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—— Abstract

Edit distance similarity search, also called approximate pattern matching, is a fundamental problem
with widespread database applications. The goal of the problem is to preprocess n strings of length
d, to quickly answer queries g of the form: if there is a database string within edit distance r of g,
return a database string within edit distance cr of q.

Previous approaches to this problem either rely on very large (superconstant) approximation
ratios ¢, or very small search radii r. Outside of a narrow parameter range, these solutions are not
competitive with trivially searching through all n strings.

In this work we give a simple and easy-to-implement hash function that can quickly answer queries
for a wide range of parameters. Specifically, our strategy can answer queries in time 5(d3rn1/c).
The best known practical results require ¢ > r to achieve any correctness guarantee; meanwhile,
the best known theoretical results are very involved and difficult to implement, and require query
time that can be loosely bounded below by 24". Our results significantly broaden the range of
parameters for which there exist nontrivial theoretical bounds, while retaining the practicality of a
locality-sensitive hash function.
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1 Introduction

For a large database of items, a similarity search query asks which database item is most
similar to the query. This leads to a basic algorithmic question: how can we preprocess the
database to answer these queries as quickly as possible?

Similarity search is used frequently in a wide variety of applications. Unfortunately, for
databases containing high-dimensional items, algorithm designers have had trouble obtaining
bounds that are significantly faster than a linear scan of the entire database. This has often
been referred to as the “curse of dimensionality.” Recent work in fine-grained complexity has
begun to explain this difficulty: achieving significantly better than linear search time would
contradict the strong exponential time hypothesis [2,14, 35].

However, these queries can be relaxed to approximate similarity search queries. For an
approximation factor ¢, we want to find a database item that is at most a ¢ factor less similar
than the most similar item.
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Approximate similarity search is fairly well-understood for many metrics; see [3] for
a survey. For example, in Euclidean space we have theoretical upper bounds [4,12], fast
implementations [5,17,21,25,27,37], and lower bounds for a broad class of algorithms [4].
Many of these results are based on locality-sensitive hashing (LSH), originally described
in [20]. A hash is locality-sensitive if similar items are likely to share the same hash value.

When a database contains text items, a natural notion of similarity is edit distance: how
many character inserts, deletes, and replacements are required to get from the query string to
a database string? In fact, edit distance similarity search is frequently used in computational
biology [22,24,33], spellcheckers [7,38], computer security (in the context of finding similarity
to weak passwords) [28], and many more applications; see e.g. [6].

Surprisingly, finding an efficient algorithm for approximate similarity search under edit
distance remains essentially open. Known results focus on methods for exact similarity search
(with ¢ = 1), which incur expensive query times, and on embeddings, which require very
large — in fact superconstant — approximation factors c.

However, recent work provides a potential exception to this. The CGK embedding [8]
is simple and practical, and embeds into Hamming space with stretch O(r) — in particular,
it does well when the distance between the closest strings is fairly small. EmbedJoin, a
recent implementation by Zhang and Zhang [39], showed that the CGK embedding performs
very well in practice. EmbedJoin first embeds each string into Hamming space using the
CGK embedding. Then, the remaining nearest neighbor search! is done using the classic bit
sampling LSH for Hamming distance. Each of these steps — both the CGK embedding and
the bit sampling LSH — is repeated several times independently. This method gave orders of
magnitude better performance than previous methods. Furthermore, their results greatly
outperformed the worst-case CGK analysis.

Thus, several questions about using CGK for edit distance similarity search remained.
Zhang and Zhang used several CGK embeddings, performing a sequence of Hamming
distance hashes for each — can these two steps be combined into a single method to improve
performance? Meanwhile, their tests focused on practical datasets; is it possible to provide
worst-case bounds for this method, ensuring good performance for any dataset?

In this paper we answer these questions in the affirmative. In doing so, we give the first
locality-sensitive hash for edit distance with worst-case guarantees.

1.1 Results

The main result of our paper is the first locality-sensitive hash for edit distance. We analyze
the performance of this hash when applied to the problems of approximate similarity search
and approximate nearest neighbor search, obtaining time bounds that improve on the
previously best-known bounds for a wide range of important parameter settings.

Let n be the number of strings stored in the database. We assume that all query strings
and all database strings have length at most d. We assume d = O(n) and the alphabet size
is O(n).2

Zhang and Zhang investigated similarity joins, in which all similar pairs in a set are returned, rather
than preprocessing for individual nearest neighbor queries. However, their ideas can be immediately
generalized.

Usually d and the alphabet size are much smaller. If this assumption does not hold, it is likely that a
completely different approach will be more successful: for example, if d = poly(n), then the method
used to calculate the edit distance between two strings becomes critically important to the query time.
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Our first result analyzes the time and space required by our LSH to solve the approximate
similarity search problem. This data structure works for a fixed radius r: for each query, if
there exists a database point within distance 7, we aim to (with good probability) return a

database point within distance cr. We use O(f(n)) as a shorthand for O(f(n) - polylogf(n)).

» Theorem 1. There exists a data structure answering Approzimate Similarity Search queries
under Edit Distance in O(d3"n'/¢) time per query, and O(d3"n*+1/¢) preprocessing time and
space.

We also give a data structure that answers queries where the distance r to the closest
neighbor is not known during preprocessing. We call this the approximate nearest neighbor
search problem.

» Theorem 2. There exists a data structure answering Approximate Nearest Neighbor Search
queries under Edit Distance in O(d3"n'/¢) time per query and O(dn?) preprocessing time
and space.

Implications for Related Problems. Our results lead to immediate bounds for similarity
join, where all close pairs in a database are computed; see e.g. [34,39,40].

Much of the previous work on approximate similarity search under edit distance considered
a variant of this problem: there is a long text T, and we want to find all locations in T that
have low edit distance to the query g. Our results immediately apply to this problem by
treating all d-length substrings of T as the database of items.

Frequently, practical situations may require that we find all of the neighbors with distance
at most r, or (similarly) the k closest neighbors. See e.g. [1] for a discussion of this problem
in the context of LSH. Our analysis immediately applies to these problems. However, if there
are k desired points, the running times given in Theorems 1 and 2 increase by a factor k.

1.2 Comparison to Known Results

In this section, we give a short summary of some key results for edit distance similarity
search. We focus on algorithms that have worst-case query time guarantees. We refer the
reader to [39,40] as good resources for related practical results, and [6,26,31] for a more
extensive discussion of related work on the exact problem (with ¢ =1).

Exact Similarity Search Under Edit Distance. Exact similarity search under edit distance
(i.e. with ¢ = 1) has been studied for many years. We focus on a breakthrough paper of
Cole, Gottlieb, and Lewenstein that achieved space O(n5"(1.5r + logn)”/r!) and query time
O(d + 6" (1.5r +logn)"/r!) [15].> We will call this structure the CGL tree. These bounds
stand in contrast to previous work, which generally had to assume that the length of the
strings d or the size of the alphabet |%| was a constant to achieve similar bounds. Later work
has improved on this result to give similar query time with linear space [9].

Before comparing to our bounds, let us lower bound the CGL tree query time — while
this gives a lower bound on an upper bound (an uncomfortable position since we are
not specifying its exact relationship to the data structure), it will be helpful to get a
high-level idea of how the performance of the CGL tree compares to our results. Using
Sterling’s approximation, and dropping the +d term, we can simplify the query time to

3 These bounds are a slight simplification of the actual results using the AM-GM inequality.
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O((6e/r)" (1.5r+logn)") < O((9e)" (14 (log n)/(1.5r))"). From this final equation, we can see
that even for very small n, the guaranteed query time is at least (9e)” > 24"; if logn > 1.5r
it can become much worse.

Comparing the (9¢)" term with our query time of 6(d3rn1/c), it seems that which is
better depends highly on the use case — after all, we’re exchanging a drastically improved
exponential term in r for a polynomial term in n.

However, there is reason to believe that our approach has some significant advantages.
First, for ¢ bounded away from 1, with moderate n and small d, the CGL query time rapidly
outpaces our own even for small r. Let’s do a back-of-the-envelope calculation with some
reasonable parameters — we ignore constants here, but note that slight perturbations in
r easily make up for such discrepancies. If we have 400k strings of 500 characters* with
c =15, 6"(L.5r +logn)"/r! > d3"n'/¢ for r > 4. In other words, even for very small search
radii and fairly large n (where the CGL tree excels), the large terms in the base of r can
easily overcome a polynomial-in-n term. Second, the constants in the CGL tree seem to be
unfavorable: the CGL tree uses beautiful but nontrivial data structures for LCA and LCP
that may add to the constants in the query time. In other words, it seems likely that the
CGL tree is most viable for even smaller values of r than the above analysis would indicate.

We suspect that these complications are part of the reason why state-of-the-art practical
edit distance similarity search methods are based on heuristics or embeddings, rather than
tree-based methods (see e.g. [40]).

Approximate Similarity Search Under Edit Distance. Previous results for approximate
similarity search with worst-case bounds used either product metrics, or embeddings into L;.

In techniques based on product metrics, each point is mapped into several separate metrics.
The distance between two points is defined as their maximum distance in any of these metrics.
Using this concept, Indyk provided an extremely fast (but large) nearest-neighbor data
structure requiring O(d) query time and O(ndl/<1+log C)) space for any ¢ > 3 [19].

Embedding into L;. Because there are approximate nearest neighbor data structures for
5 an embedding into L; with
stretch o leads to an approximate nearest neighbor data structure with query time n®/¢to(l)
for ¢ > a.

A long line of work on improving the stretch of embedding edit distance into L ultimately
resulted in a deterministic embedding with stretch exp(y/logd/loglogd) [32].

More recently, the CGK embedding parameterized by r instead of d, giving an embedding

L, space that require n'/¢°() time and n!t1/¢te() gpace,

into Hamming space® with stretch O(r) [8]. However, the constants proven in the CGK
result are not very favorable — the upper limit on overall stretch given in the paper is 2592r
(though this may be improvable with tighter random walk analysis). Thus, using the CGK
embedding, and then performing the standard bit sampling LSH for Hamming distance on
the result, gives an approximate similarity search algorithm with query time n25927/¢to(1)
so long as ¢ > 2592r. We describe in detail how our approach improves on this method in

Appendix 1.3.

These are the parameters of the UniRef90 dataset from the UniProt Project http://www.uniprot.org/,
one protein genome dataset used as an edit distance similarity search benchmark [39,40]; other genomic
datasets have (broadly) similar parameters.

This can be improved to n'/(¢=D+e() ang pl+1/Ce=D+o(D) time and space respectively using data-
dependent techniques, and can be further generalized to other time-space tradeoffs; see [4].

Hamming space and L; have essentially the same state-of-the-art similarity search bounds.


http://www.uniprot.org/
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Zhang and Zhang [39] implemented a modified and improved version of this approach.

Their results far outperformed the above worst-case analysis. Closing this gap between
worst-case analysis and practical performance is one contribution of this work.

There is a lower bound of Q(logd) for the stretch of any embedding of edit distance into
L, [23]. This implies that embedding into L; is a hopeless strategy for ¢ < logd, whereas
we obtain nontrivial bounds even for constant ¢. Thus, for this parameter range, using a
locality-sensitive hash is fundamentally more powerful than embedding into L.

Locality-Sensitive Hashing. An independent construction of an LSH for edit distance was
given by Margais et al. [29]. Their work uses a fundamentally different approach, based
on an ordered min-hash of k-mers. Their results include bounds proving that the hash is
locality-sensitive; however, they do not place any worst-case guarantees on the gap between
the probability that close points collide and the probability that far points collide.

Exponential search cost. To our knowledge, a trivial brute force scan is the only algorithm
for approximate similarity search under edit distance whose worst-case cost is not exponential
in the search radius r. While we significantly improve this exponential term, removing it
altogether remains an open problem. A recent result of Cohen-Addad et al. gave lower bounds
showing that, assuming SETH, there exist parameter settings such that cost exponential
in r is required for any edit distance similarity search algorithm [14]. Their results do not
immediately imply that the exponential-in-r term in our query time is necessary (since the
n'/¢ term satisfies their lower bound for sufficiently small ¢); however, this may give some
indication as to why removing this exponential term has proven so challenging.

1.3 Technical Overview and Comparison to the CGK Embedding

Our hash function follows the same high-level structure as the CGK embedding [8]. In fact,
our hash reduces to their embedding by omitting the appended character $, and setting
pe = 1/2 and p, = 0 (these parameters are defined in Section 3).

However, our hash has two key differences over simply using the CGK embedding to
embed into Hamming space, and then using bit sampling. These differences work together to
allow us to drastically improve the n2°927/¢+o(1) hound we obtained in Section 1.2.

First, we modify p,; that is, we modify the probability that we stay on a single character
x; of the input string for multiple iterations. Second, we combine the embedding and bit
sampling into a single step — this means that we can take the embedding into account when
deciding whether to sample a given character.

Combining into one step already gives an inherent improvement. After embedding, we do
not want to sample a “repeated” character — this is far less useful than sampling a character
the last time it is written, after the hash has attempted to align them. Thus, we only sample
a character (with probability 1 — p,) the last time that character is written.

However, the significant speedup comes from using repeated embeddings — in short, at a
high level, each LSH in our approach consists of a single CGK embedding with a single bit
sampling LSH. If a single embedding is used, the performance of the algorithm as a whole
has the expected stretch of that single embedding as a bottleneck. As a result, the expected
stretch winds up in the exponent of n, and ¢ must be at least as large as the expected stretch
to guarantee correctness. By repeatedly embedding, our bounds instead depend (in a sense)
on the best-case stretch over the many embeddings.
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These repeated embeddings is where these two differences — modifying p, and integrating
into a single LSH — act in concert. A back-of-the-envelope calculation implies that a CGK
embedding will have stretch” 2 with probability at least 1/4". This analysis seems difficult
to tighten: if we perform 4" embeddings, how well will we do in the cases that don’t have
O(1) stretch? Meanwhile, any constant loss in the analysis winds up in the exponent of n.
Overall, with the CGK embedding as a black box, a full analysis would require an analysis
(with tight constants) detailing the probability that an embedding has any given stretch.
Instead, by combining these approaches in a single LSH, we can instead model the entire
problem as a single random walk in a two-dimensional grid.

Overall, a combined approach gives better worst-case performance, and a unified (and
likely simpler) framework for analysis.

2 Model and Preliminaries

We denote the alphabet used in our problem instance as 3. We use two special characters L
and $, which we assume are not in X. The hash appends $ to each string being hashed; we
call a string $-terminal if its last character is $ and it does not contain another $.

We index into strings using 0-indexed subscripts; xg is the first character of x and z; is
the 7 + 1st character. We use z[i] to denote the prefix of = of length ¢; thus x[i] = z¢ ... x;—1.
Finally, we use z oy to denote the concatenation of two strings = and y, and |z| to denote
the length of a string x.

2.1 Edit Distance

Edit distance is defined using three operations: inserts, deletes, and replacements. Given
a string * = x1x9...74, inserting a character o at position 7 results in a string =’ =
T1...T;—10%;...x4. Replacing the character at position ¢ with o results in

' =mx1...2; 10211 ...1q. Finally, deletion of the character at position 7 results in 2’ =
T1...Ti—1Tit1 ... Tq. We refer to these three operations as edits. The edit distance from x
to y is defined as the smallest number of edits that must be applied to x to obtain y. We
denote this as ED(z, y).

2.2 Model and Problem Definition

In this paper we solve the approximate similarity search problem under edit distance, which
can be defined as follows.

» Definition 3 (Approximate Similarity Search Under Edit Distance). Given a set of n strings
S and constants ¢ and r, preprocess S to quickly answer queries of the form, “if there exists
ay €S with ED(q,y) <r, return a 3y’ € S with ED(q,y’) < cr with probability > 1/10.”

The above is sometimes called the approximate near neighbor problem. The constant
1/10 is arbitrary and can be increased to any desired constant without affecting our final
bounds.

Oftentimes, we want to find the nearest database item to each query rather than para-
meterizing explicitly by 7.

7 To be more precise, with probability 1/4™ one string with distance r from the query will have embedded
Hamming distance r, while all strings with distance z will have embedded Hamming distance > z/2.
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» Definition 4 (Approximate Nearest Neighbor Search Under Edit Distance). Given a set
of n strings S and a constant c, preprocess S to quickly answer queries of the form, “for
the smallest v such that there exists a y € S with ED(q,y) < r, return a y' € S with
ED(q,y") < er with probability > 1/10.”

For most previous LSH-based approaches, efficient Nearest Neighbor Search algorithms
follow immediately from Approximate Similarity Search algorithms using the black box
reduction of Har-Peled, Indyk, and Motwani [18]. However, the exponential dependence on r
in our bounds requires us to instead use a problem-specific approach.

2.3 Locality-Sensitive Hashing

A hash family is locality sensitive if close elements are more likely to hash together than far
elements. Locality-sensitive hashing is one of the most effective methods for approximate
similarity search in high dimensions [4, 10, 18, 20].

» Definition 5 (Locality-Sensitive Hash). A hash family H is (r,cr,p1, p2)-sensitive for a
distance function d(z,vy) if

for all x1, y1 such that d(x1,y1) <1, Prpep(h(x1) = h(y1)) > p1, and
for all xa, yo such that d(xa,y2) > cr, Prpey (h(z1) = h(y1)) < pa.

Some previous work (i.e. [11,16]) has a stricter definition of locality sensitive hash: it
requires that there exists a function f such that Pr(h(z) = h(y)) = f(d(z,y)). Our hash
function does not satisfy this definition; the exact value of x and y is necessary to determine
their collision probability (see Lemma 16 for example).

A Note on Concatenating Hashes. Most previous approaches to nearest neighbor search
begin with an LSH family that has p1,ps = 2(1). A logarithmic number of independent
hashes are concatenated together so that the concatenated function has collision probability
1/n. This technique was originally developed in [20], and has been used extensively since;
e.g. in [1,4,13].

However, in this paper, we use a single function each time we hash. We directly set the
hash parameters to achieve a desirable p; and py (in particular, we want ps =~ 1/n). This is
due to the stray constant term in Lemma 15. While our hash could work via concatenating
several copies of a relatively large-probability® LSH, this would result in a data structure
with larger space and slower running time. One interesting implication is that, unlike many
previous LSH results, our running time is not best stated with a parameter p = log p/log p2
— rather, we choose our hashing parameters to obtain the p; and ps to give the best bounds
for a given r, ¢, and n.

3 The Locality-Sensitive Hash

Each hash function from our family maps a string x of length d with alphabet ¥ to a string
h(z) with alphabet ¥ U { L} of length O(d + logn). The function scans over = one character
at a time, adding characters to h(z) based on the current character of x and the current
length of h(z). Once the function has finished scanning x, it stops and outputs h(x).

At a high level, for two strings x and y, our hash function can be viewed as randomly
guessing a sequence of edits 7', where h(z) = h(y) if and only if applying the edits in T to
x obtains y. Equivalently, one can view the hash as a random walk through the dynamic

8 Although less than constant — Lemma 14 and the assumption that p < 1/3 implies p1 < (1/3)".
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programming table for edit distance, where matching edges are traversed with probability 1,
and non-matching edges are traversed with a tunable probability p < 1/3. We discuss these
relationships in Section 4.1.

Note the contrast with the CGK embedding, which uses a similar mechanism to guess
the alignment between the two strings for each mismatch, rather than addressing each edit
explicitly. This difference is key to our improved bounds; see Section 1.3.

Parameters of the Hash Function. We parameterize our algorithm using a parameter
p < 1/3. By selecting p we can control the values of p; and py attained by our hash (see
Lemmas 14 and 15). We will describe how to choose p to optimize nearest neighbor search
performance for a given 7, ¢, and n in Section 4.3. We split p into two separate parameters
pa and p,. defined as p, = \/p/(1+ p) and p, = /p/(v/1+ p — /). Since p < 1/3, we have
pa < 1/2 and p, < 1. For the remainder of this section, we will describe how the algorithm
behaves using p, and p,. The rationale behind these values for p, and p, will become clear
in the proof of Lemma 13 — in short, our choice of p, and p, ensures that each type of edit is
guessed with the same probability.

Underlying Function. Each hash function in our hash family has an underlying function
that maps each (character, hash position) pair to a pair of uniform random real numbers:
p:XU{$} x{1,...,8d/(1 —ps) +6logn} — [0,1) x [0,1).” We discuss how to store these
functions and relax the assumption that these are real numbers in Section 4.5.

The only randomness used in our hash function is given by the underlying function.'®
In particular, this means that two hash functions hy and hs have identical outputs on all
strings if their underlying functions p; and ps are identical. Thus, we pick a random function
from our hash family by sampling a random underlying function. We use h,(z) to denote
the hash of z using underlying function p.

The key idea behind the underlying function is that the random choices made by the
hash depend only on the current character seen in the input string, and the current length of
the output string. This means that if two strings are aligned — in particular, if the “current”
character of z matches the “current” character of y — the hash of each will make the same
random choices, so the hashes will stay the same until there is a mismatch. This is the
“oblivious synchronization mechanism” used in the CGK embedding [8].

3.1 How to Hash

A hash function h is selected from the family H by sampling a random underlying function p.
We denote the hash of a string  using p as h,(x). The remainder of this section describes
how to determine h,(x) for a given x and p.

To hash z, the first step is to append $ to the end of x to obtain x o $. We will treat
z < x o $ as the input string from now on — in other words, we assume that x is $-terminal.
Let i be the current index of  being scanned by the hash function. We will build up h,(z)
character-by-character, storing intermediate values in a string s. The hash begins by setting
1 =0, and s to the empty string.

9 Adding $ to the alphabet allows us to hash past the end of a string — this helps with edits that append
characters.
107n fact, the underlying function is a generalization of the random string used in the CGK embedding.
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Algorithm 1 Calculating h,(z).

1: 140

2: Create an empty string s

3: while ¢ < |z| and |s| < 8d/(1 — p,) + 6logn do
(r1,72)  plas)

5 if r1 < p, then

6 Append 1 to s

7: else if o < p, then
8
9

o

Append 1 to s

: 14—1+1
10: else
11: Append z; to s
12: 14—1+1

13: return s

T = abe Is]
hz)=lallll g 0 1 2 3 4 5

y = bac a [(0.1,0.7) (0.9,0.6) (0.1,0.7) (0.6,0.8) (0.2,0.3) (0.5,0.6)
h(y) = Lallll b |(0.6,0.3) (0.8,0.3) (0.8,0.2) (0.9,0.4) (0.1,0.1) (0.1,0.5)

z = cba ¢ |(0.7,0.6) (0.5,0.9) (0.1,0.9) (0.2,0.8) (0.7,0.4) (0.4,0.6)
h(z) = cL La$ $ |(0.1,04) (0,0.1) (0.1,0.3) (0.8,0.7) (0.9,0.5) (0.6,0)

Figure 1 Example of how to hash three strings z, y, and z with underlying function p; (given in
the table on the right). We use ¥ = {a, b, c} and p = 1/8, so po = 1/3 and p, = 1/2. For simplicity,
we round the values of p1 to the first decimal place, and only give p1 for |s| < 5.

The hash function repeats the following process while i < |z| and!! |s| < 8d/(1 — pa) +
6logn. The hash first stores the current value of the underlying function based on z; and |s|
by setting (r1,72) < p(z;,|s|). The hash performs one of three actions based on 7 and ry;
in each case one character is appended to the string s. We name these cases a hash-insert,
hash-replace, and hash-match.

If r1 < p,, hash-insert: append 1 to s.

If 1 > p, and ry < p,, hash-replace: append L to s and increment i.

If r1 > p, and 79 > p,, hash-match: append z; to s and increment .

When i > |z| or |s| > 8d/(1 — p,) + 6logn, the hash stops and returns s as h,(z).
We provide pseudocode for this method in Algorithm 1, and an example hash in Figure 1.

4  Analysis

In this section we show how analyze the hash given in Section 3, proving Theorems 1 and 2.

We begin in Section 4.1 with some structure that relates hash collisions between two
strings « and y with sequences of edits that transform z into y. We use this to bound the
probability that x and y collide in Section 4.2. With this we can prove our main results in
Sections 4.3 and 4.4. Finally we discuss how to store the underlying functions in Section 4.5.

"' The requirement |s| < 8d/(1 — p,) + 6logn is useful to bound the size of the underlying function in
Section 4.5. We show in Lemma 6 that this constraint is very rarely violated.
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4.1 Interpreting the Hash

In this section, we discuss when two strings « and y hash (with underyling function p) to
the same string h,(x) = h,(y).

We define three sequences to help us analyze the hash. In short, the transcript of x and
p lists the decisions made by the hash function as it scans = using the underlying function p.
The grid walk of x, y, and p is a sequence based on the transcripts (under p) of x and y — it
consists of some edits, and some extra operations that help keep track of how the hashes of
x and y interact. Finally, the transformation of z, y, and p is a sequence of edits based on
the grid walk of z, y, and p.

Using these three sequences, we can set up the basic structure to bound the probability
that = and y hash together using their edit distance. We use these definitions to analyze the
probability of collision in Section 4.2.

Transcripts. A transcript is a sequence of hash operations: each element of the sequence is
a hash-insert, hash-replace, or hash-match. Essentially, the transcript of  and p, denoted
7(z, p), is a log of the actions taken by the hash on string z using underlying function p.

We define an index function i(z, k, p). The idea is that i(x, k, p) is the value of ¢ when
the kth hash character is written when hashing x using underlying function p.

We set i(z,0,p) = 0 for all  and p. Let (r1x,72k) = p(Ti(ak,p), k). We can now
recursively define both 7(z, p) and i(z, k, p). We denote the kth character of 7(z, p) using
Ti(x, p).

If r1k < pa, then i(x, k + 1, p) =i(z, k, p), and 7 (z, p) = hash-insert.

If 11 > po and ro i < pp, then i(x,k + 1, p) = i(x, k, p) + 1, and 7 (x, p) = hash-replace.

If 11, > po and ro i > pr, then i(z,k + 1,p) = i(z, k, p) + 1, and 73 (x, p) = hash-match.

A transcript 7(z, p) is complete if |7(x, p)| < 8d/(1 — pa) + 6logn.
» Lemma 6. For any string x of length d, Pr,[r(z, p) is complete] > 1 —1/n?.

Proof. If 7(x, p) has £ hash-insert operations, then |7(z, p)| < d4£. We bound the probability
that £ > 7d/(1 — p,) + 6logn.

For each character in x, we can model the building of 7(z, p) as a series of independent
coin flips. On heads (with probability p,), ¢ increases; on tails the process stops. Thus we
expect 1/(1 — p,) hash-insert operations for each character of x, and at most d/(1 — p,)
hash-insert operations overall.

Using standard multiplicative Chernoff bounds (i.e. [30, Exercise 4.7]), the probability
that £ > 7d/(1 — p,) + 6logn is at most exp(—(6d(1 — p,) + 6logn)/3) < 1/n. <

Grid Walks. A grid walk g(x,y, p) for two strings = and y and underlying function p is a
sequence that helps us examine how h,(z) and h,(y) interact — it is a bridge between the
transcript of z, y and p, and the transformation induced by x, y, and p (which is a sequence
of edits). We formally define the grid walk, and discuss how it corresponds to a random walk
in a graph. This graph is closely based on the dynamic programming table for z and .
The grid walk is a sequence of length max{|r(x, p)|,|7(y,p)|}. The grid walk has an
alphabet of size 6: each character is one of {insert, delete, replace, loop,match, stop}. At
a high level, insert, delete, and replace correspond to string edits — for example, insert
corresponds to the index of x being incremented while the index of y stays the same (as if
we inserted the corresponding character into y). Loop corresponds to both strings writing L
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stop

Figure 2 This figure shows G(z,y) for x = abc$ and y = cab$. For clarity, all edge labels are
ommited and stop edges are partially transparent.

(i,4) (i,4)

delete

loop loop

Stop
qIeSUT

(i,j+1) (Z+1,+1) (i7j+1) (’L+1,+1)
J O J

(a) stop (b) stop

Figure 3 The edges for a single node (4, j) with ¢ < [x| — 1 and j < |y| — 1. (a) represents the
edges if x; # y;; (b) represents the edges if z; = y;.

without increasing i; the process “loops” and we continue with nothing changed except the
length of the hash. match corresponds to the case when both hashes simultaneously evaluate
the same character — after a sequence of loop operations, they will match by both writing
out either the matching character or L to their respective hashes. stop is a catch-all for all
other cases: the strings write out different characters, the hashes are no longer equal, and
the analysis stops.

We define a directed graph G(z,y) to help explain how to construct the walk. Graph
G(z,y) is a directed graph with |z||y| + 1 nodes, corresponding roughly to the dynamic
programming table between z and y. We label one node as the stop node. We label the
other |z||y| nodes using two-dimensional coordinates (i, j) with 0 <14 < |z|, and 0 < j < |y|.

We now list all arcs between nodes. We label each with a grid walk character; this will
be useful for analyzing g(z,y, p). Consider an (7,7) with 0 <i < |z|—1and 0 <j < |y| — 1.
For any (4, j) with x; # y;, we place five arcs:

a delete arc from (i,7) to (i + 1,7),
j)to (i+1,5+1),

,J) to (i,j +1),
to (i,7), and
t

a replace arc from (4,

an insert arc from (4

(
(
a loop arc from (4, j)
a stop arc from (7, ) to the stop node.
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Table 1 This table defines a grid walk for non-matching characters in strings = and y, given the

corresponding transcripts.

| @) | e | @y ]
hash-replace | hash-replace replace
hash-replace | hash-insert delete
hash-insert | hash-replace insert
hash-insert hash-insert loop
hash-match - stop
- hash-match stop

These arcs are shown in Figure 3a. For any (,j) with z; = y;, we place two edges: a match
arc from (i,7) to (i + 1,5+ 1), and a loop arc from (4, ) to (4,J); see Figure 3b.

The rightmost and bottommost nodes of the grid are largely defined likewise, but arcs
that lead to nonexistent nodes instead lead to the stop node.!? For 0 < j < |y| — 1 there
is an insert arc from (|z| — 1,5) to (|| — 1,5 + 1) a stop arc, delete arc, and replace
arc from (|| — 1,7) to the stop node, and a loop arc from (x| —1,5) to (Jz| — 1,4). For
0 < i < |z| —1, there is a delete arc from (i, |y| —1) to (¢+1,|y| — 1), a stop arc, an insert
arc, and a replace arc from (i, |[y| — 1) to the stop node, and a loop arc from (4, |y| — 1) to
(4, |yl = 1). Finally, node (|z| —1,|y| — 1) has a loop arc to (|z| — 1,|y| — 1). See Figure 2.

The stop node has (for completeness) six self loops with labels match, insert, replace,
delete, loop, and stop.

We now define the grid walk g(x,y, p). We will use G(z,y) to relate g(x,y, p) to h,(x)
and h,(y) in Lemmas 7 and 8.

We determine the kth character of g(z,y, p), denoted gx(x,y,p), using 7 (z,p) and
Te(Y, p), as well as ;g k.p) and Yi(y.k.p)- For k > min{|7(z, p)|,|7(y, p)I}, gr (7, y, p) = stop.

If (a0 k,p) 7 Yi(y,k,p)» We define gx(x,y, p) using Table 1.

If Zi(a,1,0) = Yi(y,k.p)> then (z, p) = 1 (y, p). If 7(2, p) = 7% (y, p) is a hash-insert, then
gk(x,y, p) = Loop; otherwise, g (z,y, p) = match.

We say that a grid walk is complete if both 7(x, p) and 7(y, p) are complete. We say that
a grid walk is alive if it is complete and it does not contain stop.

The next lemma motivates this definition: the grid walk defines a path through the grid
corresponding to the hashes of z and y.

» Lemma 7. Consider a walk through G(x,y) which at step i takes the edge with label
corresponding to g;(x,y, p). Assume k is such that the prefix g(x,y, p)[k] of length k is alive.
Then after k steps, the walk arrives at node (i(x, k, p),i(y, k, p)).

Proof. Our proof is by induction on k. We prove both that the walk arrives at node
(i(z, k, p),i(y, k,p)), and that the walk is well-defined: the next character in g(z,y, p) always
corresponds to an outgoing edge of the current node.

For the base case k = 0 the proof is immediate, since (i(z,0, p),i(y,0,p)) = (0,0).
Furthermore, node (0,0) has an outgoing match edge if and only if 2y = yo (otherwise it
has an outgoing insert, delete, and replace edge); similarity, go(z,y, p) = match only if
xo = Yo (the rest of the cases follow likewise).

12Since « and y are $-terminal, these nodes never satisfy x; = y; except at (|z| — 1,|y| — 1)
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Assume that after k — 1 steps, the walk using g(z,y, p)[k — 1] arrives at node (i(z, k —
1,p),i(y, k — 1,p)). We begin by proving that the walk remains well-defined. We have
gr—1(x,y, p) = match only if Z;; k—1,p) = Yi(y,k—1,p); in this case (i(z,k —1,p),i(y,k —1,p))
has an outgoing match edge. We have g_1(z,y,p) = insert (or delete or replace) only
if @i k—1,p) # Yi(y,k—1,p); again, node (i(x,k —1,p),i(y,k — 1,p)) has the corresponding
outgoing edge. All nodes have outgoing loop and stop edges.

Now we show that after k steps, the walk using g(z,y,p)[k] arrives at node
(i(x, k, p),i(y, k, p)). We split into five cases based on gx_1(z,y, p) (if gx—1(z,y, p) = stop
the lemma no longer holds).

replace: We have 74 (x, p) = hash-replace, and 74 (y, p) = hash-replace. Thus, i(z, k, p) =
i(x,k—1,p)+ 1 and i(y, k,p) =i(y,k — 1,p) + 1. In G(z,y), the edge labeled replace
leads to node (i(z,k —1,p) + 1,i(y,k — 1,p) + 1).

match: We have 7 (x, p) = hash-replace, and 74 (y, p) = hash-replace. Thus, i(z, k, p) =
i(x,k—1,p) + 1 and i(y, k,p) = i(y,k —1,p) + 1. In G(x,y), the edge labeled match
leads to node (i(z,k —1,p) + 1,i(y,k — 1,p) + 1).

delete: We have 7 (x, p) = hash-replace, and 7 (y, p) = hash-insert. Thus, i(x, k, p) =
i(x,k—1,p)+ 1 and i(y, k, p) = i(y, k — 1,p). In G(z,y), the edge labeled insert leads
to node (i(x,k —1,p) + 1,i(y, k — 1, p)).

insert: We have 74 (z, p) = hash-insert, and 7 (y, p) = hash-replace. Thus, i(z, k, p) =
i(x,k—1,p) and i(y, k,p) = i(y,k — 1,p) + 1. In G(z,y), the edge labeled insert leads
to node (i(z,k —1,p),i(y, k — 1,p) + 1).

loop: We have 7i(x, p) = hash-insert, and 74(y, p) = hash-insert. Thus, i(z,k, p) =
i(z,k—1,p) and i(y, k, p) = i(y, k —1,p). In G(x,y), the edge labeled loop leads to node
(i(z, k= 1,p),i(y, k —1,p)). «

With this in mind, we can relate grid walks to hash collisions.

» Lemma 8. Let x and y be any two strings, and p be any underlying function where both
7(x, p) and 7(y, p) are complete.

Then h,(x) = h,y(y) if and only if g(z,y, p) is alive. Furthermore, if h,(x) = h,(y) then
the path defined by g(x,y, p) reaches node (|z|, |yl).

Proof. If direction: Assume that h,(z) = h,(y); we show that the path defined by g(z,y, p)
is alive and reaches (|z|, |y]).
First, g(x,y, p) must be alive: gx(z,y,p) = stop only when ;1 ) 7# Yi(y,k,p) and

either 7 (z, p) = hash-match or 74 (y, p) = hash-match, or when &k > min{|7(z, p)|, |7(y, p)|}-

Since iz k. p) (resp. yi(y’k,p)) is appended to the hash on a hash-match, this contradicts
hy(z) = h,(y). Furthermore, we must have |7(z, p)| = |7(y, p)| because |7 (z, p)| = |h,y(z)| =
()| = I7(y, )l

Since 7(z, p) and 7(y, p) are complete, i(z, |7(x, p)| -1, p) = |z| and i(y, 7(y, p) — 1, p) = [y|.

Thus, by Lemma 7, the walk reaches (|z|, |y])-

Only If direction: We show that if h,(x) # h,(y) then g(z,y, p) is not alive. Let k be
the smallest index such that the kth character of h,(x) is not equal to the kth character
of h,(y). At least one of these characters cannot be L; thus either 74 (x, p) = hash-match,

or 7% (y, p) = hash-match. If 2 1) # Yi(w.k,p)» then gi(x,y, p) = stop and we are done.

Otherwise, (4 k,p) = Vi(y,k,p); thus 7%(x, p) = 71 (y, p), and the kth character of both h,(z)
and h,(y) 18 Ti(z,k,p) = Yi(y,k.p)- But this contradicts the definition of k. <

We now bound the probability that the grid walk traverses each edge in G(x,y).
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» Lemma 9. Let x and y be any two strings, and for any k < 8d/(1 —p,) + 6logn let Ej be
the event that i(x, k, p) < |x|, i(y,k,p) < |y, and ;g k. p) 7 Yity.k,p)- Then if Prp[E] > 0,
the following four conditional bounds hold:

Prlgi(z,y,p) = loop | Ex] = pj

P

Prlgk(z,y, p) = delete | Ex] = pa(1l — pa)pr
P

Pr(gk(z,y, p) = insert | Ex] = pa(1 — pa)pr
P

Pr(gi(z,y, p) = replace | Ex] = (1 — pa)’p;.
P

Proof. We have |7(x,p)| > k and |7(y, p)| > k from Ej. Thus:

Pr,(7x(x, p) = hash-insert | Ei) = pq

Pr, (7% (x, p) = hash-replace | Ei) = (1 — pa)pr

Pr,(7x(x, p) = hash-match | Ej) = (1 — pa)(1 — py).
The respective probabilities for 7 (y, p) hold as well. Combining these probabilities with
Table 1 gives the lemma. |

Transformations. We call a sequence of edits for a pair of strings  and y greedy if they can
be applied to z in order from left to right, and all operations are performed on non-matching
positions. We formally define this in Definition 10. With this in mind, we can simplify
a sequence of edits for a given x and y, with the understanding that they will be applied
greedily.

A transformation is a sequence of edits with position and character information removed:
it is a sequence consisting only of insert, delete, and replace. We let T'(z,y) be the string
that results from greedily applying the edits in 7" to x when x does not match y. We say
that a transformation is wvalid for strings = and y if the total number of delete or replace
operations in 7T is at most |z|, and the total number of insert or replace operations in T’
is at most |y|. The following definition formally defines how to apply these edits.

» Definition 10. Let x and y be two $-terminal strings, and let T be a transformation that
1s valid for x and y.

If T is empty, T(x,y) = x. Otherwise we define T'(x,y) inductively. Let T' =T[|T| — 1]
be T' with the last operation removed, let o = Ti7|—y be the last operation in T, and let i be
the smallest index such that the ith character of T'(x,y) is not equal to y;. Position i always
exists if T'(x,y) # y because x and y are $-terminal; otherwise i = 0.13

We split into three cases depending on o. If o0 = insert, we obtain T(z,y) by inserting
y; at position i in T'(x,y). If o = delete, we obtain T(x,y) by deleting the ith character of
T'(z,y). Finally, if o = replace, we obtain T(x,y) by replacing the ith character of T'(x,y)

We say that a transformation T solves x and y if T is valid for z and y, T(z,y) = y, and
for any ¢ < |T|, the prefix T = Ti] satisfies T"(x, y) # y.

A classic observation is that edit distance operations can be applied from left to right,
greedily skipping all matches. The following lemma shows that this intuition applies to
transformations. Since Definition 10 does not allow characters to be appended onto the end
of x, we use the appended character $ to ensure that there is an optimal transformation
between any pair of strings.

13 The case where i is reset to 0 is included for completeness and will not be used in the rest of the paper.
It only occurs when z is first transformed into y, and then a sequence of redundant edits (such as an
equal number of inserts and deletes) are performed.
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» Lemma 11. Let x and y be two strings that do not contain $. Then if ED(x,y) = r,
there exists a transformation T of length r that solves xo$ and yo $, and
there does nmot exist any transformation T' of length < r that solves x o $ and y o $.

Proof. We prove a single statement implying the lemma: if T is the shortest transformation
that solves z o $ and y o $, then |T| = ED(z, y).

Let o1,...0, be the sequence of edits applied to = o $ to obtain f(x 0$,y08) in
Definition 10. These operations apply to increasing indices i because T is the shortest
transformation satisfying f(x 0$,y08). Let 0; be the last operation that applies to an index
i <|x|. Let § = T[i+1](z0$,y0$) be the string obtained after applying the operations of T
through ;. Clearly, z is a prefix of §. We claim that because T is the shortest transformation,
the operations in 7' after o; must be || — |z| — 1| insert operations. Clearly there must be
at least |y — |x| — 1| operations after o; because i is increasing and only one character in y
matches the final character $ of z. By the same argument, if T has any insert or replace
operations it cannot meet this bound.

With this we have ED(z, y) < |T'| because we can apply o1, .. . , a5, followed by |j— || —1|
insert operations to x to obtain y. This totals to \f | operations overall.

We also have ED(z,y) > |ﬂ by minimality of T because any sequence of edits applied to
x that obtains y will obtain y o $ when applied to z o §. |

For a given z, y, and p, we obtain the transformation induced by x, y, and p, denoted
T(z,y,p), by removing all occurrences of loop and match from g(z,y, p) if g(z,y, p) is alive.
Otherwise, 7 (z,y, p) is the empty string.

In Lemma 12 we show that strings = and y collide exactly when their induced transform-
ation 7T solves x and y. This can be seen intuitively in Figure 2 — the grid walk is essentially
a random walk through the dynamic programming table.

» Lemma 12. Let x and y be two distinct strings and let T =T (z,y, p). Then hy(z) = h,(y)
if and only if T solves x and y.

Proof. If direction: Assume T solves x and y. Since x # y, T must be nonempty; thus
g(z,y, p) is alive. By Lemma 8, h,(z) = h,(y).

Only If direction: Assume h,(x) = h,(y); by Lemma 8 g(x,y, p) is alive.

Let g(z,y, p)[k] be the prefix of g(z,y, p) of length k, and let T* be g(z, v, p)[k] with loop
and match removed. We prove by induction that T*(z[i(x, k, p)], y[i(y, k, p)]) = yli(y, k, p)].
This is trivially satisfied for k = 0.

Assume that T 1(z[i(z,k — 1, p)],y[i(y, k — 1,p)]) = yli(y, k — 1, p)]. We split into five
cases based on the kth operation in g(z,y, p).

match: We must have ;(; ;—1,5) = Yi(y.k—1,0) and T% = T*~1. Furthermore, i(z, k, p) =

i(z,k —1,p) + 1 and i(y, k, p) = i(y,k — 1,p) + 1. Thus T*(z[i(x, k, p)], y[i(y, k, p)]) =

TE i, b — 1, ), iy k — 1, 9)]) 0 Zigo ket ) = 9lil0: )]

insert: We have i(z,k,p) = i(z,k — 1,p) and i(y, k,p) = i(y,k — 1,p) + 1. Thus,

Tr=Y(z[i(x, k, p)], y[i(y, k, p)]) = yli(y,k — 1,p)] and yi(y, k, p)] differ only in the last

character. Then T*(z[i(z, k, p)], yli(y, k, p)]) = T Y(xli(z, k — 1,p)],y[i(y, k — 1,p)]) o

Yi(y,k,p)—1 = y[l(yv kv p)]

replace: We have i(x, k, p) = i(z,k — 1,p) + 1 and i(y, k, p) = i(y, k — 1, p) + 1. Thus,

TR (x[i(z, k, p)], yli(y, k, p)]) = yli(y, k — 1,p)] © Ti(a k,p)—1 and y[i(y, k, p)] differ only

in the last character. By definition, the final character of T*~!(z[i(x, k, p)], y[i(y, k, p)]

is replaced with ¥, »,)—1, obtaining T*(zfi(z, k, p)], yli(y, k, p)]) = yli(y,k — 1,p)] o

Yi(y,k,p)—1 = y[z(y, kv p)]
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delete: We have i(xz,k,p) = i(z,k — 1,p) + 1 and i(y,k,p) = i(y,k — 1,p). Thus,
T (li(x, k, p)], yli(y, k, p)]) = yli(y, k =1, p)] 0 Ti(a i p)—1 and yli(y, k, p)] differ only in
the last character (which is deleted). Then T*(x[i(z, k, p)], y[i(y, k, p)]) = Tk_l(as[i(x, k—
Lp)],yli(y, k — 1, p)]) = yli(y, k, p)]-
loop: We have i(z,k,p) = i(x,k — 1,p), i(y, k, p) = i(y,k — 1, p), and T* = Tk~ We
immediately obtain T*(x[i(x, k, p)], yli(y, k, p)]) = yli(y, k, p)]-
By Lemma 8, g(z,y, p) reaches node (|z|,|y|), so the above shows that with k& = |g(z,y, p)|,
T(z,y) =y. <

We are finally ready to prove Lemma 13, which forms the basis of our performance
analysis.

» Lemma 13. For any $-terminal strings x and y, let T be a transformation of length t that
is valid for © and y. Then

p' —1/n? < Pr[T is a prefiz of T(z,y, p)] < p*
p

Proof. Define a grid sequence to be a sequence of grid walk operations.

Let G be the set of all grid sequences g such that g does not contain stop, and deleting
loop and match from g results in a transformation T} such that 7" is a prefix of T;. Then by
definition, if T is a prefix of T (x,y, p) then g(x,y, p) € Gr; furthermore, if g(z,y, p) € Gr
and g(x,y, p) is complete, then T is a prefix of T (z,y, p).

We begin by proving that Pr,[g(x,y,p) € Gr| = p'. We prove this by induction on ¢;
t = 0 is trivially satisfied. We assume that for any transformation 7" of length |T"| =t — 1,
we have Pr,[g(z,y, p) € Gr/] = p'~!, and prove the above for any T with |T| = t.

Let o be the last operation in T, and let 77 = T[|T| — 1] be T with ¢ removed. Thus,
g(z,y, p) € Gr only if there exist (possibly empty) grid sequences ¢’ and ¢” satisfying

g € Gr,

g" consists of loop and match operations concatenated onto the end of ¢’ o o, ending

with a match operation if ¢” is nonempty, and

g(x,y, p) consists of zero or more loop operations concatenated onto g”.

By definition of conditional probability,

Pr[g(x,y,p) € GT] =

Z (Pr[g' € Gri] - ZPr[g” €Gr | ¢ € Gp|Prlg(x,y,p) €Gr | ¢’ € GT]>.
g’ g"
We bound these terms one at a time.

Clearly there is only one ¢’ satisfying the conditions, which can be obtained by taking the
prefix of g(x,y, p) before the final insert, delete, or replace operation. By the inductive
hypothesis, - , Pr[g’ € Gr] = p*~'.

We now bound Pr[¢” € Gr | ¢ € Gr/]. The conditional means that we can invoke
Lemma 9 (as Pr[E;] = p'~! > 0).

We have Pr[¢g” € Gr | ¢ € Gp/] =Pr[g" € Gr | g oo € Gp]Pr[¢' oo € Gr | ¢’ € Grv].

We split into two cases depending on o. Recall that p, = p,/(1 — pa). Since T is valid,
if 0 = delete or o = replace we cannot have i(z, k, p) = || — 1; similarly if o = insert
or o = replace we cannot have i(y, k,p) = |y| — 1. Then by Lemma 9, if 0 = delete or
o = insert, Pr(¢’ oo € Gr | ¢ € Grv) = pa(1 — pa)p, = p2. Similarly, if o = replace,
Pr(¢ oo € Gr | ¢ € Gr) = (1 — pa)?*p? = p2. For any k such that i(z, k, p) = i(y, k, p),
gr(x,y, p) # stop by definition; meanwhile, if i(x, k, p) # i(y, k, p) then gi(z,y, p) # match.
Thus, >, Pr(¢" € Gr | g'oo € Gr) = 1.
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Finally we bound Pr[g(z,y,p) € Gr | ¢ € Gr]. Let £ be the number of operations
concatenated onto g” to obtain g(z,y, p). Then by Lemma 9,

Prlg(z,y.p) € Gr | g € Gr] = > p2t =1/(1-pl).
L

Multiplying the above bounds, we have Pr[g(z,y,p) € Gr| = p'~'p2/(1 — p?). Noting
that p = p2 /(1 — p2), we obtain Pr[g(z,vy,p) € G| = p'.
We have that if T is a prefix of T (x,y, p) then g(z,y, p) € Gr; thus

Pr[T is a prefix of T (z,y, p)] < p:.
P

Meanwhile, T is a prefix of T (z,y, p) if g(z,y, p) € Gr and g(z,y, p) is complete. By the
inclusion-exclusion principle,

Pr[T is a prefix of T (z,y, p)] = Pr[g(z,y, p) € Gr] + Prlg(x,y, p) is complete] —
Prg(z,y, p) € G or g(z,y,p) is complete] > p' + Pr[g(z, vy, p) is complete] — 1.

We have that Pr[g(z,y, p) is complete] = 1 — Pr[r(z, p) or 7(y, p) is not complete]. By union
bound and Lemma 6, Pr[g(z,y, p) is complete] > 1 — 2/n?. Substituting,
Pr[T is a prefix of T (x,y,p)] > p' — 2/n?. <

4.2 Bounds on Collision Probabilities
We can now bound the probability that two strings collide.

» Lemma 14. If z and y satisfy ED(z,y) <r, then Pr,(h,(x) = h,(y)) > p" — 2/n”.

Proof. Because ED(xz,y) < r, by Lemma 11 there exists a transformation T" of length r that
solves z and y. By Lemma 13, h induces T on z and y (which is sufficient for h(z) = h(y)
by Lemma 12) with probability p" — 2/n?. |

The corresponding upper bound requires that we sum over many possible transformations.

» Lemma 15. If x and y satisfy ED(x,y) > cr, then Pr,(h,(x) = h,(y)) < (3p)°".

Proof. Let T be the set of all transformations that solve x and y. By Lemma 12 and
Lemma 13,

T
B (b(a) = k() = 3 1T
Thus, we want to find the 7 (for the given x and y) that maximizes this probability.

Since all pairs T7,T» € T solve z and y, there is no pair 77,75 € T such that T3 is a
prefix of Ts. Thus, 7 can be viewed as the leaves of a trie of branching factor at most 3,
where each leaf has depth at least cr.

We show that without loss of generality all leaves are at depth c¢r. Consider a leaf T} at
the maximum depth of the trie ¢ > cr, and its siblings 75 and T3 if they exist. Collapse this
leaf and its siblings, replacing them instead with a leaf T}, corresponding to their parent in
the trie; call the resulting set 7'. Since we have added a transformation of length ¢ — 1 and
removed at most three of length i, this changes the total cost of 7 by at least p'~! — 3p?;
this is positive since p < 1/3. Repeating this process results in a set Tp; with all nodes at
depth cr, where Ty, gives larger collision probability than the original set 7.

There are at most 3¢ transformations in Ty, each of length ¢r. Thus Prpey (h(z) =
h(y)) < 3p°". <
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The following special case is not used in our similarity search bounds, but may be useful
in understanding performance on some datasets. In short, strings that do not have any
matching characters achieve better performance bounds. It would be interesting to see if
this analysis can be extended to other special cases.

» Lemma 16. Let x and y be two $-terminal strings with ED(z,y) > cr such that for all
i<l|z|—1andj<ly|—1, x; #yj. Then Pr,(h,(z)=h,(y)) < (2p/(1—p))".

Proof. Let 7 and 4 be arbitrary $-terminal strings of length ¢r with no other characters in
common. We use grid walks on G(Z,%) to reason about grid walks on G(z,y).

Let GR(i,7) be the set of all grid walks reaching node (7, ) in G(Z,7y). Let W(i,5) =
Prlg(Z,y, p) € GR(i,7)]. We have W (0,0) = 1.

Clearly, GR(i,j) is a subset of GR(i — 1,j) UGR(i — 1,5 — 1) UGR(i,j — 1). In fact,
using a case-by-case analysis essentially identical to that of Lemma 13,

We take W (i*,—1) = 0 = W(—1,5*) for all i* and j* so that we can state this recursion
without border cases.

We show by induction that if max i, j = £, then W (i, j) < (2p/(1 — p))’. This is already
satisfied for £ = 0.

Assume that the induction is satisfied for all W(i*, 7*) with max{i*,j*} = ¢ — 1. For all
(4,7) such that max{é, j} = ¢, at most two of (i — 1,57 — 1), (i — 1, ), and (4, j — 1) have max
£ — 1; the remaining pair has max ¢. Thus

-1 -1 ¢ ¢
- 2p 2p 2p 2p
w < — — <
(Z’])_p(lp) +p<1p) +p(1p) _<1p
All grid walks in G(z,y) that go through (|z| — 1, |y| — 1) must be in GR(|z| — 1, |y| — 1).
Since we must have max{|z|, |y|} = er + 1, the proof is complete. <

4.3 Final Running Time for Approximate Similarity Search

In this section, we describe how to get from our LSH to an algorithm satisfying Definition 3,
proving Theorem 1.

Space and Preprocessing. To preprocess, we first pick R = ©(1/p;) underlying hash func-
tions p1, p2, ..., pr. For each string x stored in the database, we calculate h,, (),...,h,,(x),
and store them in a dictionary data structure for fast lookups (for example, these can be
stored in a hash table, where each h,(x) has a back pointer to z). We set 1/p; = 3"n!/° (see
the discussion below), leading to space O(d3"n*1/¢).

We store the underlying functions p1, ps,...pr so they can be used during queries. In
Section 4.5, we show that these functions can be stored in O(|X|dR) space, which is a lower
order term if |X| = O(n).

In the common case that |X| = O(n/d), the underlying functions are cheap to store, and
we can further decrease the space. For each x, we can store a random logn-bit hash of
hy(x) for all p, rather than the full hash string of length ©(d). This gives a space bound of
O(3rntt1/e 4 dn).
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Queries. For a given query ¢, we calculate hi(q), h2(q),...,hg(q). For each database string
x that collides with ¢ (i.e. for each = such that there exists an ¢ with h,,(¢) = h,,(z)), we
calculate ED(z, ¢). We return z if the distance is at most cr. After repeating this for all R
underlying functions, we return that there is no close point.

Correctness of the data structure follows from the definition of py: if ED(gq,z) < r, then
after ©(1/p;) independent hash functions, ¢ and z collide on at least one hash function with
constant probability.

The cost of each repetition is the cost to hash, plus the number of database elements at
distance > er that collide with g. The cost to hash is O(d/(1 — p,) + logn) by definition,
and the cost to test if two strings have distance at most cr is O(der) by [36]. The number
of elements with distance > cr that collide with ¢ is at most nps in expectation. Thus our
total expected cost can be written

0 (1 ( d +logn + (dcr)np2>) .
P1 1 — Pa

This can be minimized (up to a factor O(logn)) by setting pa = 1/ner (recall that p, < 1/2).

Thus, we set py = 1/ner, which occurs at p = 1/(3(ner)/¢). Using this value of p, we
get p1 > p" = Q(1/(r3"n'/9)).
Putting this all together, the expected query time is O(d3"n1/c).

4.4 Approximate Nearest Neighbor

In this section we generalize Section 4.3 to prove Theorem 2. Let R = {i €
{1,...,d} | 3'n'/¢ < n}. We build O(logn) copies of the data structure described in
Section 4.3 for each r* € R.

Queries. We iterate through each * € R in increasing order, querying the data structure
as described above. If we find a string at distance at most ¢r* we stop and return it. If we
reach an r* such that 3" n'/¢ > n, we simply scan through all strings to check which is the
closest.

Assume the actual nearest neighbor is at distance . By Chernoff bounds, we succeed
with high probability when r* = r; that is, we return a string at distance at most cr. Thus,
the cost is at most > ._, O(d3™" n/¢) = O(d3"n'/¢) with high probability.

Space.~ We build O(logv n) copies of each data structure; thus the total space is N
Sr_,0(d3™nttY/¢) = O(dn?) by definition of r*. We obtain preprocessing time O(dn?)
immediately.

4.5 Storing Underlying Functions

Our algorithm uses a large number of fully-random, real-number hashes; this causes issues
with the space bounds since we need to store each hash. In this section we relax this
assumption.

We modify p to hash to a uniformly random element of the set {0,¢,2e¢,...,1}. Since
the domain of each p has size O(|Z|(d + logn), this means that each p can be stored in
O(|Z|1og(1/€)(d + logn)) bits of space.

Intuitively, setting e = 1/n should not affect our query bounds, while still retaining the
space bounds of Theorems 1 and 2. We show this in Lemma 17.
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» Lemma 17. With p, and p, increased by e = 1/n, and assuming d = O(n), if x and y
satisfy ED(z,y) < r, then Pr(h(x) = h(y) > Q(p"—2/n?). If 2’ and y' satisfy ED(x’,y') > er
then Pr((h(z) = h(y)) < O((3p)").

Proof. For simplicity, we let p, = p, + € and p, = p, + €.

Since p; = Q(1/(r3"n'/¢), we have (omitting constants for simplicity) p = 1/(3n/7).
Therefore, p, = \/1/(1+ 3n/7¢) > 1/n, and thus p, = p,/(1 — pa) > 1/n. Thus, p, <
Pa < Pa(l+1/n) and p, < pr < pr(1+1/n).

Let ¢ satisfy

pa(1 — Da)Dr 1— )22
p—ey < PP oy oy g p1- ey < LZPIP oy

(1—pa") (1—pa")
Then the proof of Lemma 13 gives that for any $-terminal strings z and y, and any trans-
formation T of length ¢,

(p(1 =€)t —1/n* < l;r[T is a prefix of T(x,y,p)] < (p(1+€))".

So long as (1 £ ¢€')! = ©(1) we are done. Clearly this is the case for ¢ = O(1/n) since
t <2d = O(n). We prove each bound in Equation (1) one term at a time for ¢ = O(1/n).
First inequality (recall that p, < 1/2):

/;l 1- Do /;” 1- a 1 1 T at’r

Pa(l — pa)p >pa,( pa(l+1/n))p _p PaPr P p(1— O(n)

= =p—
(1 *paQ) 1- pg n(l - pg) n(l - pa)

Second inequality:

Pa(l —Pa)pr _ Pa(1+1/0)°(1—pa)pr _ Pal(l—pa)p;
(1-pa°) L= (pa(1+1/n))? 1/(1+1/n)* —p3
_ Pl =pa)pr Pl —pa)pr
1-0(/n?) —pz ~ (1-p3)(1-0(1/n?)
= p(1 +0(1/n*)

Third inequality (since p, < 1/2, 2pa < 4(1 — pa)?):

(L= 5a)*p:” _ (L= pa(l+1/n))°p}

(= (1 —pa?)
(1 =2pa(1+1/n) +p2(1 4+ 1/n)*)p?
B (1 _pa2)
((L=pa)® =2pa/n)py _  2pap;
T R G Ty

> p(1-0(1/n))

Fourth inequality (this is largely the same as the second inequality):

(1L=pa)*p” _ (1= pa)’pr(1+1/n)’

T2 S 1= (u(simy —P+00/m%) «
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