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Abstract
Over the past few decades, the study of dense structures from the perspective of approximation
algorithms has become a wide area of research. However, from the viewpoint of parameterized
algorithm, this area is largely unexplored. In particular, properties of random samples have been
successfully deployed to design approximation schemes for a number of fundamental problems on
dense structures [Arora et al. FOCS 1995, Goldreich et al. FOCS 1996, Giotis and Guruswami
SODA 2006, Karpinksi and Schudy STOC 2009]. In this paper, we fill this gap, and harness the
power of random samples as well as structure theory to design kernelization as well as parameterized
algorithms on dense structures. In particular, we obtain linear vertex kernels for Edge-Disjoint
Paths, Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut, Multiway Cut
and Multicut on everywhere dense graphs. In fact, these kernels are obtained by designing a
polynomial-time algorithm when the corresponding parameter is at most Ω(n). Additionally, we
obtain a cubic kernel for Vertex-Disjoint Paths on everywhere dense graphs. In addition to
kernelization results, we obtain randomized subexponential-time parameterized algorithms for Edge
Odd Cycle Transversal, Minimum Bisection, and d-Way Cut. Finally, we show how all of our
results (as well as EPASes for these problems) can be de-randomized.
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1 Introduction

While several interesting optimization problems remain NP-complete even when restricted
to sparse graphs or dense graphs, the restriction of a problem to these families of graphs
is usually considerably more tractable algorithmically than the problem on general graphs.
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50:2 Exploiting Dense Structures in Parameterized Complexity

With respect to graph classes, sparseness usually refers to families of planar graphs, graphs
of bounded genus, graphs excluding some fixed graph H as a minor, graphs of bounded
expansion and no-where dense graphs. Here, denseness usually refers to families of graphs
with Ω(n2) edges. Additionally, sparseness and denseness can be defined for structures
beyond graphs – for example, dense 3-SAT instances are those for which the formula has
Ω(n3) clauses.

In this paper, we focus on designing deterministic kernelization algorithms and fixed-
parameter tractable (FPT) algorithms for NP-hard problems on dense structures.

We start by defining some basic definitions from Parameterized Complexity, that we
make use of. Formally, a parameterization of a problem is assigning an integer k to each
input instance and we say that a parameterized problem is fixed-parameter tractable (FPT)
if there is an algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the size of
the input and f is an arbitrary computable function depending on the parameter k only. We
will also be studying polynomial time preprocessing or kernelization.

A parameterized problem Π is said to admit a kernel if there is a polynomial-time
algorithm, called a kernelization algorithm, that reduces the input instance of Π down to an
equivalent instance of Π whose size is bounded by a function f(k) of k. (Here, two instances
are equivalent if both of them are either Yes-instances or No-instances.) Such an algorithm is
called an f(k)-kernel for Π. If f(k) is a polynomial function of k, we say that the kernel is a
polynomial kernel. For more background on Parameterized Complexity and Kernelization,
we refer to the following books [21, 15, 23, 46, 25].

1.1 Context of Our Results and Overarching Goals
The algorithmic study of NP-hard problems on dense structures is two decade old and has
a rich history. We start by giving definitions of (E)PTAS and denseness that will ease our
discussion. A PTAS is an algorithm that takes an instance I of an optimization problem and
a parameter ϵ > 0, runs in time nO(f(1/ϵ)), and produces a solution that is within a factor
1 + ϵ of being optimal. A PTAS with running time f(1/ϵ) · nO(1) is called an efficient PTAS
(EPTAS).

▶ Definition 1 ([7, 33]). A graph on n vertices is δ-dense if it has δn2/2 edges. It is
everywhere-δ-dense if the minimum degree is δn. We abbreviate Ω(1)-dense as dense and
everywhere-Ω(1)-dense as everywhere-dense.

Arora, Karger and Karpinski [7] initiated the study of NP-hard problems on dense
structures and designed PTASes for several NP-hard optimization problems. Among many
other results, they showed that Bisection, k-Way Cut, and Separator admit PTASes on
everywhere-dense instances and Max-Cut, Max-d-SAT, and Max-Hypercut(d) admit
PTASes on dense instances. The main ingredients of these results are exhaustive sampling
and its use in approximation of polynomial integer programs. These results lead to a flurry
of new ideas and results in this area. Arora, Frieze, and Kaplan [6] used the exhaustive
sampling idea to design additive approximation schemes for problems in which feasible
solutions are permutations (such as the 0-1 Quadratic Assignment Problem). Frieze
and Kannan [27] and, independently, Goldreich, Goldwasser, and Ron [29] showed that
exhaustive sampling techniques apply because of certain regularity properties in dense graphs
and used this observation to design linear time additive approximation schemes for most of
the problems that were considered in [7]. In particular, [27, 29] made PTASes of [7] into
EPTASes. Frieze and Kannan [27] also pointed out connections to constructive versions of
Szemeredi’s Regularity Lemma and Goldreich, Goldwasser, and Ron [29] found its connection
in property testing and learning theory based on an idea of degree estimator.
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This idea of degree estimator has been extremely useful in further developments in the
area. In particular, Giotis and Guruswami [28] used this idea to design a PTAS for correlation
clustering in general graphs, when the number of clusters is fixed. That is, they designed a
PTAS for d-Correlation Clustering (given an undirected graph G, edit (delete or add)
minimum number of edges so that the resulting graph becomes a disjoint union of d cliques)
running in time nO(9d/ϵ2) log n. It is also important to note here that before the paper
of Giotis and Guruswami [28], most of the earlier works largely focused on maximization
problems. In 2009, Karpinski and Schudy [33] further used the idea of degree estimator and
designed linear time EPTASes for several problems, such as d-Correlation Clustering
and Fragile Min-d-CSP on everywhere-dense instances. Several other randomized PTASes
and EPTAses based on different sets of ideas can be found in [43, 19, 32, 8, 2, 1, 5].

As we established above the algorithmic study of NP-hard problems on dense structures
has been extremely rewarding from the perspective of Approximation Algorithms. Could
this success be repeated in other algorithmic paradigms meant to cope up with NP-hard
problems? In particular, in the field of Parameterized Complexity. This leads to the following
question.

Could we exploit the denseness of structures in designing significantly faster FPT
algorithms and polynomial time kernelization algorithm for some of the fundamental
problems in the field, the way it has been utilized in the field of approximation
algorithms?

Our study shows that the answer is an assertive YES! In particular, we obtain linear kernels for
Edge-Disjoint Paths, Edge Odd Cycle Transversal, Minimum Bisection, d-Way
Cut, Multiway Cut and Multicut on everywhere dense graphs. In fact, these kernels
are obtained by designing a polynomial-time algorithm when the corresponding parameter is
Ω(n). Additionally, we obtain a cubic kernel for Vertex-Disjoint Paths on everywhere
dense graphs. In addition to kernelization results, we obtain randomized subexponential-time
parameterized algorithms for Edge Odd Cycle Transversal, Minimum Bisection, and
d-Way Cut. Finally, we show how all of our results (as well as EPASes for these problems)
can be de-randomized.

1.2 Our Results and Methods
In this section we give a brief overview of the problems we address and the results we obtain
for these problems. This is complemented with a short discussion on techniques that we
apply to design our algorithms.

For maximization problems such as Max Cut on dense graphs, a solution would have
size k = Ω(n2), which trivially yields solvability in subexponential-time (i.e. 2o(k) ·nO(1)-time)
with respect to k. This is true about several maximization problems. However, this is not
the case for well-studied minimization problems such as Edge Odd Cycle Transversal,
Minimum Bisection, d-Way Cut, Multiway Cut and Multicut. Thus, a natural class
of problems to consider are so called cut-problems. The other family of problems for which
we do not immediately get an algorithm are linkage problems, namely, the Edge-Disjoint
Paths and Vertex-Disjoint Paths problems.

We remark that the study of subexponential-time parameterized algorithms of vertex
(rather than edge) modification problem on everywhere-dense graphs does not make sense
for natural problems such as Vertex Cover as such problems become as hard as they are

STACS 2021



50:4 Exploiting Dense Structures in Parameterized Complexity

on general graphs (and hence do not admit such algorithms under the ETH). For example,
given an instance G of Vertex Cover, create an instance G′ of Vertex Cover on
everywhere-dense graphs by adding an n-vertex clique whose vertices are all but one adjacent
to every vertex of G. Then, the existence of an 2o(k)nO(1)-time algorithm for Vertex Cover
on everywhere-dense graphs where k is the solution size would imply the existence of a
subexponential-time algorithm for Vertex Cover on general graphs with respect to n.

1.2.1 Linkage Problems

The first two problems we address are extremely fundamental in the field of Parameterized
Complexity. They are Edge-Disjoint Paths and Vertex-Disjoint Paths. In the Edge-
Disjoint Paths problem, we are given a graph G, a set of request pairs (s1, t1), . . . , (sk, tk),
and the objective is to check whether there exist paths P1, . . . , Pk, between si and ti, such
that they are pairwise edge disjoint. In the Vertex-Disjoint Paths problem, the input
is same as the Edge-Disjoint Paths problem, but the paths P1, . . . , Pk are suppose to
be pairwise vertex disjoint. Both, Edge-Disjoint Paths and Vertex-Disjoint Paths
are famously FPT by the graph minor machinery of Robertson and Seymour [48]. However,
the f(k) in the running time in the algorithm of Robertson and Seymour [48] and its later
improvement is at least triply exponential [36]. Only recently an algorithm with f(k) = 2kO(1)

are designed when the input is restricted to planar graphs [39]. Further, Vertex-Disjoint
Paths is not known not to admit a polynomial kernel on general graphs [10]. In this paper we
show that both Edge-Disjoint Paths and Vertex-Disjoint Paths admit a polynomial
kernel on α-dense graphs. In particular we get the following result about Edge-Disjoint
Paths.

▶ Theorem 2. Edge-Disjoint Paths admits an O(k) vertex kernel on everywhere α-dense
graphs.

Proof of Theorem 2 is obtained by designing a polynomial time algorithm for the Edge-
Disjoint Paths problem in α-dense graphs, when the number of demands is small (but still
linear) compared to αn. Once this result is proved we know that k ≥ Ω(n), resulting in a
linear vertex kernel for the problem.

To design the desired polynomial time algorithm, we use the following strategy. We start
by showing that highly edge-connected (linear in n) parts will always contain a solution to an
Edge-Disjoint Paths instance. Towards this we first show that if a graph G on n vertices
with minimum degree at least cn, then for any pair of vertices x, y of G, if there exists a path
between x and y, then there exists a path of length at most 4/c. We use this result together
with high connectivity of G to get the following: Let G be a graph with minimum degree
αn, and cn edge-connected for some constant c ≤ α/2, then any instance of Edge-Disjoint
Paths with k ≤ αn

8 has a solution. Moreover, this solution can be found in polynomial time.
Next, we give a lemma that partitions the input graph into small number of parts such that
each part has minimum degree and edge-connectivity linear in n.

▶ Lemma 3. For any real α between 0 and 1, there exists a constant c ≤ α/2 such that, if
G is a graph on n vertices and minimum degree αn, then there exists a partition P of the
vertices V (G) into g ≤ 2

α subsets V1, · · · , Vg such that for all i ∈ [g]:
G[Vi] is cn edge-connected.
G[Vi] has minimum degree αn

2 .
Moreover, such a partition can be found in polynomial time.
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This decomposition is then utilized to complete the proof of Theorem 2.
Our kernelization algorithm for Vertex-Disjoint Paths is more involved, though follows

the template outlined for Edge-Disjoint Paths. In particular we obtain the following
result.

▶ Theorem 4 (⋆).1 Vertex-Disjoint Paths admits a vertex kernel of size O(k3) on
everywhere α-dense graphs.

One of the main technical difficulty in proving Theorem 4 is in adapting the proof of
Lemma 3 for Vertex-Disjoint Paths. The main reason being that for Vertex-Disjoint
Paths we need to simulate Lemma 3 for vertex connectivity. That is, we need to find
cut-vertices instead of edges. However, these vertices could have neighbors in many different
parts and we cannot say that their relative degree inside a part increases, which is a critical
component in the proof of Lemma 3. To mitigate this situation we introduce a vertex
set V0 in the partitioning, that contains all the cut vertices. The whole difficulty lies in
carrying this V0 throughout the process of obtaining the desired partition. However, unlike
Edge-Disjoint Paths, getting the desired decomposition in itself does not result in the
desired kernel. We need to put in significant technical work to reduce the graph. To achieve
this we prove several structural properties of Vertex-Disjoint Paths and its interplay
with the parts of P in order to get the desired kernel.

1.2.2 Cut-Problems
Arguably, a few of the most well-studied cut problems in the realm of Parameterized
Complexity are Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut,
Multiway Cut, and Multicut. Input to all these problems are an undirected graph G

and an integer k, and the goal is following.
Edge Odd Cycle Transversal: Does there exist a set of at most k edges such that its

deletion results in a bipartite graph?
Minimum Bisection: Does there exist a vertex partition (V1, V2), such that ||V1|−|V2|| ≤ 1,

and there are at most k edges with one end-point in V1 and the other in V2?
d-Way Cut: Does there exist a set of at most k edges such that its deletion results in at

least d connected components?
Multiway Cut: Here, we are also given a vertex subset T ⊆ V (G) (called terminals) and

the objective is to test if there exists a set of at most k edges such that after its deletion
no two terminals belong to the same connected component.

Multicut: Here, we are also given a set of request (s1, t1), . . . , (sℓ, tℓ) and the objective
is to test if there exists a set of at most k edges such that after its deletion no request
belong to the same connected component.

All the aforementioned problems are extremely well studied [18, 16, 14, 47, 41, 42, 12,
13, 35, 11] and are known to be FPT. However, for most of these problems we know that
there can not exist an algorithm with running time 2o(k)nO(1) on general graphs assuming
ETH. Further, Edge Odd Cycle Transversal admits a randomized polynomial kernel on
general graphs [37, 38]; on the other hand Minimum Bisection and Multicut are known
not to admit a polynomial kernel [17, 49]. The kernelization complexity of Multiway Cut is
still open. In this paper we obtain the following results about these problems on everywhere
dense graphs.

1 Results marked with (⋆) could be found in the extended version.
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50:6 Exploiting Dense Structures in Parameterized Complexity

▶ Theorem 5 (⋆). Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut,
Multiway Cut, and Multicut admit O(k) vertex kernel on everywhere α-dense graphs.

▶ Theorem 6 (⋆). Edge Odd Cycle Transversal, and Minimum Bisection admit an
algorithm with running time 2O(

√
k)nO(1) on everywhere α-dense graphs. Further, d-Way

Cut admits an algorithm with running time 2O(
√

k log k)nO(1).

These are the first subexponential time parameterized algorithms for Edge Odd Cycle
Transversal, Minimum Bisection, and d-Way Cut on everywhere α-dense graphs. The
proof of Theorem 5 is obtained by designing a polynomial time algorithm when the solution
size for these problems is smaller than α · n (for some α). This is similar to our kernelization
strategy for the Edge-Disjoint Paths problem. For example, if the solution for Edge
Odd Cycle Transversal is of size k ≤ α · n (for some α), then the problem can be solved
in polynomial time, and otherwise n < k/α and hence we already have a kernel at hand.

The proof of these results (Theorems 5 and 6) are similar to each other. Thus, to illustrate
our methods we focus on giving intuition for the proof of d-Way Cut. A more formal
presentation is left to the extended version. The main ingredient of Theorems 5 and 6 is the
following sampling primitive, a simple consequence of Chebyshev’s inequality which has been
extensively used in designing PTASes and EPTASes in everywhere α-dense graphs.

▶ Lemma 7 (Degree Estimator Lemma). For any constants ϵ1 and ϵ2, if U is a universe on
n elements, K is a set of subsets of U and S is a multi-set obtained by doing t(ϵ1, ϵ2) = 1

ϵ2
1ϵ2

independent and uniform random draws in U , then with probability at least 1/2, the number
of sets X ∈ K such that

∣∣∣ |S∩X|n
t − |X|

∣∣∣ ≥ ϵ1n is smaller than ϵ2|K|.

We next show how we use Degree Estimator Lemma for our purpose. Suppose that G is a
graph on n vertices and A is a set of linear size Ω(n). We use Lemma 7 in order to guess the
degree of the vertices of V (G) in A without knowing the set. That is, to estimate the number
of neighbors of a vertex that belong to the set A. Indeed, let us fix some constants ϵ1 and ϵ2
and pick uniformly at random a set S of t = t(ϵ1, ϵ2) = 1

ϵ2
1ϵ2

vertices from V (G). Since A

is of linear size, with constant probability, all the elements of S belong to A. If this event
is satisfied, then by applying Lemma 7 with U = A and K being the set of neighborhood
inside A, we have that with probability at least 1/2, the number of vertices x such that∣∣∣ |S∩N(x)||A|

t − dA(x)
∣∣∣ ≥ ϵ1n is smaller than ϵ2n. In other words, without knowing A, the

value |S∩N(x)||A|
t provides a good estimation of the degree in A for a large fraction of the

vertices in V (G).
Let us now see how we use the aforementioned argument for d-Way Cut. Let (G, k)

be an instance of d-Way Cut, where G is a everywhere α-dense graph. Further assume
that we are looking for a solution, S, where k is small, say k ≤ αn

200 . Let (A1, . . . , Ad) be the
connected components after removing the edges in S. Since, k ≤ αn

200 and every vertex has
degree at least αn, this implies that every vertex x ∈ Ai has degree at least αn − αn

200 ≥ αn
2

in Ai, and degree less than αn
200 in the other Aj , for j ≠ i. It means that |Ai| ≥ αn

2 for every
i, and thus d ≤ 2

α .
The idea now is to estimate the degree of every vertex inside each Ai in two rounds. For the

first round we sample d sets M1, . . . , Md of t = t(α/200, α2/400) vertices each. By applying
Lemma 7, with constant probability (because each Ai is linear), each Mi will be a subset of
Ai such that the set Xi of vertices x for which

∣∣∣ |Mi∩N(x)||Ai|
t − dAi

(x)
∣∣∣ ≥ nα/200 is smaller

than nα2/400. Assume that this is the case for every i, and let us denote X = ∪i∈[d]Xi.
Since d ≤ 2/α, we have that |X| ≤ αn/200. This means that apart from this small set X, all
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the other vertices x of G are such that |Mi∩N(x)||Ai|
t is a good estimate of its degree inside

Ai
2. Let us make our first guess of Ai: for every i ∈ [d], let A′

i be the set x of vertices of G

such that |Mi∩N(x)||Ai|
t ≥ d(x) − αn

25 . We can then show the following.

▷ Claim 8. For every i ∈ [d], (Ai \ X) ⊆ A′
i.

Indeed, for every x ∈ (Ai \ X), we have that |Mi∩N(x)||Ai|
t ≥ dAi

(x) − nα/200 ≥
(d(x)−k)−nα/200 ≥ d(x)−α/n because x ̸∈ Xi. Moreover, for every j ̸= i, |Mj∩N(x)||Aj |

t ≤
dAj

(x) + nα/200 ≤ nα/50 because x ∈ Ai and x ̸∈ Xj .
For our second round, we use dA′

i
(x) as an estimate for dAi(x). Indeed, if x ∈ Ai, then

Claim 8 implies that dA′
i
(x) ≥ dAi

(x) − |X|, even if x belongs to X. However, since dAi
(x) ≥

d(x)−αn/100, we have that dA′
i
(x) ≥ d(x)−αn/50. Similarly, dA′

j
(x) ≤ dAj (x)+|X| ≤ αn/50.

Because d(x) ≥ αn for every x ∈ G, we have the following claim.

▷ Claim 9. For every i, Ai is exactly the set of vertices x of G such that dA′
i
(x) ≥ d(x)−αn/50.

This ends the proof of a polynomial algorithm in the case k ≤ αn/100, which implies the proof
of a linear kernel. The proofs for Edge Odd Cycle Transversal, Minimum Bisection,
Multiway Cut, and Multicut are almost identical.

When k ≥ αn/100, we have to be more careful with respect to vertices that are incident
to many edges of the solution, say more than αn/200. Let us note that all of these problems
admit an exact algorithm, by doing a dynamic programming algorithm over subset and
applying fast subset-convolution, running in time 2nnO(1) [9]. Thus, if k ≥ (αn/200)2, then
2n = 2O(

√
k) and this algorithm is a subexponential time algorithm. If k ≤ (αn/200)2, then

we can show that the set L of vertices of G that are adjacent to more than αn/200 edge
of the solution is such that |L| ≤

√
k. Now by doing essentially the same argument as in

the case k ≤ αn/100 we will be able to recover the position of every vertex x, except for a
set R ⊆ L. To conclude, the algorithm then tries all the partitions of R. This part takes
|L||L| = 2O(

√
k log k), resulting in the desired algorithm.

1.2.3 Derandomization
We first abstract out the main properties of Degree Estimator Lemma 7 that have been used
in several applications in [7, 27, 29, 28, 33] and several other articles.

Let U be a universe of size n and t be a constant. A random sample S of t elements
of U has the following properties:
Property A. For every subset A of the universe of Ω(n) elements, the probability that

the sample S is a subset of A is constant;
Property B. Conditioned on the sample S being a subset of A, we have that for every

subset B of A of size Ω(n), |S∩B||A|
t is a good estimator of |B| with probability

close to 1.

These two properties of random samples have been successfully deployed to design
randomized approximation schemes for a number of fundamental problems on dense struc-
tures [7, 27, 29, 28, 33]. Typically, algorithms based on this approach can be de-randomized
by going over all possible subsets S of size t, and observing that at least one of them has the

2 We assume here that |Ai| is known. In fact, an approximation to the size will be enough for our purpose.
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50:8 Exploiting Dense Structures in Parameterized Complexity

desired property. Unfortunately, this leads to an overhead of roughly nt in the running time
(which typically yields deterministic PTASes in place of randomized EPTASes). We present
an efficient way to derandomize most of the algorithms based on the procedure. Our main
derandomization tool is the following lemma.

▶ Lemma 10 (⋆). For any constants ϵ1, ϵ2 and ϵ3 smaller than 1, and U a universe on n

elements, there exists a set T of O(2100/(ϵ2
1ϵ2)n) subsets of U , such that if A is a subset of at

least ϵ3n elements of U and K a collection of subsets of A, then there exists a set T ∈ T such
that the number of sets X of K such that ||T ∩ X| − |T ||X|

|A| | ≥ ϵ1|T | is smaller than ϵ2|K|.
Moreover, the set T can be computed deterministically in nO(1) time.

Therefore, in all the proof using Lemma 7, we can replace the random sampling by trying
all the elements of the family T provided by the Lemma 10. The proof involves using the
known construction of pairwise (2-wise) independent permutations (see [4] for more details).
The proof can also be done via expander random walk method (see Section 3.2 of [30]).

1.3 Related Works
Over the last two decade, the design of parameterized subexponential-time algorithms for
problems on sparse graphs has been extremely fruitful. However, the same could not be said
about research on dense graphs. The first problem on dense graphs shown to admit a paramet-
erized subexponential-time algorithm is the Feedback Arc Set on Tournaments (FAST)
problem [3]. The design of this algorithm exhibited a new method to develop parameterized
algorithms called chromatic coding, which is now textbook material [15]. Subsequently,
there appeared several other works on the design of parameterized subexponential-time
algorithms for problems on tournaments, see e.g. [26, 22, 34]. Afterwards, dense classes of
digraphs that are not tournaments have also been considered in the same context [45, 40].
Also, d-Correlation Clustering is known to admit a subexponential-time parameterized
algorithm [24]. When d is not fixed, the problem is known not to admit a parameterized
subexponential-time algorithm under the Exponential Time Hypothesis (ETH) [24].

2 Preliminaries

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed, finite alphabet. Let
L be a parameterized problem. For an instance (x, k) of L, k is called the parameter. A
polynomial kernel on L is an algorithm which, for any given instance (x, k) of L outputs, in
polynomial time in the size of (x, k), an instance (x′, k′) of L with the following properties:

(x′, k′) is a yes-instance ⇐⇒ (x, k) is a yes-instance.
|x′|, k′ ≤ h(k), where h is a polynomial function.

For further notions related to parameterized algorithm, we refer the reader to [15].
We follow the standard graph theory notations from [20]. Let G = (V (G), E(G)) be a

graph and x ∈ V (G). Then, N(x) denotes the neighborhood of x, and d(x) = |N(x)| its
degree. If A is a subset of V (G), then dA(x) = |N(x) ∩ A| denotes the degree of x inside A.
If A and B are two subsets of vertices in V (G), then E(A, B) denotes the set of edges with
exactly one endpoint in A and one endpoint in B. A set of edges S is said to be a d-cut if
G − S has exactly d connected components.

A graph G is said to be k-edge connected (resp. k-vertex connected) if for any pair of
vertices x and y in G, there exists k edge-disjoint (resp. vertex-disjoint) paths between x

and y. For a graph G and two vertices x and y, a set of edges A is said to be an (x, y)-edge
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cut if G − A does not contain any path between x and y. Likewise, a set of vertices S is said
to be a (x, y)-vertex cut if G − S does not contain any path between x and y. Let us cite
the celebrated Menger’s Theorem [44].

▶ Theorem 11. Let G be a graph and x, y two vertices of G. The maximum number of
vertex-disjoint (resp. edge-disjoint) paths between x and y is equal to the minimum size of a
(x, y)-vertex cut (resp. (x, y)-edge cut).

Let G be a graph and X a set of vertices, the graph obtained by contracting X and
keeping multiedges, is the graph G′ obtained from G by removing X, adding a new vertex x,
and for every v ∈ G such that v is adjacent to k vertices in X adding k multi-edges between
x and v. Let U be a universe. Then, 2U denotes all subsets of U and

(
U
t

)
denotes all the

subsets of size t of U . For an integer k, [k] denotes the set {1, . . . , k}. For any real numbers
a, b and c we write a = b ± c if b − c ≤ a ≤ b + c. The following easy observation will be used
throughout the paper.

▶ Observation 12. If c is a real in [0, 1/2] and x = 1 ± c, then 1
x = (1 ± 2c).

To construct estimators deterministically, we rely on the well known notion of k-wise
independence, in the particular setting of permutations.

▶ Definition 13. Let n, k ∈ N. A family S of permutations of Sn is k-wise independent if,
for any k-tuple of distinct elements (x1, . . . , xk), the distribution (f(x1), f(x2), . . . , f(xk))
where f ∈ S is chosen uniformly at random and the distribution (f ′(x1), f ′(x2), . . . , f ′(xk))
where f ′ ∈ Sn is chosen uniformly at random, are such that∑

(a1,...,ak)∈[n]k

|P r(f(x1), . . . , f(xk) = (a1, . . . , ak)) − P r(f ′(x1), . . . , f ′(xk) = (a1, . . . , ak))| = 0.

Efficient construction of a k-wise independent family of permutations are known for k = 2
and k = 3 but open for k > 4 (see [4] for more details). In particular, there exists for every
n, a family S(n) of O(n) pairwise (2-wise) independent permutations. This family will be
sufficient for our derandomization purposes.

Throughout this paper, we will make an extensive use of Chebyshev’s inequality:

▶ Proposition 14. Let X be a random variable with expected value µ and variance σ2. Then
for any real number k > 0, Pr[|X − µ| ≥ kσ] ≤ 1

k2 .

3 Edge-disjoint paths in everywhere dense graphs

In this section we design a linear vertex kernel for Edge-Disjoint Paths on everywhere
α-dense graphs. We first present a polynomial time algorithm for the Edge-Disjoint Paths
problem in α-dense graphs, when the number of demands is small (but still linear) compared
to αn. Towards this, we start-by showing that highly edge-connected parts will always
contain a solution to an Edge-Disjoint Paths instance.

▶ Lemma 15. Let c be a constant between 0 and 1, and G be a graph on n vertices with
minimum degree at least cn. For any pair of vertices x, y of G, if there exists a path between
x and y, then there exists a path of length at most 4/c.

Proof. Let P be a shortest path between x and y. If there exists a vertex u ∈ G such that
u is adjacent to 4 vertices of P , then two of these vertices will be at distance at least 3 in
the path. Denoting x1 and x2 these vertices, replacing the subpath of P between x1 and x2
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by the path x1ux2 gives a path between x and y shorter than P , which is a contradiction.
Therefore, the sum of the degree of the vertices of P is smaller than 4n and thus |P |cn ≤ 4n

which implies |P | ≤ 4
c . ◀

▶ Lemma 16. Let G be a graph with minimum degree αn, and cn edge-connected for some
constant c ≤ α/2. Any instance of Edge-Disjoint Paths with k ≤ αcn

8 has a solution.
Moreover, this solution can be found in polynomial time.

Proof. Let (G, (s1, t1), · · · , (sk, tk)) be an instance of the Edge-Disjoint Paths problem.
For every pair (si, ti), since G is cn-edge connected, there exists cn edge-disjoint paths
P1, . . . , Pcn between si and ti. Moreover, we can assume that all these paths are shorter than
8
α . Indeed, removing the edges of all but one path Pj leaves G with minimum degree at least
αn − cn ≥ αn

2 and Lemma 15 implies that Pj can actually be taken shorter than 8
α . This

means that we can select a solution for the Edge-Disjoint Paths problem greedily using
these paths. Indeed, each path is of length smaller than 8

α , so the path selected between si

and ti intersects at most 8
α of the paths between sj and tj . Since k ≤ αcn

8 , there is always
one path available between si and ti. ◀

For the proof of Lemma 16, we could have used a previously known result [31]. However,
we still give the proof here, as it is simple on dense graphs, and helps in a complete
understanding of the algorithm. The next lemma is an essential part of the proof. The goal
is to find a partition of the vertices of V (G) into a bounded number of parts, such that each
part induces a graph with large edge-connectivity.

▶ Lemma 3. For any real α between 0 and 1, there exists a constant c ≤ α/2 such that, if
G is a graph on n vertices and minimum degree αn, then there exists a partition P of the
vertices V (G) into g ≤ 2

α subsets V1, · · · , Vg such that for all i ∈ [g]:
G[Vi] is cn edge-connected.
G[Vi] has minimum degree αn

2 .
Moreover, such a partition can be found in polynomial time.

Proof. Let t be an integer such that α
(1−α/3)t > 2/3, and c be a sufficiently small constant

such that tc < α/6, α/2 ≥ c and for all i < t:

cn <
α2n

(1 − α/3)i−1

(
1

1 − α/2 − 1
1 − α/3

)
We inductively build a sequence of partitions of V (G): P1, . . . , Pt. Each Pi+1 is obtained

from Pi by applying a set of operations. Further, either a part of Pi remains a part in Pi+1
or breaks into several parts in Pi+1. In particular, Pi+1 is a finer partition than Pi. Let each
Pi consists of V i

1 , · · · , V i
li

as its parts. Throughout the proof these parts satisfy the following
invariants. That is, for all j ∈ [li]:
Invariant 1: G[V i

j ] has minimum degree (α − ci)n.
Invariant 2: Either G[V i

j ] is cn edge-connected; or every vertex of v ∈ V i
j has more than

α
(1−α/3)i−1 |V i

j | neighbours in G[V i
j ] (note that, α

(1−α/3)i−1 ≥ α and thus, G[V i
j ] is denser

than G).

Note that, as we chose t such that α
(1−α/3)t > 2/3, and c such that tc < α/2, if the

previous properties are satisfied, then Pt is the partition that we are looking for. Indeed, the
second condition tells us that, if G[V t

j ] is not cn-edge connected, then every vertex of V t
j

has more than 2/3|V t
j | neighbors in G[V t

j ]. Since |V t
j | ≥ (α − ct)n ≥ αn/2, it means that
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any pair of vertices in V t
j have more than αn/6 common neighbors in V t

j , which implies that
G[V t

j ] cn-edge connected. Moreover, since |V t
j | ≥ αn/2, this partition has less than 2

α parts.
What remains to show is that indeed there exists a sequence of partitions of V (G):

P1, . . . , Pt. We show the existence of the partition Pi by induction on i, setting P1 = V (G)
which trivially satisfies all the properties. Suppose now that we have constructed the partition
Pi = V 1

1 , · · · , V i
li

for some i < t. For each j ∈ li, we define a partition of V i
j into H1

j , . . . , H
xj

j

for some xj < (2/α) as follows: If G[V i
j ] is cn-edge connected, then xj = 1 and H1

j = V i
j . If

not, let H1
j , . . . , H

xj

j be the connected components of G[V i
j ] after removing the edges of a

cut of size smaller than cn. Note that every vertex has degree at least (α − ci)n − cn ≥ αn
2

after removing the cut edges, which implies Invariant 1. This means that the size of each
component is at least αn

2 . This means in particular that the number of components is smaller
than (2/α). Moreover, let w be a vertex in one of the connected components, Hr

j , we know
that the degree of w in G[V i

j ] is greater than α
(1−α/3)i−1 |V i

j |. Since the cut is of size cn, it
means that the degree of w in G[Hr

j ] is greater than α
(1−α/3)i−1 |V i

j | − cn. Since, there is at
least one other component, we have that |Hr

j | < |V i
j | − αn

2 < (1 − α
2 )|V i

j |. This means that
the degree of w in G[Hr

j ] is greater than α
(1−α/3)i−1 ( 1

1−α/2 |Hr
j |) − cn, which by the choice of

c is greater than α
(1−α/3)i |Hr

j |. Finally, we take Pi+1 as the union of all the Hr
j for all j ∈ [li]

and r ∈ [xj ]. That is, Pi+1 consists of either a part from Pi, or connected components of
a part that has a cut of size smaller than cn. By the above description, it follows that Pi

satisfies both the invariants. This completes the proof. ◀

▶ Lemma 17. The Edge-Disjoint Paths problem can be solved in time kρnO(1) on
everywhere α-dense graphs, when k ≤ αcn

16 . Here, c is the constant defined in Lemma 3 and
ρ = 2 2

α
2
α !.

Proof. Let (G, (s1, t1), . . . , (sk, tk)) be an instance of the Edge-Disjoint Paths problem
in an everywhere α-dense graph G of size n, where k ≤ αcn

8 . Let P = V1, . . . , Vg, g ≤ 2
α , be

the partition of V (G) obtained by applying Lemma 3.

▷ Claim 18. If (G, (s1, t1), . . . , (sk, tk)) is a yes-instance of Edge-Disjoint Paths, then
there exists a path system P̃1, . . . , P̃k, connecting si to ti such that the intersection of any
path P̃j with any Vi for i ∈ [g] is a subpath (possibly empty) of P̃j .

Proof. Let (P1, . . . , Pk) be a solution. For every j ∈ [g], we say that (P1, . . . , Pk) satisfies
the property Hj if Pi ∩ Vj is a subpath of Pi for every i ∈ [k].

Suppose that the solution (P1, . . . , Pk) does not satisfy property Hj . For every i ∈ [k]
denote by hi and li, the first and the last vertex of Pi in Vj , respectively. If Pi does not
intersect Vj , then we assign hi and li to ∅. Furthermore, hi could be equal to li. Observe
that (G[Vj ], (h1, l1), . . . , (hk, lk)) is an instance of Edge-Disjoint Paths with k ≤ αcn

16 . By
Lemma 16, there is a solution (P ′

1, . . . , P ′
k) to this problem in G[Vj ]. Let (P 1

1 , . . . , P 1
k ) denote

the solution obtained from (P1, . . . , Pk) by replacing each subpath of Pi from hi to li by P ′
i .

Clearly the solution (P 1
1 , . . . , P 1

k ) satisfies property Hj . Moreover, let us show that if
(P1, . . . , Pk) satisfies property Hj′ for some j′ ∈ [g] j ̸= j′, then so does (P 1

1 , . . . , P 1
k ). This

would conclude our proof of the lemma, as it means we can apply the previous procedure for
every j ∈ [g], iteratively.

Let i be an index of [k] and suppose that Pi ∩ Vj′ is a subpath of Pi. We want to show
that P 1

i ∩ Vj′ is also a subpath of P 1
i . If Pi ∩ Vj′ is empty, then so is P 1

i ∩ Vj′ as the vertices
of P 1

i \ Pi belong to Vj and j ̸= j′. Suppose now that P 1
i ∩ Vj′ is a subpath and denote by

ai and bi the first and the last vertex of this path. Remember that hi and li denote the first
and the last vertex of Pi ∩ Vj . If Pi ∩ Vj is empty, then P 1

i = Pi and there is nothing to prove,
so let us assume it is not. Since the subpath of Pi between ai and bi is in Vj′ it means that
hi and li do not belong to this subpath. Therefore we are in one of the following three cases.
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hi and li appear before ai on Pi

hi and li appear after bi on Pi

hi appears before ai on Pi and li after bi

In the first two cases, P 1
i ∩ Vj′ = Pi ∩ Vj′ , which is still a subpath of P 1

i . In the last case,
P 1

i ∩ Vj′ becomes empty. This concludes the proof. ◁

Consider the graph G′ obtained from G by contracting every part Vj of the partition P
into one vertex vj (keeping multi-edges). That is, although the number of vertices in G′ is
g, the number of parallel edges between vi and vj is same as the number of edges between
Vi and Vj . Thus, there is a one-to-one correspondence between edges in G′ and the edges
between a pair of vertices w1 ∈ Vi and w2 ∈ Vj such that i ≠ j. For every i ∈ [k], let s′

i (resp.
t′
i) denote the vertex of G′ corresponding to the part containing si (resp. ti) in G. Notice

that same pair of vi and vj could be assigned to several pairs of si and ti. In fact, if both si

and ti belong to the same part, say Vj , then s′
i = vj and t′

i = vj . In this case it just means
that the path must be completely contained inside the graph G[Vj ].

▷ Claim 19. (G, (s1, t1), . . . , (sk, tk)) is a yes-instance of Edge-Disjoint Paths if and only
if (G′, (s′

1, t′
1), . . . , (s′

k, t′
k)) is a yes-instance of Edge-Disjoint Paths.

Proof. Forward direction follows from Claim 18. Indeed, as explained before, if there is a
solution in G, then we can assume that this solution is such that the intersection of any path
with any part Vj is a subpath. Therefore, contracting the Vi along these paths create paths
in G′ and these paths are a solution to the problem in G′. Suppose now that we have a
solution P ′

1, . . . , P ′
k to the Edge-Disjoint Paths problem in G′. For every i, let ui

1, . . . , ui
ri

denote the sequence of edge in P ′
i . Note that each of these edge corresponds to a specific

edge in G. For every j ∈ [r1] such that vj is an inner vertex of P ′
i , let us define ai

j ∈ V (G)
and bi

j ∈ V (G) as the extremities of the two edges among ui
1, . . . , ui

ri
which are incident

to vj . For the first vertex vs of P ′
i , we define similarly ai

s as si and bi
s is the extremity of

the only edge of P ′
i adjacent to vj . Likewise, we can define ai

t ∈ V (G) and bi
t ∈ V (G) for

the last vertex vt of the path. Overall, replacing each vj by a path from ai
j to bi

j gives a
path from si to ti in G. However, for every j ∈ [g], (G[Vj ], (ai

1, bi
1), . . . , (ai

k, bi
k)) defines an

instance of Edge-Disjoint Paths. Since G[Vj ] satisfies the properties of Lemma 16, in
polynomial time we can find a solution to our instance. For every i ∈ [k] and j ∈ [g], let Qi

j

denote the path from ai
j to bi

j in this solution. Finally, for each i ∈ [k], let Pi denote the
path obtained from P ′

1 by replacing each vj by Qi
j . Thus, P1, . . . , Pk forms a solution to the

instance (G, (s1, t1), . . . , (sk, tk)), which in particular implies that such a solution exists. ◁

Claim 19 shows that it is enough to solve our problem on the instance (G′, (s′
1, t′

1), . . . , (s′
k, t′

k)).
Let us now explain how to solve this problem in G′. Recall that G′ is a graph on a finite (at
most 2

α ) number of vertices. In particular it means that there is at most 2 2
α

2
α ! different paths

in G′, where a path may appear multiple times3. (First, choose the subset of vertices that
appear in the path and then guess the permutation of the chosen vertices). Thus, the number
of paths is upper bounded by ρ = 2 2

α
2
α !. Therefore, a solution to this problem consists of

assigning to each of these paths an integer of value at most k, which denotes the number
of requests that will be resolved using this path. It means that the number of possible
“distributions” of the requests among these paths is upper bounded by kρ. Moreover, once
we have chosen the distribution of the requests among these paths, then testing whether this

3 Here we see a path as a sequence of vertices.
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distribution is indeed a solution requires only to count the number of times each multi-edge
is used. So in total, to find a solution to the problem in G′, we only need to check the O(kρ)
possible distributions. Since, we can test each distribution in nO(1) time, the running time
of the algorithm follows. ◀

Lemma 17 implies the following result.

▶ Theorem 2. Edge-Disjoint Paths admits an O(k) vertex kernel on everywhere α-dense
graphs.

Proof. Let (G, (s1, t1), . . . , (sk, tk)) be an instance of Edge-Disjoint Paths. Further, let c

be the constant defined in Lemma 3. If k ≤ αcn
16 , then we apply Lemma 17 and solve the

problem in time kO( 2
α !)nO(1). Based on the answer of Lemma 17, we either return a solution

or a trivial no-instance of the problem. However, now we have that k ≥ αcn
16 , and hence

n ≤ 16k
αc = O(k). This concludes the proof. ◀

4 Conclusion

Inspired by the success of designing of PTASes and EPTASes for computationally intractable
problems on everywhere dense graphs (every vertex has minimum degree at least αn, for some
fixed constant α > 0), in this paper we undertook a study for computationally intractable
problems on dense graphs in the realm of Parameterized Complexity on dense graphs. We
obtained linear kernels for Edge-Disjoint Paths, Edge Odd Cycle Transversal, Min-
imum Bisection, d-Way Cut, Multiway Cut and Multicut on everywhere dense graphs.
Additionally, we obtained a cubic kernel for Vertex-Disjoint Paths on everywhere dense
graphs. In addition to kernelization results, we obtained subexponential-time parameterized
algorithms for Edge Odd Cycle Transversal, Minimum Bisection, and d-Way Cut.
Finally, we showed how all of our results (as well as EPASes for these problems) can be
de-randomized. Studying other NP-hard problems on dense graphs is an interesting research
avenue. We conclude our paper with some concrete open problems.

1. Does Vertex-Disjoint Paths admit a linear vertex kernel on everywhere α-dense
graphs?

2. Does Edge-Disjoint Paths and Vertex-Disjoint Paths admit an algorithm with
running time 2O(k)nO(1) on everywhere α-dense graphs?
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A Definition of the studied problems

We now define all the problems mentioned in the paper.

Edge-Disjoint Paths Parameter: k

Input: A graph G and a set of request pairs (s1, t1), . . . , (sk, tk).
Question: Does there exist a set of paths P1, . . . , Pk, between si and ti, such that
they are pairwise edge disjoint?

Vertex-Disjoint Paths Parameter: k

Input: A graph G and a set of request pairs (s1, t1), . . . , (sk, tk).
Question: Does there exist a set of paths P1, . . . , Pk, between si and ti, such that
they are pairwise vertex disjoint?

Edge Odd Cycle Transversal Parameter: k

Input: A graph G and an integer k.
Question: Does there exists S ⊆ E(G) of size at most k such that G − S is bipartite?

Minimum Bisection Parameter: k
Input: A graph G and an integer k.
Question: Does there exists a partition (A, B) of V (G) such that ||A| − |B|| ≤ 1 and
E(A, B) ≤ k?

Multiway Cut Parameter: k

Input: A graph G, a set T ⊆ V (G) and an integer k.
Question: Does there exists a set S ⊆ E(G) of size at most k such that every vertex
of T lies in a different connected component of G − S?
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Multicut Parameter: k

Input: A graph G, a set of pairs (si, ti)ℓ
i=1 and an integer k.

Question: Does there exists S ⊆ E(G) of size at most k such that for every i ∈ [ℓ],
vertices si and ti lie in different connected components of G − S?

d-Way Cut Parameter: k

Input: A graph G and an integer k.
Question: Does there exists a set S ⊆ E(G) of size at most k such that G − S has
at least d connected components?
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