
Simple Multi-Pass Streaming Algorithms for
Skyline Points and Extreme Points
Timothy M. Chan !

Dept. of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Saladi Rahul !

Dept. of Computer Science and Automation, Indian Institute of Science Bangalore, India

Abstract
In this paper, we present simple randomized multi-pass streaming algorithms for fundamental
computational geometry problems of finding the skyline (maximal) points and the extreme points of
the convex hull. For the skyline problem, one of our algorithm occupies O(h) space and performs
O(log n) passes, where h is the number of skyline points. This improves the space bound of the
currently best known result by Das Sarma, Lall, Nanongkai, and Xu [VLDB’09] by a logarithmic
factor. For the extreme points problem, we present the first non-trivial result for any constant
dimension greater than two: an O(h logO(1) n) space and O(logd n) pass algorithm, where h is
the number of extreme points. Finally, we argue why randomization seems unavoidable for these
problems, by proving lower bounds on the performance of deterministic algorithms for a related
problem of finding maximal elements in a poset.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases multi-pass streaming algorithms, skyline, convex hull, extreme points,
randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.22

Funding Timothy M. Chan: Work supported in part by NSF Grant CCF-1814026.
Saladi Rahul: Work supported by IISc start-up research grant.

1 Introduction

1.1 Multi-pass streaming model
The streaming model has emerged as a popular model to handle massive data. Unfortunately,
streaming algorithms for geometric problems that make a single pass over the input and work
with a small amount of space are typically unable to give exact solutions. This motivates the
multi-pass streaming model, where the algorithm is allowed to make multiple passes over the
input. The input sequence remains unchanged in each pass. The goal is to minimize the
amount of working space (or memory) and the number of passes. The data is assumed to be
explicitly stored either in a disk or in a cloud, which facilitates multiple passes over it, but
since each pass is costly it is essential to minimize the passes.

Summarization queries are the most widely studied class of problems in the streaming
model. The focus of this paper is geometric summarization queries in the multi-pass streaming
model. Specifically, we study two fundamental geometric summarization problems: the skyline
problem, asking for the “dominating” points in the data, and the extreme points problem,
asking for the vertices of the convex hull, which succinctly represents the shape of the point
cloud. The goal is to design algorithms which are output-sensitive in space (i.e., near O(h)
space when there are h skyline/extreme points) and perform few passes. Note that O(h)
space1 is indeed the best possible if we want to store the skyline/extreme points in memory,
rather than write to an output stream.

1 Throughout the paper, all space bounds are measured in words, not bits. A word may store one input
point, or an O(log n)-bit number.

© Timothy M. Chan and Saladi Rahul;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tmc@illinois.edu
mailto:saladi@iisc.ac.in
https://doi.org/10.4230/LIPIcs.STACS.2021.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

We will focus on algorithms which are optimized to work efficiently even for the worst-case
input. For the problems of interest in this paper (such as the skyline problem), one could
argue that an incremental algorithm which updates the skyline as each new element is
inserted will work well for randomly generated inputs (for example, for points uniformly
distributed in a square, any prefix of the input has an expected O(log n) number of skyline
points, and so it is not difficult to obtain a solution using O(log n) expected space, with just
one pass). However, point sets encountered in practice may not be randomly distributed.

1.2 Skyline points
Let P be a set of n points lying in Rd for a constant d. A point p = (p1, . . . , pd) dominates
another point q = (q1, . . . , qd) if pi > qi for all i ∈ {1, . . . , d}. In the skyline (also called
maxima) problem, the goal is to find all points p ∈ P such that p is not dominated by any other
point in P . The problem has been extensively studied by the computational geometry [20]
and the database community (e.g., see [22] and the references therein). Currently, the best
known result in the word-RAM model is an O(n logd−3 n)-time algorithm by Chan, Larsen
and Pǎtraşcu [6] (also see [1] and [14] for the best-known output-sensitive algorithms in the
word-RAM model and the I/O model, respectively, and [2] for instance-optimal algorithms
in R2 and R3).

The formal study of the skyline problem in the multi-pass streaming model was initiated by
Das Sarma, Lall, Nanongkai, and Xu [11]. The naive O(nh)-time output-sensitive algorithm
(e.g., see [8]) can be implemented in the multi-pass setting with O(h) space but requires
O(h) passes, where h is the number of skyline points of P . Das Sarma et al. proposed a new
randomized algorithm using significantly fewer number of passes: it requires O(h log n) space
and just O(log n) passes, with high probability,2 for any constant dimension d.

Alternatively, it is not difficult to obtain a deterministic algorithm with O(h log n)
space and O(logd−1 n) passes, by adapting Kirkpatrick and Seidel’s output-sensitive skyline
algorithm [16] in the multi-pass setting, similar to Chan and Chen’s multi-pass adaptation [5]
of Kirkpatrick and Seidel’s output-sensitive 2-d convex hull algorithm [17]; see the appendix.
However, with this approach, the number of logarithmic factors grows as the dimension
increases.

New randomized algorithms. Our first result is a variant of Das Sarma et al.’s algorithm
that solves the d-dimensional skyline problem using O(log n) passes and O(h) space – this
improves space by a logarithmic factor. Our bounds also hold with high probability. Although
the improvement is not big, the highlight here is the simplicity of our analysis compared to
the longer and more complicated analysis by Das Sarma et al. [11]. (The simpler analysis is
well-suited for teaching purposes.) Also, unlike their analysis, which is specialized to the
skyline problem, our analysis naturally extends to the extreme points problem, as we will
discuss later.

Our algorithm can also achieve a trade-off: by increasing the space bound to O(bh) for a
parameter b, the number of passes can be lowered to O(logb n). For example, setting b = nδ

gives O(hnδ) space and O(1/δ) passes, for any δ ∈ (0, 1]. Setting b = logδ n for an arbitrarily
small constant δ > 0 gives O(h logδ n) space and O

(
log n

log log n

)
passes.

In the O(h)-space regime, we also describe a refinement of the algorithm that further
reduces the number of passes from O(log n) to O

(
log h + log n

log log n

)
, which is slightly sublog-

arithmic, assuming that h is not too big. These bounds hold in expectation.

2 Throughout this paper, “with high probability” will imply “with probability at least 1 − 1
nc ”, where c is

a sufficiently large constant.

T. M. Chan and S. Rahul 22:3

Our randomized algorithms for skyline points, like previous work [11], extends (with the
same bounds) to the general setting of a partially ordered set, or poset. A poset is a pair
(P,≻), where P is the set of n elements and ≻ is an irreflexive, transitive binary relation
on the elements of P . The problem here is to find all the maximal elements in a poset, i.e.,
elements a ∈ P such that there is no element b ∈ P with b ≻ a. We only assume an oracle
that can test whether a ≻ b for any two given elements a and b.

Is randomization essential? A natural question is whether randomization is essential for
the algorithms proposed in this paper. At least for the poset problem we can answer this
question. We show that any deterministic algorithm which uses O(h) space to find all
maximal points in a poset has to perform Ω(h) passes. In other words, among the class of
deterministic algorithms to compute maximal elements in a poset, the naive idea of finding
one maximal element per pass is the best possible algorithm. Therefore, randomization is
not just necessary, but in fact leads to dramatically improved results. Our lower bound proof
is based on a new, interesting adversarial argument.

1.3 Extreme points
Given a set P of n points lying in Rd, a point p ∈ P is an extreme point if conv(P) ̸=
conv(P \ {p}), where conv(P) denotes the convex hull of P . In the multi-pass setting, this
problem was first studied in R2 by Chan and Chen [5], who obtained an algorithm with
O(h log2 n) space and O(log2 n) passes, and then recently by Farach-Colton, Li, and Tsai [12],
who improved the bounds to O(h log2 n) space and O(log n) passes. These solutions are based
on the output-sensitive divide-and-conquer algorithms of Kirkpatrick and Seidel [17] and
Chan, Snoeyink, and Yap [7], and hence, they inherently work only in R2 (and possibly in
R3) – in dimension greater than three, these divide-and-conquer algorithms have complexity
at least the number of hull facets, which can be much larger than the number of hull vertices.

In this work, we present the first non-trivial result for any constant dimension greater
than two: an O(h logO(1) n)-space, O(logd n)-pass algorithm. Our solution requires extending
our skyline algorithm in a nontrivial fashion.

M

p

fp

In the non-streaming setting, O(nh)-time output-sensitive algorithms for the extreme
points problem were reported independently by Clarkson [8], Chan [3], Ottmann et al. [19],
and Dula and Helagason [15]. These algorithms are all similar and work by incrementally
building a subset M ⊆ P of the extreme points of the upper hull. For each input point p ∈ P ,
we first check if p lies below or above the current upper hull of M – this step reduces to a
linear program with O(h) constraints. If p lies below, then it can be removed. Otherwise, p

may not necessarily be extreme in P , but we can shoot an upward ray from p to hit a facet
fp ∈ conv(P) – this step reduces to a linear program with n constraints.3 The d + 1 vertices
defining fp are extreme in P and can be added to M . The whole algorithm requires solving

3 A version of the algorithm by Clarkson [8] and Dula and Helagason [15] avoids linear programming in
this step and instead finds a point extreme in the direction orthogonal to fp, and adds to M . If p is
still above the current upper hull of M , we repeat.

STACS 2021

22:4 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

O(n) linear programs with O(h) constraints and O(h) linear programs with n constraints,
and thus takes O(nh) time by known linear-time linear programming algorithms in constant
dimensions [4, 9, 21].4 Because it finds a constant number of extreme points per iteration,
the algorithm is inherently sequential and requires Ω(h) passes.

In our solution, we use randomization instead to find more extreme points at each iteration,
by generating O(h) linear programs with n constraints that can be solved in parallel, for
each of logarithmically many rounds.

The rest of the paper is organized as follows. In Sections 2 and 3, we present our
algorithms for computing skyline points and extreme points, respectively. In Section 4 we
prove a lower bound on the performance of any deterministic algorithm for finding the
maximal elements in a poset.

2 Randomized algorithms for skyline points in Rd

2.1 Main algorithm
In this section we will prove the following result.

▶ Theorem 1. Let P be a set of n points in Rd, and h be the number of skyline points.
Then, with high probability, there is an O(bh)-space, O(logb n)-pass algorithm to compute the
skyline points, where b is a parameter in the range [2, n/h].

Our algorithm is a refinement of Das Sarma et al.’s algorithm [11]. The general idea is to
use random sampling to somehow prune a fraction of the input points in each round. The
right sample size requires knowledge of h, which we guess by repeated doubling.

Let P be a set of n points in Rd. The algorithm consists of two stages. In Stage I, the
goal is to handle the case when h ≤ logb n. Here, we can just run a known naive algorithm
(e.g., see [8]) which finds one skyline point per pass and thus requires h ≤ logb n passes. For
example, having found skyline points p1, . . . , pi−1 in the first i− 1 passes, we can find the
point, pi ∈ P , with the largest x-coordinate value among the points of P not dominated by
p1, . . . , pi−1, in the next pass. If some skyline points have not been found after logb n passes,
we proceed to Stage II. Let c be a sufficiently large constant.

The set M maintains the current list of skyline points found by the algorithm. In Stage-II,
an iteration will consist of two passes. Let Pi denote the set of unclassified points at the
beginning of the i-th iteration (where i ≥ 1), i.e., the points of Pi which have not yet
been labeled as skyline or non-skyline. In the first pass of the i-th iteration (step 3a), we
independently sample each point of Pi with probability cri

|Pi| , where c is a sufficiently large
constant. Let Ri ⊆ Pi be the sampled set of points. In the second pass of the i-th iteration
(step 3b), the goal is to find a set of skyline points R+

i which dominate all the points in
Ri (i.e., every point in Ri is dominated by some point in R+

i). This is achieved as follows:
initially, set R+

i ← Ri. Then for each point p ∈ Pi, if p does not dominate any point in
R+

i , then we do nothing. Otherwise, we add p to R+
i and remove the points of R+

i which
are dominated by p. Note that this step will not increase the size of R+

i , although it could
potentially decrease the size of R+

i . At the end of the second pass, the claim is that the
points in R+

i are all skyline points (see Lemma 2). The algorithm terminates when all the
points have been classified.

4 With range searching data structures, the overall running time can be lowered to O(n logO(1) h +
(nh)1−1/(⌊d/2⌋+1) logO(1) n) [3]. We will ignore bounds of this flavor, since they do not improve upon
O(nh) by much as d increases.

T. M. Chan and S. Rahul 22:5

Algorithm 1 Finding Skyline Points.
0. M ← ∅.
//Stage I to handle h ≤ logb n.
1. For the first logb n passes, run the naive algorithm of finding one skyline point per pass.

//Stage II to handle h > logb n.
2. P1 ← P , r1 ← c logb n, and i← 1.
3. Repeat till |Pi| < ri:
3a. Find a sample Ri ⊆ Pi of size ri. Set R+

i ← Ri.
3b. For each point p ∈ Pi: //Finding new skyline points.
- Add p to R+

i if p dominates at least one point in R+
i .

- Remove the points in R+
i which are dominated by p.

3c. M ←M ∪R+
i .

3d. Pi+1 ← Pi \ (R+
i ∪ {points of Pi dominated by R+

i }).
3e(i). If |Pi+1| ≥ |Pi|/b, then ri+1 ← bri. // Ineffective iteration.
3e(ii). Otherwise, ri+1 ← ri.
3f. i← i + 1.

4. Compute the skyline points of the O(ri) points in Pi and add them to M .

▶ Remark. Since the size of the sets Pi can be significantly larger than h, we cannot afford to
store them explicitly. To overcome this issue, we will instead use M to implicitly maintain Pi:
observe that whenever a point p in the stream arrives, if none of the points in M dominate
p, then p ∈ Pi.

Analysis. Stage I of the algorithm requires O(logb n) space and O(logb n) passes. From now
on we will focus on Stage II and assume h > logb n. The i-th iteration is labeled effective if
|Pi+1| < |Pi|/b. We start by proving a simple fact.

▶ Lemma 2. At the end of the i-th iteration, all the points in R+
i are skyline points.

Proof. For the sake of contradiction, assume that a point p ∈ R+
i is not a skyline point and

let q ∈ Pi be a point dominating it. If p appears before q in the stream, then it is easy to
observe that p will not survive in R+

i . On the other hand, if q arrives before p in the stream,
then there are two cases:

p ∈ R+
i at the end of the first pass. In that case, we know that in the second pass there

is a point which will come before p and remove p from R+
i . Once that happens, then p

cannot be added back to R+
i in the second pass.

p ̸∈ R+
i in the first pass, but p ∈ R+

i at the end of the second pass. This implies that
there is a point p′ ∈ R+

i at the end of the first pass and p′ is dominated by p; but p′

would have been dominated by q as well, and hence p cannot be part of R+
i at the end of

the second pass. ◀

The following lemma is the crux of our argument.

▶ Lemma 3. When ri ≥ cb2h for a sufficiently large constant c, then all further iterations
will be effective with high probability.

Proof. Let M∗ be the skyline points of P . Consider any i-th iteration in which ri ≥ cb2h.
Given a sample Ri, in step 3b we have constructed a set R+

i ⊆M∗ which dominates all the
points in Ri. The main question is this:

STACS 2021

22:6 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

What is the probability that the number of points of Pi \R+
i not dominated by R+

i is
more than |Pi|/b?

This probability seems hard to bound directly. We turn the question around:

Fix a subset A ⊆M∗, where the number of points of Pi \A not dominated by A is
more than |Pi|/b. What is the probability that R+

i = A?

Observe that if any point p ∈ Pi \A not dominated by A is chosen to be in Ri, then p would
be dominated by some point in R+

i , making it impossible for R+
i = A. Using this observation,

we get the following upper bound:

Pr[R+
i = A] ≤ Pr[every point of Pi \A not dominated by A is not in Ri]

≤
(

1− ri

|Pi|

)|Pi|/b

≤ e−ri/b.

A trivial upper bound on the number of candidates for A is 2h, since A ⊆M∗. It turns
out that this trivial bound is sufficient for our purposes. By the union bound,

Pr[the number of points of Pi \R+
i not dominated by R+

i is more than |Pi|/b]

≤ 2h · e−ri/b

< 2−Ω(cbh) since ri ≥ cb2h

= n−Ω(c) since h > logb n.

It follows that an iteration is effective with high probability. ◀

Readers familiar with ε-nets or standard geometric Clarkson–Shor-style sampling ana-
lysis [10, 18] may find the preceding analysis similar to known arguments, but there is one
interesting, key difference: the set system we are dealing with does not have constant VC
dimension, but rather has dimension Θ(h). We use the 2h upper bound on the number of
possible sets A, instead of a more usual polynomial bound. (In dimension 2 and 3, one could
decompose the region not dominated by O(h) points into O(h) cells of constant complexity,
and could therefore use a more standard Clarkson-Shor–style argument, but the size of such
decomposition blows up in dimension beyond 3.)

▶ Lemma 4. The number of passes performed by the algorithm is O(logb n) and the space
occupied by the algorithm is O(bh). Both bounds hold with high probability.

Proof. The number of effective iterations is O(logb n), since in each effective iteration the
number of unclassified points go down by a factor of at least b. Now we will bound the
number of iterations which are ineffective. By Lemma 3, with high probability, an ineffective
iteration can only happen when ri < cb2h. Since the value of r is increased by a factor of
b after each ineffective iteration, the total number of ineffective iterations will be bounded
by O(logb(b2h)). Therefore, with high probability the number of passes performed by the
algorithm is O(logb n + logb(b2h)) = O(logb n).

Since an ineffective iteration can only happen when ri < cb2h, with high probability, the
space occupied will be O(b2h). By choosing b′ =

√
b, the space becomes O(b′h) and the

number of passes becomes O(logb′ n). ◀

T. M. Chan and S. Rahul 22:7

Comparison. Compared to Das Sarma et al.’s algorithm [11], our use of a different algorithm
in Stage I ensures that Stage II is only invoked to handle the case where h is sufficiently
large, and as a result, we could afford a sample size smaller by a logarithmic factor than the
sample size used by [11] and still obtain high probability bounds.

Compared to our analysis, Das Sarma et al.’s analysis [11] is longer and more complicated.
It starts by constructing a graph consisting of h components (one per skyline point). To
argue that in each pass a constant fraction of the points gets classified, the h components
are categorized into heavy and light, and then a separate analysis is performed on the heavy
and the light components. Also, their analysis is specialized to the skyline problem, whereas
our analysis will extend to the extreme points problem as well.

Running time. Naively, each pass in Stage II can be implemented in O(b2nh) time, yielding
a total running time of O(b2nh logb n), with high probability. In constant dimensions, we can
use orthogonal range searching data structures to implement step 3b, and the total running
time can be reduced to O(n logO(1) h logb n).

Posets. The algorithm for skyline points naturally extends to the problem of finding
maximal points in a poset by suitably adapting the definition of domination. The only
modification needed is in Stage I: we used geometry (the x-coordinate values) to find one
skyline point per pass. For poset, replace it with another naive algorithm which finds one
maximal point per pass.

2.2 Further refinement
In this subsection, we present an interesting variant of the algorithm which slightly reduces
the expected number of passes to sublogarithmic, if h is not too big, while using only O(h)
expected space.

▶ Theorem 5. Let P be a set of n points in Rd, and h be the number of skyline points. Then,
there is an O(h)-space, O

(
log h + log n

log log n

)
-pass algorithm to compute the skyline points.

Both bounds hold in expectation.

The new algorithm is similar to our algorithm in Section 2.1, but with one key difference.
An iteration will now be considered ineffective if the sample does not prune away a large
number of points (this is as before), nor does it discover a large number of new skyline
points (this is new). Another minor difference is that in case of an ineffective iteration, we
will double the sample size (instead of lying by b). More precisely, the only change in the
pseudocode is to replace step 3e(i) with the following:

3e(i). If |Pi+1| ≥ |Pi|/b and |R+
i | < h/b2, then ri+1 ← 2ri // Ineffective iteration.

We will fix the parameter b so that logb n = b2 (and thus b = Θ
(√

log n
log log n

)
).

The following lemma shows that an ineffective iteration is not very likely to happen when
the sample size is sufficiently large.

▶ Lemma 6. Pr[iteration i is ineffective | ri ≥ h] ≤ e−Ω(b).

Proof. We modify the proof of Lemma 3.

STACS 2021

22:8 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

We have already shown that Pr[R+
i = A] ≤ e−ri/b. Before, we trivially bound the number

of candidates for A by 2h. This time, we will give a sharper upper bound. An ineffective
iteration guarantees that |A| < h/b2, and hence, the number of candidates for A is at most

h/b2∑
k=1

(
h

k

)
≤ h

b2 ·
(

h

h/b2

)
≤ h

b2 ·
(

eh

h/b2

)h/b2

= bO(h/b2).

By the union bound,

Pr
[
the number of points of Pi \R+

i not dominated by R+
i is more than |Pi|/b

]
≤ bO(h/b2) · e−ri/b

≤ e−Ω(h
b) since ri ≥ h

≤ e−Ω(b) since h ≥ b2. ◀

▶ Lemma 7. The expected number of passes performed by the algorithm is O
(

log h + log n
log log n

)
.

Proof. An effective iteration with |R+
i | ≥ h/b2 can happen at most b2 times. An effective

iteration with |Pi+1| < |Pi|/b can happen only O(logb n) times. Therefore, effective iterations
happen O(logb n + b2) = O

(
log n

log log n

)
times.

Let us classify the ineffective iterations into two categories: (a) when ri < h, and (b)
when ri ≥ h.

The number of ineffective iterations of category (a) is O(log h), since ri doubles during
each ineffective iteration.

By Lemma 6, in expectation, between two consecutive effective iterations, there can be
only O(1) ineffective iterations of category (b). Therefore, the expected number of ineffective
iterations of category (b) is O

(
log n

log log n

)
. This finishes the proof. ◀

▶ Lemma 8. The expected space used by the algorithm is O(h).

Proof. Let Y be the number of ineffective iterations in which ri ≥ h. The space used is
bounded by r∗ = maxi ri, which is at most h ·2Y . It thus remains to show that E[2Y] = O(1).

To this end, we consider the following probability exercise:

Let t be an integer and ρ ≤ 1/(8t). Consider a sequence of independent tosses of a
biased coin, where the probability of heads is ρ. Stop the process when we encounter
t tails. Let H be the number of heads encountered. Show that E[2H] = O(1).

It is straightforward to see that Pr[H = j] ≤
(

t+j
j

)
ρj . If j < t, this probability is

at most (2t)jρj ≤ 1/4j . If j ≥ t, the probability is at most (2j)tρj ≤ 1/4j , since the
function f(x) = (2x)tρx · 4x is decreasing for x ≥ t and has value at most 1 at x = t. Thus,
E[2H] ≤

∑
j 2j · 1/4j = O(1).

The result now follows, by associating heads with ineffective iterations and tails with
effective iterations, where t = O(logb n + b2) = O

(
log n

log log n

)
(from the proof of Lemma 7)

and ρ = e−Ω(b) (by Lemma 6). ◀

3 Extreme points in Rd

In this section we build on the ideas used for the skyline algorithm to solve the extreme
points problem. The following result is obtained.

T. M. Chan and S. Rahul 22:9

▶ Theorem 9. Let P be a set of n points in Rd, and h be the number of extreme points.
Then, with high probability, there is an O(h logO(1) n) space and O(logd n) pass algorithm to
compute the extreme points.

It suffices to focus on computing the extreme points on the upper hull of P (finding the
extreme points on the lower hull is symmetric). Our algorithm for the extreme points problem
will also work in two stages. In Stage I, we will use the expensive O(nh)-time algorithm
mentioned in the Introduction and let it run for O(log n) passes. If h < log n, then O(log n)
passes will be enough to find all the extreme points. Otherwise, we go to Stage II.

Algorithm 2 Finding Extreme Points.
0. M ← ∅.
//Stage I to handle h ≤ log n.
1. For the first O(log n) passes, run the expensive O(nh)-time algorithm.

//Stage II to handle h > log n.
2. P1 ← P , r ← c log n and i← 1.
3. Repeat till |Pi| < r:
3a. Find a sample Ri ⊆ Pi of size r. Set R+

i ← ∅.
3b. For each point p ∈ Ri: //Finding new extreme points.
- Shoot a vertical ray upwards from p to hit a facet fp ∈ conv(P).
- Add the d + 1 vertices defining fp into R+

i .
3c. M ←M ∪R+

i .
3d. Pi+1 ← Pi \ {points of Pi that are strictly below the upper hull of R+

i }.
3e. If |Pi+1| ≥ |Pi|/2, then r ← 2r. // Ineffective iteration.
3f. i← i + 1.

4. Output the extreme points of the O(r) points in Pi.

p

fp

Unlike the skyline algorithm, there is no notion of domination for the extreme points
problem. Therefore, step 3b of the skyline algorithm cannot be used here. Instead, we
perform the following operation: from each point p ∈ Ri, shoot a vertical ray upwards to hit
a facet fp ∈ conv(P), where conv(P) is the convex hull of P . This operation reduces to linear
programming on the dual halfspaces of P . There is a known multi-pass streaming algorithm
of Chan and Chen [5] which can solve a linear program in any constant dimension d using
O(logO(1) n) space and O(logd−1 n) passes. We can execute all the r linear programming
queries simultaneously. This will not hurt the number of passes, but instead increase the
space to O(r logO(1) n). At the end of step 3b, we ensure that the upper hull of R+

i “covers”
the points in Ri.

Analysis. The analysis follows the same steps as in our analysis of the skyline algorithm.
The space used is O(h logO(1) n), and since O(log n) iterations are performed, the total
number of passes required are O(logd n).

STACS 2021

22:10 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

To prove an equivalent statement as Lemma 3, let M∗ be the extreme points on the
upper hull of P and let b← 2. Fix a subset A ⊆M∗, where the number of points of Pi above
the upper hull of A is more than |Pi|/2. If any point p ∈ Pi \A above the upper hull of A

is chosen to be in Ri, then p will be “covered” by the upper hull of R+
i , making R+

i = A

impossible. So, the same argument as before shows Pr[R+
i = A] ≤ e−Ω(ch). Thus, as before,

the probability that the number of points of Pi above the upper hull of R+
i is more than

|Pi|/2 is at most n−Ω(c).

Running time and trade-offs. Each pass in Stage II can be implemented in O(nh logO(1) n)
time, since with Chan and Chen’s algorithm [5], the r linear programs take O(nr logO(1) n)
time. Recall that Pi is represented implicitly; in each pass, we can test whether a point p

is in Pi by testing whether p is covered by the upper hull of M , which reduces to solving a
linear program on O(h) points. The extra cost is O(nh) per pass. The total time is thus
O(nh logO(1) n). (In the traditional non-streaming setting, the total running time is actually
O(nh), as it can be bounded by a geometric series.)

As before, it is possible to adapt the algorithm to achieve a trade-off, with
O(bO(1)h logO(1) n) space and O((logb n)O(1)) passes for a parameter b, since Chan and
Chen’s multi-pass linear programming algorithm [5] supports a trade-off. For example,
setting b = nΘ(δ) gives O(hnδ) space and O((1/δ)O(1)) passes.

4 Why randomized algorithms?

We finish by proving that there does not exist any efficient deterministic algorithm for the
problem of finding maximal elements of a poset. This justifies the use of randomization in
the paper (at least for the poset problem). Our lower bound proof is based on a new and
self-contained adversarial argument.

▶ Theorem 10. Let h = Ω(1) and p · h≪ n, where p is the number of passes made by an
algorithm. Assume that the only operations on the input elements are pairwise comparisons.
Then any deterministic algorithm which uses O(h) space has to perform p ≥ h

3 + 1 passes to
decide whether the number of maximal elements in a poset is h + 1, or h + 2, . . . , or h + 6.

Let P be the elements in our partially ordered set (poset). The queries asked by the
algorithm will be of the form q(a, b), where a ∈ P is currently stored in the memory and
b ∈ P is the current element in the stream. The response of the adversary will either be
a ≻ b which implies a dominates b, or b ≻ a which implies b dominates a, or a ̸∼ b which
implies a and b are incomparable. The responses of the adversary has be consistent, i.e., once
it responds to a query q(a, b), then the answer to it cannot change later. Before the algorithm
begins, the adversary will maintain that all the elements are incomparable. Each time, after
seeing n/3 elements in the stream, the adversary will create dominance relationship between
some pairs of elements by revealing a two-level tree (examples of two-level trees shown in

T. M. Chan and S. Rahul 22:11

the figure on the right), where the root element dominates its child elements. Therefore, the
root of each tree is a maximal element, and hence, the number of maximal points in P will
be equal to the number of trees constructed by the adversary.

If an element belongs to a tree revealed till now by the adversary, then it will be labelled
locked; otherwise, it will be labelled unlocked. We will show that if the number of passes
performed by the algorithm is less than or equal to h/3, then the adversary can arrange the
unlocked elements in at least two consistent ways, each having different number of maximal
elements. This implies that the execution of the algorithm is exactly the same for two
different inputs, which is a contradiction. Now we will present the technical details.

Adversary’s strategy. We will need a couple of definitions to set up adversary’s strategy. A
time-unit corresponds to processing a single element in the stream. Each pass is divided into
three phases, with each phase lasting n/3 time-units. For a p-pass algorithm, this naturally
leads to a labelling of the phases as 1, 2, 3, . . . , 3p−2, 3p−1, 3p. At the end of the i-th phase,
a tree Ti is created by the adversary.

The elements are partitioned into three equal-sized slabs: slab 0 consists of the first n/3
elements in the stream, slab 1 consists of the middle n/3 elements in the stream, and slab 2
consists of the last n/3 elements in the stream. Before the algorithm begins, all the elements
are called short-lived, and if at any point an element remains in memory continuously for
n/3 time-units, then we start calling it long-lived.

Now we are ready to describe the construction of a tree Ti. The dominated elements
in Ti will be those elements in slab (i− 2) mod 3 which were short-lived till the end of the
(i − 1)-th phase, but became long-lived at the end of the i-th phase. Next, we describe
the strategy for picking the maximal element of Ti. The adversary will arbitrarily pick one
among all the elements which satisfy the following conditions. The element should
1. belong to slab (i mod 3),
2. not belong to any of the trees already constructed, and
3. not be present in the memory at the end of the previous phases.
The reason for imposing these conditions will become clear in the proof of Lemma 12.

▶ Lemma 11. There always exists an element which satisfies the above conditions. In fact,
at least n/6 elements in a slab satisfy the above conditions.

Proof. We claim that the number of long-lived elements are O(ph). The key observation is
that for an element to become long-lived, it has to be stored in memory at the end of at
least one phase. Since the number of phases are O(p), there can be at most O(ph) long-lived
elements. Therefore, the number of elements of slab i mod 3 which belong to the trees already
constructed are O(ph) + O(h)≪ n/12. Also, the number of elements in slab i mod 3 which
are present in the memory at the end of any phase is O(ph) ≪ n/12. Since slab i mod 3
consists of n/3 elements, there will be at least n/3−n/6 = n/6 elements satisfying the above
conditions. ◀

When the algorithm asks a query q(a, b), the adversary reports a ≻ b or b ≻ a if that
relation holds in any of the trees constructed till now; otherwise it reports a ̸∼ b. Next, we
argue that the responses of the adversary to the queries are consistent.

▶ Lemma 12. If the adversary places a relation a ≻ b in the poset, then the algorithm
must not have asked the query q(a, b) or q(b, a) till then. This ensures that responses of the
adversary are consistent.

STACS 2021

22:12 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

Proof. Without loss of generality, assume that the element b is in slab 0 and the element
a in slab 2 (the other cases can be handled symmetrically). Note that this satisfies the
condition that an element from slab (i − 2) mod 3 is dominated only by an element from
slab i mod 3. For a query q(a, b) to be asked during the j-th pass, a should be stored in
memory at the beginning of the j-th pass. This implies that a is stored in memory at the
end of the 3(j − 1)-th phase, which violates condition 3 for picking the maximal element.

Now we prove that the query q(b, a) was not asked. In a given pass, at the end of which
phase does b newly become long-lived? It turns out to be the end of the second phase. Then,
let j be the smallest index such that at the end of the second phase in the j-th pass, b was
still in memory. This is when a ≻ b will be created by the adversary, since b has newly
become long-lived. Now, if q(b, a) was asked (say, in the i-th pass) before a ≻ b was placed,
then b should be in memory at the end of the second phase of the i-th pass and in fact, it
should be in memory in the third phase of the i-th pass till a is processed. This implies that
b becomes long-lived in the i-th pass, which contradicts that j is the smallest index. ◀

Handling unlocked elements. Since each tree corresponds to revealing only one maximal
element, this strategy of the adversary will ensure that the algorithm is forced to perform
h/3 passes at which point h maximal elements will be revealed. If further passes are not
performed, then the algorithm will have the same outcome for more than two inputs. The
details follow next.

Let b, b′ be any two unlocked elements in slab 2 which satisfy the three conditions stated
above for being a maximal element (by Lemma 11 we know at least two such elements in
slab 2 still exist). Also, observe that all the unlocked elements in slab 0 are short-lived and
by using an argument similar to Lemma 12, it can be shown that queries of the form q(b, a)
or q(a, b) or q(b′, a) or q(a, b′) were not asked by the algorithm, where a is a short-lived
unlocked element in slab 0. As a result, the adversary will be consistent if it declares that
the unlocked elements in slab 0 are dominated by either b or b′. Now the adversary has two
choices: (i) either make only b or b′ the root of a tree and all the unlocked elements in slab 0
the leaves of that tree, or (ii) make two trees with b and b′ as the root of those trees, and the
unlocked elements in slab 0 are partitioned to be the leaves of the two trees.

A similar argument holds when maximal elements are chosen from slab 0 and slab 1.
Therefore, the number of maximal elements can be anywhere in the range (h, h + 6], if the
number of passes performed are at most h/3.

▶ Remark. The assumption that p · h ≪ n is needed, since for large h, there is a trivial
deterministic algorithm with O(h) space and O(n/h) passes (we can divide the input sequence
into O(n/h) blocks of h elements, and in the i-th iteration, load the i-th block in memory
and test which of the h elements in the block are maximal).

References
1 Peyman Afshani. Fast computation of output-sensitive maxima in a word RAM. In Proceedings

of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1414–1423,
2014.

2 Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. Instance-optimal geometric al-
gorithms. Journal of the ACM, 64(1):3:1–3:38, 2017.

3 Timothy M. Chan. Output-sensitive results on convex hulls, extreme points, and related
problems. Discrete & Computational Geometry, 16(4):369–387, 1996.

4 Timothy M. Chan. Improved deterministic algorithms for linear programming in low dimensions.
ACM Trans. Algorithms, 14(3):30:1–30:10, 2018. doi:10.1145/3155312.

https://doi.org/10.1145/3155312

T. M. Chan and S. Rahul 22:13

5 Timothy M. Chan and Eric Y. Chen. Multi-pass geometric algorithms. Discrete & Computa-
tional Geometry, 37(1):79–102, 2007. doi:10.1007/s00454-006-1275-6.

6 Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthogonal range searching on
the RAM, revisited. In Proceedings of Symposium on Computational Geometry (SoCG), pages
1–10, 2011.

7 Timothy M. Chan, Jack Snoeyink, and Chee-Keng Yap. Primal dividing and dual pruning:
Output-sensitive construction of four-dimensional polytopes and three-dimensional Voronoi
diagrams. Discrete & Computational Geometry, 18(4):433–454, 1997.

8 Kenneth L. Clarkson. More output-sensitive geometric algorithms. In Proceedings of Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 695–702, 1994.

9 Kenneth L. Clarkson. Las Vegas algorithms for linear and integer programming when the
dimension is small. Journal of the ACM, 42(2):488–499, 1995. doi:10.1145/201019.201036.

10 Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in computational
geometry, II. Discret. Comput. Geom., 4:387–421, 1989. doi:10.1007/BF02187740.

11 Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Jun (Jim) Xu. Randomized multi-pass
streaming skyline algorithms. PVLDB, 2(1):85–96, 2009. doi:10.14778/1687627.1687638.

12 Martin Farach-Colton, Meng Li, and Meng-Tsung Tsai. Streaming algorithms for planar
convex hulls. In International Symposium on Algorithms and Computation (ISAAC), pages
47:1–47:13, 2018. doi:10.4230/LIPIcs.ISAAC.2018.47.

13 Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile
summaries. In Proceedings of ACM Management of Data (SIGMOD), pages 58–66, 2001.

14 Xiaocheng Hu, Cheng Sheng, Yufei Tao, Yi Yang, and Shuigeng Zhou. Output-sensitive skyline
algorithms in external memory. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 887–900, 2013.

15 J.H. Dula J and R.V. Helgason. A new procedure for identifying the frame of the convex hull
of a finite collection of points in multidimensional space. European Journal of Operational
Research, 92(2):352–367, 1996.

16 David G. Kirkpatrick and Raimund Seidel. Output-size sensitive algorithms for finding
maximal vectors. In Proceedings of Symposium on Computational Geometry (SoCG), pages
89–96, 1985. doi:10.1145/323233.323246.

17 David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm? SIAM
Journal of Computing, 15(1):287–299, 1986. doi:10.1137/0215021.

18 Ketan Mulmuley. Computational Geometry: An Introduction through Randomized Algorithms.
Prentice Hall, 1994.

19 Thomas Ottmann, Sven Schuierer, and Subbiah Soundaralakshmi. Enumerating extreme
points in higher dimensions. Nordic Journal of Computing, 8(2):179–192, 2001.

20 F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer–Verlag,
1985.

21 Raimund Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete
& Computational Geometry, 6:423–434, 1991. doi:10.1007/BF02574699.

22 Cheng Sheng and Yufei Tao. On finding skylines in external memory. In Proceedings of
ACM Symposium on Principles of Database Systems (PODS), pages 107–116, 2011. doi:
10.1145/1989284.1989298.

A A deterministic algorithm for skyline points in Rd

In this appendix, we briefly describe a deterministic algorithm to compute skyline points
in Rd using O(h log n) space and O(logd−1 n) passes (as we have mentioned in the intro-
duction). Though we are not aware of an explicit reference of this result, it follows from a
straightforward adaptation of Kirkpatrick and Seidel’s output-sensitive divide-and-conquer
algorithm [16], but reimplemented in the multi-pass setting (analogous to Chan and Chen’s
multi-pass reimplementation [5] of Kirkpatrick and Seidel’s output-sensitive 2-d convex hull
algorithm [17]).

STACS 2021

https://doi.org/10.1007/s00454-006-1275-6
https://doi.org/10.1145/201019.201036
https://doi.org/10.1007/BF02187740
https://doi.org/10.14778/1687627.1687638
https://doi.org/10.4230/LIPIcs.ISAAC.2018.47
https://doi.org/10.1145/323233.323246
https://doi.org/10.1137/0215021
https://doi.org/10.1007/BF02574699
https://doi.org/10.1145/1989284.1989298
https://doi.org/10.1145/1989284.1989298

22:14 Simple Multi-Pass Streaming Algorithms for Skyline Points and Extreme Points

Given point sets P and M in Rd, let P ⊖M denote the “filtered” subset of all points
p ∈ P that are not dominated by any points in M . Let p↓ denote the projection of p onto
the first d− 1 coordinates, and let P ↓= {p↓ : p ∈ P}.

Below is a variant or reinterpretation of Kirkpatrick and Seidel’s algorithm for computing
the skyline of P ⊖M (initially, we set M = ∅):

Algorithm 3 Skylined(P, M).
1. If |P ⊖M | ≤ 1, then return P ⊖M .
2. Partition P into the left and the right halves Pℓ and Pr using an approximate median
d-th coordinate.
3. Compute Mr = Skylined−1((Pr ⊖M)↓ , ∅). Add {p : p↓∈Mr} to M .
4. Return Skylined(Pℓ, M) ∪ Skylined(Pr, M) ∪ {p : p↓∈Mr}.

(In the original algorithm, points dominated by Mr are pruned from Pℓ before recursion.
With the filtering operation ⊖, explicit pruning is avoided.)

In the multi-pass setting, we will execute the recursion level by level. The recursion tree
for Skylined has O(log n) levels. We maintain one global set M and do filtering with respect
to this global set M (this does not affect correctness); the size of the set is O(h). Consider
the next level of the tree. There are at most O(h) nodes in the level. Each subset P can
be encoded by an interval in the d-th coordinate. As we make a pass over the input and
encounter a point p, we can identify the subset P containing p, and test whether it is in
P ⊖M by checking whether it is dominated by any point in M (in O(h) time naively, or in
polylogarithmic time by storing M in an orthogonal range searching data structure). The
approximate median computation in step 2 can be done by a known one-pass, O(log n)-space
algorithm of Greenwald and Khanna [13]. All O(h) invocations to this approximate median
algorithm are done simultaneously, and so the total space used is O(h log n). Step 3 invokes
a (d− 1)-dimensional skyline algorithm. Again, these invocations are done simultaneously;
the total output size in these calls is O(h).

Let Pd(n) be the number of passes in our d-dimensional skyline algorithm, and let sd(n)
be the space used per output point (i.e., the total space is h · sd(n)). Then

Pd(n) = O(log n) · (Pd−1(n) + O(1)) and sd(n) = sd−1(n) + O(log n).

With the base case P1(n) = 1 and s1(n) = O(1), we get Pd(n) = O(logd−1 n) and sd(n) =
O(log n) as desired.

	1 Introduction
	1.1 Multi-pass streaming model
	1.2 Skyline points
	1.3 Extreme points

	2 Randomized algorithms for skyline points in R^d
	2.1 Main algorithm
	2.2 Further refinement

	3 Extreme points in R^d
	4 Why randomized algorithms?
	A A deterministic algorithm for skyline points in R^d

