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Abstract

Random factor graphs provide a powerful framework for the study of inference problems such as
decoding problems or the stochastic block model. Information-theoretically the key quantity of
interest is the mutual information between the observed factor graph and the underlying ground
truth around which the factor graph was created; in the stochastic block model, this would be the
planted partition. The mutual information gauges whether and how well the ground truth can be
inferred from the observable data. For a very general model of random factor graphs we verify a
formula for the mutual information predicted by physics techniques. As an application we prove
a conjecture about low-density generator matrix codes from [Montanari: IEEE Transactions on
Information Theory 2005]. Further applications include phase transitions of the stochastic block
model and the mixed k-spin model from physics.
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24:2 Inference and Mutual Information on Random Factor Graphs

1 Introduction

1.1 Background and motivation

Since the 1990s there has been an immense interest in inference and learning problems on
random graphs. One motivation has been to seize upon random graphs as benchmarks
for inference algorithms of all creeds and denominations. An excellent example of this is
the stochastic block model; the impressive literature on this model alone is surveyed in [1].
A second, no less salient motivation has been the use of random graphs in probabilistic
constructions. Concrete examples include powerful error correcting codes such as low density
generator matrix or low density parity check codes, which have since found their way into
modern communications standards [20, 31]. Further prominent recent applications include
compressed sensing and group testing [2, 14, 15]. It appears hardly a stretch to claim that in
terms of real world impact these constructions occupy top ranks among applications of the
probabilistic method and, indeed, modern combinatorics generally.

Yet many applications of the probabilistic method to inference problems still lack a
satisfactory rigorous justification. Some are supported primarily by empirical evidence, i.e.,
not much more than a bunch of computer experiments. Quite a few others have been inspired
by a versatile but non-rigorous approach from physics known as the “cavity method”. But
while there has been progress in recent years, vast gaps between the physics predictions and
their rigorous vindications remain. One important reason for this is that the random graph
models used in practical inference tend to be significantly more intricate than, say, a classical
binomial random graph. For instance, a highly popular breed of low-density parity check
codes use delicately tailored degree distributions for both the variable nodes and the check
nodes of the Tanner graph [31].

In this paper we significantly advance the rigorous state of the art by corroborating
important cavity method predictions wholesale for a rich class of inference problems that
accommodates the very general choices of degree distributions of interest in high-dimensional
Bayesian inference problems and coding theory. Generally, the objective in such inference
problems is to recover the ground truth from the observable data. Think, for instance, of
retrieving the hidden communities in the stochastic block model or of reconstructing the
original message from a noisy codeword. For this broad class of models we rigorously establish
the formulas that the cavity method predicts for the mutual information, which is the key
information-theoretic potential that gauges precisely how much it is possible in principle to
learn about the ground truth. Technically we build upon and extend the methods developed
in [11] for random graph models of Erdős-Rényi type. While we follow a similar general proof
strategy, the greater generality of the present results necessitates significant upgrades to
virtually all of the moving parts. For example, due to the more rigid combinatorial structure
of graphs with given degrees many of the manoeuvres that are straightforward for binomial
random graphs now require delicate coupling arguments.

We proceed to highlight applications of our main results to three specific problems that
have each received a great deal of attention in their own right: low-density generator matrix
codes, the stochastic block model and the mixed k-spin model, which hails from mathematical
physics. Then in Section 2 we state the main results concerning the general class of random
factor graph models. Section 3 contains an overview of the proof strategy and a detailed
comparison with prior work.
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1.2 Low-density generator matrix codes
A powerful and instructive class of error-correcting codes, low-density generator matrix
(“ldgm”) codes are based on random bipartite graphs with given degree distributions. Spe-
cifically, let d,k ≥ 0 be bounded integer-valued random variables, let n be an integer and let
m ∼ Po(nE[d]/E[k]) be a Poisson variable. One vertex class V = {x1, . . . , xn} of the graph
represents the bits of the original message. The other class F = {a1, . . . , am} represents the
rows of the code’s generator matrix. To obtain the random graph G create for each variable
node xi an independent copy di of d. Similarly, create an independent copy ki of k for each
check node ai. Then given the event

{∑n
i=1 di =

∑m
i=1 ki

}
that the total degrees on both

sides match let G be a random bipartite graph where every xi has degree di and every ai
has degree ki. We tacitly restrict to n such that this event has positive probability.

The generator matrix of the ldgm code is now precisely the m× n biadjacency matrix
A(G) of G, viewed as a matrix over F2. Thus, the rows of A(G) correspond to the check
nodes a1, . . . , am, the columns correspond to x1, . . . , xn and the (i, j)-entry equals one iff
ai and xj are adjacent. For a given message x ∈ Fn2 the corresponding codeword reads
y = A(G)x ∈ Fm

2 . The receiver on the other end of a noisy channel observes a scrambled
version y∗ of y. Specifically, y∗ is obtained from y by flipping every bit with probability
η ∈ (0, 1/2) independently. To gauge the potential of the code, the key question is how much
information about the original x the receiver can possibly extract from y∗. Naturally, the
receiver also knows G. Hence, we aim to work out the conditional mutual information

I(x,y∗ | G) =
∑

x∈Fn
2 ,y∈Fm2

P [x = x,y∗ = y | G] log P [x = x,y∗ = y | G]
2nP [y∗ = y | G] .

A precise prediction as to its asymptotical value was put forward on the basis of the
physicists’ cavity method. As most such predictions, the formula comes as a variational
problem that asks to optimise a functional called the Bethe free entropy over a space of
probability measures. Specifically, let P∗([−1, 1]) be the space of all probability measures
ρ on the interval [−1, 1] with mean zero. Let (θi,j,ρ)i,j≥1 ⊆ [−1, 1] be a family of samples
from ρ. Further, let (J i)i≥1 be Rademacher variables, i.e., P [J i = 1] = P [J i = −1] = 1/2.
In addition, let (k̂i)i≥1 be random variables with distribution

P
[
k̂i = ℓ

]
= ℓP [k = ℓ]

E[k] (ℓ ≥ 0). (1)

All of these are independent. Finally, let Λ(z) = z log(z). Then the Bethe free entropy reads

Bldgm(ρ, η) = E

1
2Λ

 ∑
σ∈{0,1}

d∏
i=1

1 + (−1)σJ i(1 − 2η)
k̂i−1∏
j=1

θi,j,ρ


− E[d]

E[k]E

(k − 1)Λ

1 + J1(1 − 2η)
k∏
j=1

θ1,j,ρ

 .
▶ Theorem 1. For any d,k and for all η ∈ (0, 1) we have

lim
n→∞

1
n
I(x,y∗ | G) =

(
1 + E[d]

E[k]

)
log(2) + E[d]

E[k] (η log(η) + (1 − η) log(1 − η))

− sup
ρ∈P∗[−1,1]

Bldgm(ρ, η) in probability.

STACS 2021



24:4 Inference and Mutual Information on Random Factor Graphs

Theorem 1 completely solves a well known conjecture [25, Conjecture 1] and significantly
extends the results from [32, 11], which required the restrictive assumption that the check
degree k be constant.

A possible objection to a result such as Theorem 1 might be that the resulting formula
appears exceedingly complicated as it leaves us with a potentially difficult variational problem.
Yet two points are to be made in defense. First, by vindicating the precise formula predicted
by the cavity method, the theorem and its proof show that this technique and the ideas
behind it do indeed get to the bottom of the problem. Second, since the formula involves a
supremum, any ρ ∈ P∗[−1, 1] yields an upper bound on the mutual information. Hence, the
heuristic population dynamics algorithm deemed to produce good candidate maximisers and
beloved of physicists, can be harnessed to get rigorous bounds in one direction. Finally, in
some cases it is possible to precisely identify the maximiser analytically [6, 9].

1.3 The stochastic block model
An instructive model of graph clustering, the stochastic block model presumes that a random
graph is created in two steps. First each of the n vertices {x1, . . . , xn} receives one of
q ≥ 2 possible colours σ∗

xi
∈ [q] uniformly and independently. Then a sparse random graph

is created where vertices with the same colour are either more likely to be connected by
an edge (assortative case), or less likely (disassortative). Different versions of this model
have been proposed. While in the simplest one edges are inserted independently, here we
consider a model from [27] that produces a d-regular graph. Hence, let d ≥ 3 be an integer
and let G = G(n, d) be a random d-regular graph. Further, given a parameter β > 0 let
G∗ = G∗(n, d,σ∗) be a random graph drawn from the distribution

P [G∗ = G | σ∗] ∝ exp

−β
∑

vw∈E(G)

1 {σ∗
v = σ∗

w}

 , (2)

with the ∝-symbol hiding the normalisation required to obtain a probability distribution.
Thus, the parameter β tunes the penalty that we impose on monochromatic edges by
comparison to the null model G. At β = 0 there is no such penalty and G∗ and G are
identical. But even for positive β the random graphs G,G∗ may still be indistinguishable and
in effect recovering σ∗ may be impossible. Hence, a fundamental question is for what q, d, β
it is possible to discriminate between G,G∗. Formally, we recall that the Kullback-Leibler
divergence of G∗,G is defined as DKL (G∗∥G) =

∑
G P [G∗ = G] log P[G∗=G]

P[G=G] . The Kullback-
Leibler divergence is an information-theoretic potential that gauges the similarity of two
random graph models. In particular, if DKL (G∗∥G) = Ω(n), then G,G∗ can be told apart
because natural observables will take vastly different values on the two models. Whether
DKL (G∗∥G) = Ω(n) depends on the value of the Bethe free entropy for the stochastic block
model. To be precise, let P([q]) be the set of all probability distributions (µ(1), . . . , µ(q))
on [q]. We identify P([q]) with the standard simplex in Rq. Further, let P∗([q]) be the set
of all probability measures π on P([q]) such that

∫
µ(σ)dπ(µ) = 1/q for every σ ∈ [q]. In

other words, the mean of π is the barycenter of the simplex. Let (µi,π)i≥1 be a family of
independent samples from π and let

Bsbm(π, β) = E

Λ
(∑q

σ=1
∏d
i=1 1 − (1 − e−β)µi,π(σ)

)
q (1 − (1 − e−β)/q)d


− E

[
dΛ
(
1 − (1 − e−β)

∑q
σ=1 µ1,π(σ)µ2,π(σ)

)
2 (1 − (1 − e−β)/q)

]
.
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▶ Theorem 2. Let

β∗ = inf
{
β > 0 : sup

π∈P∗([q])
Bsbm(π, β) > log(q) + d

2 log
(
1 − (1 − e−β)/q

)}
.

(i) If β < β∗, then limn→∞
1
nDKL (G∗∥G) = 0.

(ii) If β > β∗, then limn→∞
1
nDKL (G∗∥G) > 0.

Theorem 2 easily implies that for β > β∗ it is information-theoretically possible to recover
a non-trivial approximation to σ∗ from G∗. In other words, there exists an exponential
time algorithm that likely outputs a colouring τ of the vertices that has a significantly
greater overlap with the ground truth σ∗ than a random guess. An open question is whether
for β > β∗ this problem can even be solved by a polynomial time algorithm. The going
conjecture is that in general the answer is “no” and that efficient recoverability kicks in only
at a second threshold β∗∗ > β∗ for many interesting choices of q, d [12].

1.4 The mixed k-spin model

Not only do the main results of this paper facilitate rigorous proofs of physics predictions
for problems in computer science, but also, conversely, do we obtain new theorems on
problems of keen interest in statistical physics. For example, the mixed k-spin model is
an important spin glass model [28]; its purpose is to describe the magnetic interactions
in metallic alloys. To define the model let k ≥ 2 be an integer-valued random variable
such that E[k2+ε] < ∞ for some ε > 0 and P [k = 2] > 0. Let (ki)i≥1 be a sequence of
independent copies of k. Moreover, let d > 0 and let H = Hk(n,m) be a (non-uniform)
random hypergraph on Vn = {x1, . . . , xn} with m = Po(dn/E[k]) independent hyperedges
a1, . . . , am such that ai comprises ki vertices, drawn uniformly without replacement. Thus,
in the special case that k is constant we obtain the classical binomial random hypergraph.
To turn this random hypergraph into a spin glass model we draw for each of its edges ai an
independent standard Gaussian J i. Additionally, let β > 0 be a parameter, commonly coined
the inverse temperature. Then the Boltzmann distribution of the model is the probability
distribution on {±1}Vn defined by

µH,J,β(σ) =
exp

(
β
∑m
i=1 J i

∏
x∈ai

σx
)

Z(H,J , β) (σ ∈ {±1}Vn),

where Z(H,J , β) =
∑
τ∈{±1}Vn exp

(
β
∑m
i=1 J i

∏
x∈ai

τx
)
. The normalising term Z(H,J , β)

is known as the partition function.
A key question is whether for given d, β,k there occur long-range correlations between

the magnetic “spins” observed at x1, . . . , xn. Formally, let σ ∈ {±1}Vn signify a sample from
the Boltzmann distribution. Then we say that long-range correlations are absent if

lim
n→∞

1
n2

∑
x,y∈Vn

E |µH,J,β({σx = σy = 1}) − µH,J,β({σx = 1})µH,J,β({σy = 1})| = 0.

In words, the equation expresses that for most pairs x, y of vertices the spins σx,σy are
essentially independent. If this is violated, we say that long-range correlations are present.

STACS 2021
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According to physics predictions for a given β > 0 long-range correlations emerge at a
critical value dβ,k that can be determined in terms of the Bethe free entropy [19, 24]. The
methods developed in this paper enable us to corroborate this formula rigorously. Specifically,
let P∗([−1, 1]) be the space of all probability measures on [−1, 1] with mean zero. Given
π ∈ P∗([−1, 1]) let (µi,j,π)i,j≥1 be a family of independent samples from π. Additionally, let
(k̂i)i≥1 be a family of independent random variables with point masses (1) and let d = Po(d).
Then the Bethe free entropy Bk−spin(π) of the k-spin model is given by the expression

1
2E

Λ

 ∑
σ1∈{±1}

d∏
i=1

1 +
∑

σ2,...,σk̂i
∈{±1}

tanh

βJ j ∏
j∈[k̂i]

σj

 k̂i∏
j=2

1 + σjµi,j,π
2


− d

E[k]E

(k − 1)Λ

1 +
∑

σ∈{±1}k
tanh

(
βJ1

k∏
i=1

σj

)
k∏
i=1

1 + σiµ1,i,π

2

 .

▶ Theorem 3. Let dβ,k = inf
{
d > 0 : supπ∈P∗([−1,1]) Bk−spin(π) > log 2

}
.

(i) Long-range correlations are absent for d < dβ,k.
(ii) For any ε > 0 there exists dβ,k < d < dβ,k +ε where long-range correlations are present.

Thus, the point dβ,k, characterised by the Bethe variational principle, marks the onset of
complex magnetic interactions in the mixed k-spin model. This critical value is known as
the replica symmetry breaking phase transition in physics jargon. As a further application of
the main results we can pinpoint the so-called condensation phase transition of the Potts
antiferromagnet on random d-regular graphs, another problem of interest in mathematical
physics. More details can be found in Section 16 of the full version.

2 The mutual information of random factor graphs

The theorems quoted in Section 1 are easy consequences of results on general random factor
graph models. These more general theorems, one of which we present next, constitute the
main results of the paper.

2.1 Random factor graph models
Remarkably many classical problems from combinatorics, statistics and physics can be
expressed conveniently in the language of factor graph models [24, 29, 34]. A factor graph G
is a bipartite graph whose vertex classes are variable nodes V (G) and factor nodes F (G).
The former represent the variables of the combinatorial problem in question, such as the
individual bits of a codeword. Generally we assume that these variables range over a domain
Ω of size q = |Ω| ≥ 2. Moreover, the factor nodes encode the interactions between the
variables, such as the linear relations imposed by the check matrix of a code. Each factor
node a ∈ F (G) comes with a function ψa : Ω∂a → (0,∞) that assigns a positive weight to
value combinations of the adjacent variables ∂a. The factor graph gives rise to a probability
distribution

µG(σ) = ψG(σ)
ZG

, where ψG(σ) =
∏

a∈F (G)

ψa(σ∂a) and ZG =
∑

τ∈ΩV (G)

ψG(τ) (σ ∈ ΩV (G)).

(3)
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To describe problems such as the ones from Section 1 we introduce models where the
factor graph itself is random. Specifically, let d,k ≥ 0 be integer-valued random variables
and let (di)i≥1, (ki)i≥1 be independent copies of d,k. Further, for each k in the support
of k let Ψk be a finite set of k-ary functions ψ : Ωk → (0,∞). Let Pk be a probability
distribution on Ψk and let us write ψk for a sample from Pk. Further, let ψ be a random
variable distributed as ψk, let P be the distribution of ψk and let kψ denote the arity of ψ.

Now, to construct a factor graph let Vn = {x1, . . . , xn} be a set of variable nodes and let
Fm = {a1, . . . , am} be a set of m ∼ Po(nE[d]/E[k]) factor nodes. We obtain the random
factor graph G as follows.
G1 given the event

∑n
i=1 di =

∑m
i=1 ki, choose a bipartite graph on variable and factor

nodes such that every xi has degree di and every aj has degree kj uniformly at random.
G2 choose for every factor node ai a weight function ψai

from the distribution ψki
.

In the language of inference problems the random factor graph G is going to provide a null
model because the weight functions in G2 are independent of the graph structure from G1.
For instance, in the context of the stochastic block model from Section 1.3, this model plays
the role of the purely random graph without a particular underlying colouring.

2.2 The teacher-student scheme
The teacher-student scheme organically turns the null model into an inference problem. A
helpful metaphor might be to imagine a teacher who attempts to convey a ground truth
σ∗ to a student by presenting examples. The ground truth itself is a random vector chosen
uniformly from the space ΩVn . The set of examples corresponds to a factor graph G∗.

To be precise, let D be the σ-algebra generated by the degrees and the total number of
factor nodes of the null model G. Then the factor graph G∗ is chosen from the distribution

P [G∗ = G | D,σ∗] = P [G = G | D]ψG(σ∗)
E[ψG(σ∗) | D,σ∗] . (4)

Hence, we reweigh the null model G1–G2 according to the ground truth σ∗, rewarding
graphs under which σ∗ receives a higher weight. In the case of the stochastic block model,
G∗ matches the reweighing (2) that prefers bichromatic edges. The obvious question is
how much of an imprint σ∗ leaves on the resulting factor graph G∗? Before we answer this
question in general let us illustrate how the examples from Section 1 fit into the general
framework.

▶ Example 4 (ldgm codes). Let Ω = {+1,−1} with +1 = (−1)0 representing 0 ∈ F2 and
−1 representing 1 ∈ F2. For every degree k ≥ 1 there are two k-ary weight functions ψη,k,±1
defined by ψη,k,J(σ) = 1 − (1 − 2η)J

∏k
i=1 σi for σ ∈ Ωk.

The probability distribution Pk is defined by P (ψη,k,J) = 1/2. With this setup the
bipartite graph structure of the null model G coincides with the bipartite graph introduced
in Section 1.2. Moreover, the ±1-labels of the weight functions (i.e., value of J such that
ψai = ψη,ki,J ) represent the entries of the vector y∗. Thus, while in the null model G these
vector entries are purely random, in the reweighted model G∗ the labels are distributed
precisely as the entries of the vector y∗ from the ldgm model.

▶ Example 5 (stochastic block model). Let Ω = [q] be a set of q colours. We introduce
a single binary weight function ψβ,q(σ1, σ2) = exp(−β1{σ1 = σ2}) and we let d be the
constant random variable d. With this weight function the construction (4) coincides with
the definition (2) of the stochastic block model.

STACS 2021
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The main theorem is going to provide a formula for the mutual information of G∗ and
the ground truth σ∗, provided that the distribution P on weight functions satisfies a number
of easy-to-check conditions. To state these conditions let us denote by P(Ω) the set of
all probability distributions on Ω, endowed with the topology inherited from Euclidean
space. Moreover, let P∗(Ω) signify the space of all probability measures π on P(Ω) such
that

∫
P(Ω) µ(ω)dπ(µ) = 1/q for all ω ∈ Ω. Finally, for a given π ∈ P∗(Ω) let (µi,π)i≥1 be

independent samples from π and recall Λ(x) = x log x. The assumptions read as follows.
DEG there exists ε > 0 such that E[d2+ε],E[k2+ε] < ∞.
SYM there exist reals ε, ξ > 0 such that for all k ∈ suppk, ψ ∈ Ψk, j ∈ [k], ω ∈ Ω we have∑

σ∈Ωk

1 {σj = ω}ψ(σ) = qk−1ξ, ε < ψ(σ) < 1/ε (σ ∈ Ωk).

BAL for every k ∈ suppk the function µ ∈ P(Ω) 7→
∑
σ∈Ωk E [ψk(σ)]

∏k
i=1 µ(σi) is concave

and attains its maximum at the uniform distribution on Ω.
POS for any two probability distributions π, π′ ∈ P∗(Ω) and any k ∈ suppk we have

E

Λ

∑
τ∈Ωk

ψk(τ)
k∏
i=1
µi,π(τi)

+ (k − 1)E

Λ

∑
τ∈Ωk

ψk(τ)
k∏
i=1
µi,π′(τi)


≥

k∑
j=1

E

Λ

∑
τ∈Ωk

ψk(τ)µj,π(τj)
∏
i̸=j
µi,π′(τi)

 .
The first assumption DEG ensures that the factor graphs are “sparse” or, formally,

locally finite. Yet DEG allows for very general degree distributions, including Poisson and
power law distributions. Moreover, conditions SYM and BAL are symmetry conditions.
Roughly speaking, they provide that all the values ω ∈ Ω are on the same footing, i.e.,
there is no semantic preference for any value. Finally condition POS can be viewed as a
convexity requirement. This assumption is needed for the technical reason of facilitating the
interpolation method, a proof technique that we borrow from mathematical physics. The
conditions are easily seen to be satisfied in many models of interest including, of course, the
stochastic block model and ldgm codes. Crucially, the assumptions can be checked solely in
terms of the weight functions; no random graphs considerations are required. 1

2.3 The mutual information

The main result of the paper vindicates the physicists’ hunch that the mutual information
between the teacher’s ground truth σ∗ and the dataG∗ presented to the student is determined
by the Bethe free entropy. To state the result we introduce the following generic version
of the Bethe functional. Let (ψk,i)k,i be a family of independent random weight functions
such that ψk,i is distributed as ψk. Further, let (hk,i)i with hk,i ∈ [k] be a family of
independent uniformly distributed indices. Given π ∈ P∗(Ω) let (µi,j,π)i,j≥1 be a family of
independent samples from π. Recalling that (k̂i)i≥1 are independent random variables with
point masses (1), we define

1 We point out that POS fails to hold in the case of the assortative stochastic block model.
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B(π) = 1
q
E

ξ−dΛ

∑
σ∈Ω

d∏
i=1

∑
τ∈Ωk̂i

1
{
τhk̂i,i

= σ
}
ψk̂i,i

(τ)
∏

j∈[k̂i]\{hk̂i,i}

µi,j,π(τj)


 (5)

− E[d]
ξE[k]E

(k − 1)Λ

∑
τ∈Ωk

ψk(τ)
k∏
j=1

µ1,j,π(τj)

 .
The following theorem expresses the mutual information of G∗ and σ∗ given the degrees
and the total number of factor nodes as the variational problem of maximising the Bethe
functional.

▶ Theorem 6. For any random factor graph model that satisfies the conditions DEG, SYM,
BAL and POS,

lim
n→∞

1
n
I(σ∗,G∗ | D) = log q + E[d]

ξE[k]E

q−kψ
∑

τ∈Ωkψ

Λ(ψ(τ))

− sup
π∈P∗(Ω)

B(π) (6)

in probability.

The formula (6) is in line with predictions from [33]. Moreover, the results quoted in Section 1
are immediate consequences of Theorem 6.

3 Proof strategy

In this section we survey the proof of Theorem 6. Subsequently we discuss how the strategy
compares to prior work, particularly [11]. Throughout we tacitly assume that DEG, SYM,
BAL and POS are satisfied.

3.1 The partition function
The starting point for computing the mutual information is to observe that this quantity is
closely connected to the partition function of G∗.

▶ Proposition 7. W.h.p. we have

I(σ∗,G∗ | D)/n = log q + E[d]
ξE[k]E

q−kψ
∑

τ∈Ωkψ

Λ(ψ(τ))

− E[logZ(G∗)]/n+ o(1).

Hence, Proposition 7 reduces our task to computing E[logZ(G∗)]. This is still a formidable
challenge because the logarithm sits inside the expectation; hence, routine techniques such as
moment calculations do not bite. Instead we will combine two separate techniques. The first
is a coupling argument known as the Aizenman-Sims-Starr scheme. This argument will show
that E[logZ(G∗)] is upper bounded by supπ B(π). The second component, the interpolation
method, will supply the matching lower bound.

What these techniques have in common is that they both boil down to “local” calculations.
That is, we need to assess the impact on the partition function Z(G∗) of a small number
of local changes such as addition of a few factor or variable nodes to G∗. We will perform
these computations by way of a probabilistic argument, namely by tracing how they affect
the average weight of a sample from the Boltzmann distribution of G∗. The key is a simple
but powerful fact that trades as the Nishimori identity.
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3.2 The Nishimori identity
To formulate this identity we need to introduce a slightly modified version of the random
factor graph model G∗. Recall from (4) that G∗ was obtained by first drawing σ∗ uniformly
at random and then reweighting the null model G according to the weight of σ∗. If we
combine these two steps the net effect should be, at least roughly, that a specific G comes up
with probability proportional to Z(G), as every σ ∈ ΩVn provides G with a ψG(σ) chance of
being sampled. Thus, G∗ should be roughly equivalent to the random factor graph model
Ĝ defined by P

[
Ĝ = G | D

]
∝ ZGP [G = G | D] . Indeed, this equivalence turns out to be

exact if we make one minimal change. Namely, instead of drawing the ground truth σ∗

uniformly at random, we draw a sample from the distribution P [σ̂ = σ | D] ∝ E [ψG(σ) | D]
for σ ∈ ΩVn . The following is an extension of [11, Proposition 3.10] to the present, more
general class of factor graph models with given degrees.

▶ Proposition 8. We have

P
[
Ĝ = G | D

]
µG(σ) = P [σ̂ = σ | D]P [G∗ = G | D,σ∗ = σ] . (7)

Furthermore, σ̂ and σ∗ as well as G∗, Ĝ are mutually contiguous and E[logZG∗ ] =
E[logZĜ] + o(n).

The proof of Proposition 8 relies on Bayes’ formula combined with a somewhat subtle
application of local limit theorems and other probabilistic tools. The details can be found in
Section 4 of the full version.

3.3 Degree pruning
A further preparation is degree pruning. Specifically, while in the random factor graph
models G∗ and Ĝ may possess degrees as large as n1/2−ε, the following proposition shows
that it suffices to prove the main result (6) for bounded degree sequences.

▶ Proposition 9. Assume that for any integer L > 0 and for any d,k such that d,k ≤ L

the statement (6) is true. Then (6) holds for all d,k that satisfy DEG and for which
E [d] ,E [k] > 0.

The proof of Proposition 9 is based on concentration inequalities and coupling arguments for
bipartite graphs with given degree sequences. Hence, we may assume from here on that d,k
are bounded.

3.4 Cavities and couplings
Two of the main steps towards the proof of Theorem 6, the Aizenman-Sims-Starr scheme and
the interpolation method, hinge on comparing random factor graphs with slightly different
parameters. For example, we will need to compare a random factor graph G∗ with n

variable and Po(E[d]n/E[k]) factor nodes and a factor graph with n + 1 variable and the
commensurate number of Po(E[d](n+ 1)/E[k]) factor nodes. In the classical case of binomial
factor graphs as treated in [11] where factor nodes are drawn independently this coupling
would be relatively straightforward. Indeed, we could just add a variable node and a few
extra factor nodes to the graph with n variables. However, in the present setting of given
degrees matters are much more delicate. For instance, how would you set up such a coupling
for the d-regular stochastic block model from Section 1.3? Due to the given degrees the
graph structure is too rigid to accommodate the necessary local changes.
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To cope with this issue we first create a bit of wiggling room for ourselves by slightly
reducing the number of factor nodes. This idea has been used in prior work on factor graphs
with rigid degree distributions such as [9]. However, matters turn out to be rather more
delicate here because we do not just work with purely random factor graphs, but with
graphs drawn from the teacher-student model. Thus, we need to take care to meticulously
implement the weight shifts in accordance with (4). Hence, for a small but fixed ε > 0 let
mε = Po((1 − ε)E[d]n/E[k]) be a Poisson variable with a slightly smaller mean than m.
Because we assume that all degrees are bounded, with probability 1 − exp(−Ω(n)) we have∑n
i=1 di ≥

∑mε

i=1 ki. In fact, w.h.p. the total variable degree exceeds the total degree of the
first mε factor nodes by Ω(n). Let G(n,mε) be a random factor graph with variable nodes
x1, . . . , xn and factor nodes a1, . . . , amε of degrees k1, . . . ,kmε drawn uniformly at random
subject to the condition that the degree of each xi remains bounded by di. Thus, some of
the variable nodes will likely have a degree strictly smaller than their “target degree” di. We
refer to these variable degrees as cavities. Further, given σ ∈ ΩVn let G∗(n,mε, σ) be the
random factor graph obtained as in (4), i.e., with Dε denoting the σ-algebra generated by
the degrees and the total number of factors nodes of G(n,mε) we let

P [G∗(n,mε, σ) = G | Dε] ∝ P [G(n,mε) = G | Dε]ψG(σ).

The following proposition establishes that we can indeed think of G∗(n,mε + 1, σ) as being
obtained from G∗(n,mε, σ) by adding one extra factor node amε+1. Further, for two factor
graphs G,G′ on the same set of nodes let G△G′ be the symmetric difference of their edge
sets.

▶ Proposition 10. Assume that |σ−1(ω)| = n/q + O(
√
n logn) for all ω ∈ Ω. Then there

exists a coupling of G∗(n,mε, σ) and G∗(n,mε + 1, σ) such that

P [G∗(n,mε, σ) = G∗(n,mε + 1, σ) − amε+1 | Dε] = 1 − Õ(1/n),

P
[
|G∗(n,mε, σ)△G∗(n,mε + 1, σ) − amε+1| > n2/3 | Dε

]
= 1 − Õ(1/n2).

There is a similar coupling that accommodates the addition of an extra variable node.

▶ Proposition 11. Assume that |σ−1(ω)| = n/q + O(
√
n logn) for all ω ∈ Ω. Given the

degree γ of xn+1 in G∗(n+ 1,mε + γ, σ) then there exists a coupling of G∗(n,mε, σ) and
G∗(n+ 1,mε + γ, σ) such that

P [G∗(n,mε, σ) = G∗(n+ 1,mε + γ, σ) − xn+1 − ∂xn+1 | Dε] = 1 − Õ(1/n),

P
[
|G∗(n,mε, σ) = G∗(n+ 1,mε + γ, σ) − xn+1 − ∂xn+1| > n2/3 | Dε

]
= 1 − Õ(1/n2).

The orders Õ(1/n), Õ(1/n2) of the error terms in Propositions 10 and 11 are vital to facilitate
the computation of the partition function. On a technical level, the tools that we develop for
proving these propositions, and particularly for dealing with the fragile combinatorics of the
factor graph models with given degrees, constitute the main novelty of the paper. This is
where we most visibly add to and improve over the machinery developed in prior work. The
details can be found in Section 4.3 of the full version.

3.5 Aizenman-Sims-Starr and interpolation
Propositions 10 and 11 in combination with a trick known as the Aizenman-Sims-Starr
scheme yield the desired upper bound on the partition function.
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t = 1t = 0

Figure 1 Illustration of the interpolation method at “times” t = 0 and t = 1.

▶ Proposition 12. We have E[logZ(G∗)] ≤ n supπ∈P∗(Ω) B(π) + o(n).

To prove Proposition 12 it suffices to establish the corresponding upper bound for
G∗(n,mε,σ

∗). This is because similar but simpler arguments as in the proof of Proposition 10
show that E[logZ(G∗)] = E[logZ(G∗(n,mε,σ

∗)] +O(εn). Its proof can be found in Section
13 of the full version. Now, the Aizenman-Sims-Starr scheme for calculating the latter
quantity is to write a telescoping sum

E[logZ(G∗(n,mε,σ
∗))]

=
n−1∑
N=0

E[logZ(G∗(N + 1,mε(N + 1),σ∗
N+1))] − E[logZ(G∗(N,mε(N),σ∗

N ))].

Hence, it suffices to bound the individual summands on the r.h.s., i.e., the differences

E[logZ(G∗(n+ 1,mε(n+ 1),σ∗
n+1))] − E[logZ(G∗(n,mε(n),σ∗

n))]. (8)

To this end we couple these two random factor graphs. This is where Propositions 10 and 11
enter the fray. Specifically, we think of both these factor graphs as being obtained from a
smaller factor graph G∗

0 that with variables nodes x1, . . . , xn and slightly fewer factor nodes
than either of the two target factor graphs. Then we obtain G∗(n,mε(n),σ∗

n) by adding
a few random factors to G∗

0. Similarly, we obtain G∗(n+ 1,mε(n+ 1),σ∗
n+1) from G∗

0 by
adding a few new random factor nodes as well as a new variable node xn+1 along with a
number of adjacent factor nodes. Crucially, Propositions 10 and 11 provide the necessary
accuracy to trace the impact of these manipulations on the partition function, and the Bethe
functional emerges organically as an upper bound on (8).

To obtain the matching lower bound we seize upon the interpolation method. The basic
idea is to set up a family of random factor graph models parametrised by time t ∈ [0, 1] such
that the model at time t = 1 coincides with G∗(n,mε,σ

∗) while the model at time t = 0 is
so simple that its partition function can be read off easily. In fact, the partition function of
the t = 0 model turns out to be the Bethe free entropy. To derive the desired lower bound we
prove that the derivative of the log-partition function remains non-negative as we increase t.
As in the Aizenman-Sims-Starr scheme, the computation of the derivative can be reduced to
tracing the impact of local changes. Hence, once more we bring Proposition 10 to bear, this
time in combination with the convexity assumption POS, to prove the following.

▶ Proposition 13. We have E[logZ(G∗)] ≥ n supπ∈P∗(Ω) B(π) + o(n).

Finally, combining Proposition 7–13, we obtain Theorem 6.
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3.6 Discussion

There has been a great deal of interest in inference problems on random factor graphs
recently. The substantial literature on the stochastic block model alone, much of it devoted to
corroborating the predictions from [12], is surveyed in [1, 26]. The literature on applications
to modern coding theory until about 2008 is surveyed in [31]; important newer contributions
include [20, 21]. Further recent applications include compressed sensing [14, 15], group
testing [2, 10], code-division multiple access [17, 30] and the patient zero problem [3]. Apart
and beyond this rigorous literature, there is a vast body of work based on either physics
techniques such as the cavity method or computer experiments.

The great variety of concrete problems studied individually underscores the potential of
generic proof techniques or, even better, general theorems that rigorise these predictions
wholesale. A first contribution has been made by Coja-Oghlan, Krzalaka, Perkins and
Zdeborová [11], who studied the teacher-student model on binomial random factor graph
models. While the general proof strategy that we pursue here is guided by that paper, the
present factor graph models are more general by allowing prescribed degree sequences for
both the variable and factor nodes. From an application viewpoint this generality is highly
desirable because, for example, the quality of an error correcting code or a group testing
scheme can be boosted by optimising the degree distribution [31]. However, from a technical
viewpoint this generality comes at the cost of losing (conditional) independence among the
factor nodes. This issue is well known in random graph theory, where random graphs with
given degrees require far more intricate proofs than, e.g., the Erdős–Rényi model [18]. Here,
these difficulties are exacerbated by the fact that we study not just the plain random graph,
which serves as a our null model, but the reweighted random graph distribution induced by
the teacher-student scheme. In effect, many of the steps that were straightforwards in [11]
become rather delicate due to stochastic dependencies. The key tool that allows us to cope
with these dependencies is Proposition 10. Thus, while we follow the strategy from [11] of
combining the Aizenman-Sims-Starr scheme with the interpolation method and although
we adopt some of the technical ingredients from that work such as the “pinning lemma”,
the greater generality of the model leads us to crystallise and improve over the previous
approach.

What are alternatives to the present strategy of combining the Aizenman-Sims-Starr
scheme with the interpolation method? A classical approach to inference problems on
random graphs is the second moment method [5]. Unfortunately, this approach does not
generally allow for tight information-theoretic results. The reason is that the precise formula
for the mutual information or the information-theoretic threshold in, e.g., the stochastic
block model comes in terms of the optimiser of the Bethe free entropy functional. The
distribution π where the maximum is obtained mirrors the outcome of a complicated
message passing process. Intuitively, π is an idealised version of the empirical distribution
of Belief Propagation messages that whiz around the factor graph upon convergence when
launched from either a uniform initialisation or from the completely polarised initialisation
corresponding to the ground truth. In some examples this fixed point can be characterised
precisely and, unsurprisingly, turns out to be anything but trivial [6]. But we cannot expect
the expressiveness required for such a complicated object from a plain second moment
computation. A second conceptually elementary approach is to actually compute the message
passing fixed point by hand, e.g., via the contraction method. But due to the intricacy of
the calculations this method has been pushed through in only a few special cases [27].

Further powerful techniques include spatial coupling [16] and the adaptive interpolation
method [7]. Both potentially allow for precise results. The basic idea behind spatial coupling
is to convert the given model into a factor graph model with a superimposed geometric
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structure. A plus of spatial coupling is that it sometimes allows for better inference algorithms.
A disadvantage is that the construction has to be carried out case-by-case. By comparison,
the adaptive interpolation method has the advantage of being technically relatively clean.
However, at least on sparse models its combinatorial nuts and bolts appear to be roughly
equivalent to the combination of Aizenman-Sims-Starr and the interpolation argument used
here. Furthermore, the latter approach has the merit of being closer in spirit to the physicists’
cavity calculation. In addition, at this time the adaptive interpolation method has not been
extended to models with given general degree sequences.

Further, there has been quite some work on dense random factor graph models where each
variable appears in a constant fraction of factor nodes. Examples are spiked matrix/tensor
models [8] or models of neural networks such as the Hopfield model [4, 23]. These methods
are closer in nature to the classical Sherrington-Kirkpatrick model [28]. It seems fair to
say that more is known about dense models than sparse ones because certain central limit
theorem-like simplifications arise. In some cases, the Bethe variational principle reduces to a
finite-dimensional or even scalar optimisation problem [13, 22].

To conclude we note that the study of inference problems typically comes in two instal-
ments: an information-theoretic view that asks for thresholds beyond which in principle
sufficient information is available to form a non-trivial estimate of the ground truth and an
algorithmic view interested in polynomial-time algorithms. While the two perspectives might
appear disparate at first glance, information-theoretic results on inference problems like in
this paper in combination with tools such as spatial coupling have in the past led to efficient
algorithms capable of attaining the information-theoretic thresholds [10, 15]. We view this
as an exciting avenue for future research.
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