
Lower Bounds for Graph-Walking Automata
Olga Martynova !

Department of Mathematics and Computer Science, St. Petersburg State University, Russia

Alexander Okhotin !

Department of Mathematics and Computer Science, St. Petersburg State University, Russia

Abstract
Graph-walking automata (GWA) traverse graphs by moving between the nodes following the edges,
using a finite-state control to decide where to go next. It is known that every GWA can be
transformed to a GWA that halts on every input, to a GWA returning to the initial node in order
to accept, as well as to a reversible GWA. This paper establishes lower bounds on the state blow-up
of these transformations: it is shown that making an n-state GWA traversing k-ary graphs return
to the initial node requires at least 2(n − 1)(k − 3) states in the worst case; the same lower bound
holds for the transformation to halting automata. Automata satisfying both properties at once must
have at least 4(n − 1)(k − 3) states. A reversible automaton must have at least 4(n − 1)(k − 3) − 1
states. These bounds are asymptotically tight to the upper bounds proved using the methods from
the literature.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Models of computation

Keywords and phrases Finite automata, graph-walking automata, halting, reversibility

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.52

Funding Research supported by the Russian Science Foundation, project 18-11-00100.

1 Introduction

Graph-walking automata (GWA) are finite automata that traverse labelled undirected graphs.
On the one hand, this is a model of a robot with limited memory navigating a discrete

environment. There is an early result by Budach [2] that for every automaton there is a
graph that it cannot fully explore; a short proof of this fact was later given by Fraigniaud et
al. [5]. This work has influenced the current research on algorithms for graph traversal using
various small-memory models, equipped with a limited number of pebbles, etc. [3, 4].

On the other hand, GWA naturally generalize such important models as tree-walking
automata [1] (TWA) and two-way finite automata (2DFA). More generally, a GWA can
represent various models of computation, if a graph is regarded as the space of memory
configurations, and every edge accordingly represents an operation on the memory. This way,
quite a few models in automata theory and in complexity theory, such as multi-head and
multi-tape automata and space-bounded complexity classes, can be regarded as GWA, Then,
some results on GWA apply to all these models.

Among such results, there are transformations of GWA to several important subclasses:
to automata that halt on every input graph; to automata that return to the initial node in
order to accept; to reversible automata. Such transformations have earlier been established
for various automaton models, using a general method discovered by Sipser [15], who
constructed a halting 2DFA that traverses the tree of computations of a given 2DFA leading
to an accepting configuration, in search of an initial configuration. Later, Kondacs and
Watrous [7] ensured the reversibility and optimized this construction for the number of states,
motivated by the study of quantum automata. Sipser’s idea has been adapted to proving that
reversible space equals deterministic space [11], to making tree-walking automata halt [13],

© Olga Martynova and Alexander Okhotin;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 52; pp. 52:1–52:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:olga22mart@gmail.com
https://orcid.org/0000-0002-1249-5173
mailto:alexander.okhotin@spbu.ru
https://orcid.org/0000-0002-1615-2725
https://doi.org/10.4230/LIPIcs.STACS.2021.52
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Lower Bounds for Graph-Walking Automata

to complementing 2DFA [6], to making multi-head automata reversible [12], etc. Each
transformation leads to a certain blow-up in the number of states, usually between linear
and quadratic. No lower bounds on the transformation to halting have been established yet.
For the transformation to reversible, a lower bound exists for the case of 2DFA [8], but it is
quite far from the known upper bound.

For the general case of GWA, constructions of halting, returning and reversible automata
were given by Kunc and Okhotin [9], who showed that an n-state GWA operating on graphs
with k edge labels can be transformed to a returning GWA with 3nk states and to a reversible
GWA with 6nk + 1 states, which is always halting. Applied to special cases of GWA, such
as TWA or multi-head automata, these generic constructions produce fewer states than the
earlier specialized constructions.

The goal of this paper is to obtain lower bounds on the complexity of these transformations.
To begin with, the constructions by Kunc and Okhotin [9] are revisited in Section 3, and it
turns out that the elements they are built of can be recombined more efficiently, resulting in
improved upper bounds based on the existing methods. This way, the transformation to a
returning GWA is improved to use 2nk + n states, the transformation to halting can use
2nk + 1 states, and constructing a reversible GWA (which is both returning and halting)
requires at most 4nk+1 states. The main result of the paper is that, with these improvements,
each of these constructions is asymptotically optimal.

The lower bounds are proved according to the following plan. For each n and k, one
should construct an n-state automaton operating on graphs with k direction labels, so that
any returning, halting or reversible automaton recognizing the same language would require
many states. The n-state automaton follows a particular path in an input graph in search for
a special node. The node is always on that path, so that the automaton naturally encounters
it if it exists. On the other hand, the graph is constructed, so that getting back is more
challenging.

The graph is made of elements called diodes, which are easy to traverse in one direction
and hard to traverse backwards. Diodes are defined in Section 4, where it is shown that a
GWA needs to employ extra states to traverse a diode backwards.

The graph used in all lower bound arguments, constructed in Section 5, has a main path
made of diodes leading to a special node, which makes returning more complicated, so that a
returning automaton needs at least 2(n − 1)(k − 3) states. A variant of this graph containing
a cycle made of diodes, presented in Section 6, poses a challenge to a halting automaton,
which needs at least 2(n−1)(k −3) states. Section 7 combines the two arguments to establish
a lower bound of 4(n − 1)(k − 3) on the number of states of an automaton that is returning
and halting at the same time. This bound is adapted to reversible automata in Section 8: at
least 4(n − 1)(k − 3) − 1 states are required.

Overall, each transformation requires ca. C · nk states in the worst case, for a constant C.
Each transformation has its own constant C, and these constants are determined precisely.

2 Graph-walking automata and their subclasses

This section provides a succinct introduction to graph-walking automata and to their halting
and reversible subclasses. For more details, an interested reader is directed to the paper
by Kunc and Okhotin [9], whereas some general explanations can be found in a recent
survey [14].

The definition of graph-walking automata (GWA) is an intuitive extension of two-way
finite automata (2DFA) and tree-walking automata (TWA). However, formalizing it requires
extensive notation. First, there is a notion of a signature, which is a generalization of an
alphabet to the case of graphs.

O. Martynova and A. Okhotin 52:3

▶ Definition 1 (Kunc and Okhotin [9]). A signature S consists of
A finite set D of directions, that is, labels attached to edge end-points;
A bijection − : D → D providing an opposite direction, with −(−d) = d for all d ∈ D;
A finite set Σ of node labels;
A non-empty subset Σ0 ⊆ Σ of possible labels of the initial node;
A set of directions Da ⊆ D for every label a ∈ Σ. Every node labelled with a must be of
degree |Da|, with the incident edges corresponding to the elements of Da.

Graphs are defined over a signature, like strings over an alphabet.

▶ Definition 2. A graph over a signature S = (D, −, Σ, Σ0, (Da)a∈Σ) is a quadruple
(V, v0, +, λ), where

V is a finite set of nodes;
v0 ∈ V is the initial node;
+: V × D → V is a partial function, such that if v + d is defined, then (v + d) + (−d) is
defined and equals v;
a total mapping λ : V → Σ, such that v + d is defined if and only if d ∈ Dλ(v), and
λ(v) ∈ Σ0 if and only if v = v0.

Once graphs are formally defined, a graph-walking automaton is defined similarly to a
2DFA.

▶ Definition 3. A (deterministic) graph-walking automaton (GWA) over a signature S =
(D, −, Σ, Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, F, δ), where

Q is a finite set of states;
q0 ∈ Q is the initial state;
F ⊆ Q × Σ is a set of acceptance conditions;
δ : (Q × Σ) \ F → Q × D is a partial transition function, with δ(q, a) ∈ Q × Da for all a

and q where δ is defined.
A computation of a GWA on a graph (V, v0, +, λ) is a uniquely defined sequence of
configurations (q, v), with q ∈ Q and v ∈ V . It begins with (q0, v0) and proceeds from
(q, v) to (q′, v + d), where δ(q, λ(v)) = (q′, d). The automaton accepts by reaching (q, v) with
(q, λ(v)) ∈ F .

On each input graph, a GWA can accept, reject or loop. There is a natural subclass of
GWA that never loop.

▶ Definition 4. A graph-walking automaton is said to be halting, if its computation on every
input graph is finite.

Another property is getting back to the initial node before acceptance: if a GWA is
regarded as a robot, it returns to its hangar, and for a generic model of computation, this
property means cleaning up the memory.

▶ Definition 5. A graph-walking automaton A = (Q, q0, F, δ) over a signature S =
(D, −, Σ, Σ0, (Da)a∈Σ) is called returning, if F ⊆ Q × Σ0, which means that it can accept
only in the initial node.

A returning automaton is free to reject in any node, and it may also loop, that is, it need
not be halting.

The next, more sophisticated property is reversibility, meaning that, for every
configuration, the configuration at the previous step can be uniquely reconstructed. This
property is essential in quantum computing, whereas irreversibility in classical computers
causes energy dissipation, which is known as Landauer’s principle [10].

STACS 2021

52:4 Lower Bounds for Graph-Walking Automata

The definition of reversibility begins with the property that every state is reachable from
only one direction.

▶ Definition 6. A graph-walking automaton A = (Q, q0, F, δ) over a signature S =
(D, −, Σ, Σ0, (Da)a∈Σ) is called direction-determinate, if there is a function d : Q → D,
such that, for all p ∈ Q and a ∈ Σ, if δ(p, a) is defined, then δ(p, a) = (q, d(q)) for some
q ∈ Q.

▶ Definition 7. A graph-walking automaton A = (Q, q0, F, δ) over a signature S =
(D, −, Σ, Σ0, (Da)a∈Σ) is called reversible, if

A is direction-determinate;
for all a ∈ Σ and q ∈ Q, there is at most one state p, such that δ(p, a) = (q, d(q)); in
other words, knowing a state and a previous label, one can determine the previous state;
The automaton is returning, and for each a0 ∈ Σ0 there exists at most one such state q,
that (q, a0) ∈ F .

In theory, a reversible automaton may loop, but only through the initial configuration.
In this case, it can be made halting by introducing an extra initial state.

Every GWA can be transformed to each of the above subclasses [9]. In the next section,
the known transformations will be explained and slightly improved.

3 Upper bounds revisited

Before establishing the lower bounds on all transformations, the existing constructions of
Kunc and Okhotin [9] will be somewhat improved by using fewer states. This is achieved by
recombining the elements of the original construction, and, with these improvements, the
constructions shall be proved asymptotically optimal.

All transformations are based on the following lemma.

▶ Lemma 8 (Kunc and Okhotin [9, Lemma 4]). For every direction-determinate GWA A,
one can construct a reversible GWA B with twice as many states, so that for every accepting
configuration (q, v) of A on a graph G, if B starts on G in (q, v − d(q)), then B reversibly
traverses the tree of all computations of A that lead to the configuration (q, v). If B ever
finds the initial configuration, it accepts, and otherwise it rejects in a copy of the accepting
configuration of A.

Note that the computation of A starting from the initial configuration can reach at most
one accepting configuration (q, v), whereas for any other accepting configuration (q, v), the
automaton B will not find the initial configuration and will reject as stated in the lemma.

To transform a given n-state GWA Â over a signature with k directions to a returning
automaton, Kunc and Okhotin [9] first transform it to a direction-determinate automaton
A with nk states; let B be the 2nk-state automaton obtained from A by Lemma 8. Then
they construct an automaton that first operates as A, and then, after reaching an accepting
configuration, works as B to return to the initial node. This results in a returning direction-
determinate automaton with 3nk states.

If the goal is just to return, and remembering the direction is not necessary, then 2nk + n

states are actually enough.

▶ Theorem 9. For every n-state GWA over a signature with k directions, there exists a
returning automaton with 2nk + n states recognizing the same set of graphs.

O. Martynova and A. Okhotin 52:5

Indeed, the original automaton Â can be first simulated as it is, and once it reaches an
accepting configuration, one can use the same automaton B as in the original construction
to return to the initial node. There is a small complication in the transition from Â to B,
because in the accepting configuration, the direction last used is unknown. This is handled
by cycling through all possible previous configurations of A at this last step, and executing B

from each of them. If the direction is guessed correctly, then B finds the initial configuration
and accepts. Otherwise, if the direction is wrongly chosen, B returns back, and then, instead
of rejecting, it is executed again starting from the next direction. One of these directions
leads it back to the initial node.

Kunc and Okhotin [9] did not consider halting automata separately. Instead, they first
transform an n-state GWA to a 3nk-state returning direction-determinate automaton, then
use Lemma 8 to obtain a 6nk-state reversible automaton, and add an extra initial state to
start it. The resulting (6nk + 1)-state automaton is always halting.

If only the halting property is needed, then the number of states can be reduced.

▶ Theorem 10. For every n-state direction-determinate automaton, there exists a (2n + 1)-
state halting and direction-determinate automaton that recognizes the same set of graphs.

First, an n-state automaton Â is transformed to a direction-determinate nk-state
automaton A, and Lemma 8 is used to construct a 2nk-state automaton B. Then, the
automaton B is reversed by the method of Kunc and Okhotin [9], resulting in an automaton
BR with 2nk + 1 states that carries out the computation of B backwards. The automaton
BR is a halting automaton that recognizes the same set of graphs as Â: it starts in the initial
configuration, and if B accepts from an accepting configuration of A, then BR finds this
configuration and accepts; otherwise, BR halts and rejects.

The construction of a reversible automaton with 6nk +1 states can be improved to 4nk +1
by merging the automata B and BR. The new automaton first works as BR to find the
accepting configuration of A. If it finds it, then it continues as B to return to the initial
node. In addition, this automaton halts on every input.

▶ Theorem 11. For every n-state direction-determinate automaton there exists a (4n + 1)-
state reversible and halting automaton recognizing the same set of graphs.

With the upper bounds improved, it is time to establish asymptotically matching lower
bounds.

4 Construction of a “diode”

Lower bounds on the size of GWA obtained in this paper rely on quite involved constructions
of graphs that are easy to traverse from the initial node to the moment of acceptance, whereas
traversing the same path backwards is hard. An essential element of this construction is a
subgraph called a diode; graphs in the lower bound proofs are made of such elements.

A diode is designed to replace an (a, −a)-edge. An automaton can traverse it in the
direction a without changing its state. However, traversing it in the direction −a requires at
least 2(|D| − 3) states, where D is the set of directions in the diode’s signature.

If an automaton never moves in the direction −a, then it can be transformed to an
automaton with the same number of states, operating on graphs in which every (a, −a)-edge
is replaced with a diode.

Lower bound proofs for automata with n states over a signature with k directions use a
diode designed for these particular values of n and k. This diode is denoted by ∆n,k.

STACS 2021

52:6 Lower Bounds for Graph-Walking Automata

±bi

±bi±bi

±bi

±bi

±bi

–a
a

–a
a

a

–a
a

–a

–a

–a
a

–a

a
–a

a

mi
uin

u4M
–aa a–bibi

u'1
u'M–1

±bi
±bi

u'0

bi

bi

–bi

a

–a
a

a
–a

–a

±bi

±bi

–a
a

–a

a

–a
a

mame
b1 a –a–b1

uoutu0

a –a a –a a –a

 ±bi ±bi

–a a –a a –a a

±bi ±bi

–a a –a a –a a

±bi ±bi

a –a a –a a –a

 ±bi ±bi

uMu3M

u5M u6M u7M

u2M

bi–bi

bi –bi

bi

–bi

–bibi
–bi

bi
–bibi

–a a

uM–1

u8M–1

u1

u7M+1

–bi

Ei

Figure 1 Element Ei. Filled circles are nodes labelled with m, each with r − 1 loops in directions
±bs, with s ̸= i.

For n ⩾ 2 and k ⩾ 4, let M = (4nk)!, and let r = ⌊ k−2
2 ⌋. A diode ∆n,k is defined over a

signature Sk that does not depend on n.

▶ Definition 12. A signature Sk = (D, −, Σ, Σ0, (Da)a∈Σ) consists of:
the set of directions D = {a, −a} ∪ {b1, b−1, . . . , br, b−r};
opposite directions −(a) = (−a), −bi = b−i, for 1 ⩽ i ⩽ r;
the set of node labels Σ = {m1, . . . , mr} ∪ {m−1, . . . , m−r} ∪ {m, me, ma}, with no initial
labels defined (Σ0 = ∅) since the diode is inserted into graphs;
sets of directions allowed at labels: Dm = D, Dmi

= Dm−i
= {−a, bi, −bi}, for i =

1, . . . , r, Dme = {b1, a, −a}, Dma = {−b1, a}.

A diode is comprised of 2r elements Ei, E−i, for i ∈ {1, . . . , r}. Each element Ei and E−i

is a graph over the signature Sk, with two external edges, one with label a, the other with
−a. By these edges, the elements are connected in a chain.

The form of an element Ei is illustrated in Figure 1. Its main part is a cycle of length
8M in directions a, −a; these are nodes u0, . . . , u8M−1, where the arithmetic in the node
numbers is modulo 8M , e.g., u−1 = u8M−1. The node numbers are incremented in direction
a. Besides the main cycle, there are two extra nodes: the entry point uin and the exit uout,
as well as a small circle of length M in directions a, −a with the nodes u′

0, . . . , u′
M−1. All

nodes are labelled with m, except three: uin with label mi matching the index of the element,
uout with label ma, and u0 has label me.

An element Ei has specially defined edges in directions bi and −bi. Each node uj with
j ̸≡ 0 (mod M) has a (bi, −bi)-loop. The nodes uj with j ∈ {M, 2M, 3M, 5M, 6M, 7M} are
interconnected with edges, as shown in Figure 1; these edges serve as traps for an automaton
traversing the element backwards. The node u4M has a different kind of trap in the form of
a cycle u′

0, . . . , u′
M−1. For all s ̸= i, each node labelled with m has a (bs, −bs)-loop.

The element E−i is the same as Ei, with the directions bi and −bi swapped.
The diode ∆n,k is a chain of such elements, as illustrated in Figure 2. Each element can

be traversed from the entrance to the exit without changing the state: at first, the automaton
sees the label mi, and accordingly moves in the direction bi; then, on labels m, it proceeds in
the direction a until it reaches u0, labelled with me. Then the automaton leaves the element
by following directions b1 and a.

O. Martynova and A. Okhotin 52:7

a–a

E+1

±b1
±b1a a–a

E–1

∓b1
∓b1 a–a

E–r

∓br
∓br. . . –a

Figure 2 Diode ∆n,k: a chain of elements E1, E−1, E2, E−2, . . . , Er, E−r.

The diode is hard to traverse backwards, because the node u4M is not specifically labelled,
and in order to locate it, the automaton needs to move in directions ±bi from many nodes,
and is accordingly prone to falling into traps.

The diode is used as a subgraph connecting two nodes of a graph as if an (a, −a)-edge. For
a graph G over some signature S̃, let G′ be a graph obtained by replacing every (a, −a)-edge
in G with the diode ∆n,k. Denote this graph operation by hn,k : G 7→ G′.

The following lemma states that if an automaton never traverses an (a, −a)-edge
backwards, then its computations can be replicated on graphs with these edges substituted
by diodes, with no extra states needed.

▶ Lemma 13. Let S̃ be any signature containing directions a, −a, which has no node labels
from the signature Sk. Let A = (Q, q0, F, δ) be a GWA over the signature S̃, which never
moves in the direction −a.

Then, there exists a GWA A′ = (Q′, q′
0, F ′, δ′) over a joint signature S̃ ∪ Sk, with

|Q′| = |Q|, so that A accepts a graph G if and only if A′ accepts the graph G′ = hn,k(G).

Lemma 13 shows that, under some conditions, a substitution of diodes can be implemented
on GWA without increasing the number of states. The next lemma presents an inverse
substitution of diodes: the set of pre-images under hn,k of graphs accepted by a GWA can be
recognized by another GWA with the same number of states.

▶ Lemma 14. Let k ⩾ 4 and n ⩾ 2, denote h(G) = hn,k(G) for brevity. Let S̃ be a signature
containing the directions a, −a and no node labels from the diode’s signature Sk. Let B be a
GWA over the signature S̃ ∪ Sk. Then there exists an automaton C over the signature S̃,
using the same set of states, with the following properties.

For every graph G over S̃, the automaton C accepts G if and only if B accepts h(G).
If C can enter a state q by a transition in direction −a, then B can enter the state q

after traversing the diode backwards.
If B is returning, then so is C.
If B is halting, then C is halting as well.

The automaton C is constructed by simulating B on small graphs, and using the outcomes
of these computations to define the transition function and the set of acceptance conditions
of C. Note that the signatures S̃ and Sk may contain any further common directions besides
a, −a: this does not cause any problems with the proof, because the node labels are disjoint,
and thus B always knows whether it is inside or outside a diode.

▶ Lemma 15. Let A = (Q, q0, F, δ) be a GWA over a signature that includes the diode’s
signature Sk, with |Q| ⩽ 4nk. Assume that A, after traversing the diode ∆n,k backwards, can
leave the diode in any of h distinct states. Then A has at least 2h(k − 3) states.

Sketch of a proof. While moving through an element Ei backwards, the automaton sees
labels m most of the time, and soon begins repeating a periodic sequence of states. Without
loss of generality, assume that this periodic sequence contains more transitions in the direction

STACS 2021

52:8 Lower Bounds for Graph-Walking Automata

a than in −a. Then the automaton reaches the node uM , and at this point it may teleport
between uM and u−M several times. Let w ∈ {bi, −bi}∗ be the sequence of these teleportation
moves, and let x be the corresponding sequence of states. Depending on the sequence w,
the automaton may eventually exit the cycle to the node uin, or fall into one of the traps
and get back to u0. It is proved that for the automaton to reach uin, the string w must be
non-empty and of even length; furthermore, if |w| = 2, then w = (−bi)bi.

Now consider the h backward traversals of the diode ending in some states p1, . . . , ph.
When the traversal ending in pj proceeds through the element Ei, the strings wi,j ∈ {bi, −bi}∗

and xi,j are defined as above. Then, as the last step of the argument, it is proved that
whenever |wi,j | = 2, the states in xi,j cannot occur in any other string xi′,j′ . For wi,j of
length 4 or more, the states in xi,j can repeat in other strings xi′,j′ , but only once. It follows
that there are at least 2h(k − 3) distinct states in these strings. ◀

5 Lower bound on the size of returning automata

By the construction of Kunc and Okhotin [9], as improved in Section 3, an n-state GWA
over a signature with k directions can be transformed to a returning GWA with 2nk + n

states. A closely matching lower bound will now be proved by constructing an automaton
with n states over a signature with k directions, such that every returning automaton that
recognizes the same set of graphs must have at least 2(n − 1)(k − 3) states.

The first step is a construction of a simple automaton over a signature S̃ with four
directions a, −a, b, −b and two graphs over this signature, so that the automaton accepts one
of them and rejects the other. The automaton will have n states, it will never move in the
direction −a, and every returning automaton recognizing the same set of graphs can enter
n − 1 distinct states after transitions in the direction −a. Then, Lemma 15 shall assert that
every returning automaton recognizing the same graphs with diodes substituted must have
the claimed number of states.

▶ Definition 16. The signature S̃ = (D, −, Σ, Σ0, (Da)a∈Σ) uses the set of directions
D = {a, −a, b, −b}, with −(a) = (−a), −(b) = (−b). The set of node labels is
Σ = {c0, c, cl, cr, cacc}, with initial labels Σ0 = {c0}. The allowed directions are Dc = D,
Dc0 = Dcl

= {a}, and Dcr
= Dcacc

= {−a}.

For n ⩾ 2 and k ⩾ 4, let M = (4nk)! be as in the definition of the diode ∆n,k. Let
Gaccept

n,k and Greject
n,k be two graphs over the signature S̃, defined as follows. The graph Gaccept

n,k

is illustrated in Figure 3; the other graph Greject
n,k is almost identical, but the node that

determines acceptance is differently labelled.
Both graphs consist of two horizontal chains of nodes, connected by bridges at two

places. Nodes are pairs (x, y), where y ∈ {−1, 1} is the number of the chain, and x is the
horizontal coordinate, with −(n − 1) ⩽ x ⩽ M + 8nk for the lower chain (y = −1) and
−8nk ⩽ x ⩽ M + 8nk for the upper chain (y = 1).

All nodes except the ends of chains have labels c. The node (−(n − 1), −1) is the initial
node, with label c0. The other left end (−8nk, 1) is labelled with cl. The node (M + 8nk, −1)
has label cr. The node (M + 8nk, 1) is labelled with cacc in Gaccept

n,k and with cr in Greject
n,k ;

this is the only difference between the two graphs.
The horizontal chains are formed of (a, −a)-edges, with a incrementing x and −a

decrementing it. Edges with labels (b, −b) are loops at all nodes except for (0, 1), (0, −1),
(M, 1) and (M, −1). The latter four nodes form two pairs connected with bridges in directions
(b, −b).

O. Martynova and A. Okhotin 52:9

n–1

(–8nk,1)

(–(n–1),–1) (0,–1) (M,–1)

(0,1) (M,1)

c0 –aa –aaa –a –aa

–aa –аaa –a –аа

–ааа –а

–ааа –а cacc

–аа–a –аа

–аа–а –аа

a

а

(M+8nk,–1)

(M+8nk,1)

v0

8nk(4nk)!

–b

b –b

b–b

b –b

b

8nk

–b

b –b

b

cr

cl

Figure 3 The graph Gaccept
n,k .

An n-state automaton A, that accepts the graph Gaccept
n,k , does not accept any graphs

without labels cacc and never moves in the direction −a, is defined as follows. In the beginning,
it moves in the direction a in the same state q0, then makes n−2 further steps in the direction
a, incrementing the number of state. Next, it crosses the bridge in the direction b and enters
the last, n-th state, in which it moves in the direction a until it sees the label cacc.

▶ Lemma 17. Every returning automaton that accepts the same set of graphs as A, and has
at most 4nk states, may enter at least n − 1 distinct states after transitions in the direction
−a.

Sketch of a proof. On the graph Gaccept
n,k , a returning automaton, after seeing the node

(M + 8nk, 1), must find its way back to the initial node. At some point, it leaves one of the
ends of the upper chain, (−8nk, 1) or (M + 8nk, 1), and then arrives at one of the ends of
the lower chain, (−(n − 1), −1) = v0 or (M + 8nk, −1). On the way, it passes through nodes
labelled with c, and eventually starts behaving periodically. It is claimed that its periodic
sequence of directions contains at least n − 1 moves in the direction −a.

First assume that the automaton leaves the node (M + 8nk, 1). Let s be the difference
between the number of −a and a in the periodic sequence. Then s > 0, and each period
the automaton shifts by s edges to the left. As the automaton passes through the nodes
(M, ±1), it may move to the lower chain without noticing that; but if it does so, then later
at the nodes (0, ±1), the sequence of transitions will move it back to the upper chain. If it
stays on the same chain at (M, ±1), then it will stay on it at the second time as well. If
there are too few directions −a, then, on the way through (0, ±1), it would not reach the
node (−(n − 1), −1) = v0, and will end up at the node (−8nk, 1). This contradicts that
assumption that the automaton has left both ends of the upper chain for good.

If the automaton leaves the node (−8nk, 1), the argument is similar. The number s is
defined, and now it must be negative. As the automaton passes through (0, ±1), if it has
too few directions −a, then it cannot reach v0, and it eventually proceeds to (M + 8nk, 1),
which is again a contradiction. ◀

It remains to combine this lemma with the properties of the diode to obtain the desired
theorem.

▶ Theorem 18. For every k ⩾ 4, there exists a signature with k directions, such that,
for every n ⩾ 2, there is an n-state graph-walking automaton, such that every returning
automaton recognizing the same set of graphs must have at least 2(n − 1)(k − 3) states.

STACS 2021

52:10 Lower Bounds for Graph-Walking Automata

Proof. The proof uses the automaton A defined above. By Lemma 13, the n-state automaton
A over the signature S̃, is transformed to n-state automaton A′ over the signature S̃ ∪ Sk.
The directions ±a are the same for S̃ and Sk, and ±b in S̃ are merged with ±b1 in Sk, so
there are k directions in total.

For every graph G, the automaton A′ accepts a graph hn,k(G) with (a, −a)-edges replaced
by diodes, if and only if A accepts G. The automaton A′ is the desired example: it is claimed
that every returning automaton B recognizing the same set of graphs as A′ has at least
2(n − 1)(k − 3) states.

Let B be any returning automaton with at most 4nk states recognizing these graphs. By
Lemma 14, there is an automaton C over the signature S̃ and with the same number of states,
which accepts a graph G if and only if B accepts h(G). This is equivalent to A accepting
G, and so C and A accept the same set of graphs. Since B is returning, by Lemma 14, C

is returning too. Then, Lemma 17 asserts that the automaton C may enter n − 1 distinct
states after moving in the direction −a.

Then, according to Lemma 14, the automaton B enters at least n − 1 distinct states after
traversing the diode backwards. Therefore, by Lemma 15, this automaton should have at
least 2(k − 3)(n − 1) states. ◀

6 Lower bound on the size of halting automata

Every n-state GWA with k directions can be transformed to a halting GWA with 2nk + 1
states, as shown in Section 3. In this section, the following lower bound for this construction
is established.

▶ Theorem 19. For every k ⩾ 4, there is a signature with k directions, such that for every
n ⩾ 2 there is an n-state GWA, such that every halting automaton accepting the same set of
graphs has at least 2(n − 1)(k − 3) states.

The argument shares some ideas with the earlier proof for the case of returning automata:
the signature S̃, the graphs Gaccept

n,k and Greject
n,k , and the automaton A are the same as

constructed in Section 5. The proof of Theorem 19 uses the following lemma, stated similarly
to Lemma 17 for returning automata.

▶ Lemma 20. Every halting automaton A′, accepting the same set of graphs as A and using
at most 4nk states, must be able to enter at least n − 1 distinct states after transitions in the
direction −a.

Sketch of a proof. Consider the computation of A′ on the graph G, defined by merging the
nodes (M + 8nk, 1) and (−8nk, 1) in Greject

n,k , into a single node vjoint, with label c. The
automaton A′ must visit this node, because it is the only difference between G and Gaccept

n,k .
By the time the automaton reaches vjoint, it already behaves periodically, and in order to
stop, it needs to visit any label other than c, that is, return to one of the end-points of the
lower chain. As in Lemma 17, the automaton can reach either end-point only if the periodic
sequence contains at least n − 1 moves in the direction −a. ◀

The proof of Theorem 19 is completed via Lemmata 13, 14 and 15, in the same way as
for returning automata, only using Lemma 20 instead of Lemma 17.

O. Martynova and A. Okhotin 52:11

7 Lower bound on the size of returning and halting automata

An n-state GWA over a signature with k directions can be transformed to an automaton
that both halts on every input and accepts only in the initial node: a reversible automaton
with 4nk + 1 states, described in Section 3, will do.

This section establishes a close lower bound on this transformation. The witness n-state
automaton is the same as in Sections 5–6, for which Theorem 18 asserts that a returning
automaton needs at least 2(n − 1)(k − 3) states, whereas Theorem 19 proves that a halting
automaton needs at least 2(n − 1)(k − 3) states. The goal is to prove that these two sets of
states must be disjoint, leading to the following lower bound.

▶ Theorem 21. For every k ⩾ 4, there exists a signature with k directions, such that for
every n ⩾ 2, there is an n-state graph-walking automaton, such that every returning and
halting automaton recognizing the same set of graphs must have at least 4(n − 1)(k − 3) states.

As before, the automaton is obtained from A by Lemma 13. For the argument to proceed,
the following property needs to be established.

▶ Lemma 22 (cf. Lemma 17). Every returning and halting automaton that recognizes the
same set of graphs as A, and has at most 4nk states, enters at least 2(n − 1) distinct states
after transitions in the direction −a.

Sketch of a proof. Consider any such returning and halting automaton. Since it is returning,
as shown in Lemma 17, on the graph Gaccept

n,k , the automaton uses a periodic sequence of
states to return from (M + 8nk, 1) to v0. Since it is at the same time halting, Lemma 20
asserts that on the graph G it uses another periodic sequence of states to escape the cycle
after visiting vjoint. Each of these two sequences makes transitions in the direction −a in at
least n − 1 distinct states. It remains to prove that these sequences are disjoint.

Suppose the sequences have a common element, then they coincide up to a cyclic shift.
Then it is possible to modify G so that the computation coming to vjoint later continued as
the computation on Gaccept

n,k , and led to acceptance. ◀

The proof of the theorem is inferred from Lemmata 13, 14, 15 and 22, as in the earlier
arguments.

8 Lower bound on the size of reversible automata

For the transformation of a GWA with n states and k directions to a reversible automaton,
4nk + 1 states are sufficient. A close lower bound shall now be established.

▶ Theorem 23. For every k ⩾ 4, there exists a signature with k directions, such that for
every n ⩾ 2, there is an n-state GWA, such that every reversible GWA recognizing the same
set of graphs has at least 4(n − 1)(k − 3) − 1 states.

Proof. By Theorem 21, there is such an n-state automaton A′ that every returning and
halting automaton recognizing the same set of graphs has at least 4(n − 1)(k − 3) states.
Suppose that there is a reversible automaton with fewer than 4(n − 1)(k − 3) − 1 states
that accepts the same graphs as A′. Let m be the number of states in it. Then, by the
construction of reversing a reversible automaton given by Kunc and Okhotin [9], there is a
returning and halting automaton with m + 1 states, that is, with fewer than 4(n − 1)(k − 3)
states. This contradicts Theorem 21. ◀

STACS 2021

52:12 Lower Bounds for Graph-Walking Automata

9 Conclusion

The new bounds on the complexity of transforming graph-walking automata to automata with
returning, halting and reversibility properties are fairly tight. However, for their important
special cases, such as two-way finite automata (2DFA) and tree-walking automata (TWA),
the gaps between lower bounds and upper bounds are still substantial.

For an n-state 2DFA, the upper bound for making it halting is 4n + const states [6]. No
lower bound is known, and any lower bound would be interesting to obtain. A 2DFA can be
made reversible using 4n + 3 states [9], with a lower bound of 2n − 2 states [8]; it would be
interesting to improve these bounds.

The same question applies to tree-walking automata: they can be made halting [13], and,
for k-ary trees, it is sufficient to use 4kn + 2k + 1 states to obtain a reversible automaton [9].
No lower bounds are known, and this subject is suggested for further research.

Furthermore, it would be interesting to try to apply the lower bound methods for GWA
to limited memory algorithms for navigation in graphs.

References
1 Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking automata cannot be determinized.

Theor. Comput. Sci., 350(2-3):164–173, 2006. doi:10.1016/j.tcs.2005.10.031.
2 Lothar Budach. Automata and labyrinths. Mathematische Nachrichten, 86(1):195–282, 1978.

doi:10.1002/mana.19780860120.
3 Yann Disser, Jan Hackfeld, and Max Klimm. Undirected graph exploration with ⊖(log log n)

pebbles. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 25–39. SIAM, 2016. doi:10.1137/1.9781611974331.ch3.

4 Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient basic graph algorithms.
In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical
Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30
of LIPIcs, pages 288–301. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:
10.4230/LIPIcs.STACS.2015.288.

5 Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph exploration
by a finite automaton. Theor. Comput. Sci., 345(2-3):331–344, 2005. doi:10.1016/j.tcs.
2005.07.014.

6 Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Complementing two-way finite
automata. Inf. Comput., 205(8):1173–1187, 2007. doi:10.1016/j.ic.2007.01.008.

7 Attila Kondacs and John Watrous. On the power of quantum finite state automata. In 38th
Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida,
USA, October 19-22, 1997, pages 66–75. IEEE Computer Society, 1997. doi:10.1109/SFCS.
1997.646094.

8 Michal Kunc and Alexander Okhotin. Reversible two-way finite automata over a unary
alphabet. Technical Report 1024, Turku Centre for Computer Science, 2011.

9 Michal Kunc and Alexander Okhotin. Reversibility of computations in graph-walking automata.
Inf. Comput., 275:104631, 2020. doi:10.1016/j.ic.2020.104631.

10 Rolf Landauer. Irreversibility and heat generation in the computing process. IBM J. Res.
Dev., 5(3):183–191, 1961. doi:10.1147/rd.53.0183.

11 Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. Reversible space equals deterministic
space. J. Comput. Syst. Sci., 60(2):354–367, 2000. doi:10.1006/jcss.1999.1672.

12 Kenichi Morita. A deterministic two-way multi-head finite automaton can be converted into a
reversible one with the same number of heads. In Robert Glück and Tetsuo Yokoyama, editors,
Reversible Computation, 4th International Workshop, RC 2012, Copenhagen, Denmark, July
2-3, 2012. Revised Papers, volume 7581 of Lecture Notes in Computer Science, pages 29–43.
Springer, 2012. doi:10.1007/978-3-642-36315-3_3.

https://doi.org/10.1016/j.tcs.2005.10.031
https://doi.org/10.1002/mana.19780860120
https://doi.org/10.1137/1.9781611974331.ch3
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/j.ic.2007.01.008
https://doi.org/10.1109/SFCS.1997.646094
https://doi.org/10.1109/SFCS.1997.646094
https://doi.org/10.1016/j.ic.2020.104631
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1006/jcss.1999.1672
https://doi.org/10.1007/978-3-642-36315-3_3

O. Martynova and A. Okhotin 52:13

13 Anca Muscholl, Mathias Samuelides, and Luc Segoufin. Complementing deterministic tree-
walking automata. Inf. Process. Lett., 99(1):33–39, 2006. doi:10.1016/j.ipl.2005.09.017.

14 Alexander Okhotin. Graph-walking automata: From whence they come, and whither they are
bound. In Michal Hospodár and Galina Jirásková, editors, Implementation and Application of
Automata - 24th International Conference, CIAA 2019, Košice, Slovakia, July 22-25, 2019,
Proceedings, volume 11601 of Lecture Notes in Computer Science, pages 10–29. Springer, 2019.
doi:10.1007/978-3-030-23679-3_2.

15 Michael Sipser. Lower bounds on the size of sweeping automata. J. Comput. Syst. Sci.,
21(2):195–202, 1980. doi:10.1016/0022-0000(80)90034-3.

STACS 2021

https://doi.org/10.1016/j.ipl.2005.09.017
https://doi.org/10.1007/978-3-030-23679-3_2
https://doi.org/10.1016/0022-0000(80)90034-3

	1 Introduction
	2 Graph-walking automata and their subclasses
	3 Upper bounds revisited
	4 Construction of a ``diode''
	5 Lower bound on the size of returning automata
	6 Lower bound on the size of halting automata
	7 Lower bound on the size of returning and halting automata
	8 Lower bound on the size of reversible automata
	9 Conclusion

