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Abstract
Given a graph G = (V, E) and an integer k, the Cluster Editing problem asks whether we can
transform G into a union of vertex-disjoint cliques by at most k modifications (edge deletions or
insertions). In this paper, we study the following variant of Cluster Editing. We are given a
graph G = (V, E), a packing H of modification-disjoint induced P3s (no pair of P3s in H share an
edge or non-edge) and an integer ℓ. The task is to decide whether G can be transformed into a
union of vertex-disjoint cliques by at most ℓ + |H| modifications (edge deletions or insertions). We
show that this problem is NP-hard even when ℓ = 0 (in which case the problem asks to turn G into
a disjoint union of cliques by performing exactly one edge deletion or insertion per element of H)
and when each vertex is in at most 23 P3s of the packing. This answers negatively a question of van
Bevern, Froese, and Komusiewicz (CSR 2016, ToCS 2018), repeated by C. Komusiewicz at Shonan
meeting no. 144 in March 2019. We then initiate the study to find the largest integer c such that
the problem remains tractable when restricting to packings such that each vertex is in at most c

packed P3s. Van Bevern et al. showed that the case c = 1 is fixed-parameter tractable with respect
to ℓ and we show that the case c = 2 is solvable in |V |2ℓ+O(1) time.
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1 Introduction

Correlation Clustering is a well-known problem motivated by research in computational
biology [6] and machine learning [5]. In this problem we aim to partition data points into
groups or clusters according to their pairwise similarity and this has been intensively studied
in the literature, see [1, 3, 4, 5, 6, 15], for example.

In this paper, we study Correlation Clustering from a graph-based point of view,
resulting in the following problem formulation. A graph H is called a cluster graph if H is a
union of vertex-disjoint cliques; we also call these cliques clusters. Given a graph G = (V, E),
in the optimization version of Cluster Editing we ask for a minimum-size cluster-editing
set S, that is, a set S ⊆

(
V
2
)

of vertex pairs such that G△S := (V, E△S) is a cluster graph.
Here E△S is the symmetric difference of E and S, that is, E△S = (E \S)∪ (S \E). We also
sometimes refer to vertex pairs as edits. Cluster Editing is NP-hard [43]. Constant-ratio
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approximation algorithms have been found for the optimization variant [1, 5, 15] but it is
also APX-hard [15]. We focus here on exact algorithms and the decision version of Cluster
Editing.

Given a natural number k and a graph G = (V, E), the decision version of Cluster
Editing asks whether there exists a cluster-editing set S such that |S| ≤ k. Exact param-
eterized algorithms for Cluster Editing and some of its variants have been extensively
studied [28, 7, 42, 19, 12, 31, 10, 11, 21, 30, 8, 35, 24, 40, 13]. Cluster Editing is but
one of a large group of edge modification problems that have been studied, see Crespelle et
al. [17] for a recent survey. Perhaps it is one of the most important such problems because
of the practical motivation. Barring few exceptions [19, 35, 24, 44], Cluster Editing
has mainly been studied with respect to the solution-size parameter k. It is not hard to
observe that Cluster Editing is fixed-parameter tractable with respect to k and a series
of papers [28, 27, 7, 11, 8] continually improved the base in the exponential part of the
running time, culminating in the current fastest fixed-parameter algorithm with running
time O(1.62k + n + m) [8], where n is the number of vertices of the input graph and m its
number of edges. Similarly, a series of papers [28, 20, 22, 29, 42, 14, 16] gave more and more
effective problem kernels1 until a problem kernel with 2k vertices was achieved [14, 16].

As mentioned, the interest in Cluster Editing is not merely theoretical. Indeed,
parameterized techniques are implemented in standard clustering tools [41, 45]. Although
practitioners report that in particular the parameterized data-reduction techniques are
effective [10, 9], the parameter k is not very small in several real-world data sets [7, 10, 44].
For instance, Böcker et al. [7, Table 2] considered 26 graphs derived from biological data
with 91 to 100 vertices on which the average number of needed edits is 315, despite noting
that the Cluster Editing model outperformed other clustering models.

A technique to deal with such large parameters is parameterization above lower bounds.
Herein, the parameter is of the form ℓ = k − h where h is a lower bound on the solution size,
usually computable in polynomial time, and ℓ is the excess of the solution size above the lower
bound. Research into parameterizations above lower bounds has been active and fruitful
for several parameterized problems, not only on the theory-side (see [39, 18, 26, 38, 36], for
example) but also in practice, as algorithms based on that approach yielded quite efficient
implementations for Vertex Cover [2] and among the most efficient ones for Feedback
Vertex Set [32, 34]. For Cluster Editing we are aware of only one research work
considering parameterizations above lower bounds: Van Bevern, Froese, and Komusiewicz [44]
studied edge-modification problems parameterized above the lower bound from packings
of forbidden induced subgraphs and showed that Cluster Editing parameterized by the
excess above the size of a given packing of vertex-disjoint P3s is fixed-parameter tractable.
Observe that a graph is a cluster graph if and only if it does not contain any P3, a path on
three vertices, as an induced subgraph. Consequently, one needs to perform at least one edge
deletion or insertion per element of the packing.

As the P3s in the above packing are vertex-disjoint, the value by which the packing
can decrease the parameter is limited. In the previous example with 315 edits, subtracting
the resulting lower bound would reduce the parameter by at most 33. In their conclusion,
van Bevern et al. [44] asked whether Cluster Editing is fixed-parameter tractable when
parameterized above a stronger lower bound, the size of a modification-disjoint packing

1 A problem kernel is a formalization of provably effective and efficient data reduction. It is a polynomial-
time self-reduction that produces instances of size bounded by some function of the parameter.
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of P3s. Here, a packing H of induced P3s in G is modification-disjoint if every two P3s in H
do not share edges or non-edges, that is, they share at most one vertex. The formal problem
definition is as follows.

Cluster Editing above modification-disjoint P3 packing (CEaMP)
Input: A graph G = (V, E), a modification-disjoint packing H of induced P3s of G,
and a non-negative integer ℓ.
Question: Is there a cluster editing set, i.e. a set of vertex pairs S ⊆

(
V
2
)

so that
G△S is a union of disjoint cliques, with |S| − |H| ≤ ℓ?

We also say that a set S as above is a solution.

Our results. At Shonan Meeting no. 144 [33] Christian Komusiewicz re-iterated the question
of van Bevern et al. [44] and it was also asked in Vincent Froese’s dissertation [25]. In this
paper, we answer this question negatively by showing the following.

▶ Theorem 1. Cluster Editing above modification-disjoint P3 packing is NP-hard
even for ℓ = 0 and when each vertex in the input graph is incident with at most 23 P3s of H.

In other words, given a graph G and a packing H of modification-disjoint P3s in G, it is
NP-hard to decide if one can delete or insert exactly one edge per element of H to obtain a
cluster graph. Proving Theorem 1 was surprisingly nontrivial. A straightforward approach
would be to amend the known reductions [35, 23] that show NP-hardness for constant
maximum vertex degree by specifying a suitable packing of P3s. However, an argument based
on the linear-programming relaxation of packing modification-disjoint P3s shows that the
graphs produced by these reductions do not admit tight P3 packing bounds. We did not find
a way around this issue and thus developed a novel reduction based on new gadgets.

The verdict spelt by Theorem 1 is unfortunately quite damning. It indicates that even
just reaching the lower bound given by a modification-disjoint P3 packing already captures
the algorithmic hardness of the problem. However, there may be a way out of this conundrum:
Call a modification-disjoint P3 packing 1/c-integral if each vertex is in at most c packed P3s
(and say integral in place of 1-integral and half-integral in place of 1/2-integral). As the case
c = 1 is just the case of vertex-disjoint packings, van Bevern et al. [44] showed that Cluster
Editing parameterized by the excess over integral P3 packings is fixed-parameter tractable.
Thus it becomes an intriguing question to find the largest c < 23 such that CEaMP remains
tractable with respect to the excess over 1/c-integral packings. We provide progress towards
answering this question here. The problem Cluster Editing above half-integral P3
packing (CEaHMP) is defined in the same way as CEaMP except that the input packing H
is half-integral. It turns out that the complexity of the problem indeed drops when making
the packing half-integral:

▶ Theorem 2. Cluster Editing above half-integral P3 packing parameterized by
the number ℓ of excess edits is in XP. It can be solved in O(n2ℓ+O(1)) time, where n is the
number of vertices in the input graph.

A straightforward idea to prove Theorem 2 would be to adapt the fixed-parameter algorithm
for vertex-disjoint packings given by van Bevern et al. [44]. Their main idea is to show that if
a packed P3 P of the input graph G admits a solution that is optimal for P and that respects
certain conditions on the neighborhood of V (P ) in G then this solution can be used in an
optimal cluster-editing set for G. Afterwards, each packed P3 P either needs an excess edit
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in V (P ) or an edit incident with V (P ) in G. Since the P3s in the packing are vertex-disjoint
an edit incident with V (P ) will be in excess over the packing lower bound as well. It then
follows that the overall number of edits is bounded by a function of the excess edits.

Unfortunately, the above idea fails for modification-disjoint packings for two reasons.
First, the property that packed P3s have an edit incident with them is not helpful anymore,
because these edits may be part of other packed P3s and hence not be in excess. Second, if we
would like to preserve that these edits are excess, we need to check the special neighborhood
properties of van Bevern et al. [44] for arbitrarily large connected components of packed
P3s efficiently. We did not see a way around these issues and instead designed an algorithm
from scratch: A straightforward guessing of the excess edits reduces the problem to the case
where we need to check for zero excess edits. This case is then solved by an extensive set
of reduction rules that exploit the structure given by the half-integral packing. Essentially,
we successively reduce the maximum size of clusters in the final cluster graph. This then
allows us to reduce the problem to Cluster Deletion. Together with the properties of
the packing, this problem allows a formulation as a 2SAT formula which we then solve in
polynomial time.

Organization. After brief preliminaries in Section 2, we give an outline of the reduction
used to show Theorem 1 in Section 3. Section 4 then contains an outline of the proof of
Theorem 2. Due to space constraints, parts of the constructions and algorithms are deferred
to a full version of the paper [37].

2 Preliminaries

In this paper, we denote an undirected graph by G = (V, E), where V = V (G) is the set of
vertices, E = E(G) is the set of edges, and

(
V
2
)
\E is the set of non-edges. An undirected edge

between two vertices u and v will be denoted by uv where we put uv = vu. An undirected
non-edge between two vertices x and y will be denoted by xy, where we put xy = yx, and
we will explicitly mention that xy is a non-edge in case of confusion with the notation of an
edge. If uv is an edge in the graph, we say u and v are adjacent. We denote a bipartite graph
by B = (U, W, E), where U, W are the two parts of the vertex set of B and E is the set of
edges of B. We say that a bipartite graph is complete if for every pair of vertices u ∈ U

and w ∈ W , uw ∈ E. For a non-empty subset of vertices X ⊆ V , we denote the subgraph
induced by X by G[X]. A clique Q in a graph G is a subgraph of G in which any two distinct
vertices are adjacent. A cluster graph is a graph in which every connected component is a
clique. A connected component in a cluster graph is called a cluster.

Let G′ be a cluster graph and let S be a cluster editing set S such that G△S = G′. We
say that two cliques Q1 and Q2 of G are merged (in G′) if they belong to the same cluster
in G′. We say that Q1 and Q2 are separated (in G′) if they belong to two different clusters
in G′. When mentioning the edges or non-edges between the vertices of the clique Q1 and
the vertices of the clique Q2, we refer to the edges or non-edges between the clique Q1 and
the clique Q2 for short. Let ℓ, r ∈ N. We denote a path with ℓ vertices by Pℓ and a cycle
with r vertices by Cr.

Let x, y, z be vertices in a graph G. We say that xyz is an induced P3 of G if xy, yz ∈ E(G)
and xz /∈ E(G). Vertex y is called the center of xyz. We say that vertices x, y, z belong to
xyz or x, y, z are incident with xyz. We also say that xyz is incident with the vertices x, y

and z. In this paper, all P3s we mention are induced P3s; we sometimes skip the qualifier
“induced” for convenience.
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Figure 1 Basic structure of graph constructed from a 3-CNF formula. Depicted is a clause gadget
for a clause xa ∨ ¬xb ∨ ¬xc and the variable gadgets for xa, xb, and xc.

Given an instance (G,H, ℓ) of CEaMP, if xyz is a P3 in G and xyz ∈ H, we say that
xyz is packed, and we say that the edges xy, yz are covered by xyz and the non-edge xz is
covered by xyz. If an edge xy is covered by some P3 of H, we say that xy is a packed edge.
Otherwise we say that xy is a non-packed edge. If a non-edge uv is covered by some P3 of H,
we say that uv is a packed non-edge. Otherwise we say that uv is a non-packed non-edge. If
xyz is a P3 in G and Q1, Q2, and Q3 are pair-wise non-intersecting vertex sets of G, we say
that xyz connects Q1 and Q3 via Q2 if the center y of xyz belongs to Q2 and x, z belong to
Q1 and Q3, respectively.

We sometimes need finite fields of prime order. Let p be some prime. By Fp we denote
the finite field with the p elements 0, . . . , p− 1 with addition and multiplication modulo p.

3 NP-hardness for tight modification-disjoint packings

Overview. In this section, we outline the proof of Theorem 1 that shows a reduction from
the NP-hard problem of deciding satisfiability of 3-CNF formulas. Given a 3-CNF formula Φ
with variables x0, . . . , xn−1 and clauses Γ0, . . . , Γm−1 we construct a graph G = (V, E) with
a modification-disjoint packing H of induced P3s such that Φ has a satisfying assignment if
and only if G has a cluster editing set S which consists of exactly one edit in each P3 in H.

Let us start with Figure 1 which depicts the basic structure of the graph G. The
fundamental building blocks of G and H are what we call proto-clusters, indicated by white
circles. A proto-cluster is an induced subgraph H of G whose vertex set is maximal with
respect to the property that H contains a spanning tree that consists entirely of non-packed
edges. Note that the set of proto-clusters partitions the vertex set of G. As we cannot edit
non-packed edges, the clusters in each solution that we may obtain induce a partition that is
coarser than the partition given by the proto-clusters.

Our first concern is to interconnect the proto-clusters in such a way that a grouping into
solution clusters implies a satisfying assignment of Φ – the construction is sound. To this
end, a straightforward idea of modeling the truth-value of a variable comes to mind: Use
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49:6 Cluster Editing Parameterized Above Modification-Disjoint P3-Packings

an even-length cycle of proto-clusters and add P3s to the packing H such that either the
odd pairs or the even pairs of proto-clusters on the cycle need to be merged into clusters.
The variable gadgets are represented by the three gray cycles in Figure 1. A clause gadget is
slightly less obvious, because we need a three-way choice and straightforward constructions
yield only two-way choices. A solution is shown in Figure 1: There are four proto-clusters,
Q1

d through Q4
d such that there is a non-packed nonedge between Q1

d and Q4
d and a path

in G from Q1
d over Q2

d and Q3
d to Q4

d. Because of the non-packed nonedge, the proto-clusters
Q1

d and Q4
d are in different solution clusters. Hence, we need to separate a pair of Qi

d and
Qi+1

d for some i ∈ [3]. This models the choice of the variable that shall satisfy the clause.
This choice is then transferred to the variable gadgets by suitable packed P3s and further
proto-clusters. A nontrivial issue in this transfer of choices is how to connect variable gadgets
to the rest of the construction. On the one hand, we need to pack P3s that are partly in the
variable gadgets and partly outside so as to transfer the choice and on the other hand, we
need a packing of P3s inside the variable gadgets in order to allow both the merging of odd
pairs and even pairs of proto-clusters in the gadget.

The most involved part of the construction is indeed how to ensure the completeness,
that is, the property that a satisfying assignment for Φ gives a cluster-editing set with zero
excess edits for G. This issue makes the construction that we obtain somewhat special: We
need to pack P3s into the above “skeleton” construction so as to allow for the merging and
cutting of pairs of proto-cluster according to the satisfying assignment. We accomplish this
by a careful implementation of the above gadgets such that the edges and non-edges that are
covered by the packed P3s of the skeleton construction have a special structure. We then use
an algebraic construction that allows us to prove that the needed covering of the remaining
edges and non-edges by modification-disjoint P3s exists.

We now proceed to describing the variable and clause gadgets more formally and then
show how we have resolved the above two issues.

Variable gadgets. As mentioned, a variable will be represented by a cycle of proto-clusters
such that any solution needs to merge either each odd or each even pair of consecutive
proto-clusters. These two options represent the truth value assigned to the variable. In order
to enable both associated solutions with zero edits above the packing lower bound, we build
an associated packing of P3s such that all vertex pairs between consecutive proto-clusters are
covered by a P3 in the packing. Since we later on need to connect the variable gadgets to
the clause gadgets, each proto-cluster will contain five vertices, giving us enough attachment
points for later.

Let mi denote the number of clauses that contain the variable xi, i = 0, 1, . . . , n− 1. For
each variable xi, i = 0, 1, . . . , n− 1, we create 4mi vertex-disjoint cliques with 5 vertices each,
namely Ki

0, . . . , Ki
4mi−1. In each Ki

j , j = 0, 1, . . . , 4mi − 1, the vertices are vi
j,0, . . . , vi

j,4. For
each j = 0, 2, . . . , 4mi − 2, we create P3s connecting Ki

j , Ki
j+1, and Ki

j+2 as follows (here we
identify Ki

0 as Ki
4mi

).
We add pairwise modification-disjoint P3s to cover all edges between the cliques Ki

j we
have just introduced. Recall that F5 is the finite field of the integers modulo 5. We take
three consecutive cliques and add P3s with one vertex in each of the three cliques. To do
this without overlapping two P3s, we think about the cliques’ vertices as elements of F5 and
add a P3 for each possible arithmetic progression. That is, in each added P3 the difference of
the first two elements of the P3 is equal to the difference of the second two elements. In this
way, each vertex pair is contained in a single P3 since the third element is uniquely defined.
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Formally, for every triple of elements p, q, r ∈ F5 satisfying the equality q − p = r − q

over F5, we add to the graph the edges vi
j,pvi

j+1,q and vi
j+1,qvi

j+2,r and to the packing H
the P3 given by vi

j,pvi
j+1,qvi

j+2,r. Note that in this manner the clique Ki
j+1 becomes fully

adjacent to Ki
j and to Ki

j+2 while Ki
j+1 stays anti-adjacent to all other cliques Ki

j′ .
Observe that the P3s given by vi

j,pvi
j+1,qvi

j+2,r for j = 0, 2, . . . , 4mi − 2 such that q − p =
r − q are pairwise modification-disjoint: For each j = 0, 2, . . . , 4mi − 2, an arbitrary edge
just introduced between Ki

j and Ki
j+1 has the form {vi

j,p, vi
j+1,q} for some p, q ∈ F5. It

belongs to the unique P3 given by vi
j,pvi

j+1,qvi
j+2,r, where r = 2q − p. Similarly, an arbitrary

edge {vi
j+1,q, vi

j+2,r} for q, r ∈ F5 belongs to the unique P3 given by vi
j,2q−rvi

j+1,qvi
j+2,r

and an arbitrary non-edge {vi
j,p, vi

j+2,r} for p, r ∈ F5 belongs to the unique P3 given by
vi

j,pvi
j+1,(p+r)·2−1vi

j+2,r, where 2−1 is the multiplicative inverse of 2 over F5, that is, 2−1 = 3.
After this construction, we set the P3 packing of the variable gadgets to

Hvar = {vi
j,pvi

j+1,qvi
j+2,r | i = 0, . . . , n − 1; j = 0, 2, . . . , 4mi − 2; p, q, r ∈ F5; and q − p = r − q}.

This finishes the first stage of the construction. The truth values of the variable are
represented as follows. For every variable xi, i = 0, . . . , n− 1, if Ki

j and Ki
j+1 are merged for

j = 0, . . . , 4mi − 2, then this represents assigning false to the variable xi. If Ki
j+1 and Ki

j+2
are merged for j = 0, . . . , 4mi − 2, then this represents variable xi being true. We will make
minor modifications to the variable gadgets and Hvar below so as to transmit the choice of
truth value to the clause gadgets.

Skeleton of the clause gadget. In order to introduce the construction of the clause gadget,
we first give a description of the skeleton of the clause gadget. The skeleton, depicted in
Figure 1, is a subgraph of the final construction that allows us to prove the soundness. The
construction is finalized later.

For each variable xi, i = 0, 1, . . . , n− 1, of Φ we fix an arbitrary ordering of the clauses
that contain xi. If a clause Γj contains xi, let π(i, j) ∈ {0, . . . , mi− 1} denote the position of
the clause Γj in this ordering. Let initially Htra = ∅. For each clause Γd (d = 0, . . . , m− 1)
proceed as follows. We first introduce four cliques Q1

d, Q2
d, Q3

d and Q4
d. Let Γd contain the

variables xa, xb and xc. We introduce the cliques T a
d , T b

d and T c
d , called transferring cliques.

All of the cliques introduced are pairwise vertex disjoint and can be of different sizes. The
concrete size will be determined later. Next, we introduce the following P3s into G and Htra
(see the center of Figure 1):

P 1
d and P 2

d that both connect T a
d and Q2

d via Q1
d and that share a vertex in Q1

d.
P 3

d and P 4
d that both connect T b

d and Q2
d via Q3

d and that share a vertex in Q3
d.

P 5
d and P 6

d that both connect T c
d and Q3

d via Q4
d and that share a vertex in Q4

d.
All the P3s above are pairwise vertex-disjoint except for the shared vertices explicitly
mentioned in the definition. We call the P3s of Htra transferring P3s.

Connection to the variable gadgets. Next we connect the transferring cliques T a
d , T b

d , and
T c

d to the variable gadgets of xa, xb, and xc, respectively. To avoid additional notation, we
only explain the procedure for T a

d and xa, the other pairs are connected analogously. We
connect T a

d to the variable gadget of xa by a set of four modification-disjoint P3s as shown
in Figure 2 and explained formally below. The centers of these P3s are in Ka

4π(a,d)+1. For
each of these four P3s, exactly one endpoint is an arbitrary distinct vertex in T a

d which is
different from the endpoints of the P3s connecting T a

d to Q1
d; we denote these endpoints as

w1, w2, w3, w4. The other endpoint is in Ka
4π(a,d)+2 if xa appears positively in Γd and the

other endpoint is in Ka
4π(a,d) otherwise. The precise centers and endpoints in the cliques
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v5

v1

v6

v2

v3v4

v7v8 w1

w2

w3

w4

Ka
4π(a,d)

Kp
4π(p,d)+1

Ka
4π(a,d)+2

T a
d

Figure 2 Connection of a clause gadget with a variable gadget for a variable xa which appears
positively in the clause. White ellipses represent cliques. The vertices in the cliques in the variable
gadget are ordered from right to left according to the elements of F5 which they represent. For
example, the rightmost vertex in Ka

4π(a,d) is va
4π(a,d),0 (corresponding to 0 ∈ F5) and the leftmost

is va
4π(a,d),4 (corresponding to 4 ∈ F5). The gray lines adjacent to cliques in the variable gadget

represent some of the P3s that were introduced into the variable gadgets in the beginning. In colors
red, black, green, and blue we show the P3s that connect the transferring clique T a

d with the variable
gadget of variable xa. Herein, dotted lines are non-edges and solid lines are edges. Note that these
connecting P3s supplant some of the edges of previously present P3s in the variable gadget – the
previously present P3s are then removed. For example the green P3 replaces the edge v2v3 of the P3

given by v6v2v3 that was previously present. To maintain that each vertex pair between consecutive
cliques in the variable gadget is covered by some P3 in the packing, we add the brown P3s.

Ka
4π(a,d)+2 or Ka

4π(a,d) are specified below. Since these newly introduced P3s use edges that
belong to some P3s in Hvar that were introduced while constructing the variable gadgets,
we will remove such P3s in the variable gadget from Hvar, remove their corresponding edges
from the graph, and add some new P3s to Hvar as described below. As a result, the clique
Ka

4π(a,d)+1 may no longer be fully adjacent to Ka
4π(a,d) or Ka

4π(a,d)+2. We will however
maintain the invariant that each vertex pair between Ka

4π(a,d)+1 and Ka
4π(a,d) or Ka

4π(a,d)+2 is
covered by a P3 in the packing and that all the P3s of Hvar are pairwise modification-disjoint.

Formally, if xa appears positively in Γd, we denote:

v1 = va
4π(a,d)+1,0 v2 = va

4π(a,d)+1,1 v3 = va
4π(a,d)+2,1 v4 = va

4π(a,d)+2,2

v5 = va
4π(a,d),0 v6 = va

4π(a,d),1 v7 = va
4π(a,d),3 v8 = va

4π(a,d),4.

If xa appears negatively in Γd, we swap the roles of Ka
4π(a,d) and Ka

4π(a,d)+2, that is:

v1 = va
4π(a,d)+1,0 v2 = va

4π(a,d)+1,1 v3 = va
4π(a,d),1 v4 = va

4π(a,d),2

v5 = va
4π(a,d)+2,0 v6 = va

4π(a,d)+2,1 v7 = va
4π(a,d)+2,3 v8 = va

4π(a,d)+2,4.

As shown in Figure 2, we remove the P3s given by v8v1v3, v7v1v4, v6v2v3, and v5v2v4 from
Hvar and we remove their corresponding edges from the graph. Then we add the P3s given
by v5v6v2 and v1v7v8 to the graph and to Hvar. Finally, we connect T a

d via Ka
4π(a,d)+1 by

adding the P3s given by w1v1v3, w2v2v4, w3v2v3, and w4v1v4 to the graph and to Htra. Note
that, indeed, each vertex pair between Ka

4π(a,d)+1 and Ka
4π(a,d) and between Ka

4π(a,d)+1 and
Ka

4π(a,d)+2 remains covered by a P3 in the packing after replacing all P3s. This finishes the
construction of the skeleton of the clause gadgets.

Intuitively, the skeleton ensures the soundness as follows. Recall from above that we need
to delete at least one of three sets of edges in the solution, namely the edges between Q1

d

and Q2
d, the edges between Q2

d and Q3
d, or the edges between Q3

d and Q4
d. Assume that the
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edges between Q1
d and Q2

d are deleted and the variable xa appears positively in the clause Γd

as in Figure 1. Because of the constraints imposed by the P3s P 1
d and P 2

d , cliques T a
d and

Q1
d have to be merged in the final cluster graph. Since Ka

4π(a,d)+1 cannot be merged with Q1
d

(there are no edges between Q1
d and Ka

4π(a,d)+1, and no P3s connecting Q1
d and Ka

4π(a,d)+1),
we have to separate T a

d from Ka
4π(a,d)+1. Then, the P3s connecting T a

d with Ka
4π(a,d)+2 force

Ka
4π(a,d)+1 and Ka

4π(a,d)+2 to merge. This means xa is true and it satisfies the clause Γd.

Merging model and P3 padding. Above we have defined all proto-clusters of the final
constructed graph. What remains is to ensure that the proto-clusters indeed can be merged
as required to construct a solution from a satisfying assignment to Φ in the completeness
proof. Intuitively, in this construction we have pairs of proto-clusters A and B which we
would like to be able to either merge or separate without incurring excess edits. To achieve
this, we add P3s that have both an edge and a nonedge between A and B. If we are able to
cover all vertex pairs between A and B with such P3s, then merging or separating A and B

will indeed not incur excess edits. The pairs of proto clusters that we want to be able to
merge are captured in the merging model, a graph H that contains as vertices the cliques in
the gadgets that we have introduced and the following edges:
{{Ki

j , Ki
j+1} | i = 0, 1, . . . , n− 1 and j = 0, 1, . . . , 4mi − 1}; these pairs are needed to be

able to set the variable gadgets according to their truth values.
{{T i

d, Ki
4π(i,d)}, {T

i
d, Ki

4π(i,d)+1}, {T
i
d, Ki

4π(i,d)+2} | variable xi occurs in clause Γd}; these
edges are needed to merge a transferring clique to its corresponding variable gadget if
the variable does not satisfy the clause associated with the transferring clique.
{{Q1

d, Q2
d}, {Q1

d, Q3
d}, {Q2

d, Q3
d}, {Q2

d, Q4
d}, {Q3

d, Q4
d} | d = 0, 1, . . . , m− 1}; in order to be

able to merge proto-clusters in a clause gadget if they do not correspond to a variable
that was chosen to satisfy the clause.
{{T i

d, Qk
d} | if variable xi occurs in Γd and T i

d is adjacent in G to Qk
d with k ∈ {1, 4}};

in order to be able to merge a transferring clique to a proto-cluster in a clause gadget if
the corresponding variable was chosen to satisfy the clause.
{{T i

d, Q3
d}, {T i

d, Q4
d} | if variable xi occurs in Γd and T i

d is adjacent in G to Q3
d}; ditto

(the construction is asymmetric).
The aim is now to define a vertex partition of the merging model into levels and to pad
P3s between levels. The levels are as follows: L0 contains all cliques in variable gadgets; L1
contains Q1

d and Q4
d for each d = 0, . . . , m− 1; L2 contains Q3

d for each d = 0, . . . , m− 1; L3
contains Q2

d for each d = 0, . . . , m− 1; and L4 contains all transferring cliques. Observe that
apart from edges in L0, all edges of H are between different levels. Moreover, orienting the
edges in H from higher to lower level gives an acyclic orientation when ignoring the edges
in level L0 and each vertex in H on some level Li is adjacent to only a constant number
of vertices on a lower level Lj , j < i. Hence, we now go through the cliques in V (H) in
increasing order of levels and, for each clique Q, we pad P3s between Q and its constant
number of neighbors on lower levels. The padding is done so as to cover all vertex pairs
between Q and the lower neighbors that are not covered by the skeleton yet. To show that
such a covering exists, we need to analyze the structure of the vertex pairs that are already
covered. We can show that these pairs form either P3s (e.g. between T a

d and Q1
d in Figure 1)

or cycles of length eight (e.g. between T a
d and the two cliques Kp

4π(p,d)+1 and Kp
4π(p,d)+2 in

Figure 2). Using this property, we can show that the desired padding of P3s exists by proving
the following result.2 Note that the statement is about triangle packings; the triangles
correspond to the vertex pairs covered by P3s.

2 To obtain the desired bound on the number of P3s containing a fixed vertex we need a slightly more
general result. See the details in the full version.
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▶ Lemma 3. Let p be a prime number with p ≥ 2. Let B = (V, W, E) be a complete bipartite
graph such that |V | = p and |W | = 2p. Let F ⊆ E be a set of edges such that each connected
component of (V ∪W, F ) is a either a P3 with a center in V or a C8. Then there exists an
edge-disjoint triangle packing τ in (V ∪W, E \ F ∪

(
W
2

)
) which covers E \ F such that every

triangle in τ contains exactly one vertex of V , the graph (W,
(

W
2

)
\E(

⋃
τ)) is connected, and

each vertex is in at most p triangles of τ .

We apply Lemma 3 as follows: W is the clique for which we want to pad P3s and V is the
union of the cliques that are neighbors of W in H on lower layers. The set F contains the
vertex pairs already covered by the skeleton. The packing τ corresponds to our desired P3
packing. Finally, the connectedness property on (W,

(
W
2

)
\ E(

⋃
τ)) ensures that W remains

a proto-cluster. Using the padding we can ensure the soundness, concluding the proof of
Theorem 1.

The proof of Lemma 3 works roughly as follows. We partition W into two parts W1, W2,
each of size p. The triangles in the packing contain one vertex of each of W1, W2, and V ;
they are defined by interpreting W1, W2, and V each as the field Fp and taking three vertices
i ∈ W1, j ∈ W2, k ∈ V such that j − i = k − j. This defines a covering of all vertex pairs
between V and W . The vertex pairs in F are avoided by covering them with specific triangles,
which are then removed from the final packing.

4 XP-algorithm for half-integral packings

In this section, we study CEaMP in the special setting where every vertex is incident with
at most two P3s of the packing H. We define this problem as Cluster Editing above
half-integral P3 packing (CEaHMP). We prove the following.

▶ Theorem 2 (Restated). Cluster Editing above half-integral P3 packing parame-
terized by the number ℓ of excess edits is in XP. It can be solved in O(n2ℓ+O(1)) time, where
n is the number of vertices in the input graph.

The main tool in proving Theorem 2 is a polynomial-time algorithm for the case where ℓ = 0:

▶ Theorem 4. Cluster Editing above half-integral P3 packing can be solved in
polynomial time when ℓ = 0, that is, when no excess edits are allowed.

The proof of Theorem 4 will be given in the final part of this section. Using this we can
prove Theorem 2 as follows: Essentially, the XP algorithm for Cluster Editing above
half-integral P3 packing guesses (by trying all possibilities) the number, ℓa, of excess
edits that are not contained in any P3 in H and guesses the concrete edits to be made. Then
it guesses the P3s in H that harbor the remaining excess edits and it guesses how these P3s
are resolved. Then it checks whether the remaining instance has a cluster-editing set without
excess edits over the remaining P3 packing H′ using the algorithm from Theorem 4. The full
proof for Theorem 2 is contained in the full version [37].

We outline the polynomial-time algorithm for CEaHMP when ℓ = 0. It is based on
a series of reduction rules that perform successive modifications to the input graph and
P3 packing to get an equivalent new instance. Whenever we state a reduction rule in the
following, we assume that all the reduction rules before it have been applied exhaustively.
We will omit the correctness proofs for most reduction rules and lemmas here – they are
contained in the full version [37]. We first aim to decrease the maximum size of clusters in a
solution cluster graph, then reduce to Cluster Deletion and then to 2SAT.
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We again use the notion of proto-clusters as in the previous sections. We say a proto-
cluster C is isolated from a proto-cluster D if there are no edges between C and D. We
classify the P3s of H into four types. For an induced P3 xyz ∈ H, if x, y belong to one
proto-cluster and z belongs to another proto-cluster, or symmetrically y, z belong to one
proto-cluster and x belongs to another proto-cluster, then xyz is a type-α P3; if x, z belong
to one proto-cluster and y belongs to another proto-cluster, then xyz is a type-β P3; if
x, y, z belong to three distinct proto-clusters, then xyz is a type-γ P3; if x, y, z belong to one
proto-cluster then xyz is a type-δ P3.

The first five reduction rules are simple and their correctness follows almost immediately:

▶ Reduction Rule 1. For any proto-cluster C, if there are two vertices u, v ∈ V (C) such
that uv is a non-packed non-edge, i.e., uv is not covered by any P3 of H, then return NO.

▶ Reduction Rule 2. If there is a type-β or type-δ P3 xyz ∈ H, insert the edge xz into G

and remove xyz from H.

▶ Reduction Rule 3. For any two proto-clusters A and B, if there is a non-packed non-edge
uv such that u ∈ V (A) and v ∈ V (B), and there is a packed edge xy such that x ∈ V (A) and
y ∈ V (B), then delete xy and remove the corresponding packed P3 from H.

▶ Reduction Rule 4. If there is a connected component C in the graph of size at most 6, then
do brute force on C to check if there is a cluster-editing set F for C such that |F | is equal to
the number of packed P3s incident with a vertex of C. If there is such a cluster-editing set F ,
then perform the operations of F to C and remove the corresponding packed P3s from H.
Otherwise, if there is no such cluster-editing set F , return NO.

▶ Reduction Rule 5. If there is a proto-cluster C which is an isolated clique, then remove C

from the graph.

Already, the above simple rules effectively remove proto-clusters of size at least four:

▶ Lemma 5. After applying Reduction Rules 1 - 5 exhaustively, if the algorithm did not
return NO, then there is no proto-cluster of size at least 4.

Proof. It is not hard to check that there are no isolated proto-clusters of size at least 4 after
the previous reduction rules. Assume that there is a proto-cluster A of size at least 5 and
a vertex v ∈ V (G) \ V (A) such that v is adjacent to a vertex of A. There are at least five
vertex pairs between v and V (A) which are covered by packed P3s because Reduction Rule 3
is not applicable. But v is incident with at most four packed edges or packed non-edges
because of half-integrality, a contradiction. Next, assume that there is a proto-cluster B of
size exactly 4 and a vertex u ∈ V (G) \ V (B) such that u is adjacent to a vertex of B. There
are four vertex pairs between u and V (B) and, moreover, these are covered by two type-α
P3 since there is no type-β P3 after Reduction Rule 2. We claim that V (B) ∪ {u} induces a
connected component C in the graph. Suppose for contradiction that there is another vertex
x adjacent to one vertex of V (B). Then either Reduction Rule 3 can be applied if the vertex
pairs between x and V (B) are not all packed or otherwise B is not a proto-cluster: It would
have to contain four packed edges and hence could not contain a spanning tree of non-packed
edges. Thus Reduction Rule 4 applies to C, again a contradiction. ◀

Next, only proto clusters of size at most three remain, but those of size exactly three have a
very restricted structure. The following rule takes care of them.
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▶ Reduction Rule 6. After applying Reduction Rules 1 - 5 exhaustively, if there is a proto-
cluster C of size 3, a proto-cluster B of size 1 and a proto-cluster A of size 1 such that C is
not isolated from B, and a type-γ P3 connects A and C via B, then delete the packed edge
between A and B, insert an edge to the packed non-edge between C and B, and remove the
corresponding P3s from H.

▶ Lemma 6. After applying Reduction Rules 1 - 6 exhaustively, there are no isolated cliques
in the instance and every proto-cluster of the instance is of size at most 2. Moreover, every
packed P3 is a type-γ P3.

After applying Reduction Rules 1 - 6 exhaustively, suppose that the resulting instance
(G,H, ℓ = 0) of CEaHMP has a solution S. We now focus on the sizes of the clusters
in G△S. We can see that the maximum size of a cluster in G△S is six by some simple
observation. The next lemma shows that clusters of size exactly six can be removed by
Reduction Rule 4.

▶ Lemma 7. Let (G,H, ℓ = 0) be an instance of CEaHMP such that the size of every
proto-cluster in G is at most 2 and let S be a solution to (G,H, ℓ = 0). Suppose that A is
a clique of size 6 in G△S. Then the vertices of V (A) belong to three proto-clusters C1, C2,
and C3 of size two in G. In addition, every vertex pair between C1 and C2, between C1 and
C3, between C2 and C3 is covered by some P3 of H. Furthermore, V (C1) ∪ V (C2) ∪ V (C3)
forms a connected component C in G.

C1

C3C2

C1

C4

C2 C3

C1

C4

C2 C3

C1

C4

C2 C3

C1

C4

C2 C3

Figure 3 The first picture is an example of forming a clique of size 6 in G△S as in Lemma 7, the
other pictures are potential examples of forming a clique of size 5 in G△S as in Lemma 8.

Clusters of size four and five also have restricted structures as shown by following lemmas.

▶ Lemma 8. After applying Reduction Rules 1 – 3 exhaustively, let (G,H, ℓ = 0) be an
instance of CEaHMP such that the size of every proto-cluster in G is at most 2 and S

is a solution to (G,H, ℓ = 0). Suppose that A is a clique of size 5 in G△S. Then the
vertices of V (A) belong to three proto-clusters C1, C2 and C3 (or C2, C3 and C4) in G

such that |C1| = |C4| = 1 and |C2| = |C3| = 2. Every vertex pair between Ci and Cj

(i, j ∈ {1, 2, 3, 4}, i ≠ j) is covered by a packed P3 except that the vertex pair between C1
and C4 is a non-packed non-edge. In addition, V (C1) ∪ V (C2) ∪ V (C3) ∪ V (C4) forms a
connected component C in G.

▶ Lemma 9. After applying Reduction Rules 1 – 6 exhaustively, let (G,H, ℓ = 0) be an
instance of CEaHMP such that the size of every proto-cluster in G is at most 2 and S

is a solution to (G,H, ℓ = 0). Suppose that A is a clique of size 4 in G△S and V (A) =
{x, y, z1, z2}. Then three vertices of V (A), say x, y, z2 belong to one packed P3 in G, and one
vertex of x, y, z2, say z2, with z1 forms a proto-cluster C1 of size two in G while x and y form
a proto-cluster C2 of size one and a proto-cluster C3 of size one in G respectively. Moreover,
there are two vertices u and v such that x, u, z1 belong to a packed P3 in G, y, v, z1 belong to
another packed P3 in G. u and v form a proto-cluster C4 of size one and a proto-cluster C5
of size one in G respectively.
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z1

z2

y xv u

z1

z2

x

y uv w

z1

z2

x

y uv w

z1

z2

x

y uv w

z1

z2

x

y uv w v a b c w

Figure 4 Subgraphs that may form clusters of size 4 and how to reduce them (bottom right).

Based on the previous lemmas, we design some reduction rules that handle all potential cases
in which there are cliques of size at least 4 in G△S. Due to space constraints they appear
only in the full version [37]. We show some examples of these cases in Figures 3 and 4.

▶ Lemma 10. After applying all reduction rules exhaustively, let (G,H, ℓ = 0) be an instance
of CEaHMP which has a solution S. Then there is no clique of size at least 4 in G△S.

Next, we introduce a new problem called Cluster Deletion above modification-
disjoint P3 packing (CDaMP), defined as follows: Given a graph G = (V, E), a
modification-disjoint packing H of induced P3s of G, and a non-negative integer ℓ, decide
whether there is a cluster-deletion set, that is, a set of edges S ⊆ E so that G′ = (V, E \ S)
is a union of disjoint cliques, with |S| − |H| ≤ ℓ.

▶ Lemma 11. Let (G,H, ℓ = 0) be an instance of CEaHMP. After applying all reduction
rules exhaustively, we get an instance (G′,H′, ℓ = 0) of CEaHMP. Then (G,H, ℓ = 0) is a
YES-instance of CEaHMP if and only if (G′,H′, ℓ = 0) is a YES-instance of CDaMP.

Let (G′,H′, ℓ = 0) be the resulting instance of CDaMP. Let Ec ⊆ E(G′) be the set
of edges covered by some P3 of H′ and let λ = 2|H′|. We fix an arbitrary ordering of
the edges of Ec and label these edges by e0, e1, ..., eλ−1 according to this ordering. We
construct an instance of 2-SAT with λ variables x0, x1, ..., xλ−1 as follows. First, initialize
the 2-SAT formula Φ = true. For each induced P3 xyz ∈ H′, let ei = xy, ej = yz and update
Φ← Φ∧ (xi ∨xj)∧ (¬xi ∨¬xj). For each induced P3 uvw in G′ such that uv and vw belong
to two distinct P3s of H′ respectively, if uv = ep and vw = eq, then update Φ← Φ∧ (xp∨xq).
This completes the construction of the 2-SAT instance.

▶ Lemma 12. Let (G′,H′, ℓ = 0) be an instance of CDaMPand construct a 2-SAT formula
Φ as described above. Then (G,H, ℓ = 0) is a YES-instance if and only if Φ is satisfiable.

As a result we can reduce the problem to 2-SAT and solve it in polynomial time.

5 Conclusion

Unfortunately the lower bound that we have obtained is a major roadblock in designing fixed-
parameter algorithms for Cluster Editing parameterized above modification-disjoint P3s.
On the positive side, Cluster Editing above half-integral P3 packing (CEaHMP)
admits an XP-algorithm with respect to the number of excess edits. We have left open
whether CEaHMP is fixed-parameter tractable. Towards this, on the one hand the half-
integral P3 packings provide quite strong structure that can be exploited to design several
branching rules. On the other hand, when attacking this question from several angles we
discovered large grid-like structures that seemed difficult to overcome in fixed-parameter
time, and a corresponding W[1]-hardness result would also not be surprising.
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A different future research direction is to deconstruct our hardness reduction by exam-
ining which substructures it contains that are seldom in practical data. Forbidding such
substructures may destroy the already somewhat fragile hardness construction, perhaps
paving the way for fixed-parameter algorithms.

Finally, it would be interesting to see how modification-disjoint P3 packings look in
practice. If it is true that only few vertices are in a large number of packed P3s and most of
them are in a small constant number, then a strategy that settles the clustering around the
vertices with large number of P3s and then applies reduction rules from Section 4 could be
efficient.
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