
Fine-Grained Complexity of the List
Homomorphism Problem: Feedback Vertex Set
and Cutwidth
Marta Piecyk !

Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland

Paweł Rzążewski !

Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland
Institute of Informatics, University of Warsaw, Poland

Abstract
For graphs G, H, a homomorphism from G to H is an edge-preserving mapping from V (G) to V (H).
In the list homomorphism problem, denoted by LHom(H), we are given a graph G, whose every
vertex v is equipped with a list L(v) ⊆ V (H), and we need to determine whether there exists a
homomorphism from G to H which additionally respects the lists L. List homomorphisms are a
natural generalization of (list) colorings.

Very recently Okrasa, Piecyk, and Rzążewski [ESA 2020] studied the fine-grained complexity
of the problem, parameterized by the treewidth of the instance graph G. They defined a new
invariant i∗(H), and proved that for every relevant graph H, i.e., such that LHom(H) is NP-hard,
this invariant is the correct base of the exponent in the running time of any algorithm solving the
LHom(H) problem.

In this paper we continue this direction and study the complexity of the problem under different
parameterizations. As the first result, we show that i∗(H) is also the right complexity base if the
parameter is the size of a minimum feedback vertex set of G, denoted by fvs(G). In particular, for
every relevant graph H, the LHom(H) problem

can be solved in time i∗(H)fvs(G) · |V (G)|O(1), if a minimum feedback vertex set of G is given,
cannot be solved in time (i∗(H) − ε)fvs(G) · |V (G)|O(1), for any ε > 0, unless the SETH fails.

Then we turn our attention to a parameterization by the cutwidth ctw(G) of G. Jansen and
Nederlof [TCS 2019] showed that List k-Coloring (i.e., LHom(Kk)) can be solved in time
cctw(G)·|V (G)|O(1) for an absolute constant c, i.e., the base of the exponential function does not depend
on the number of colors. Jansen asked whether this behavior extends to graph homomorphisms. As
the main result of the paper, we answer the question in the negative. We define a new graph invariant
mim∗(H), closely related to the size of a maximum induced matching in H, and prove that for all
relevant graphs H, the LHom(H) problem cannot be solved in time (mim∗(H)−ε)ctw(G) · |V (G)|O(1)

for any ε > 0, unless the SETH fails. In particular, this implies that, assuming the SETH, there is
no constant c, such that for every odd cycle the non-list version of the problem can be solved in
time cctw(G) · |V (G)|O(1).

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Theory of com-
putation → Problems, reductions and completeness; Theory of computation → Graph algorithms
analysis; Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases list homomorphisms, fine-grained complexity, SETH, feedback vertex set,
cutwidth

Digital Object Identifier 10.4230/LIPIcs.STACS.2021.56

Related Version Full Version: https://arxiv.org/abs/2009.11642 [35]

Funding Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.

Acknowledgements We are grateful to Bart M. P. Jansen for introducing us to the problem and to
Karolina Okrasa for many fruitful discussions.

© Marta Piecyk and Paweł Rzążewski;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021).
Editors: Markus Bläser and Benjamin Monmege; Article No. 56; pp. 56:1–56:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.piecyk@mini.pw.edu.pl
mailto:p.rzazewski@mini.pw.edu.pl
https://orcid.org/0000-0001-7696-3848
https://doi.org/10.4230/LIPIcs.STACS.2021.56
https://arxiv.org/abs/2009.11642
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Fine-Grained Complexity of the List Homomorphism Problem

1 Introduction

The k-Coloring problem, which asks whether an input graph G admits a proper coloring
with k colors, is arguably one of the best studied computational problems. The problem is
known to be notoriously hard: it is polynomial-time solvable (and, in fact, very simple) only
for k ⩽ 2, and NP-complete otherwise, even on very restricted classes of graphs [15, 19, 20, 26].

For such a hard problem, an interesting direction of research is to study their fine-grained
complexity depending on some parameters of input instances, in order to understand where
the boundary of easy and hard cases lies. Such investigations usually follow two paths in
parallel. On one hand, we extend our algorithmic toolbox in order to solve the problem
efficiently in various settings. On the other hand, we try to show hardness of the problem,
using appropriate reductions.

In order to obtain meaningful lower bounds, the basic assumption of the classical com-
plexity theory, i.e., P ̸= NP, is not strong enough. The usual assumptions used in this context
are the Exponential Time Hypothesis (ETH) and the Strong Exponential Time Hypothesis
(SETH), both formulated by Impagliazzo and Paturi [21, 22]. The ETH asserts that 3-Sat
with n variables cannot be solved in time 2o(n) · nO(1), while the SETH says that CNF-Sat
with n variables and m clauses cannot be solved in time (2 − ε)n · (n + m)O(1) for any ε > 0.

In case of k-Coloring, the most natural parameter is the number of vertices. While the
brute-force approach to solve the problem on an instance G takes time k|V (G)| · |V (G)|O(1), we
know better algorithms where the base of the exponential function does not depend on k. The
currently best algorithm is due to Björklund et al. [3] and has complexity 2|V (G)| · |V (G)|O(1).
On the other hand, the standard hardness reduction shows that the problem cannot be solved
in time 2o(|V (G)|) · |V (G)|O(1), unless the ETH fails [9].

Similarly, we can ask how the complexity depends on some parameters, describing the
structure of the instance. The most famous structural parameter is arguably the treewidth
of the graph, denoted by tw(G) [2, 5, 36]. Intuitively, treewidth measures how tree-like
the graph is. Thus, on graphs with bounded treewidth, we can mimick the bottom-up
dynamic programming algorithms that works very well on trees. In case of k-Coloring, the
complexity of such a straightforward approach is ktw(G) · |V (G)|O(1), provided that G is given
along with its tree decomposition of width tw(G). One might wonder whether this could be
improved, in particular, if one can design an algorithm with running time ctw(G) · |V (G)|O(1),
where c is a constant that does not depend on k, as it was possible in the case if the parameter
is |V (G)|. Lokshtanov, Marx, and Saurabh [30] proved that this is unlikely, and an algorithm
with running time (k − ε)tw(G) · |V (G)|O(1), for any ε > 0, would contradict the SETH. This
lower bounds holds even if we replace treewidth with pathwidth pw(G); the latter result is
stronger, as we always have tw(G) ⩽ pw(G).

Another way to measure how close a graph G is to a tree or a forest is to analyze the size
fvs(G) of a minimum feedback vertex set, i.e., the minimum number of vertices that need to
be removed from G to break all cycles. If G is given with a minimum feedback vertex set S,
we can solve k-Coloring by enumerating all possible colorings of S, and trying to extend
them on the forest G−S using dynamic programming. The running time of such a procedure
is kfvs(G) · |V (G)|O(1). This is complemented by a hardness result of Lokshtanov et al. [30],
who showed that the problem cannot be solved in time (k −ε)fvs(G) · |V (G)|O(1) for any ε > 0,
unless the SETH fails. Let us point that pw(G) and fvs(G) are incomparable parameters,
so this result is incomparable with the previously mentioned lower bound. These two lower
bounds were later unified by Jaffke and Jansen [23], who considered the parameterization by
the distance to a linear forest.

M. Piecyk and P. Rzążewski 56:3

The above examples show a behavior which is typical for many other parameters: the
running time of the algorithm depends on the number k of colors and this dependence is
necessary under standard complexity assumptions [16, 27, 23]. Thus, it was really surprising
that Jansen and Nederlof [25] showed that for any k, the k-Coloring problem can be solved
in time cctw(G) · |V (G)|O(1), where c is an absolute constant and ctw(G) is the cutwidth of G.
Intuitively, we can imagine ctw(G) as follows. We fix some ordering of the vertices of G and
place them on a horizontal line in this ordering. The edges of G are drawn as arcs above
the line; we do not care about intersections. Now, the width of this layout is the maximum
number of edges that can be cut by a vertical line. The cutwidth is the minimum width
over all linear layouts of vertices of G. The substantial difference between cutwidth and the
previously mentioned parameters is that cutwidth corresponds to a number of edges, not a
number of vertices. Also, it is known that pw(G) ⩽ ctw(G) [4].

Actually, Jansen and Nederlof [25] presented two algorithms for k-Coloring, parameter-
ized by the cutwidth. The first one is deterministic and has running time 2ω·ctw(G) ·|V (G)|O(1),
where ω < 2.373 is the matrix multiplication exponent [7, 39]. The second one is randomized
and works in time 2ctw(G) · |V (H)|O(1). Also, the authors show that the latter complexity is
optimal under the SETH.

Let us point out that all the algorithms mentioned above work also for the more general
List k-Coloring problem, where each vertex v of G is equipped with a list L(v) ⊆
{1, 2, . . . , k}, and we additionally require that the assigned color comes from this list. The
general direction of our work is to investigate how further the techniques developed for
k-Coloring can be generalized.

Graph homomorphisms. A homomorphism from a graph G to a graph H (called target)
is an edge-preserving mapping from V (G) to V (H). In the Hom(H) problem we ask if the
input graph G admits a homomorphism to H, which is usually treated as a fixed graph.
Observe that if H is Kk, i.e., a complete graph on k vertices, then Hom(H) is equivalent to
k-Coloring. The complexity classification of Hom(H) was provided by the seminal paper
by Hell and Nešetřil [18]: the problem is polynomial-time solvable if H is bipartite or has a
vertex with a loop, and NP-complete otherwise. This problem can also be considered in a
list setting, where every vertex v of G is equipped with an H-list L(v) ⊆ V (H), and we ask
for a homomorphism from G to H, which additionally respects lists L. The corresponding
computational problem is denoted by LHom(H).

The complexity dichotomy for LHom(H) was proven in three steps: first, for reflexive
graphs H (i.e., where every vertex has a loop) by Feder and Hell [11], then for irreflexive
graphs H (i.e., with no loops) by Feder, Hell, and Huang [12], and finally, for all graphs H,
again by Feder, Hell, and Huang [13]. The problem appears to be polynomial-time solvable
if H is a so-called bi-arc graph. We will now skip the definition of this class and just mention
a special case if H is irreflexive and bipartite: then the LHom(H) problem is in P if the
complement of H is a circular-arc graphs, and otherwise the problem is NP-complete. This
special case will play a prominent role in our paper.

Let us point out that despite the obvious similarity of Hom(H) and LHom(H), the
methods used to prove lower bounds are very different. For Hom(H), all hardness results
use some algebraic tools, which allow us to capture the structure of the whole graph H. On
the other hand, hardness proofs for LHom(H) are purely combinatorial and are based on
the analysis of some small subgraphs of H.

A brute-force approach to solving an instance G of Hom(H) (and LHom(H)) has
complexity |V (H)||V (G)| · |V (G)|O(1). This can be improved if H has some special structure:
several algorithms with running time O∗(f(H)|V (G)|) were obtained, where f is a function

STACS 2021

56:4 Fine-Grained Complexity of the List Homomorphism Problem

of some structural parameter of H [14, 38, 37]. A natural open question was whether one
can obtain a c|V (G)| · |V (G)|O(1) algorithm, where c is a constant that does not depend on
H [38]. This question was finally answered in the negative by Cygan et al. [8], who proved
that the brute force algorithm is essentially optimal under the ETH.

The fine-grained complexity of the Hom(H) problem, parameterized by the treewidth of
G, was studied recently by Okrasa and Rzążewski [34]. The analogous question for LHom(H)
was first investigated by Egri et al. [10] for reflexive graphs H, and then by Okrasa et al. [32]
for the general case. The authors defined a new graph invariant i∗(H), and proved the
following, tight bounds.

▶ Theorem 1 (Okrasa, Piecyk, Rzążewski [32]). Let H be a connected, non-bi-arc graph.
a) Every instance (G, L) of LHom(H) can be solved in time i∗(H)t · |V (G)|O(1), provided

that G is given along with a tree decomposition of width t.
b) There is no algorithm that solves every instance (G, L) of LHom(H) in time (i∗(H) −

ε)pw(G) · |V (G)|O(1) for any ε > 0, unless the SETH fails.
To the best of our knowledge, the complexity depending on other structural parameters of G

was not investigated. In this paper, we make some progress to fill this gap. In particular,
our main motivation is the following question by Jansen [24], repeated by Okrasa, Piecyk,
Rzążewski [32].

▶ Question 2 (Jansen [24]). Is there a universal constant c, such that for every H, every
instance G of the Hom(H) problem can be solved in time cctw(G) · |V (G)|O(1)?

Our results. As our first result, we complement the recent result of Okrasa et al. [32] and
show tight complexity bounds, parameterized by the size of a minimum feedback vertex set
of the instance.

▶ Theorem 3. Let H be a connected, non-bi-arc graph.
a) Every instance (G, L) of LHom(H) can be solved in time i∗(H)s · |V (G)|O(1), provided

that G is given along with a feedback vertex set of size s.
b) There is no algorithm that solves every instance (G, L) of LHom(H) in time (i∗(H) −

ε)fvs(G) · |V (G)|O(1) for any ε > 0, unless the SETH fails.
Let us point out that the algorithmic part of the theorem, i.e., the statement a), follows
directly from Theorem 1 a), as given a graph G and its feedback vertex set S, we can in
polynomial time construct a tree decomposition of G with width |S| + 1. The proof of
the lower bound follows the general direction of the hardness proof for k-Coloring by
Lokshtanov et al. [30]. However, as we are showing hardness for all non-bi-arc graphs H, the
gadgets are significantly more complicated. In their construction we use some machinery
developed by Okrasa et al. [32]. Unfortunately, most of the gadgets used by Okrasa et al. [32]
cannot be used as a black box, as they contain many vertex-disjoint cycles. However, we are
able to adjust the constructions so that they work in our setting.

Furthermore, similarly to the proof of Theorem 1 b), the proof of Theorem 3 b) is split
into two parts: first we prove hardness for the special case if H is bipartite, and then we
reduce the general case to the bipartite one.

Then we turn our attention to the setting, where the parameter is the cutwidth of the
instance graph. Recall that ctw(G) ⩾ pw(G) ⩾ tw(G). Furthermore, given a linear layout
of G with width w, we can in polynomial time construct a tree decomposition of G with
width at most w [4]. Thus by Theorem 1 a) we know that LHom(H) can be solved in
time (i∗(H))ctw(G) · |V (G)|O(1). On the other hand, we know that this algorithm cannot be
optimal for all H, as i∗(Kk) = k, while List k-Coloring, i.e., LHom(Kk), can be solved in
time 2ω·ctw(G) · |V (G)|O(1) [25].

M. Piecyk and P. Rzążewski 56:5

We introduce another parameter mim∗(H), closely related to the size of a maximum
induced matching in H, and show the following lower bound.

▶ Theorem 4. For every connected non-bi-arc graph H, there is no algorithm that solves
every instance (G, L) of LHom(H) in time (mim∗(H) − ε)ctw(G) · |V (G)|O(1) for any ε > 0,
unless the SETH fails.

As a sanity check, we point out that mim∗(Kk) = 2, so our lower bounds are consistent
with the results of Jansen and Nederlof [25].

Next, we focus on the non-list variant of the problem, i.e., Hom(H). Note that here
we only consider graphs H that are irreflexive and non-bipartite, as otherwise the problem
is polynomial-time solvable. Furthermore, we restrict our attention to graphs H that are
projective cores (see Section 6 for a characterization of these graphs). It is known that almost
all irreflexive graphs are non-bipartite, connected projective cores [1, 17, 31, 34]. For this
class of graphs H, we show the following lower bounds, answering Question 2 in the negative.

▶ Theorem 5. For every connected non-bipartite, irreflexive projective core H, there is no
algorithm that solves every instance G of Hom(H) in time (mim∗(H) − ε)ctw(G) · |V (G)|O(1)

for any ε > 0, unless the SETH fails.

In particular, odd cycles are projective cores [28]. Furthermore, for any odd cycle Ck it
holds that mim∗(Ck) = ⌊2k/3⌋. Thus, we obtain the following as a corollary from Theorem 5.

▶ Corollary 6. Assuming the SETH, there is no universal constant c, such that for every odd
cycle C, the Hom(C) problem can be solved in time cctw(G) · |V (G)|O(1) for every instance G.

We conclude the paper with pointing out some directions for future investigations.

Full version. Due to the page limit, the proofs of some statements, marked with (♠), are
omitted or just sketched. The complete proofs can be found in the full version that is
available on arXiv [35]. There we also discuss the consequences of our hardness results, if we
only assume the ETH. Finally, we generalize the algorithm for k-Coloring by Jansen and
Nederlof [25] so that it could be used to solve LHom(H) for every graph H, as well as some
other closely related problems.

2 Notation and preliminaries

For a positive integer n, we define [n] := {1, . . . , n}. For a set X, by 2X we denote the
set of all subsets of X. Unless explicitly stated otherwise, all logarithms are of base 2, i.e.,
log x := log2 x.

Let G be a graph. For a set S ⊊ V (G), by G−S we denote the graph induced by V (G)\S.
For a vertex v ∈ V (G), by NG(v) we denote the set of neighbors of v and by degG(v) its
degree, i.e., |NG(v)|. If the graph G is clear from the context, we write N(v) and deg(v)
instead of NG(v) and degG(v). Note that v ∈ N(v) if and only if v is a vertex with a loop.
We say that two vertices u, v ∈ V (G) are incomparable if N(u) ̸⊆ N(v) and N(v) ̸⊆ N(u). A
set S ⊆ V (G) is incomparable if all its vertices are pairwise incomparable. Equivalently, we
can say that for every distinct u, v ∈ S, there is a vertex u′ ∈ N(u) \ N(v). A set S ⊆ V (G)
is strongly incomparable if for every u ∈ S there exists its private neighbor u′ ∈ N(u), such
that u′ is non-adjacent to every vertex in S \ {u}. Clearly, a strongly incomparable set of
vertices is incomparable.

STACS 2021

56:6 Fine-Grained Complexity of the List Homomorphism Problem

For two graphs G and H, we write φ : G → H if φ is a homomorphism from G to
H. If G is given with H-lists L, we write φ : (G, L) → H if φ is a homomorphism from
G to H, respecting lists L. We also write G → H (resp., (G, L) → H) to indicate that
some homomorphism φ : G → H (resp., φ : (G, L) → H) exists. As graph homomorphisms
generalize graph colorings, we will often use the term coloring to refer to a homomorphism.
Moreover, we refer to the vertices of H as colors.

For a graph G, H-lists L, and a set S ⊆ V (G) we define L(S) :=
⋃

v∈S L(v). If it does
not lead to confusion, for a set V such that V (G) ⊆ V and H-lists L : V → 2V (H), we will
denote the instance (G, L|V (G)) by (G, L), in order to simplify the notation.

Let H be a graph. A walk P in H is a sequence p1, . . . , pℓ of vertices of H such that
pipi+1 ∈ E(H) for i ∈ [ℓ − 1]. We define the length of a walk P = p1, . . . , pℓ as ℓ − 1. We also
write P : p1 → pℓ to emphasize that P starts in p1 and ends in pℓ. For walks P = p1, . . . , pℓ

and Q = q1, . . . , qℓ of equal length we say P avoids Q if p1 ≠ q1 and for every i ∈ [ℓ − 1]
it holds that piqi+1 ̸∈ E(H). By P we denote walk P reversed, i.e., if P = p1, . . . , pℓ, then
P = pℓ, . . . , p1. It is straightforward to observe that if P avoids Q, then Q avoids P.

Graph parameters. By tw(G) and pw(G) we denote, respectively, the treewidth and the
pathwidth of a graph G. A set F ⊆ V (G), such that G − F does not contain any cycle, is
called a feedback vertex set of G. We denote the size of a minimum feedback vertex set in G

by fvs(G).
Let π = (v1, . . . , vn) be a linear ordering of vertices of G, we will call it a lin-

ear layout of G. A cut of π is a partition of V (G) into two subsets: {v1, . . . , vp} and
{vp+1, . . . , vn}, for some p ∈ [n − 1]. We say that an edge vivj , where i < j, crosses the
cut ({v1, . . . , vp}, {vp+1, . . . , vn}), if i ⩽ p and j > p. The width of the linear layout π is the
maximum number of edges that cross any cut of π. Finally, we define the cutwidth ctw(G)
of G as the minimum width over all linear layouts of G.

Given a linear layout of G with width k, we can in polynomial time construct a path
decomposition of G with width at most k, so in particular pw(G) ⩽ ctw(G) [4]. On the other
hand, for every graph G it holds that ctw(G) ⩽ pw(G) · ∆(G) [6]. As we also have that
ctw(G) ⩾ ∆(G)/2, we can intuitively think that ctw(G) is bounded if and only if both ∆(G)
and pw(G) are bounded.

Bipartite graphs H, for which LHom(H) is NP-hard. Recall that Feder et al. [12] proved
that in this case the LHom(H) problem is polynomial-time solvable if H is a complement of
a circular-arc graph and NP-complete otherwise. We will rely on the following structural
result.

▶ Lemma 7 (Okrasa et al. [32, 33]). Let H be a bipartite graph, whose complement is not a
circular-arc graph. Then in each bipartition class there exists a triple (α, β, γ) of vertices
such that:
(1) there exist α′, β′ ∈ V (H), such that the edges αα′, ββ′ induce a matching in H,
(2) vertices α, β, γ are pairwise incomparable,
(3) there exist walks X , X ′ : α → β and Y, Y ′ : β → α, such that X avoids Y and Y ′ avoids

X ′,
(4) at least one of the following holds:

a) H contains an induced C6 with consecutive vertices w1, . . . , w6 and α = w1, β =
w5, γ = w3,

b) H contains an induced C8 with consecutive vertices w1, . . . , w8 and α = w1, β =
w5, γ = w3,

M. Piecyk and P. Rzążewski 56:7

c) the set {α, β, γ} is strongly incomparable and for any a, b, c, such that {a, b, c} =
{α, β, γ}, there exist walks Xc : α → a and Yc : α → b, and Zc : β → c, such that
Xc, Yc avoid Zc and Zc avoids Xc, Yc.

Incomparable sets, decompositions, and main invariants. In this section we still consider
H to be a bipartite graph. First, let us define parameters i(H) and mim(H).

▶ Definition 8 (i(H) and mim(H)). Let H be a bipartite graph. By i(H) (resp. mim(H))
we denote the maximum size of an incomparable set (resp. strongly incomparable set) in H,
which is fully contained in one bipartition class.

Let S be a strongly incomparable set, contained in one bipartition class, and let S′ be the
set of private neighbors of vertices of S. We observe that the set S ∪ S′ induces a matching
in H of size |S|. On the other hand, if M is an induced matching, then the endpoints of
edges from M contained in one bipartition class form a strongly incomparable set of size |M |.
Thus mim(H) can be equivalently defined as the size of a maximum induced matching in H.

Okrasa et al. [32] studied a certain decomposition of bipartite graphs. Its exact definition
is not important for us, so we skip it in the conference version. The only thing we need to
know is that every bipartite graph, whose complement is not a circular-arc graph, contains
an induced subgraph, which is undecomposable (i.e., does not admit this decomposition)
and its complement is not a circular-arc graph, see e.g. [33, Theorem 46]. This leads to the
following definitions.

▶ Definition 9 (i∗(H) and mim∗(H) for bipartite H). Let H be a bipartite graph, whose
complement is not a circular-arc graph. Define

i∗(H) := max{i(H ′) : H ′ is an undecomposable, connected, induced
subgraph of H, whose complement is not a circular-arc graph},

mim∗(H) := max{mim(H ′) : H ′ is an undecomposable, connected, induced
subgraph of H, whose complement is not a circular-arc graph}.

Observe that if H is bipartite, connected, undecomposable, and the complement of H is
not a circular-arc graph, then i∗(H) = i(H) and mim∗(H) = mim(H).

3 Bipartite H, parameter: the size of a minimum feedback vertex set

In this section we prove Theorem 3 b) in the case that H is bipartite. Assume that the
complement of H is not a circular-arc graph, and let (α, β, γ) be the triple given by Lemma 7.

We will introduce two gadgets. The first one is a graph called an assignment gadget and
has two special vertices. Its main goal is to ensure that a certain coloring of one special
vertex forces a certain coloring of the other special vertex.

▶ Definition 10 (Assignment gadget). Let S be an incomparable set in H contained in the
same bipartition class as α, β, γ and let v ∈ S. An assignment gadget is a graph Av with
H-lists L and with special vertices x, y, such that:
(A1.) L(x) = S and L(y) = {α, β, γ},
(A2.) for every u ∈ S and for every a ∈ {α, β} there exists a list homomorphism φ :

(Av, L) → H such that φ(x) = u and φ(y) = a,
(A3.) there exists a list homomorphism φ : (Av, L) → H such that φ(x) = v and φ(y) = γ,
(A4.) for every list homomorphism φ : (Av, L) → H it holds that if φ(y) = γ, then φ(x) = v,

STACS 2021

56:8 Fine-Grained Complexity of the List Homomorphism Problem

(A5.) Av − {x} is a tree,
(A6.) deg(x) = (|S| − 1)2 and deg(y) = |S| − 1.

The second gadget is called a switching gadget. It is a path T with a special internal
vertex q, whose list is {α, β, γ}, and endvertices with the same list {α, β}. Coloring both
endvertices of T with the same color, i.e., coloring both with α or both with β, allows us to
color q with one of α, β, but “switching sides” from α to β forces coloring q with γ.

▶ Definition 11 (Switching gadget). A switching gadget is a path T of even length with
H-lists L, endvertices p, r, called respectively the input and the output vertex, and one special
internal vertex q, called a q-vertex, in the same bipartition class as p, r, such that:
(S1.) L(p) = L(r) = {α, β} and L(q) = {α, β, γ},
(S2.) for every a ∈ {α, β} there exists a list homomorphism φ : (T, L) → H, such that

φ(p) = φ(r) = a and φ(q) ̸= γ,
(S3.) there exists a list homomorphism φ : (T, L) → H, such that φ(p) = α, φ(r) = β, and

φ(q) = γ,
(S4.) for every list homomorphism φ : (T, L) → H, if φ(p) = α and φ(r) = β, then φ(q) = γ.
Note that in a switching gadget we do not care about homomorphisms that map p to β and
r to α.

Later, when discussing assignment and switching gadgets, we will use the notions of x-,
y-, p-, q-, and r-vertices to refer to the appropriate vertices introduced in the definitions of
the gadgets.

▶ Lemma 12 (♠). Let H be an undecomposable, connected, bipartite graph, whose complement
is not a circular-arc graph. Let (α, β, γ) be the triple from Lemma 7. Let S be an incomparable
set in H contained in the same bipartition class as α, β, γ, such that |S| ⩾ 2. Then for every
v ∈ S there exists an assignment gadget Av.

Sketch of proof. The construction of an assignment gadget Av is performed in three steps.
First, for every u ∈ S \ {v}, we construct a gadget F̃u with two special vertices xu, cu with
lists L(xu) = S and L(cu) = {α, β}, such that there are list homomorphisms φ : (F̃u, L) → H

that map cu to β and xu to any vertex from S, or map cu to α and xu to any vertex from
S \ {u}, but mapping cu to α and xu to u is forbidden. The gadget was first introduced
in [33, first step in Lemma 4], but our construction is slightly different as we additionally
ensure that F̃u − {xu} is a tree and deg(xu) = |S| − 1 and deg(cu) = 1. We point out that
using the original gadgets intruduces many vertex-disjoint cycles, which increases the size of
a smallest feedback vertex set in the constructed graph.

In the second step, for every u ∈ S \ {v} we construct a path Pu with endvertices c′
u and

yu with lists L(c′
u) = {α, β} and L(yu) = {α, β, γ}, such that it is possible to map the pair

(c′
u, yu) to any pair of {α, β}2, or to (α, γ), but the pair (β, γ) is forbidden.

The construction of Pu depends on the case in Lemma 7 (4). In case (4a),
Pu is the path with lists of consecutive vertices {w1, w5}, {w2, w6}, {w1, w3, w5}.
In case (4b), Pu is the path with lists of consecutive vertices
{w1, w5}, {w2, w6}, {w1, w3, w7}, {w2, w4, w6, w8}, {w1, w3, w5}.

Finally, in case (4c), we will use walks given by Lemma 7 (4c). We construct an
auxiliary path P ′

u, such that the list of its i-th vertex is the set of i-th vertices of the walks
Xα, Yα, Zα. Similarly we construct a path P ′′

u using walks Xγ , Yγ , Zγ and a path P ′′′
u using

walks Xγ , Yγ , Zγ . We obtain Pu by identifying the last vertex of P ′
u with the first vertex of

P ′′
u , and the last vertex of P ′′

u with the first vertex of P ′′′
u . We set c′

u to be the first vertex of
P ′

u and yu to be the last vertex of P ′′′
u .

M. Piecyk and P. Rzążewski 56:9

Next, we introduce a copy of F̃u and identify the vertex cu from F̃u with the vertex c′
u

from Pu. Now, if xu is mapped to some vertex from S \ {u}, then yu can be mapped to any
of α, β, γ. However, if xu is mapped to u, then yu can only be mapped to α or β. Let Fu be
the graph obtained in this step.

Finally, we obtain the assignment gadget Av by introducing the gadget Fu for every
u ∈ S \ {v}, and identifying all xu’s into one vertex x and all yu’s into one vertex y. ◀

▶ Lemma 13 (♠). Let H be an undecomposable, connected, bipartite graph, whose complement
is not a circular-arc graph. Let (α, β, γ) be the triple from Lemma 7. Then there exists a
switching gadget T .

Sketch of proof. Again, we consider cases of Lemma 7 (4). In cases (4a) and (4b) the path
T is the path with lists of consecutive vertices: {w1, w5}, {w2, w4}, {w1, w3, w5}, {w2, w4},
{w1, w5}. We set p, q, r to be, respectively, the first, the third, and the fifth vertex of T .

In case (4c) we construct T similarly as we constructed Pu in the proof of Lemma 12,
using walks given by Lemma 7 (3) and (4c). We construct a path T ′ using walks Xβ , Yβ , Zβ ,
a path T ′′ using walks X α, Yα, Zα, and a path T ′′′ using walks X ′, Y ′. We obtain T by
identifying the last vertex of T ′ with the first vertex of T ′′, and the last vertex of T ′′ with
the first vertex of T ′′′. The vertices p, q, r are, respectively, the first vertex of T , the last
vertex of T ′, and the last vertex of T . ◀

Reduction. Suppose that we can construct both, the assignment gadget and the switching
gadget. Let us show that this is sufficent to prove Theorem 3 b) in the case that H is bipartite.
The proof is an extension of the construction of Lokshtanov et al. for the List k-Coloring
problem [30].

▶ Theorem 14. For every connected bipartite graph H, whose complement is not a circular-
arc graph, there is no algorithm that solves every instance (G, L) of LHom(H) in time
(i∗(H) − ε)fvs(G) · |V (G)|O(1) for any ε > 0, unless the SETH fails.

Proof. Let us point out that it is sufficient to show the theorem if we additionally assume
that H is undecomposable. Indeed, assume the SETH and suppose the theorem holds
for every bipartite undecomposable graph H ′, and it does not hold for every bipartite
graph H. Then there exist a connected, bipartite graph H, whose complement is not a
circular-arc graph, and an algorithm that solves LHom(H) for every instance (G, L) in
time (i∗(H) − ε)fvs(G) · |V (G)|O(1) for some ε > 0. Let H ′ be an induced subgraph of H

such that H ′ is connected, undecomposable, is not a complement of a circular-arc graph,
and i(H ′) = i∗(H). Any instance (G, L) of LHom(H ′) can be seen as an instance of
LHom(H) such that only vertices of H ′ appear on lists L. Thus we can solve any instance
(G, L) of LHom(H ′) in time (i∗(H) − ε)fvs(G) · |V (G)|O(1) = (i(H ′) − ε)fvs(G) · |V (G)|O(1), a
contradiction.

So from now on we assume that H is undecomposable. In particular, i∗(H) = i(H). Let
ϕ be an instance of CNF-Sat with n variables and m clauses. Let ε > 0 and k := i(H). Let
S be a maximum incomparable set contained in one bipartition class of H, i.e., |S| = k. Let
α, β, γ be the vertices of H, in the same bipartition class as S, given by Lemma 7. Let α′, β′

be the vertices such that edges αα′, ββ′ induce a matching in H, they exist by Lemma 7.
Observe that k ⩾ 3, since vertices α, β, γ are pairwise incomparable. Moreover, we define
λ := logk(k − ε). Observe that λ < 1. We choose a positive integer p sufficiently large so
that λ p

p−1 < 1 and define t :=
⌈

n
⌊log kp⌋

⌉
=

⌈
n

⌊p·log k⌋

⌉
.

STACS 2021

56:10 Fine-Grained Complexity of the List Homomorphism Problem

xC yC

x1
1 x1

2 x1
p xi

1 xi
2 xi

p xt
1 xt

2 xt
p

T 1,f1
C T 1,f2

C T
i,fj

C
T t,fℓ

C

Af1(x1
1) Afj (xi

p) Afℓ(xt
1) Afℓ(xt

p)

Figure 1 The path PC for a clause C and vertices xi
s for i ∈ [t], s ∈ [p].

We will construct a graph G with H-lists L such that fvs(G) ⩽ t · p and (G, L) → H if
and only if ϕ is satisfiable. We partition the variables of ϕ into t sets F1, . . . , Ft called groups,
such that |Fi| ⩽ ⌊log kp⌋. For each i ∈ [t] we introduce p vertices xi

1, . . . , xi
p and for every

s ∈ [p] we set L(xi
s) := S. We will interpret a coloring of these vertices as a truth assignment

of variables in Fi. Note that there are at most 2⌊log kp⌋ ⩽ kp possible truth assigments of
variables in Fi and there are kp possible colorings of xi

1, . . . , xi
p, respecting lists L. Thus we

can define an injective mapping that assigns a distinct coloring of vertices xi
1, . . . , xi

p to each
truth assignment of the variables in Fi, note that some colorings may remain unassigned.

For every clause C of ϕ we introduce a path PC constructed as follows. Consider a group
Fi that contains at least one variable from C, and a truth assignment of Fi that satisfies C.
Recall that this assignment corresponds to a coloring f of vertices xi

1, . . . , xi
p. We introduce

a switching gadget T i,f
C , whose q-vertex is denoted by qi,f

C . We fix an arbitrary ordering of
all switching gadgets introduced for the clause C. For every switching gadget but the last
one, we identify its output vertex with the input vertex of the succesor. We add vertices xC

with L(xC) = {α′} and yC with L(yC) = {β′}. We add an edge between xC and the input
of the first switching gadget, and between yC and the output of the last switching gadget.
This completes the construction of PC .

Now consider a switching gadget T i,f
C introduced in the previous step. Recall that C

is a clause of ϕ, and f is a coloring of xi
1, . . . , xi

p corresponding to a truth assignment of
variables in Fi, which satisfies C. Let us define vs := f(xi

s) for s ∈ [p]. For every s ∈ [p],
we call Lemma 12 to construct the assignment gadget Avs

. We identify the x-vertex of Avs

with xi
s and the y-vertex with qi,f

C . This completes the construction of (G, L) (see Figure 1).
The properties of the gadgets ensure that ϕ is satisfiable if and only if (G, L) → H (♠).
Furthermore, |V (G)| = (n + m)O(1) and

⋃t
i=1{xi

1, . . . , xi
p} is a feedback vertex set in G, so

fvs(G) ⩽ t · p (♠).
Suppose that the instance (G, L) of LHom(H) can be solved in time (k − ε)fvs(G) ·

|V (G)|O(1) ⩽ (k − ε)t·p · |V (G)|O(1). Recall that ϕ is satisfiable if and only if (G, L) → H.
By a careful analysis of the exponent in the complexity bound (♠) we conclude that ϕ can
be solved in time (2 − δ)n · (n + m)O(1) for some δ > 0, which contradicts the SETH. ◀

Let us point out that the pathwidth of the graph constructed in the proof above is
bounded by t · p + f(H), for some function f of H (see also [30]).

4 Bipartite H, parameter: cutwidth

Similarly as in the previous section, let us first prove Theorem 4 in the case that H is
bipartite. We will modify the reduction from Theorem 14. To get an intuition about what
needs to be done, recall that in order to obtain a bound on the cutwidth, we need to bound

M. Piecyk and P. Rzążewski 56:11

the pathwidth and the maximum degree. Also, as we already observed, the pathwidth of the
instance constructed in Theorem 14 is upper-bounded by the correct value, so we need to
take care of vertices of large degree.

▶ Theorem 15. For every connected bipartite graph H, whose complement is not a circular-
arc graph, there is no algorithm that solves every instance (G, L) of LHom(H), given with a
linear layout of width at most w, in time (mim∗(H) − ε)w · |V (G)|O(1) for any ε > 0, unless
the SETH fails.

Proof. First, similarly to the proof of Theorem 14 in the case that H is bipartite, it is sufficient
to show the proof in case that H is undecomposable. In particular mim∗(H) = mim(H).

Let S be a strongly incomparable set in H of size k = mim(H), contained in one
bipartition class. Let S′ be a set such that S ∪ S′ induces a matching of size k in H, and
let (α, β, γ) be the triple given by Lemma 7, such that α, β, γ are in the same bipartition
class as S. Let ϕ be an instance of CNF-Sat with n variables and m clauses. Let ε > 0.
As in the proof of Theorem 14, we choose an integer p so that logk(k − ε) · p

p−1 < 1 and set

t :=
⌈

n
⌊p·log k⌋

⌉
. We will construct an instance (G̃, L̃) of LHom(H) with a linear layout of

width at most t · p + f(H), where f is some function of H, such that (G̃, L̃) → H if and only
if ϕ is satisfiable. We repeat the construction of the instance (G, L) of LHom(H), such that
(G, L) → H if and only if ϕ is satisfiable, from the proof of Theorem 14. This is possible
since S is in particular incomparable. Furthermore, in the construction of (G, L) we did not
use the fact that S was maximum, we only needed that |S| ⩾ 2, which is the case as {α, β} is
strongly incomparable. We are going to modify the instance (G, L) into the desired instance
(G̃, L̃).

Before we do that, let us fix an arbitrary ordering of clauses C1, . . . , Cm in ϕ, which
implies the ordering of paths PC in G. Then we can fix an ordering of all q-vertices in G, so
that a q-vertex q1 precedes a q-vertex q2, if:

q1 belongs to the path PCi
and q2 belongs to the path PCj

, such that i < j, or
q1 and q2 belong to the same path PC , and q1 precedes q2 on PC (the order of the vertices
of each path PC is such that xC is the first vertex and yC is the last vertex).

Finally, we fix an ordering of the assignment gadgets in G. Recall that every q-vertex qi,f
C is

a y-vertex of p assignment gadgets whose x-vertices are, respectively, xi
1, . . . , xi

p. We fix an
ordering of the assignment gadgets so that the assignment gadget A1 precedes the assignment
gadget A2 if:

the y-vertex of A1 precedes the y-vertex of A2 in the fixed order of the q-vertices, or
A1 and A2 have the same y-vertex qi,f

C and x-vertices of A1 and A2 are, respectively, xi
j

and xi
s, with j < s.

Now we are ready to modify the instance (G, L). It turns out that we only need to take care
of q-vertices and x-vertices, as their large degree forces large cutwidth. The construction of
(G̃, L̃) will be thus performed in two steps.

Step 1. Splitting q-vertices. Recall that every q-vertex of a switching gadget is a y-vertex
of p assignment gadgets and the degree of each y-vertex in the assignment gadget is k − 1.
For every q-vertex q, in order to reduce its degree, we will split q into p · (k − 1) vertices
q1, . . . , qp·(k−1). In this step, the construction depends on the structure of H. Let us consider
two cases.
Case I. The set {α, β, γ} is strongly incomparable. Let α, β, γ be vertices such that edges

αα, ββ, γγ induce a matching in H. We replace every q-vertex q from a path PC with
p · (k − 1) vertices q1, . . . , qp·(k−1), each for every neighbor of q inside assignment gadgets.

STACS 2021

56:12 Fine-Grained Complexity of the List Homomorphism Problem

qp r

xi
1 xi

p

Af(xi
1) Af(xi

p)

list S

list {α, β}
list {α, β, γ}
list {β, γ}

p rq1 qk−1 qp·(k−1)

xi
1 xi

p

Af(xi
1) Af(xi

p)

p rq

q1 qk−1 qp·(k−1)

Q

xi
1 xi

p

Af(xi
1) Af(xi

p)

Figure 2 The switching gadget T and the group of vertices xi
s for s ∈ [p] before the step of

splitting q-vertices (top), after the step in the case that {α, β, γ} is a strongly incomparable set
(bottom, left), and after introducing the path Q (marked by the bold curve) in the case that {α, β, γ}
is not strongly incomparable (bottom, right).

For every j ∈ [p · (k − 1) − 1] we introduce a path Qj of length 2 with lists of consecutive
vertices {α, β, γ}, {α, β, γ}, {α, β, γ}, and we identify its endvertices with qj and qj+1. In
the same way, we introduce paths Q0 and Qp·(k−1) and we identify endvertices of Q0
with q1 and the vertex preceding q on PC , and we identify endvertices of Qp·(k−1) with
qp·(k−1) and the vertex following q on PC (see Figure 2). Finally, let us fix an ordering
a1, a2, . . . , ap·(k−1) of neighbors of q in assignment gadgets such that for j ∈ [p−1] vertices
of the assignment gadget with the x-vertex xi

j precede vertices of the assignment gadget
with the x-vertex xi

j+1. The order of the neighbors from the same assignment gadget is
arbitrary. For every j ∈ [p · (k − 1)] we add an edge between qj and aj (see Figure 2).
This completes the step of splitting q-vertices in this case.

Case II: The set {α, β, γ} is not strongly incomparable. By Lemma 7 this means that H

contains an induced C6 or C8 with consecutive vertices w1, . . . , w6(, w7, w8) and α = w1,
β = w5, γ = w3. In this case we leave each q-vertex q in the graph, but we introduce a
path Q with H-lists L, with q as one of endvertices, special vertices qj for j ∈ [p · (k − 1)],
with list L(qj) = {β, γ} and such that:

for every list homomorphism φ : (Q, L) → H, if q is mapped to γ, then for every
j ∈ [p · (k − 1)] the vertex qj is mapped to γ.
there exists a list homomorphism φ : (Q, L) → H such that φ(q) = γ and φ(qj) = γ

for every j ∈ [p · (k − 1)].
for every c ∈ {α, β} there exists a list homomorphism φ : (Q, L) → H such that q is
mapped to c and for every j ∈ [p · (k − 1)] the vertex qj is mapped to β.

The path Q is constructed using the walks from Lemma 7, similarly as we did in Lemma 12
and Lemma 13 (♠). Again, for each neighbor aj of q (the neighbors of qi,f

C are ordered
as in the previous case) we add an edge qjaj and remove the edge qaj (see Figure 2).

This completes the Step 1. We will refer to the newly introduced vertices qj as q-vertices.

Step 2. Splitting x-vertices. The only vertices that might still have large degree are vertices
from {xi

j | i ∈ [t], j ∈ [p]}. More precisely, the degree of the x-vertex in an assignment
gadget is (k − 1)2, and thus the degree of an x-vertex x is d = d(x) · (k − 1)2, where d(x)

M. Piecyk and P. Rzążewski 56:13

is the number of the assignment gadgets, whose x-vertex is x. We replace the vertex x

with d vertices x1, . . . , xd, each with list S. For every s ∈ [d − 1] we introduce a path Xs of
length 2, lists of consecutive vertices S, S′, S, and we identify its endvertices with xs and
xs+1, respectively. We fix an ordering b1, . . . , bd of neighbors of x, such that if bi and bj

belong, respectively, to assignment gadgets Ai and Aj , and Ai precedes Aj in the fixed order
of the assignment gadgets, then bi precedes bj . The order of the neighbors from the same
assignment gadget is arbitrary. For every s ∈ [d] we add an edge bsxs. We will refer to the
new vertices xj introduced in this step also as x-vertices.

It can be verified that (G̃, L̃) → H if and only if ϕ is satisfiable (♠). Furthermore, we
can specify a linear layout π of G̃ with width at most w := t · p + f(H), for some function f ,
as follows (♠). We order the vertices of the original paths PC (those from graph G), such
that the vertices from PCj precede vertices of PCj+1 , and the vertices from one path PC are
ordered in a natural way (the vertex xC is the first one and the vertex yC is the last one).
Then, if Case 1. in Step 1. was applied, we replace each q-vertex q with vertices qj and
vertices of paths Qj in the following order: Q0, q1, Q1, . . . , qp·(k−1), Qp·(k−1). If Case 2. was
applied, we insert the vertices from the path Q just after q, in the natural order with q being
the first one.

Now we need to place the vertices of assignment gadgets and of paths Xs. We insert the
vertices of an assignment gadget Av, whose y-vertex was q, just after q-vertices adjacent to
Av, which were introduced for q in Step 1. We also insert there the vertices from those paths
Xs, whose endvertices are adjacent to Av.

To see that the width of π is at most t · p + f(H) observe that we placed vertices from
each assignment gadget close to each other and to the vertices adjacent to that gadget. The
number of the edges with at least one endpoint in a fixed assignment gadget is bounded by
some constant f(H). The only edges between vertices that are possibly “far” are edges from
paths X connecting x-vertices adjacent to different assignment gadgets and in each cut their
number is bounded by the number of original x-vertices, i.e., t · p.

Now suppose there is an algorithm that solves every instance (G, L) of LHom(H) in time
(k − ε)w · |V (G)|O(1). Then for an instance ϕ of CNF-Sat we can construct the instance
(G̃, L̃) as above and we can solve (G̃, L̃) in time (k−ε)t·p+f(H) ·|V (G)|O(1), which is equivalent
to solving the instance ϕ. As in the proof of Theorem 14, we conclude that this implies that
CNF-Sat with n variables and m clauses can be solved in time (2 − δ)n · (n + m)O(1) for
some δ > 0, which contradicts the SETH. ◀

5 Hardness for general target graphs

For a graph H, the associated bipartite graph H∗ is the graph with vertex set V (H∗) =
{v′, v′′ | v ∈ V (H)}, whose edge set contains those pairs u′v′′, for which uv ∈ E(H).

Recall that for general graphs H, Feder et al. [13] showed that the LHom(H) problem
is polynomial-time solvable if H is a bi-arc graph, and NP-complete otherwise. They also
observed that H is a bi-arc graph if and only if H∗ is the complement of a circular-arc graph.
Furthermore, an irreflexive graph is bi-arc if and only if it is bipartite and its complement
is a circular-arc graph. Thus “hard” cases of LHom(H) correspond to the “hard” cases of
LHom(H∗).

Observe that if H is bipartite, then H∗ consists of two disjoint copies of H. Thus for
bipartite H it holds that i∗(H∗) = i∗(H) and mim∗(H∗) = mim∗(H). On the other hand,
if H is non-bipartite and additionally connected, then H∗ is connected. This motivates the
following extension of the definition of i∗ and mim∗ to non-bipartite H.

STACS 2021

56:14 Fine-Grained Complexity of the List Homomorphism Problem

▶ Definition 16 (i∗(H) and mim∗(H)). Let H be a non-bi-arc graph. Define:

i∗(H) := i∗(H∗) and mim∗(H) := mim∗(H∗).

Observe that that the instances (G, L) constructed in the proofs of Theorem 14 or
Theorem 15 are bipartite. Indeed, the instance constructed in Theorem 14 consists of paths
PC and assignment gadgets, whose vertices were appropriately identified. More precisely,
we identify some q-vertices (from switching gadgets belonging to paths PC) with y-vertices
(from addignment gadgets), and x-vertices with another x-vertices (from assignment gadgets).
Recall that each assignment gadget is bipartite by property (A3.) of Definition 10. Moreover,
for each assignment gadget, the x-vertex is in the same bipartition class as the y-vertex.
Similarly, for each path PC , all q-vertices are in the same bipartition class. Therefore, the
instance (G, L) constructed in Theorem 14 is bipartite. The instance from Theorem 15 was
obtained from the instance (G, L) from Theorem 14 by splitting some vertices into a set of
vertices joined by paths of even lenght, so the instance remains bipartite.

Furthermore, if the bipartition classes of G are X and Y , then L(X) is contained in
one bipartition class of H, and L(Y) is contained in the other one. Finally, without loss of
generality we can assume that for each v ∈ V (G), the set L(v) is incomparable. Indeed, if
L(v) contains two distincts vertices x, y, such that NH(x) ⊆ NH(y), we can safely remove x

from L(v), obtaining an equivalent instance. Instances satisfying these three conditions are
called consistent.

▶ Proposition 17 ([32, 33]). Let H be a graph and let (G, L) be a consistent instance of
LHom(H∗). Define L′ as L′(x) := {u : {u′, u′′} ∩ L(x) ̸= ∅}. Then (G, L) → H∗ if and only
if (G, L′) → H.

Now we can prove Theorem 3 b) and Theorem 4 (♠).

Sketch of proof of Theorem 3 b) and Theorem 4. If H is bipartite, we are done by Theo-
rem 14 or Theorem 15. Otherwise H∗ is connected. Let (G, L) be an instance of LHom(H∗)
constructed in the proof of Theorem 14 or Theorem 15. Let (G, L′) be an equivalent instance
of LHom(H) given by Proposition 17. As the instance graph remains the same, the lower
bound holds. ◀

Note that the statement of Theorem 15 actually implies the following, slightly stronger
result.

▶ Corollary 18. For every connected non-bi-arc graph H, there is no algorithm that solves
every instance (G, L) of LHom(H), given with a linear layout of width at most w, in time
(mim∗(H) − ε)w · |V (G)|O(1) for any ε > 0, unless the SETH fails.

6 Hardness of Hom(H)

In this section we extend Theorem 4 to the non-list case, i.e., we prove Theorem 5. Let us
first discuss the graph class mentioned in the statement. Recall that Hom(H) is NP-hard
if H is non-bipartite and has no loops [18]. In particular, this implies that H has at least
three vertices. We say that a graph H is a core if every homomorphism φ : H → H is an
automorphism, i.e., is injective and surjective. We also need the following characterization of
projective graphs.

M. Piecyk and P. Rzążewski 56:15

▶ Theorem 19 (Larose, Tardif [29]). Let H be graph with at least three vertices. Then H is
projective if and only if for every L ⊆ V (H) there exist a tuple (x1, . . . , xℓ) of vertices in H

and a graph FL with a tuple of its vertices (y0, y1, . . . , yℓ) such that
L = {φ(y0) | φ : FL → H, such that φ(y1) = x1, . . . , φ(yℓ) = xℓ}.

Now we are ready to prove Theorem 5.

▶ Theorem 5. For every connected non-bipartite, irreflexive projective core H, there is no
algorithm that solves every instance G of Hom(H) in time (mim∗(H) − ε)ctw(G) · |V (G)|O(1)

for any ε > 0, unless the SETH fails.

Sketch of proof. Let H be as in the statement. As non-bipartite irreflexive graphs are not
bi-arc graphs [13], we can use Corollary 18. Let (G, L) be an instance of LHom(H), and
let π = (v1, . . . , v|V (G)|) be a linear layout of G of width w. Consider an instance G̃ of
Hom(H) constructed as follows. For every vi ∈ V (G) we call Theorem 19 to obtain the
tuple (x(i)

1 , . . . , x
(i)
ℓi

) of vertices in H and a graph FL(vi) with special vertices y
(i)
0 , . . . , y

(i)
ℓi

.
For every vi we introduce a copy H(i) of the graph H and identify vertices y

(i)
1 , . . . , y

(i)
ℓi

,
respectively with x

(i)
1 , . . . , x

(i)
ℓi

in the copy H(i). Moreover, we identify y
(i)
0 with vi. Finally,

for every i ∈ [|V (G)| − 1] we add edges between the copies H(i) and H(i+1) as follows. For
every vertex z(i) in H(i) and its corresponding copy z(i+1) in H(i+1) we add all edges between
z(i) and NH(i+1)(z(i+1)). This completes the construction of G̃.

Theorem 19 implies that (G, L) → H if and only if G̃ → H: every graph FL(v) together
with a copy of H forces that a vertex v can be colored only with vertices from L(v) and thus
it imitates the list of v (♠). Furthermore, ctw(G̃) ⩽ w + g(H) for some function g of H: the
copies of H are connected in the appropriate order and thus the linear layout π of G can
be easily modified to a linear layout π̃ of G̃ with width larger than w only by a constant
depending on H (♠).

Now suppose that Hom(H) can be solved for every instance G′ in time (mim∗(H) −
ε)ctw(G′) · |V (G′)|O(1) for some ε > 0. Then, for an instance (G, L) of LHom(H) with a linear
layout π of width w, we can construct in polynomial time the instance G̃ of Hom(H) as
above. We solve the instance G̃ in time (mim∗(H) − ε)ctw(G̃) · |V (G̃)|O(1), which is equivalent
to solving the instance (G, L) in time (mim∗(H) − ε)w · |V (G)|O(1). By Corollary 18, this
contradicts the SETH. ◀

7 Conclusion

A natural open question is to close the gap between lower and upper bounds for the complexity
of LHom(H), parameterized by the cutwidth. As a concrete problem, we believe that a good
starting point is to understand the complexity of LHom(Ck), where k ⩾ 5. Recall that we
have a lower bound mim∗(Ck)ctw(G) ·|V (G)|O(1) and an upper bound i∗(Ck)ctw(G) ·|V (G)|O(1).
The value of mim∗(Ck) is ⌊k/3⌋ if k is even, and ⌊2k/3⌋ if k is odd. On the other hand,
i∗(Ck) is k/2 if k is even, and k if k is odd. Where does the truth lie? To be even more
specific, what is the complexity of LHom(C6)?

Another research direction that we find exciting is to study the complexity of Hom(H)
and LHom(H), depending on different parameters of the instance graph. In particular,
Lampis [27] showed that k-Coloring on a graph G can be solved in time O∗((2k − 2)cw(G)),
where cw(G) is the clique-width of G. Furthermore, an algorithm with a running time
O∗((2k − 2 − ε)cw(G)), for any ε > 0, would contradict the SETH. We believe it is exciting
to investigate how these results generalize to non-complete target graphs H.

STACS 2021

56:16 Fine-Grained Complexity of the List Homomorphism Problem

References
1 Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition. Wiley-Interscience

series in discrete mathematics and optimization. Wiley, 2008.
2 Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard prob-

lems restricted to partial k-trees. Discret. Appl. Math., 23(1):11–24, 1989. doi:10.1016/
0166-218X(89)90031-0.

3 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009. doi:10.1137/070683933.

4 H. L. Bodlaender. Classes of graphs with bounded tree-width. Bulletin of EATCS, pages
116–128, 1988.

5 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, May 2008. doi:10.1093/comjnl/bxm037.

6 Fan R. K. Chung and Paul D. Seymour. Graphs with small bandwidth and cutwidth. Discret.
Math., 75(1-3):113–119, 1989. doi:10.1016/0012-365X(89)90083-6.

7 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comput., 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

8 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socala. Tight lower bounds on graph embedding problems. J.
ACM, 64(3):18:1–18:22, 2017. doi:10.1145/3051094.

9 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 László Egri, Dániel Marx, and Paweł Rzążewski. Finding list homomorphisms from bounded-
treewidth graphs to reflexive graphs: a complete complexity characterization. In Rolf
Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Com-
puter Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96
of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.STACS.2018.27.

11 Tomás Feder and Pavol Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial
Theory, Series B, 72(2):236–250, 1998. doi:10.1006/jctb.1997.1812.

12 Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc graphs.
Combinatorica, 19(4):487–505, 1999. doi:10.1007/s004939970003.

13 Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list homomor-
phisms. Journal of Graph Theory, 42(1):61–80, 2003. doi:10.1002/jgt.10073.

14 Fedor V. Fomin, Pinar Heggernes, and Dieter Kratsch. Exact algorithms for graph homomor-
phisms. Theory Comput. Syst., 41(2):381–393, 2007. doi:10.1007/s00224-007-2007-x.

15 M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theoretical Computer Science, 1(3):237–267, 1976. doi:10.1016/0304-3975(76)90059-1.

16 Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Cliquewidth III:
the odd case of graph coloring parameterized by cliquewidth. In Artur Czumaj, editor,
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 262–273. SIAM, 2018.
doi:10.1137/1.9781611975031.19.

17 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms. Oxford University Press, 2004.
18 Pavol Hell and Jaroslav Nešetřil. On the complexity of H -coloring. J. Comb. Theory, Ser. B,

48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.
19 Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.

doi:10.1137/0210055.
20 Shenwei Huang. Improved complexity results on k-coloring Pt-free graphs. Eur. J. Comb.,

51:336–346, 2016. doi:10.1016/j.ejc.2015.06.005.
21 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of

Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1137/070683933
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1016/0012-365X(89)90083-6
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1145/3051094
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.STACS.2018.27
https://doi.org/10.1006/jctb.1997.1812
https://doi.org/10.1007/s004939970003
https://doi.org/10.1002/jgt.10073
https://doi.org/10.1007/s00224-007-2007-x
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1137/1.9781611975031.19
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1137/0210055
https://doi.org/10.1016/j.ejc.2015.06.005
https://doi.org/10.1006/jcss.2000.1727

M. Piecyk and P. Rzążewski 56:17

22 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

23 Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph
coloring problems. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors,
Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens, Greece, May
24-26, 2017, Proceedings, volume 10236 of Lecture Notes in Computer Science, pages 345–356,
2017. doi:10.1007/978-3-319-57586-5_29.

24 Bart M. P. Jansen. Personal communication.
25 Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph

decompositions via matrix rank. Theor. Comput. Sci., 795:520–539, 2019. doi:10.1016/j.
tcs.2019.08.006.

26 Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the
chromatic number. Combinatorica, 20(3):393–415, 2000. doi:10.1007/s004930070013.

27 Michael Lampis. Finer tight bounds for coloring on clique-width. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Collo-
quium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, volume 107 of LIPIcs, pages 86:1–86:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.86.

28 Benoît Larose. Families of strongly projective graphs. Discuss. Math. Graph Theory, 22(2):271–
292, 2002. doi:10.7151/dmgt.1175.

29 Benoit Larose and Claude Tardif. Strongly rigid graphs and projectivity. Multiple-Valued
Logic, 7:339–361, 2001.

30 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

31 Tomasz Łuczak and Jaroslav Nešetřil. Note on projective graphs. Journal of Graph Theory,
47(2):81–86, 2004.

32 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
74:1–74:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.74.

33 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. CoRR, abs/2006.11155, 2020.
arXiv:2006.11155.

34 Karolina Okrasa and Paweł Rzążewski. Fine-grained complexity of graph homomorphism
problem for bounded-treewidth graphs. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, pages 1578–1590, 2020. doi:10.1137/1.9781611975994.97.

35 Marta Piecyk and Paweł Rzążewski. Fine-grained complexity of the list homomorphism
problem: feedback vertex set and cutwidth. CoRR, abs/2009.11642, 2020. arXiv:2009.11642.

36 Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

37 Paweł Rzążewski. Exact algorithm for graph homomorphism and locally injective graph
homomorphism. Inf. Process. Lett., 114(7):387–391, 2014. doi:10.1016/j.ipl.2014.02.012.

38 Magnus Wahlström. New plain-exponential time classes for graph homomorphism. Theory
Comput. Syst., 49(2):273–282, 2011. doi:10.1007/s00224-010-9261-z.

39 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
887–898. ACM, 2012. doi:10.1145/2213977.2214056.

STACS 2021

https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/978-3-319-57586-5_29
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1007/s004930070013
https://doi.org/10.4230/LIPIcs.ICALP.2018.86
https://doi.org/10.7151/dmgt.1175
https://doi.org/10.1145/3170442
https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.4230/LIPIcs.ESA.2020.74
http://arxiv.org/abs/2006.11155
https://doi.org/10.1137/1.9781611975994.97
http://arxiv.org/abs/2009.11642
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/j.ipl.2014.02.012
https://doi.org/10.1007/s00224-010-9261-z
https://doi.org/10.1145/2213977.2214056

	1 Introduction
	2 Notation and preliminaries
	3 Bipartite H, parameter: the size of a minimum feedback vertex set
	4 Bipartite H, parameter: cutwidth
	5 Hardness for general target graphs
	6 Hardness of Hom({#1}) H
	7 Conclusion

