensive to use (so we would rather timestamp only very short messages
there). Can we use it to “emulate” public timestamping that would be cheap for long
documents T7 Of course this “emulation” cannot work in general, since some scenarios may
simply require a proof that the whole T was available publicly at a given time. So the best
we can hope for is to find some applications which permit such emulation. An idea for such
emulation emerged recently within the cryptocurrency community under the names Plasma
or commit chains® [26, 21, 16, 28, 24]. Very informally speaking, Plasma allows to “compress”
a number of blockchain transactions tz1, ..., tz,, into one very short string h = H(T), where
T := (txy,...,try). The transactions can from from different parties called users. The only
document that gets posted on the blockchain is h. The compression and posting A is done by
one designated party called the operator (denoted Op). Besides of posting h, the operator
publishes all the transactions 7' on some public network (say: on her web-page). Since this
publication is not done on the blockchain we also say that it is performed off-chain.

Publishing T off-chain is important since only then each user can verify that her transaction
was indeed included into the hashed value. Moreover, typical Plasma designs use as H the
so-called Merkle-tree hashing with tz1,. .., tx,, being the labels of the leaves (see the full
version of this paper [11] for more on this technique). Thanks to this, every user can prove
that his transaction was included in H(T) with a proof of length O(logn). If the operator
does not include some tz; in T" then the user U that produced tz; can always post tz; directly
to the blockchain. In this case using Plasma does not bring any benefits to U compared
to just using the blockchain directly from the beginning. However, in reality it is expected
that this is not going to happen often, especially since the operators are envisioned to be
commercial entities that will charge some fee for their services.

What is much more problematic is the case when the malicious operator does not publish
T off-chain. This situation is typically referred to as data unavailability. Note that data
unavailability is subjective, i.e., the parties can have different views on whether it happened
or not. This is because, unlike the situation on the blockchain, there may be no consensus
on what was published off-chain. Moreover, there is no way to produce a proof that data
unavailability happens: even if some parties complain on the blockchain that they did not
receive T' there is no way to determine (just by looking at the blockchain) whether they are
right, or if they are just falsely accusing the operator. The situation when a disagreement
between parties happens but there is no “blockchain-only” way to verify which party is corrupt,
is commonly referred to as a nmon-uniquely attributable fault. Finally, some Plasma protocols
require all the honest parties to immediately act on blockchain after a data unavailability
attack happened. This is called “mass exit”, although (for the reasons explained in Sec. 1.1
in this paper we call it “large forced on-chain action”)

Plasma comes in many variants and has been discussed in countless articles (see Sec. 1.1).
One of the most fundamental distinction is between the two types of Plasma systems: Plasma
Cash and Fungible Plasma. As we explain in more detail in Sec. 1.1 they both serve for the
“emulation” that we outlined above, but have different incomparable features. From one
point of view Fungible Plasma is better than Plasma Cash since it is “fungible”, which means
that the money can be arbitrarily divided and merged. On the other hand: Fungible Plasma
suffers from some problems that Plasma Cash does not have, namely the adversary can cause
a “non-uniquely attributable large forced mass actions” (we explain these notions Sec. 1.1).
The cryptocurrency community has been unsuccessfully looking for a Plasma solution that

2 In this paper we mostly use the name “Plasma” due to its brevity.
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would have the benefits of both Plasma Cash and Fungible Plasma. The main result of
this paper is that such Plasma cannot be achieved simultaneously. In other words, we
show inherent limitations of the compression technique, at least for compressing blockchain
financial transactions. Our paper can also be viewed as initiating the theoretical analysis of
lower bounds for the smart contract protocols. We write more about our contribution in
Sec. 1.2. First, however, let us provide some more introduction to blockchain and to Plasmas.

1.1 Introduction to Plasma

Let us start with providing some more background on blockchain and smart contracts.
Blockchain can be viewed as a public ledger containing timestamped transactions that have
to satisfy some correctness constraints. Moreover, several blockchains permit to execute
the so-called smart contracts [27] (or simply: “contracts”), which informally speaking, are
“self-executable” agreements described in form of computer programs. Examples of such
blockchain platforms include Ethereum, Hyperledger Fabric, or Cardano. Typically, it is
assumed that contracts are deterministic and have a public state. Moreover, they can own
some coins. Executing a contract is done by posting transactions on the blockchain and it
costs fees that depend on the computational complexity of the given operation, and on the
amount of data that needs to be transmitted to the contract.

Let us now explain the basic idea of Plasma, and introduce some standard terminology.
Since it is an informal presentation, we mix the definition of the protocol with its construction.
In the formal sections of the paper these two parts are separated (the definition appears
in Sec. 2, and the constructions in the full version of this paper [11]). As highlighted
above Plasma address the scalability problem of blockchain by keeping the massive bulk
of transactions outside of the blockchain (“off-chain”). The parties that are involved in
the protocol rely on a smart contract that is deployed on the ledger of the underlying
cryptocurrency, but they try to minimize interacting with it. Typically, this interaction
happens only when the parties join and leave the protocol, or when they disagree. Since all
parties know that in case of disagreement, disputes can always be settled on the ledger, there
is no incentive for the users to disagree, and honest behavior is enforced.

In the optimistic case, when the parties involved in the protocol play honestly, and the
off-chain transactions never hit the ledger, these protocols significantly reduce transaction fees
and allow for instantaneous executions. Off-chain protocols also resemble an idea explored in
cryptography around two decades ago under the name “optimistic protocols” [7, 1]. In this
model the parties are given access to a trusted server that is “expensive to use”, and hence
they do not want to contact it, unless it is absolutely necessary

Plasma’s operator Op provides a “simulated ledger”, in which other parties can deposit
their coins, and then perform operations between each other. The key requirement is that
its users do not need to trust the operator, and in particular if they discover that she is
cheating, then they can safely withdraw their funds. The latter is called an ezit from the
simulated ledger, and requires communication with the underlying ledger.

Plasma protocols come in different variants (see Sec. 1.1), however, they are all based
on a single framework proposed in [26]. The parties that execute Plasma are: the users
Uy,...,U,, and the operator Op. Moreover, the parties have access to a contract on the
blockchain. In our formal modeling this contract will be represented as a trusted interactive
machine I' with public state, owning some amount of coins. Each user U; has some number
of coins initially deposited in his Plasma account which is maintained by I". This number
is called a balance and is denoted with b; € Z>(. Users’ balances are changing dynamically
during the execution of the protocol. The total number of coins owned by the contract I is
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equal to the sum of all balances of its users. A vector ? := (b1,...,by) is called a Plasma
chain. When referring to the underlying blockchain (i.e. the one on which T is deployed) we
use the term main chain. Note that the operator Op has no account and only facilitates
transfers of the users. In some variants of Plasma (see Sec. 1.1) the operator blocks some
amount of coins (called operator’s collateral) that can be used to compensate the users their
losses in case she misbehaves.

Let us briefly describe the different operations that parties of the Plasma protocol can
execution during the lifetime of the system. We divide time into epochs (e.g. 1 epoch takes
1 hour). In the ith epoch the operator sends some information C; to I'. We can think of

C; as “compressed” information about the vector (by,...,b,) containing the users’ balances.

By “compressed” we mean that |C;| is much shorter than the description of (b1, ...,b,), and
usually its length is constant in every epoch. We will refer to C; as a “commitment” to
(b1,...,by). The length of C; is called the commit size.

In each epoch every user U; can request to exit, by which we mean that all b; coins from
her Plasma account get converted to the “real” coins on the main chain, and she is no longer
a part of this Plasma chain (which, in our formal modeling will be indicated by setting
b; := 1). Plasma’s security properties guarantee that every user can exit with all the coins
that she currently has in the given Plasma chain. It is often required that exiting can be
done cheaply, and in particular that the total length of the messages sent by the exiting user
to I' is small. The amount of data that a user needs to send to I' in order to exit the Plasma
chain is called the exit size.

Finally, any two users of the same Plasma chain can make transfers between each other.

Suppose Uy wants to transfer v coins from her account to U;. This transfer operation
involves only communicating with U;, and with the operator Op, while no interaction with
the contract T is needed. Under normal circumstances (i.e. when the operator is honest) the
next Plasma block that is committed to the main chain will simply have v coins deduced
from U}’s account and v coins added to Uj’s account.?

1.1.1 Challenges in designing Plasma systems

The main challenge when designing a Plasma system is to guarantee that every user can exit
with her money. This is usually achieved as follows: each C; is a commitment to (by, ..., by,),
computed using a Merkle tree. An honest operator Op is obliged to obey the following rule:

_>
Explaining commitments — each time Op sends C; to I, she sends the corresponding b :=
(b1,...,by) to all the users.

Technically, sending ? to the users can be realized, e.g., by publishing it on the operator’s
web-page (i.e.: “off-chain”). Every user U; can now check if she has the correct amount on
her account and if C; was computed correctly. Moreover, thanks to the properties of Merkle
trees, U; has a short proof of size O(log(n)) that b; has been “committed” into C;.

The above description assume that the operator is honest. If she is corrupt things get
more complicated. Note that C; sent by the operator to I' is publicly known (due to the
properties of the underlying blockchain). Hence, we can assume that all the users agree on
whether C; was published and what is its exact value. The situation is different when it
comes to the vector b that should be published off-chain. In particular, if b has not been
published, then the users have no way to prove this to I'. This is because whether some data

3 To keep things simple, in this paper we do not discuss things like “transfer receipts”, i.e., confirmations
for the sender that the coins have been transferred.
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has been published off-chain or not does not have a digital evidence that can be interpreted
by I'. This leads us to the following attack that can be carried out by a malicious operator,
and is intensively studied by the cryptocurrency community (see, e.g., [3]).

Data unavai_l)ability attack — in this attack the corrupt operator publishes C; but does not
publish b .

Note that this attack has no extra cost for the operator because from the point of view of the
smart contract I', the operator bghaves honestly, and hence the users cannot complain to I'
and request, e.g., that Op sends b to I'. Furthermore determining if this attack happened is
“subjective”, i.e., every user U; has to detect it herself. Moreover, in case of data unavailability
it is impossible for I' to determine whether U; or Op is dishonest, since a sheer declaration
of U; that Op did not send him the data obviously cannot serve as a proof that it indeed
happened. This leads to the following definition.

Non-uniquely attributable faults — this refers to the situation when the contract has to
intervene in the execution of the protocol (because the protocol is under attack), but it
unable to determine which party misbehaved (see, e.g., [2]).

Non-uniquely attributable faults appear typically in situations when a party claims that it
has not received a message from another party. In contrast if a contract ¢s able to determine
which party is corrupt then we have a uniquely-attributable fault. A typical example of
such a fault is when a party signs two contradictory messages. Unfortunately, non-uniquely
attributable faults are hard to handle in real life, since it is not clear which party should pay
the fees for executing the smart contract, or which party should be punished for misbehaving.
In particular, what is unavoidable in such a case is that a malicious party P can force
another participant P’ to lose money on fees (potentially also loosing money herself). This
phenomenon is known as griefing [2].

When a user realizes that the operator is dishonest, then she often needs to start quickly
interacting with I' in order to protect her coins. This action has to be done quickly, and has
to be performed by each honest user. This leads to the following definition.

Forced on-chain action of size o — this term refers to the situation that honest parties who
did not intend to perform an exit are forced by the adversary to quickly interact with T,
and the total length of the messages sent by them to I' is «. Informally, when « is large
(e.g. & = Q(n)) we say this is a mass forced on-chain action.

Note that this definition talks about all honest “parties”, and hence it includes also the
case when the operator is honest, but it is forced to act because of the behavior of the
corrupt users. Typically a = Q(n) and by “quickly” we mean “1 epoch”. In most Plasma
proposals [23, 26, 4] “interacting with the smart contract” means simply exiting the Plasma
chain with all the coins. Hence, a more common term for this situation is “mass exit”. Since
in our work we are dealing with the lower bounds, we need to be ready to cover also other,
non-standard, ways of protecting honest users’ coins. For example, it could be the case that a
user U; does not exit immediately, but, instead, keeps her coins in a special account “within
I'” and withdraws them much later. Of course, this requires interacting with I' immediately,
but, technically speaking does not require “exiting”. To capture such situations, we use the
term “forced on-chain action”, instead of “mass exit”.

After a party announces an exit, we need to ensure that she is exiting with the right
amount of coins. The main problem comes from the fact that we cannot require that users
exit from the last C; by sending the explanation for her balance b; to I'. This is because it
could be the case that a given user does not know the explanation b of C; (due to the data
unavailability attack). For a description of how this can be done in practice see [26, 4], or
the full version of this paper [11].
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Mass exits (or large forced on-chain actions) caused by data unavailability are considered
a major problem for Plasma constructions. They are mentioned multiple times in the original
Plasma paper [26] (together with some ad-hoc mechanism for mitigating them). They are

" with even conferences organized

also routinely discussed on “Ethereum’s Research Forum
on this topic®. One of the main reasons why the mass exits are so problematic is that they
may results in blockchain congestion (i.e., situations when too many users want to send
transactions to the underlying blockchain). Moreover, the adversary can choose to attack
Plasma precisely in the moments when the blockchain is already close to being congested
(see, e.g., [30] for a description of real-life incident of the Ethereum blockchain congestion).
She can also attack different Plasma chains (established over the same main chain) so their
users simultaneously send large amounts of data to the blockchain. In order to be prepared
for such events in real-life Plasma proposals it is sometimes suggested that the time 7" for
reacting to data unavailability should be very large (e.g. T = 2 weeks). This, unfortunately,
has an important downside, namely that also an honest coin withdrawal requires time T

Consider a non-fungible Plasma that supports coin identifiers from some set C. In a
non-fungible Plasma the Plasma chain is of a different form than before: instead of a vector
of balances b, it is a function f : C — {Uy,...,U,, L} that assigns to every coin ¢ € C its
current owner f(c) (or L if the coin has been withdrawn). Similar to before the commitment
to the value of f will be done using Merkle trees. Whenever a coin is withdrawn its identifier
c is sent to the smart contract I', and hence it becomes public. This is important for the
mechanism that prevents parties from stealing coins. To this end, each user U monitors I,
and sends a complaint whenever some (corrupt) user U’ tries to withdraw one of U’s coins.
For the contract I" to decide if ¢ belongs to U or U’ can require some additional interaction,
but the system is designed in such a way that the honest user is guaranteed that finally she
will win such dispute. Hence, every malicious attempt to withdraw someone else’s coin will
be stopped.

The main difference between Plasma Cash and Fungible Plasma is that in Plasma Cash
every user has to “protect” only her own coins. Thanks to this, even in case of the data
unavailability attack, each honest user U does not need to immediately take any action.
Instead, she can just monitor I'; and has to act only if someone tries to withdraw one of U’s
coins. Of course, the corrupt user can still force all the honest ones to quickly act on the
blockchain. However, this requires much more effort from them than in Fungible Plasma,
namely: they need to withdraw many coins of the honest users at once, hence forcing the
honest users to react. This is “fairer” both honest and malicious users have to make similar
effort. Most importantly, however, this attack has uniquely-attributable faults.

This advantage of Plasma Cash comes at a price, namely the “exit size” is not constant
anymore, as it depends on the number of coins that a user has (since each coin has to be
withdrawn “independently”). The Ethereum research community has been making some
efforts to deal with this problem. One promising approach is to “compress” the information
about withdrawn coins. For example one could assume that the identifiers in C are natural
numbers. Then a user U who owns coins from some interval [a,...,b] (with a,b € N)
could simply withdraw them by posting a message “User U withdraws all coins from the
interval [a,...,b] (instead of withdrawing each i € [a,...,b] independently). This, of course,
works only if the coins that users own can be divided into such intervals. Some authors
(in particular V. Buterin) have been suggesting “defragmentation” techniques for achieving

4 Available at: ethresear.ch.
5 See: ethresear.ch/t/data-unavailability-unconference-devcon4.
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such a distribution of coins. This is based on the assumption that the parties periodically
cooperate to “clean up” the system. Hence, it does not work in a fully malicious settings® (if
the goal of the adversary is to prevent the cleaning procedure).

1.1.2 The landscape of Plasmas

Soon after the original groundbreaking work on Plasma [26], some concrete variants have
been proposed. Some of them we already described in Sec. 1.1. Since this paper focuses
on the impossibility results, we do not provide a complete overview of the many different
variants that exist and what features they achieve. Plasma projects that are frequently
mentioned in the media are Loom, Bankex, NOCUST and OmiseGO [28, 24]. This area is
mostly developed by a very vibrant on-line community that typically communicates results
in form of so-called “white-papers”, blog articles, or post on discussion forums (such as the
“Ethereum Research Forum”, see footnote 4 on page 7). See also the diagram called “Plasma
World Map” illustrating the different flavors of Plasma in the full version of this paper [11].
A notable exception are NOCUST and NOCUST-ZKP described in [21]. This work, up
to our knowledge, is the first academic paper on this topic. It provides a formal protocol
description (with several interesting innovations such as “ Merkle interval trees”) and a
security argument. Moreover, the authors of [21] describe a version of NOCUST that puts a
collateral on the operator (this is done in order to achieve instant transaction confirmation).
The authors of [21] (see also [16]) introduce the term “commit chains”. Yet, unfortunately,
they do not define a full formal security model that we could re-use in our work.

Let us also mention some of the so-called “distributed exchanges” that look very similar to
Plasma. One example is StarkDEX (informally described in [15]), which is also based on the
idea of a central operator batching transactions using Merkle trees, and a procedure for the
users to “escape” from the system if something goes wrong. This protocol uses non-interactive
zero-knowledge protocols to ensure correctness of the operator’s actions (similar approach
has been informally sketched in the original Plasma paper [26], and has been also used in
NOCUST-ZKP [21]). While zero knowledge can be used to demonstrate that some data
was computed correctly, it cannot be used to prove that the off-chain data was published at
all. Consequently, the authors of this system also encountered the challenge of handling the
data unavailability attack. Currently, in StarkDEX this problem is solved by introducing an
external committee that certifies if data is available.” StarkDEX plans to eventually replace
the committee-based solution with an approach that is only based on trusting the underlying
blockchain. Our result however shows that in general this will be impossible, as long as
fungibility and short exits are required (unless the operator puts a huge collateral).

1.2  Our contribution and organization of the paper

We initiate the study of lower bounds (or: “impossibility results”) in the area of off-chain
protocols. Our results can also be viewed as a part of a general research program of “bringing
order to Plasma”. We believe that the scientific cryptographic community can provide
significant help in the efforts to systematize this area, and to determine the formal security
guarantees of the protocols (in a way that is similar to the work on “Bitcoin backbone” [14],
or more recently on “Mimblewimble” [13], state channels [9], or the Lightning Network [22]).

6 See ethresear.ch/t/plasma-cash-defragmentation and subsequent posts by Buterin on the Ethereum
Research Forum.
7 See their FAQs at https://www.starkdex.io.
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Investigating the limits of what Plasma can achieve is part of this process. We focus on proving
lower bounds that concern the necessity of mass forced on-chain actions, especially caused
by the attack that have no uniquely attributable faults (as a result of data unavailability).
This is motivated by the fact that such attacks are particularly important for the off-chain
protocols: since the main goal of such protocols is to move the transactions off-chain, the
necessity of quickly acting on-chain can be viewed as a big disadvantage.

We start with a formal definition of Plasma (this is done in Sec. 2). Since in this work we
are interested only in the impossibility results, our definition is very restrictive for practical
systems. By “restrictive” we mean that we make several assumptions about how the protocol
operates. For example we have very strict synchronicity rules, and in particular we only
allow the users to start the Plasma operations in certain moments (see “payment orders”
and “exit orders” phases in Sec. 2.1). Obviously, such restrictions make our lower bounds
only stronger, since they also apply to a more realistic model (without such restrictions). We
believe that fully formalizing real-life Plasma (e.g. in the style of [12, 10, 22]) is an important
future research project, but it is beyond the scope of this work.

Our main result is presented in Thm. 1, stated formally in Sec. 3. It states that in certain
cases the adversary can force mass on-chain actions of the honest users of any Plasma system.
One subtle point that we want to emphasize is that whenever we talk about “forcing actions’
on the honest users, we mean a situation when the users that did not want to exit (in a

)

given epoch) are forced to act on-chain. This is important, as otherwise our theorem would
hold trivially (one can always imagine a scenario when lots of users decide to exit Plasma
because of some other, external, reasons). The notion of “wanting to exit” is formalized by
an environment machine Z (borrowed from the Universal Composability framework [8]) that
“orders” the parties to behave in certain way.

More formally, Thm. 1 states that in Plasma either there exists an attack that provokes
a mass action, or there is an attack that requires a party that exits to post long messages on
the blockchain (i.e. this Plasma has large exits). Moreover, both attacks have no uniquely
attributable faults. Note that, strictly speaking, this theorem also covers Plasma systems
where the commit size is large (even Q(n))®, but in this case it holds trivially since the honest
operator needs to send the large commitments to I' even if everybody is honest (hence: there
is an “unprovoked” mass action in every epoch).

The most interesting practical implication of this theorem is that it confirms the need for
“two different” Plasma flavors, as long as the operator is not required to put aside a collateral
of size comparable to the total amount of coins in the system?. One way to look at it is:
either we want to have a Plasma system that does not have large exits, in which case we need
to have (non-uniquely attributable) mass actions (this is Fungible Plasma/Plasma MVP); or
alternatively we insist on having Plasma without such mass actions, but then we have to live
with large exits (as in Plasma Cash). Our theorem implies that there is no Plasma that would
combine the benefits of both Fungible Plasma and Plasma Cash, and hence can serve as a
justification why both approaches are complementary. Before our result one could hope that
the opposite is true and that, e.g., the only reason why Plasma Cash is popular is its relative
simplicity (compared to Fungible Plasma). Besides of this reason, and the general scientific
interest, we believe that our lower bound has some other important practical applications. In
particular, lower bounds often serve as a guideline for constructing new systems or tweaking

In practice, Plasma systems with unbounded commit size are not interesting since they do not bring any
advantages to the users. Moreover, they can be trivially constructed just by putting every transaction
on the main chain.

This is clearly impractical for most of the applications. Actually most of Plasma constructions assume
no such collateral at all.
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the definitions. We hope it will contribute to consolidate the countless research efforts in
constructing new Plasma systems'® and simplify identifying proposals that are not sound
(e.g., because they claim to achieve the best of both worlds).

Let us also stress that our Thm. 1 does not rely on any assumptions of complexity-
theoretic type and does not use a concept of “black-box separations” [18]. This means
that the lower bound that we prove cannot be circumvented by introducing any kind of
strong cryptographic assumptions. Hence, of course, it also holds for Plasmas that use
non-interactive zero-knowledge (like NOCUST-ZKP [21] or StarkDEX [15]). Moreover, we
manage to generalize our lower bound. Thm. 1 even holds for Plasma systems where the
operator deposits a certain amount of coins for compensating parties for malicious behavior
(e.g., it could be used when a malicious operator does not explain commitments).

For completeness, we also describe (in the full version of this paper [11]) “positive” results,
i.e., two protocols that satisfy our security definition (Plasma Cash and Fungible Plasma).
We stress that we do not consider it to be a part of our main contribution, and we do not
claim novelty with these constructions, as they strongly rely on ideas published earlier (in
particular [26, 5, 23, 4, 21, 15]).

Notation. For a formal definition of an interactive (Turing) machine and a protocol, see,
e.g., [8]. In our modeling the communication between the parties is synchronous and happens
in rounds (see Section 2). During the execution of the protocol a party P may send messages
to a party P’. A transcript of the messages sent from P to P’ is a sequence {(m;,t;)}¢_,,
where each m; was sent by P to P’ in the ¢;-th round. A transcript of messages sent from
some set of parties to a different set of parties is a sequence {(W;, W/, m;,t;)}i_,, where
each m; was sent by W; to W/ in the ¢;-th round. By the length of a transcript we mean its
bit-length (in some fixed encoding). We sometimes refer to it also as communication size
(between the parties).

2 Plasma Payment Systems

A Plasma payment system (or “Plasma” for short) is a protocol II consisting of a randomized
non-interactive machine ¥ representing the setup of the system; deterministic!'! interactive
poly-time machines Uy, ..., U,, Op representing the users and the operator of the Plasma
system (respectively); and a deterministic interactive poly-time machine T", which represents
the Plasma contract. We use the notation U = {Us,...,U,} to refer to the set of users of
the system. The contract machine I' has no secret state, and moreover its entire execution
history is known to all the parties. We can think of it as a Turing machine that keeps the
entire log of its execution history, and moreover all the other parties in the system have a
(read-only) access to this log. The Plasma system comes with a parameter v € R>q called
operator’s collateral fraction. Informally, this parameter describes the amount of coins that
are held by the operator as a “collateral” (as a fraction of user’s coins). These coins can be
used to cover users’ losses if the operator misbehaves. This is formally captured in Section 2.2
(see “limited responsibility of the operator”). If v = 0 then we say that the operator is not
collateralized. We introduce the notion of collateral in order to make our results stronger
and to cover also cases of real-life systems that have such a collateral (e.g., NOCUST, see
Section 1.1).

105ee https://ethresear.ch/c/plasma/.

1 We assume that these machines are deterministic, since all their internal randomness will be passed to
them by W.
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The protocol is attacked by a randomized poly-time adversary .A. We assume that A can
corrupt any number of users and the operator except the contract I' (hence I' can be seen
as a trusted third party). Once A corrupts a party P, she learns all its secrets, and takes
full control over it (i.e. she can send messages on behalf of P). A party that has not been
corrupted is called honest. An execution of a Plasma payment system II is parametrized by
the security parameter 1*.

To model the fact that users perform actions, we use the concept of an environment Z
(which is also a poly-time machine) that is responsible for “orchestrating” the execution of
the protocol. The environment can send and receive messages from all the parties (it also has
full access to the state of I'). It also knows which parties are corrupt and which are honest.
For an adversary A and an environment Z, a pair (A, Z) will be called an attack (on a given
Plasma system IT). The contract machine I' can output special messages (attribute-fault, P)
(where P € U U {Op}). In this case we say that ' attributed a fault to P. We require that
the probability that " attributes a fault to an honest party is negligible in A\. An attack
(A, Z) has no attributable faults if the probability that T' attributes a fault to some party is
negligible.

2.1 Protocol operation

Let us now describe the general scheme in which a Plasma payment protocol operates. In
this section, we focus only on describing what messages are sent between the parties. The
“semantics” of these messages, and the security properties of the protocol are described
in Section 2.2. We assume that all the parties are connected by authenticated and secret
communication channels, and a message sent by a party P in the ith round, arrives to P’ at
the beginning of the (i + 1)th round. The communication is synchronous and happens in
rounds. It consists of three stages, namely: “setup”, “initialization”, and “payments”. The
execution starts with the setup stage. In this stage parameter 1* is passed to all the machines
in II. Upon receiving this parameter, machine ¥ samples a tuple (Yu,,...%v,, Y op, ¥r)
(where each ¢p € {0,1}*). Then for each P € {Uy,...,U,, Op,T'} the string ¢ p is passed to

P. Afterwards, the parties proceed to the initialization stage. In this stage the environment

generates a sequence (aM™, ..., a"'*) of non-negative integers and passes it to the contract T
(recall that the state of I' is public, and hence, as a consequence, all the parties in the system

init»
i

also learn the a!™’). Then the protocol proceeds to the payment stage. This stage consist of

an unbounded number of epochs. Each ith epoch (for ¢ = 1,2,...) is divided into two phases.

Payment phase. In this phase the environment sends a number of payment orders to the

users (for simplicity we assume that this happens simultaneously in a single round).

Each order has a form of a message “(send,v,U;)”, where v € Z>¢, and U; € Y. Tt
can happen that some users receive no payment orders in a given epoch. It is also ok
if a user receives more than one order in an epoch. Informally, the meaning of these
messages is as follows: if a user U; receives a “(send,v,U;)” message, then she is ordered
to transfer v coins to user U;. We require that this message can only be sent if none of
b; and b; are equal to L (i.e.: if none of U; and U; “exited”, see below). The parties
execute a multiparty sub-protocol. During this executions some of the users send a
message “(received, v, U;)” to the environment Z. This sub-protocol ends when I' outputs
a message payments-processed.

Exit phase. In this phase the environment sends exit orders to some of the users (again:
this happens in a single round). Each such order is simply a message “exit”. Informally,
sending this message to some U; means that U; is ordered to exit the system with all
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her coins. The environment can send an exit message to U; only if b; # L (i.e. U; has
not already “exited”, see below). The parties again execute a multiparty protocol. The
protocol ends when I' outputs a sequence

{(exited, U, vi; )}ty @

where m is some non-negative integer, and each U;; € U and v;; € Z>o. For each U;;
in Eq. (1) we say that U;; ewited (with v;; coins), and we let b;, := L. We require that
no party can exit more than once. In other words: it cannot happen that two messages
(exited, U;,v) and (exited, U;,v') are issued by T'.

We make some assumptions on the communication between the parties. Informally we require
that if U and U’ are some honest users, then the procedure of transferring coins from U to
U’ is done by a “sub-protocol” involving only parties in the set U and U’. Since we do not
have a concept of “sub-protocol” this is formalized as follows:

Communication locality. Two honest users U and U’ exchange messages only in epochs in
which they do transactions between each other (i.e. a message (send, U,v) is sent by Z to
U’, for some v).

This requirement is very natural since Plasma is supposed to work even when an arbitrary
set of users is corrupt. Hence, relying on the other users’ help in financial transfers would be
impractical. Up to our knowledge all “pure” Plasma proposals in the literature satisfy this
requirement. On the other hand: it may not hold if we incorporate some techniques that
assume some type of cooperation between larger sets of parties (e.g. consensus mechanisms).
Examples include: Buterin’s Plasma Chash defragmentation (where a large set of users has
to regularly cooperate in order to “clean-up” the system), and StarkDEX’s “data availability
committee” (see Section 1.1), if we treat the committee members as “users”. One way to
view our result is that it implies that such techniques are inherent for every fungible Plasma.

2.2 Security properties

During the interaction with the protocol, the environment keeps track of balances of honest
users (we do not define balances of dishonest users). Formally, for each honest user U; it
maintains a variable b; € Z>o U {L} (a balance of U;), where the symbol “_L” means that a
party exited. It also maintains a variable ¢ € Z>¢ (initially set to 0) that is used to keep track
on the amount of coins that have been withdrawn. The rules for maintaining these variables
are as follows. Initially, for each i := 1,...,n the environment Z lets b; := ai"*. Whenever T
outputs (exited, U;, v) (for some U; and v) we let b; := L and increment ¢ by v. Each time Z
receives a message (received, v, U;) from some honest Uj, it adds v to b; (recipient balance)
and, if U; (sender) is honest too, subtracts v from b;. We require that the environment never
issues an order if U; or U; exited (i.e. if b = L or b; = L). The environment also never
sends an order exit to the same user more than once, and it never sends exit order to a user
U, that already exited (i.e. such that b; = 1). We have the following security properties.

Responsiveness to “send” orders. Suppose Op,U;, and U; are honest, and the environment
issued an order (send,v,U;) to U; then in the same epoch party U; sends a message
“(received, v, U;)” to the environment.

Correctness of “received” messages. Suppose U; and U; are honest and U; outputs a
message “(received,v,U;)”, then environment has issued an order (send,v,U;) to U;
in the same epoch.
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Responsiveness to “exit” orders. Suppose U; is honest and the environment issued an order
exit to U; then in the same epoch T' outputs a message (exited, U;, v) (for some v).

No forced exits if operator honest. Suppose Op and U; are honest and I' outputs message
(exited, U;, v) at epoch r, then environment has sent the order exit to U; in the same
epoch.

Fairness for the users. If ' outputs a message (exited, U;, v) (for some honest U;) then v > b;
(where b; is the current balance of U;).

Limited responsibility of the operator. If the operator is honest, then the total amount of
coins that are withdrawn from the system is at most al"® + - - - + ai"*. Otherwise (if she
is dishonest) the total amount of coins that are withdrawn from the system is at most
[(1+7)(aMt + .-+ a"t)]. This definition captures the notion of operator’s collateral,
and the fact that it is used (to cover users’ losses) if the operator is caught cheating.

If an attack (A, Z) succeeds to violate any of the requirements from this section, then we
say that (A, Z) broke a given Plasma payment system. We say that II is secure if for every
environment (A, Z) the probability that A breaks II is negligible in 1*.

As explained in the introduction, certain attacks on Plasma are of particular importance,
due to the fact that they are hard to handle in real life. We say that (A, Z) force an on-chain
action of size M (in some epoch i) if the following happened. Let T be the set of honest
parties that did mot receive any order from Z in epoch i. Then the total length of messages
sent by parties from 7T to I' is at least M. As explained in the introduction, the term that is
more standard than “forced on-chain action” is “mass exit”. See 1.1 for a discussion why
“forced on-chain action” is a better term when impossibility results are considered.

3  Our main result

We now present Thm. 1, which is the main result of this paper. The main implication of this
theorem is that for every non-collateralized Plasma system there exists an attack that provokes
a mass forced on-chain action, i.e., it forces the honest users to make large communication
with the contract even if they did not receive any exit order from the environment (see point
1 in the statement of the theorem), unless a given Plasma system has large exits (point 2).
Moreover, this can be done by an attack that has no uniquely attributable faults. This fact
cannot be circumvented by putting a collateral on the operator, unless this collateral is very
large.

» Theorem 1 (Mass forced on-chain actions or large exits without uniquely attributable faults

are necessary). Let I be a secure Plasma payment system with n users and let v > 0 be the

operator’s collateral fraction. Then either

1. there exists an attack on II that causes a forced on-chain action of size greater than
(n — [yn] -logyn — 5)/4 with probability at least 1/16 + negl(X), or

2. there exists an attack on II such that one honest user, when ordered to exit by the
environment, makes communication to T' of size at least (n — [yn] - logyn — 5)/4 with
probability at least 1/16 4 negl(\).

Moreover, both attacks have no uniquely attributable faults.

One way to look at this theorem is as follows. First, consider a non-collateralized Plasma, i.e.,
assume that v = 0. Let P! be a class of non-collateralized Plasma that with overwhelming
probability do not have uniquely attributable forced on-chain actions (of any size larger than

0). In this case point 1 cannot hold, and hence, every Plasma IT € P! needs to satisfy point 2.

This means that there exists an attack on every IT € P! such that one honest user, when
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ordered to exit by the environment, makes communication to I' of size at least (n — 5)/4
with probability around 1/16. Or, in other words: every Plasma from class P! must have
a large exist size with noticeable probability. We know Plasma with such properties: it is
essentially Plasma Cash (see the full version of this paper [11])

On the other hand, let P? be a class of non-collateralized Plasmas that with high
probability have no large exits, in the sense of point 2 of Thm. 1. This means that point 1
has to hold, which implies that every II € P? needs to have large (at least around (n — 5)/4)
non-uniquely attributable mass forced on-chain actions. Plasma with such properties is called
Fungible Plasma (see the full version of this paper [11]) Hence, informally speaking, Thm. 1
states that we cannot have the “best of two types of Plasma” simultaneously.

If we consider non-zero collaterals, i.e., we let v > 0 then the situation does not improve
much, unless the collateral fraction is large, i.e., the total collateral blocked by the operator
is at least around n - v = n/logy n'?. This essentially means that we cannot get around
the bounds from Thm. 1 by introducing collateral, unless the amount of coins blocked in
operator’s collateral is of roughly the same order as the total amount of coins stored by
the users.

Note that even trivial versions of Plasma “fit” into Thm. 1. For example, consider Plasma
in which the operator always puts all the transactions on-chain. Of course, the details would
need to be worked out, but clearly such a Plasma can be made secure. The existence of such
a trivial Plasma does not contradict our Thm. 1, since it clearly satisfies point 1: a large
number of transfers in one epoch will cause a forced mass on-chain action (by the operator).
The same also holds if every user needs to put each transaction on-chain.

4  Proof of Theorem 1

Before we present the proof let us introduce some auxiliary machinery. This is done in the
next section.

4.1 Isolation scenario

Let IT be a Plasma payment system, let Z be an environment, and let YW be some subset of
the users of II. We now introduce a procedure that we call isolation of WW. In this scenario
II is executed as in the normal execution, except that we “isolate” the users W C U from the
operator. More precisely: all the messages sent between any U € W and the operator Op
are dropped, i.e., they never arrive to the destination. This scenario can be viewed as an
“attack” although it does not fit into the framework from Section 2.1, since it violates the
assumption that messages sent by an honest party to another honest party always arrive to
the destination.

Although the isolation scenario cannot be performed within our model, it can be “emulated”
by corrupting either the operator Op, or the users from W. In the first case we corrupt the
operator and instruct him to behave as if she was honest, except that she does not send
messages to the users in W and ignores all messages sent by these users. This will be called
the data unavailability (DU) attack against W by the operator. In the second, symmetric
case (the pretended data unavailability (PDU) attack by W on the operator) we corrupt the
users in W. Then, every user U € W behaves as if she was honest, except that she does not
send messages to Op, and ignores all messages from Op.

12 This is because we need to have v = 1/ log, n to make the expression “(n — [yn] - logy n — 5)/4” equal
to 0.
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If this is the only type of malicious behavior, then “from the point of view” of all the
other parties, and, most importantly, from the point of view of the contract machine T, it is
impossible to say who is corrupt (the users in W or the operator Op). More precisely, we
have the following.

» Observation 1. Let II be a Plasma payment system and consider the attack that isolates
users in some set W from the operator. Let Z be an arbitrary environment and let f:v()lje
be the random variable denoting the transcript of messages received by I'. Moreover, let
’7}1/]\3}"5 and 73%’2 be the random wvariable denoting the transcripts of messages received by

T in the PDU attack and in the DU attack (respectively), both with environment Z. Then

W,Z d +W,Z d W, Z
7;3U — ’isolate 7;3DU .

This fact is useful in the proof of the following simple lemma.

» Lemma 1. Fiz an arbitrary Plasma I1. Let VW be some set of users. Suppose A performs
a DU attack against W or a PDU attack by W (either by corrupting the operator or by
corrupting the users), and let Z be arbitrary. Then the attack (A, Z) has no uniquely
attributable faults.

Proof. From the security of II we get that if the users are corrupt then the probability that
T" attributes a fault to them is negligible. Symmetrically, if the operator is corrupt then the
probability that I' attributes a fault to her is negligible. By Observation 1 the transcripts of
messages received by I' in both attacks are distributed identically, so the probability that T"
attributes any fault has to be negligible. <

4.2 Proof overview

Fix some secure Plasma payment system II that works for n users. We construct either an
attack such that

[ the set of all honest users makes communication to I' of size]
Pr at least (n — [yn] -logyn — 5)/4 > 1/16 + negl()), (2)
(without receiving an exit order from the environment)

or an attack such that

[ user U;, when ordered to exit by the environment, makes 7
Pr communication to I' of size at least > 1/16 + negl(\). (3)

L (n — [yn] -logyn —5)/4 |

In both of these attacks the amount of coins given to the users is n, but our proof can be
generalized to cover cases when it is required that the amount of coins is larger than n (we
comment more on this at the end of Section 4). On the other hand, the proof does not go
through in the (unrealistic) case when this amount is very small (sublinear in n).

The attacks that we construct in both cases ((2) and (3)) have no uniquely attributable
faults. Note that for n < 5 Eq. (3) holds trivially, and therefore we can assume that n > 5.
Let T denote the family of all non-empty proper subsets of {Us,...,U,}, i.e. sets V such
that @ €V € {Us,...,U,} (note that U; € V). Since we assumed that n > 5 we have
that log |T| = log,(2"~! — 2) > n — 2, and, in particular, T is non-empty. In the proof we
construct an experiment (denoted by Exp(V) and presented in details in the full version
of this paper [11]) and analyze its performance, assuming that ) is sampled uniformly at
random from Y. Depending on this analysis, the experiment Exp(V) can be “transformed”
into an attack that satisfies Eq. (2) or Eq. (3).

72:15

ITCS 2021



72:16

Exploring the Limits of Plasma

Experiment Exp()) “simulates” an execution of two epochs of Plasma II. In the first
epoch the adversary isolates the users in {Us,...,U,} \ V from the operator (in the attacks
that we construct later this will be done either by corrupting these users, or the operator).
The environment gives 1 coin to each user U € U. Then, in the “payment” phase of the
first epoch all the users from V transfer their coins to U;. In the “exit” phase of the first
epoch user U; receives an exit order from the environment and consequently exits with all
her coins. Note that in the first epoch every party behaved honestly (except of the isolation
attack against the users in {Us,...,U,}\ V), and hence U; is guaranteed to successfully exit
with her coins (she has 1 such coin from the “initialization” phase, and |V| coins that were
transferred to her by the users in V).

Of course the honest parties from {Us,...,U,} \ V will usually realize that they are
isolated from the operator. As a reaction to this they may send some messages to I'. This, in
turn can provoke the other parties to react by sending their messages to I'. Hence, in general
there can be a longer interaction between all the parties and I in this phase. Let 7' be the
transcript of the messages sent by the users in {Us,...,U,} \ V to I in both phases, let 772
be the messages sent by the users in V and the operator to I' in both phases, let 72 be the
messages sent by U; to I' in the “payment” phase, and finally let 7% be the messages sent by
Ui to I in the “exit” phase. The first epoch of the experiment Exp()) and the transcripts
are depicted on Fig. 1.

users not isolated from the operator users isolated from the operator
users V users {Uy, ..., U3\ V
operator Op user U
) ® e © o o e @ @ @
D N B 1 N B B inital accounts

payment phase
main
chain

exit phase

accounts after
the first epoch

Figure 1 The first epoch of the experiment Exp(V). Gray circles denote the parties, and the 7*’s
denote the transcripts of the communication with I" (see, e.g., Section 4.2 for their definitions).

Before discussing the second epoch of the experiment, let us note that in the first epoch
the only way in which we deviate from the totally honest execution is the “isolation” of
{Us,...,U,}\ V. This will later allow us to be “flexible” and corrupt different sets of parties
({Op} or {Us,..., Uy} \ V) depending on the results of our analysis of Exp()). This will
be different in the second epoch, where we always assume that parties from V are corrupt.
This is ok because while constructing the attacks that satisfy (2) or (3) we will only use the
first epoch of Exp()). The only reason to have the second epoch of Exp()) is to make sure
that the users have to send large amounts of data to I' during the first epoch, as otherwise
corrupt V can steal the money (in the second epoch).

Let us now present some more details of the second epoch. Initially we corrupt all the
users from V and “rewind” them to the state that they had at the beginning of the first
epoch. This is done in order to let them “pretend” that they still have their coins. We then
let all of them try to (“illegally”) exit with these coins. Technically, “rewinding a user U” is
done via a procedure denoted Reconstructy. This procedure outputs the state that U would
have at the end of the “payment” phase if she did not transfer her coins to U;. To make
it look consistent with the state of I', this procedure takes as input the transcripts defined
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above. Then, each user U € V tries to exit (in the “exit” phase) from her state computed
by Reconstructy. Also the honest users try to exit (they receive an “exit” order from the
environment). Let Q be the set of users that managed to exit with at least 1 coin. From the
security of Plasma we get that Q is equal to the set of honest users ({Us,...,U,}\ V) plus a
small (of size at most [yn]) subset D of dishonest users.

The key observation is now that all that is needed to “simulate” the second epoch of Exp(V)
are the transcripts 7, 72,72, and 7*. On the other hand V can be approximately computed
from @Q (i.e., we can compute V with elements D missing, where |D| = [yn]). Hence the
variable (71, 72,72, T%) carries enough information to “approximately” describe V. Thanks
to this we can construct a “compression” algorithm that “compresses” a random V <-s$ 7Y by
simulating the first epoch of Exp(V) and obtaining (7%, 72,72, 7*) and then “decompresses”
it by simulating the second epoch, and computing the output as V := {Us,...,U,} \ Q (the
additional [yn] elements can be simply listed as an additional output of C and passed to D
as input that has to be added to the output of D).

On the other hand, clearly (for completeness we show this fact in the full version of this
paper [11]), a random V +$ YT with high probability cannot be compressed to a string that is
significantly shorter than log|Y| > n — 2. This implies that with a noticeable probability
(TH T2 T3, TY| ~ n — [yn]logyn, where [yn]logyn is the number of bits needed to
describe set D.

Obviously, the above fact implies that for at least one i € {1,...,4} we have that
T? > (n — [yn]logyn)/4 with noticeable probability for concrete parameters). The rest
of the proof of Thm. 1 is based on the case analysis of the implications of “T* > n/4” for
different 4’s. More concretely, we show that in the first three cases (i = 1,2, and 3) we can
construct attacks that satisfy Eq. (2), and in case ¢ = 4 — an attack that satisfies Eq. (3).
All these attacks are based on the experiment Exp(}V), but are only using its first epoch. In
the proof we exploit the fact that the only malicious behavior that happens in this epoch is
the “isolation” (i.e., not sending messages). Hence, we can use Observation 1 and “switch”
between scenarios when different groups of parties are corrupt (while still getting the same
transcripts 7¢). Moreover these attacks do not have uniquely attributable faults.

The detailed proof of Thm. 1 can be found in the full version of this paper [11].

» Remark 1. Our proof would also go through even if the total balance of the users a is
arbitrarily large. The only difference would be that instead of giving 1 coin to every user,
the environment would give to each user U; (for i > 1) |a/n] coins, and to user U; the
environment would give the remaining coins (say). The rest of the proof would be essentially
identical to the proof of Thm. 1.

» Remark 2. Although the attack presented requires two epochs, the second epoch only
captures the scenario where the underlying protocol is insecure and hence it can be seen as a
“thought experiment”. In other words, if the honest parties do not make large communication
with the contact I' in the first epoch, they risk loosing their coins in the second epoch.
Therefore, under the assumption that the plasma system is indeed secure and consequently
parties make large communication with I in the first epoch, the adversary cannot steal any
coins in the second epoch and hence the second epoch would become obsolete.

Conclusion

The main contribution of this work is that we have shown that the distinction between
Plasma Cash and Fungible Plasma is inherent, i.e., we ruled out the possibility of constructing
Plasma that combines benefits of both Plasmas. We believe that, besides of the general
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scientific interest, our work (especially ruling out existence of some Plasma constructions)
can help the practical blockchain community in developing Plasma protocols, and in general
can bringing more understanding in what is possible and what is impossible in the area of
off-chain protocols, and under what assumptions. It can also serve as a formal justification
why “hybrid” approaches (such a “rollups”) [6] may be needed in real life. We also hope that
this work may expand the scope of theory by identifying a new area where theoretical lower
bounds can have direct impact on the real life problems.
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