
Refined Notions of
Parameterized Enumeration Kernels with
Applications to Matching Cut Enumeration
Petr A. Golovach !

Department of Informatics, University of Bergen, Norway

Christian Komusiewicz !

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Dieter Kratsch
LGIMP, Université de Lorraine, Metz, France

Van Bang Le !

Institut für Informatik, Universität Rostock, Germany

Abstract
An enumeration kernel as defined by Creignou et al. [Theory Comput. Syst. 2017] for a parameterized
enumeration problem consists of an algorithm that transforms each instance into one whose size is
bounded by the parameter plus a solution-lifting algorithm that efficiently enumerates all solutions
from the set of the solutions of the kernel. We propose to consider two new versions of enumeration
kernels by asking that the solutions of the original instance can be enumerated in polynomial time
or with polynomial delay from the kernel solutions. Using the NP-hard Matching Cut problem
parameterized by structural parameters such as the vertex cover number or the cyclomatic number of
the input graph, we show that the new enumeration kernels present a useful notion of data reduction
for enumeration problems which allows to compactly represent the set of feasible solutions.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases enumeration problems, polynomial delay, output-sensitive algorithms, kernel-
ization, structural parameterizations, matching cuts

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.37

Related Version Full Version: https://arxiv.org/abs/2101.03800

Funding Petr A. Golovach: Supported by the Research Council of Norway via the project “MULTI-
VAL” (grant no. 263317).

Acknowledgements We dedicate this paper to the memory of our coauthor and friend Dieter Kratsch
who recently passed away. Without Dieter, this paper would have never been written.

1 Introduction

The enumeration of all feasible solutions of a computational problem is a fundamental task in
computer science. For the majority of enumeration problems, the number of feasible solutions
can be exponential in the input size in the worst-case. The running time of enumeration
algorithms is thus measured not only in terms of the input size n but also in terms of the
output size. The two most-widely used definitions of efficient algorithms are polynomial
output-sensitive algorithms where the running time is polynomial in terms of input and output
size and polynomial-delay algorithms, where the algorithm spends only a polynomial running
time between the output of consecutive solutions. Since in some enumeration problems, even
the problem of deciding the existence of one solution is not solvable in polynomial time, it

© Petr A. Golovach, Christian Komusiewicz, Dieter Kratsch, and Van Bang Le;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 37; pp. 37:1–37:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petr.golovach@ii.uib.no
https://orcid.org/0000-0002-2619-2990
mailto:komusiewicz@informatik.uni-marburg.de
https://orcid.org/0000-0003-0829-7032
mailto:van-bang.le@uni-rostock.de
https://orcid.org/0000-0002-3303-8326
https://doi.org/10.4230/LIPIcs.STACS.2021.37
https://arxiv.org/abs/2101.03800
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Parameterized Enumeration Kernels and Matching Cuts

was proposed to allow FPT algorithms that have running time or delay f(k) · nO(1) for some
problem-specific parameter k [9, 11, 12, 14, 31]. Naturally, FPT-enumeration algorithms are
based on extensions of standard techniques in FPT algorithms such as bounded-depth search
trees [11, 12, 14] or color coding [31].

An important technique for obtaining FPT algorithms for decision problems is kernel-
ization [10, 15, 28], where the idea is to shrink the input instance in polynomial time to an
equivalent instance whose size depends only on the parameter k. In fact, a parameterized
problem admits an FPT algorithm if and only if it admits a kernelization. It seems particularly
intriguing to use kernelization for enumeration problems as a small kernel can be seen as
a compact representation of the set of feasible solutions. The first notion of kernelization
in the context of enumeration problems were the full kernels defined by Damaschke [11].
Informally, a full kernel for an instance of an enumeration problem is a subinstance that
contains all minimal solutions of size at most k. This definition is somewhat restrictive since
it is tied to subset minimization problems parameterized by the solution size parameter k.
Nevertheless, full kernels have been obtained for some problems [12, 16, 26, 35].

To overcome the restrictions of full kernels, Creignou et al. [9] proposed enumeration
kernels. Informally, an enumeration kernel for a parameterized enumeration problem is an
algorithm that replaces the input instance by one whose size is bounded by the parameter
and which has the property that the solutions of the original instance can be computed by
listing the solutions of the kernel and using an efficient solution-lifting algorithm that outputs
for each solution of the kernel a set of solutions of the original instance. In the definition of
Creignou et al. [9], the solution-lifting algorithm may be an FPT-delay algorithm, that is, an
algorithm with f(k) · nO(1) delay where n is the overall input size. We find that this time
bound is too weak, because it essentially implies that every enumeration problem that can
be solved with FPT-delay admits an enumeration kernel of constant size. Essentially, this
means that the solution-lifting algorithm is so powerful that it can enumerate all solutions
while ignoring the kernel. Motivated by this observation and the view of kernels as compact
representations of the solution set, we modify the original definition of enumeration kernels [9].

Our results. We present two new notions of efficient enumeration kernels by replacing the
demand for FPT-delay algorithms by a demand for polynomial-time enumeration algorithms
or polynomial-delay algorithms, respectively. We call the two resulting notions of enumeration
kernelization fully-polynomial enumeration kernels and polynomial-delay enumeration kernels.
Our paper aims at showing that these two new definitions present a sweet spot between the
notion of full kernels, which is too strict for some applications, and enumeration kernels,
which are too lenient in some sense. We first show that the two new definitions capture the
class of efficiently enumerable problems in the sense that a problem has a fully-polynomial
(a polynomial-delay) enumeration kernel if and only if it has an FPT-enumeration algorithm
(an FPT-delay enumeration algorithm). Moreover, the kernels have constant size if and only
if the problems have polynomial-time (polynomial-delay) enumeration algorithms. Thus, the
new definitions correspond to the case of problem kernels for decision problems, which are in
FPT if and only if they have kernels and which can be solved in polynomial time if and only
if they have kernels of constant size (see, e.g. [10, Chapter 2] or [15, Chapter 1]).

We then apply both types of kernelizations to the enumeration of matching cuts. A
matching cut of a graph G is the set of edges M = E(A, B) for a partition {A, B} of V (G)
forming a matching. We investigate the problems of enumerating all minimal, all maximal,
or all matching cuts of a graph. We refer to these problems as Enum Minimal MC, Enum
Maximal MC, and Enum MC, respectively. These matching cut problems constitute a

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:3

very suitable study case for enumeration kernels, since it is NP-hard to decide whether a
graph has a matching cut [7] and therefore, they do not admit polynomial output-sensitive
algorithms. We consider all three problems with respect to structural parameterizations such
as the vertex cover number, the modular width, or the cyclomatic number of the input graph.
The choice of these parameters is motivated by the fact that neither problem admits an
enumeration kernel of polynomial size for the more general structural parameterizations by
the treewidth or cliquewidth up to some natural complexity assumptions (see Proposition 5).
Table 1 summarizes the results. Due to space constraints some results and proofs are either
omitted or just sketched. We refer to the full version [20] for the details.

Table 1 An overview of our results. Herein, “kernel” means fully-polynomial enumeration kernel,
“del-kernel” means polynomial-delay enumeration kernel and “bi” means bijective enumeration kernel
(a slight generalization of full kernels), a (⋆) means that the lower bound assumes NP ⊈ coNP/ poly,
“?” means open status. We use (∗) for statements whose proofs are omitted in this extended abstract
(see [20] for the proofs). The cyclomatic number is also known as the feedback edge number.

Parameter k Enum MC Enum Minimal MC Enum Maximal MC
treewidth & No poly-size del- No poly-size del- No poly-size del-
cliquewidth kernel (⋆) (Prop. 5) kernel (⋆) (Prop. 5) kernel (⋆) (Prop. 5)
vertex cover & size-O(k2) del-kernel size-O(k2) kernel size-O(k2) del-kernel
twin-cover (Theorems 11 & 12) (Theorems 11 & 12) (Theorems 11 & 12)
number No kernel No kernel
neighborhood size-O(k) del-kernel (∗) size-O(k) kernel (∗) size-O(k) del-kernel (∗)
diversity No kernel (∗) No kernel (∗)
modular width ? O(k)-kernel (∗) ?
cyclomatic size-O(k) del-kernel size-O(k) del-kernel
number (Theorem 13) (Theorem 13) ?

No kernel
clique partition size-O(k3) bi kernel (∗) size-O(k3) bi kernel (∗) size-O(k3) bi kernel (∗)
number

To discuss some of our results and their implication for enumeration kernels in general
more precisely, consider Enum MC, Enum Minimal MC, and Enum Maximal MC
parameterized by the vertex cover number. We show that Enum Minimal MC admits a
fully-polynomial enumeration kernel of polynomial size. As it can be seen that the problem
has no full kernel, we obtain that there are natural enumeration problems with a fully-
polynomial enumeration kernel that have no full kernel (not even one of super-polynomial
size). Then, we show that Enum MC and Enum Maximal MC admit polynomial-delay
enumeration kernels but have no fully-polynomial enumeration kernels. Thus, there are
natural enumeration problems with polynomial-delay enumeration kernels that do not admit
fully-polynomial enumeration kernels (not even one of super-polynomial size).

We also prove a tight upper bound F (n + 1) − 1 for the maximum number of matching
cuts of an n-vertex graph, where F (n) is the n-th Fibonacci number and show that all
matching cuts can be enumerated in O∗(F (n)) = O∗(1.6181n) time (Theorem 6).

Related work. The current-best exact decision algorithm for Matching Cut, the problem
of deciding whether a given graph G has a matching cut, has a running time of O(1.328n)
where n is the number of vertices in G [25]. Faster exact algorithms can be obtained for the
case when the minimum degree is large [23]. Matching Cut has FPT-algorithms for the
maximum cut size k [21], the vertex cover number of G [27], and weaker parameters such as
the twin-cover number [1] or the cluster vertex deletion number [25].

STACS 2021

37:4 Parameterized Enumeration Kernels and Matching Cuts

For an overview of enumeration algorithms, refer to the survey of Wasa [37]. A broader
discussion of parameterized enumeration is given by Meier [32]. A different extension of
enumeration kernels are advice enumeration kernels [2]. In these kernels, the solution-lifting
algorithm does not need the whole input but only a possibly smaller advice. A further
loosely connected extension of standard kernelization are lossy kernels which are used for
optimization problems [29]; the common thread is that both definitions use a solution-lifting
algorithm for recovering solutions of the original instance.

Graph notation. All graphs considered in this paper are finite undirected graphs without
loops or multiple edges. We follow the standard graph-theoretic notation and terminology
and refer to the book of Diestel [13] for basic definitions. For each of the graph problems
considered in this paper, we let n = |V (G)| and m = |E(G)| denote the number of vertices
and edges, respectively, of the input graph G if it does not create confusion. For a graph G

and a subset X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced
by X. For a set of vertices X, G − X denotes the graph obtained by deleting the vertices
of X, that is, G − X = G[V (G) \ X]; for a vertex v, we write G − v instead of G − {v}.
Similarly, for a set of edges A (an edge e, respectively), G − A (G − e, respectively) denotes
the graph obtained by the deletion of the edges of A (the edge e, respectively). For a vertex
v, we denote by NG(v) the (open) neighborhood of v, i.e., the set of vertices that are adjacent
to v in G. We use NG[v] to denote the closed neighborhood NG(v) ∪ {v} of v. For X ⊆ V (G),
NG[X] =

⋃
v∈X NG[v] and NG(X) = NG[X] \ X. For disjoint sets of vertices A and B of a

graph G, EG(A, B) = {uv | u ∈ A, v ∈ B}. We may omit subscripts in the above notation if
it does not create confusion. We use Pn, Cn, and Kn to denote the n-vertex path, cycle, and
complete graph, respectively. We write G + H to denote the disjoint union of G and H, and
we use kG to denote the disjoint union of k copies of G.

In a graph G, a cut is a partition {A, B} of V (G), and we say that EG(A, B) is an edge
cut. A matching is an edge set in which no two of the edges have a common end-vertex;
note that we allow empty matchings. A matching cut is a (possibly empty) edge set being
an edge cut and a matching. We underline that by our definition, a matching cut is a set
of edges, as sometimes in the literature (see, e.g., [7, 22]) a matching cut is defined as a
partition {A, B} of the vertex set such that E(A, B) is a matching. While the two variants of
the definitions are equivalent, say when the decision variant of the matching cut problem is
considered, this is not the case in enumeration and counting when we deal with disconnected
graphs. For example, the empty graph on n vertices has 2n−1 − 1 partitions {A, B} which
all correspond to exactly one matching cut in the sense of our definition, namely M = ∅. A
matching cut M of G is (inclusion) minimal (maximal, respectively) if G has no matching
cut M ′ ⊂ M (M ′ ⊃ M , respectively). Notice that a disconnected graph has exactly one
minimal matching cut which is the empty set.

2 Parameterized Enumeration and Enumeration Kernels

We use the framework for parameterized enumeration proposed by Creignou et al. [9]. An
enumeration problem (over a finite alphabet Σ) is a tuple Π = (L, Sol) such that
(i) L ⊆ Σ∗ is a decidable language,
(ii) Sol : Σ∗ → P(Σ∗) is a computable function such that for every x ∈ Σ∗, Sol(x) is a finite

set and Sol(x) ̸= ∅ if and only if x ∈ L.
Here, P(A) is used to denote the powerset of a set A. A string x ∈ Σ∗ is an instance, and
Sol(x) is the set of solutions to instance x. A parameterized enumeration problem is defined
as a triple Π = (L, Sol, κ) such that (L, Sol) satisfy (i) and (ii) of the above definition, and
(iii) κ : Σ∗ → N is a parameterization.

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:5

We say that k = κ(x) is a parameter. We define the parameterization as a function of an
instance but it is standard to assume that the value of κ(x) is either simply given in x or can
be computed in polynomial time from x. We follow this convention throughout the paper.

An enumeration algorithm A for a parameterized enumeration problem Π is a deterministic
algorithm that for every instance x, outputs exactly the elements of Sol(x) without duplicates,
and terminates after a finite number of steps on every instance. The algorithm A is an
FPT enumeration algorithm if it outputs all solutions in at most f(κ(x))p(|x|) steps for a
computable function f(·) that depends only on the parameter and a polynomial p(·).

We also consider output-sensitive enumerations, and for this, we define delays. Let A
be an enumeration algorithm for Π. For x ∈ L and 1 ≤ i ≤ |Sol(x)|, the i-th delay of A is
the time between outputting the i-th and (i + 1)-th solutions in Sol(x). The 0-th delay is
the precalculation time which is the time from the start of the computation until the output
of the fist solution, and the |Sol(x)|-th delay is the postcalculation time which is the time
after the last output and the termination of A (if Sol(x) = ∅, then the precalculation and
postcalculation times are the same). It is said that A is a polynomial-delay algorithm, if all the
delays are upper-bounded by p(|x|) for a polynomial p(·). For a parameterized enumeration
problem Π, A is an FPT-delay algorithm, if the delays are at most f(κ(x))p(|x|), where
f(·) is a computable function and p(·) is a polynomial. Notice that every FPT enumeration
algorithm A is also an FPT delay algorithm.

The key definition for us is the generalization of the standard notion of a kernel in
Parameterized Complexity (see, e.g, [15]) for enumeration problems.

▶ Definition 1. Let Π = (L, Sol, κ) be a parameterized enumeration problem. A fully-
polynomial enumeration kernel(ization) for Π is a pair of algorithms A and A′ with the
following properties:

(i) For every instance x of Π, A computes in time polynomial in |x| + κ(x) an instance y

of Π such that |y| + κ(y) ≤ f(κ(x)) for a computable function f(·).
(ii) For every s ∈ Sol(y), A′ computes in time polynomial in |x| + |y| + κ(x) + κ(y) a

nonempty set of solutions Ss ⊆ Sol(x) such that {Ss | s ∈ Sol(y)} is a partition of
Sol(x).

Notice that by (ii), x ∈ L if and only if y ∈ L.
We say that A is a kernelization algorithm and A′ is a solution-lifting algorithm. In-

formally, a solution-lifting algorithm takes as its input a solution for a “small” instance
constructed by the kernelization algorithm and, having an access to the original input in-
stance, outputs polynomially many solutions for the original instance, and by going over
all the solutions to the small instance, we can generate all the solutions of the original
instance without repetitions. We say that an enumeration kernel is bijective if A′ produces
a unique solution to x, that is, it establishes a bijection between Sol(y) and Sol(x), that
is, the compressed instance essentially has the same solutions as the input instance. In
particular, full kernels [11] are the special case of bijective kernels where A′ is the identity.
As it is standard, f(·) is the size of a kernel, and the kernel has polynomial size if f(·) is a
polynomial.

We define polynomial-delay enumeration kernel(ization) in a similar way. The only
difference is that (ii) is replaced by the condition
(ii∗) For every s ∈ Sol(y), A′ computes with delay polynomial in |x| + |y| + κ(x) + κ(y) a

set of solutions Ss ⊆ Sol(x) such that {Ss | s ∈ Sol(y)} is a partition of Sol(x).
It is straightforward to make the following observation.

▶ Observation 2. Every bijective enumeration kernel is a fully-polynomial enumeration
kernel; every fully-polynomial enumeration kernel is a polynomial-delay enumeration kernel.

STACS 2021

37:6 Parameterized Enumeration Kernels and Matching Cuts

Notice also that our definition of polynomial-delay enumeration kernel is different from
the definition given by Creignou et al. [9]. In their definition, Creignou et al. [9] require
that the solution-lifting algorithm A′ should list all the solutions in Ss with FPT delay
for the parameter κ(x). We believe that this condition is too weak. In particular, with
this requirement, every parameterized enumeration problem, that has an FPT enumeration
algorithm A∗ and such that the existence of at least one solution can be verified in polynomial
time, has a trivial kernel of constant size. The kernelization algorithm can output any instance
satisfying (i) and then we can use A∗ as a solution-lifting algorithm that essentially ignores
the output of the kernelization algorithm. Note that for enumeration problems, we typically
face the situation where the existence of at least one solution is not an issue. We argue that
our definitions are natural by showing the following theorem.

▶ Theorem 3. A parameterized enumeration problem Π has an FPT enumeration algorithm
(an FPT delay algorithm) if and only if Π admits a fully-polynomial enumeration kernel
(polynomial-delay enumeration kernel). Moreover, Π can be solved in polynomial time (with
polynomial delay) if and only if Π admits a fully-polynomial enumeration kernel (a polynomial-
delay enumeration kernel) of constant size.

Proof. The proof of the first claim is similar to the standard arguments for showing the
equivalence between fixed-parameter tractability and the existence of a kernel (see, e.g. [10,
Chapter 2] or [15, Chapter 1]). However dealing with enumeration problems requires some
specific arguments. Let Π = (L, Sol, κ) be a parameterized enumeration problem.

In the forward direction, the claim is trivial. Recall that L is decidable and Sol(·) is a
computable function by the definition. If Π admits a fully-polynomial enumeration kernel (a
polynomial-delay enumeration kernel respectively), then we apply an arbitrary enumeration
algorithm, which is known to exist since Sol(·) is computable, to the instance y produced by
the kernelization algorithm. Then, for each s ∈ Sol(y), use the solution-lifting algorithm to
list the solutions to the input instance.

For the opposite direction, assume that Π can be solved in f(κ(x)) · |x|c time (with
f(κ(x)) · |x|c delay, respectively) for an instance x, where f(·) is a computable function and
c is a positive constant. Since f(·) is computable, we assume that we have an algorithm F
computing f(k) in g(k) time. We define h(k) = max{f(k), g(k)}.

We say that an instance x of Π is a trivial no-instance if x is an instance of minimum size
with Sol(x) = ∅. We call x a minimum yes-instance if x is an instance of minimum size that
has a solution. Notice that if Π has instances without solutions, then the size of a trivial
no-instance is a constant that depends on Π only and such an instance can be computed
in constant time. Similarly, if the problem has instances with solutions, then the size of a
minimum yes-instance is constant and such an instance can be computed in constant time.
We say that x is a trivial yes-instance if x is an instance with minimum size of Sol(x) that,
subject to the first condition, has minimum size. Clearly, the size of a trivial yes-instance
is a constant that depends only on Π. However, we may be unable to compute a trivial
yes-instance.

Let x be an instance of Π and k = κ(x). We run the algorithm F to compute f(k) for
at most n = |x| steps. If the algorithm failed to compute f(k) in n steps, we conclude that
g(k) ≥ n. In this case, the kernelization algorithm outputs x. Then the solution-lifting
algorithm just trivially outputs its input solutions. Notice that |x| ≤ g(k) ≤ h(k) in this
case. Assume from now that F computed f(k) in at most n steps.

If |x| ≤ f(k), then the kernelization algorithm outputs the original instance x, and the
solution-lifting algorithm trivially outputs its input solutions. Note that |x| ≤ f(k) ≤ h(k).

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:7

Finally, we suppose that f(k) < |x|. Observe that the enumeration algorithm runs in |x|c+1

time (with |x|c+1 delay, respectively) in this case, that is, the running time is polynomial.
We use the enumeration algorithm to verify whether x has a solution. For this, notice that a
polynomial-delay algorithm can be used to solve the decision problem; we just run it until it
outputs a first solution (or reports that there are no solutions). If x has no solution, then
Π has a trivial no-instance and the kernelization algorithm computes and outputs it. If
x has a solution, then the kernelization algorithm computes a minimum yes-instance y in
constant time. We use the enumeration algorithm to check whether |Sol(y)| ≤ |Sol(x)|. If
this holds, then we set z = y. Otherwise, if |Sol(x)| < |Sol(y)|, we find an instance z of
minimum size such that |Sol(z)| ≤ |Sol(x)|. Notice that this can be done in constant time,
because the size of z is upper-bounded by the size of a trivial yes-instance. Then we list the
solutions of z in constant time and order them. For the i-th solution of z, the solution-lifting
algorithm outputs the i-th solution of x produced by the enumeration algorithm, and for
the last solution of z, the solution-lifting algorithm further runs the enumeration algorithm
to output the remaining solutions. Since |Sol(z)| ≤ |Sol(x)|, the solution-lifting algorithm
outputs a nonempty set of solutions for x for every solution of z.

It is easy to see that we obtain a fully-polynomial enumeration kernel of size O(h(κ(x))
(a polynomial-delay enumeration kernel, respectively).

For the second claim, the arguments are the same. If a problem admits a fully-polynomial
(a polynomial-delay) enumeration kernel of constant size, then the solutions of the original
instance can be listed in polynomial time (or with polynomial delay, respectively) by the
solution-lifting algorithm called for the constant number of the solutions of the kernel. Con-
versely, if a problem can be solved in polynomial time (with polynomial delay, respectively),
we can apply the above arguments assuming that f(k) (and, therefore, g(k)) is a constant. ◀

In our paper, we consider structural parameterizations of Enum Minimal MC, Enum
Maximal MC, and Enum MC by several graph parameters, and the majority of these
parameterizations are stronger than the parameterization either by the treewidth or the
cliquewidth of the input graph. Defining the treewidth (denoted by tw(G)) and cliquewidth
(denoted by cw(G)) goes beyond of the scope of the current paper and we refer to [8] (see
also, e.g., [10]). By the celebrated result of Bodlaender [3] (see also [10]), it is FPT in t to
decide whether tw(G) ≤ t and to construct the corresponding tree-decomposition. No such
algorithm is known for cliquewidth. However, for algorithmic purposes, it is usually sufficient
to use the approximation algorithm of Oum and Seymour [34] (see also [33, 10]). Observe that
the property that a set of edges M of a graph G is a matching cut of G can be expressed in
monadic second-order logic (MSOL); we refer to [8, 10] for the definition of MSOL on graphs.
Then the matching cuts (the minimal or maximal matching cuts) of a graph of treewidth at
most t can be enumerated with FPT delay with respect to the parameter t by the celebrated
meta theorem of Courcelle [8]. The same holds for the weaker parameterization by the
cliquewidth of the input graph, because we can use MSOL formulas without quantifications
over (sets of) edges: For a graph G, we pick a vertex in each connected component of G and
label it. Let R be the set of labeled vertices. Then the enumeration of nonempty matching
cuts is equivalent to the enumeration of all partitions {A, B} of V (G) such that (i) R ⊆ A

and (ii) E(A, B) is a matching. Notice that condition (ii) can be written as follows: for
every u1, u2 ∈ A and v1, v2 ∈ B, if u1 is adjacent to v1 and u2 is adjacent to v2, then either
u1 = u2 and v1 = v2 or u1 ̸= u2 and v1 ̸= v2. Since the empty matching cut can be listed
separately if it exists, we obtain that we can use MSOL formulations of the enumeration
problems, where only quantifications over vertices and sets of vertices are used. Then the
result of Courcelle [8] implies that Enum Minimal MC, Enum Maximal MC, and Enum
MC can be solved with FPT delay when parameterized by the cliquewidth of the input graph.

STACS 2021

37:8 Parameterized Enumeration Kernels and Matching Cuts

We summarize these observations in the following proposition.

▶ Proposition 4. Enum MC, Enum Minimal MC, and Enum Maximal MC on graphs
of treewidth (cliquewidth) at most t can be solved with FPT delay when parameterized by t.

This proposition implies that Enum MC, Enum Minimal MC and Enum Maximal MC
can be solved with FPT delay for all structural parameters whose values can be bounded
from below by an increasing function of treewidth or cliquewidth. However, we are mainly
interested in fully-polynomial or polynomial-delay enumeration kernelization. We conclude
this section by pointing out that it is unlikely that Enum Minimal MC, Enum Maximal
MC, and Enum MC admit polynomial-delay enumeration kernels of polynomial size for the
treewidth or cliquewidth parameterizations. It was pointed out by Komusiewicz, Kratsch,
and Le [25] that the decision version of the matching cut problem (that is, the problem
asking whether a given graph G has a matching cut) does not admit a polynomial kernel
when parameterized by the treewidth of the input graph unless NP ⊆ coNP/ poly. By the
definition of a polynomial-delay enumeration kernel, this gives the following statement.

▶ Proposition 5. Enum Minimal MC, Enum Maximal MC and Enum MC do not admit
polynomial-delay enumeration kernels of polynomial size when parameterized by the treewidth
(cliquewidth, respectively) of the input graph unless NP ⊆ coNP/ poly.

3 A Tight Upper Bound for the Maximum Number of Matching Cuts

In this section we provide a tight upper bound for the maximum number of matching cuts of
an n-vertex graph. We complement this result by giving an exact enumeration algorithm for
(minimal, maximal) matching cuts. Finally, we give some lower bounds for the maximum
number of minimal and maximal matching cuts, respectively. Throughout this section, we
use #mc(G) to denote the number of matching cuts of a graph G.

To give the upper bound, we use the classical Fibonacci numbers. For a positive integer n,
we denote by F (n) the n-th Fibonacci number. Recall that F (1) = F (2) = 1, and for n ≥ 3,
the Fibonacci numbers satisfy the recurrence F (n) = F (n − 1) + F (n − 2). Recall also that
the n-th Fibonacci number can be expressed by the following closed formula:

F (n) = 1√
5

((1 +
√

5
2

)n

+
(1 −

√
5

2

)n)
for every n ≥ 1. In particular, F (n) = O(1.6181n).

▶ Theorem 6 (∗). 1 An n-vertex graph has at most F (n+1)−1 matching cuts. The bound is
tight and is achieved for paths. Moreover, if n ≥ 5, then an n-vertex graph G has F (n+1)−1
matching cuts if and only if G is a path. Furthermore, the matching cuts can be enumerated
in O∗(F (n)) time.

Let us remark that if n ≤ 4, then besides paths Pn, the graphs Kp + Kq for 1 ≤ p, q ≤ 2 such
that n = p + q have F (n + 1) − 1 matching cuts.

Clearly, the upper bound for the maximum number of matching cuts given in Theorem 6 is
an upper bound for the maximum number of minimal and maximal matching cuts. However,
the number of minimal or maximal matching cuts may be significantly less than the number
of all matching cuts. We conclude this section by stating the best lower bounds we know for
the maximum number of maximal matching cuts and minimal matching cuts, respectively.

1 The proofs of the statements labeled (∗) are omitted in this extended abstract.

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:9

▶ Proposition 7 (∗). The graph G = kC7 with n = 7k vertices has 14k = 14n/7 ≥ 1.4579n

maximal matching cuts.

To achieve a lower bound for the maximum number of minimal matching cuts, we consider
the graphs Hk constructed as follows for a positive integer k.

For every i ∈ {1, . . . , k}, construct two vertices ui and vi and a (ui, vi)-path of length 4.
Make the vertices u1, . . . , uk pairwise adjacent, and do the same for v1, . . . , vk.

▶ Proposition 8 (∗). The number of minimal matching cuts of Hk with n = 5k vertices is
at least 4k = 4n/5 ≥ 1.3195n.

4 Enumeration Kernels for the Vertex Cover Number Parameterization

In this section, we consider the parameterization of the matching cut problems by the vertex
cover number of the input graph. Notice that this parameterization is one of the most
thoroughly investigated with respect to classical kernelization (see, e.g., the recent paper of
Bougeret, Jansen, and Sau [6] for the currently most general results of this type). However,
we are interested in enumeration kernels.

Recall that a set of vertices X ⊆ V (G) is a vertex cover of G if for every edge uv ∈ E(G),
at least one of its end-vertices is in X, that is, V (G) \ X is an independent set. The
vertex cover number of G, denoted by τ(G), is the minimum size of a vertex cover of G.
Computing τ(G) is NP-hard but one can find a 2-approximation by taking the end-vertices
of a maximal matching of G [19] (see also [24] for a better approximation) and this suffices
for our purposes. Throughout this section, we assume that the parameter k = τ(G) is given
together with the input graph. Note that for every graph G, tw(G) ≤ τ(G). Therefore,
Enum MC, Enum Minimal MC, and Enum Maximal MC can be solved with FPT delay
when parameterized by the vertex cover number by Proposition 4.

First, we describe the basic kernelization algorithm that is exploited for all the kernels in
this subsection. Let G be a graph that has a vertex cover of size k. The case when G has no
edges is trivial and will be considered separately. Assume from now that G has at least one
edge and k ≥ 1.

We use the above-mentioned 2-approximation algorithm to find a vertex cover X of size
at most 2k. Let I = V (G) \ X. Recall that I is an independent set. Denote by I0, I1,
and I≥2 the subsets of vertices of I of degree 0, 1, and at least 2, respectively. We use the
following marking procedure to label some vertices of I.

(i) Mark an arbitrary vertex of I0 (if it exists).
(ii) For every x ∈ X, mark an arbitrary vertex of NG(x) ∩ I1 (if it exists).
(iii) For every two distinct vertices x, y ∈ X, select an arbitrary set of min{3, |(NG(x) ∩

NG(y)) ∩ I≥2|} vertices in I≥2 that are adjacent to both x and y, and mark them for
the pair {x, y}.

Note that a vertex of I≥2 can be marked for distinct pairs of vertices of X. Denote by Z the
set of marked vertices of I. Clearly, |Z| ≤ 1 + |X| + 3

(|X|
2

)
. We define H = G[X ∪ Z]. Notice

that |V (H)| ≤ |X| + |Z| ≤ 1 + 2|X| + 3
(|X|

2
)

≤ 6k2 + k + 1. This completes the description
of the basic kernelization algorithm that returns H. It is straightforward to see that H can
be constructed in polynomial time.

It is easy to see that H does not keep the information about all matching cuts in G due
to the deleted vertices. However, the crucial property is that H keeps all matching cuts of
G′ = G − (I0 ∪ I1). Formally, we define H ′ = H − (I0 ∪ I1) and show the following lemma.

STACS 2021

37:10 Parameterized Enumeration Kernels and Matching Cuts

▶ Lemma 9 (∗). A set of edges M ⊆ E(G′) is a matching cut of G′ if and only if M ⊆ E(H ′)
and M is a matching cut of H ′.

To see the relations between matching cuts of G and H, we define a special equivalence
relation for the subsets of edges of G. For a vertex x ∈ X, let Lx = {xy ∈ E(G) | y ∈ I1},
that is, Lx is the set of pendant edges of G with exactly one end-vertex in the vertex cover.
Observe that if Lx ̸= ∅, then there is ℓx ∈ Lx such that ℓx ∈ E(H), because for every x ∈ X,
a neighbor in I1 is marked if it exists. We define L =

⋃
x∈X Lx. Notice that each matching

cut of G contains at most one edge of every Lx. We say that two sets of edges M1 and
M2 are equivalent if M1 \ L = M2 \ L and for every x ∈ X, |M1 ∩ Lx| = |M2 ∩ Lx|. It is
straightforward to verify that the introduced relation is indeed an equivalence relation. It is
also easy to see that if M is a matching cut of G, then every M ′ ⊆ E(G) equivalent to M is
a matching cut. We show the following lemma.

▶ Lemma 10 (∗). A set of edges M ⊆ E(G) is a matching cut (minimal or maximal matching
cut, respectively) of G if and only if H has a matching cut (minimal or maximal matching
cut, respectively) M ′ equivalent to M .

We use Lemma 10 to obtain our kernelization results. For Enum Minimal MC, we show
that the problem admits a fully-polynomial enumeration kernel, and we prove that Enum
Maximal MC and Enum MC have polynomial-delay enumeration kernels.

▶ Theorem 11. Enum Minimal MC admits a fully-polynomial enumeration kernel and
Enum MC and Enum Maximal MC admit polynomial-delay enumeration kernels with
O(k2) vertices when parameterized by the vertex cover number k of the input graph.

Proof. Let G be a graph with τ(G) = k. If G = K1, then the kernelization algorithm returns
H = G1 and the solution-lifting algorithm is trivial as G has no matching cuts. Assume
that G has at least 2 vertices. If G has no edges, then the empty set is the unique matching
cut of G. Then the kernelization algorithm returns H = 2K1, and the solution-lifting
algorithm outputs the empty set for the empty matching cut of H. Thus, we can assume
without loss of generality that G has at least one edge and k ≥ 1.

We use the same basic kernelization algorithm that constructs H as described above and
output H for all the problems. Recall that |V (H)| ≤ 6k2 +k+1. The kernels differ only in the
solution-lifting algorithms. These algorithms exploit Lemma 10 and for every matching cut
(minimal or maximal matching cut, respectively) M of H, they list the equivalent matching
cuts of G. Lemma 10 guarantees that the families of matching cuts (minimal or maximal
matching cuts, respectively) constructed for every matching cut of H compose the partition
of the sets of matching cuts (minimal or maximal matching cuts, respectively) of G. This is
exactly the property that is required by the definition of a fully-polynomial (polynomial-delay)
enumeration kernel. To describe the algorithm, we use the notation defined in this section.

First, we consider Enum Minimal MC. Let M be a minimal matching cut of H. If
M ∩ L = ∅, then M is the unique matching cut of G that is equivalent to M , and our
algorithm outputs M . Suppose that M ∩ L ̸= ∅. Then by the minimality of M , M = {ℓx}
for some x ∈ X, because every edge of L is a matching cut. Then the sets {e} for every
e ∈ Lx are exactly the matching cuts equivalent to M . Clearly, we have at most n such
matching cuts and they can be listed in linear time. This implies that condition (ii) of the
definition of a fully-polynomial enumeration kernel is fulfilled. Thus, Enum Minimal MC
has a fully-polynomial enumeration kernel with at most 6k2 + k + 1 vertices.

Next, we consider Enum Maximal MC and Enum MC. The solution-lifting algorithms
for these problems are the same. Let M be a (maximal) matching cut of H. Let also
M1 = M ∩ L and M2 = M \ M1. If M1 = ∅, then M is the unique matching cut of G that is

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:11

equivalent to M , and our algorithm outputs M . Assume from now that M1 ̸= ∅. Then there
is Y ⊆ X such that M1 = {ℓx | x ∈ Y }. We use the recursive algorithm Enum Equivalent
(see Algorithm 1) that takes as an input a matching S of G and W ⊆ Y and outputs the
equivalent matching cuts M ′ of G such that (i) S ⊆ M ′, (ii) M ′ is equivalent to M , and (iii)
the constructed matchings M ′ differ only by some edges of the sets Lx for x ∈ W . Initially,
S = M2 and W = Y .

Algorithm 1 Enum Equivalent(S, W).

1 if W = ∅ then
2 output S

3 end
4 else if S ̸= ∅ then
5 select arbitrary x ∈ W ;
6 foreach e ∈ Lx do
7 Enum Equivalent(S ∪ {e}, W \ {x})
8 end
9 end

To enumerate the matching cuts equivalent to M , we call Enum Equivalent(M2, Y).
We claim that Enum Equivalent(M2, Y) enumerates the matching cuts of G that are
equivalent to M with O(n) delay.

By the definition of the equivalence and Lemma 10, every matching cut M ′ of G that is
equivalent to M can be written as M ′ = M2 ∪ {ex | x ∈ Y }, where ex is an edge of Lx for
x ∈ Y . Then to see the correctness of Enum Equivalent, observe the following. If W ̸= ∅,
then the algorithm picks a vertex x ∈ W . Then for every edge e ∈ Lx, it enumerates the
matching cuts containing S and e. This means that our algorithm is, in fact, a standard
backtracking enumeration algorithm (see [30]) and immediately implies that the algorithm
lists all the required matching cuts exactly once. Since the depth of the recursion is at most n

and the algorithm always outputs a matching cut for each leaf of the search tree, the delay
is O(n). This completes the proof of the polynomial-delay enumeration kernel for Enum
Maximal MC and Enum MC.

To conclude the proof of the theorem, let us remark that, formally, the solution-lifting
algorithms described in the proof require X. However, in fact, we use only sets Lx that can
be computed in polynomial time for given G and H. ◀

Notice that Theorem 11 is tight in the sense that Enum Maximal MC and Enum MC
do not admit fully-polynomial enumeration kernels for the parameterization by the vertex
cover number. To see this, let k be a positive integer and consider the n-vertex graph G,
where n > k is divisible by k, that is the union of k stars K1,p for p = n/k − 1. Clearly,
τ(G) = k. We observe that G has pk = (n/k − 1)k maximal matching cut that are formed
by picking one edge from each of the k stars. Similarly, G has (p + 1)k = (n/k)k matching
cuts obtained by picking at most one edge from each star. In both cases, this means that the
(maximal) matching cuts cannot be enumerated by an FPT algorithm. By Theorem 3, this
rules out the existence of a fully-polynomial enumeration kernel.

We conclude this section by showing that Theorem 11 can be generalized to the weaker
parameterization by the twin-cover number, introduced by Ganian [17, 18] as a generalization
of a vertex cover. Recall that two vertices u and v of a graph G are true twins if N [u] = N [v].
A set of vertices X of a graph G is said to be a twin-cover of G if for every edge uv of G,

STACS 2021

37:12 Parameterized Enumeration Kernels and Matching Cuts

at least one of the following holds: (i) u ∈ X or v ∈ X or (ii) u and v are true twins. The
twin-cover number, denoted by tc(G), is the minimum size of a twin-cover. Notice that
tc(G) ≤ τ(G) and tc(G) ≥ cw(G) + 2 for every G [17, 18]. Let X = {X1, . . . , Xr} be the
partition of V (G) into the classes of true twins. Note that X can be computed in linear time
using an algorithm for computing a modular decomposition [36]. Then we can define the
true-twin quotient graph G with respect to X , that is, the graph with the node set X such
that two classes of true twins Xi and Xj are adjacent in G if and only if the vertices of Xi

are adjacent to the vertices of Xj in G. Then it can be seen that tc(G) ≥ τ(G). We prove
the following.

▶ Theorem 12 (∗). Enum Minimal MC admits a fully-polynomial enumeration kernel
and Enum MC and Enum Maximal MC admit polynomial-delay enumeration kernels with
O(k2) vertices when parameterized by the vertex cover number of the true-twin quotient graph
of the input graph.

5 Enumeration Kernels for the Parameterization by the Feedback
Edge Number

A set of edges X of a graph G is said to be a feedback edge set if G − S has no cycle, that is,
G − S is a forest. The minimum size of a feedback edge set is called the feedback edge number
or the cyclomatic number. We use fn(G) to denote the feedback edge number of a graph G.
It is well-known (see, e.g., [13]) that if G is a graph with n vertices, m edges and r connected
components, then fn(G) = m − n + r and a feedback edge set of minimum size can be found
in linear time. Throughout this section, we assume that the input graph in an instance of
Enum Minimal MC or Enum MC is given together with a feedback edge set. Equivalently,
we may assume that kernelization and solution-lifting algorithms are supplied by the same
algorithm computing a minimum feedback edge set. Then this algorithm computes exactly
the same set for the given input graph.

In contrast to vertex cover number and neighborhood diversity, Enum Minimal MC
does not admit a fully-polynomial enumeration kernel in case of the feedback edge number:
let ℓ and k be positive integers and consider the graph Hk,ℓ that is constructed as follows.

For every i ∈ {1, . . . , k}, construct two vertices ui and vi and a (ui, vi)-path of length ℓ.
Add edges to make each of u1, · · · , uk and v1, · · · , vk a path of length k − 1.

Observe that Hk,ℓ has at least ℓk minimal matching cuts composed by taking one edge
from every (ui, vi)-path. Since Hk,ℓ has n = k(ℓ + 1) vertices and fn(Hk,ℓ) = k − 1, the
number of minimal matching cuts is at least

(
n

fn(Hk,ℓ)−1 −1
)fn(Hk,ℓ). This immediately implies

that the minimal matching cuts cannot be enumerated in FPT time. In particular, Enum
Minimal MC cannot have a fully-polynomial enumeration kernel by Theorem 3. However,
this problem and Enum MC admit polynomial-delay enumeration kernels.

▶ Theorem 13. Enum Minimal MC and Enum MC admit a polynomial-delay enumeration
kernel with O(k) vertices when parameterized by the feedback edge number k of the input
graph.

The kernels for Enum Minimal MC and Enum MC are similar but the kernel for Enum
MC requires some technical details that do not appear in the kernel for Enum Minimal
MC. For Enum MC, we need the following observation that follows from the results of
Courcelle [8] in the same way as Proposition 4 using a Counting MSOL formulation of the
enumeration problem.

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:13

▶ Observation 14. Let F be a forest and let A, B, C ⊆ E(F) be disjoint edge sets. Then
all matchings M of F such that A ⊆ M , B ∩ M = ∅, and either C ⊆ M or C ∩ M = ∅
can be enumerated with polynomial delay. Moreover, if u, v are distinct vertices of the same
connected component of F and h ∈ {0, 1}, then all such (nonempty) matchings with the
additional property that |E(P) ∩ A| mod 2 = h, where P is the (u, v)-path of F , also can be
enumerated with polynomial delay.

Proof of Theorem 13. We sketch the proof for Enum MC. Let G be a graph with fn(G) = k

and a feedback edge set S of size k. The case where G is a forest can be settled by using
Observation 14 (or Proposition 4). We assume from now that G is not a forest. In particular,
S ̸= ∅. If G has one or more connected component that are trees, we select an arbitrary
vertex v∗ of these components. If G has a connected component that contains a vertex of
degree one and is not a tree, then arbitrary select such a vertex u∗ of degree one and denote
by e∗ be the edge incident to u∗. Then we iteratively delete vertices of degree at most one
distinct from u∗ and v∗. Denote by G′ the obtained graph. Notice that G′ has at most one
isolated vertex (the vertex v∗) and at most one vertex of degree one (the vertex u∗). Observe
also that S is a minimum feedback edge set of G′. Let T = G′ − S. Notice that T is a forest
and has at most 2|S| + 2 ≤ 2k + 2 vertices of degree at most one. It can be shown that T has
at most 2k vertices of degree at least three. Denote by X the set of vertices of T that either
are end-vertices of the edges of S, or have degree one, or have degree at least three. Then
|X| ≤ 4k + 2, and every vertex v of G′ of degree two is an inner vertex of an (x, y)-path
P such that x, y ∈ X and the inner vertices of P are outside X. Moreover, for every two
distinct x, y ∈ X, G′ has at most one (x, y)-path Pxy with all its inner vertices outside X.
We denote by P the set of all such paths. We say that an edge of Pxy is the x-edge if it is
incident to x and is the y-edge if it is incident to y. We say that an edge e of Pxy is a second
x-edge (a second y-edge, respectively) if e has a common end-vertex with the x-edge (with
the y-edge, respectively). The edges that are distinct from the x-edge, the second x-edge,
the y-edge and the second y-edge are called middle edges. We say that Pxy is long if Pxy has
length at least six; otherwise, Pxy is short. Let F = G − E(G′). Since S ⊆ E(G′), F is a
forest. Moreover, each connected component T of F has at most one vertex in V (G′).

We exhaustively apply the following reduction rule.

▶ Reduction Rule. If there is a long path Pxy ∈ P for some x, y ∈ X, then contract an
arbitrary middle edge of Pxy.

Let H be the graph obtained from G′ by the exhaustive application of the reduction rule.
We also denote by P ′ the set of paths obtained from the paths of P; we use P ′

xy to denote
the path obtained from Pxy ∈ P . Our kernelization algorithm returns H together with S. It
can be seen that |V (H)| ≤ 20k + 1.

For the construction of the solution-lifting algorithm, recall that by our assumption the
input graph is given together with S and S ⊆ E(H). Then we can identify v∗, u∗ and e∗ in
G and H, and then we can recompute the set X. Next, we can compute the sets of paths P
and P ′ of G and H, respectively, in polynomial time. This allows us to assume that the
solution-lifting algorithm has access to these sets.

To construct the solution-lifting algorithm, denote by M and M′ the sets of matching
cuts of G and H, respectively. Define M1 = {M ∈ M | M ∩ E(G′) = ∅} and M2 = {M ∈
M | M ∩ E(G′) ̸= ∅}. Notice that M ∈ M1 is nonempty if and only if M is a nonempty
matching of F = G − E(G′). First, we deal with the matching cuts of M1. Observe that G

is connected if and only if H is connected. This means that the empty set is a matching cut
of G if and only if the empty set is a matching cut of H.

STACS 2021

37:14 Parameterized Enumeration Kernels and Matching Cuts

Suppose that H has the empty matching cut. Then the solution-lifting algorithm, given
this matching cut of H, outputs the matching cuts of M1. Notice that M1 ̸= ∅, because
M1 contains the empty matching cut. The solution-lifting algorithm outputs the empty
matching cut and all nonempty matchings of F using Observation 14.

Assume now that H is connected. Then G is connected as well and M1 ̸= ∅ if and only
if F ̸= ∅. By the construction of G′, if F is not empty, then G has a vertex of degree one.
In particular, the kernelization algorithm selects u∗ and e∗ in this case. Notice that e∗ is a
bridge of G, and it holds that {e∗} is a matching cut of both G and H. Observe also that
{e∗} ∈ M2. This matching cut is generated by the solution-lifting algorithm for the cut
{e∗} of H: when the algorithm finishes listing the matching cuts of M2 for {e∗}, it switches
to the listing of all nonempty matchings of F . This can be done with polynomial delay by
Observation 14.

Next, we analyze the matching cuts of M2. By definition, a matching cut M of G is
in M2 if M ∩ E(G′) ̸= ∅. This means that M ∩ E(G′) is a matching cut of G′, and for a
nonempty matching M of G, M ∈ M2 if and only if M ∩ E(G′) is a nonempty matching cut
of G′. We exploit this property and the solution-lifting algorithm lists nonempty matching
cuts of G′ and then for each matching cut of G′, it outputs all its possible extensions by
matchings of F . For this, we define the following relation between matching cuts of H and G′.
Let M be a nonempty matching cut of H and let M ′ be a nonempty matching of G′ (note
that we do not require M ′ to be a matching cut). We say that M ′ is equivalent to M if the
following holds:

(i) M ∩ E(H[X]) = M ′ ∩ E(G[X]) (note that H[X] = G[X]).
(ii) For every Pxy ∈ P such that Pxy is short, M ∩ E(P ′

xy) = M ′ ∩ E(Pxy) (note that
Pxy = P ′

xy in this case).
(iii) For every long Pxy ∈ P,

(a) M ∩ E(P ′
xy) ̸= ∅ if and only if M ′ ∩ E(Pxy) ̸= ∅,

(b) |M ∩ E(P ′
xy)| mod 2 = |M ′ ∩ E(Pxy)| mod 2,

(c) the x-edge (y-edge, respectively) of P ′
xy is in M ′ if and only if the x-edge (y-edge,

respectively) of Pxy is in M ,
(d) if for the second x-edge ex, the second y-edge ey and the middle edge e of P ′

xy,
|M ∩ {ex, ey, e}| = 1, then

ex ∈ M (ey ∈ M , respectively) if and only if ex ∈ M ′ and ey /∈ M ′ (ex /∈ M ′

and ey ∈ M ′, respectively),
e ∈ M if and only if either ex, ey ∈ M ′ or ex, ey /∈ M ′.

(note that ex, ey are the second x-edge and y-edge of Pxy, because P ′
xy is constructed

by contracting of some middle edges of Pxy).
We use the properties of the relation summarized in the following claim.

▷ Claim 15.
(i) For every nonempty matching cut M of H, there is a nonempty matching M ′ of G′

that is equivalent to M .
(ii) For every nonempty matching cut M of H and every nonempty matching M ′ of G′

equivalent to M , M ′ is a matching cut of G′.
(iii) Every nonempty matching cut M ′ of G′ is equivalent to at most one matching cut of H.
(iv) For every nonempty matching cut M ′ of G′, there is a nonempty matching cut of M

such that M ′ is equivalent to M .

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:15

Claim 15 allows us to construct the solution-lifting algorithm for nonempty matching
cuts of H that outputs nonempty matching cuts from M2. For each nonempty matching
cut M of H, the algorithm lists the matching cuts M ′ of G′ such that M ′ is equivalent
to M . Then for each M ′, we extend M ′ to matching cuts of G by adding matchings of
F = G − E(G′). For this, we consider the algorithm EnumPath(Px,y, A, B, C, h) that given
a path Pxy ∈ P, disjoint sets A, B, C ⊆ E(Pxy), and an integer h ∈ {0, 1}, enumerates with
polynomial delay all nonempty matchings M of Pxy such that A ⊆ M , B ∩ M = ∅, either
C ⊆ M or C ∩ M = ∅, and |M | mod 2 = h. Such an algorithm exists by Observation 14.
We also use the algorithm EnumMatchF(M) that, given a matching cut M of G′, lists all
matching cuts of G of the form M ∪ M ′, where M ′ is a matching of F . EnumMatchF(M)
is constructed as follows. Let A be the set of edges of F incident to the end-vertices of F

(recall that each connected component of F contains at most one vertex of V (G′)). Then we
enumerate the matchings M ′ of F such that M ′ ∩ A = ∅. This can be done with polynomial
delay by Observation 14.

Algorithm 2 EnumEquivalent(L, R).

1 if R = ∅ then
2 call EnumMatchF(M);
3 return every matching cut M ′ generated by the algorithm and quit
4 end
5 else if R ≠ ∅ then
6 select arbitrary Pxy ∈ R;
7 set A := ∅; B := ∅; C := ∅; h := |M ∩ E(P ′

xy)| mod 2;
8 if ex ∈ M then set A := A ∪ {ex};
9 if ey ∈ M then set A := A ∪ {ey};

10 if e′
x ∈ M and e, e′

y /∈ M then set A := A ∪ {e′
x} and B := B ∪ {e′

y};
11 if e′

y ∈ M and e, e′
x /∈ M then set A := A ∪ {e′

y} and B := B ∪ {e′
x};

12 if e ∈ M and e′
x, e′

y /∈ M then set C := C ∪ {e′
x, e′

y};
13 call EnumPath(Px,y, A, B, C, h);
14 foreach nonempty matching Z generated by EnumPath(Px,y, A, B, C, h) do
15 EnumEquivalent(L ∪ Z, R \ {Pxy})
16 end
17 end

We use EnumPath and EnumMatchF as subroutines of the recursive branching algo-
rithm EnumEquivalent (see Algorithm 2) that, given a matching M of H, takes as an input
a matching L of G and R ⊆ P and outputs the matching cuts M ′ of G such that (i) L ⊆ M ′,
(ii) M ′ is equivalent to M , and (iii) the constructed matchings M ′ differ only by some edges
of the paths Pxy ∈ R. To initiate the computations, we construct the initial matching L′ of
G and the initial set of paths R′ ⊆ P as follows. We define R′ ⊆ P to be the set of long
paths Pxy ⊆ P such that P ′

xy ∩ M ̸= ∅. Then L′ ⊆ M is the set of edges of M that are not in
the paths of R′. Recall that as an intermediate step, we enumerate nonempty matching cuts
of G′ that are equivalent to M . Then it can be noted that to do this, we have to enumerate
all possible extensions of M to M ′ satisfying condition (iii) of the equivalence definition.
Therefore, we call EnumEquivalent(L′, R′) to solve the enumeration problem. It can
be seen that EnumEquivalent(L′, R′) enumerates with polynomial delay all nonempty
matching cuts M ∈ M2 such that M ′ ∩ E(G′) is a nonempty matching cut of G′ equivalent
to M .

STACS 2021

37:16 Parameterized Enumeration Kernels and Matching Cuts

To summarize, recall that if H is connected and has a vertex of degree one, we used the
matching cut {e∗} to list the matching cuts formed by the edges of F = G − E(G′). Clearly,
{e∗} is generated by EnumEquivalent(L′, R′) for L′ and R′ constructed for M = {e∗}.
Therefore, we conclude that the solution-lifting algorithm satisfies condition (ii∗) of the
definition of a polynomial-delay enumeration kernel. ◀

6 Conclusion

We initiated the systematic study of enumeration kernelization for several variants of the
matching cut problem. We obtained fully-polynomial (polynomial-delay) enumeration kernels
for the parameterizations by the vertex cover number, twin-cover number, neighborhood
diversity, modular width, and feedback edge number. Since the solution-lifting algorithms are
simple branching algorithms, these kernels give a condensed view of the solution sets which
may be interesting in applications where one may want to inspect all solutions manually.
Restricting to polynomial-time and polynomial-delay solution-lifting algorithms seems helpful
in the sense that they will usually be easier to understand.

There are many topics for further research in enumeration kernelization. For Matching
Cut, it would be interesting to investigate other structural parameters, like the feedback
vertex number (see [10] for the definition). More generally, the area of enumeration kernel-
ization seems still somewhat unexplored. It would be interesting to see applications of the
various kernel types to other enumeration problems. For this, it seems to be important to
develop general tools for enumeration kernelizations. For example, is it possible to establish
a framework for enumeration kernelization lower bounds similar to the techniques used for
classical kernels [4, 5] (see also [10, 15])?

Concerning the counting and enumeration of matching cuts, we also proved the upper
bound F (n + 1) − 1 for the maximum number of matching cuts of an n-vertex graph and
showed that the bound is tight. What can be said about the maximum number of minimal
and maximal matching cuts? It is not clear whether our lower bounds given in Propositions 7
and 8 are tight. Finally, it seems promising to study enumeration kernels for d-Cut [21], a
generalization of Matching Cut that has recently received some attention.

References
1 N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. On structural

parameterizations of the matching cut problem. In Xiaofeng Gao, Hongwei Du, and Meng
Han, editors, Combinatorial Optimization and Applications - 11th International Conference,
COCOA 2017, Shanghai, China, December 16-18, 2017, Proceedings, Part II, volume 10628 of
Lecture Notes in Computer Science, pages 475–482, 2017.

2 Matthias Bentert, Till Fluschnik, André Nichterlein, and Rolf Niedermeier. Parameterized
aspects of triangle enumeration. J. Comput. Syst. Sci., 103:61–77, 2019. doi:10.1016/j.jcss.
2019.02.004.

3 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

4 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

5 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by
cross-composition. SIAM J. Discret. Math., 28(1):277–305, 2014. doi:10.1137/120880240.

https://doi.org/10.1016/j.jcss.2019.02.004
https://doi.org/10.1016/j.jcss.2019.02.004
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1137/120880240

P. A. Golovach, C. Komusiewicz, D. Kratsch, and V. B. Le 37:17

6 Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Bridge-depth characterizes which
structural parameterizations of vertex cover admit a polynomial kernel. In 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 16:1–16:19, 2020.
doi:10.4230/LIPIcs.ICALP.2020.16.

7 Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8(1):51–53, 1984.
doi:10.1002/jgt.3190080106.

8 Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discret. Appl.
Math., 157(12):2675–2700, 2009. doi:10.1016/j.dam.2008.08.021.

9 Nadia Creignou, Arne Meier, Julian-Steffen Müller, Johannes Schmidt, and Heribert Vollmer.
Paradigms for parameterized enumeration. Theory Comput. Syst., 60(4):737–758, 2017.
doi:10.1007/s00224-016-9702-4.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Peter Damaschke. Parameterized enumeration, transversals, and imperfect phylogeny recon-
struction. Theor. Comput. Sci., 351(3):337–350, 2006. doi:10.1016/j.tcs.2005.10.004.

12 Peter Damaschke. Fixed-parameter enumerability of cluster editing and related problems.
Theory Comput. Syst., 46(2):261–283, 2010.

13 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

14 Henning Fernau. On parameterized enumeration. In Computing and Combinatorics, 8th
Annual International Conference, COCOON 2002, Singapore, August 15-17, 2002, Proceedings,
volume 2387 of Lecture Notes in Computer Science, pages 564–573. Springer, 2002. doi:
10.1007/3-540-45655-4_60.

15 Fedor V. Fomin, Daniel Lokshtanove, Saket Saurabh, and Meirav Zehavi. Kernelization.
Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge, 2019. doi:
10.1017/9781107415157.

16 Fedor V. Fomin, Saket Saurabh, and Yngve Villanger. A polynomial kernel for proper interval
vertex deletion. SIAM J. Discret. Math., 27(4):1964–1976, 2013. doi:10.1137/12089051X.

17 Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In Dániel Marx
and Peter Rossmanith, editors, Parameterized and Exact Computation - 6th International
Symposium, IPEC 2011, Saarbrücken, Germany, September 6-8, 2011. Revised Selected
Papers, volume 7112 of Lecture Notes in Computer Science, pages 259–271. Springer, 2011.
doi:10.1007/978-3-642-28050-4_21.

18 Robert Ganian. Improving vertex cover as a graph parameter. Discret. Math. Theor. Comput.
Sci., 17(2):77–100, 2015. URL: http://dmtcs.episciences.org/2136.

19 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

20 Petr Golovach, Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Refined notions of
parameterized enumeration kernels with applications to matching cut enumerations. CoRR,
abs2101.03800, 2021. arXiv:2101.03800.

21 Guilherme C. M. Gomes and Ignasi Sau. Finding cuts of bounded degree: Complexity, FPT
and exact algorithms, and kernelization. In Bart M. P. Jansen and Jan Arne Telle, editors, 14th
International Symposium on Parameterized and Exact Computation, IPEC 2019, September
11-13, 2019, Munich, Germany, volume 148 of LIPIcs, pages 19:1–19:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.19.

22 R. L. Graham. On primitive graphs and optimal vertex assignments. Ann. New York Acad.
Sci., 175:170–186, 1970.

23 Sun-Yuan Hsieh, Hoàng-Oanh Le, Van Bang Le, and Sheng-Lung Peng. Matching cut in
graphs with large minimum degree. In Ding-Zhu Du, Zhenhua Duan, and Cong Tian, editors,
Computing and Combinatorics - 25th International Conference, COCOON 2019, Xi’an, China,
July 29-31, 2019, Proceedings, volume 11653 of Lecture Notes in Computer Science, pages
301–312. Springer, 2019. doi:10.1007/978-3-030-26176-4_25.

STACS 2021

https://doi.org/10.4230/LIPIcs.ICALP.2020.16
https://doi.org/10.1002/jgt.3190080106
https://doi.org/10.1016/j.dam.2008.08.021
https://doi.org/10.1007/s00224-016-9702-4
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2005.10.004
https://doi.org/10.1007/3-540-45655-4_60
https://doi.org/10.1007/3-540-45655-4_60
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1137/12089051X
https://doi.org/10.1007/978-3-642-28050-4_21
http://dmtcs.episciences.org/2136
http://arxiv.org/abs/2101.03800
https://doi.org/10.4230/LIPIcs.IPEC.2019.19
https://doi.org/10.1007/978-3-030-26176-4_25

37:18 Parameterized Enumeration Kernels and Matching Cuts

24 George Karakostas. A better approximation ratio for the vertex cover problem. ACM Trans.
Algorithms, 5(4):41:1–41:8, 2009. doi:10.1145/1597036.1597045.

25 Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Matching cut: Kernelization,
single-exponential time fpt, and exact exponential algorithms. Discret. Appl. Math., 283:44–58,
2020. doi:10.1016/j.dam.2019.12.010.

26 Christian Komusiewicz and Johannes Uhlmann. A cubic-vertex kernel for flip consensus tree.
Algorithmica, 68(1):81–108, 2014.

27 Dieter Kratsch and Van Bang Le. Algorithms solving the matching cut problem. Theor.
Comput. Sci., 609:328–335, 2016. doi:10.1016/j.tcs.2015.10.016.

28 Stefan Kratsch. Recent developments in kernelization: A survey. Bull. EATCS, 113, 2014.
29 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.

In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 224–237. ACM, 2017. doi:10.1145/3055399.3055456.

30 Andrea Marino. Analysis and enumeration, volume 6 of Atlantis Studies in Computing. Atlantis
Press, Paris, 2015. Algorithms for biological graphs, With forewords by Tiziana Calamoneri
and Pierluigi Crescenzi.

31 Kitty Meeks. Randomised enumeration of small witnesses using a decision oracle. Algorithmica,
81(2):519–540, 2019.

32 Arne Meier. Parametrised enumeration. Habilitation thesis, Leibniz Universit́’at Hannover,
2020. doi:10.15488/9427.

33 Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms,
5(1):10:1–10:20, 2008. doi:10.1145/1435375.1435385.

34 Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J. Comb.
Theory, Ser. B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

35 Marko Samer and Stefan Szeider. Backdoor trees. In Dieter Fox and Carla P. Gomes,
editors, Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, Chicago, Illinois, USA, July 13-17, 2008, pages 363–368. AAAI Press, 2008. URL:
http://www.aaai.org/Library/AAAI/2008/aaai08-057.php.

36 Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. Simpler linear-time
modular decomposition via recursive factorizing permutations. In Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July
7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games,
volume 5125 of Lecture Notes in Computer Science, pages 634–645. Springer, 2008. doi:
10.1007/978-3-540-70575-8_52.

37 Kunihiro Wasa. Enumeration of enumeration algorithms. CoRR, abs/1605.05102, 2016.
arXiv:1605.05102.

https://doi.org/10.1145/1597036.1597045
https://doi.org/10.1016/j.dam.2019.12.010
https://doi.org/10.1016/j.tcs.2015.10.016
https://doi.org/10.1145/3055399.3055456
https://doi.org/10.15488/9427
https://doi.org/10.1145/1435375.1435385
https://doi.org/10.1016/j.jctb.2005.10.006
http://www.aaai.org/Library/AAAI/2008/aaai08-057.php
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52
http://arxiv.org/abs/1605.05102

	1 Introduction
	2 Parameterized Enumeration and Enumeration Kernels
	3 A Tight Upper Bound for the Maximum Number of Matching Cuts
	4 Enumeration Kernels for the Vertex Cover Number Parameterization
	5 Enumeration Kernels for the Parameterization by the Feedback Edge Number
	6 Conclusion

