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Abstract
Lightness and sparsity are two natural parameters for Euclidean (1 + ε)-spanners. Classical results
show that, when the dimension d ∈ N and ε > 0 are constant, every set S of n points in d-space
admits an (1 + ε)-spanners with O(n) edges and weight proportional to that of the Euclidean MST of
S. Tight bounds on the dependence on ε > 0 for constant d ∈ N have been established only recently.
Le and Solomon (FOCS 2019) showed that Steiner points can substantially improve the lightness and
sparsity of a (1 + ε)-spanner. They gave upper bounds of Õ(ε−(d+1)/2) for the minimum lightness
in dimensions d ≥ 3, and Õ(ε−(d−1))/2) for the minimum sparsity in d-space for all d ≥ 1. They
obtained lower bounds only in the plane (d = 2). Le and Solomon (ESA 2020) also constructed
Steiner (1 + ε)-spanners of lightness O(ε−1 log ∆) in the plane, where ∆ ∈ Ω(log n) is the spread of
S, defined as the ratio between the maximum and minimum distance between a pair of points.

In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner
(1 + ε)-spanners. Using a new geometric analysis, we establish lower bounds of Ω(ε−d/2) for the
lightness and Ω(ε−(d−1)/2) for the sparsity of such spanners in Euclidean d-space for all d ≥ 2. We
use the geometric insight from our lower bound analysis to construct Steiner (1 + ε)-spanners of
lightness O(ε−1 log n) for n points in Euclidean plane.
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1 Introduction

For an edge-weighted graph G, a subgraph H of G is a t-spanner if δH(u, v) ≤ t · δG(u, v),
where δG(u, v) denotes the shortest path distance between vertices u and v. A subgraph H

of G is a t-spanner, for some t ≥ 1, if for every pq ∈
(

V (G)
2
)
, we have dG(p, q) ≤ t · w(pq).

The parameter t is called the stretch factor of the spanner. Spanners are fundamental graph
structures with many applications in the area of distributed systems and communication,
distributed queuing protocol, compact routing schemes, etc.; see [16, 24, 34, 35]. Two
important parameters of a spanner H are lightness and sparsity. The lightness of H is the
ratio w(H)/w(MST) between the total weight of H and the weight of a minimum spanning
tree (MST). The sparsity of H is the ratio |E(H)|/|E(MST)| ≈ |E(H)|/|V (G)| between the
number of edges of H and an MST. As H is connected, the trivial lower bound for both the
lightness and the sparsity of a spanner is 1. When the vertices of G are points in a metric
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13:2 On Euclidean Steiner (1 + ε)-Spanners

space, the edge weights obey the triangle inequality. The most important examples include
Euclidean d-space and, in general, metric spaces with constant doubling dimensions (the
doubling dimension of Rd is d).

In a geometric spanner, the underlying graph G = (S,
(

S
2
)
) is the complete graph on a

finite point set S in Rd, and the edge weights are the Euclidean distances between vertices.
Euclidean spanners are one of the fundamental geometric structures that find application
across domains, such as, topology control in wireless networks [38], efficient regression in
metric spaces [21], approximate distance oracles [23], and others. Rao and Smith [36] showed
the relevance of Euclidean spanners in the context of other geometric NP-hard problems, e.g.,
Euclidean traveling salesman problem and Euclidean minimum Steiner tree problem, and
introduced the so called banyans1, which is a generalization of graph spanners. Apart from
lightness and sparsity, various other optimization criteria have been considered, e.g., bounded-
degree spanners [6] and α-diamond spanners [13]. Several distinct construction approaches
have been developed for Euclidean spanners, that each found further applications in geometric
optimization, such as well-separated pair decomposition (WSPD) based spanners [7, 22],
skip-list spanners [2], path-greedy and gap-greedy spanners [1, 3], and more. For an excellent
survey of results and techniques on Euclidean spanners up to 2007, we refer to the book by
Narasimhan and Smid [33].

Sparsity. A large body of research on spanners has been devoted to sparse spanners where
the objective is to obtain a spanner with small number edges, preferably O(|S|), with 1 + ε

stretch factor, for any given ε > 0. Chew [9] was the first to show that there exists a Euclidean
spanner with a linear number of edges and stretch factor

√
10. The stretch factor was later

improved to 2 [10]. Clarkson [11] designed the first Euclidean (1 + ε)-spanner, for arbitrary
small ε > 0; an alternative algorithm was presented by Keil [25]. Later, Keil and Gutwin [26]
showed that the Delaunay triangulation of the point set S is a 2.42-spanner. Moreover, these
papers introduced the fixed-angle Θ-graph2 as a potential new tool for designing spanners in
R2, which was later generalized to higher dimension by Ruppert and Seidel [37]. One can
construct an (1 + ε)-spanner with O(nε−d+1) edges by taking the angle Θ to be proportional
to ε in any constant dimension d ≥ 1. A fundamental question in this area is whether the
trade-off between the stretch factor 1 + ε and the sparsity O(nε−d+1) is tight.

Lightness. For a set of points S in a metric space, the lightness is the ratio of the spanner
weight (i.e., the sum of all edge weights) to the weight of the minimum spanning tree
MST(S). Das et al. [12] showed that greedy-spanner ([1]) has constant lightness in R3. This
was generalized later to Rd, for all d ∈ N, by Das et al. [14]. However the dependencies
on ε and d has not been addressed. Rao and Smith showed that the greedy spanner has
lightness ε−O(d) in Rd for every constant d, and asked what is the best possible constant in
the exponent. A complete proof for (1 + ε)-spanner with lightness O(ε−2d) is in the book on
geometric spanners [33]. Recently, Borradaile et al. [5] showed that the greedy (1+ε)-spanner
of a finite metric space of doubling dimension d has lightness ε−O(d).

1 A (1 + ε)-banyan for a set of points A is a set of points A′ and line segments S with endpoints in A ∪ A′

such that a 1 + ε optimal Steiner Minimum Tree for any subset of A is contained in S
2 The Θ-graph is a type of geometric spanner similar to Yao graph [42], where the space around each

point p ∈ P is partitioned into cones of angle Θ, and S will be connected to a point q ∈ P whose
orthogonal projection to some fixed ray contained in the cone is closest to S.



S. Bhore and C. D. Tóth 13:3

Dependence on ε > 0 for constant dimension d. The dependence of the lightness and
sparsity on ε > 0 for constant d ∈ N has been studied only recently. Le and Solomon [27]
constructed, for every ε > 0 and constant d ∈ N, a set S of n points in Rd for which any
(1+ε)-spanner must have lightness Ω(ε−d) and sparsity Ω(ε−d+1), whenever ε = Ω(n−1/(d−1)).
Moreover, they showed that the greedy (1 + ε)-spanner in Rd has lightness O(ε−d log ε−1).

Steiner points are additional vertices in a network (via points) that are not part of the
input, and a t-spanner must achieve stretch factor t only between pairs of the input points
in S. A classical problem on Steiner points arises in the context of minimum spanning trees.
The Steiner ratio is the supremum ratio between the weight of a minimum Steiner tree and
a minimum spanning tree of a finite point set, and it is at least 1

2 in any metric space due to
triangle inequality.

Le and Solomon [27] noticed that Steiner points can substantially improve the bound
on the lightness and sparsity of an (1 + ε)-spanner. Previously, Elkin and Solomon [19]
and Solomon [39] showed that Steiner points can improve the weight of the network in the
single-source setting. In particular, the so-called shallow-light trees (SLT) is a single-source
spanning tree that concurrently approximates a shortest-path tree (between the source and
all other points) and a minimum spanning tree (for the total weight). They proved that
Steiner points help to obtain exponential improvement on the lightness SLTs in a general
metric space [19], and quadratic improvement on the lightness in Euclidean spaces [39].

Le and Solomon, used Steiner points to improve the bounds for lightness and sparsity
of Euclidean spanners. For minimum sparsity, they gave an upper bound of O(ε(1−d)/2) for
d-space and a lower bound of Ω(ε−1/2/ log ε−1) in the plane (d = 2) [27]. For minimum
lightness, Le and Solomon [28] gave an upper bound of O(ε−1 log ∆) in the plane and
O(ε−(d+1)/2 log ∆) in dimension d ≥ 3, where ∆ is the spread of the point set, defined as
the ratio between the maximum and minimum distance between a pair of points. Note that
in any space with doubling dimension d (including Rd), we have ∆ ≥ Ω(logd n), but the
spread ∆ is in fact unbounded. Very recently, Le and Solomon [30] constructed Steiner
(1 + ε)-spanners with lightness Õ(ε−(d+1)/2) in dimensions d ≥ 3.

Our Contributions. In this work, we improve the bounds on the lightness and sparsity of
Euclidean Steiner (1 + ϵ)-spanners. First, in Section 3, we prove the following lower bounds.

▶ Theorem 1. Let a positive integers d and real ε > 0 be given such that ε ≤ 1/d. Then
there exists a set S of n points in Rd such that any Euclidean Steiner (1 + ε)-spanner for S

has lightness Ω(ε−d/2) and sparsity Ω(ε(1−d)/2).

For lightness in dimension d = 2, this improves the earlier bound of Ω(ε−1 log−1(ε−1))
by Le and Solomon [27] by a logarithmic factor; and it is the first lower bound in dimensions
d ≥ 3. The point set S in Theorem 1 is fairly simple, it consists of two square grids in two
parallel hyperplanes in Rd. However, our lower-bound analysis is significantly simpler than
that of [27]. In particular, our analysis does not depend on planarity, and it generalizes
to higher dimensions. The key new insight pertains to a geometric property of Steiner
(1+ε)-spanners: If the length of an ab-path S between points a, b ∈ Rd is at most (1+ε)∥ab∥,
then “most” of the edges of S are almost parallel to ab. We expand on this idea in Section 2.

Then, in Section 4 we prove the following theorem on light spanners.

▶ Theorem 2. For every set S of n points in Euclidean plane, there exists a Steiner
(1 + ε)-spanner of lightness O(ε−1 log n).

This result improves on an earlier bound of O(ε−1 log ∆) by Le and Solomon [28], where
∆ is the spread of the point set, defined as the ratio between the maximum and minimum
distance between a pair of points. Note that ∆ ≥ Ω(log n) in every metric space of constant
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doubling dimension. Recently, Le and Solomon [29] noted in the revised version of their
paper that the log ∆ factor can be reduced to a log n factor by a general discretization
technique (see, e.g., Chan et al. [8]). Very recently, Bhore and Tóth [4] achieved the optimal
dependence on ε and showed that, for every finite points set S ⊂ R2 and ε > 0, there exists
a Euclidean Steiner (1 + ε)-spanner of weight O( 1

ε ∥MST(S)∥). The spanner construction
in [4] is a far-reaching generalization of the methods we develop in the proof of Theorem 2.
In particular, both papers use directional spanners, introduced in Section 4 of this paper, as
a key ingredient and construct a Euclidean Steiner (1 + ε)-spanner as a union of O(ε−1/2)
directional spanners.

2 Preliminaries

Let d ≥ 2 be an integer, and S a set of n points in Rd. For a, b ∈ Rd, the Euclidean distance
between a and b is denoted by ∥ab∥. For a set E of line segments in Rd, let ∥E∥ =

∑
e∈E ∥e∥

be the total weight of all segments in E. For a geometric graph G = (S, E), where S ⊂ Rd,
we also use the notation ∥G∥ = ∥E∥, which is the Euclidean weight of graph G.

We briefly review a few geometric primitives in d-space. For a, b ∈ Rd, the locus of
points c ∈ Rd with ∥ac∥ + ∥cb∥ ≤ (1 + ε)∥ab∥ is an ellipsoid Eab with foci a and b, and
major axis of length (1 + ε)∥ab∥; see Fig. 1(a). Note that all d − 1 minor axes of Eab are√

(1 + ε)2 − 1∥ab∥ =
√

2ε + ε2∥ab∥ <
√

3ε∥ab∥ when ε < 1. In particular, the aspect ratio
of the minimum bounding box of Eab is roughly

√
ε. By the triangle inequality, Eab contains

every ab-path of weight at most (1 + ε)∥ab∥.
The unit vectors in Rd are on the (d − 1)-sphere Sd−1; the direction vectors of a line

in Rd can be represented by vectors of a hemisphere. The angle between two unit vectors,
−→u 1 and −→u 2 is ∠(−→u 1, −→u 2) = arccos(−→u 1 · −→u 2) ∈ (−π, π). Between two (undirected) edges
e1 and e2 with unit direction vectors ±−→u 1 and ±−→u 2, we define the angle as ∠(e1, e2) =
arccos |−→u 1 · −→u 2| ∈ [0, π). Let projab(e) denote the orthogonal projection of an edge e to the
supporting line of ab, see Fig. 1(b); and note that ∥projab(e)∥ = ∥e∥ cos(ab, e).

(1 + ε)‖ab‖

√
2
ε
+

ε2
‖a

b‖ c

ba

(a) (b)

a b

Eab

Pab

Figure 1 (a) An ellipse Eab with foci a and b, and major axis (1 + ε)∥ab∥. (b) A monotone
ab-path Pab, and the projections of its edges to ab.

Characterization for Short ab-Paths. Let a, b ∈ Rd, and let Pab be a polygonal ab-path of
weight at most (1 + ε)∥ab∥. We show that “most” edges along Pab must be “nearly” parallel
to ab. Specifically, for an angle α ∈ [0, π/2), we distinguish between two types of edges in
Pab. Denote by E(α) the set of edges e in Pab with ∠(ab, e) ≤ α; and let F (α) be the set of
all other edges of Pab. Clearly, we have ∥Pab∥ = ∥E(α)∥ + ∥F (α)∥ for all α.

▶ Lemma 3. Let a, b ∈ Rd and let Pab be an ab-path of weight ∥Pab∥ ≤ (1 + ε)∥ab∥. Then
for every i ∈ {1, . . . , ⌊1/

√
ε⌋}, we have ∥E(i ·

√
ε)∥ ≥ (1 − 2/i2) ∥ab∥.
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Proof. Suppose, to the contrary, that ∥E(i·
√

ε)∥ < (1−2/i2) ∥ab∥ for an i ∈ {1, . . . , ⌊1/
√

ε⌋}.
We have ∑

e∈E(i
√

ε)∪F (i
√

ε)

∥projab(e)∥ ≥ ∥ab∥, (1)

which implies∑
e∈F (i

√
ε)

∥projab(e)∥ ≥ ∥ab∥ −
∑

e∈E(i
√

ε)

∥projab(e)∥ (2)

≥ ∥ab∥ −
∑

e∈E(i
√

ε)

∥e∥

= ∥ab∥ − ∥E(i
√

ε)∥.

Recall that for every edge e ∈ F (i
√

ε), we have ∠(e, ab) ≥ i ·
√

ε. Using the Taylor estimate
1

cos(x) ≥ 1 + x2

2 , for every e ∈ F (i
√

ε), we obtain

|e∥ ≥ ∥projab(e)∥
cos(i ·

√
ε)

≥ ∥projab(e)∥
(

1 + (i
√

ε)2

2

)
= ∥projab(e)∥

(
1 + i2 ε

2

)
,

Combined with (2), this yields

∥Pab∥ =
∑

e∈E(i
√

ε)

∥e∥ +
∑

e∈F (i
√

ε)

∥e∥

≥
∑

e∈E(i
√

ε)

∥e∥ +
∑

e∈F (i
√

ε)

∥projab(e)∥
(

1 + i2 ε

2

)

≥ ∥E(i
√

ε)∥ +
(
∥ab∥ − ∥E(i

√
ε)∥
)(

1 + i2 ε

2

)
=
(

1 + i2 ε

2

)
∥ab∥ − i2 ε

2 ∥E(i
√

ε)∥

>

(
1 + i2 ε

2

)
∥ab∥ − i2 ε

2

(
1 − 2

i2

)
∥ab∥

≥
(

1 + i2 ε

2

)
∥ab∥ −

(
i2

2 − 1
)

ε ∥ab∥

= (1 + ε)∥ab∥,

which is a contradiction. ◀

We use Lemma 3 in the analysis of our lower bound construction in Section 1. We
can also derive a converse of Lemma 3 for monotone ab-paths. An ab-path is monotone
if ∠(

−→
ab, −→e ) > 0 for every directed edge −→e of Pab, where the path is directed from a to b.

Equivalently, an ab-path is monotone if it crosses every hyperplane orthogonal to ab at most
once. We show that if the angle ∠(

−→
ab,

−→
d ) is sufficiently small for “most” of the edges of Pab,

then ∥Pab∥ ≤ (1 + ε)∥ab∥.

▶ Lemma 4. For every δ > 0, there is a κ > 0 with the following property. For a, b ∈ Rd

and a monotone an ab-path Pab, if ∥F (i
√

εκ)∥ ≤ ∥Pab∥/i2+δ for all i ∈ {1, . . . , ⌈π/
√

εκ⌉},
then ∥Pab∥ ≤ (1 + ε)∥ab∥.

STACS 2021



13:6 On Euclidean Steiner (1 + ε)-Spanners

Proof. Let Pab be an ab-path with edge set E. Note that, by definition, F (0) = E. For
angles 0 ≤ α < β ≤ π/2, let E(α, β) denote the set of edges e ∈ E with α ≤ ∠(ab, e) < β.
For convenience, we put m = ⌈π/

√
εκ⌉. Using the Taylor estimate cos x ≥ 1 − x2/2, we can

bound the excess weight of Pab as follows.

∥Pab∥ − ∥ab∥ =
∑
e∈E

∥e∥ −
∑
e∈E

∥projabe∥

=
∑
e∈E

∥e∥(1 − cos∠(ab, e))

≤
m∑

i=1
∥E((i − 1)

√
εκ, i

√
εκ)∥(1 − cos(i

√
εκ))

≤
m∑

i=1
∥E((i − 1)

√
εκ, i

√
εκ)∥ · i2 εκ

2

≤
m∑

i=1

(
∥F ((i − 1)

√
εκ)∥ − ∥F (i

√
εκ)∥

)
· i2 εκ

2

= F (0) · 12εκ

2 +
m∑

i=1
∥F (i

√
εκ)∥

(
(i + 1)2 εκ

2 − i2 εκ

2

)

≤ ∥Pab∥ · εκ

2 +
m∑

i=1

∥Pab∥
i2+δ

· (2i + 1)εκ

2

≤ εκ

2 · ∥Pab∥

(
1 +

∞∑
i=1

2i + 1
i2+δ

)

For κ = 2(1 +
∑∞

i=1(2i + 1)/22+δ)−1, we obtain

∥Pab∥ − ∥ab∥ ≤ ε

2 ∥Pab∥,

which readily implies ∥Pab∥ ≤ (1 − ε/2)−1∥ab∥ < (1 + ε)∥ab∥, as required. ◀

The criteria in Lemma 4 can certify that a geometric graph G is a Euclidean Steiner
(1 + ε)-spanner for a point set S. Intuitively, an (1 + ε)-spanner should contain, for all point
pairs a, b ∈ S, an ab-path in which the majority of edges e satisfy ∠(ab, e) ≤ O(

√
ε), with

exceptions quantified by Lemma 4. This property has already been used by Solomon [39] in
the single-source setting, for the design of shallow-light trees. We use shallow-light trees in
our upper bound (Section 4), instead of Lemma 4. However, the characterization of ab-paths
of weight at most (1 + ε)∥ab∥, presented in this section, may be of independent interest.

Shallow-light trees. Shallow-light trees (SLT) were introduced by Solomon [39]. Given a
source s and a point set S in Rd, an (α, β)-SLT is a Steiner tree rooted at s that contains
a path of weight at most α ∥ab∥ between the source s and any point t ∈ S, and has weight
β ∥MST(S)∥. For our upper bounds in Section 4, we use the following variant of shallow-light
trees, between a source s and a set S of collinear points in the plane; see Figure 2.

▶ Lemma 5 (Solomon [39, Section 2.1]). Let 0 < ε < 1, let S be a set of points in the [− 1
2 , 1

2 ]
interval of the x-axis, and let s = (0, ε−1/2) be a point on the y-axis. Then there exists a
geometric graph of weight O(ε−1/2) that contains, for every point t ∈ S, an st-path Pst with
∥Pst∥ ≤ (1 + ε) ∥st∥.
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s

t2t1

Figure 2 An illustration of a shallow-light tree for a source s and a set S of collinear points. The
input points and the Steiner points are colored black and red, respectively.

3 Lower Bounds

In this section we prove the following lower bound on the lightness of Euclidean Steiner
spanners in Rd. Our lower bound construction is a direct generalization of the 2-dimensional
lower bound construction by Le and Solomon [27]. However, our analysis is significantly
simpler than that of [27] and it does not depend on planarity. As a result, it easily extends
to higher dimensions.

▶ Theorem 1. Let a positive integers d and real ε > 0 be given such that ε ≤ 1/d. Then
there exists a set S of n points in Rd such that any Euclidean Steiner (1 + ε)-spanner for S

has lightness Ω(ε−d/2) and sparsity Ω(ε(1−d)/2).

Proof. First we establish the result for a point set of size Θd(ε(1−d)/2) and then generalize to
arbitrary n. Let Q = [0, 1]d be a unit cube in Rd; see Fig. 3. The point set S will consist of two
square grids in two opposite faces of Q, with d/

√
ε spacing. Specifically, consider the lattice

L = (d/
√

ε) ·Zd. Let Q0 and Q1, respectively, be the two faces of Q orthogonal to the xd-axis.
Now let S0 = L ∩ Q0 and S1 = L ∩ Q1. We have |S0| = |S1| = ⌊1/(d

√
ε)⌋d−1 = Θd(ε(1−d)/2),

hence |S| = Θd(ε(1−d)/2).

3/
√
ε

1

1

1
3/
√
ε

Q

S

Figure 3 A schematic image of S in R3.

Let N be a Euclidean Steiner (1 + ε)-spanner for S. For a point pair (a, b) ∈ S0 × S1, we
have 1 ≤ ∥ab∥ ≤ diam(Q) =

√
d. The spanner N contains an ab-path Pab of weight at most

(1 + ε)∥ab∥, which lies in the ellipsoid Eab with foci at a and b, and major axis (1 + ε)∥ab∥.

STACS 2021



13:8 On Euclidean Steiner (1 + ε)-Spanners

The ellipsoid Eab is, in turn, contained in an infinite cylinder Cab with axis ab and radius√
(1+ε)2−12

2 ∥ab∥ <
√

ε∥ab∥ ≤
√

εd. The intersection of the cylinder Cab with hyperplanes
containing Q0 and Q1, resp., is an ellipsoid of half-diameter at most

√
d − 1 ·

√
εd <

√
ε d,

and their centers are a and b, respectively. In particular, all point in S, other than a and b,
are in the exterior of Cab.

We distinguish between two types of edges in the ab-path Pab. An edge e of Pab is near-
parallel to ab if ∠(ab, e) < 2 ·

√
ε. Let E(ab) be the set of edges of Pab that are near-parallel

to ab, and F (ab) the set of all other edges of Pab. Lemma 3 with i = 2 yields

∥E(ab)∥ ≥ 1
2∥ab∥ ≥ 1

2 . (3)

Notice that for two pairs (a1, b1), (a2, b2) ∈ S0 × S1, if {a1, b1} ≠ {a2, b2}, then E(a1b1) ∩
E(a2b2) = ∅. If ∠(a1b1, a2b2) ≥ 4

√
ε, this follows from the fact that the directions near-

parallel to a1b1 and a2b2, resp., are disjoint. If ∠(a1b1, a2b2) < 4
√

ε, then a1b1 and a2b2
are parallel, consequently the cylinders Ca1b1 and Ca2b2 have disjoint interiors, and so
E(a1b1) ∩ E(a2b2) = ∅. Combined with (3), this yields

∥N∥ ≥
∑

(a,b)∈S0×S1

∥E(ab)∥ ≥ |S0| · |S1| · 1
2 ≥ Θd(ε1−d). (4)

Similarly to [27, Claim 5.3], we may assume that N ⊆ Q (indeed, we can replace every
vertex of N outside of Q by the closest point in the boundary of Q; such replacements do not
increase the weight of N). In follows that the weight of every edge is at most diam(Q) =

√
d.

Consequently,

|E(N)| ≥ ∥N∥
maxe∈E(N) ∥e∥

= Ωd(ε1−d)√
d

= Ωd(ε1−d).

The sparsity of N is |E(N)|/|S| = Ωd(ε1−d/ε(1−d)/2) = Ωd(ε(1−d)/2), as required.
The MST for the point set S contains one unit-weight edge between S0 and S1, and the

remaining |S|−2 edges each have weight d
√

ε, which is the minimum distance between lattice
points in L (see [40] for the asymptotic behavior of the MST of a section of the lattice).
Therefore ∥MST(S)∥ = 1 + (|S| − 2)d

√
ε = Θd(ε1−d/2). It follows that the lightness of N

is ∥N∥/∥MST(S)∥ = Ωd(ε1−d/ε1−d/2) = Ωd(ε−d/2), as claimed. This completes the proof
when n = Θd(ε(1−d)/2).

General Case. Finally, if n ≥ |S| = Θd(ε(1−d)/2), we can generalize the above construction
by duplication. Assume that n = k |S| for some integer k ≥ 1. Let Q1, . . . , Qk, be disjoint
axis-aligned unit hypercubes, such that they each have an edge along the x1-axis, and two
consecutive cubes are at distance 3 apart. Let S′ be the union of k translates of the point set
S, on the boundaries of Q1, . . . , Qk. Let N ′ be a Euclidean Steiner (1 + ε)-spanner for S′.

Since the ellipses induced by point pairs in different copies of S are disjoint, we have
∥N ′∥ ≥ k ∥N∥ = Ωd(kε1−d) and |E(N ′)| ≥ k |E(N)|. This immediately implies that the
sparsity of N ′ is |E(N ′)|/n = |E(N)|/|S| ≥ Ωd(ε(1−d)/2).

The MST of S′ consists of k translated copies of MST(S) and k − 1 edges of weight 3
between consecutive copies. That is, ∥MST(S′)∥ = k ∥MST(S)∥ + 3(k − 1) = Θd(kε1−d/2).
It follows that the lightness of N ′ is Ωd(ε−d/2), as claimed. ◀
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4 Upper Bound

In this section, we prove Theorem 2 and construct, for every ε > 0 and every set of n points
in R2, a Euclidean Steiner (1 + ε)-spanner of lightness O(ε−1 log n). This matches the lower
bound of Theorem 1 up to a O(log n) factor, and improves upon the previous bound of
O(ε−1 log ∆) by Le and Solomon [28, Theorem 1.2].

Directional (1 + ε)-spanners. Let S be a set of n points in the plane. Assume, without
loss of generality, that diam(S) ≥ 1/2 and S ⊂ [0, 1]2. Then the weight of the Euclidean
spanning tree of S is bounded by ∥MST(S)∥ ≥ diam(S) ≥ 1/2, and ∥MST(S)∥ ≤ O(n1/2) by
a classical result by Few [20]. Both bounds are tight in the worst case. Note that the weight
of the MST is in a rather broad range, which makes it challenging to bound the weight of
the Steiner (1 + ε)-spanner by O(∥MST(S)∥ · ε−1).

The direction of a line L in the plane is given by the counterclockwise angle θ ∈ [0, π)
between the positive x-axis and L. A line segment pq inherits its direction from its supporting
line. The distance between directions θ1, θ2 ∈ [0, π), of lines L1 and L2, resp., is

∠(L1, L2) = min{|θ1 − θ2|, π − |θ1 − θ2|}.

For an interval D ⊂ [0, π) of directions, we construct a Euclidean Steiner (1 + ε)-spanner
restricted to points pairs whose directions are in D. We define a spanner in this restricted
sense as follows.

▶ Definition 6. Let S be a finite point set in R2, and let D ⊂ [0, π) be an set of directions.
A geometric graph G is a directional (1 + ε)-spanner for S and D if for every a, b ∈ S, where
the direction of ab is in D, graph G contains an ab-path of weight at most (1 + ε)∥ab∥.

Our main lemma is the following.

▶ Lemma 7. For a set S of n points in the plane, and for the interval D = [ π−
√

ε
8 , π+

√
ε

8 ] of
directions, there exists a directional (1 + ε)-spanner G of weight O(∥MST(S)∥ε−1/2 log n).

We prove Lemma 7 in Section 4.2 below. Here we show that Lemma 7 implies Theorem 2.

▶ Theorem 2. For every set S of n points in Euclidean plane, there exists a Steiner
(1 + ε)-spanner of lightness O(ε−1 log n).

Proof of Theorem 2. Let S be a set of n points in the plane. Let ε > 0 be given, and let
k = Θ(ε−1/2) be an integer. We partition the space of directions into k intervals as

[0, π) =
k⋃

i=1
Di, where Di =

[
(i − 1) π

k
,

i π

k

)
for i ∈ {1, . . . , k}.

By Lemma 7, for i = 1, . . . , k, there exists a geometric graph Ni of weight O(∥MST∥ log(n) ·
ε−1/2) such that for every point pair a, b ∈ S, if the direction of ab is in Di, then Ni contains
an ab-path of weight at most (1 + ε)∥ab∥.

Let N =
⋃k

i=1 Ni be the union of the networks Ni for i ∈ {1, . . . , k}; see Figure 4 for
an illustration. Since [0, π) =

⋃k
i=1 Di, the graph N contains a path of weight at most

(1 + ε)∥ab∥ for all point pairs a, b ∈ S, and so N is a Euclidean Steiner (1 + ε)-spanner for S.
The weight of N is

∥N∥ =
k∑

i=1
∥Ni∥ ≤ k · O

(
∥MST(S)∥ log n√

ε

)
≤ O

(
∥MST(S)∥ log n

ε

)
,

as required. ◀
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(a) (b) (c) (d)

Figure 4 (a)–(c) Schematic figures for directional spanners N1, N2, and N3 for three disjoint
intervals of directions, for a set of 6 points in the plane. (d) The union N1 ∪ N2 ∪ N3 of the networks.

The second component of our approach is a subdivision of the bounding box of S into
regions that are long and skinny in one particular direction. We start with discussing the
special cases of a single rectangle.

4.1 Rectangles
We illustrate our general strategy with a simple special case, where the points in S lie on
the boundary of an axis-aligned rectangle. We first assume that R is narrow and tall, and
we construct an directional (1 + ε)-spanner for an interval of near-vertical directions. For
further reference, we define the aspect ratio of an axis-parallel rectangle R by

aratio(R) = width(R)
height(R) .

▶ Lemma 8. Let R be an axis-aligned rectangle with 1
8

√
ε ≤ aratio(R) ≤ 1

4
√

ε. Then for a
finite point set S on the boundary of R, and for the interval D = [ π−

√
ε

8 , π+
√

ε
8 ] of directions,

there exists a directional (1 + ε)-spanner G with ∥G∥ ≤ O(height(R)).

Proof. We construct a graph G as a union of the boundary of R and a finite number of
shallow-light trees. If both a and b are in the same side of R, then the boundary of R contains
an ab-path of weight ∥ab∥. We next consider cases in which a and b are in different sides of
R. Since 1

8
√

ε ≤ aratio(R), if a and b are in the interior of the left and right side of R, resp.,
then the direction of the segment ab falls outside of D.

Let c be the center of the left edge of R; refer to Fig. 5(a). Take two shallow-light trees
between c and each horizontal side of R with parameter ε′ = ε/4. By Lemma 5, the weight
of the two trees is O(height(R)). If a and b are on the top and bottom sides of R, resp., then
∥ab∥ ≥ height(R). The union of the two shallow-light trees rooted at c contains an ab-path
of length

(1 + ε′)(∥as∥ + ∥sb∥) ≤ (1 + ε′) · 2 ·

√(
height(R)

2

)2
+
(

width(R)
2

)2

<
(

1 + ε

4

)(
1 + ε

2

)
height(R)

< (1 + ε) height(R)
≤ (1 + ε)∥ab∥.
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It remains to construct ab-paths for point pairs on adjacent sides of R. We describe the
construction for a left and bottom sides of R; the constructions for all other pairs of adjacent
sides is analogous, and we can take the union of all constructions. Without loss of generality,
assume that the lower-left corner of R is the origin o; see Fig. 5(b). For every positive integer
i ∈ N+, let pi = (0, height(R)/2i), and qi = (width(R)/2i−1). Note that pi is on the left
side of R, and qi is on the bottom side of R for all i ∈ N+. By Lemma 5, there exists a
shallow-light tree Ti with parameter ε′ = ε/4 of weight O(height(R)/2i) from the root pi

to the line segment oqi. Between any point a ∈ pi−1pi and b ∈ qiqi+1, we can combine a
vertical segment api with a path in the tree Ti from pi to b to obtain a path of weight at
most (1 + ε′)∥ab∥.

The weight of the union of the trees Ti, for all i ∈ N+, is O(
∑∞

i=1 height(R)/2i) =
O(height(R)). In fact, we do not need infinitely many trees, since S is finite, hence it contains
a finite number of point in the interior of the left side of R. It suffices to construct the trees
Ti, i = 1, . . . , m, such that all points in S in the left side of R are at or above pm. ◀

(a) (b) (c)

c

a

p1

o

p2

p3

q1q2
q4

p4
p5p5

q3q5

a

bb a

b = p3

a = p1

p2

a

b = p6

p3

p4

p5

p2

(d)

p1

Figure 5 (a) A rectangle R with 1
8

√
ε ≤ aratio(R) ≤ 1

4
√

ε, and two shallow-light trees rooted at
the midpoint c of the left side of R. (b) A sequence of shallow-light trees rooted at p1, . . . , pm on
the left side of R. (c) A subdivision of a rectangle R. (d) A rectangulation of the bounding box of S

into rectangels R with aratio(R) ≤ 1
4

√
ε < aratio(R).

We can generalize Lemma 8 to axis-aligned rectangles of arbitrary aspect ratio.

▶ Lemma 9. Let R be an axis-aligned rectangle. Then for a finite point set S on the
boundary of R, and for the interval D = [ π−

√
ε

8 , π+
√

ε
8 ] of directions, there exists a directional

(1 + ε)-spanner G of weight O(height(R) + width(R)/
√

ε).

Proof. If 1
8

√
ε ≤ aratio(R) ≤ 1

4
√

ε, then Lemma 8 completes the proof. Otherwise, we
greedily subdivide R by parallel lines as follows. First assume that 1

4
√

ε < aratio(R); refer
to Fig. 5(c). For a vertical line L, denote by L− and L+, resp., the halfplanes on the left
and right of L. Let L be the leftmost vertical line such that aratio(R ∩ L−) = 1

8
√

ε. Then
subdivide R into R ∩ L− and R ∩ L+ by a vertical segment of weight height(R), and recurse
on R ∩ L+. All subdivision edges are vertical, of weight height(R), and their total weight is

height(R) ·
⌊

width(R)/height(R)
1
8

√
ε

⌋
≤ O

(
width(R)√

ε

)
. (5)

Similarly, if aratio(R) < 1
8

√
ε, we can greedily subdivide R by horizontal lines into

axis-parallel rectangles. For a horizontal line L, denote by L↑ and L↓, resp., the halfplanes
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above and below L. Let L be the highest horizontal line such that aratio(R ∩ L↑) = 1
4

√
ε.

Then subdivide R into R ∩ L↑ and R ∩ L↓ by a horizontal segment of weight width(R), and
recurse on R ∩ L↓. In this case, all subdivision edges are horizontal, they all are of weight
width(R), and their total weight is

width(R) ·
⌊ 1

4
√

ε

width(R)/height(R)

⌋
≤ O

(√
ε · height(R)

)
. (6)

Assume that R has been subdivided into rectangles R1, . . . , Rk, such that 1
8

√
ε ≤

aratio(Ri) ≤ 1
4

√
ε. For every i ∈ {1, . . . , k}, let Si be the set of intersection points between

the boundary of Ri and the line segments spanned by S. For the point set Si and the
directions D, Lemma 8 yields a directional (1 + ε)-spanner Gi of weight ∥Gi∥ = height(Ri).

Let G =
⋃k

i=1 Gi. From (5) and (6), we get ∥G∥ =
∑k

i=1 ∥Gi∥ = O(
∑k

i=1 height(Ri)) =
O(height(R) + width(R)/

√
ε), as required. It remains to show that G is a directional (1 + ε)-

spanner. Let a, b ∈ S with direction in D; see Fig. 5(c). The vertical edges of R1, . . . , Rk

subdivide ab into a path of collinear line segments a = p0, . . . , pℓ = b. Each segment pi−1pi

lies in some rectangle Rj between points pi−1, pi ∈ Sj , and so Gj contains a pi−1pi-path of
weight at most (1 + ε)∥pi−1pi∥. The concatenation of these paths is an ab-path of weight at
most

∑ℓ
i=1(1 + ε)∥pi−1pi∥ = (1 + ε)∥ab∥. ◀

4.2 Rectangulations
Let per(P ) denote the perimeter of P . A polygon P is rectilinear if every edge is horizontal
or vertical. A rectangulation of polygon P is a subdivision of P into axis-parallel rectangles.
De Berg and van Kreveld [15] proved that for a rectilinear simple polygon P with n vertices,
one can efficiently compute a rectangulation of weight O(per(P ) log n), and this bound is
the best possible (already for stair-case polygons).

For an arbitrary set S of n points in the plane, we can construct a rectangulation
of the axis-aligned bounding box of S with weight O(∥MST∥ log n). Combining such a
rectangulation with Lemma 9, we are now ready to prove Lemma 7.

▶ Lemma 7. For a set S of n points in the plane, and for the interval D = [ π−
√

ε
8 , π+

√
ε

8 ] of
directions, there exists a directional (1 + ε)-spanner G of weight O(∥MST(S)∥ε−1/2 log n).

Proof. Let T be the rectilinear MST of S, that is, a spanning tree of minimum weight w.r.t.
L1-norm, realized in the plane such that every edge is an L-shape (the union of a horizontal
and a vertical segment). It is well known that ∥T∥ ≤

√
2 ∥MST(S)∥. Let R be the minimum

axis-aligned bounding box of T . By the minimality of R, the boundary of R contains at least
two vertices of T . Consequently, T ∪ ∂R is connected, and it subdivides the interior of R into
rectilinear simple polygons (faces) of total weight at most 2(∥T∥ + per(R)) = O(∥MST(S)∥).

By the result of de Berg and van Kreveld [15], we can rectangulate each face of T ∪ ∂R.
Let R denote the resulting rectangulation. Since every face has O(n) vertices, and every
edge is on the boundary of at most two faces, the total perimeter of the rectangles in R is∑

R∈R per(R) = O((∥T∥ + per(R)) log n) = O(∥MST(S)∥ log n).
For every R ∈ R, let S(R) be the set of intersection points between the boundary of

R and the line segment induced by S. By Lemma 9, there exists a directional Euclidean
Steiner (1 + ε)-spanner G(R) for S(R) of weight O(per(R) · ε−1/2). Let G =

⋃
R∈R G(R).

Its total weight ∥G∥ =
∑

R∈R O(per(R) · ε−1/2) = O(∥MST(S)∥ ε−1/2 log n). We can verify
that G is a directional (1 + ε)-spanner for S, similarly to the proof of Lemma 9. Let a, b ∈ S

such that the directions of ab is in D; see Fig. 5(d). The rectangulation subdivides ab into a
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path of collinear segments a = p0, . . . , pℓ = b. Each segment pi−1pi lies in some rectangle
R ∈ R between points pi−1, pi ∈ S(R), and so G(R) contains a pi−1pi-path of weight at
most (1 + ε)∥pi−1pi∥. The concatenation of these paths is an ab-path of weight at most∑ℓ

i=1(1 + ε)∥pi−1pi∥ = (1 + ε)∥ab∥, as required. ◀

▶ Remark 10. The log(n)-factor in Theorem 2 is due to the rectangulations of rectilinear
polygons with O(n) vertices. Instead of rectangulations, one could use a minimum-weight
Steiner subdivision into convex faces (assuming that Lemmas 8–9 generalize to convex
polygons). However, this approach would not yield more than a log log(n)-factor improvement.
Dumitrescu and Tóth [17] probed that every simple polygon P with n vertices admits a
convex subdivision of weight O(per(P ) log n/ log log n), and this bound is the best possible.

▶ Remark 11. Instead of a rectangulation, one could also use a subdivision into histograms. A
histogram is a rectilinear simple polygon bounded by three axis-parallel line segments and one
x- or y-monotone path. A classical window partition [32, 41] subdivides a simple rectilinear
polygon P into histograms such that every axis-parallel line segment in P intersects (stabs)
at most three histograms [18, 31]. Due to the stabbing property, the total perimeter of
the resulting histograms is O(per(P )). For a point set S, this approach yields a histogram
subdivision of the bounding box of S with weight O(∥MST(S)∥). Very recently, Bhore and
Tóth [4] improved the upper bound O(ε−1 log n) of Theorem 2 to O(ε−1) by combining
directional spanners with a modified window partition.

5 Conclusions

In this paper, we have studied Euclidean Steiner (1 + ϵ)-spanners under two optimization
criteria, lightness and sparsity, and provided improved lower and upper bounds. Our upper
bound of O(ε−1 log n) on the minimum lightness of Steiner (1 + ε)-spanners in the Euclidean
plane has recently been improved to the bound O(ε−1) in [4], matching the lower bound of
Ω(ε−1) of Theorem 1. However, for lightness in dimensions d ≥ 3, an Θ̃(ε1/2)-factor gap
remains between the current upper bound Õ(ε−(d+1)/2) [30, Theorem 1.6] and the lower
bound Ω(ε−d/2) of Theorem 1.

In Euclidean d-space, the same point sets (grids in two parallel hyperplanes) establish the
lower bounds Ω(ε−d/2) for lightness and Ω(ε(1−d)/2) for sparsity for Steiner (1 + ε)-spanners
(cf. Theorem 1). Le and Solomon constructed spanners with sparsity Õ(ε(1−d)/2) [27,
Theorem 1.3], matching the lower bound in every dimension d ∈ N, but the lightness of these
spanners is significantly higher. In dimensions d ≥ 3, they construct spanners with lightness
Õ(ε−(d+1)/2) [30, Theorem 1.6], but these spanners have significantly higher sparsity.

We conjecture that a Euclidean Steiner (1 + ε)-spanner cannot simultaneously attain
both lower bounds (lightness and sparsity) of Theorem 1. Therefore, exploring trade-offs
between lightness and sparsity in Euclidean d-space remains an open problem.

A critical aspect of graphs is their embeddibility in low-genus surfaces. A geometric graph
in R2 is a plane graph if no two edges cross each other. Note that every Steiner spanner
G = (V, E) for a point set S can be turned into a plane graph (with the same stretch factor
ratio and the same weight) by introducing Steiner points at every edge crossing. However,
the number of new Steiner points would be proportional to O(|E|2), which is prohibitive.
It remains an open problem to bound the sparsity of a plane Steiner (1 + ε)-spanner for n

points in Euclidean plane, as a function of n and ε.
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Angles and directions play a crucial role in our lower bound analysis (Section 3) and
upper bound construction (Section 4). While angles are invariant under rotations only in
Euclidean spaces, they can be defined in any inner product space, such as Rd under Lp norm,
for p ≥ 2. We leave it as an open problem to derive upper and lower bounds on the lightness
and sparsity of Steiner (1 + ε)-spanners in other inner product spaces.
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