
Absorbing Patterns in BST -Like Expression-Trees
Florent Koechlin !

Laboratoire d’Informatique Gaspard-Monge, Université Gustave Eiffel, Marne-la-Vallée, France

Pablo Rotondo !

Laboratoire d’Informatique Gaspard-Monge, Université Gustave Eiffel, Marne-la-Vallée, France

Abstract
In this article we study the effect of simple semantic reductions on random BST-like expression-trees.
Such random unary-binary expression-trees are often used in benchmarks for model-checking tools.
We consider the reduction induced by an absorbing pattern for some given operator ⊛, which we
apply bottom-up, producing an equivalent (and smaller) tree-expression. Our main result concerns
the expected size of a random tree, of given input size n → ∞, after reduction. We show that there
are two different thresholds, leading to a total of five regimes, ranging from no significant reduction
at all, to almost complete reduction. These regimes are completely characterized according to the
probability of the absorbing operator. Our results prove that random BST-like trees have to be
considered with care, and that they offer a richer range of behaviours than uniform random trees.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases BST trees, absorbing pattern, reduction, analytic combinatorics

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.48

Funding Pablo Rotondo: partially supported by the Projet RIN Alenor (Regional Project from
French Normandy).

Acknowledgements The authors would like to thank Arnaud Carayol and Cyril Nicaud for their
very useful advice and remarks in the writing of this paper.

1 Introduction

There are two main ways to evaluate the performances of an algorithm or of its implementation:
a theoretical one studying its complexity, and a more practical one, using benchmarks. On
the theoretical side, it is classical to study the worst-case performances, which only gives a
partial view of the practical usability of an algorithm. For instance, bubblesort and quicksort
have the same worst-case complexity but perform very differently in practice to the extent
that quicksort is actually implemented in some standard libraries. Average complexity tries
to remedy this problem by considering a more appropriate probabilistic model on the inputs.
The problem with this approach is that one must find a distribution simple enough to be
mathematically tractable whilst being complex enough to model accurately the real life
distribution. In the literature, this latter aspect is often relegated to a second place by
theorists, as even simple algorithms may be hard to analyze for the uniform distribution.

Practical approaches consist in executing the tools and measuring directly their perform-
ances. These benchmarks are performed on real-world test cases, when possible. These are
often complemented with randomly generated ones, which is an easy way of generating test
cases of arbitrary sizes. Note that in this setting one is free to choose more mathematically
complex distributions for the inputs, provided that they are fast to generate, and reasonably
close to real-life examples.

In this paper we concentrate on algorithms manipulating tree-like expressions. Tree-like
expressions are ubiquitous in computer science, for describing regular languages, boolean
formulas, LTL formulas, . . . In Figure 1 we give several examples of such expression trees.

© Florent Koechlin and Pablo Rotondo;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 48; pp. 48:1–48:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florent.koechlin@u-pem.fr
mailto:pablo.rotondo@u-pem.fr
https://doi.org/10.4230/LIPIcs.STACS.2021.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Absorbing Patterns in BST -Like Expression-Trees

Note that this representation is purely syntactical and might be redundant; several trees can
have the same semantics, i.e., represent the same object. For example, the logical formula in
Figure 1 is equivalent to x2.

·

·

⋆ a

a

+

b ε

a∗ · a · (b + ε)

∧

∨ x2

x1 ¬

x1

(x1 ∨ ¬x1) ∧ x2

→

□X

U¬

rqp

X(¬p) → □(qUr)

Figure 1 Three examples of expression trees. From left to right: a regular expression, a logical
formula and an LTL formula.

In the absence of information on the real-life distribution for the algorithms, the uniform
distribution is commonly considered: it appears a natural choice as in some sense it maximizes
the coverage of possible inputs. Recently it was shown in [11, 12] that the uniform distribution
is not relevant in benchmarks for tools manipulating tree-expressions. The authors proved
that even if this distribution offers a good coverage of the tree-expressions, their coverage is
poor when it comes to the objects represented by these tree-expressions, in the presence of
simple simplifications. More precisely, the authors consider tree expressions with an operator
⊛ which admits a particular fixed tree P, called the absorbing pattern, such that P ⊛ t,
t ⊛ P and P represent the same object. This situation occurs in most natural examples.
For instance, False is absorbing for ∧, (a + b)⋆ is absorbing for + in regular expressions, 0
is absorbing for × in arithmetic expressions, etc. In the presence of an absorbing pattern,
one can reduce a tree-expression in a bottom-fashion in order to remove all occurrences of
a tree-expression of the form P ⊛ t or t ⊛ P. This reduction can be performed in linear
time and preserves the object represented by the tree-expression. Surprisingly, the authors
proved that if we draw uniformly at random a tree-expression of size n the expected size of
its reduced tree-expression is bounded by a constant. Hence using the uniform distribution
in a benchmark might only be testing the ability of the tool to perform simple reductions on
expressions.
Looking at the random generators used in most benchmarks for model-checking tools dealing
with tree-expressions, we see that the distribution produced is not the uniform one. In
the case of random LTL formulas, Algorithm 1 presents the algorithm used by the tool
LTL-to-Büchi translator testbench (lbtt) of TCS [17] (see also [4] and Spot [6] for other
examples). They are all based on well-known distributions in combinatorics called BST-like
distributions [7] as they are strongly related to random binary search trees.

The procedure used to generate such random expression trees of size n, where n is the
number of nodes, is the following one:
(0) assign a probability distribution for the operators, and another one for the leaves;
(1) if n = 1 then draw a random leaf;
(2) if n = 2, then draw an operator of arity 1 following their probabilities, and a random

leaf;
(3) if n is greater than 2, draw a random operator for the root. If the operator is unary,

proceed to build a subtree of size n − 1. If the operator is binary, draw first uniformly the
sizes for the left and right subtrees (so that they add to n − 1), and recursively generate
these subtrees.

F. Koechlin and P. Rotondo 48:3

Algorithm 1 The pseudo-code used in lbtt [17, p.46] to draw a random LTL formula.

function RandomFormula(n):
if n = 1 then

p := random symbol in AP ∪ {⊤, ⊥};
return p;

else if n = 2 then
op := random operator in {¬, X,□,♢};
f := RandomFormula(1);
return op f ;

else
op := random operator in {¬, X,□,♢, ∧, ∨, →, ↔, U, R};
if op in {¬, X,□,♢} then

f := RandomFormula(n − 1);
return op f ;

else
x := uniform integer in [1, n − 2];
f1 := RandomFormula(x);
f2 := RandomFormula(n − x − 1);
return (f1 op f2);

*

.

* .

*

+

* +

+

. *

. +

* .

*

.

+ *

+ .

+ +

* b

a

* +

e * .

.

b b

* e

a

. .

+ e

* *

e *

a

a b

.

a .

a *

*

*

+

* e

b

. +

* *

b *

*

+

. *

* +

+

e *

e

* .

e * *

*

b

b

.

. b

e e

* b

+

. *

. .

e a a *

a

b

+ .

. *

* b

*

*

e

.

+ +

+ +

e +

* e

a

* b

a

* +

*

.

. b

a a

* .

a . +

+ +

e +

+ a

* e

a

b a

e e

* *

b b

+

* +

+

. b

* +

.

* *

e *

*

*

*

*

*

*

*

.

* +

*

+

* b

a

+ +

+ +

b +

* e

b

* .

+

* *

b e

* *

e b

. .

a e * *

a e

+ *

e *

e

b

. +

+ *

+ +

* *

.

. *

a e +

b .

* a

b

e

* *

a *

a

+

* *

b *

*

*

e

. *

* .

*

*

+

. *

e *

e

e

a a

.

* *

e b

* *

*

+

. .

* +

+

. .

a .

* *

e .

* b

e

. .

+ +

a +

* *

b a

b *

e

. +

. b

e b

. .

. e

a *

*

b

+ e

a e

e *

+

* *

e *

a

+ +

. +

b e * .

a * +

.

* .

b . +

* *

a *

b

. *

b a e

e +

a e

* *

e b

.

+ .

. .

+ *

* .

a e *

*

e

a

b *

a

+ +

+ *

. .

* .

+

. .

* e

*

*

+

a b

* b

b

* *

*

+

a *

+

* .

.

a +

* *

b *

a

* *

*

b

a

+

b *

*

*

*

a

* .

.

* +

+

. *

. *

* *

*

*

.

* +

*

+

. e

e e

* a

b

*

*

.

. +

b b * *

a e

b

*

b

. .

e .

* a

b

b +

* e

b

. *

+ b

b .

a .

e b

*

*

*

*

.

+ *

e b e

+

* *

*

*

+

* *

+

. *

. .

b .

e a

+ b

a b

.

b .

+ .

a e * *

*

+

b *

e

b

+

* *

*

b

*

.

e a

.

* .

+

+ .

* +

b a *

+

a b

+ *

+ *

. *

a *

a

.

a .

* b

e

+

+ *

e a e

b

e *

*

*

*

+

+ *

+ a

a a

a

+ +

* *

+

. .

. +

. .

e *

e

* +

+

* .

b e .

b b

. *

a *

e

a

+ +

+ .

* .

.

* *

.

+ e

a .

b b

*

.

+ .

a .

e e

+ +

b e a *

e

e *

*

a

* +

+

* *

*

*

*

a

*

e

a *

e

+ +

* *

e +

* b

.

b b

* a

a

b +

. a

e *

b

*

+

b .

* +

b * +

b a b

* +

*

*

*

+

. .

e a . *

. +

* *

.

+ e

. b

a e

*

*

*

.

. +

b e b a

* *

e *

+

* a

a

+

+ +

* .

a + a

* e

e

. .

* e

a

* e

e

. .

* *

+

e +

b b

b

a *

.

e *

e

. +

. .

* .

e * *

.

+ .

a .

a *

e

+ +

a a e a

e

+ *

* *

e +

+ .

. b

. .

* *

*

.

* +

e + *

* *

b b

b

*

b

a +

. *

b a b

* *

a a

*

*

.

+ *

b *

e

*

.

b +

* *

*

a

e

+ +

. +

* .

*

*

+

a *

*

+

+ .

e .

b *

b

* +

.

e e

b b

* *

+

* *

+

* e

+

* *

.

a +

a e

a

b

e

* +

*

.

. +

e .

+ *

* +

+

e b

* *

+

+ e

a e

*

a

b

+ *

b *

.

* *

e *

b

e

+ .

* .

e b b

* .

+

. .

. *

a e e

a a

+ *

a +

a *

b

*

a

* .

.

a a

* .

+

* +

.

b *

*

*

b

* .

a * .

a b e

e e

(a) A BST-like tree

.

b *

.

+ .

* *

.

a b

a

+ .

e +

* e

.

+ +

a +

* +

+

+ +

* .

b * +

.

a e

* +

a + *

b +

a +

* +

+

* a

e

e b

a

. *

. .

b b . .

* b

.

* b

.

e *

a

a *

+

. +

+ b

* .

*

b

b *

.

+ .

+ .

e e a e

e a

a *

a

a

. e

+ .

+ +

* .

+

e *

.

e +

* .

b e +

b *

e

. b

. .

. *

* *

b e

*

*

e

e +

e *

+

* a

a

* *

b +

a .

. *

b b e

. e

+ a

a +

. .

. a

. *

e .

a *

e

*

a

* +

e + .

+ b

e +

* *

*

.

. .

. .

* .

+

a .

b .

* b

+

+ e

. +

* *

.

e a

a

+ a

a +

. .

b e + b

. *

+ *

* *

*

+

+ .

+ a

. +

a .

. e

b e

. +

+ .

e e * *

b b

. e

b +

b .

e a

. +

e *

e

* b

*

.

* b

+

+ a

* *

*

*

.

. +

* +

+

+ e

+ +

+ .

. e

. e

b b

b *

.

. +

a +

* +

.

+ e

. +

. *

a +

* +

.

a .

* .

.

+ e

+ .

+ +

. e

e a

b e

* +

*

b

. a

. a

a b

b a

* .

b . b

+ *

+ a

b e

+

. *

* a

b

a

+

a +

. e

. a

. b

. .

+ +

e *

.

. e

e b

. .

* a

b

+ +

a .

e a

e +

. b

b .

. a

+ +

b a * b

+

b .

a *

.

b .

e e

e .

. .

* b

*

e

a .

e a

+ .

+ b

e *

+

b .

e a

* +

a . a

. e

+ *

. .

. .

a a b b

* a

*

+

a +

e +

* b

*

+

b .

+ +

* .

*

e

e a

+ e

e +

* b

.

+ *

* b

*

+

a +

b +

. a

e .

. +

* b

*

+

+ +

. *

. e

+ +

* *

.

* .

e e +

b *

.

* a

a

a

e +

b *

+

+ +

+ e

a a

* a

*

e

*

+

e +

* +

*

*

.

+ .

b b . e

. *

e .

b *

e

.

+ *

. e

* b

a

.

* b

*

*

b

. +

a +

* e

b

* *

b *

+

a a

e .

a *

a

e .

e b

e

a

* .

a e a

+ e

. .

. e

e e

. b

b e

* b

.

b e

a e

. +

e +

a b

a a

e

*

e

e

a

* *

.

e +

. +

* +

*

.

+ b

e +

. +

e .

. *

* .

.

b e

e +

b *

.

* +

+

e b

. +

+ .

a .

* a

.

. e

e .

b +

+ .

a a * e

*

.

* .

+

+ .

a a e *

b

. .

+ +

. b

* a

e

b .

e .

. +

e a . +

. .

+ b

+ b

a .

* a

*

*

+

* .

e a +

b *

+

+ a

a .

+ b

+ +

. e

+ e

b +

. *

. +

b a * a

+

a e

*

b

+ +

. *

b .

+ *

* b

.

b e

b

+

+ .

. e

b *

*

+

. b

. b

e b

. +

. a

b *

.

a b

. a

* *

a .

b +

b b

a b

+ e

. *

e .

+ b

e e

*

a

b a

e a

+ +

. b

a a

b .

e b

+ *

b *

.

. a

+ b

+ b

. a

b .

a b

e

+

e *

e

+ *

e b b

a +

e *

*

b

* e

+

. a

+ .

b *

a

* e

*

+

+ *

. b

* .

.

b e

b *

b

a

.

+ +

a a a +

a *

+

. a

a +

a .

e b

+ b

b .

a .

e e

e +

b *

b

*

*

*

+

* b

+

* +

e . .

* a

+

* a

a

a +

+ e

. +

b +

+ a

. a

* .

a e .

+ b

e e

e b

+ b

. .

+ a

b a

* b

e

b e

a e

(b) A uniform tree

Figure 2 The expected height of a random BST tree (on the left) of size n is Θ(log(n)) whereas
for a uniform tree (on the right) of size n, it is Θ(

√
n).

The resulting distribution over the trees with n nodes is not uniform. In fact, the shape of
a typical tree drawn from the BST-like distribution differs greatly from that of a tree drawn
from the uniform distribution [5, 8]. It can be seen by comparing Figure 2a and Figure 2b.
This difference is also apparent when it comes to the average behaviour of algorithms. It was
shown in [14] that the Glushkov automaton (a.k.a., the position automaton) of a regular
expression under a BST-like distribution has an average of Θ(n2) transitions, in stark contrast
to the case of the uniform distribution, where it was previously showed [13] that the average
is Θ(n). Observe that for the uniform distribution, if we reduce the expression (according to
the absorbing pattern (a + b)∗ for +) first, the expected size of the Glushkov automaton is
in fact bounded by a constant, as a consequence of [11, 12].

STACS 2021

48:4 Absorbing Patterns in BST -Like Expression-Trees

It seems likely that the choice of the BST-like distributions in benchmark is motivated
by its greater flexibility to model real-word distributions (i.e. by playing with the operator
probabilities) and also because of its very efficient generation procedure.

Seeing the flaw of the uniform distribution for tree-expressions discovered in [11, 12], it is
natural to wonder if the BST-like distributions suffer from the same short-comings. This
question is the starting point of the work present in this paper. We assume the existence of an
absorbing pattern P for some operator ⊛ and study the expected size of the tree-expression
after reduction1.

Our main result paints a complete picture of the possible asymptotic behaviour of the
expected size after reduction as the original size n tends to infinity. We show that there are
two different thresholds, leading to a total of five regimes, depending on the probability p⊛
of the absorbing operator and the probability of drawing a unary operator pI. The main
regimes are shown experimentally in Figure 3.

▶ Theorem. Consider a family of expression trees defined from unary and binary operators.
Suppose there is a tree pattern P, of size at least2 3, that is absorbing for a distinguished
operator ⊛. We consider the simplification algorithm that consists in inductively changing
a ⊛-node by P whenever one of its children can be simplified into P. Then the expected
size of a random BST-like tree after simplification has an asymptotic behaviour given by the
following cases, depending on the probability p⊛ of the absorbing operator:

0 1
p⊛

Θ(n)

almost no reduction

Θ(n
(log n)γ)

1
2

Θ(nθ)

significant
reduction

3−pI
4

Θ(log n)
Θ(1)

degenerate
case

There are two critical points p⊛ = 1/2 and p⊛ = (3 − pI)/4, the latter depending on the
probability pI of drawing a unary operator. This gives a total of five regimes spanning the
spectrum from almost no reduction Θ(n) to complete reduction Θ(1). The exponents γ and θ

are given by γ = 2
1−pI

and θ = 1 − 4p⊛−2
1−pI

respectively.

0 0.2 0.4 0.6 0.8 1 ·1070

0.2

0.4

0.6

0.8

1

·107

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1080

2

4

6

·106

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

0 0.2 0.4 0.6 0.8 1 ·1090

2,000

4,000

6,000

8,000

size of the regular expression

si
ze

o
f
th
e
si
m
p
li
fi
ed

ex
p
re
ss
io
n

Figure 3 The three main regimes observed experimentally on regular expressions on two letters,
with 10 000 samples for each size: (from left to right) linear (p+ = p⋆ = p· = 1/3), sublinear
(p+ = 19/29, p⋆ = p· = 5/29) and constant (p+ = 8/10, p⋆ = p· = 1/10).

1 Particular cases where these and many more reductions are available have been studied in the literature
[2, 3, 10]. However, these consider a very particular example, namely the ∧/∨-trees with p∧ = p∨ = 1

2 .
2 This restriction is not a real constraint. For |P| ≤ 2 it is easy to build from P a larger absorbing pattern

and our result then applies. See the discussion at the end of Section 2.2.

F. Koechlin and P. Rotondo 48:5

Methods. To obtain our results we employ techniques from the framework of Analytic
Combinatorics [9]. The recursive procedure used to produce a random BST-like tree naturally
leads in turn to a recurrence for the probabilities of interest. We encode the probabilities
into ordinary generating functions, and the recurrences lead formally to differential equations
(of Riccati type) for the expected value of the size after reduction. This first part is purely
symbolic. At this point, as is usual in Analytic Combinatorics, we see our generating functions
as power series on the complex plane to take advantage of the powerful theory of holomorphic
functions. The singularities, i.e., the points where these functions cease to be smooth, are
related to the asymptotics of the coefficients. In particular, those that are closer to the
origin (i.e., dominant singularities) give the leading terms. This link is formally given by the
Transfer Theorem [9, Ch VI.3], which translates asymptotic equivalents for the generating
functions near the singularities to asymptotics for their coefficients.

Plan of the article. In Section 2 we give precise definitions for our settings, namely random
BST-like expression trees, absorbing patterns and the ensuing simplification. Section 3 gives
a general overview of the techniques and gives an outline of the proof of our main Theorem.
It explains in particular why we need to consider the probability of fully reducible trees first
(those reducing to P), in order to prove our main result. Section 4 then is devoted to these
fully reducible trees, and as a side product we prove (see Thm 10) that the probability of
being fully reducible tends to 0 for p⊛ ≤ 1/2 and to a positive constant otherwise. This first
threshold is intimately linked with that of the main result. Finally, Section 5 completes the
sketched proof of the main theorem.

Most proofs are either sketched or omitted in this extended abstract.

2 Model, definitions and probability of complete reduction

2.1 The BST-like model
Consider three non-empty sets of labels A0, A1, and A2, corresponding respectively to the
sets of possible leaves, unary operators and binary operators. For example, to describe the
set of regular expressions on the alphabet {a, b}: A0 = {ε, a, b}, A1 = {⋆} and A2 = {·, +}.

We define the family of trees on A = (A0, A1, A2) in Definition 1 below. It is important
to emphasize that when we say trees we actually mean planar trees throughout the article:
the order of the branches does matter, hence

op
/\

T1 T2
and

op
/\

T2 T1
are not the same tree.

▶ Definition 1 (Expression trees). The family E(A) of expression trees over A = (A0, A1, A2)
is defined inductively:

any leaf a0 ∈ A0 is an expression tree;
if T is an expression tree and op1 ∈ A1 is a unary operator, then

op1
|
T

∈ E(A);

if T1, T2 are expression trees and op2 ∈ A2 is a binary operator, then
op2
/\

T1 T2
∈ E(A).

The size |T | of an expression tree T is its number of nodes (operators and leaves).

Now that we have defined the family of expression trees, we introduce the BST-like
distribution over them. For n ∈ N, let En denote the set of expression trees of size n.

First we endow the set of leaves A0 and the set of operators Aops = A1 ∪ A2 with
probabilities, (pa)A0 and (pop)Aops . Remark then that

∑
a∈A0

pa = 1 and
∑

op∈Aops
pop = 1.

We denote by pI the probability of picking a unary operator, i.e., pI =
∑

op1∈A1
pop1 .

STACS 2021

48:6 Absorbing Patterns in BST -Like Expression-Trees

(i)

+

⋆ b

⋆

a

(ii)

⋆

+

b⋆

a

Figure 4 Example of two trees of size n = 5, for regular expressions, having different probabilities
for any choice of distribution. The probability of the trees in (i) and (ii) are 1

3 p+p⋆papb and
1
2 p+p⋆papb respectively.

▶ Definition 2 (Random BST-like expression tree). A random BST-like expression tree of size
n ∈ N≥1 is built recursively as follows:

If n = 1, we draw a leaf from A0 according to the probability distribution (pa)a∈A0 .
If n = 2, we draw a unary operator op1 according to the normalized probabilities(

1
pI

pop1

)
op1∈A1

, then we draw independently a tree a0 ∈ A0 of size 1 and return
op1

|
a0

.
If n ≥ 3, we pick an operator ⊕ ∈ Aops according to the distribution (pop)op∈Aops . (⋆) If
we obtain a unary operator ⊕ ∈ A1, we produce recursively and independently a tree T of
size n − 1 and return

⊕
|
T

. (⋆⋆) If otherwise we obtain a binary operator ⊕ ∈ A2, we pick
the size k of the left subtree uniformly from {1, . . . , n − 2} and produce independently two
trees TL and TR of sizes k and n − 1 − k respectively. Then we return

⊕
/\

TL TR

.

For Definition 2 to make sense, we assume that pI > 0. Note that otherwise (if pI = 0)
we would produce no trees of size 2, or any even size. This assumption is not really a
constraining one, as otherwise we would obtain similar results, but just over the odd sizes.

The procedure of Definition 2 defines a probability distribution over expression trees: the
probability Prn(T) of a given expression tree T of size n is the probability of the algorithm in
Definition 2 returning T with input n. This distribution is not uniform, as shown in Figure 4.

2.2 Absorbing pattern and reduction
We now define what we mean by an absorbing pattern for the family of expression trees E(A).
Fix a binary operator ⊛ ∈ A2 and an expression tree P ∈ E(A). Informally, the associated
simplification σ = σP,⊛ is defined by applying bottom up the substitution

⊛

T1 T2

⇝ P , whenever Ti = P for some i ∈ {1, . . . , 2}.

More precisely, we define recursively the simplification σ = σP,⊛ : E(A) → E(A) with
absorbing pattern P for the operator ⊛ as follows: if e ∈ A0 we set σ(e) = e while,

σ
(op1

|
T

)
=

op1
|

σ(T)
for op1 ∈ A1,

σ
(op2

/\
T1 T2

)
=

op2
/\

σ(T1) σ(T2)
for op2 ∈ A2 with op2 ̸= ⊛,

σ

(
⊛
/\

T1 T2

)
= P if σ(Ti) = P for i = 1 or i = 2, and σ

(
⊛
/\

T1 T2

)
=

⊛
/\

σ(T1) σ(T2)
otherwise.

An expression tree T ∈ E(A) is said to be fully reducible when σ(T) = P.
Henceforth we assume that our family of expression trees E(A) admits an absorbing P

of size s := |P| for a fixed binary operation ⊛ ∈ A2. For technical reasons, we will suppose
that s ≥ 3. This might seem in contradiction to the fact that some leaf can be absorbing
(for instance False with ∨). However this is not much of a restriction since you can always

F. Koechlin and P. Rotondo 48:7

build, from an absorbing pattern P of size less than 3, a new one of size more than 3 by
considering P ′ :=

⊛
/\

P a
for a leaf a. This new pattern leads to less reductions in comparison

to the former one, so that our results give upperbounds for the expected size after reduction
by an absorbing pattern of size less than 3, instead of exact equivalents.

3 Outline of the proof

For our proof we employ methods from the framework of Analytic Combinatorics [9]: we will
represent a sequence (an)n≥0 of coefficients by its ordinary generating function (OGF for
short) F (z) =

∑
anzn. At first, we treat F (z) as a formal object, and our goal is to obtain

an equation characterizing it. Typically, in Analytic Combinatorics, this first step is done by
building the studied combinatorial class from set operations, and using a toolbox to translate
them into operations between generating functions. In our case it does not apply and we have
to extract the equations for the generating functions from the recurrence relations satisfied
by the related sequences. This approach is common when the distribution of the studied
combinatorial class is not uniform (see for instance [9, 15]). Hence we begin the proof by
deriving a recurrence relation satisfied by the expected size (en). This relation comes from
the recursive nature of the algorithm for constructing a random BST-like tree-expression.

3.1 Recurrence relations
Recurrence for the expected value

We are interested in the probabilities pn,k := Prn{T : |σ(T)| = k} for a tree of size n to have
a reduced size k. More precisely we want to obtain an equation for en :=

∑
k k · pn,k which is

the expected size after reduction for a random tree of fixed size n, according to the BST-like
distribution3. The following proposition gives the recurrence satisfied by the sequence (en)n.
It involves the probability that a tree T of size n is fully reducible:

γn = Pr
n

{σ(T) = P} .

We also write pII := 1 − pI − p⊛, the probability of drawing a binary operator that is not ⊛.

▶ Proposition 3. The sequence (en) of expected sizes after reduction satisfies, for all n > 1:

en+1 = 1 + (s − 1)γn+11n+1 ̸=s + pIen + 2pII

n − 1

n−1∑
j=1

ej + 2p⊛
n − 1

n−1∑
j=1

(ej − sγj)(1 − γn−j) .

Proof sketch. We introduce the auxiliary polynomials Fn(u) =
∑n

k=0 Prn{T : |σ(T)| = k}uk.
These satisfy the recurrence

Fn+1(u) = γn+11n+1 ̸=sus + pIuFn(u) + u
pII

n − 1

n−1∑
j=1

Fj(u)Fn−j(u)

+u
p⊛

n − 1

n−1∑
j=1

(Fj(u) − γjus) (Fn−j(u) − γn−jus) .

3 From now on, when we write random, we implicitly mean for the BST-like distribution.

STACS 2021

48:8 Absorbing Patterns in BST -Like Expression-Trees

Indeed, a tree T of size n + 1 is either fully reducible (with probability γn+1) or not.
When we pick ⊛, the new tree does not reduce to P only when the subtrees are not fully
reducible.

Then en is expressed as en = F ′
n(1). Differentiating the formula and setting u = 1 we

obtain the recurrence for en, using the fact that Fk(1) = 1 for all k. ◀

Recurrence for the probability of full reduction

The recurrence for the expected values (en) in Proposition 3 depends strongly on the auxiliary
sequence of probabilities (γn)n≥1. Clearly, any tree starting by the absorbing operator ⊛
and having a fully-reducible child is also fully reducible. Reciprocally, if a tree of size strictly
bigger than s is fully reducible, then it has ⊛ as a root and at least one fully reducible child.
Hence the sequence (γn) satisfies a recurrence, which is not linear:

γn+1 = p⊛ · 1
n − 1

n−1∑
k=1

(γk + γn−k − γkγn−k) , for all n ≥ s. (1)

Indeed, suppose that k is the size of the left subtree4, which happens with probability 1
n−1 .

Then the probability that one of the children is fully reducible is, by inclusion-exclusion,
γk + γn−k − γkγn−k.

In our study of the sequence (γn)n≥1 we will show that it actually converges (Thm. 10).
For the time being, we will just remark that if (γn)n converges, only certain values are
possible for L = lim γn. For this, let us recall this classical result:

▶ Lemma 4 (Cèsaro-means). Consider a sequence (an)n≥1 converging to a real number L.
Then we have limn

1
n

∑n
k=1 ak = L, and limn

1
n

∑n
k=1 ak an+1−k = L2.

From Eq. (1) we see that L = p⊛ · (2L − L2). Thus the limit, if it exists, can only be 0 or
γ∞ := 2 − 1/p⊛. For p⊛ < 1/2, we have γ∞ < 0 and so L = 0. For p⊛ > 1/2, Theorem 10
will show that L = γ∞. These limits hint at the possibility of a threshold for en at p⊛ = 1

2 .

3.2 Main steps
In order to study the sequence of expected sizes (en)n≥1 it will be necessary to study first the
sequence of probabilities (γn)n≥1. As announced, we introduce their generating functions:

A(z) :=
∞∑

n=0
γnzn , E(z) :=

∞∑
n=0

enzn .

The proof, as is usual in Analytic Combinatorics, proceeds in two steps: a symbolic step
and an analytic step. In the symbolic step we obtain appropriate equations for our generating
functions, seen as purely formal power series. In our case it will be differential equations,
coming from the recurrences. Then in the analytic step, the generating functions are seen
as analytic functions of a complex variable. We apply the celebrated Transfer theorem
(see [9, Ch VI.3]) to obtain the asymptotic equivalents of the sequences. The Transfer
Theorem states that, under analytic conditions, an equivalent E(z) ∼z→1 λ(1 − z)−α with
α /∈ {0, −1, −2, . . .}, implies en ∼ λnα−1/Γ(α), where Γ is Euler’s Gamma-function, the
generalized factorial.

4 We have supposed that there are trees of every possible size, which is equivalent to pI > 0.

F. Koechlin and P. Rotondo 48:9

Symbolic step

The recurrence (1) for γn, as well as the recurrence of en in Proposition 3, lead naturally to
ordinary differential equations for A(z) and for E(z). As the formal derivative of a series
F (z) =

∑
anzn is given by F ′(z) =

∑
(n + 1)anzn, multiplying Eq. (1) by (n − 1)zn and

summing will introduce derivatives. Thus we obtain a differential equation for A(z), under
the form of a Riccati equation, and a linear one for E(z), which involves the generating
function A(z) as a known quantity:

A′(z) = (s − 2)γszs−1 +
(

2
z

+ 2p⊛
z

1 − z

)
A(z) − p⊛ · (A(z))2 , (2)

and, for a certain function F (x, y), which can be made explicit

E′(z) = F (z, A(z)) + 1
1−pIz

(
2
z − pI + 2 (1 − pI)

z

1 − z
− 2p⊛A(z)

)
· E(z) .

These differential equations constitute our symbolic specifications for the generating
functions A(z) and E(z). At this point we switch to their analytic study.

Analytic step

The equation for E(z) is a first order linear ODE, as such it can be solved by the method
of variation of constants5 [1, Th. 6.1] to obtain an explicit solution that involves A(z) as a
known quantity. Thus we need first to study A(z) as a complex function, and in particular
its domain of analyticity. Since the coefficients of A(z) are probabilities γn ∈ [0, 1], the series
A(z) defines an analytic function on the unit disk |z| < 1. However, for technical reasons we
need further information regarding its domain of analyticity in order to apply the Transfer
Theorem. Thus in Section 4 we are going into more detail, showing that z = 1 is a dominant
singularity and that A(z) can be extended analytically to the domain Ω = C \ [1, ∞). We
remark that then the same holds for E(z).

The last hypothesis in order to apply the Transfer Theorem for E(z) is its asymptotic
equivalent as z → 1, its dominant singularity. The solution of the ODE for E(z) yields a
fundamental approximation

E(z) ≈ C

(1 − z)2 exp
(

−2p⊛

∫ z

0

A(w)
1 − pIw

dw

)
×

(
2 +

∫ z

0
G(z) exp

(
2p⊛

∫ ζ

0

A(w)
1 − pIw

dw

)
dζ

)
as z → 1, for a certain constant C > 0 and a bounded function G(z).

This means that to study the asymptotic behaviour for E(z) we require quite precise
asymptotics regarding A(z) near z = 1. In particular, we need to be able to integrate the
approximation, and obtain a good approximation after taking the exponential. Thus we
need not only an asymptotic equivalent for A(z) as z → 1, but also a remainder term. The
integration involving A(z) is dealt with by the Singular Integration Theorem [9, Thm VI.9].

Analysis of A(z) around its dominant singularity. First we turn the Riccati equation (2)
into a linear second order ODE that is homogeneous by a classical change of the unknown
function p⊛A(z) = v′(z)/v(z). We analyze the new function v(z) by the Frobenius method
[1, pp.181-182] to obtain a local form of v(z) around the singularity z = 1. The conclusion

5 We adapt it for our case. In fact 2
z is not defined at z = 0, where we give our initial condition precisely.

STACS 2021

48:10 Absorbing Patterns in BST -Like Expression-Trees

can be found in Proposition 9, which shows that we have 3 regimes for A(z) depending
on whether p⊛ is less, equal, or greater than 1/2. As a by-product, the Transfer Theorem
implies (see Theorem 10) that γn tends to 0 for p⊛ ≤ 1/2 and to the constant γ∞ > 0 when
p⊛ > 1/2. The detailed analysis is explained in Section 4.

Analysis of E(z) around its dominant singularity. We follow the cases of Proposition 9,
which already gives the threshold 1/2. Then there is an extra threshold coming from the
term

2 +
∫ z

0
G(z) exp

(
2p⊛

∫ ζ

0

A(w)
1 − pIw

dw

)
dζ

in the estimate for E(z). This new threshold corresponds exactly to the point where the
integral goes from being convergent to divergent as z → 1.

For example, when p⊛ < 1/2, Proposition 9 yields that the integral
∫ z

0
A(w)

1−pIw dw converges
as z → 1. From our approximation for E(z) we see that actually E(z) ∼ λ(1 − z)−2 for a
certain constant λ > 0. By the Transfer Theorem this implies that en ∼ λ · n as n → ∞.

4 Fully reducible trees

In this section, we study the probability of being fully reducible γn = Prn{σ(T) = P}. This
is motivated by the fact that γn intervenes in the recurrence for the expected value en of the
size of a random BST-like tree after reduction, see Section 3. We recall that we have the
following recurrence for (γn)n≥1: γn+1 = p⊛ · 1

n−1
∑n−1

k=1 (γk + γn−k − γkγn−k) for all n ≥ s.

4.1 Generating function and its Riccati equation
As announced, we study γn by looking at its generating function A(z) =

∑∞
n=0 γnzn. Note

that its radius of convergence is at least 1 because the coefficients γn belong to [0, 1]. The
following proposition shows that it is exactly 1.

▶ Proposition 5. The radius of convergence of A(z) is exactly 1.

Proof. We work by contradiction. Suppose
∑

k γk was convergent. The inequality γk +
γn−k −γkγn−k ≥ γk, valid for all k, implies γn ≥ p⊛

n−1
∑n−1

k=1 γk = Ω(1/n) from the recurrence
in Eq (1). This is absurd because of the divergence of the Harmonic sums. ◀

We recall the Riccati differential equation (2) satisfied by A(z):

A′(z) = (s − 2)γszs−1 +
(

2
z

+ 2p⊛
z

1 − z

)
A(z) − p⊛ · (A(z))2.

Consider now the function6 v(z) = exp
(
p⊛

∫ z

0 A(w)dw
)
, which satisfies A(z) = 1/p⊛ ·

v′(z)/v(z). This is a classical transformation to turn any Riccati equation into a linear ODE
of order two. For our case we obtain

v′′(z) = p⊛ · (s − 2)γszs−1v(z) +
(

2
z

+ 2p⊛
z

1 − z

)
v′(z) . (3)

The function v(z) is analytic on the disk |z| < 1 as A(z) is analytic there.

6 Here
∫ z

0 means that we integrate on the segment from 0 to z on the complex plane.

F. Koechlin and P. Rotondo 48:11

The domain of analyticity and the local behaviour of solutions of linear ODE are well
understood [1, 16, 18]. We exploit this now to show in Proposition 6 that A(z) is actually
analytic on the larger domain Ω = C \ [1, ∞). Later on (see Prop. 9) we will also use the
local form of v(z) to obtain asymptotic equivalents for A(z) around its singularity z = 1,
which are needed to apply the Transfer Theorem.

▶ Proposition 6. The power series A(z), seen as an analytic function, can be extended
analytically to every point of the domain Ω = C \ [1, ∞). In particular, z = 1 is the only
singularity on the circle |z| = 1.

Proof sketch. We already know that v(z) is analytic on the disk |z| < 1. Then we use [18,
Theorem 2.2, p.3] repeatedly and conclude with the uniqueness of analytic continuation. ◀

4.2 Asymptotics for the fully reducible trees
We can now derive the asymptotic behaviour of v(z), where we recall that v(z) satisfies
v′′(x) −

(
2
x + 2p⊛

x
1−x

)
v′(x) − p⊛ · (s − 2)γsxs−1v(x) = 0, a linear equation of order 2, with

non-constant coefficients. We analyze the asymptotics of the solutions close to the singularity
by using the Frobenius method (see [1, pp.181-182]). For this we introduce some related
notation.

▶ Definition 7. Consider the homogeneous linear ODE of order two y′′(x) + d1(x)y′(x) +
d2(x)y(x) = 0, where d1(x) and d2(x) are meromorphic on a star-shaped domain Ω̃.

A point ζ ∈ Ω̃ is said to be a regular singularity for the ODE, if it is a singularity of
either d1(x) or d2(x), or maybe both, and the limits δj := limz→ζ(z − ζ)jdj(z), exist and are
finite for j = 1 and 2. In this case, we define the indicial polynomial I(θ) at the regular
singularity z = ζ by I(θ) = θ(θ − 1) + δ1θ + δ2 .

The following theorem explains how the indicial polynomial leads to the asymptotics of the
solutions7:

▶ Theorem 8 ([1, Thm 6.14–15]). Consider the homogeneous linear ODE of order two
y′′(x)+d1(x)y′(x)+d2(x)y(x) = 0, where d1(x) and d2(x) are meromorphic on a star-shaped
domain Ω̃, and ζ a regular singularity for the given ODE.

If the two roots θ1 and θ2 of the indicial polynomial associated to ζ do not differ by an
integer (including 0 for double roots), then, in a slit neighbourhood of ζ inside Ω̃, every
solution y(x) is of the form c1(ζ − z)θ1H1(ζ − z) + c2(ζ − z)θ2H2(ζ − z), where c1, c2 ∈ C,
and H1(z), H2(z) are analytic at z = 0 and H1(0) ̸= 0, H2(0) ̸= 0.
If the indicial polynomial has a double root θ0, then in a slit neighbourhood of ζ inside Ω̃,
every solution y(x) is of the form (z − ζ)θ0(c1H1(z − ζ) + c2 log(z − ζ)H2(z − ζ)), where
c1, c2 ∈ C, and H1(z), H2(z) are analytic at z = 0 and H1(0) ̸= 0, H2(0) ̸= 0.

Using this theorem, we directly derive the local behaviour of v(z) and v′(z) around
z = 1. Now we are ready to obtain the local expansion for A(z) = 1

p⊛
v′(z)/v(z), around the

singularity z = 1, and we prove the following proposition:

▶ Proposition 9. The ordinary generating function A(z) for (γn)n≥1 satisfies the following
asymptotic expansions as z → 1 over Ω

7 The reference uses |ζ − z| to avoid restricting the domain; here we can use (ζ − z) because we chose a
determination of log(1 − z).

STACS 2021

48:12 Absorbing Patterns in BST -Like Expression-Trees

For p⊛ > 1
2 , A(z) = γ∞

1−z + O((1 − z)2p⊛−2),

For p⊛ = 1
2 , A(z) = 2

1−z

(
log

(
1

1−z

))−1
+ O

(
1

1−z

(
log

(
1

1−z

))−2
)

For p⊛ < 1
2 , A(z) ∼ D

(1−z)2p⊛
,

where we recall that γ∞ := (2p⊛ − 1)/p⊛ and D > 0 is a constant depending on p⊛ and s.

As a side product of this proposition, we can apply the Transfer Theorem and show that
γn indeed converges:

▶ Theorem 10. The probability γn of being fully reducible tends to the constant γ∞ :=
(2p⊛ − 1)/p⊛ for p⊛ > 1

2 and to zero otherwise. More precisely, for p⊛ = 1
2 we have

γn ∼ 2
log n , while for p⊛ < 1

2 , γn ∼ D · n2p⊛−1/Γ(2p⊛), where D is the constant from Prop. 9.

▶ Remark 11. A different approach for the case p⊛ < 1/2 yields the value of the constant
for the asymptotics, D = e−2p⊛ ·

(
(s − 2)γs

∫ 1
0 ts−3(1 − t)2p⊛e2p⊛tdt − p⊛

∫ 1
0 (A(t))2(1 − t)2p⊛e2p⊛tdt

)
.

Furthermore, the first term in the parenthesis yields a simple upper-bound.

5 Main result: expected values

This section is devoted to the sketch of the proof of the main theorem:

▶ Theorem 12. If the probability pI of unary operators is not zero, then the expected size
en of a random BST-like tree-expression of size n after the bottom-up reduction using an
absorbing pattern for the binary operator ⊛ satisfies, for some positive constants c1, . . . , c4:

if p⊛ < 1/2, then en ∼ c4 n;
if p⊛ = 1/2, then en ∼ c3 n log(n)−2/(1−pI);
if p⊛ > 1

2 and 4p⊛ < 3 − pI, then en ∼ c2 n
1−

4p⊛−2
1−pI ;

if 4p⊛ = 3 − pI, then en ∼ c1 log(n);
if 4p⊛ > 3 − pI, then en → e∞ , where e∞ is some positive constant.

Thus we perform a precise study of the generating function E(z) of the expected size en.
Solving the differential equation satisfied by E(z), we obtain the following as z → 1

E(z) ∼ 1 + (1 − pI)2/pI−1K(z)−1
(

2 +
∫ z

0
G(w)K(w)dw

)
× (1 − z)−2 ,

where G(z) → G(1) > 0 as z → 1 and K(z) := exp
(

2p⊛
∫ z

0
A(w)

1−pIw dw
)

.
Then, to obtain the asymptotic estimates we need for applying the Transfer Theorem

to E(z), we have to study K(z) and the integral
∫ z

0 G(w)K(w)dw. We remark that the
behaviour of the latter is determined roughly by the behaviour of

∫ z

0 K(w)dw. Indeed, if one
integral converges, so does the other, and similarly for the divergence. Moreover, when the
integral diverges as z → 1 we also have

∫ z

0 G(w)K(w)dw ∼ G(1)
∫ z

0 K(w)dw.
The asymptotics for K(z) are obtained by the singular integration (see [9, Theorem VI.9])

of the asymptotics of A(z).

▶ Example 13. Consider the case p⊛ > 1
2 . Proposition 9 tells us that A(z) = γ∞

1−z + O((1 −
z)2p⊛−2). Thus we also have A(w)

1−pIw = γ∞/(1−pI)
1−w + O((1 − w)2p⊛−2) as w → 1. Singular

integration gives 2p⊛
∫ z

0
A(w)

1−pIw dw = 2p⊛γ∞
1−pI

log
(

1
1−z

)
+ c0 + O((1 − z)2p⊛−1) for a certain

constant c0. As the remainder O-term tends to 0, we conclude K(z) ∼ CK ×(1 − z)−2p⊛
γ∞

1−pI .
We remark that 2p⊛γ∞

1−pI
= 4p⊛−2

1−pI
.

F. Koechlin and P. Rotondo 48:13

Singular integration yields the following estimates for J(z) :=
∫ z

0 G(w)K(w)dw:

▶ Lemma 14. The function J(z) satisfies the following asymptotics as z → 1 on Ω:

if 4p⊛ > 3 − pI, then J(z) ∼ CJ × (1 − z)1−
4p⊛−2

1−pI , with CJ > 0
if 4p⊛ = 3 − pI then J(z) ∼ CJ × log

(1
1−z

)
, with CJ > 0

if 4p⊛ < 3 − pI then J(z) ∼ CJ , with 2 + CJ > 0
where CJ is a constant depending on pI, p⊛, s.

The proof of this lemma proceeds by discussing whether the integral J(z) is convergent or
divergent. Notice for example that

∫ z

0 K(w)dw diverges for 4p⊛ − 2 ≥ 1 − pI due to the
estimate given at the end of Example 13. This gives the second threshold p⊛ = (3 − pI)/4.

This new threshold p⊛ = (3 − pI)/4, along with the previous p⊛ = 1
2 for the behaviour of

A(z), determine the 5 cases in the discussion in Theorem 12.

6 Conclusion

In this article we have seen that random BST-like tree-expressions have a rich range of
behaviors with respect to the simple reduction linked to an absorbing pattern. This situation
contrasts with the case of uniform random tree-expressions [11, 12] where it was previously
shown that the expected value of the size after reduction is O(1).

From a theoretical point of view, the existence of two thresholds is interesting in itself,
this leads to a variety of different regimes for the simplifications using a simple rule. There
are natural extensions of this paper to widen the result:

Refine the result for small patterns: this will only improve the multiplicative constants of
Theorem 12, not change the order of magnitude of the size of the reduced tree.
Allow for operators of arity more than 2, as BST-like distribution can naturally be
extended to handle such operators. This introduces technical difficulties, but our first
attempts at addressing this extension indicate similar results (with different thresholds).
Allow for more involved specifications, using grammar-like rules. This can be used, for
instance, to prevent two consecutive stars in a regular expression. Such specifications were
studied for the uniform distribution [12], and require dealing with system of equations
instead of just one equation.

However, going back to our initial motivation of analyzing the soundness of random
benchmarking, the main continuation of this work would be to mix several simplification
procedures. The first step would be to allow several absorbing patterns for different operators
together (this was done for a very specific distribution on ∧/∨-formulas in [3]). Going even
further, we could focus on the simplification procedure of an existing tool and extensively
study it using the techniques we developed in this article, for instance, tools like Spot for
random LTL-formulas (see Algorithm 1).

To conclude, the message of this paper is that, contrarily to the uniform distribution, a
BST-like distribution might be a relevant way to sample interesting random expressions in a
practical framework. However, one should be very careful when tuning the parameters, i.e.
the probability of the operators, as it may quickly lead to a degenerated case.

STACS 2021

48:14 Absorbing Patterns in BST -Like Expression-Trees

References

1 T.M. Apostol. Calculus. Vol. II: Multi-variable Calculus and Linear Algebra, with Applications
to Differential Equations and Probability. Blaisdell international textbook series. Xerox College
Publ., 1969.

2 Nicolas Broutin and Cécile Mailler. And/or trees: A local limit point of view. Random Struct.
Algorithms, 53(1):15–58, 2018. doi:10.1002/rsa.20758.

3 Brigitte Chauvin, Danièle Gardy, and Cécile Mailler. The growing tree distribution on boolean
functions. In 2011 Proceedings of the Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), pages 45–56, 2011. doi:10.1137/1.9781611973013.5.

4 Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved automata generation
for linear temporal logic. In Nicolas Halbwachs and Doron Peled, editors, Computer Aided
Verification, pages 249–260, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

5 Luc Devroye. A note on the height of binary search trees. J. ACM, 33(3):489–498, May 1986.
doi:10.1145/5925.5930.

6 Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 – a framework for LTL and ω-automata manipulation. In
Proceedings of the 14th International Symposium on Automated Technology for Verification
and Analysis (ATVA’16), volume 9938 of Lecture Notes in Computer Science, pages 122–129.
Springer, October 2016. doi:10.1007/978-3-319-46520-3_8.

7 Philippe Flajolet, Xavier Gourdon, and Conrado Martinez. Patterns in random bin-
ary search trees. Random Struct. Algorithms, 11(3):223–244, 1997. doi:10.1002/(SICI)
1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2.

8 Philippe Flajolet and Andrew M. Odlyzko. The average height of binary trees and other simple
trees. J. Comput. Syst. Sci., 25(2):171–213, 1982. doi:10.1016/0022-0000(82)90004-6.

9 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

10 Antoine Genitrini, Bernhard Gittenberger, Veronika Kraus, and Cécile Mailler. Associative
and commutative tree representations for boolean functions. Theoretical Computer Science,
570:70–101, 2015. doi:10.1016/j.tcs.2014.12.025.

11 Florent Koechlin, Cyril Nicaud, and Pablo Rotondo. Uniform random expressions lack
expressivity. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2019,
August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 51:1–51:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

12 Florent Koechlin, Cyril Nicaud, and Pablo Rotondo. On the degeneracy of random expressions
specified by systems of combinatorial equations. In Natasa Jonoska and Dmytro Savchuk,
editors, Developments in Language Theory - 24th International Conference, DLT 2020, Tampa,
FL, USA, May 11-15, 2020, Proceedings, volume 12086 of Lecture Notes in Computer Science,
pages 164–177. Springer, 2020.

13 Cyril Nicaud. On the Average Size of Glushkov’s Automata. In Adrian-Horia Dediu, Armand-
Mihai Ionescu, and Carlos Martín-Vide, editors, Language and Automata Theory and Ap-
plications, Third International Conference, LATA 2009, Tarragona, Spain, April 2-8, 2009.
Proceedings, volume 5457 of Lecture Notes in Computer Science, pages 626–637. Springer,
2009.

14 Cyril Nicaud, Carine Pivoteau, and Benoît Razet. Average Analysis of Glushkov Automata
under a BST-Like Model. In Kamal Lodaya and Meena Mahajan, editors, IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2010), volume 8 of Leibniz International Proceedings in Informatics (LIPIcs), pages 388–
399, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.FSTTCS.2010.388.

https://doi.org/10.1002/rsa.20758
https://doi.org/10.1137/1.9781611973013.5
https://doi.org/10.1145/5925.5930
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1002/(SICI)1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2
https://doi.org/10.1016/0022-0000(82)90004-6
https://doi.org/10.1016/j.tcs.2014.12.025
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.388
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.388

F. Koechlin and P. Rotondo 48:15

15 Carine Pivoteau, Bruno Salvy, and Michèle Soria. Algorithms for combinatorial structures:
Well-founded systems and newton iterations. J. Comb. Theory, Ser. A, 119(8):1711–1773,
2012. doi:10.1016/j.jcta.2012.05.007.

16 Richard P. Stanley. Differentiably finite power series. Eur. J. Comb., 1(2):175–188, 1980.
doi:10.1016/S0195-6698(80)80051-5.

17 Heikki Tauriainen. Automated testing of Büchi automata translators for linear temporal logic.
Research Report A66, Helsinki University of Technology, Laboratory for Theoretical Computer
Science, Espoo, Finland, December 2000.

18 W. Wasow. Asymptotic Expansions for Ordinary Differential Equations. Dover Books
on Mathematics. Dover Publications, 2018. URL: https://books.google.fr/books?id=
NQNKDwAAQBAJ.

STACS 2021

https://doi.org/10.1016/j.jcta.2012.05.007
https://doi.org/10.1016/S0195-6698(80)80051-5
https://books.google.fr/books?id=NQNKDwAAQBAJ
https://books.google.fr/books?id=NQNKDwAAQBAJ

	1 Introduction
	2 Model, definitions and probability of complete reduction
	2.1 The BST-like model
	2.2 Absorbing pattern and reduction

	3 Outline of the proof
	3.1 Recurrence relations
	3.2 Main steps

	4 Fully reducible trees
	4.1 Generating function and its Riccati equation
	4.2 Asymptotics for the fully reducible trees

	5 Main result: expected values
	6 Conclusion

