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—— Abstract

Invariant and representation theory studies symmetries by means of group actions and is a well
established source of unifying principles in mathematics and physics. Recent research suggests its
relevance for complexity and optimization through quantitative and algorithmic questions. The
goal of the talk is to give an introduction to new algorithmic and analysis techniques that extend
convex optimization from the classical Euclidean setting to a general geodesic setting. We also point
out surprising connections to a diverse set of problems in different areas of mathematics, statistics,
computer science, and physics.
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1 Introduction

Consider a group G that acts by linear transformations on the complex Euclidean space
V = C™. This partitions V into orbits: For a vector v € V, the orbit O, consists of all
vectors of the form g - v to which the action of a group element g € G can map v.

The most basic algorithmic question in this setting is as follows. Given a vector v € V,
compute (or approximate) the smallest ¢3-norm of any vector in the orbit of v, that is,
inf{||lw||2 : w € O,}. Remarkably, this simple question, for different groups and actions,
captures natural important problems in computational complexity, algebra, analysis, statistics
and quantum information. When restricted to commutative groups G, this amount to
unconstrained geometric programming (see Section 2). In particular, this already captures
all linear programming problems!

Starting with [37, 39], a series of recent works including [38, 16, 34, 62, 2, 13] designed
algorithms and analysis tools to handle this basic and other related optimization problems
over non-commutative groups G. In all these works, the groups at hand are products of at
least two copies of rather specific linear groups (SL(n)’s or tori), to support the algorithms
and analysis. These provided efficient solutions for some applications, and through algorithms,
the resolution of some purely structural mathematical open problems.

We mention here some of the diverse applications of the paradigm of optimization over
non-commutative groups.
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1. Algebraic identities: Given an arithmetic formula (with inversion gates) in non-
commuting variables, is it identically zero?

2. Quantum information: Given density matrices describing local quantum states of
various parties, is there a global pure state consistent with the local states?

3. Eigenvalues of sums of Hermitian matrices: Given three real n-vectors, do there
exist three Hermitian n x n matrices A, B, C with these prescribed spectra, such that
A+B=C7

4. Analytic inequalities: Given m linear maps A; : R” — R™ and p1,...,pm > 0, does
there exist a finite constant C' such that for all integrable functions f; : R™ — R we
have

fweRn H;ll fz(Azx)dx <C HZZl”fl”l/pz?

These inequalities are the celebrated Brascamp-Lieb inequalities, which capture the

Cauchy-Schwarz, Holder, Loomis-Whitney, and many further inequalities.

5. Maximum Likelihood Estimation Consider a centered Gaussian random variable
Y € R™ with a covariance matrix ¥ being an element of the matrix normal model
M(p,q) ={¥1 ® ¥5 | ¥; € PD,, ¥5 € PD,}. What is the number of samples needed to
achieve almost surely the existence and uniqueness of maximum likelihood estimators?

At first glance, it is far from obvious that solving any of these problems has any relation
to either optimization or groups. However, not only symmetries naturally exist in all of
them, but they also help both in formulating them as optimization problems over groups,
suggesting natural algorithms (or at least heuristics) for them, and finally in providing tools
for analyzing these algorithms. It perhaps should be stressed that symmetries exist in many
examples in which the relevant groups are commutative (e.g., perfect matching in bipartite
graphs, matrix scaling, and more generally in linear, geometric, and hyperbolic programming);
however in these cases, standard convex optimization or combinatorial algorithms can be
designed and analyzed without any reference to these existing symmetries.

Polynomial time algorithms were first given in [37] for Problem 1 (the works [50, 27, 49]
later discovered completely different algebraic algorithms), in [13] for Problem 2 (cf. [79] and
the structural results [57, 25, 22, 21, 81, 80, 19]), in [59, 64, 68, 17, 34] for Problem 3 (the
celebrated structural result in [59] and the algorithmic results of [64, 68, 17] solved the decision
problem, while [34] solved the search problem), and in [38] for Problem 4. However the
algorithms in [38, 34, 13] remain exponential time in various input parameters, exemplifying
only one aspect of many in which the current theory and understanding is lacking. Problem 5
was recently solved by in [4, 29], proving a conjecture in [32] and generalized to tensor normal
models in [30].

The unexpected connections revealed in this study are far richer than the mere relevance of
optimization and symmetries to such problems. One type are connections between problems
in disparate fields. For example, the analytic Problem 4 turns out to be a special case of
the algebraic Problem 1. Moreover, Problem 1 has (well-studied) differently looking but
equivalent formulations in quantum information theory and in invariant theory, which are
automatically solved by the same algorithm. Another type of connections are of purely
structural open problems solved through such geodesic algorithms, reasserting the importance
of the computational lens in mathematics. One was the first dimension-independent bound
on the Paulsen problem in operator theory, obtained ingeniously through such an algorithm
in [62] (this work was followed by [46], who gave a strikingly simpler proof and stronger
bounds). Another was a quantitative bound on the continuity of the best constant C' in
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Problem 4 (in terms of the input data), important for non-linear variants of such inequalities.
This bound was obtained through the algorithm in [38] and relies on its efficiency; previous
methods used compactness arguments that provided no bounds.

We have no doubt that more unexpected applications and connections will follow. The
most extreme and speculative perhaps among such potential applications is to develop a
deterministic polynomial-time algorithm for the polynomial identity testing (PIT) problem.
Such an algorithm will imply major algebraic or Boolean lower bounds, namely either
separating VP from VNP, or proving that NEXP has no small Boolean circuits [51]. We
note that this goal was a central motivation of the initial work in this sequence [37], which
provided such a deterministic algorithm for Problem 1 above, the non-commutative analog
of PIT. The “real” PIT problem (in which variables commute) also has a natural group of
symmetries acting on it, which does not quite fall into the frameworks developed so far. Yet,
the hope of proving lower bounds via optimization methods is a fascinating (and possibly
achievable) one. This agenda of hoping to shed light on the PIT problem by the study of
invariant theoretic questions was formulated in the fifth paper of the Geometric Complexity
Theory (GCT) series [66, 67], but see [40].

In this talk, we describe the main results of the paper [15], which unifies and generalizes
the above mentioned works. A key to all of them are the notions of geodesic converity
(which generalizes the familiar Euclidean notion of convexity) and the moment map (which
generalizes the familiar Euclidean gradient) in the curved space and new metrics induced
by the group action. The paper [15] naturally extends the familiar first and second order
methods of standard convex optimization. Geodesic analogs of these methods are designed,
which, respectively, have oracle access to first and second order “derivatives” of the function
being optimized, and apply to any (reductive) group action. The first order method developed
(which is a non-commutative version of gradient descent) replaces and extends the use of
“alternate minimization” in most past works, and thus can accommodate more general group
actions. For instance, this covers the cases of symmetric tensors (bosons) and antisymmetric
tensors (fermions) with the standard action of SL(n), where alternating minimization does
not apply. The second order method developed in [15] greatly generalizes the one used for
the particular group action corresponding to operator scaling in [2]. It may be thought
of as a geodesic analog of the “trust region method” [24] or the “box-constrained Newton
method” [23, 3] applied to a regularized function. For both methods, in this non-commutative
setting, we recover the familiar convergence behavior of the classical commutative case: to
achieve “proximity” ¢ to the optimum, the first order method converges in O(1/¢) iterations
and the second order method in O(poly log(1/¢)) iterations.

As in the commutative case, the fundamental challenge is to understand the “constants”
hidden in the big-O notation of each method. These depend on “smoothness” properties
of the function optimized, which in turn are determined by the action of the group G on
the space V that defines the optimization problem. The main technical contributions of the
theory developed in [15] is to identify the key parameters which control this dependence,
and to bound them for various actions to obtain concrete running time bounds. These
parameters depend on a combination of algebraic and geometric properties of the group
action, in particular the irreducible representations occurring in it. As mentioned, despite
the technical complexity of defining (and bounding) these parameters, the way they control
convergence of the algorithms is surprisingly elegant. The paper [15] also develops important
technical tools which naturally extend ones common in the commutative theory, including
regularizers, diameter bounds, numerical stability, and initial starting points, which are key
to the design and analysis of the presented (and hopefully future) algorithms in the geodesic
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setting. As in previous works, we also address other optimization problems beyond the basic
“norm minimization” question above, in particular the minimization of the moment map, and
the membership problem for moment polytopes; a very rich class of polytopes (typically with
exponentially many vertices and facets) which arises magically from any such group action.

2 Non-commutative optimization

We now give an introduction to non-commutative optimization and contrast its geometric
structure and convexity properties with the familiar commutative setting. The basic setting is
that of a continuous group G acting linearly on an m-dimensional complex vector space V =2
C™. Think of G as either the group of n x n complex invertible matrices, denoted GL(n),
or the group of diagonal such matrices, denoted T(n).! The latter corresponds to the
commutative case and the former is a paradigmatic example of the non-commutative case.
An (linear) action (also called representation) of a group G on a complex vector space V
is a group homomorphism 7 : G — GL(V), that is, an association of an invertible linear
map 7(g): V. — V for every group element g € G satisfying m(g192) = 7(g1)7(g2) for
all g1, 92 € G.? Further suppose that V is also equipped with a Hermitian inner product
(+,+) and hence a norm ||v|| := (v, v).

Given a vector v € V' one can consider the optimization problem of taking the infimum
of the norm in the orbit of the vector v under the action of G. More formally, we define the
capacity of v (with respect to ) by

cap(v) i= inf n(g)v].

This notion generalizes the matrix and operator capacities developed in [45, 42] (to see this,
carry out the optimization over one of the two group variables) as well as the polynomial
capacity of [44]. It turns out that this simple-looking optimization problem is already very
general in the commutative case and, in the non-commutative case, captures all examples
discussed in the introduction.

Let us first consider the commutative case, G = T(n) acting on V. In this simple case,
all actions 7 have a very simple form. We give two equivalent descriptions, first of how
any representation 7 splits into one-dimensional irreducible representations, and another
describing 7 as a natural scaling action on n-variate polynomials with m monomials.

The irreducible representations are given by an orthonormal basis vy, ..., v, of V such
that the v; are simultaneous eigenvectors of all the matrices m(g). That is, for all g =
diag(g1,...,9n) € T(n) and j € [m], we have

m(g)v; = Aj(g)v;, where X;j(g) =1, ;™" (2.1)

for fixed integer vectors wi,...,w,, € Z", which are called weights and encode the simultan-
eous eigenvalues, and completely determine the action. Below we also refer to the weights of
a representation 7 of GL(n), defined as the weights of 7 restricted to T(n).

A natural way to view all these actions is as follows. The natural action of T(n) on
C™ by matrix-vector multiplication induces an action of T(n) on n-variate polynomials
V = Clz1,x2,...,2,]: simply, any group element g = diag(g,...,gn) “scales” each x; to
gix;. Note that any monomial z* = [ 2@ (where w is the integer vector of exponents)
n w (%)

=17
is an eigenvector of this action, with an eigenvalue A(g) = [[;_, g, -

! The theory works whenever the group is connected, algebraic and reductive.
2 We further assume that 7 is a morphism of algebraic groups, i.e., given by rational functions.
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Now fix m integer vectors w; as above. Consider the linear space of n-variate Laurent
polynomials (monomials may have negative exponents) with the following m monomials:
v; = x% =[], x;”". The action on any polynomial v = Z;nzl ¢;vj is precisely the one
described above, scaling each coefficient by the eigenvalue of its monomial. The norm ||v|| of
a polynomial is the sum of the square moduli of its coefficients. Now let us calculate the

capacity of this action. For any v = E;nzl cjv;,

cap(v)® = infy, . g,ece 270 loj P Ty 197 = infuern 3277, |oj[Pe s, (2:2)

where we used the change of variables x; = log |g;|?, which makes the problem convex (in
fact, log-convex). This class of optimization problems (of optimizing norm in the orbit
of a commutative group) is known as geometric programming and is well-studied in the
optimization literature (see, e.g., Chapter 4.5 in [10]). Hence for non-commutative groups,
one can view computing cap(v) as non-commutative geometric programming. Is there a
similar change of variables that makes the problem convex in the non-commutative case? It
does not seem so. However, the non-commutative case also satisfies a notion of convexity,
known as geodesic convexity, which we will study next.

2.1 Geodesic convexity

Geodesic convexity generalizes the notion of convexity in the Euclidean space to arbitrary
Riemannian manifolds. We will not go into the notion of geodesic convexity in this generality
but just mention what it amounts to in our concrete setting of norm optimization for G =
GL(n).

It turns out the appropriate way to define geodesic convexity in this case is as follows. Fix
an action 7 of GL(n) and a vector v. Then log||7(e! g)v|| is convex in the real parameter ¢
for every Hermitian matrix H and g € GL(n). This notion of convexity is quite similar to
the notion of Euclidean convexity, where a function is convex iff it is convex along all lines.
However, it is far from obvious how to import optimization techniques from the Euclidean
setting to work in this non-commutative geodesic setting. An essential ingredient we describe
next is the geodesic notion of a gradient, called the moment map.

2.2 Moment map

The moment map is by definition the gradient of the function log||w(g)v| (understood as a
function of v), at the identity element of the group, g = I. It captures how the norm of the
vector v changes when we act on it by infinitesimal perturbations of the identity.

Again, we start with the commutative case G = T(n) acting on the multivariate Laurent
polynomials. For a direction vector h € R™ and a real perturbation parameter ¢, let et =
diag (e, ..., e""). Then, for G = T(n), the moment map is the function p: V' \ {0} — R",
defined by the following property:

p(v) - h = d— [log Hﬂ(diag(eth)vn] J

for all h € R™. That is, the directional derivative in direction h is given by the dot product
w(v) - h. Here one can see that the moment map matches the notion of Euclidean gradient.
For the action of T(n) in Equation (2.1), we have

doimy lejlPw;

) = Voo (Y- fefer) = SO

j=1

(2.3)
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Note that the gradient p(v) at any point v is a convex combination of the weights. Viewing v
as a polynomial, the gradient thus belongs to the so-called Newton polytope of v, namely
the convex hull of the exponent vectors of its monomials. Conversely, every point in that
polytope is a gradient of some polynomial v with these monomials. We will soon return to
this curious fact!

We now proceed to the non-commutative case, focusing on G = GL(n). Denote by
Herm(n) the set of n x n complex Hermitian matrices.®> Here directions will be parametrized
by H € Herm(n). For the case of G = GL(n), the moment map is the function p: V'\ {0} —
Herm(n) defined (in complete analogy to the commutative case above) by the following
property that

tr[u(v) H] = By [log ||m(" )u||]

for all H € Herm(n). That is, the directional derivative in direction H is given by tr[u(v)H].

In the commutative case, Equation (2.3) is a convex combination of the weights w;. Thus,
the image of p is the convex hull of the weights — a convex polytope. This brings us to
moment polytopes.

2.3 Moment polytopes

One may ask whether the above fact is true for actions of GL(n): is the set {u(v) : v € V\{0}}
convex? This turns out to be blatantly false: for instance, for the action of GL(n) on C" by
matrix-vector multiplication the moment map is u(v) = vot/||v||?, and its image is clearly
not convex. However, there is still something deep and non-trivial that can be said. Given
a Hermitian matrix H € Herm(n), define its spectrum to be the vector of its eigenvalues

arranged in non-increasing order. That is, spec(H) := (A1,..., A, ), where Ay > -+ > A, are
the eigenvalues of H. Amazingly, the set of spectra of moment map images, that is,
A = {spec(u(v)) : 0 £ v eV}, (2.4)

is a convex polytope for every representation 7 [70, 60, 5, 41, 55]! These polytopes are called
moment polytopes.

Let us mention two important examples of moment polytopes. The examples are for
actions of products of GL(n)’s but the above definitions generalize almost immediately.

» Example 2.1 (Horn's problem). Let G = GL(n) x GL(n) x GL(n) act on V = Mat(n) &
Mat(n) as follows: 7(g1,g2,93)(X,Y) := (nggg_l, gngg_l). The moment map in this case is

(XXT,YYT —(XTX + YY)

w(X,Y) =
.Y) IXTE+ VIR

Using that X X and XtX are positive semidefinite and isospectral, we obtain the following
moment polytopes, which characterize the eigenvalues of sums of Hermitian matrices, i.e.,
Horn’s problem (see, e.g., [36, 9]):

A= {(spec(A),spec(B),spec(fA —B))| A,B€Mat(n), A>0,B>0,trA+trB= 1}.

These polytopes are known as the Horn polytopes and correspond to Problem 3 in the intro-
duction. They have been characterized mathematically in [58, 59, 7, 72] and algorithmically
in [64, 68, 17].

3 The reason we are restricting to directions in R™ in the T(n) case and to directions in Herm,, in
the GL(n) case is that imaginary and skew-Hermitian directions, respectively, do not change the norm.
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The preceding is one of the simplest example of a moment polytope associated with the
representation of a quiver (the star quiver with two edges); see [31] for this notion. Quiver
representations are relevant for the solution of Problem 5.

» Example 2.2 (Tensor action). G = GL(n1) x GL(ng) x GL(n3) actson V= C" @ C"2 @ C"s
as follows: 7(g1,g2,93)v := (91 ® g2 ® g3)v. We can think of vectors v € V as tripartite
quantum states with local dimensions ni,ns,n3. Then the moment map for this group
action captures precisely the notion of quantum marginals. That is, u(v) = (p1, p2, p3), where
pr = trpe(vol) denotes the reduced density matrix describing the state of the k" particle.
This corresponds to Problem 2 in the introduction.

The moment polytopes in this case are known as Kronecker polytopes, since they can be
equivalently described in terms of the Kronecker coefficients of the symmetric group. These
polytopes have been studied in [57, 25, 22, 21, 81, 80, 19, 78, 13].

There is a more refined notion of a moment polytope. One can look at the collection of
spectra of moment maps of vectors in the orbit of a particular vector v € V. Surprisingly, its
closure,

A(v) := {spec(u(w)) : w € O, }

is a convex polytope as well, called the moment polytope of v [70, 11]! It can equivalently be
defined as the spectra of moment map images of the orbit’s closure in projective space.

2.4 Null cone

Fix a representation 7 of the group G on a vector space V (again assume G = T(n) or
G = GL(n) for simplicity). The null cone for this group action is defined as the set of
vectors v such that cap(v) = 0:

N :={veV:cap(v) =0}.

In other words, v is in the null cone if and only if 0 lies in the orbit-closure of v. It is of
importance in invariant theory due to the results of Hilbert and Mumford [47, 69] which state
that the null cone is the algebraic variety defined by non-constant homogeneous invariant
polynomials of the group action (see, e.g., the excellent textbooks [26, 76]).

Let us see what the null cone for the action of T(n) in Equation (2.1) is. Recall from
Equation (2.2), the formulation for cap(v). It is easy to see that cap(v) = 0 iff there exists
xz € R™ such that = -w; < 0 for all j € supp(v), where supp(v) = {j € [m] : ¢; # 0} for
v = Z;”:l ¢;jvj. Thus the property of v being in the null cone is captured by a simple
linear program defined by supp(v) and the weights w;’s. Hence the null cone membership
problem for non-commutative group actions can be thought of as non-commutative linear
programming.

We know by Farkas’ lemma that there exists € R™ such that «-w; < 0 for all j € supp(v)
iff 0 does not lie in conv{w; : j € supp(v)}. In other words, cap(v) = 0 iff 0 ¢ A(v). Is
this true in the non-commutative world? It is! This is the Kempf-Ness theorem [53] and
it is a consequence of the geodesic convexity of the function g — log||w(g)v||. The Kempf-
Ness theorem can be thought of as a non-commutative duality theory paralleling the linear
programming duality given by Farkas’ lemma (which corresponds to the commutative world).
Let us now mention an example of an interesting null cone in the non-commutative case.

» Example 2.3 (Operator scaling, or left-right action). The action of the group G = SL(n) x
SL(n) on Mat(n)* via m(g,h)(X1,...,Xs) := (¢X1hT, ..., gXhT) is called the left-right
action. (Recall SL(n) denotes the group of n x n matrices with determinant 1.) The null cone
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for this action captures non-commutative singularity (see, e.g., [50, 37, 27, 49]) and Problem 1
in the introduction. The left-right action has been crucial in getting deterministic polynomial
time algorithms for the non-commutative rational identity testing problem [50, 37, 27, 49].
The commutative analogue is the famous polynomial identity testing (PIT) problem, for
which designing a deterministic polynomial time algorithm remains a major open question in
derandomization and complexity theory. We remark that the corresponding algebraic variety
Sing,, ,,,, consisting of m-tuples in Mat(n) which span only singular matrices, recently has
been shown to be not a null cone [65].

» Example 2.4 (Generalized Kronecker quivers). The action of G = GL(n) x GL(n) on k-tuples
of matrices (X1,..., Xy) via (g, h)(X1,..., Xp) := (gX1h™1, ..., gXrh™1) is sometimes also
referred to as the left-right action. It can be obtained from action of Example 2.3 via the
isomorphism h +— (h~1)T of GL(n). This action is associated to the generalized Kronecker
quiver.

» Example 2.5 (Simultaneous conjugation). The action of the group G = GL(n) on k-tuples
of matrices in V = (Mat(n))* by m(g)(X1,...,Xx) := (gX197",...,gXrg~ 1) is associated
to the quiver with a single vertex and k self-loops, briefly called k-loop quiver.

3 Computational problems and state of the art

In this section, we describe the main computational questions that are of interest for the
optimization problems discussed in the previous section and then discuss what is known
about them in the commutative and non-commutative worlds.

» Problem 3.1 (Null cone membership). Given (w,v), determine if v is in the null cone, i.e.,
if cap(v) = 0. Equivalently, test if 0 ¢ A(v).

The null cone membership problem for GL(n) is interesting only when the action 7(g) is
given by rational functions in the g; ; rather than polynomials. This is completely analogous
to the commutative case (e.g., the convex hull of weights w; with positive entries never
contains the origin). In the important case that 7 is homogeneous, the null cone membership
problem is interesting precisely when the total degree is zero, so that scalar multiples of
the identity matrix act trivially. Thus, in this case the null cone membership problem
for G = GL(n) is equivalent to the one for G = SL(n).

» Problem 3.2 (Scaling). Given (m,v,¢e) such that 0 € A(v), output a group element g € G
such that || spec(u(g)v)llz = [lu(m(9)v)|F < e.

In particular, the following promise problem can be reduced to Problem 3.2: Given
(m,v,¢), decide whether 0 ¢ A(v) under the promise that either 0 € A(v) or 0 is e-far from
A(v). In fact, there always exists € > 0, depending only on the group action, such that this
promise is satisfied! Thus, the null cone membership problem can always be reduced to the
scaling problem (see Corollary 4.5 below).

One can develop a non-commutative duality theory [15, Section 3.4] showing that an
efficient agorithm to minimize the norm on an orbit closure of a vector v (i.e., approximate
the capacity of v) under the promise that 0 € A(v) results in an efficient algorithm for the
scaling problem and hence for the null cone membership problem. This motivates our next
computational problem.

» Problem 3.3 (Norm minimization). Given (m,v,€) such that cap(v) > 0, output a group
element g € G such that log||7(g)v|| — log cap(v) < e.
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We also consider the moment polytope membership problem for an arbitrary point p € Q™.
» Problem 3.4 (Moment polytope membership). Given (7, v,p), determine if p € A(v).

The moment polytope membership problem is more general than the null cone membership
problem, but there is a reduction from the former to the latter via the “shifting trick”
from [70, 11], which forms the basis of the algorithms for the moment polytope membership
problem in [15]. As in the case of the null cone, we can consider a scaling version of the
moment polytope membership problem.

» Problem 3.5 (p-scaling). Given (m,v,p,e) such that p € A(v), output an element g € G
such that |[spec(yu(x(9)0)) — pllz < e.

The above problem has been referred to as nonuniform scaling [13] or, for operators,
matrices and tensors, as scaling with specified or prescribed marginals [34]. The following
problem can be reduced to Problem 3.5: Given (m,v,p,€), decide whether p € A(v) under
the promise that either p € A(v) or p is e-far from A(v). One can combine the shifting
trick with the non-commutive duality theory to show that there is a value € > 0 with bitsize
polynomial in the input size such that this is promise is always satisfied [15]. Thus, the
moment polytope membership problem can be reduced to p-scaling.

There are several interesting input models for these problems. One could explicitly
describe the weights wy, ..., w,, for an action of T(n) (Equation (2.1)) and then describe v
as Z;nzl c;jv; by describing the c¢;’s. The analogous description in the non-commutative
world would be to describe the irreducible representations occuring in V. Alternately, one
could give black box access to the function ||7(g)v||, or to the moment map p(w(g)v), ete.
Sometimes 7 can be a non-uniform input as well, such as a fixed family of representations
like the simultaneous left-right action Example 2.3 as done in [37]. The inputs p and € will
be given in their binary descriptions but we will see that some of the algorithms run in time
polynomial in their unary descriptions.

» Remark 3.6 (Running time in terms of ). By standard considerations about the bit complexity
of the facets of the moment polytope, it can be shown that polynomial time algorithms for
the scaling problems (Problems 3.2 and 3.5) result in polynomial time algorithms for the
exact versions (Problems 3.1 and 3.4, respectively). Polynomial time requires, in particular,
poly(log(1/¢)) dependence on ¢; a poly(1/e) dependence is only known to suffice in special
cases.

3.1 Commutative groups and geometric programming

In the commutative case, the preceding problems are reformulations of well-studied optimiza-
tion problems and much is known about them computationally. To see this, consider the
action of T(n) as in Equation (2.1), and a vector v = 37" | ¢;v;. It follows from Section 2.4
that v is in the null cone iff 0 ¢ A(v) = conv{w; : ¢; # 0}. Recall from Equation (2.2), the for-
mulation for cap(v). Since this formulation is convex, it follows that, given wy,...,w, € Z"
(recall this is the description of 7) and cy,..., ¢, € Q[i] (each entry described in binary),
there is a polynomial-time algorithm for the null cone membership problem via linear pro-
gramming [54, 52]. The same is true for the moment polytope membership problem. The
capacity optimization problem is an instance of (unconstrained) geometric programming.
The recent paper [18] describes interior-point methods for this, which run in polynomial
time. Before [18], it was hard to find an exact reference for the existence of a polynomial
time algorithm for geometric programming; however, is was known that polynomial time can
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be achieved using the ellipsoid algorithm as done for the same problem in slightly different
settings in the papers [43, 74, 75]. There has been work in the oracle setting as well, in
which one has oracle access to the function ||7(g)v||. The advantage of the oracle setting is
that one can handle exponentially large representations of T(n) when it is not possible to
describe all the weights explicitly. A very general result of this form is proved in [75]. While
not explicitly mentioned in [75], their techniques can also be used to design polynomial time
algorithms for commutative null cone and moment polytope membership in the oracle setting.
Thus, in the commutative case, Problems 3.1, 3.3, and 3.4 are well-understood.

3.2 Non-commutative actions

Comparatively very little is known in the non-commutative case. In the special case, where
the group is fixed, polynomial time algorithms were given by the use of quantifier elimination
(which is inefficient) and, more recently, by Mulmuley in [67, Theorem 8.5] through a purely
algebraic approach. For instance, this applies to the settings of V = Sym? C™ or V = A¢C"
with the natural action by SL(n), where n is fixed.

For nonfixed groups, the only two non-trivial group actions for which there are known
polynomial-time algorithms for null cone membership (Problem 3.1) are the simultaneous
conjugation (Example 2.5) and the left-right action (Example 2.4). Approximate algorithms
for null cone membership have been designed for the tensor action of products of SL(n)’s [16].
However the running time is exponential in the binary description of ¢ (i.e., polynomial in
1/e). This is the reason the algorithm does not lead to a polynomial time algorithm for the
exact null cone membership problem for the tensor action.

Moment polytope membership is already interesting for the polytope A in (2.4), the
moment polytope of the entire representation V' (not restricted to any orbit closure). Even
here, efficient algorithms are only known in very special cases, such as for the Horn polytope
(Example 2.1) [64, 68, 17]. The structural results in [8, 72, 78] characterize A in terms of linear
inequalities (it is known that in general there are exponentially many). Mathematically, this is
related to the asymptotic vanishing of certain representation-theoretic multiplicities [11, 20, 6]
whose non-vanishing is in general NP-hard to decide [48]. In [12] it was proved that the
membership problem for A is in NP N coNP. As A and A(v) coincide for generic v € V', this
problem captures the moment polytope membership problem (Problem 3.4) for almost all
vectors (all except those in a set of measure zero).

The study of Problem 3.4 in the noncommutative case focused on Brascamp-Lieb polytopes
(which are affine slices of moment polytopes). The paper [38] solved the moment polytope
membership problem in time depending polynomially on the unary complexity of the target
point. In [13], efficient algorithms were designed for the p-scaling problem (Problem 3.5) for
tensor actions, extending the earlier work of [34] for the simultaneous left-right action. The
running times of both algorithms are poly(1/e); for this reason both algorithms result in
moment polytope algorithms depending exponentially on the binary bitsize of p, as in [38].

Regarding the approximate computation of the capacity (Problem 3.3), efficient algorithms
were previously known only for the simultaneous left-right action. The paper [37] gave an
algorithm to approximate the capacity in time polynomial in all of the input description
except e, on which it had dependence poly(1/¢). The paper [2] gave an algorithm that de-
pended polynomially on the input description; it has running time dependence poly(log(1/¢))
on the error parameter €.

In terms of algorithmic techniques, all prior works that were based on optimization
methods fall into two categories. One is that of alternating minimization (which can be
thought of as a large-step coordinate gradient descent, i.e., roughly speaking as a first
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order method). However, alternating minimization is limited in applicability to “multilinear’
actions of products of T(n)’s or GL(n)’s, where the action is linear in each component so
that it is easy to optimize over one component when fixing all the others. This is true for all
the actions described above and hence explains the applicability of alternating minimization
(in fact, in all the above examples, one can even get a closed-form expression for the group
element that has to be applied in each alternating step). The second category are geodesic
analogues of boz-constrained Newton’s methods (second order). Recently, [2] designed an
algorithm tailored towards the specific case of the simultaneous left-right action (Example 2.3),
but no second order algorithms were known for other group actions. However, many group
actions of interest — from classical problems in invariant theory about symmetric forms to
the important variant of Problem 2 in the introduction for fermions — are not multilinear nor
can otherwise be captured by the left-right action, and no efficient algorithms were known.
All this motivates the development of new techniques.

The paper [15] shows how these limitations can be overcome. Specifically, it provides both
first and second order algorithms (geodesic variants of gradient descent and box-constrained
Newton’s method) that apply in great generality and identify the main structural parameters
that control the running time of these algorithm. We now describe these contributions in
more detail.

4  Algorithmic and structural results

4.1 Essential parameters and structural results

We define here the essential parameters related to the group action which, in addition to
dictating the running times of our first and second order methods, control the relationships
between the null cone, the norm of the moment map, and the capacity, i.e., between
Problems 3.1-3.3. For details we refer to [15]

We saw in Section 2 that for all actions of T(n) on a vector space V, one can find a basis
of V cousisting of simultaneous eigenvectors of the matrices 7(g), g € T(n). While this is
in general impossible for non-commutative groups, one can still decompose V' into building
blocks known as irreducible subspaces (or subrepresentations).

For GL(n), these are uniquely characterized by nonincreasing sequences A € Z"; such
sequences A are in bijection with irreducible representations my: GL(n) — GL(V)). We say
that A occurs in m if one of its irreducible subspaces is of type A. If all the A occuring in 7
have nonnegative entries, then the entries of the matrix 7(g) are polynomials in the entries
of g. Such representations 7 are called polynomial, and if all A occuring in 7 have sum exactly
(resp. at most) d, then 7 is said to be a homogeneous polynomial representation of degree
(resp. at most) d.

Now we can define the complexity measure which captures the smoothness of the optim-
ization problems of interest. One can think of the following measure as a norm of the Lie
algebra representation II, hence the name weight norm.

» Definition 4.1 (Complexity measure |: weight norm). We define the weight norm N(7) of an
action m of GL(n) by N(m) := max{||Al|2 : A occurs in 7}, where ||-||2 denotes the Euclidean
norm.

Another use of the weight norm is to provide a bounding ball for the moment polytope:
one can show that the moment polytope is contained in a Euclidean ball of radius N ().
The weight norm is in turn controlled by the degree of a polynomial representation. More
specifically, if 7 is a polynomial representation of GL(n) of degree at most d, then N(x) < d.
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We now describe our second measure of complexity which will govern the running time
bound for our second order algorithm. This parameter also features in Theorem 4.3 concerning
quantitative non-commutative duality.

» Definition 4.2 (Complexity measure |I: weight margin). The weight margin v(m) of an
action m of GL(n) is the minimum FEuclidean distance between the origin and the convex hull
of any subset of the weights of m that does not contain the origin.

Our running time bound will depend inversely on the weight margin. Two interesting
examples with large (inverse polynomial) weight margin are the left-right action (Example 2.3)
and simultaneous conjugation. The existing second order algorithm for the left-right action
relied on the large weight margin of the action [2]. It is interesting that the simultaneous
conjugation action (Example 2.5), the sole other interesting example of an action of a non-
commutative group for which there are efficient algorithms for the null cone membership
problem [71, 33, 28] (which have nothing to do with the weight margin), also happens to
have large weight margin! On the other hand, the only generally applicable lower bound
on the weight margin is N(7)!~"n~!, and indeed this exponential behavior is seen for the
somewhat intractable 3-tensor action (Example 2.2), which has weight margin at most 2—n/3
and weight norm /3 [61, 35]. We arrange in a tabular form the above information about the
weight margin and weight norm for various paradigmatic group actions in Table 1 (using a

definition of the weight margin and weight norm that naturally generalizes the one given
above for GL(n)).

Table 1 Weight margin and norm for various representations.

Group action Weight margin v(w) Weight norm N ()
Matrix scaling >n 32 [63] V2
Simultan. left-right action (Example 2.3) > n~3/2; [42] V2
Quivers >0, n(z))~%/? V2
Simultaneous conjugation (Example 2.5) > n=3/2 V2
3-tensor action (Example 2.2) <273 (61, 35 V3
Polynomial GL(n)-action of degree d >d "dn? <d
Polynomial SL(n)-action of degree d > (nd) "dn~* <d

As the moment map is the gradient of the geodesically convex function log||lv]|, it stands
to reason that as p(v) tends to zero, ||v| tends to the capacity cap(v). However, in order
to use this relationship to obtain efficient algorithms, we need this to hold in a precise
quantitative sense. To this end, we show in [15] the following fundamental relation between
the capacity and the norm of the moment map, which is a quantitative strengthening of the
Kempf-Ness result [53].

» Theorem 4.3 (Noncommutative duality). For v € V' \ {0} we have

T O] cap(v)® <1 ln()IIE
() [l AN(m)?

Equipped with these inequalities, it is easy to relate Problems 3.2 and 3.3.

» Corollary 4.4. An output g for the norm minimization problem on input (w,v,€) is a valid
output for the scaling problem on input (w,v, N(7)V/8e). If €/v(w) < § then an output g for
the scaling problem on input (7,v,€) is a valid output for the norm minimization problem on

. 2log(2)e
input (m,v, o ).
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Because 0 € A(v) if and only if cap(v) > 0, Theorem 4.3 and Corollary 4.4 immediately
yield the accuracy to which we must solve the scaling problem or norm minimization problem
to solve the null cone membership problem:

» Corollary 4.5. It holds that 0 € A(v) if and only if A(v) contains a point of norm smaller
than (7). In particular, solving the scaling problem with input (w,v,v(w)/2) or the norm
minimization problem with (m,v, §(v(m)/2N(w))?) suffices to solve the null cone membership
problem for (mw,v).

In [15] we also provide analogues of the above corollaries for the moment polytope
membership problem.

4.2 First order methods: structural results and algorithms

As discussed above, in order to approximately compute the capacity in the commutative case,
one can just run a Euclidean gradient descent on the convex formulation in Equation (2.2).
We will see that the gradient descent method naturally generalizes to the non-commutative
setting. It is worth mentioning that there are several excellent sources of the analysis
of gradient descent algorithms for geodesically convex functions (in the general setting
of Riemannian manifolds and not just the group setting that we are interested in); see
e.g., [77, 1, 83, 82, 73, 84] and references therein. The contribution in [15] is mostly in
understanding the geometric properties (such as smoothness) of the optimization problems
that we are concerned with, which allow us to carry out the classical analysis of Euclidean
gradient descent in our setting and to obtain quantitative convergence rates, which are not
present in previous work.

The natural analogue of gradient descent for the optimization problem cap(v) is the
following: start with go = I and repeat, for T iterations and a suitable step size 7:

Gi1 = e~ ME(aV) g, (4.1)

Finally, return the group element g among go,...,gr—1, which minimizes ||u(w(g)v)| F.
A natural geometric parameter which governs the complexity (number of iterations T, step
size n) of gradient descent is the smoothness of the function to be optimized. The smoothness
parameter for actions of T(n) in Equation (2.1) can be shown to be O(max je(m)||w;|3) (see,
e.g., [75]), which is the square of the weight norm defined in Definition 4.1 for this action.
We prove in [15] that, in general, the function log||7(g)v| is geodesically smooth, with a
smoothness parameter which, analogously to the commutative case, is on the order of the
square of the weight norm. We now state the running time for our geodesic gradient descent
algorithm for Problem 3.2.

» Theorem 4.6 (First order algorithm for scaling). Fiz a representation w : GL(n) — GL(V)
and a unit vector v € V' such that cap(v) > 0 (i.e., v is not in the null cone). Then the above
analogue (4.1) of gradient descent, with a number of iterations at most

r=o(" (m)? flogeap(o)] ).

22
outputs a group element g € GL(n) satisfying ||pu(m(g)v)||r < €.

The analysis of Theorem 4.6 relies on the smoothness of the function F,(g) := log||7(g)v||,
which implies that

Fy(e"g) < Fo(g) + tr[u(n(g)v) H] + N ()’ H| %,

for all ¢ € GL(n) and for all Hermitian H € Herm(n).
The paper [15] also describes and analyzes a first order algorithm for the p-scaling problem
via the shifting trick.
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4.3 Second order methods: structural results and algorithms

As mentioned in Section 3, the paper [2] (following the algorithms developed in [3, 23]
for the commutative Euclidean case) developed a second order polynomial-time algorithm
for approximating the capacity for the simultaneous left-right action (Example 2.3) with
running time polynomial in the bit description of the approximation parameter . In [15] this
algorithm is generalized to arbitrary groups and actions. It repeatedly optimizes quadratic
Taylor expansions of the objective in a small neighbourhood. Such algorithms also go by
the name “trust-region methods” in the Euclidean optimization literature [24]. The running
time of this algorithm depends inversely on the weight margin defined in Definition 4.2.

» Theorem 4.7 (Second-order algorithm for norm minimization). Fiz a representation w :
GL(n) — GL(V) and a unit vector v € V such that cap(v) > 0. Put C := |logcap(v)|,
v :=7(w) and N := N(7). Then the second order algorithm in [15], for a suitably regularized
objective function, outputs g € G satisfying log |7 (g)v|| < logcap(v) + & with a number of
tterations at most

TzO(W (C’—Hogﬁ) logc>.
y € €

The two main structural parameters which govern the runtime of the second order
algorithm are the robustness (controlled by the weight norm) and a diameter bound (controlled
by the weight margin). The robustness of a function bounds third derivatives in terms of
second derivatives, similarly to the well-known notion of self concordance (however, in contrast
to the latter, the robustness is not scale-invariant). As a consequence of the robustness, one
shows that the function F,(g) = log||7(g)v|| is sandwiched between two quadratic expansions
in a small neighbourhood:

1 e
F(g) + 0= F(e*H g) + ?68t2:OF(etHg) < F(efg) < F(g) + 0y F (e g) + iafzoF(etHg)

for every g € GL(n) and H € Herm(n) such that [|[H||p < 1/(4N(x)).

Another ingredient in the analysis of the second order algorithm is to prove the existence
of “well-conditioned” approximate minimizers, i.e., g, € G, with small condition number
satisfying log||7w(g«)v|| < logcap(v)+¢e. The bound on the condition numbers of approximate
minimizers helps us ensure that the algorithm’s trajectory always lies in a compact region
with the use of appropriate regularizers. As in [2], this “diameter bound” is obtained by
designing a suitable gradient flow and bounding the (continuous) time it takes for it to
converge. A crucial ingredient of this analysis is Theorem 4.3 relating capacity and norm of
the moment map.

This gradient flow approach, which can be traced back to works in symplectic geometry [56],
is the only one we know for proving diameter bounds in the non-commutative case. In
contrast, in the commutative case several different methods are available (see, e.g., [74, 75]).
It is an important open problem to develop alternative methods for diameter bounds in the
non-commutative case, which will also lead to improved running time bounds for the second
order algorithm.

Finally, we note that [15] also contains results bounding the running time of the obtained
algorithms, beyond the number of oracle calls, in terms of the bitsize needed to describe the
given action 7 and the given vector v.
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Conclusion

We believe that extending this theory will be fruitful both from a mathematical and compu-
tational point of view. The paper [15] points to the following intriguing open problems and
suggests further research directions.
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