Good r-Divisions Imply Optimal Amortized
Decremental Biconnectivity

Jacob Holm &

University of Copenhagen, Denmark

Eva Rotenberg &
Technical University of Denmark, Lyngby, Denmark

—— Abstract

We present a data structure that, given a graph G of n vertices and m edges, and a suitable pair of
nested r-divisions of G, preprocesses G in O(m + n) time and handles any series of edge-deletions
in O(m) total time while answering queries to pairwise biconnectivity in worst-case O(1) time. In
case the vertices are not biconnected, the data structure can return a cutvertex separating them in
worst-case O(1) time.

As an immediate consequence, this gives optimal amortized decremental biconnectivity, 2-edge
connectivity, and connectivity for large classes of graphs, including planar graphs and other minor
free graphs.

2012 ACM Subject Classification Theory of computation — Dynamic graph algorithms
Keywords and phrases Dynamic graphs, 2-connectivity, graph minors, r-divisions, graph separators
Digital Object Identifier 10.4230/LIPIcs.STACS.2021.42

Related Version Preliminary Full Version: https://arxiv.org/abs/1808.02568 [26]

Funding Jacob Holm: Partially supported by the VILLUM Foundation grant 16582, “BARC”.
FEva Rotenberg: Partially supported by Independent Research Fund Denmark grants 2020-2023
(9131-00044B) “Dynamic Network Analysis” and 2018-2021 (8021-00249B), “AlgoGraph”, and the
VILLUM Foundation grant 37507 “Efficient Recomputations for Changeful Problems”.

Acknowledgements We are thankful to Adam Karczmarz and Jakub Lacki for their encouragement

and interest in this work.

1 Introduction

Dynamic graph problems concern maintaining information about a graph, as it undergoes
changes. In this paper, the changes we allow are deletions of edges or vertices by an adaptive
adversary. The information we maintain is a representation that reflects biconnectivity of
vertices, that is, whether they are connected after the removal of any vertex of the graph.

A static (non-changing) graph may in O(n + m) time be pre-processed to answer bicon-
nectivity queries in worst-case O(1) time. This is done by finding the blocks, i.e. the
biconnected components. We show, for a large class of graphs including minor free graphs,
that in the same asymptotic total time, we can handle any sequence of edge- and ver-
tex deletions, while still answering biconnectivity queries, 2-edge connectivity queries, and
connectivity queries, in worst-case O(1) time.

If a pair of vertices are not biconnected, then there exists a certificate for this in form of
a cutvertex separating them. A natural question, if a pair of vertices are not biconnected, is
thus to ask for such a certificate. There may be many cutvertices separating a pair of vertices,
so an even more advanced and desired functionality is the ability to point to the cutvertex
furthest towards either one of them. Again, for a large class of graphs, our running time for
a decremental graph matches the state of the art for non-changing graphs, by revealing the
nearest cutvertex in O(1) worst-case time, while spending only O(n 4+ m) total time for both
preprocessing the graph and handling any sequence of deletions.

© Jacob Holm and Eva Rotenberg; L)

oY licensed under Creative Commons License CC-BY 4.0 V"
38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). m I_
Editors: Markus Blaser and Benjamin Monmege; Article No. 42; pp. 42:1-42:18 4 S1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jaho@di.ku.dk
https://orcid.org/0000-0001-6997-9251
mailto:eva@rotenberg.dk
https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.STACS.2021.42
https://arxiv.org/abs/1808.02568
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2

Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

When edges and vertices are both deleted and inserted, there are non-trivial lower
bounds [36] saying that no data structure for connectivity has both update- and query-time
in o(logn). This is in stark contrast to the incremental situation, where only edge-insertions
are allowed, in which the a-time algorithm for union-find is tight [39, 11]. When restricted
to deletions, however, even for general graphs, there are no known lower bounds beyond the
trivial O(|G]). The research in this paper is inspired by the fundamental open question of
whether decremental (deletion-only) connectivity [41], 2-edge connectivity, biconnectivity,
or even minimum cut for general graphs can be solved in amortized constant time per
edge-deletion, or whether non-trivial lower bounds do exist.

The following table shows how we improve state-of-the-art for planar graphs and minor-
free graphs. Here, we present maximum amortized time per operation, that is, we do not
require O(1) query time. When restricted to constant query time, the best biconnectivity
algorithms for non-planar sparse graphs were fully dynamic and had an update time of

O(v/n) [18].

Table 1 Our improvements (now) in relation to previous results (previous). The table shows
amortized time per operation. The table compares with state-of-the-art amortized deterministic
algorithms. Allowing randomization, the previous best decremental connectivity algorithm runs in
time O(logn) [42].

planar bnd. genus minor-free graphs
previous previous previous now
.. O, 2 n
connectivity O(1) [34] O(logn) [4] O(kl)gglogn) [44] | O(1)
2-edge-connectivity O(1) [25] O(log®n) [27] | O(1)
biconnectivity O(logn) [25] O(log®n) [27] | O(1)

Dynamic graph connectivity has been studied for decades. Most general is fully
dynamic connectivity for general graphs [8, 21, 20, 23, 42, 29, 28, 44, 30, 35], where edges
are allowed to be both inserted and deleted. Similarly, fully dynamic two-edge connectivity
and biconnectivity have been studied [10, 18, 5, 19, 23, 42, 27] and have algorithms with
polylogarithmic update- and query time. For special graph classes, such as planar graphs,
graphs of bounded genus, and minor-free graphs, there has been a bulk of work on connectivity
and higher connectivity, e.g. [7, 22, 13, 15, 6, 33, 34, 25, 24].

An r-division is, intuitively, a family of O(n/r) subgraphs called the regions, with
O(r) vertices each, such that the regions partition the edges, and each region shares O(y/7)
boundary vertices with the rest of the graph. The concept of r-divisions was introduced in [9]
as a tool for finding shortest paths in planar graphs. It naturally generalizes the notion of a
separator: a small set of vertices that cause the graph to fall apart into two regions, each
containing a constant fraction of the original graph [32].

Later, Henzinger et al. [17] generalized this to the concept of a strict (r, s)-division, which
is a family of O(n/r) subgraphs called the regions, each with at most r vertices, that partition
the edges, and where each region has at most s boundary vertices. An r-division is thus a
strict (O(r), O(s))-division. For the rest of our paper, we will use the term r-division to mean
any strict (r, O(r'=¢))-division for some suitable 7, . There are algorithms [2, 3, 14, 31] for
computing r-divisions of planar graphs in linear time.

J. Holm and E. Rotenberg

Our results. We give a data structure for maintaining biconnectivity for a large class of
graphs. In order to state our theorem in its fullest generality, we need to define what it
means for a pair of r-divisions to be a suitable pair.

Given a graph G with n vertices, we call a pair (A4, R) where A is a strict (11, s1)-division
and R is a strict (rq, s2)-division a t-suitable pair of r-divisions if:

there exists an algorithm for fully dynamic biconnectivity in general graphs with amortized

time #(n) per operation!, such that:

each boundary vertex of A is also a boundary vertex of R (0.A C OR); and

for each region A € A, R contains a partition of A into O(%) regions of size at most o,

each having at most s, boundary vertices?; and

71,81 € O(poly(logn)) and {* € Q(t(n)logn); and

r2, 82 € O(poly(loglogn)) and 2 € Q(t(r1)logr1).

When ¢ is understood, we will refer to them as simply suitable.

Our data structure answers queries to biconnectivity, i.e, a pair of vertices are biconnected
if they are connected and not separated by any bridge or cutvertex. If the vertices v and
v are connected but not biconnected, we can output a cutvertex separating them, in fact,
we can output that of the possibly many cutvertices that is nearest to u — we call this the
nearest cutvertexr — or detect the special case where uv is a bridge.

» Theorem 1. There exists a data structure that given a graph G with n vertices and m edges,
and given a suitable pair of r-divisions, preprocesses G in O(m + n) time and handles any
series of edge-deletions in O(m) total time while answering queries to pairwise biconnectivity
and queries to nearest cutvertex in O(1) time.

This can immediately be combined with any algorithm for finding suitable r-divisions in
linear time, to obtain optimal decremental biconnectivity data structures for graphs that are
planar, bounded genus, or minor free.

The data structure is easily extended to maintain information about connectivity, so as
to answer queries to pairwise connectivity in O(1) time, and our techniques can easily be
used to obtain a decremental data structure for 2-edge connectivity with the same update-
and query times.

For completeness, the full version of this paper presents linear time algorithms for finding
r-divisions in minor-free graphs using techniques from [37, 40, 43]?

» Lemma 2. Given a graph G that does not have a Ky-minor, for any r € Q(logn) we can
1
compute a strict (r,0(r3 log3 n))-division in linear time®.

Thus, we have the following consequence as a corollary to Theorem 1:

» Corollary 3. There exists a data structure that given a minor-free graph G with n vertices,
preprocesses G in O(n) time and handles any series of edge- and vertex deletions in O(n)
total time while answering queries to pairwise connectivity, 2-edge connectivity, biconnectivity,
nearest separating bridge in O(1), and nearest separating cutvertex, in O(1) time.

e.g. t(n) = O(log® n) using [23], and t(n) = O(log® n - log? log n) using [27]

This is slightly weaker than requiring R to contain a strict (r2, s2)-division of A.

This result was first claimed by Henzinger et al. [17], but their solution only works for planar graphs,
and h-minor-free graphs of bounded degree.

We failed to find a reference in the literature for this fact, but we would not be surprised if it is common
knowledge.

42:3

STACS 2021

42:4

Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

Even for graphs where no linear-time algorithms for finding r-divisions are known, our
results may still be of interest: as soon as the r-divisions have been computed once, they
may be used for several different edge-deletion sequences on the same graph.

Our paper can be seen as a generalization of and improvement upon [34], who showed
optimal amortized decremental connectivity for planar graphs, that is, amortized constant
update time, and worst-case constant query time.

Note that we generalise [34] in two important ways: We generalise from planar graphs to
r-divisible graphs, and we generalise from plain connectivity to handle 2-edge-connectivity and
biconnectivity. Our generalisation works by getting rid of some unneccesarily planar-specific
techniques and replacing them with a more general framework.

We expect this general framework to be of future interest for deriving optimal decremental
algorithms from other dynamic algorithms that have polylog update time: as long as a
compact representation of each region can be maintained efficiently, with respect to the the
graph property of interest, this can be used in our framework for speeding up decremental
algorithms.

1.1 Techniques

Since the property of being an r-division is not violated as edges are deleted, it is natural
to use r-divisions to get better decremental data structures for graphs. The idea is to have
a top-level graph with size only proportional to the number of boundary vertices, and to
handle the regions efficiently simply because they are smaller.

With biconnectivity, the first challenge is to design the top-level graph: a vertex may be
not biconnected to any boundary vertex in its region, but yet be biconnected with some other
vertex in another region via two separate boundary vertices (see Figure 1). Even vertices
from the same region may be biconnected in G although they are not biconnected, or even
connected, within the region.

Figure 1 Left: A region R with 10 boundary vertices (green). There is a vertex separating z from
the boundary, so x is never biconnected with anything in G \ R. Vertices y and z however, are not
even connected in R, but may be biconnected in G. Right: The structure may be compressed in the
sense depicted: z is not represented at all, while y and z are represented in pseudo-blocks (dashed).

We thus need to store an efficient representation of the biconnectivity of the region as
seen from the perspective of the boundary vertices. We call this efficient representation the
compressed BC-forest (see Section 4). It is obtained from the forest of BC-trees (also known
as the block-cutpoint trees, see Section 2) by first marking certain blocks and cutvertices as
critical, and then, basically, contracting the paths that connect them. The critical blocks and
cutvertices are spartanly chosen, such that the total size of all the compressed BC-forests is
only proportional to the boundary itself. We stitch the compressed BC-forests together by
the boundary vertices they share, and obtain the patchwork graph (see Figure 2), in which
all vertices that are biconnected to anything outside their region are represented, and we

J. Holm and E. Rotenberg

use the representatives of vertices to reveal when they are biconnected by paths that go via
boundary vertices. A construction very similar to our compressed BC-forests appears in [12],
where it is used in a separator tree for a planar graph, but the rules for what to contract are
subtly different.

Figure 2 An r-division and its corresponding patchwork graph. The graph is bipartite between,
on one hand, round boundary vertices and cutvertices, and, on the other hand, square blocks and
contracted (pseudo) blocks.

If decremental changes to a region only gave rise to decremental changes to its forest of
BC-trees, we would be close to done. However, and this is the second challenge, the deletion
of an edge can cause a block to fall apart into a chain of blocks. Luckily, the damage to
the compressed BC-forest is containable: only O(n/ polylogn) vertices can be present in the
compressed BC-forest, and the changes can be modeled by only three operations: edge- or
path deletions, certain forms of vertex splits, and contractions of paths. These operations, we
show, are of a form that can be handled in polylogarithmic time by one of the fully-dynamic
biconnectivity data structures (see Section 4).

While using r-divisions once would obtain an improvement from polylog to polyloglog,
which might, in practice, be useful already, it is tempting to form r-divisions of the regions
themselves and use recursion in order to obtain an even faster speedup (see Figure 3). This
would mean that each region should again contain a patchwork made from the compressed
BC-forests of its subregions (and, luckily, these patchwork operations compose beautifully).
Thus, via recursion, one can obtain a purely combinatorial data structure with O(log™ n)
update- and query time. But in fact, with standard RAM-tricks, if the subregions are of
only polyloglog size, one can handle any operation in constant time — simply by using a
look-up table. Thus, in the practical RAM-model (i.e. the RAM-model with standard AC°
operations such as addition, subtraction, bitwise and/or/xor), we can make do with only 3
levels (top, middle and bottom), and obtain O(1) update- and query-time.

Here, as our third challenge, we face that one does not simply recurse into optimality — we
need to assure ourselves that when a deletion of an edge causes changes in the compressed BC-
trees of the subregion, the changes to the patchwork graph on the level above are manageable.
Here, we show that our carefully chosen forms of vertex splits and path contractions do
indeed only give rise to the same variant of splits and contractions on the parent level.

Finally, when a pair of vertices u,v are connected but not biconnected, we can in
constant time find the nearest cutvertex on any path from u to v — this is called the nearest
cutvertex problem (see Figure 4). While outputting some cutvertex separating u and v is

42:5

STACS 2021

42:6

Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

K\ X\

Figure 3 We use nested r-divisions and obtain a levelled structure. Each level maintains a graph,
its BC-tree, and, for the non-top levels, the compressed BC-tree with relation to the boundary.

easy, augmenting the BC-tree with enough information to facilitate nearest cutvertex queries
is technically more demanding. We show that the nearest cutvertex can be determined by
at most one nearest cutvertex and one biconnected query in the patchwork graph, and at
most one nearest cutvertex and one biconnected query in the region. We also show how
to augment an explicit representation of the BC-tree subject to certain splits, contractions,
and deletions such that we can still access the nearest cutvertex - a problem that reduces to
first-on-path on a dynamic tree subject to certain vertex splits, and certain edge contractions
and deletions. Specifically, we exploit an intricate flavour of monotonicity: Although blocks
can be split arbitrarily, once an element of the structure has participated in a contraction, it
will not be subject to further splitting. We solve this by solving a seemingly harder problem
on such trees, namely that of answering an extended form of the nearest common ancestor
query, known as the characteristic ancestor query. This may be of independent interest.

Figure 4 An edge-deletion (red) in the graph can lead to a split of a block which changes the
nearest cutvertex from y towards x.

Related techniques. The idea of using recursive separators stems from the sparsification
techniques from [5, 6], where it secured O(y/n) update algorithms for a series of problems, and
the idea of using two levels of regions of size O(polylogn) and O(poly loglogn), respectively,
was introduced in [34] where the idea, together with a union-find structure in the dual graphs,
was used to obtain amortized O(1) decremental connectivity for planar graphs.

Paper outline. Section 2 is dedicated to preliminaries and terminology. Then, in Section 3,
we introduce the notion of capacitated biconnectivity, which is a tool for overcoming the
third challenge of making the recursion work. Section 4 is dedicated to an understanding
of the patchwork graph in a static setting: how it is defined, how it reflects biconnectivity,
and how it behaves when there is not one but two or more nested r-divisions of the same

J. Holm and E. Rotenberg

graph. Finally, in Section 5, we show how to maintain the patchwork graph decrementally,
thus enabling us solve decremental biconnectivity. The extention to handle nearest cutvertex
queries is deferred to Section 6. The extension uses our characteristic ancestors structure,
which is deferred to the full version (preliminary version available as [26]). Also deferred to
the full version is the reductions that handle 2-edge-connectivity and connectivity and the
linear time construction of r-divisions for minor-free graph classes.

2 Preliminaries

Given a graph with vertices v and v, we say they are connected if there is a path connecting
them. A pair of connected vertices are 2-edge connected unless there is an edge whose removal
would disconnect them. Such an edge is called a bridge. A pair of 2-edge connected vertices
uw and v are (locally) biconnected unless there exists a vertex (other than v and v) whose
removal would disconnect them. Such a vertex is called a cutvertex. For an ordered pair
(u,v) of connected but not biconnected vertices, the nearest cutverter separating them is
uniquely defined as the first cutvertex on a path — any path — from u to v. In the special
case where u and v are separated by the bridge wv, we say that the nearest cutvertex is nil.

The blocks of a graph are the maximal biconnected subgraphs. Each block is either a
bridge or a maximal set of biconnected vertices. For each connected component of a graph,
the block-cutpoint tree [16, p. 36], or BC-tree for short, reflects the biconnectivity among
the vertices. This tree has all the vertices of the graph and, furthermore, a vertex for each
block. Its edges are those that connect each vertex to the block or blocks it belongs to. If the
graph G is not necessarily connected, its BC-forest BC(G) has a BC-tree for each connected
component of the graph. The BC-forest of a graph can be found in linear time [38].

If each BC-tree in the BC-forest is rooted at an arbitrary block, each non-root block has
one unique cutvertex separating it from its parent. Then, a pair of vertices are biconnected
if and only if they either have the same non-bridge block as parent, or one is the parent of
the non-bridge block that is parent of the other.

A dynamic data structure for biconnectivity in general graphs is developed in [23, 42, 27];
it maintains an n-vertex graph and handles deletions and insertions of edges in t(n) =
O(log® n - log? log n) amortized time, and answers queries in O(log? n - log? log n) worst-case
time. The data structure is easily modified to give the first cutvertex separating a pair of
vertices in O(log2 n-log? log n) time, but even without this modification, one can find the first
cutvertex via a binary search along a spanning tree in O(logn) queries in O(log3 n-log? log n)
worst case time. Note however that for our purposes, the original [23] data structure with
O(log5 n) amortized update- and query time is sufficient. For the rest of this paper, we will
just use t(n) to denote the amortized time per operation (queries included) of a fully dynamic
biconnectivity structure for general graphs.

For (not necessarily distinct) vertices v, u,w in a tree, we use v «— u to denote the
tree-path connecting v and u, and we use meet(u, v, w) to denote the unique common vertex
of all three tree-paths connecting them.

A strict (r, s)-division is a set of O(n/r) subgraphs R = {R1, Ra, ...} called regions, that
partition the edges. Fach region R € R has at most r vertices, and a set JR of at most s
boundary vertices, such that only boundary vertices appear in more than one region. We
denote by OR the set of all boundary vertices | Jpcr OR. Note that with these definitions,
Y rerlOR[< O(n/r)-O(s) =O0(n-2).

An r-division usually means a strict (r, s)-division with s = O(/r), but we will be using
it more broadly to include any strict (r, s)-division, where s = O(r!=¢) for some & > 0.

42:7

STACS 2021

42:8

Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

We say that a pair (A, R) consisting of an r-division and an ry-division are nested, if
O0A C OR, and R contains an ro-division of each region of A. With a slight abuse of notation,
for any A € A we will let R N A denote this ro-division.

3 Bicapacitated biconnectivity

Consider the BC-forest of a graph. It may be viewed as a bicapacitated graph, where non-
bridge blocks have capacity 2 and bridge blocks and vertices have capacity 1; then, vertices
u and v in G are biconnected exactly when there exists a flow of value 2 from v to v in the
BC-forest of G. (Disregarding the capacity of the source and sink vertices.) We denote by
bicapacitated biconnectivity the query to the existence of such a flow.

Recall that we want to be able to use the framework recursively: we want to build and
maintain BC-trees for small graphs and stitch them, or rather, compressed versions of them
together, thus obtaining a patchwork graph. So, we need to extend our definitions so that
they can handle a bicapacitated input graph corresponding to the BC-trees of an underlying
region. The resulting patchwork graphs are always bipartite, with vertices on one side all
having capacity 1, and vertices on the other side having capacity either 1 or 2. We will
restrict our definition of bicapacitated graph to mean such graphs.

Now, we can introduce the problem of fully dynamic bicapacitated biconnectivity, as that
of facilitating bicapacitated biconnectivity queries between vertices in a bicapacitated graph
as it undergoes insertions and deletions of edges. Note that (fully) dynamic bicapacitated
biconnectivity has an easy reduction to (fully) dynamic biconnectivity:

» Lemma 4. Given a fully dynamic data structure for biconnectivity in general graphs using
amortized t,(n) time per link or cut and (amortized/worst case) ty(n) per pairwise bicon-
nectivity or nearest cutvertex query, there is a fully dynamic data structure for bicapacitated
graphs that uses O(t,(2n)) amortized time per edge insert/delete, and answers pairwise
biconnectivity and nearest-cutvertex queries in (amortized/worst case) O(t,(2n)) time.

4 The patchwork graph

We are given an r-division R = {R1,...,Ri} of G, and we want to define a graph Gg
of size O(]OR]) that somehow captures all the biconnectivity relations that cross multiple
regions. We call the resulting Gr a patchwork graph, because it is built by stitching together
a suitable patch graph for each region.

Our patch graph for each region is in turn based on the BC-forest for the region. We
compress the BC-forest of the region similarly to [12] as follows:

» Definition 5. Given a bicapacitated graph G = (V, E), its BC-forest F = BC(G), and a
subset of vertices S C 'V, define a node® x € T, where the tree T is a component of F, to be
S-critical if x = meetp(s1, 2, S3) for some s1, 82,53 € 5,
S-disposable if x &€ s1 «—1 so for all s1,s9 € S, and
S-contractible otherwise.

» Definition 6. The compressed BC-forest BC(G, S) is the forest obtained from its forest of
BC-trees by deleting all S-disposable nodes, and replacing each mazimal path of S-contractible
nodes that start and end in distinct blocks, with a single so-called pseudoblock node with
capacity 1.

5 Throughout the text we consistently denote vertices of G by wertices, and vertices of BC-trees and
SPQR-trees as nodes.

J. Holm and E. Rotenberg

» Definition 7. Given an r-division R = {R1,..., Rx} of a graph G, define the patchwork
graph Gr = Uper BC(R,OR) to be the bicapacitated graph obtained by taking the (non-
disjoint) union of compressed BC-forests BC(R,0R) for each region R € R.

Any vertex of G corresponds to a BC-vertex in BC(R) for some R. Some of these BC-
vertices are either present or represented in Gr. We thus want to define the representation
of a vertex as the vertex in Gr representing its BC-node, when it exists:

» Definition 8. Given a patchwork graph Gr and a vertex v of G, we define the representative
B(v) of v as follows:
If v is a vertex of Ggr, then B(v) = v; else
Let R € R be the unique region containing v. If v is incident to a block in BC(R) that is
not S-disposable, then v is represented either by that block or the pseudoblock representing
it.
Otherwise, v is not represented.
Overloading notation slightly, say that a vertex of the graph is critical, disposable, or con-
tractible, if the BC-node representing it is.

» Observation 9. There is a linear time algorithm for building the compressed BC-forest of
a graph with respect to a given subset of vertices, and for finding the representatives of the
vertices.

» Lemma 10. Distinct vertices u,v are biconnected in G if and only if either

1. At least one of u,v is not a boundary vertex, and u,v are biconnected in the at most one
region R containing both; or

2. B(u) = B(v) is a pseudo-block whose unique neighbours are biconnected in Ggr; or

3. B(u) and B(v) are different and are biconnected in Gg.

Proof. We will show that v and v are not biconnected if and only if all three conditions are
false. Assume u and v are not biconnected. Then they can clearly not be biconnected within
some region R, so condition 1 is false. If B(u) = B(v), then this is a pseudo-block contracted
from a chain containing the neighbors of u, v in BC(R), and a cutpoint ¢ that separates
them within R. Consider the neighbors v’ and v’ to this pseudoblock in Gr. If they were
biconnected in G there would be a u,v path in G\ {c¢} contradicting our choice of u,v.
Thus «' and v are not biconnected in G and condition 2 is false. Finally, if B(u) and B(v)
are different, then any cutvertex ¢ separating u and v in G will either be a cutvertex in
G, or will be in a pseudoblock B(c) with neighbors u’ and v’. Since c is a cutvertex in G,
(uv/,B(c)) and (B(c),v’) are bridges in Gr, and B(u) and B(v) will be separated by at least
one of them and are therefore not biconnected in Gr and condition 3 is false.

If, on the other hand, none of the three conditions are true, then, if B(u) = B(v) is a
pseudoblock whose neighbours in G are not biconnected, then any cutvertex separating
u from v in their region also separates them in G. If B(u) # B(v) are separable by some
cutvertex ¢ in Gg, then c is also a cutvertex separating u from v in GG, and hence they are
not biconnected. If B(u) # B(v) are the endpoints of a bridge in G then one of them must
be a pseudoblock containing a cutvertex or a bridge in G separating them. |

Lemma 10 above almost enables us to transform a biconnectivity-query in G into a
biconnectivity-query in G and a biconnectivity inside a region R. However, item 1 is only
directly useful when neither of the vertices belong to the boundary; when one is a boundary
vertex we do not know which vertex in the region it corresponds to. Fortunately, when the
non-boundary vertex is represented, we may query biconnectivity in G to obtain the answer.
To handle disposable vertices, we introduce the notion of the nearest represented vertex:

42:9

STACS 2021

42:10

Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

» Definition 11. When an S-disposable vertex v is connected to at least one boundary vertex
b, it knows its nearest represented vertex nr(v) which is the first non-disposable node in the
BC-tree of the region on the path from b to v (note that this node is one unique cutvertex).
When an S-disposable vertex v is not connected to the boundary, it has nr(v) = nil.

Note also that item 3 requires the pseudo-block to know its exactly two neighbours.

» Lemma 12. Vertices u and v are biconnected if and only if either
u and v are non-boundary vertices of the same region and are biconnected in the region,
u is a non-boundary vertex that is biconnected in its region R with nr(u) and nr(u) = v,
B(u) = B(v) is a pseudo-block and its neighbours are biconnected in G, or
B(u) # B(v) are biconnected in Gr

Proof. Follows from Lemma 10 by expanding item 1 into the two cases of whether both or
only one vertex is non-boundary. |

Note that patchwork graphs are well-behaved and respect sub-divisions of r-divisions in
the following sense:

» Lemma 13. If S C OR, then BC(G, S) = BC(Gx,S)

Proof. There is a correspondence between the critical, disposable, and contractible BC-nodes.

Consider an S-critical BC-node z of G. It may overlap with several regions. However, in
each region, each vertex of x lies on some ry <— 79 path for r1,72 € IR, so they are never
disposable. But then, since S C OR, x is also 0R-critical, and thus, present in Gr. Clearly,
once the block is present in G, it is also S-critical in Gx.

If a BC-node of G is S-disposable, we only need to observe that its OR-contractible
and JR-critical parts, for each path r; <— ry they lie on, at most one endpoint is not
S-disposable.

Finally, if a BC-node x of G is S-contractible, then it lies on some path s; <— so, which
OR cuts up into subpaths ry «— ro +— r3 <— ... in (not necessarily different) regions
R1, Ro, R3,.... But then, all parts of x are preserved as either 9R-critical or 9R-contractible
BC(R;)-vertices, and thus, survive in BC(Gr,S). On the other hand, if a vertex in R; does
not belong in z, then it does not lie on any of the paths r; +— r;41, and can thus not be
represented by a vertex or a pseudo-block on that path. |

The same lines of thought can be used to make the following observation about how
nested r-divisions behave with respect to patchwork graphs:

» Observation 14. If ORy C ORs, then Gr, = (Gr,)Rr,-

5 Decremental Biconnectivity in Patchwork Graphs

Given the BC-forest for (the patchwork graph associated with) each region of G in an
r-division R, we want to explicitly maintain Gz and BC(Ggr).

Let R’ be a bicapacitated graph associated with region R, and suppose that BC(R', OR) =
BC(R,0R). We will arrange things so either R’ = R (with all vertices having capacity 1), or
R’ = Ry for some r-division R’ of R with OR C OR’, so the equality follows from Lemma 13.

We will maintain a fully dynamic biconnectivity structure for R’ with amortized time
t(n) € O(poly(logn)) per operation, e.g. using [23]°. We use this structure to explicitly
maintain BC(R') under the following operations:

6 A faster algorithm here would just make more pairs of r-divisions suitable.

J. Holm and E. Rotenberg

path deletion — given a path between two vertices of capacity 1, whose internal vertices all
have degree 2, deletes all edges and internal vertices on the path.

block split — given a vertex u of capacity 2, and an adjacent vertex v of capacity 1, split u
into two vertices ui, us of capacity 2 connected by a path with 2 edges via v, with uy, us
partitioning the remaining neighbors of wu.

pseudoblock contraction — given a path of 3 vertices, all having degree 2 and the middle
having capacity 1, contract the path to a single vertex with capacity 1.

The point is that if one of these operations is applied to R/, then the change to BC(R’) and

BC(R',0R) can also be described by a sequence of these operations.”

» Lemma 15. There is a data structure that explicitly maintains BC(R') that can be
ingtialized, and support any sequence of O(|R’|) path deletions, block splits, and pseudoblock
contractions, in O(|R'|t(n")logn’) total time, where n' is the number of vertices in R’'.

Proof. Use the data structure from Lemma 4 as a subroutine. Start by inserting all the
edges. Each pseudoblock contraction can be simulated using a constant number of edge
insertions or deletions. The total number of edges participating in path deletions is upper
bounded by O(n'). Each block split either takes only a constant number of edge insertions or
deletions, or makes a non-trivial partition of the adjacent edges. In the latter case, we still
do a constant number of edge insertions and deletions, followed by one edge move (deletion
and insertion) for each edge that ends up in a non-largest set in the partition. Each edge is
moved in this way O(logn’') times, so the total number of update operations done on the
fully dynamic structure is O(|R’|logn’). Once an update to R’ has been simulated in the
fully dynamic structure, we can use queries in that structure to find any new cutvertices that
we need to update BC(R’). If the update in R’ was a path deletion, then the corresponding
update to BC(R’) is either a path deletion, or a sequence of block splits. Each of these
block splits can be found using the cutvertices given by the fully dynamic structure: Do
a parallel search from both endpoints, and use the nearest cutvertex-query from Lemma 4
to guide the search and to know when a whole block has been found. If the update in R’
was a block split, this will either do nothing in BC(R') or cause a single block split. If the
update in R’ is a pseudoblock contraction, the corresponding update to BC(R’) is at most
one edge deletion (because the leaf corresponding to the cutvertex disappears), at most one
pseudoblock contraction (corresponding to the same pseudoblock contraction), or nothing
happens (because the pseudoblocks were disposable). |

The point is that we will be using this with |R'| = O(n/(t(n)logn)), where n is the
number of vertices in R, which means the total time used on R is O(n) C O(|R)).

» Lemma 16. The data structure of Lemma 15 can be extended to also report the explicit
changes needed to BC(R',0R) in the same asymptotic initialisation and update time. Any
sequence of O(|R'|) updates to R’ cause O(|OR|) updates in BC(R',OR).

Proof. For each change to BC(R'), we can update BC(R’, OR) accordingly. This essentially
consists of replaying the same change as in BC(R'), followed by at most two pseudoblock
contractions; at most one in each end of the path it possibly unfolds to. Note however, that
some operations will end up having no effect on the structure of BC(R’,0R). For example a
trivial block split followed by a pseudoblock contraction will change only which cutvertex

7 By explicit maintenance is meant that each rooted BC-tree is maintained such that finding the parent
of a vertex or block takes constant time.

42:11

STACS 2021

42:12

Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

separates the pseudoblock from the block. In this case, rather than doing a split and a
contract, we simply update the identity of the cutvertex. With this optimization, the total
number of block splits is upper bounded by O(|OR|), and so is the number of edges and
hence the number of possible path deletions and pseudoblock contractions. |

It immediately follows that we are able to efficiently maintain the patchwork graph, by com-
bining the lemma above with the definition of the patchwork graph, Gr = |Jger BC(R, OR).

» Lemma 17. Given a graph G, and a strict (r,s)-division R of G, if we can explicitly
maintain BC(R,0R) for each R € R in amortized constant time per update after O(|R|)
preprocessing, then we can explicitly maintain Gr in amortized constant time per update
after O(|G|) preprocessing. Furthermore, any sequence of O(|G|) updates in G cause O(|Gr])
updates in Gr.

Proof. Let G have n vertices and m edges. The first part follows trivially from . 5 |R| €
O(n/r)O(r) + m = O(n + m). Each block split in G either reduces the degree of some
block, or adds a pseudoblock. Since we do not add another pseudoblock when there already
is one in a given direction, the maximum total number of splits an initial block vertex v can
cause is O(d(v)). Thus the maximum number of splits is } | .o O(d(v)) = O(|Gr|), and
so is the maximum number of edges and hence the number of possible path deletions and
pseudoblock contractions. |

In order to use Lemma 12 to answer biconnected queries, we need to store some auxiliary
information: for each pseudoblock, store its neighbours, and for each disposable vertex, store
its nearest represented vertex. Thus, these need to be updated as the graph undergoes
dynamic updates.

path deletion When a path from x to y is deleted, all vertices represented by internal nodes
on the path become disposable. For each such vertex v, its nearest represented vertex
becomes either x or y. Furthermore, each vertex u who had v as its nearest represented
vertex, now changes its nearest represented vertex to nr(u) = nr(v). Thus, the set of
vertices having x (or y) as a representative, is now the union of: vertices on the path,
vertices represented by blocks or pseudo-blocks on the path, and the sets that these
vertices used to represent. These sets of vertices that have the same representative can be
maintained via union find in O(nlogn) total merge-time and O(1) worst-case find-time,
using the weighted quick-find algorithm [1]. The endpoints x and y may change status
from being represented by themselves to being represented by a block or pseudoblock.

block split A block is never the neighbour of a pseudoblock, nor is it the nearest represented
vertex, so block splits do not give cause to changes in neighbours and representatives.

pseudoblock contraction does not give rise to changes in the nearest represented vertex -
the vertices that were previously represented by a node that is involved in the contraction,
are still represented, but now they are represented by the resulting pseudoblock. The set
of vertices represented by the resulting pseudoblock is the union of vertices represented by
nodes along the contracted path, again, this is done via union-find. Finally, the resulting
pseudoblock is updated to remember its two neighbours.

We are now ready to prove:

» Theorem 18 (first part of Theorem 1). There exists a data structure that given a graph
G with n vertices and m edges, and given a suitable pair of r-divisions, preprocesses G in
O(m + n) time and handles any series of edge-deletions in O(m) total time while answering
queries to pairwise biconnectivity in O(1) time.

J. Holm and E. Rotenberg

Proof. Given a fine r-division R of G, build the BC-forest and compressed BC-forest for
each region, and build the patchwork graph Gr. Given the coarse division A, and given the
patchwork graph for R, build the BC-forest and the compressed BC-forest for each region of
the patchwork graph, and build the patchwork graph G 4. Finally, build the BC-forest for
G 4. The construction time is linear, due to [38] and Observation 9.

Deletions are handled bottom up: updating the regions of R, then those of Gz induced
by A, and then G 4. The total time for deletions is linear, due to Lemmata 15, 16, and 17.

In detail: Since ro = O(poly(loglogn)), we can afford to precompute and store a table
of all simple graphs on ry vertices with so boundary vertices, and how their BC-trees and
compressed BC-trees change under any possible edge deletion. Using such a table, the region
R in R containing the deleted edge can be updated in constant time.

The updates to BC(R, OR) may cause some updates to the patchwork graph Azn, for
the region A € A containing the deleted edge. By Lemma 17, we can find these in amortized
constant time per edge deletion in A, and there are at most |Agn4| of them. Since

[Arnal < Y 10R| < 52-0<:1) € O<7“182) and 2 = Q(t(r1) logr)
2

T S
RERNA 2 2

we have |Agnal € O(m

BC(Arna) and BC(Agna,0A) in amortized constant time per edge deletion in A.
The updates to BC(Agrna,DA) again trigger some number of updates to Gz. By

). By Lemma 15 and 16 we can therefore explicitly maintain

Lemma 17, we can find these in amortized constant time per edge deletion in G, and there
are at most |G| of them. Since

Grl< Y |0A| < 51 - o(") € O<n81> and L = Q(t(n) logn)
1 1 S1
AcA
we have |Gr| € O(t(n)ﬁ). By Lemma 15 we can therefore explicitly maintain BC(Gr) in
amortized constant time per edge deletion in G.
To handle biconnected-queries, perform the O(1) queries indicated by Lemma 12. |

6 Nearest cutvertex in O(1) worst-case time

We have now shown how we handle queries to biconnectivity in a decremental graph subject
to deletions. To answer nearest cutvertex queries, we need more structure. We need to
augment our explicit representation of the dynamic BC-tree subject to block-splits so that it
answers nearest cutvertex queries (subsection 6.1), and we need to show that we need only
a constant number of queries in the patchwork graph together with a constant number of
queries in regions, to answer nearest-cutvertex in the graph.

6.1 Navigating a dynamic BC-tree

If the vertices v and v are connected but not biconnected, and we have a BC-tree over the
component containing them, the nearest cutvertex to u will be the second internal node on
the unique BC-tree-path from u to v. So, in order to answer nearest cutvertex queries, it is
enough to answer first-on-path queries on a tree (since second-on-path can be found using
two first-on-path queries).

» Lemma 19. There is a data structure for representing a dynamic BC-forest that can be
initialized on a forest with n nodes and support any sequence of O(n) path-deletions, block-
splits, and pseudoblock-contractions, in O(nlogn) total time, while answering connected and
first-on-path queries in worst case constant time.

42:13

STACS 2021

42:14

Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

Proof. We use the characteristic ancestor and tree connectivity data structures defined in
the full version as a base (preliminary version available as [26]). These both work on rooted
trees with black and white nodes, where a white node can be split into two white nodes of
lower degree, and we can contract the endpoints of any edge regardless of color to form a
new black node.

First, observe that we can combine these into a single structure, supporting both split,
contract, and delete operations and both first-on-path and connected queries. This is because
first-on-path(u, v) is only valid when u and v are connected, and the results of valid queries
are therefore not affected by edge deletions. So we can maintain the two structures in parallel,
and simply ignore deletions in the first-on-path structure, and let each structure answer the
query it is designed for.

Second, observe that:

Each path-deletion can be simulated using contractions and an edge deletion.

Each block-split can be implemented as two node splits and an edge contraction.

Each pseudoblock-contraction can be implemented as two edge contractions.

And note that if we color each vertex black and each block white (with pseudoblocks being
either black or white depending on their history), then these operations respect the color
requirements for our data structures.

Since we do only O(n) operations, and we start with n black nodes, the total time for all
updates is O(nlogn). <

It follows as a corollary that we can answer nearest cutvertex queries given an explicit
representation of the BC-forest:

» Corollary 20. Given a dynamic BC-tree over a connected n-vertex graph, we can answer
biconnected and nearest cutvertex queries in O(1) time, spending an additional O(nlogn)
time on any sequence of updates.

Proof. Given a pair of connected and different vertices u, v, let w be the second-on-path
vertex found by querying first-on-path(first-on-path(u,v),v). If w = v, the vertices are
biconnected. Otherwise, w is the nearest cutvertex separating u from v. |

6.2 The patchwork graph

In the following, recall that each disposable vertex v knows its nearest represented vertex
nr(v), and each pseudoblock knows its two neighbours.

» Lemma 21. [fu,v are connected and not biconnected, then the nearest cutvertexr separating
u from v can be determined by at most one nearest cutvertex-query and at most one biconnected
query in Gg followed by at most one nearest cutvertex-query and at most one biconnected
query within a region.

Proof. If v and v are not both non-boundary vertices, and they are connected within the
region R containing both, then the nearest cutvertex within R is the nearest cutvertex in G.

Otherwise, if u is disposable, then it knows its nearest represented vertex nr(u). If u
and nr(u) are biconnected, then nr(u) is the nearest cutvertex separating u from v in G.
Otherwise, the nearest cutvertex separating « from nr(u) in their region R is also the nearest
cutvertex separating v from v in G.

If u is represented but v is not represented, then v knows its closest represented vertex
nr(v) within its region. If B(nr(v)) is biconnected with B(u), then nr(v) is the answer,
otherwise, nr(v) is used in place of v in the following.

J. Holm and E. Rotenberg

For the remaining cases, v and v are both represented, and their representatives are
different. If the nearest cutvertex query between B(u) and B(v) in Gr returns a neighbour
b of the pseudo-block that either is B(u) or is a neighbour of B(u), then querying nearest
cutvertex between w and b in the region of the pseudo-block will return the nearest cutvertex
between u and v in G. Note here, that a pseudo-block is only present in one region, and
even if u is a boundary vertex that appears in several regions, the pseudo-block knows the
identity of both its endpoints within the region.

Finally, in all other cases, the nearest cutvertex separating B(u) and B(v) in G is the
nearest cutvertex separating v and v in G. <

» Theorem 22 (Second part of Theorem 1). The data structure in Theorem 18 can be
augmented to support queries to nearest cutvertex in O(1) worst-case time, while handling
any series of edge-deletions in O(n +m) total time.

Proof. For the patchwork graph of G and for the patchwork graphs of each region, maintain
their dynamic BC-forest as indicated in Lemma 19. For the regions of the fine r-division, that
is, those of polyloglog-size, maintain an explicit table over the answer to nearest cutvertex
queries.

Due to Corollary 20, the maintenance of explicit forests of BC-trees over the patchwork
graph of G is done in O(n'logn’) total time for n’ = O(n/logn), thus, O(n) total time,
while handling intermixed nearest cutvertex-queries in O(1) worst-case time. Same goes for
the explicit maintenance of BC-forests of the patchwork graphs in the regions of the coarse
r-division.

Finally, to handle nearest-cutvertex(u, v)-queries, perform the O(1) queries indicated by
Lemma 21: each of the O(1) queries in the regions of the coarse r-division give rise to O(1)
look-ups in the regions of the fine r-division. Thus, the total query-time is constant. |

7 Conclusion and implications

We have given a somewhat technical theorem stating that if a graph has suitable r-divisions,
there is an efficient data structure for decremental biconnectivity. For minor free graphs,
we promised not only that they admit suitable r-divisions, but that such r-divisions can be
computed in linear time in the size of the graph (regarding the size of the excluded minor as
a constant). In the full version, we prove the following consequence to Theorem 1:

» Corollary 23. There exists a data structure that, given a graph G with n vertices and m
edges, and given a suitable pair of r-divisions, preprocesses G in O(m + n) time and handles
any series of edge-deletions in O(m) total time while answering connectivity queries, 2-edge
connectivity queries, and biconnectivity queries in O(1) time.

Using [37, Lemma 2] and [40, Lemma 3.4], we also show Lemma 2 which is used in the
proof of the following theorem, which in combination with Theorem 1 gives Corollary 3.

» Theorem 24. Given a graph G with n vertices that does not have a Ky-minor, and any
t(n) € O(poly(logn)) we can compute a t-suitable pair of r-divisions in O(n) time.

Finally, since the total number of edges in a minor-free graph is O(n), the data structure

above has the optimal amortized update time for edge deletions and vertex deletions, both.

The question of whether our data structure generally admits vertex deletions in O(n) total
time remains open.

42:15

STACS 2021

42:16

Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

—— References

1

10

11

12

13

14

15

16

17

18

19

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1974.

Lyudmil Aleksandrov and Hristo Djidjev. Linear algorithms for partitioning embedded graphs
of boundedgenus. Siam Journal on Discrete Mathematics - STAMDM, 9:129-150, February
1996. doi:10.1137/S0895480194272183.

Lars Arge, Freek van Walderveen, and Norbert Zeh. Multiway simple cycle separators and
i/o-efficient algorithms for planar graphs. In Proceedings of the Twenty-fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’13, pages 901-918, Philadelphia, PA, USA,
2013. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.
cfm?id=2627817.2627882.

David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 03, pages
599-608, Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=644108.644208.

David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification - a
technique for speeding up dynamic graph algorithms. Journal of the ACM, 44(5):669-696,
September 1997. doi:10.1145/265910.265914.

David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator-based
sparsification ii: Edge and vertex connectivity. SIAM Journal on Computing, 28(1):341-381,
February 1999. doi:10.1137/50097539794269072.

David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert E. Tarjan, Jeffery R.
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
planar graph. Journal of Algorithms, 13(1):33-54, March 1992. Special issue for 1st SODA.
Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM Journal on Computing, 14(4):781-798, 1985. doi:10.1137/0214055.
Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on Computing, 16(6):1004-1022, December 1987. doi:10.1137/0216064.
Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k
smallest spanning trees. SIAM Journal on Computing, 26(2):484-538, 1997. doi:10.1137/
S0097539792226825.

Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data structures.
In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing, STOC
’89, pages 345-354, New York, NY, USA, 1989. ACM. doi:10.1145/73007.73040.

Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity testing with
applications. Journal of the ACM, 46(1):28-91, January 1999. doi:10.1145/300515.300517.
Dora Giammarresi and Giuseppe F. Italiano. Decremental 2- and 3-connectivity on planar
graphs. Algorithmica, 16(3):263-287, 1996. doi:10.1007/BF01955676.

Michael T. Goodrich. Planar separators and parallel polygon triangulation. Journal of
Computer and System Sciences, 51(3):374-389, 1995. doi:10.1006/jcss.1995.1076.

Jens Gustedt. Efficient union-find for planar graphs and other sparse graph classes. Theoretical
Computer Science, 203(1):123-141, 1998. doi:10.1016/80304-3975(97)00291-0.

Frank Harary. Graph Theory. Addison-Wesley Series in Mathematics. Addison Wesley, 1969.
Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster shortest-path
algorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3-23, 1997.
doi:10.1006/jcss.1997.1493.

Monika R. Henzinger and Han La Poutré. Certificates and fast algorithms for biconnectivity
in fully-dynamic graphs. In Paul Spirakis, editor, Algorithms — ESA ’95, pages 171-184,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

Monika Rauch Henzinger and Valerie King. Fully dynamic 2-edge connectivity algorithm in
polylogarithmic time per operation, 1997.

https://doi.org/10.1137/S0895480194272183
http://dl.acm.org/citation.cfm?id=2627817.2627882
http://dl.acm.org/citation.cfm?id=2627817.2627882
http://dl.acm.org/citation.cfm?id=644108.644208
https://doi.org/10.1145/265910.265914
https://doi.org/10.1137/S0097539794269072
https://doi.org/10.1137/0214055
https://doi.org/10.1137/0216064
https://doi.org/10.1137/S0097539792226825
https://doi.org/10.1137/S0097539792226825
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/300515.300517
https://doi.org/10.1007/BF01955676
https://doi.org/10.1006/jcss.1995.1076
https://doi.org/10.1016/S0304-3975(97)00291-0
https://doi.org/10.1006/jcss.1997.1493

J. Holm and E. Rotenberg

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. Journal of the ACM, 46(4):502-516, 1999. Announced at
STOC ’95. doi:10.1145/320211.320215.

Monika Rauch Henzinger and Mikkel Thorup. Sampling to provide or to bound: With
applications to fully dynamic graph algorithms. Random Struct. Algorithms, 11(4):369-379,
1997. doi:10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.C0;2-X.

John Hershberger, Monika Rauch, and Subhash Suri. Data structures for two-edge con-
nectivity in planar graphs. Theoretical Computer Science, 130(1):139-161, 1994. doi:
10.1016/0304-3975(94)90156-2.

Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
Journal of the ACM, 48(4):723-760, July 2001. doi:10.1145/502090.502095.

Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, and Eva Rotenberg.
Decremental SPQR-trees for Planar Graphs. In Yossi Azar, Hannah Bast, and Grzegorz
Herman, editors, 26th Annual European Symposium on Algorithms (ESA 2018), volume 112
of Leibniz International Proceedings in Informatics (LIPIcs), pages 46:1-46:16, Dagstuhl,
Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ESA.2018.46.

Jacob Holm, Giuseppe F Italiano, Adam Karczmarz, Jakub Lacki, Eva Rotenberg, and Piotr
Sankowski. Contracting a planar graph efficiently. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 87. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Jacob Holm and Eva Rotenberg. Good r-divisions imply optimal amortised decremental
biconnectivity. CoRR, abs/1808.02568, 2018. arXiv:1808.02568.

Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in 5(10g2 n)
amortized time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 35-52,
2018. doi:10.1137/1.9781611975031.3.

Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity
in O(log n(log log n)2) amortized expected time. In Proceedings of the Twenty-FEighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 510-520, 2017. doi:10.1137/1.9781611974782.32.

Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-

ithmic worst case time. In Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’13, pages 1131-1142, Philadelphia, PA, USA, 2013. Society for

Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=2627817.

2627898.

Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Faster Worst
Case Deterministic Dynamic Connectivity. In Piotr Sankowski and Christos Zaroliagis,
editors, 24th Annual European Symposium on Algorithms (ESA 2016), volume 57 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 53:1-53:15, Dagstuhl, Germany, 2016.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.2016.53.

Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator decom-
positions for planar graphs in linear time. In Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing, STOC 13, pages 505-514, New York, NY, USA, 2013.
ACM. doi:10.1145/2488608.2488672.

Richard J. Lipton and Robert E. Tarjan. A Separator Theorem for Planar Graphs. SIAM
Journal on Applied Mathematics, 36(2):177-189, 1979.

Jakub FLacki and Piotr Sankowski. Min-cuts and shortest cycles in planar graphs in O(n log log n)

time. In Algorithms - ESA 2011 - 19th Annual European Symposium, Saarbricken, Germany,
September 5-9, 2011. Proceedings, pages 155-166, 2011. doi:10.1007/978-3-642-23719-5_14.

42:17

STACS 2021

https://doi.org/10.1145/320211.320215
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X
https://doi.org/10.1016/0304-3975(94)90156-2
https://doi.org/10.1016/0304-3975(94)90156-2
https://doi.org/10.1145/502090.502095
https://doi.org/10.4230/LIPIcs.ESA.2018.46
https://doi.org/10.4230/LIPIcs.ESA.2018.46
http://arxiv.org/abs/1808.02568
https://doi.org/10.1137/1.9781611975031.3
https://doi.org/10.1137/1.9781611974782.32
http://dl.acm.org/citation.cfm?id=2627817.2627898
http://dl.acm.org/citation.cfm?id=2627817.2627898
https://doi.org/10.4230/LIPIcs.ESA.2016.53
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1007/978-3-642-23719-5_14

42:18

Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

34

35

36

37

38

39

40

41
42

43

44

Jakub Lacki and Piotr Sankowski. Optimal decremental connectivity in planar graphs. In 32nd
International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March
4-7, 2015, Garching, Germany, pages 608-621, 2015. doi:10.4230/LIPIcs.STACS.2015.608.
Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In Proceedings of the 58th Annual
Symposium on Foundations of Computer Science, FOCS 2017, 2017.

Mihai Patrascu and Erik D Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932-963, 2006.

Bruce Reed and David R. Wood. Fast separation in a graph with an excluded minor. In
Stefan Felsner, editor, 2005 European Conference on Combinatorics, Graph Theory and
Applications (EuroComb ’05), volume DMTCS Proceedings vol. AE, European Conference
on Combinatorics, Graph Theory and Applications (EuroComb ’05) of DMTCS Proceedings,
pages 45-50, Berlin, Germany, 2005. Discrete Mathematics and Theoretical Computer Science.
URL: https://hal.inria.fr/hal-01184376.

Robert E. Tarjan. Depth-first search and linear graph algorithms. STAM Journal on Computing,
1(2):146-160, 1972. doi:10.1137/0201010.

Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22(2):215-225, April 1975. doi:10.1145/321879.321884.

Siamak Tazari and Matthias Miiller-Hannemann. Shortest paths in linear time on minor-closed
graph classes, with an application to steiner tree approximation. Discrete Applied Mathematics,
157(4):673-684, 2009. doi:10.1016/j.dam.2008.08.002.

Mikkel Thorup. Decremental dynamic connectivity. In SODA 97, pages 305-313. STAM, 1997.
Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the Thirty-
second Annual ACM Symposium on Theory of Computing, STOC ’00, pages 343-350, New
York, NY, USA, 2000. ACM. doi:10.1145/335305.335345.

Christian Wulff-Nilsen. Separator theorems for minor-free and shallow minor-free graphs with
applications. In IEEFE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, Palm Springs, CA, USA, October 22-25, 2011, pages 3746, 2011. doi:10.1109/F0CS.
2011.15.

Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Encyclopedia
of Algorithms, pages 738-741. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

https://doi.org/10.4230/LIPIcs.STACS.2015.608
https://hal.inria.fr/hal-01184376
https://doi.org/10.1137/0201010
https://doi.org/10.1145/321879.321884
https://doi.org/10.1016/j.dam.2008.08.002
https://doi.org/10.1145/335305.335345
https://doi.org/10.1109/FOCS.2011.15
https://doi.org/10.1109/FOCS.2011.15

	1 Introduction
	1.1 Techniques

	2 Preliminaries
	3 Bicapacitated biconnectivity
	4 The patchwork graph
	5 Decremental Biconnectivity in Patchwork Graphs
	6 Nearest cutvertex in O(1) worst-case time
	6.1 Navigating a dynamic BC-tree
	6.2 The patchwork graph

	7 Conclusion and implications

