
Binary Matrix Completion Under Diameter
Constraints
Tomohiro Koana !

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Vincent Froese !

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Rolf Niedermeier !

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Abstract
We thoroughly study a novel but basic combinatorial matrix completion problem: Given a binary
incomplete matrix, fill in the missing entries so that the resulting matrix has a specified maximum
diameter (that is, upper-bounding the maximum Hamming distance between any two rows of the
completed matrix) as well as a specified minimum Hamming distance between any two of the matrix
rows. This scenario is closely related to consensus string problems as well as to recently studied
clustering problems on incomplete data.

We obtain an almost complete picture concerning the complexity landscape (P vs NP) regarding
the diameter constraints and regarding the number of missing entries per row of the incomplete
matrix. We develop polynomial-time algorithms for maximum diameter three, which are based on
Deza’s theorem [Discret. Math. 1973, J. Comb. Theory, Ser. B 1974] from extremal set theory. In
this way, we also provide one of the rare links between sunflower techniques and stringology. On the
negative side, we prove NP-hardness for diameter at least four. For the number of missing entries
per row, we show polynomial-time solvability when there is only one missing entry and NP-hardness
when there can be at least two missing entries. In general, our algorithms heavily rely on Deza’s
theorem and the correspondingly identified sunflower structures pave the way towards solutions
based on computing graph factors and solving 2-SAT instances.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Mathematics of computing → Discrete mathematics

Keywords and phrases sunflowers, binary matrices, Hamming distance, stringology, consensus
problems, complexity dichotomy, combinatorial algorithms, graph factors, 2-Sat, Hamming radius

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.47

Related Version Full Version: https://arxiv.org/abs/2002.05068

Funding Tomohiro Koana: Partially supported by the DFG project FPTinP (NI 369/16).

Acknowledgements We are grateful to Christian Komusiewicz for helpful feedback on an earlier
version of this work and to Stefan Szeider for pointing us to the work on clustering incomplete
data [9]. We also thank Curtis Bright for mentioning the connection to the Hadamard matrix
completion problem.

1 Introduction

In combinatorial matrix completion problems, given an incomplete matrix over a fixed
alphabet with some missing entries, the goal is to fill in the missing entries such that the
resulting “completed matrix” (over the same alphabet) fulfills a desired property. Performing
a parameterized complexity analysis, Ganian et al. [14, 13] and Eiben et al. [9] recently
contributed to this growing field by studying various desirable properties. More specifically,
Ganian et al. [14] studied the two properties of minimizing the rank or of minimizing the

© Tomohiro Koana, Vincent Froese, and Rolf Niedermeier;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 47; pp. 47:1–47:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomohiro.koana@tu-berlin.de
https://orcid.org/0000-0002-8684-0611
mailto:vincent.froese@tu-berlin.de
https://orcid.org/0000-0002-8499-0130
mailto:rolf.niedermeier@tu-berlin.de
https://orcid.org/0000-0003-1703-1236
https://doi.org/10.4230/LIPIcs.STACS.2021.47
https://arxiv.org/abs/2002.05068
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Binary Matrix Completion Under Diameter Constraints

0

1 0

1

1

1

0

0

1

0

1

1

0

1

0

0

1

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

0

1

0

0

1

0

1

0

0

0

0

1

1

1

0

0

1

0

1

1

0

1

0

0

1

0 0 0 0 0

Figure 1 An illustration of matrix completion problems with the input matrix (left). Missing
entries (and their completions) are framed by thick lines. The middle matrix is a completion of
diameter four and the right matrix is a completion of radius three with the center vector below. Note
that missing entries in the same column might be filled with different values to meet the diameter
constraint, whereas this is never necessary for the radius constraint.

number of distinct rows of the completed matrix. Ganian et al. [13] analyzed the complexity of
completing an incomplete matrix so that it fulfills certain constraints and can be partitioned
into subspaces of small rank. Eiben et al. [9] investigated clustering problems where one wants
to partition the rows of the completed matrix into a given number of clusters of small radius
or of small diameter. Finally, Koana et al. [20] studied two cases of completing the matrix into
one which has small (local) radius. The latter two papers [9, 20] rely on Hamming distance as
a distance measure; in general, all considered matrix completion problems are NP-hard and
thus the above papers [9, 14, 13, 20] mostly focused on parameterized complexity studies. In
this work, we focus on a desirable property closely related to small radius, namely diameter
bounds. Doing so, we further focus on the case of binary alphabet. For a matrix T ∈ {0, 1}n×ℓ,
let γ(T) := mini ̸=i′∈[n] d(T[i], T[i′]) and δ(T) := maxi ̸=i′∈[n] d(T[i], T[i′]), where d denotes
the Hamming distance and T[i] denotes the i-th row of T. We use the special symbol □ to
represent a missing entry. Specifically, we study the following problem.

Diameter Matrix Completion (DMC)
Input: An incomplete matrix S ∈ {0, 1,□}n×ℓ and α ≤ β ∈ N.
Question: Is there a completion T ∈ {0, 1}n×ℓ of S with α ≤ γ(T) and δ(T) ≤ β?

Before motivating the study of DMC, we refer to the example in Figure 1 that also
illustrates significant differences between radius minimization [20] and diameter minimization
(the latter referring to δ(T) ≤ β above).

Compare DMC with Constraint Radius Matrix Completion as studied by Koana
et al. [20]:

Constraint Radius Matrix Completion (ConRMC)
Input: An incomplete matrix S ∈ {0, 1,□}n×ℓ and r ∈ Nn.
Question: Is there a completion T ∈ {0, 1}n×ℓ of S and a row vector v ∈ {0, 1}ℓ such

that d(v, T[i]) ≤ r[i] for all i ∈ [n]?

An important difference between DMC and ConRMC is that in DMC we basically have
to compare all rows against each other, but in ConRMC we have to compare one “center row”
against all others. Indeed, this makes these two similarly defined problems quite different in
many computational complexity aspects.

Now, let us consider potential application scenarios where DMC may be relevant. It is a
natural combinatorial matrix problems which may appear in the following contexts:

T. Koana, V. Froese, and R. Niedermeier 47:3

In coding theory, one may want to “design” (by filling in the missing entries) codewords
that are pairwise neither too close (parameter α in DMC) nor too far (parameter β

in DMC) from each other. One prime example is the completion into a Hadamard
matrix [18]. This is a special case of DMC with n = ℓ and α = β = n/2.
In computational biology, one may want to minimize the maximum distance of sequences
in order to determine their degree of relatedness (thus minimizing β); missing entries
refer to missing data points.1
In data science, each row may represent an entity with its attributes, and solving the
DMC problem may fulfill some constraints with respect to the pairwise (dis)similarity of
the completed entities.
In stringology, DMC seems to constitute a new and natural problem, closely related to
several intensively studied consensus problems (many of which are NP-hard for binary
alphabets) [1, 4, 5, 6, 16, 17, 21, 23].

Somewhat surprisingly, although simple to define and well-motivated, in the literature
there seems to be no systematic study of DMC and its computational complexity. The two
closest studies are the work of Eiben et al. [9] and Koana et al. [20]. Eiben et al. [9] focus
on clustering while we focus on only finding one cluster (that is, the whole resulting matrix
with small diameter). Another crucial difference from the work of Eiben et al. [9] is that
we also model the aspect of achieving a minimum pairwise distance (not only a maximum
diameter); actually, one may say that we essentially combine their “dispersion” and diameter
clustering problems (for the special case of a single cluster). In this sense the problems are
incomparable.

We perform a more fine-grained complexity study in terms of diameter bounds α, β and
the maximum number k of missing entries in any row. Note that in bioinformatics applications
matrix rows may represent sequences with few corrupted data points, thus resulting in small
values for k. In fact, computational complexity with respect to this kind of parameters has
been studied in the context of computational biology [1, 5, 17]. We identify polynomial-time
cases as well as NP-hard cases, taking significant steps towards a computational complexity
dichotomy (polynomial-time solvable versus NP-hard), leaving fairly few cases open. While
the focus of the previous works [9, 20] is on parameterized complexity studies, in this
work we settle more basic algorithmic questions on the DMC problem, relying on several
combinatorial insights, including results from (extremal) combinatorics (most prominently,
Deza’s theorem [8]). Indeed, we believe that exploiting sunflowers based on Deza’s theorem
in combination with corresponding use of algorithms for 2-SAT and graph factors is our
most interesting technical contribution. In this context, we also observe the phenomenon
that the running time bounds that we can prove for odd values of α (the “lower bound for
dissimilarity”) are significantly better than the ones for even values of α – indeed, for even
values of α the running time exponentially depends on α while it is independent of α for odd
values of α. We survey our results in Figure 2 which also depicts remaining open cases.

2 Preliminaries

For m ≤ n ∈ N, let [m, n] := {m, . . . , n} and let [n] := [1, n].
For a matrix T ∈ {0, 1}n×ℓ, we denote by T[i, j] the entry in the i-th row and j-th

column (i ∈ [n] and j ∈ [ℓ]) of T. We use T[i, :] (or T[i] in short) to denote the row vector
(T[i, 1], . . . , T[i, ℓ]) and T[:, j] to denote the column vector (T[1, j], . . . , T[n, j])T . For subsets

1 Here, it would be particularly natural to also study the case of non-binary alphabets; however, most of
our positive results probably only hold for binary alphabet.

STACS 2021

47:4 Binary Matrix Completion Under Diameter Constraints

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

α

β

(a) Complexity of DMC with respect to combi-
nations of constant values for α and β.

k

β − α

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

(b) Complexity of DMC with respect to com-
binations of the maximum number k of missing
entries in any row and β − α.

Figure 2 Overview of our results. Green denotes polynomial-time solvability and red denotes
NP-hardness. White cells indicate open cases.

I ⊆ [n] and J ⊆ [ℓ], we write T[I, J] to denote the submatrix containing only the rows in
I and the columns in J . We abbreviate T[I, [ℓ]] and T[[n], J] as T[I, :] (or T[I] for short)
and T[:, J], respectively. We use the special character □ for a missing entry. A matrix
S ∈ {0, 1,□}n×ℓ is called incomplete if it contains a missing entry, and it is called complete
otherwise. We say that T ∈ {0, 1}n×ℓ is a completion of S ∈ {0, 1,□}n×ℓ if either S[i, j] = □
or S[i, j] = T[i, j] holds for all i ∈ [n] and j ∈ [ℓ].

Let u, w ∈ {0, 1,□}ℓ be row vectors. Let D(u, w) := {j ∈ [ℓ] | u[j] ̸= w[j] ∧ u[j] ̸=
□ ∧ w[j] ̸= □} be the set of column indices where u and v disagree (not considering
positions with missing entries). The Hamming distance between u and w is d(u, w) :=
|D(u, w)|. Note that the Hamming distance obeys the triangle inequality d(u, w) ≤ d(u, v) +
d(v, w) for a complete vector v ∈ {0, 1}ℓ. For a subset J ⊆ [ℓ], we also define dJ(u, w) :=
d(u[J], w[J]). Let u′, v′, w′ ∈ {0, 1}ℓ be complete row vectors. Then, it holds that d(u′, w′) =
|D(u′, v′)△D(v′, w′)| = |D(u′, v′)|+|D(v′, w′)|−2|D(u′, v′)∩D(v′, w′)|. The binary operation
u ⊕ v replaces the missing entries of u with the corresponding entries in v for v ∈ {0, 1}ℓ.
We sometimes use string notation to represent row vectors, such as 001 for (0, 0, 1).

3 Constant Diameter Bounds α and β

In this section we consider the special case (α, β)-DMC of DMC, where α ≤ β are some
fixed constants. We prove the results depicted in Figure 2a. To start with, we show the
following simple linear-time special case which will subsequently be used several times.

▶ Lemma 1. DMC can be solved in linear time for a constant number ℓ of columns.

Proof. If α > 0 and n > 2ℓ, then there is no completion T of S with γ(T) ≥ α > 0. Thus,
we can assume that the input matrix comprises of at most nℓ ≤ 2ℓ · ℓ (that is, constantly
many) entries for the case α > 0. Suppose that α = 0. Consider a set V ⊆ {0, 1}ℓ in which
the pairwise Hamming distances are at most β. We simply check whether each row vector in
the input matrix can be completed to some row vector in V in O(n · 2ℓ) = O(n) time. Since
there are at most 22ℓ choices for V, this procedure can be done in linear time. ◀

T. Koana, V. Froese, and R. Niedermeier 47:5

3.1 Polynomial time for α = 0 and β ≤ 3
As an entry point, we show that (0, 1)-DMC is easily solvable. To this end, we call a column
vector dirty if it contains both 0 and 1. Clearly, for α = 0, we can ignore columns that are
not dirty since they can always be completed without increasing the Hamming distances
between rows. Hence, throughout this subsection, we assume that the input matrix contains
only dirty columns. Now, any (0, 1)-DMC instance is a Yes-instance if and only if there is
at most one dirty column in the input matrix:

▶ Lemma 2. A matrix S ∈ {0, 1,□}n×ℓ admits a completion T ∈ {0, 1}n×ℓ with δ(T) ≤ 1 if
and only if S contains at most one dirty column.

Proof. Suppose that S contains two dirty columns S[:, j0] and S[:, j1] for j0 ̸= j1 ∈ [ℓ]. We
claim that δ(T) ≥ 2 holds for any completion T of S. Let i ∈ [n]. Then, there exist i0, i1 ∈ [n]
with T[i, j0] ̸= T[i0, j0] and T[i, j1] ̸= T[i1, j1]. If δ(T) ≤ 1, then we obtain T[i0, j1] = T[i, j1]
and T[i1, j0] = T[i, j0]. Now we have d(T[i0], T[i1]) ≥ 2 because T[i0, j0] ̸= T[i1, j0] and
T[i0, j1] ̸= T[i1, j1]. The reverse direction follows easily. ◀

Lemma 2 implies that one can solve (0, 1)-DMC in linear time. In the following, we extend
this to a linear-time algorithm for (0, 2)-DMC (Theorem 12) and a polynomial-time algorithm
for (0, 3)-DMC (Theorem 13).

For these algorithms, we make use of a concept from extremal set theory, known as
∆-systems [19]. We therefore consider matrices as certain set systems.

▶ Definition 3. For a matrix T ∈ {0, 1}n×ℓ, let T denote the set system {D(T[i], T[n]) |
i ∈ [n − 1]}. Moreover, for x ∈ N, let Tx denote the set system {D(T[i], T[n]) | i ∈
[n − 1], d(T[i], T[n]) = x}.

The set system T contains the subsets (without duplicates) of column indices corresponding
to the columns where the row vectors T[1], . . . , T[n − 1] differ from T[n]. For given T[n], all
the rows of T can be determined from T , as we have binary alphabet.

The concept of ∆-systems has previously been used to obtain efficient algorithms [9, 10, 11].
They are defined as follows:

▶ Definition 4 (Weak ∆-system). A set family F = {S1, . . . , Sm} is a weak ∆-system if
there exists an integer λ ∈ N such that |Si ∩ Sj | = λ for any pair of distinct sets Si, Sj ∈ F .
The integer λ is called the intersection size of F .

▶ Definition 5 (Strong ∆-system, Sunflower). A set family F = {S1, . . . , Sm} is a strong
∆-system (or sunflower) if there exists a subset C ⊆ S1 ∪ · · · ∪ Sm such that Si ∩ Sj = C for
any pair of distinct sets Si, Sj ∈ F . We call the set C the core and the sets Pi = Si \ C the
petals of F .

Clearly, every strong ∆-system is a weak ∆-system.
Our algorithms employ the combinatorial property that under certain conditions the set

system T of a matrix T with bounded diameter forms a strong ∆-system (which can be
algorithmically exploited). We say that a family F of sets is h-uniform if |S| = h holds for
each S ∈ F . Deza [8] showed that an h-uniform weak ∆-system is a strong ∆-system if its
cardinality is sufficiently large (more precisely, if |F| ≥ h2 − h + 2). Moreover, Deza [7] also
proved a stronger lower bound for uniform weak ∆-systems in which the intersection size is
exactly half of the cardinality of each set.

▶ Lemma 6 ([7, Théorème 1.1]). Let F be a (2µ)-uniform weak ∆-system with intersection
size µ. If |F| ≥ µ2 + µ + 2, then F is a strong ∆-system.

STACS 2021

47:6 Binary Matrix Completion Under Diameter Constraints

We extend this result to the case in which the set size is odd in the full version.

▶ Lemma 7. Let F be a (2µ + 1)-uniform weak ∆-system.
(i) If the intersection size of F is µ + 1 and |F| ≥ µ2 + µ + 3, then F is a strong ∆-system.
(ii) If the intersection size of F is µ and |F| ≥ (µ+1)2 +µ+3, then F is a strong ∆-system.

In order to obtain a linear-time algorithm for (0, 2)-DMC, we will prove that for T ∈
{0, 1}n×ℓ with δ(T) ≤ 2 and sufficiently large ℓ, the set system T is a sunflower. This yields
a linear-time algorithm via a reduction to a linear-time solvable special case of ConRMC.
We start with a simple observation on matrices of diameter two, which will be helpful in the
subsequent proofs.

▶ Observation 8. Let T ∈ {0, 1}n×ℓ be a matrix with δ(T) ≤ 2. For each T1 ∈ T1 and
T2, T ′

2 ∈ T2, it holds that T1 ⊆ T2 and that |T2 ∩ T ′
2| ≥ 1 (otherwise there exists a pair of

rows with Hamming distance three).

The next lemma states that |T2| restricts the number of columns.

▶ Lemma 9. Let T ∈ {0, 1}n×ℓ be a matrix consisting of only dirty columns with δ(T) ≤ 2.
If T2 ̸= ∅, then ℓ ≤ |T2| + 1.

Proof. First, observe that ℓ = |
⋃

T1∈T1
T1 ∪

⋃
T2∈T2

T2| because each column of T is dirty.
Thus, it follows from Observation 8 that ℓ = |

⋃
T2∈T2

T2|. We prove the lemma by induction
on |T2|. Clearly, we have at most two columns if |T2| = 1. Suppose that |T2| ≥ 2. For T2 ∈ T2,
we claim that

ℓ =

∣∣∣∣∣ ⋃
T ′

2∈T2

T ′
2

∣∣∣∣∣ =

∣∣∣∣∣ ⋃
T ′

2∈T2\{T2}

T ′
2

∣∣∣∣∣ +

∣∣∣∣∣ T2

∖ ⋃
T ′

2∈T2\{T2}

T ′
2

∣∣∣∣∣ ≤ |T2| + 1.

The induction hypothesis gives us that |
⋃

T ′
2∈T2\{T2} T ′

2| ≤ |T2|. For the other term, observe
that |T2 \

⋃
T ′

2∈T2\{T2} T ′
2| ≤ |T2 \ T ′′

2 | = |T2| − |T2 ∩ T ′′
2 | for T ′′

2 ∈ T2 \ {T2}. Hence, it follows
from Observation 8 that the second term is at most 1. ◀

Next, we show that a matrix with diameter at most two has radius at most one as long
as it has at least five columns. Thus, we can solve DMC by solving ConRMC with radius
one, which can be done in linear time via a reduction to 2-SAT [20]. We use the following
lemma concerning certain intersections of a set with elements of a sunflower.

▶ Lemma 10 ([11, Lemma 8]). Let λ ∈ N, let F be a sunflower with core C, and let X be a
set such that |X ∩ S| ≥ λ for all S ∈ F . If |F| > |X|, then λ ≤ |C| and |X ∩ C| ≥ λ.

▶ Lemma 11. Let T ∈ {0, 1}n×ℓ be a matrix with δ(T) ≤ 2. If ℓ ≥ 5, then there exists a
vector v ∈ {0, 1}ℓ such that d(v, T[i]) ≤ 1 for all i ∈ [n].

Proof. If T2 = ∅, then we are immediately done by definition, because d(T[n], T[i]) ≤ 1 for
all i ∈ [n] (see Figure 3a for an illustration). Since ℓ ≥ 5, Lemma 9 implies |T2| ≥ 4.

It follows from Observation 8 that T2 is a 2-uniform weak ∆-system with intersection
size one (see Figure 3b). Thus, T2 is a sunflower by Lemma 6. Let {jcore} denote the core
of T2. Note that |T1 ∩ T2| ≥ 1 holds for each T1 ∈ T1 and T2 ∈ T2 by Observation 8. Now
we can infer from Lemma 10 (let X = T1, λ = 1, and F = T2) that T ⊆ {T1}, where
T1 = {jcore}.

Hence, it holds that d(v, T[i]) ≤ 1 for all i ∈ [n], where v ∈ {0, 1}ℓ is a row vector such
that v[jcore] = 1 − T[n, jcore] and v[j] = T[n, j] for each j ∈ [ℓ] \ {jcore}. ◀

T. Koana, V. Froese, and R. Niedermeier 47:7

(a) The case T2 = ∅. (b) The case |T2| ≥ 4.

Figure 3 Illustration of Lemma 11 with n = 6. A black cell denotes a value different from
row T[6]. In (b) the set system T2 forms a sunflower with core {2}. In both cases the radius is one.

▶ Theorem 12. (0, 2)-DMC can be solved in O(nℓ) time.

Proof. Let S ∈ {0, 1,□}n×ℓ be an input matrix of (0, 2)-DMC. If ℓ ≤ 4, then we use the
linear-time algorithm of Lemma 1. Henceforth, we assume that ℓ ≥ 5.

We claim that S is a Yes-instance if and only if the ConRMC instance I = (S, 1n) is a
Yes-instance.

(⇒) Let T be a completion of S with δ(T) ≤ 2. Since ℓ ≥ 5, there exists a vector v such
that d(v, T[i]) ≤ 1 for all i ∈ [n] by Lemma 11. It follows that I is a Yes-instance.

(⇐) Let v be a solution of I. Let T be the matrix such that for each i ∈ [n], T[i] = S[i]⊕v

(recall that u ⊕ v denotes the vector obtained from u by replacing all missing entries of u

with the entries of v in the corresponding positions). Then, we have d(v, T[i]) ≤ 1 for each
i ∈ [n]. By the triangle inequality, we obtain d(T[i], T[i′]) ≤ d(v, T[i]) + d(v, T[i′]) ≤ 2 for
each i, i′ ∈ [n].

Since ConRMC can be solved in linear time when maxi∈[n] r[i] = 1 [20, Theorem 1], it
follows that (0, 2)-DMC can be solved in linear time. ◀

In the full version, we show polynomial-time solvability of (0, 3)-DMC. The overall idea is,
albeit technically more involved, similar to (0, 2)-DMC. We first show that the set family T
of a matrix T with δ(T) = 3 contains a sunflower by Lemma 7. We then show that such a
matrix has a certain structure which again allows us to reduce the problem to the linear-time
solvable special case of ConRMC with radius one.

▶ Theorem 13. (0, 3)-DMC can be solved in O(nℓ4) time.

Our algorithms work via reductions to ConRMC. Although ConRMC imposes an upper
bound on the diameter implicitly by the triangle inequality, it is seemingly difficult to enforce
any lower bounds (that is, α > 0). In the next subsection, we will see polynomial-time
algorithms for α > 0, based on reductions to the graph factorization problem.

3.2 Polynomial time for β = α + 1

We now give polynomial-time algorithms for (α, β)-DMC with constant α > 0 given that
β ≤ α + 1. As in Section 3.1, our algorithms exploit combinatorial structures revealed by
Deza’s theorem (Lemmas 6 and 7). Recall that T denotes a set system obtained from a
complete matrix T (Definition 3). We show that T essentially is a sunflower when γ(T) ≥ α

and δ(T) ≤ α + 1. For the completion into such a sunflower, it suffices to solve the following
matrix completion problem, which we call Sunflower Matrix Completion.

STACS 2021

47:8 Binary Matrix Completion Under Diameter Constraints

Sunflower Matrix Completion (SMC)
Input: An incomplete matrix S ∈ {0, 1,□}n×ℓ and s, m ∈ N.
Question: Is there a completion T ∈ {0, 1}n×ℓ of S such that

D(T[1], T[n]), . . . , D(T[n − 1], T[n]) are pairwise disjoint sets each
of size at most s and

∑
i∈[n−1] |D(T[i], T[n])| ≥ m.

Intuitively speaking, the problem asks for a completion into a sunflower with empty core
and bounded petal sizes. All algorithms presented in this subsection are via reductions to
SMC. First, we show that SMC is indeed polynomial-time solvable. We prove this using a
well-known polynomial-time algorithm for the graph problem (g, f)-Factor [12].

(g, f)-Factor
Input: A graph G = (V, E), functions f, g : V → N, and m′ ∈ N.
Question: Does G contain a subgraph G′ = (V, E′) such that |E′| ≥ m′ and g(v) ≤

degG′(v) ≤ f(v) for all v ∈ V ?

▶ Lemma 14. For constant s > 0, SMC can be solved in O(nℓ
√

n + ℓ) time.

Proof. Let (S, s, m) be an SMC instance. Let ax
j be the number of occurrences of x ∈ {0, 1}

in S[:, j] for each j ∈ [ℓ]. We can assume that a0
j ≥ a1

j for each j ∈ [ℓ] (otherwise swap the
occurrences of 0’s and 1’s in the column). If a0

j ≥ 2 and S[n, j] = 1 for some j ∈ [ℓ], then we
can return No since there will be two intersecting sets. Also, if a1

j ≥ 2, then we return No.
We construct an instance of (g, f)-Factor as follows. We introduce a vertex ui for

each i ∈ [n − 1] and a vertex vj for each j ∈ [ℓ]. The resulting graph G will be a bipartite
graph with one vertex subset {u1, . . . , un−1} representing rows and the other {v1, . . . , vℓ}
representing columns. Essentially, we add an edge between ui and vj if the column S[:, j] can
be completed such that the i-th entry differs from all other entries on S[:, j] (see Figure 4 for
an illustration). Intuitively, such an edge encodes the information that column index j can
be contained in a petal of the sought sunflower. Formally, there is an edge {ui, vj} if and
only if there is a completion tj ∈ {0, 1}n of S[:, j] in which tj [i] = 1 − tj [n] and tj [h] = tj [n]
for all h ∈ [n − 1] \ {i}. We set g(ui) := 0 and f(ui) := s for each i ∈ [n − 1], g(vj) := a1

j

and f(vj) := 1 for each j ∈ [ℓ], and m′ := m. This construction can be done in O(nℓ) time.
To see this, note that the existence of an edge {ui, vj} only depends on a0

j , a1
j , and S[i, j].

If a0
j ≤ 1 and a1

j = 0, then add the edge {ui, vj}. The corresponding completion tj can
be seen as follows:

If S[h, j] = □ for all h ∈ [n − 1], then let tj [i] := 1 and let tj [h] := 0 for all h ∈ [n] \ {i}.
If S′[h, j] = 0 for some h ∈ [n − 1], then S′[h′, j] = □ for all h′ ∈ [n] \ {h}. If h ≠ i,
then let tj [i] := 1 and let tj [h] := 0 for all h ∈ [n] \ {i}. Otherwise, let tj [h] := 1 for all
h ∈ [n] \ {i}.

If a0
j = 1 and a1

j = 1, then add the edge {ui, vj} if S[i, j] ̸= □.
If a0

j ≥ 2 and a1
j = 0, then add the edge {ui, vj} if S[i, j] = □.

If a0
j ≥ 2 and a1

j = 1, then add the edge {ui, vj} if S[i, j] = 1 (because S[n, j] must be
completed with 0).

The correctness of the reduction easily follows from the definition of an edge: If T is a
solution for (S, s, m), then the corresponding subgraph of G contains the edge {ui, vj} for
each i ∈ [n − 1] and each j ∈ D(T[i], T[n]). Conversely, a completion of S is obtained from a
subgraph G′ by taking for each edge {ui, vj} the corresponding completion tj as the j-th
column. Note that no vertex vj can have two incident edges since f(vj) = 1. Moreover, if vj

has no incident edges, then this implies that g(vj) = a1
j = 0. Hence, we can complete all

missing entries in column j by 0.

T. Koana, V. Froese, and R. Niedermeier 47:9

0

0
0 0

1

0
1 0

0

1

1
1
1

1

0

0
1

0
0

0

0
0
0

0

0

u1

u2

u3

u4

v1 v2 v3 v4 v5
u1 u2 u3 u4

v1 v2 v3 v4 v5

Figure 4 A completion of a 5 × 5 incomplete matrix (left). The known entries are highlighted in
gray. A bipartite graph as constructed in the reduction (right). Note that the entries framed by
thick lines (which differ from all others in the same column) correspond to the subgraph represented
by the thick lines.

Regarding the running time, note that the constructed graph G has at most nℓ edges
and

∑
i∈[n−1] f(ui) ∈ O(n) and

∑
j∈[ℓ] f(vj) ∈ O(ℓ). Since (g, f)-Factor can be solved

in O(|E|
√

f(V)) time [12] for f(V) =
∑

v∈V f(v), SMC can be solved in O(nℓ
√

n + ℓ)
time. ◀

Using Lemma 14, we first show that (α, α)-DMC can be solved in polynomial time.

▶ Theorem 15. (α, α)-DMC can be solved in O(nℓ
√

n + ℓ) time.

Proof. We first show that (α, α)-DMC can easily be solved if α is odd. Consider row vectors
u, v, w ∈ {0, 1}ℓ and let U := D(u, v) and W := D(v, w). Then, d(u, v) + d(v, w) + d(w, u) =
|U |+|W |+(|U |+|W |−2|U ∩W |) = 2(|U |+|W |−|U ∩W |) and hence d(u, v)+d(v, w)+d(w, u)
is even. Thus, we can immediately answer No if n ≥ 3. It is also easy to see that DMC can
be solved in linear time if n ≤ 2.

We henceforth assume that α is even. Eiben et al. [9, Theorem 34] provided a linear-time
algorithm for (0, α)-DMC with constant n (and arbitrary α) using reductions to integer
linear programming (ILP). It is straightforward to adapt their ILP formulation to show
that (α, α)-DMC can also be solved in linear time for constant n (basically, we just need
the additional constraint that each pairwise distance is at least α). So we can assume that
n ≥ (α/2)2 + (α/2) + 3 (otherwise (α, α)-DMC can be solved in linear time). We claim
that there is a completion T of S with γ(T) = δ(T) = α if and only if the SMC instance
(S′, α/2, αn/2) is a Yes-instance for the matrix S′ ∈ {0, 1,□}(n+1)×ℓ obtained from S with
an additional row vector □ℓ.

(⇒) Let T be a completion of S with γ(T) = δ(T) = α. Then, T is a weak ∆-system
with intersection size α/2. Since |T | ≥ (α/2)2 + (α/2) + 2, Lemma 6 tells us that T is a
sunflower. Let C be the core of T . Consider the completion T′ of S′ such that

T′[[n], :] = T,
T′[n + 1, j] = 1 − T[n, j] for each j ∈ C, and
T′[n + 1, j] = T[n, j] for each j ∈ [ℓ] \ C.

Note that D(T′[i], T′[n + 1]) = D(T′[i], T′[n]) \ C for each i ∈ [n − 1]. Note also that
D(T′[n], T′[n + 1]) = C. Hence, D(T′[1], T′[n + 1]), . . . , D(T′[n], T′[n + 1]) are pairwise
disjoint sets of size α/2.

(⇐) Let T′ be a completion of S′ such that D(T′[1], T′[n + 1]), . . . , D(T′[n], T′[n + 1])
are pairwise disjoint sets of size α/2. For the completion T = T′[[n], :] of S, it holds
that d(T[i], T[i′]) = |D(T′[i], T′[n + 1])△D(T′[i′], T′[n + 1])| = |D(T′[i], T′[n + 1])| +
|D(T′[i′], T′[n + 1])| = α for each i, i′ ∈ [n]. ◀

STACS 2021

47:10 Binary Matrix Completion Under Diameter Constraints

Now we proceed to develop polynomial-time algorithms for the case α + 1 = β. We will
make use of the following observation made by Froese et al. [11, Proof of Theorem 9].

▶ Observation 16. Let T ∈ {0, 1}n×ℓ with γ(T) ≥ α and δ(T) ≤ β = α + 1. For
Tα ̸= T ′

α ∈ Tα and Tβ ≠ T ′
β ∈ Tβ, it holds that |Tα ∩T ′

α| = ⌊α/2⌋, |Tα ∩Tβ | = ⌈α/2⌉ = ⌊β/2⌋,
and |Tβ ∩ T ′

β | = ⌈β/2⌉.

Surprisingly, odd α seems to allow for significantly more efficient algorithms than even α.

▶ Theorem 17. (α, β)-DMC with β = α + 1 can be solved in
(i) O(nℓ

√
n + ℓ) time for odd α, and

(ii) (nℓ)O(α3) time for even α.

Proof. (i) We can assume that n ≥ β2/2 + β + 7 holds since otherwise the problem is linear-
time solvable via a reduction to ILP as in the proof of Theorem 15. Suppose that S admits a
completion T with γ(T) ≥ α and δ(T) ≤ β. Since T = Tα ∪ Tβ and |T | ≥ β2/2 + β + 6, it
follows that max{|Tα|, |Tβ |} ≥ c := (β/2)2 + (β/2) + 3. We consider two cases depending on
the size of Tα and Tβ .
1. Suppose that |Tα| ≥ c. Since Tα is a weak ∆-system with intersection size (α−1)/2, Tα is a

sunflower with a core of size (α−1)/2 and petals of size (α+1)/2 by Lemma 7 (ii). We claim
that Tβ = ∅. Suppose not and let Tβ ∈ Tβ . Consequently, we obtain |Tα ∩ Tβ | = (α + 1)/2
for all Tα ∈ Tα by Observation 16, which contradicts Lemma 10.

2. Suppose that |Tβ | ≥ c. Again, Tβ is a sunflower whose core C has size β/2 by Lemma 6.
By Observation 16 and Lemma 10, Tα ⊇ C holds for each Tα ∈ Tα. Now suppose that
there exist Tα ̸= T ′

α ∈ Tα. Since C ⊆ Tα and C ⊆ T ′
α, it follows that |Tα ∩ T ′

α| ≥ β/2,
thereby contradicting Observation 16. Hence, we have |Tα| ≤ 1.

We construct an instance I of SMC covering both cases above, as in Theorem 15. We use
the matrix S′ obtained from S by appending a row vector □ℓ, and we set s := β/2 and
m := ns − 1. Basically, we allow at most one “petal” to have size s − 1. We return Yes if
and only if I is a Yes-instance. The correctness can be shown analogously to the proof of
Theorem 15.

(ii) Suppose that there is a completion T of S with γ(T) ≥ α and δ(T) ≤ β. Again, we
can assume that n > 2c for c := (β/2)2 + (β/2) + 4, and consider a case distinction regarding
the size of Tα and Tβ .
1. Suppose that |Tα| ≥ c and |Tβ | ≥ c. It follows from Observation 16 and Lemmas 6 and 7

that Tα and Tβ are sunflowers. Let Cα and Cβ be the cores of Tα and Tβ , respectively.
Note that |Cα| = α/2 and |Cβ | = α/2 + 1, and hence Cα ⊊ Cβ holds by Observation 16
and Lemma 10. Let j ∈ [ℓ] be such that Cα ∪ {j} = Cβ and let T′ := T[:, [ℓ] \ {j}]. Then,
the set family T ′ is a sunflower with a core of size α/2 and petals of size α/2. Hence,
there exists j ∈ [ℓ] such that the (α, α)-DMC instance S[:, [ℓ] \ {j}] is a Yes-instance.
On the other hand, if there is a completion T′ of S[:, [ℓ] \ {j}] with γ(T′) = δ(T′) = α,
then γ(T) ≥ α and δ(T) ≤ α + 1 hold for any completion T of S with T[:, [ℓ] \ {j}] = T′.

2. Suppose that |Tα| ≥ c and |Tβ | < c. The same argument as above shows that Tα ∩Tβ = C

holds for each Tα ∈ Tα and Tβ ∈ Tβ , where C is the size-α/2 core of sunflower Tα. Let
Iβ = {i ∈ [n − 1] | d(T[i], T[n]) = β} be the row indices that induce the sets in Tβ and
let Jβ =

⋃
Tβ∈Tβ

Tβ . Consider T′ = S[[n] \ Iβ , [ℓ] \ (C ∪ Jβ)] and note that the family T ′

consists of pairwise disjoint sets, each of size α/2. We use this observation to obtain a
reduction to SMC. The idea is to test all possible choices for T′, that is, we simply try
out all possibilities to choose the following sets:

C ⊆ [ℓ] of size exactly α/2.

T. Koana, V. Froese, and R. Niedermeier 47:11

Iβ ⊆ [n − 1] of size at most c.
Jβ ⊆ [ℓ] \ C of size at most β · c such that d[ℓ]\(C∪Jβ)(S[iβ], S[n]) = 0 for all iβ ∈ Iβ .

For each possible choice, we check whether it allows for a valid completion. Formally, it
is necessary that the following exist:

A completion tC of S[n, C] such that S[i, j] ̸= tC [j] for all i ∈ [n − 1] and j ∈ C.
A completion tJβ

of S[n, Jβ] such that d(tJβ
, S[i, Jβ]) = 0 for all i ∈ [n − 1] \ Iβ .

A completion tiβ
of S[iβ , Jβ] for each iβ ∈ Iβ such that d(tiβ

, tJβ
) = α/2 + 1 for each

iβ ∈ Iβ and d(tiβ
, ti′

β
) = α for each iβ ̸= i′

β ∈ Iβ .
The existence of the above completions can be checked in O(n) time. We then construct
an SMC instance (S′, α/2, (n − |Iβ | − 1) · α/2), where S′ is an incomplete matrix with
n′ = n − |Iβ | rows and ℓ − |C| − |Jβ | columns defined as follows:

S′[[n′ − 1]] = S[[n − 1] \ Iβ , [ℓ] \ (C ∪ Jβ)].
S′[n′, j] = □ for each j ∈ [ℓ] \ (C ∪ Jβ) such that S[iβ , j] = □ for all iβ ∈ Iβ ∪ {n}.
S′[n′, j] = S[iβ , j] for each j ∈ [ℓ]\(C∪Jβ) such that S[iβ , j] ̸= □ for some iβ ∈ Iβ ∪{n}.

Overall, we solve at most (nℓ)O(α3) SMC instances and hence it requires (nℓ)O(α3) time.
3. Suppose that |Tα| < c and |Tβ | ≥ c. Let i ∈ [n − 1] be such that d(T[i], T[n]) = β. Then,

d(T[i], T[i′]) = α holds for each i′ ∈ [n − 1] \ {i} with d(T[i′], T[n]) = β. Since there are
at least c − 1 = (β/2)2 + (β/2) + 3 such row indices, it follows that this case is essentially
equivalent to the previous case (by considering row i as the last row). ◀

A natural question is whether one can extend our approach above to the case β = α + 2
(particularly α = 1 and β = 3). The problem is that the petals of the sunflowers T2 and T3
may have nonempty intersections. Thus, reducing to SMC to obtain a polynomial-time
algorithm is probably hopeless.

3.3 NP-hardness
Hermelin and Rozenberg [17, Theorem 5] proved that ConRMC (under the name Closest
String with Wildcards) is NP-hard even if r[i] = 2 for all i ∈ [n]. Using this result, we
prove the following (the proof is in the full version).

▶ Theorem 18. (α, β)-DMC is NP-hard if β ≥ 2⌈α/2⌉ + 4.

It remains open whether NP-hardness also holds for (α, α + 3)-DMC with α ≥ 1 (recall
that (0, 3)-DMC is polynomial-time solvable). In Section 4, however, we show NP-hardness
for β = α + 3 when α and β are part of the input.

4 Bounded number k of missing entries per row

In this section, we consider DMC with α and β being part of the input, hence not necessarily
being constants. We consider the maximum number k of missing entries in any row as a
parameter (DMC is clearly trivial for k = 0). We obtain two polynomial-time algorithms
and two NP-hardness results. Our polynomial-time algorithms are based on reductions to
2-SAT (see the full version for the proof).

▶ Theorem 19. DMC can be solved in O(n2ℓ) time
(i) for k = 1, and
(ii) for k = 2 and α = β.

STACS 2021

47:12 Binary Matrix Completion Under Diameter Constraints

T =


001 111 001 000000000
111 111 001 000000000
111 111 010 111111111
111 010 111 111111111


Figure 5 An illustration of the reduction from Orthogonal Vectors, where U = {010, 110}

and V = {110, 101}.

To complement this result, we show that the quadratic dependence on n in the running
time of Theorem 19 is inevitable under Orthogonal Vectors Conjecture (OVC),
which states that Orthogonal Vectors cannot be solved in O(n2−ϵ · ℓc) time for any
ϵ, c > 0 (it is known that Strong Exponential Time Hypothesis implies OVC [24]).

Orthogonal Vectors
Input: Sets U , V of row vectors in {0, 1}ℓ with |U| = |V| = n.
Question: Are there row vectors u ∈ U and v ∈ V such that u[j] · v[j] = 0 holds for

all j ∈ [ℓ]?

▶ Theorem 20. DMC cannot be solved in O(n2−ϵ · ℓc) time for any c, ϵ > 0, unless OVC
breaks.

Proof. We reduce from Orthogonal Vectors. Let u1, . . . , un, v1, . . . , vn ∈ {0, 1}ℓ be row
vectors. Consider the matrix T ∈ {0, 1}2n×6ℓ where

T[i, [3j − 2, 3j]] =
{

001 if ui[j] = 0,

111 if ui[j] = 1,
T[i, [3ℓ + 3j − 2, 3ℓ + 3j]] = 000,

T[n + i, [3j − 2, 3j]] =
{

010 if vi[j] = 0,

111 if vi[j] = 1,
T[n + i, [3ℓ + 3j − 2, 3ℓ + 3j]] = 111,

for each i ∈ [n] and j ∈ [ℓ] (see Figure 5 for an illustration). We show that δ(T) = 5ℓ if and
only if there are i, i′ ∈ [n] such that ui and vi′ are orthogonal. By construction, we have

d(T[i, [3j − 2, 3j]], T[n + i′, [3j − 2, 3j]]) =
{

2 if ui[j] = 0 or vi[j] = 0,

0 otherwise.

for any i, i′ ∈ [n] and j ∈ [ℓ]. Thus, it holds for any orthogonal vectors ui and v′
i that

d(T[i], T[n + i′]) = 5ℓ. Conversely, suppose that there exist i < i′ ∈ [2n] such that
d(T[i], T[i′]) = 5ℓ. It is easy to see that i ∈ [n], i′ ∈ [n + 1, 2n] (otherwise d(T[i], T[i′]) ≤ 3ℓ).
Then, the vectors ui and vi′−n are orthogonal. ◀

Finally, we prove the following two NP-hardness results (the proofs are in the full version).

▶ Theorem 21. DMC is NP-hard
(i) for k = 2 and α + 3 ≤ β, and
(ii) for k = 3 and α = β.

The proof for Theorem 21 is based on rather technical reductions from (3, B2)-SAT [2]
and Cubic Monotone 1-in-3 SAT [22]. The challenge here is to ensure the bounds on the
Hamming distances between all row pairs. To overcome this challenge, we adjust pairwise
row distances by making heavy use of the matrix, in which one pair of rows has distance
exactly two greater than any other:

T. Koana, V. Froese, and R. Niedermeier 47:13

▶ Lemma 22. For each n ≥ 3 and i < i′ ∈ [n], one can construct in nO(1) time, a matrix
Bn

i,i′ ∈ {0, 1}n×ℓ with n rows and ℓ := (
(

n
2
)

−1)(2n−1) columns such that for all h ̸= h′ ∈ [n],

d(Bn
i,i′ [h], Bn

i,i′ [h′]) =
{

γ(Bn
i,i′) + 2 if (h, h′) = (i, i′),

γ(Bn
i,i′) otherwise.

The problem of deciding whether an incomplete matrix S ∈ {1, −1,□}n×n can be
completed into a Hadamard matrix as seen in Johnson [18], is equivalent to DMC with
n = ℓ and α = β = n/2. We conjecture that one can adapt the proof of Theorem 21 (ii) to
show the NP-hardness of this problem. We also conjecture that DMC with k = 3 is actually
NP-hard for every value of β − α. Similar reductions might work here as well. By contrast,
we believe the case k = 2 and β − α = 1 to be polynomial-time solvable, again by reducing
to 2-SAT.

5 Conclusion

Together with the recent work of Eiben et al. [9], we are seemingly among the first in the
context of stringology that make extensive use of Deza’s theorem and sunflowers. While
Eiben et al. [9] achieved classification results in terms of parameterized (in)tractability,
we conducted a detailed complexity analysis in terms of polynomial-time solvable versus
NP-hard cases. Figure 2 provides a visual overview on our results for Diameter Matrix
Completion (DMC), also spotting concrete open questions.

Going beyond open questions directly arising from Figure 2, we remark that it is known
that the clustering variant of DMC can be solved in polynomial time when the number
of clusters is two and the matrix is complete [15]. Hence, it is natural to ask whether our
tractability results can be extended to this matrix completion clustering problem as well.
Furthermore, we proved that there are polynomial-time algorithms solving DMC when β ≤ 3
and α = 0 (Theorems 12 and 13). This leads to the question whether these algorithms
can be extended to matrices with arbitrary alphabet size. Next, we are curious whether
the phenomenon we observed in Theorem 17 concerning the exponential dependence of the
running time for (α, α + 1)-DMC when α is even but independence of α when it is odd
can be further substantiated or whether one can get rid of the “α-dependence” in the even
case. In terms of standard parameterized complexity analysis, we wonder whether DMC is
fixed-parameter tractable with respect to β + k (in our NP-hardness proof for the case β = 4
(Theorem 18) we have k ∈ θ(ℓ)). Finally, performing a multivariate fine-grained complexity
analysis in the same spirit as in recent work for Longest Common Subsequence [3] would
be another natural next step.

References
1 Vineet Bafna, Sorin Istrail, Giuseppe Lancia, and Romeo Rizzi. Polynomial and APX-hard

cases of the individual haplotyping problem. Theoretical Computer Science, 335(1):109–125,
2005.

2 Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of short
symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity
(ECCC), 049, 2003.

3 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In 29th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA
’18), pages 1216–1235, 2018.

STACS 2021

47:14 Binary Matrix Completion Under Diameter Constraints

4 Laurent Bulteau, Vincent Froese, and Rolf Niedermeier. Tight hardness results for consen-
sus problems on circular strings and time series. SIAM Journal on Discrete Mathematics,
34(3):1854–1883, 2020.

5 Laurent Bulteau, Falk Hüffner, Christian Komusiewicz, and Rolf Niedermeier. Multivariate
algorithmics for NP-hard string problems. Bulletin of the EATCS, 114, 2014.

6 Laurent Bulteau and Markus L. Schmid. Consensus strings with small maximum distance and
small distance sum. Algorithmica, 82(5):1378–1409, 2020.

7 Michel Deza. Une propriété extrémale des plans projectifs finis dans une classe de codes
équidistants. Discrete Mathematics, 6(4):343–352, 1973.

8 Michel Deza. Solution d’un problème de Erdős-Lovász. Journal of Combinatorial Theory,
Series B, 16(4):166–167, 1974.

9 Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. On
clustering incomplete data. CoRR, abs/1911.01465, 2019. arXiv:1911.01465.

10 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

11 Vincent Froese, René van Bevern, Rolf Niedermeier, and Manuel Sorge. Exploiting hidden
structure in selecting dimensions that distinguish vectors. Journal of Computer and System
Sciences, 82(3):521–535, 2016.

12 Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In 15th Annual ACM Symposium on Theory of Computing,
(STOC ’83), pages 448–456, 1983.

13 Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. On the parameterized
complexity of clustering incomplete data into subspaces of small rank. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, (AAAI ’20), pages 3906–3913, 2020.

14 Robert Ganian, Iyad A. Kanj, Sebastian Ordyniak, and Stefan Szeider. Parameterized
algorithms for the matrix completion problem. In 35th International Conference on Machine
Learning, (ICML ’18), volume 80 of Proceedings of Machine Learning Research, pages 1642–
1651. PMLR, 2018.

15 Leszek Ga̧sieniec, Jesper Jansson, and Andrzej Lingas. Approximation algorithms for Hamming
clustering problems. Journal of Discrete Algorithms, 2(2):289–301, 2004.

16 Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-parameter algorithms for
Closest String and related problems. Algorithmica, 37(1):25–42, 2003.

17 Danny Hermelin and Liat Rozenberg. Parameterized complexity analysis for the closest string
with wildcards problem. Theoretical Computer Science, 600:11–18, 2015.

18 Charles R Johnson. Matrix completion problems: a survey. In Matrix Theory and Applications,
volume 40 of Proceedings of Symposia in Applied Mathematics, pages 171–198. American
Mathematical Society, 1990.

19 Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science. Springer
Science & Business Media, 2011.

20 Tomohiro Koana, Vincent Froese, and Rolf Niedermeier. Parameterized algorithms for matrix
completion with radius constraints. In 31st Annual Symposium on Combinatorial Pattern
Matching, (CPM ’20), pages 20:1–20:14, 2020.

21 Ross Lippert, Russell Schwartz, Giuseppe Lancia, and Sorin Istrail. Algorithmic strategies for
the single nucleotide polymorphism haplotype assembly problem. Briefings in Bioinformatics,
3(1):23–31, 2002.

22 Cristopher Moore and J. M. Robson. Hard tiling problems with simple tiles. Discrete &
Computational Geometry, 26(4):573–590, 2001.

23 Markus L. Schmid. Finding consensus strings with small length difference between input and
solution strings. ACM Transactions on Computation Theory, 9(3):13:1–13:18, 2017.

24 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2-3):357–365, 2005.

http://arxiv.org/abs/1911.01465

	1 Introduction
	2 Preliminaries
	3 Constant Diameter Bounds alpha and beta
	3.1 Polynomial time for alpha = 0 and beta = 2
	3.2 Polynomial time for beta = alpha +1
	3.3 NP-hardness

	4 Bounded number k of missing entries per row
	5 Conclusion

