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—— Abstract

Simon’s congruence ~y, is a relation on words defined by Imre Simon in the 1970s and intensely

studied since then. This congruence was initially used in connection to piecewise testable languages,
but also found many applications in, e.g., learning theory, databases theory, or linguistics. The ~-
relation is defined as follows: two words are ~-congruent if they have the same set of subsequences
of length at most k. A long standing open problem, stated already by Simon in his initial works on
this topic, was to design an algorithm which computes, given two words s and t, the largest k for
which s ~ t. We propose the first algorithm solving this problem in linear time O(]s| + |¢|) when
the input words are over the integer alphabet {1,...,|s| + |¢|} (or other alphabets which can be
sorted in linear time). Our approach can be extended to an optimal algorithm in the case of general
alphabets as well.

To achieve these results, we introduce a novel data-structure, called Simon-Tree, which allows us
to construct a natural representation of the equivalence classes induced by ~j on the set of suffixes
of a word, for all £ > 1. We show that such a tree can be constructed for an input word in linear
time. Then, when working with two words s and t, we compute their respective Simon-Trees and
efficiently build a correspondence between the nodes of these trees. This correspondence, which can
also be constructed in linear time O(|s| + |¢|), allows us to retrieve the largest k for which s ~y, ¢.
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1 Introduction

A subsequence of a word w (also called scattered factor or subword, especially in automata
and language theory) is a word u such that there exist (possibly empty) words vy, ..., vey1,
Ug, ..., Uy With ©w = w1 ... u, and w = viuiveus ... Veurve41. Intuitively, the subsequences
of a word w are exactly those words obtained by deleting some of the letters of w, so, in a
sense, they can be seen as lossy-representations of the word w. Accordingly, subsequences
may be a natural mathematical model for situations where one has to deal with input
strings with missing or erroneous symbols sequencing, such as processing DNA data or
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digital signals [27]. Due to this very simple and intuitive definition as well as the apparently
large potential for applications, there is a high interest in understanding the fundamental
properties that can be derived in connection to the sets of subsequences of words. This is
reflected in the consistent literature developed around this topic. J. Sakarovitch and I. Simon
in [21, Chapter 6] overview some of the most important combinatorial and language theoretic
properties of sets of subsequences. The theory of subsequences was further developed in
various directions, such as combinatorics on words, automata theory, formal verification, or
string algorithms. For instance, subword histories and Parikh matrices (see, e.g., [23, 26, 28])
are algebraic structures in which the number of specific subsequences occurring in a word are
stored and used to define combinatorial properties of words. Strongly related, the binomial
complexity of words is a measure of the multiset of subsequences that occur in a word,
where each occurrence of such a factor is considered as an element of the respective multiset;
combinatorial and algorithmic results related to this topic are obtained in, e.g., [25, 9, 20, 19],
and the references therein. Further, in [35, 12, 18] various logic-theories were developed,
starting from the subsequence-relation, and analysed mostly with automata theory and
formal verification tools. Last, but not least, many classical problems in the area of string
algorithms are related to subsequences: the longest common subsequence and the shortest
common supersequence problems [22, 1, 3, 4], or the string-to-string correction problem [34].
Several algorithmic problems connected to subsequence-combinatorics are approached and
(partially) solved in [7].

One particularly interesting notion related to subsequences was introduced by Simon
in [30]. He defined the relation ~j, (called now Simon’s congruence) as follows. Two words
are ~g-congruent if they have the same set of subsequences of length at most k. In [30], as
well as in [21, Chapter 6], many fundamental properties (mainly of combinatorial nature)
of ~}, are discussed; this line of research was continued in, e.g., [15, 16, 17, 6, 2] where the
focus was on the properties of some special classes of this equivalence. From an algorithmic
point of view, a natural decision problem and its optimisation variant stand out:

» Problem 1. SIMK: Given two words s and t over an alphabet X, with |s| = n and |t| = n/,
with n > n/, and a natural number k, decide whether s ~y, t.

» Problem 2. MAXSIMK: Given two words s and t over an alphabet 3, with |s| = n and
[t| =n/, withn >n’, find the maximum k for which s ~j t.

The problems above were usually considered assuming (although not always explicitly) the
Word RAM model with words of logarithmic size. This is a standard computational model
in algorithm design in which, for an input of size n, the memory consists of memory-words
consisting of ©(logn) bits. Basic operations (including arithmetic and bitwise Boolean
operations) on memory-words take constant time, and any memory-word can be accessed in
constant time. In this model, the two input words are just sequences of integers, each integer
stored in a single memory-word. Without losing generality, we can assume the alphabet to
be simply {1,...,n 4+ n’} by sorting and renaming the letters occurring in the input in linear
time. For a detailed discussion on the computational model, see the full version of this paper,
available on arXiv [24].

Due to the central role played by the ~-congruence in the study of piecewise testable
languages, as well as in the many other areas mentioned above, both problems SiIMK and
MaxSiMK were considered highly interesting and studied thoroughly in the literature.

In particular, Hebrard [13] presents MAXSIMK as computing a similarity measure between
strings and mentions a solution of Simon [29] for MAXSIMK which runs in O(|X|nn’) (the
same solution is mentioned in [11]). He goes on and improves this (see [13]) in the case when
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Y is a binary alphabet: given two bitstrings s and ¢, one can find the maximum & for which
s ~j t in linear time. The problem of finding optimal algorithms for MAXSIMK, or even
SMK, for general alphabets was left open in [29, 13] as the methods used in the latter paper
for binary strings did not seem to scale up. In [11], Garel considers MAXSIMK and presents
an algorithm based on finite automata, running in O(|X|n), which computes all distinguishing
words u of minimum length, i.e., words which are factors of only one of the words s and ¢
from the problem’s statement. Several further improvements on the aforementioned results
were reported in [5, 32]. Finally, in an extended abstract from 2003 [31], Simon presented
another algorithm based on finite automata solving MAXSIMK which runs in O(|X|n), and
he conjectures that it can be implemented in O(|3] + n). Unfortunately, the last claim is
only vaguely and insufficiently substantiated, and obtaining an algorithm with the claimed
complexity seems to be non-trivial. Although Simon announced that a detailed description
of this algorithm will follow shortly, we were not able to find it in the literature.

In [8], a new approach to efficiently solving SIMK was introduced. This idea was to
compute, for the two given words s and ¢ and the given number k, their shortlex forms: the
words which have the same set of subsequences of length at most k as s and ¢, respectively,
and are also lexicographically smallest among all words with the respective property. Clearly,
s ~y, t if and only if the shortlex forms of s and t for k coincide. The shortlex form of a word
s of length n over ¥ was computed in O(|X|n) time, so SIMK was also solved in O(|X|n). A
more efficient implementation of the ideas introduced in [8] was presented in [2]: the shortlex
form of a word of length n over ¥ can be computed in linear time O(n), so SIMK can be
solved in optimal linear time. By binary searching for the smallest k, this gives an O(nlogn)
time solution for MAXSIMK. This brings up the challenge of designing an optimal linear-time
algorithm for non-binary alphabets.

Our results. In this paper we confirm Simon’s claim from 2003 [31]. We present a complete
algorithm solving MAXSIMK in linear time on Word RAM with words of size ©(logn). This
closes the problem of finding an optimal algorithm for MAXSIMK. Our approach is not based
on finite automata (as the one suggested by Simon), nor on the ideas from [8, 2]. Instead,
it works as follows. Firstly, looking at a single word, we partition the respective word into
k-blocks: contiguous intervals of positions inside the word, such that all suffixes of the word
inside the same block have exactly the same subsequences of length at most & (i.e., they are
~g-equivalent). Since the partition in (k + 1)-blocks refines the partition in k-blocks, one
can introduce the Simon-Tree associated to a word: its nodes are the k-blocks (for k from 1
to at most n), and each node on level k has as children exactly the (k4 1)-blocks in which it
is partitioned. We first show how to compute efficiently the Simon-Tree of a word. Then,
to solve MAXSIMK, we show that one can maintain in linear time a connection between
the nodes on the same levels of the Simon-Trees associated to the two input words. More
precisely, for all ¢, we connect two nodes on level ¢ of the two trees if the suffixes starting
in those blocks, in their respective words, have exactly the same subsequences of length at
most £. It follows that the value k required in MAXSIMK is the lowest level of the trees on

which the blocks containing the first position of the respective input words are connected.

Using the Simon-Trees of the two words and the connection between their nodes, we can
also compute in linear time a distinguishing word of minimal length for s and ¢. Achieving
the desired complexities is based on a series of combinatorial properties of the Simon-Trees,
as well as on a rather involved data structures toolbox.

Our paper is structured as follows: we firstly introduce the basic combinatorial and data
structures notions, then we show how Simon-Trees are constructed efficiently, and, finally, we
show how MAXSIMK is solved by connecting the Simon-Trees of the two input words. We
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end this paper with a series of concluding remarks, extensions, and further research questions.
The formal proofs of our results are given in the full version of this paper [24], due to space
constraints; most statements are, however, accompanied by explanations substantiating our
claims. Similarly, for space reasons, a discussion on how our results can be extended to an
optimal algorithm for MAXSIMK in the case of input words over general alphabets is also
given in the paper’s full version [24].

2 Preliminaries

Let IN be the set of natural numbers, including 0. An alphabet X is a nonempty finite set of
symbols called letters. A word is a finite sequence of letters from 3, thus an element of the
free monoid X*. Let X1 = ¥*\{e}, where ¢ is the empty word. The length of a word w € X*
is denoted by |w|. The " letter of w € X* is denoted by wli], for i € [1 : |wl|]. For m,n € NN,
we let [m:n]={m,m+1,...,n} and w[m : n] = wmlwm + 1] ... w[n|.

A word u € ¥* is a factor of w € ¥* if w = zuy for some z,y € ¥*. If z = ¢
(resp. y = €), u is called a prefiz (resp. suffix of w). For some x € ¥ and w € ¥*, let
lwl, = |{i € [1: |w]] | w[i] = x}| and alph(w) = {z € ¥ | |w|, > 0} for w € ¥*; in other
words, alph(w) denotes the smallest subset S C ¥ such that w € S*.

» Definition 1. We call u a subsequence of length k of w, where |w| = n, if there exist
positions 1 < i1 < i < ... < i <mn, such that u = wli;]wlig] - - - w[ix]. Let Subseq (i, w)
denote the set of subsequences of length at most k of w[i : n]. Accordingly, the set of
subsequences of length at most k of the entire word w will be denoted by Subseq (1, w).

Equivalently, u = u; ... uy is a subsequence of w if there exist v1,...,ver1 € ¥* such that
W= ViU ... VplgVpsy. For k € IN, SubseqSk(l, w) is called the full k-spectrum of w.

» Definition 2 (Simon's Congruence).

(i) Let w,w' € ¥*. We say that w and w' are equivalent under Simon’s congruence
~g (or, alternatively, that w and w' are k-equivalent) if the set of subsequences of
length at most k of w equals the set of subsequences of length at most k of w', i.e.,
Subseq <, (1, w) = Subseq«; (1, w’).

(i) Leti,je[l:|w|]. We define i~y j (w.r.t. w) if wli:n] ~p wlj:n], and we say that
the positions © and j are k-equivalent.

(iii) A word u of length k distinguishes w and w' w.r.t. ~y if u occurs in exactly one of the
sets Subseq<j, (1, w) and Subseq (1, w’).

Following the discussion from the introduction, for our algorithmic results we assume the
Word RAM model with words of size O(logn).

We start by recalling two data structures which play an important role in our results.
These are the interval split-find and interval union-find data structures. Their formal
definition is given in the full version of this paper [24]. Rather informally, in the union-
find (respectively, split-find) structure we maintain a partition of an interval (also called
universe) V = [1 : n] in sub-intervals, under two operations: union of adjacent intervals
(respectively, split an interval in two sub-intervals around an element of the interval), and
find the representative of the interval containing a given value. In our algorithms, when
using these structures, we usually describe the intervals stored initially in the structure, and
then the unions (respectively, the splits) which are made, as well as the find operations,
without going into the formalism behind these operations. In usual implementations of these
structures the representative of each interval, which is returned by find, is its maximum; we
can easily enhance the data structures so that the find operation returns both borders of
the interval containing the searched value. The following lemma was shown in [10, 14].
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» Lemma 3. One can implement the interval split-find (respectively, union-find) data
structures, such that, the initialisation of the structures followed by a sequence of m € O(n)
split (respectively, union) and £ind operations can be executed in O(n) time and space.

3 Constructing the Simon-Tree of a word

In this section, we introduce a new data structure, which is fundamental to our approach —
the Simon-Tree. The Simon-Tree is used as a representation for the equivalence classes in
a word, which are explained in Section 3.1. The definition of Simon-Trees is then given in
Section 3.2, and the construction is described in Section 3.3.

3.1 Equivalence classes of a Word

In this section, we develop a method to efficiently partition the positions of a given word w,
of length n, into equivalence classes w.r.t. ~y, such that all suffixes starting with positions
of the same class have the same set of subsequences of length at most k. As in this section
we only deal with one input word w of length n, we will sometimes omit the reference to
this word in our notation: e.g. Subseqy (i) = Subseqy, (i, w); in the case of such omissions,
the reader may safely assume that we are referring to the aforementioned input word.

Firstly, we will examine the equivalence classes that each congruence relation ~ induces
on the set of suffixes of w for all k. Let 1 <4 < j < n, then w[j : n] is a suffix of w[i : n], hence
Subseqy, (i) 2 Subseq,(j) holds for all k € IN. For any [ € [i : j] we obtain Subseqy (i) 2
Subseq,(I) 2 Subseq(j). If we additionally let i ~j j, then the sets of subsequences
corresponding to ¢ and j respectively are equal, so Subseqy, (i) = Subseq, () = Subseqy,(j)
and ¢ ~y [ ~p 7. Hence, the equivalence classes of the set of suffixes of w w.r.t. ~j correspond
to sets of consecutive indices (i.e., intervals) in [1 : |wl|], namely the starting positions of the
suffixes in each class. We call these classes k-blocks.

A E-block consisting only of a single position (i.e., it is a singleton-k-block), remains an
£-block for all £ > k. For a k-block b = [my : np), my is its starting position and n; its ending
position. For the ending position of a k—block we also use the following definition.

» Definition 4. For some k >0, if i ~p_1 i+ 1 and i = i + 1, then we will say that i splits
its (k — 1)-block or that i is a k-splitting position.

If a = [mg : ng) is a k-block and b = [my, : np) is a (k + 1)-block with m, < mp < np < ng,
then we say that b is a (k + 1)—block in a (alternatively, of a).

Since, for 1 <i,j < n, i ~j 7 holds if ¢ ~k11 7, the relation ~j; is a refinement of ~y.
In our setting, this means that the (k 4+ 1)—blocks of w are obtained by partitioning the
k-blocks of w into subintervals. To obtain a partition of the positions of w into equivalence
classes and the corresponding blocks, we can use this refinement property. We get the
following inductive procedure.

0-blocks. For any i, with 1 < i <n, we have Subseq (i) = {e}. Thus, we refer to [1 : n] as
the 0-block of w. Note, however, that position n cannot be referred to as a 0-splitting
position.

(k + 1)-blocks. For k > 0 and a k-block a = [mg : ng] in w with |a| > 2, we can find the
(k + 1)-splitting positions inside of a. Except for the case when «a is a 0-block, position n,
marks a k-splitting position. So, if £ > 0, we slice off position n, and obtain a truncated
block af; if & = 0, then o' = a. Going from right to left through af, the position of
every character we encounter for the first time (so, which we have not seen before in this
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bacbaabada
[1:10] k=0
bac /lma{ \\ad
[1:3] [4:7 [8:9] [10] k=1
b/ d\ c b/ /aa\ b d/ \ d
(12 3 [4] [5:6] [7] (8] [9] k=2
SR k=3

Figure 1 Simon-Tree of the word bacbaabada. Above each block [i : j] we wrote the word wli : j].

traversal of a') is a splitting position of af. Consequently, those splitting positions and
ng (only if & > 0) will split @ into (k + 1)-blocks. The correctness of this approach follows
from Lemma 5.

» Lemma 5. Let a = [mg, n4] be a k-block with 1 < my < ng <n. Leta' =a for k=0 and
al =[mgy :ng — 1] for k > 0. Then the following holds for alli,j € a:

(i) if k> 0 then i wpiq ng;

(ii) i ~ky1 7 if and only if Subseq, (i, a’) = Subseq, (j, al).

3.2 Simon-Tree definition

Before introducing the Simon-Tree, we recall some basic notions. An ordered rooted tree is a
rooted tree which has a specified order for the subtrees of a node. We say that the depth of
a node is the length of the unique simple path from the root to that node. Generally, the
nodes with smaller depth are said to be higher (the root is the highest node with depth 0),
while the nodes with greater depth are lower in the tree.

We can now define a new data structure called Simon-Tree. The Simon-Tree of a word w
gives us a hierarchical representation of the equivalence classes inside of w. While an example
of a Simon-Tree can be seen in Figure 1, the formal definition of a Simon-Tree is as follows.

» Definition 6. The Simon-Tree T, associated to the word w, with |w| = n, is an ordered
rooted tree. The nodes of depth k represent k—blocks of w, for 0 < k < n, and are defined
recursively.
The root corresponds to the 0-block of the word w, i.e., the interval [1 : n].
For k > 1 and for a node a of depth k — 1, which represents a (k — 1)-block [i : j] with
i < j, the children of a are exactly the blocks of the partition of [i : j] in k-blocks, ordered
decreasingly (right-to-left) by their starting position.
For k > 1, each node of depth k — 1 which represents a singleton-(k — 1)-block is a leaf.

The nodes of depth k in a tree Ty, are called explicit k-nodes (or simply k-nodes); by
abuse of notation, we identify each k-node by the k-block it represents.

With respect to their starting positions in the word, we number the children nodes (which
are blocks) of a node b from right to left. That is, the i*” child of b is the i** block of the
partition of a, counted from right to left. The singleton-j-blocks, for j < k, are also k-blocks,
but they do not appear explicitly as nodes of depth k in the tree T;,. We will say that they
are implicit k-nodes. In other words, an explicit singleton-j-node is an implicit k-node, for
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all k > j, and the only child of a k-node [i : i] is the implicit (k + 1)-node [i : 4. The nodes
of depth k in the Simon-Tree T, do not necessarily comprise all the k-blocks of w, but they
contain explicitly exactly those k-blocks of w that were obtained by non-trivially splitting a
(k — 1)-block of w which was not a singleton.

3.3 Simon-Tree construction

We are interested in constructing the Simon-Tree T, associated to a word w, with |w| = n,
in linear time. In this section we give a description of the construction algorithm and its
analysis. The corresponding pseudocode can be seen in Algorithms 1-3.

For the algorithms, we use the array X of size n which holds, for a given position ¢, the
next position of w[i] in the word w[i + 1 : n]. We formally define this with X[i] = min{j |
w[j] = wli],j > i}, while we assume X[i] = oo if w[i] ¢ alph(w[i + 1 : n]). The array can
be calculated in O(n) time and space as stated in the full version of this paper [24]. As an
example consider now the word w = bacbaabada. The array X is then depicted as follows.

1 1123|4567 8 9 | 10 | 11
wi |b|lal|l c|blala|b|al|d|a]|s§$
X[ | 45|00 | 7]6|8|00|10] 00| oco|

When applying our algorithm to w, we get the tree shown in Figure 1, where we represent
each node with the block [i : j] it represents accompanied by the word wli : j].

Algorithm 1 Building the Simon-Tree T}, for a word w.

Input: Word w with |w|=n

Result: Simon-Tree T,

w' — w$;

Let T be the tree with the root associated to the block [? : n + 1] of w/;
Let p be a pointer to the root of T

B W N

Compute the array X[i];
for i=n to 1 do

a + findNode (i,T,p);

(T, p) < splitNode(i,T,a);
end

® I o o

9 Set starting position for all blocks from leftmost branch including the root to 1;

10 Remove $-letter from tree: Remove the node associated to [n+ 1 :n + 1] from T and
set all right ends r of blocks on the rightmost branch to n;

11 return T ;

Algorithm description. In general, we consider the individual letters of the word w from
right to left. After considering wli], the tree we constructed so far corresponds to the
Simon-Tree of the suffix w[i : n]. By traversing the word from right to left, we also construct
the Simon-Tree in a right-to-left manner. Accordingly, it holds that at each time step only
the nodes on the leftmost branch of the tree are possible to be enhanced. This is because
for the tree of the word w[i + 1 : n], prepending a new letter to the word w[i + 1 : n] can
only affect the leftmost node/block on each level of the tree, as the nodes of level k store the
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Algorithm 2 findNode.

Input: Position 4 in w, Simon-Tree T, [i11.n)3, Pointer to leftmost leaf a of Ty i1 1:m)3
Result: Pointer to node on leftmost branch of T4 1.13

1 while a is not the root of Tyy[;11.n)3 do

2 r < ending position of the block represented by a;
3 rp < ending position of block represented by parent(a);
4 if X[i] > r and X[i] < r, then
5 ‘ return q;
6 else
7 Close the block represented by a: Set its starting position to ¢ + 1;
8 a < parent(a);
9 end
10 end

11 return a;

Algorithm 3 splitNode.

Input: Position i, Simon-Tree Ty,[;11.n)s, Pointer to node a on leftmost branch of
Tw[i+l:n]$
Result: Simon-Tree T, ;.,s, Pointer to leftmost leaf of T [;.n)s
1T« Tw[i+1:n]$ 5
if a is the leftmost leaf of T then
// node a represents the open block [?:i+ 1]
Add a child to a associated to the now completed block [i + 1 : ¢+ 1];
Add a leftmost child b to a associated to the open block [? : i];
else
‘ Add a leftmost child b to a associated to the open block [? : i];
end

N

N o oo W

8 return (7T, pointer to b)

k-blocks, and, accordingly, build a (possibly intermittent, if we only consider the explicit
nodes) partition of the word w into non-overlapping intervals, for all k, while the nodes of
one level are ordered with regard to their position in the word.

This means that a newly considered position of our word can be only added to a node
on the leftmost branch of the tree that was constructed so far during the application of the
algorithm. Therefore, we call the nodes on the leftmost branch open blocks. These open
blocks are not complete and have a yet unknown starting position. We use [? : ¢] to denote
the open block with unknown starting position and ending position 7. For the nodes on the
leftmost branch, we only store the ending position (or splitting position) of their represented
block. For all nodes that are not on the leftmost branch in the tree, we store both starting
and ending position of their represented block.

In the beginning of the construction algorithm, we append the letter $ at the end of w to
ensure that all the positions of w are treated in a uniform way. More precisely, the usage of
the $-letter allows us to uniformly find the splitting points in a block according to case (ii)
of Lemma 5 only. That is, by adding the letter $ at the end, we avoid position n as being
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falsely recognized as a 0-splitting position since it is the ending position of the 0-block [1 : n)
of w. As seen in Algorithm 1, we define w’ = w$ and start the algorithm with the tree that
only has one node, the root, representing the open block [? : n + 1].

When considering a new position ¢ of the word, and, essentially, inserting it into the
current tree, we want to find the correct tree level where position 7 would mark the splitting
of a new block or a new node, respectively. According to Algorithm 2, by starting at the
leftmost leaf (which is the node associated to the open block [? : ¢ + 1]) and going up the
leftmost branch of the current tree, we look for the first node where the character w[i] occurs
on a non-ending position. Let this be node A of depth k, representing an open k-block. Node
A cannot be a leaf since leafs only represent singleton-blocks, consist therefore only of one
position, and wi] could not occur on a non-ending position. Let the leftmost child of A be
the node a of depth k + 1. By utilizing Lemma 5, we get the information that position 7 is
a (k + 2)-splitting position in a, and consequently, our new block with ending position i is
mapped to level (k + 2) of the Simon-Tree. Following Algorithm 3, we then insert the new
block [? : 7] in the respective level of the Simon-Tree as a leftmost child of node a.

All nodes we traversed from leftmost leaf up to node a represent I-blocks with I > (k + 2).
These blocks are closed during the process of finding the correct position as seen in Algorithm 2.
Since 7 is a (k + 2)-splitting position we set the starting position for all open I-blocks, with
I>k+2 t0i+ 1.

It remains only to mention the special case, where we do not find an occurrence of wl[i]
on our traversal from leftmost leaf to the root. In this case, the letter did not appear yet in
the word. It therefore marks a 1-splitting position and as per Algorithm 2, we return the
tree root, to which the block [? : ¢] is then added as a leftmost child as per Algorithm 3.

Algorithm analysis. The pseudocode for our algorithm is shown in Algorithms 1-3. The-
orem 7 states the main result of this section. While the correctness of the algorithm follows
mainly from the explanations above, its linear running time requires an amortized analysis.
We observe that for each position ¢ in w we traverse ¢ nodes (representing open blocks) while
going up on the leftmost branch, then insert one leaf on the leftmost branch while closing
the ¢ traversed nodes and moving them all to the right of the inserted leaf (so out from the
leftmost branch). As the total number of nodes in the Simon-Tree Ty, is linear in |w|, and
each node is inserted once and traversed once, the conclusion follows. For the interested
reader we point out that our analysis resembles to a certain extent the one of the algorithm
constructing the Carthesian-Tree for a set of numbers [33].

» Theorem 7. Given a word w, with |w| = n, we can construct its Simon-Tree in O(n) time.

4 Connecting two Simon-Trees

In this section, we propose a linear-time algorithm for the MAXSIMK problem. The general
idea of this algorithm is to analyse simultaneously the Simon-Trees of the two input words s
and t of length n and n’, respectively, and establish a connection between their nodes.

4.1 The S-Connection

In our solution of MAXSIMK, we construct a relation called S-Connection (abbreviation for
Simon-Connection) between the nodes of the Simon-Trees Ty and T} constructed from the
two input words s and ¢.

349
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» Definition 8. The (explicit or implicit) k-node a of Ts and the (explicit or implicit)
k-node b of Ty are S-connected (i.e., the pair (a,b) is in the S-Connection) if and only if
sli i m] ~ t[j : 0] for all positions i in block a and positions j in block b.

If two k-nodes a and b are S-connected, we say that b is a’s S-Connection (and vice versa).
Additionally, if two nodes are S-connected, then the corresponding blocks are said to be
S-connected too.

Adapted from the equivalence classes within a word, each explicit or implicit k-node of
T, can be S-connected to at most one k-node of T} (since they are then representing blocks
which on their part represent the same equivalence class of the set of suffixes of w w.r.t. ~g).

» Remark 9. The S-Connection is non-crossing. This means that if the k-block a = [m, : ng]
of Ty is S-connected to the k-block b = [my, : np] of Ty, the k'-block ¢ = [m. : n.] of Ty is
S-connected to the k'-block d = [my : ng] of Ty, and m, < m., then m;, < mg. Similarly, if
ne < N then ny < ng.

4.2 The P-Connection

For constructing the S-Connection efficiently, we define a coarser relation called P-Connection
(abbreviation for potential-connection) that covers the S-Connection. The P-Connection
defines, for each node of Ty, a unique node of T; to which it may be S-connected. Later,
we will attempt to determine and split, for each level k£ from 1 to maximally n, all pairs
of (explicit and implicit) k-nodes which were P-connected but are not S-connected. In a
sense, this splitting allows us to gradually refine the P-Connection until we get exactly the
S-Connection. The P-Connection for the words s and ¢ is defined as follows.

» Definition 10. The 0-nodes of Ts and Ty are P-connected. For all levels k of Ty, if the
explicit or implicit k-nodes a and b (from Ty and T}, respectively) are P-connected, then the
it" child of a is P-connected to the i*" child of b, for alli. No other nodes are P-connected.

If k-nodes a and b are P-connected, we say that b is a’s P-Connection (and vice versa).

According to its definition, the P-Connection can be computed efficiently in a straight-
forward manner. This definition is essentially based on the following Lemma 11. However,
because Lemma 11 is not both necessary and sufficient (unlike, e.g., Lemma 5), it can
only be used to define a relation coarser than the S-Connection and cannot be used to
characterise (and, consequently, compute in a simple way) the S-Connection itself. Recall
that in Simon-Trees the children of a node are numbered right to left.

» Lemma 11. Let k > 1. Let a = [myg : ng) be a k-block in s and b= [my : np] a k-block in t
with a ~y b. Then the i*" child of the node a of Ty can only be S-connected (but it is not
necessarily connected) to the it child of the node b of Ty, for all i > 1.

It is not hard to see that, in the spirit of Remark 9, the P-Connection is non-crossing.
Moreover, by Lemma 11, if the k-blocks a and b are S-connected, they are also P-connected.
It is very important to note that a pair of nodes whose parent-nodes are not S-connected is
also not S-connected. So, as our approach is to refine the P-Connection till the S-Connection
is reached, we can immediately decide that a pair of nodes (a,b) is not in the S-Connection
when the pair consisting of their respective parent-nodes is not in the S-Connection.

4.3 From P- to S-Connection

Preliminary transformation. As mentioned, our algorithm solving MAXSIMK uses the
Simon-Trees of s and ¢t. To make the exposure simpler, we make the following simple
transformation of the trees. If a is a k-node such that a is a singleton, we add as a child of
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this node a (k + 1)-node representing the same block a (this was an implicit node before, now
made explicit); the newly added node on level k + 1 does not have any children (i.e., this
procedure is not applied recursively). Before, by Lemma 5, all blocks [i : i] of w appeared
explicitly exactly once in T,,. Therefore, each singleton-block [i : i] of s (respectively, t)
appears now exactly twice in T (respectively, T%).

In general, these now explicit nodes are used to guarantee the existence of a P-connected
node (implicit or explicit) for every explicit singleton node on some level k + 1 that was on
a splitting position on level k, so we can determine singleton nodes that are ~y- but not
~41-congruent to the corresponding nodes in the other tree. The transformation has the
following direct consequence that we will use: each singleton-block a appears now on two
consecutive levels. While the node corresponding to a on the higher level may be S-connected
to a node corresponding to a non-singleton-block, the node corresponding to a on the lower
level may be S-connected only to a singleton-node.

As a second consequence, it is worth noting that explicit nodes might be connected to
implicit nodes, too. However, this is only true for explicit nodes which were added during
the transformation described above, i.e., singleton explicit nodes. Explicit nodes which are
not singletons cannot be connected to implicit nodes.

Refining the P-Connection. The main step of our approach is, while considering the levels
of the trees Ts and T} in increasing order, to identify the pairs of P-connected nodes from
the respective levels which are not S-connected and consequently split them. At the same
time, we identify the pairs of singleton-blocks occurring explicitly on higher levels (and only
implicitly on the current levels) which are not S-connected on this level, and also split them
on the current level. For simplicity of exposure, when we split two k-blocks, we say that we
k-split them. In order to implement this idea, we use the following Lemma 12 to define a
splitting criterium.

We introduce first some notations. For w € {s,t}, a position j < |w|, and a letter
x, we define next,,(j,z) as the leftmost position where = occurs in w[j : |w|], or as oo if
x ¢ alph(w[j : |w|]). For a block a = [m, : n,] of the word w and a letter z, we define
next, (a,x) = next,(ng, ). We generally omit the subscript w when it is clear from the
context. Furthermore, we define alph(a) for a block a = [m,, : n,| as alph(w[m, : n4)).

» Lemma 12. Let k > 1. Let a = [mg : ng] be a k-block in the word s and b = [my, : ny]
a k-block in the word t with a ~y b. Let a' = [mg : ng| be a (k+ 1)-block in a and
b = [my :ny] be a (k+ 1)-block in b. Then a’ =1 V' if and only if there exists a letter x
such that s[next(a’,z) + 1 : n] =y tlnext(t/,x) +1: n'].

The main idea of this lemma (illustrated in Figure 2) is that two (k + 1)-blocks o’ and V'
are not S-connected, although their parents were S-connected, if and only if we can find a
letter = such that s[next(a’,z) + 1 : n] and t[next(V’,z) + 1 : n'] are not k-equivalent but
(k — 1)-equivalent. That is, next(a’, ) + 1 and next(b’,x) 4+ 1 should occur, respectively, in
two k-blocks which were split, but whose parents were S-connected. A word distinguishing
the suffixes starting in o’ from those starting in b’ has the first letter z, and is continued by
the word of length & which distinguishes s[next(a’,z) + 1 : n| and t[next(b’,z) + 1 : n’].

Identifying P-connected pairs to be split. When going through the trees level by level, the
1-blocks (all occuring explicitly on level 1 of T and respectively T;) which are S-connected
can be easily and efficiently identified: the i** node a = [mg : mg) on level 1 of T is connected
to the i'" node b = [my, : ny] of T} if and only if alph(s[n, : n]) = alph(¢[n, : n’]). All the
other P-connected pairs of 1-blocks are not S-connected, so they are 1-split.

34:11
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a level — k b

~k

Figure 2 Tllustration of Lemma 12.

The identification of the pairs of (k 4+ 1)-blocks and pairs of singletons which need to
be (k + 1)-split is based on Lemma 12. The idea is the following. A pair of P-connected
(k + 1)-blocks @’ = [mg : ng] of Ts and b = [my : ny] of Ty is not S-connected if and
only if there exists a letter « such that s[next(a’,z) + 1 : n| =y tlnext(d’,z) + 1 : n']. So,
in order to be able to (k + 1)-split two nodes (whose parents are S-connected), we need
to identify two positions ¢ and j (and a corresponding letter z), with ¢ = next(a’/,z) + 1
and j = next(b,z) + 1 which were k-split but not (k — 1)-split. We search for position i
inside the k-blocks of Ts, and try to see where position j may occur in the blocks of T} such
that these two positions are not in S-connected k-blocks. To find the position ¢ (and the
corresponding j) we analyse two cases.

The first case (A) is when i occurs inside an implicit k-node, which is the singleton-k-block
[ : 4. On the lowest level where this block appeared as an explicit node, it was S-
connected to a node [j : j] representing a singleton too, according to Section 4.1 and
Lemma 5. Thus, position i can only be k-split from the position j of ¢ to which it was
S-connected (it was already disconnected from all other positions on level ¢). If ¢ and
j are both directly preceded by the same symbol (say ), then the pair (i,7) gives us
exactly the positions we were searching for.

The second case (B) is when i occurs inside an explicit k-node in Ts. Let A = [m4 : n4]
and B = [mp : ng] be two (k — 1) blocks from Ty and T}, respectively, such that
A~ B, and a = [m, : n,] and b = [my : ny] be the £** child of A and B, respectively.
Clearly, b might be explicit, implicit, or even empty. If b is non-empty, the following holds.
All positions of a are k-split from the positions [mp : mp — 1] and from the positions
[ny + 1 : np], because a is not P-connected to the blocks covering those positions. Also, if
a and b are not S-connected then all positions of a are also k-split from the positions of b.

An example. Let s = acab and t = acabba be two words. Their respective Simon-Trees T,
and T; are depicted in Figure 3 along with their P- and S-Connection. Note that for the
sake of not crossing edges and simplifying the presentation, the Simon-Trees in Figure 3 are
rotated by 90 degrees to the right and to the left, respectively. Thus, the roots of the trees are
on the outer left and right side of the figure. Additionally, the tree T} on the right is mirrored,
so that nodes from a P-connected pair are vis-a-vis. Also, the trees already contain the
singleton nodes that were originally implicit but are now made explicit by our aforementioned
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4] ] 3:5)
B —— \
acab acabba
[1:4] e [1:6]
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\ ac  _— \ ac/
[1:2] [1:2]
N —— .
Ts \\\\ e //// Tt

Figure 3 Two transformed Simon-Trees with their P- and S-Connection.

transformation. From the figures it becomes also clear that this transformation is needed in
the case of the singleton-node [5 : 5] from the 2nd level of T; which is P-connected to the
singleton-node [3 : 3] from the 2nd level of T.

In the beginning we are considering all possibly connected blocks by determining all
P-connected pairs. While the dashed and dotted lines connect, respectively, the nodes of
all the pairs from the P-Connection, the S-Connection is obtained by splitting step by step
P-connected pairs that cannot be equivalent with regard to their respective level. The dotted
edges symbolize exactly these split pairs, and in the end, the S-Connection consists only of
the pairs connected with a dashed edge.

Following Theorems 16 and 17 stated at the very end of this paper, we get the largest
k for which the two words s and t are k-equivalent by finding the largest & for which the
k-blocks containing position 1 of both words are S-connected. In our example, the blocks
s[1: 4] and ¢[1 : 6] representing the complete words are naturally 0-equivalent. Furthermore,
as seen in Figure 3, the blocks s[1 : 2] and ¢[1 : 2] on level 1 are S-connected, but the blocks
s[1:1] and #[1 : 1] are not S-connected on level 2. Thus, the largest k for which s ~y, ¢ holds
is 1.

Path to efficiency. Taking (4,j) to be each position of block a paired with each of the
positions from which it is k-split, according to the above, might not be efficient. However,
the combinatorial Lemma 12 allows us to switch slightly the point of view and ultimately
obtain an efficient method. We will traverse the kth level of a Simon-Tree T from right to
left and when considering a node a on this level, our approach is to determine which nodes
should be k + 1-split due to any pair (¢, ), where 4 is some position occurring in the block a.
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The mechanism allowing us to do this is stated in Lemma 13, and this essentially explains
how to determine all the k£ + 1-splits determined by positions of a (and their corresponding
pairing from b). We show how to proceed in both cases (A) and (B). Clearly, a symmetrical
approach would also work (so looking at nodes in T; and positions in t).

Firstly, we need a few more notations. For a block a = [m,, : ny] of s or t and a letter x, let
prev(a, x) be the rightmost occurrence of  in s[1 : m,—2] (or 0if z ¢ alph(s[l : m,—2])), and
let right(a, ) be the rightmost occurrence of x in s[1 : n, —1] (or 0 if « ¢ alph(s[1 : n, —1])).

The setting in which Lemma 13 is stated is the following. We have two P-connected
k-blocks a = [mg : ng) and b = [my, : np] from T and T}, respectively, whose parent-nodes
(explicit or implicit) are S-connected. The lemma defines a necessary and sufficient condition
for a pair of (explicit or implicit) (k+1)-nodes (a’,b") to be (k+1)-split because there exists a
letter z and a pair of positions (4, j), with ¢ = next(a’, z)+1, i € [mg : ng), j = next(V/,x)+1,
and s[i : n] = t[j : n']. Such a pair (¢/,V') is called (a,k + 1)-split (that is, a causes the
respective split on level k + 1). Note that o’ and b are the (explicit or implicit) children
of either a and b or of two k-blocks which are left of a and b. In any way, their parents are
S-connected; otherwise a’ and b would have already been split on a higher level.

This setting is also illustrated in Figure 4.

» Lemma 13. Fork > 1, let a = [m, : ng) be a k-block in s and b = [my, : nyp) its P-Connection

(which is a k-block in t). Then a pair of P-connected (k + 1)-blocks a’ = [mg : ng]

in s and b = [my : ny| int is (a,k + 1)-split if and only if there exists a letter x in

alph(s[mg — 1 : ng — 1]) such that at least one of the following holds:

1. &' ends strictly between prev(a,z) and mg (i.e., prev(a,z) < ng < mg), and b’ ends to
the left of prev(b,z) + 1 (i.e., ny < prev(b,z)).

2. a' ends between prev(a,z) and right(a,z) (i.e., prev(a,z) < ne < right(a,x)), and
b ends between right(b, x) and ny (i.e., right(b,z) < ny < ny).

3. a = b, a ends between prev(a,z) and right(a,x) (i.e., prev(a,z) < ny < right(a,z)),
and b’ ends between prev(b, x) and right(b,z) (i.e., prev(b,x) < ny < right(b,z)).

In Lemma 13, because k > 1 and the blocks a’ and b" are the (explicit or implicit) children
of two S-connected k-blocks, it follows that alph(s[ng : n]) = alph(¢[ny : n']). This means,
in particular, that next(a’, z) # oo for some letter x if and only if next (b, z) # occ.

Now, we can explain how to algorithmically apply Lemma 13 and find the pairs of
(k + 1)-blocks which should be split. For this, we can define, and compute in the step where
the k-split pairs were obtained, a list Ly, of pairs of singleton-k-blocks which were k-split and
a list Hy of all the explicit k-nodes of T and their P-connections.

We first consider each explicit k-node a of T, and its P-Connection, the node b of T}
(in both cases: when a and b were k-split or when they were not). For z € alph(s[m, — 1 :
ng — 1)) U{s[ms — 1]} (note that the symbols € alph(s[mg —1 : ny —1]) can be identified as
the first symbols of the (k + 1)-blocks into which a = s[m, : n,] is split, except the rightmost
one; these are the children of node a except the rightmost one) we do the following;:

1. identify each (k + 1)-block a’ = [mg : ng/] with prev(a,z) < n, < m, and its pair
b = [my : ny]. Then (a’,b") is not in the S-Connection if ny < prev(b, z) (i.e., o’ and ¥’
are (a, k + 1)-split).

2. identify each (k4 1)-block o' = [my : ng/] with prev(a,z) < ny < right(a,z) and its
pair ' = [my : ny]. Then (a/,b') is not in the S-Connection if right(b, z) < ny < ny.

3. if a =y b, identify each (k + 1)-block a’ with prev(a,x) < ny < right(a,x) and its pair
b = [my : ny]. Then (a’,d') is not in the S-Connection if prev(h, z) < ny < right(b, z).
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Figure 4 Illustration of the three cases of Lemma 13.

For every pair (a,b) of singleton-k-blocks which were k-split (from the list Ly), we only
perform step 3 from above.

For each k-block a we considered (explicit or implicit node of T), we collect the singleton-
(k 4 1)-blocks that were (a, k + 1)-split, to be used when computing the (k + 2)-splits.

The next step is to implement this idea, i.e., to describe data structures allowing us to
identify efficiently the (k + 1)-blocks a’ and ¥’ from above. We say that a pair of blocks/
nodes (a’,b') meets an interval-pair ([p : ¢, [p’ : ¢']) if @’ ends in [p : ¢], and V' ends in [p’ : ¢'].

Our approach is the following. We process the blocks on level k and, for each of them,
get (at most) three lists of interval-pairs (one component is an interval of positions in s, the
other an interval in ¢). On level k + 1, we split each pair of P-connected blocks (a’,d") which
meets one interval-pair from our list. A crucial property here is that, for each interval-pair,
the (k + 1)-blocks of s which meet it, and are accordingly split from their P-Connections,
are consecutive (explicit and implicit) (k¥ + 1)-nodes in Ts. Thus, in order to make use of
Lemma 13, we draw on the technical results given by Lemmas 14 and 15.

» Lemma 14. Let a = [mg : ng) and b = [my : ny) be P-connected blocks of Ts and Ty,

respectively, and s, = simq — 1 :ng — 1]. We can compute in overall O(|alph(a)|) time the

three lists, associated to the pair (a,b), containing:

1. the interval-pairs ([prev(a,x) + 1:mg — 1],[0 : prev(b, z)]), for all x € alph(s,);

2. the interval-pairs ([prev(a,x)+1 : right(a, x)], [right(b,2)+1 : ny)), for all € alph(s,);

3. the interval-pairs ([prev(a,x) 4+ 1 : right(a,x)], [prev(b,z) + 1 : right(b, z)]), for all
x € alph(sg).

» Lemma 15. Given two words s and t, with |s| = n and |t| = n’, n > n/, and their
Simon-Trees Ts and Ty, we can check in O(n) overall time for all pairs of P-connected
1-blocks (a,b), with a = [mg : ng] and b = [my : ny), whether alph(sin, : n]) = alph(t[ny : n']).
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Efficiently constructing the S-Connection and solving MaxSimK. Based on the previous
lemmas, we can now show our main technical theorem. We use Lemma 15 to see which
1-nodes are not S-connected. This is done in O(n) time. Then consider the k-nodes, for each
k > 2 in increasing order. For each pair (a,b) of (k — 1)-nodes which were split (i.e., removed
from the S-Connection) in the previous step, we split the pairs of k-nodes meeting one of the
interval-pairs of the three lists of (a,b), as computed in Lemma 14. To do this efficiently, we
maintain an interval union-find and an interval split-find structure for each word. While the
concrete algorithm can be found in the full version of this paper [24], we can now state our
main result in Theorem 16.

» Theorem 16. Given two words s and t, with |s| =n and |t| =n', n > n’', we can compute
in O(n) time the following:
the S-Connection between the nodes of the two trees Ty and T};
for each i € [1 : n], the highest level k on which the (implicit or explicit) node [i : i] is
k-split from its P-Connection.

Finally, in order to solve MAXSIMK, we need to compute the largest k for which the
k-block a = [1 : ng] of s is S-connected to the k-block b = [1 : ny] of ¢t. Thus, we execute the
algorithm of Section 4.3 and the aforementioned level k can be easily found by checking,
level by level, the blocks that contain position 1 of s on each level of T and the block to
which they are S-connected in 7. As a consequence of Theorem 16, we can now show our
main result.

» Theorem 17. Given two words s and t, with |s| =n and |t| =n', n > n/, we can solve
MAXSIMK and compute a distinguishing word of minimum length for s and t in O(n) time.

5 Conclusions and future work

In this paper, we presented the first algorithm solving MAXSIMK in optimal time. This
algorithm is based on the definition and efficient construction of a novel data-structure:
the Simon-Tree associated to a word. Our algorithm constructs the respective Simon-Trees
for the two input words of MAXSIMK, and then establishes a connection between their
nodes. While the Simon-Tree is a representation of the classes induced, for all £ > 1, by the
~-congruences on the set of suffixes of a word, this connection allows us to put together the
classes induced by the respective congruences on the set of suffixes of both input word, and
to obtain, as a byproduct, the answer to MAXSIMK.

The work presented in this paper can be continued naturally in several directions. For
instance, it seems interesting to us to compute efficiently, for two words s and ¢, what is
the largest k such that Subseq.,(s) C Subseq(t). Similarly, one could consider the following
pattern-matching problem: givgn two words s and ¢, and a number k, compute efficiently all
factors t[i : j] of t such that t[i : j] ~j s. Finally, SIMK could be extended to the following
setting: given a word s and regular (or a context-free) language L, and a number k, decide
efficiently whether there exists a word ¢ € L such that s ~ t. A variant of MAXSIMK can
be also considered in this setting: given a word s and regular (or a context-free) language L,
find the maximal k for which there exists a word ¢ € L such that s ~y, ¢.
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