
Duality in Intuitionistic Propositional Logic
Paweł Urzyczyn !

Institute of Informatics, University of Warsaw, Poland

Abstract
It is known that provability in propositional intuitionistic logic is Pspace-complete. As Pspace is
closed under complements, there must exist a Logspace-reduction from refutability to provability.
Here we describe a direct translation: given a formula φ, we define φ so that φ is provable if and
only if φ is not.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Constructive mathematics; Theory of computation → Complexity theory and logic

Keywords and phrases Intuitionistic logic, Complexity

Digital Object Identifier 10.4230/LIPIcs.TYPES.2020.11

Introduction
A dual concept to proof theory is refutation theory [9] where one asks how to refute or
disprove a formula. Various refutation systems occur in the literature, e.g. [2, 4, 9] to derive
formal refutations. This paper takes a look from another angle: we ask if one can internalize
refutability as provability. A positive answer to this question may depend on the particular
logic, the intuitionistic propositional calculus (IPC) being a most promising case. Indeed,
the Pspace-completeness of IPC means that non-provability is Logspace reducible to
provability and vice versa. Here we show how to construct, for a given formula φ, another
formula φ which is provable if and only if φ is not. The construction works in logarithmic
space, in particular in polynomial time.

The inspiration for our approach comes from a computational interpretation of logic,
which can be seen as yet another side of Curry-Howard isomorphism, namely the equivalence:

Proof construction ⇔ Computation

This paradigm is implicitly exploited by many authors, especially in hardness and undecid-
ability proofs, e.g. [5], but it is rarely explicitly formulated. The idea is extremely simple:
the task to prove a judgment of the form

Γ ⊢ τ

is nothing else than a configuration of a machine, where
τ is the present internal state, and
Γ is the contents of memory.

The use of machine memory has to be cautious: usually assumptions are non-disposable
(unless we deal with some substructural logic) and one cannot verify that an assumption is not
available. On the other hand, proof search algorithms naturally use both nondeterministic
choices and universal splits (recursive calls). Machines adequate for IPC should therefore
be defined as alternating automata operating on write-once binary registers. Every register
represents an assumption: the value true means that the assumption is available. Registers
can only be accessed as positive guards: to execute an action the machine may have to check
that a given register is set to true. A register cannot be checked for the value false nor
unset to false. A variant of this model is mentioned in [6], an elaborated first-order version
is developed in [7]. The Wajsberg/Ben-Yelles algorithm for IPC, like in [10], can easily

© Paweł Urzyczyn;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Types for Proofs and Programs (TYPES 2020).
Editors: Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch; Article No. 11; pp. 11:1–11:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:urzy@mimuw.edu.pl
https://orcid.org/0000-0003-3719-9618
https://doi.org/10.4230/LIPIcs.TYPES.2020.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Duality in Intuitionistic Propositional Logic

be implemented on such monotone automata [8]. On the other hand, for every monotone
automaton M one can construct a formula φM such that φM is a theorem of IPC if and only
if M halts. The formula φM can be defined using implication as the only conjective. So it is
just a simple type and only of order 3.

Under this understanding, our construction in this paper can be seen as complementation
of monotone automata: given an automaton M define another automaton M so that M

halts if and only if M does not halt. Such interpretation inspired our presentation below
which can be easily translated to the language of automata. This could make the whole
development somewhat more concise and technically direct, but we decided to remain within
the language of propositional logic, to demonstrate its flexibility.

Our goal is to define a formula φ that has a proof when a given φ has none. What φ

actually states is that φ has no normal proof without repeated judgments (and therefore of
bounded size). To handle the first aspect we use lambda-notation for proofs and we appeal to
normalization. To control proof size we found it convenient to define a restricted version of
natural deduction rules (Figure 1) where additional annotations are used to disallow cycles.

Natural deduction
We consider propositional formulas built from the connectives ∧, ∨, → and ⊥. Variables
and ⊥ are called atoms. Negation ¬α is defined as α → ⊥. We assume that implication
is right-associative, i.e., we write α → β → γ for α → (β → γ). If S = {α1, . . . , αk} then
S → β abbreviates any formula of the form α1 → · · · → αk → β (disregarding the order of
premises). Notation for sets of formulas is simplified, e.g. Γ, Σ stands for Γ ∪ Σ and Γ, α for
Γ ∪ {α}.

Our natural deduction calculus (Figure 1) derives judgments of the form Γ ⊢ α [Σ],
where Γ and Σ are sets of formulas, and α is a formula. The meaning of Γ ⊢ α [Σ] is that the
ordinary judgment Γ ⊢ α is provable without (directly) addressing proof goals in Σ. To see
this, one reads the rules upwards, in the order of proof search. Then, at every step, the set Σ
of forbidden goals is expanded by the current goal unless a new assumption is added; then Σ
is reset to ∅. This protocol ensures that no judgment can be repeated on any proof branch.
Note that the rules are “upward-preserving” in that all assumptions occurring in conclusion
must occur in the premises as well.

A convenient proof notation for propositional intuitionistic logic is an extended lambda-
calculus as e.g. in [1]. From this point of view, natural deduction becomes a type-assignment
(or, perhaps more adequately, “term-assignment” or “proof-assignment”) system (Figure 2),
deriving judgments Γ ⊢ M : α [Σ] with the additional term component M . (N.B. we identify
α-convertible terms.) Strictly speaking, Γ can no longer be just a set of formulas and must be
understood as a type environment, i.e., a set of variable declarations (x : α). Fortunately, we
do not need to consider environments Γ involving more than one declaration of the same α.
To make it precise, we say that an environment is simple when (x : α), (y : α) ∈ Γ implies
x = y. Simple environments can thus be identified with sets of formulas. In Figure 2, we
assume Γ simple in all rules,1 so the notation α ∈ Γ (resp. α ̸∈ Γ) can safely be read as
“there is (resp. is not) a variable of type α in Γ”). Note that in rule (W→2) it is assumed
that γ ∈ Γ despite the lambda-introduction.

1 The insightful reader should note that we do not claim subject reduction for the system in Figure 2,
cf. e.g. [3]; the existence of normal forms is inherited from the standard system.

P. Urzyczyn 11:3

(Ax) Γ ⊢ α [Σ] [α ∈ Γ] (E⊥)
Γ ⊢ ⊥ [Σ, α]

[⊥ ̸∈ Σ]
Γ ⊢ α [Σ]

(E∧1)
Γ ⊢ α ∧ β [Σ, α]

[α ∧ β ̸∈ Σ]
Γ ⊢ α [Σ]

(E∧2)
Γ ⊢ β ∧ α [Σ, α]

[β ∧ α ̸∈ Σ]
Γ ⊢ α [Σ]

(W∧)
Γ ⊢ γ [Σ, γ ∧ δ] Γ ⊢ δ [Σ, γ ∧ δ]

[γ, δ ̸∈ Σ]
Γ ⊢ γ ∧ δ [Σ]

(E∨)
Γ ⊢ γ ∨ δ [Σ, α] Γ, x : γ ⊢ α[∅] Γ, y : δ ⊢ α[∅]

[γ ∨ δ ̸∈ Σ, γ, δ ̸∈ Γ]
Γ ⊢ α [Σ]

(W∨1)
Γ ⊢ γ [Σ, γ ∨ δ]

[γ ̸∈ Σ]
Γ ⊢ γ ∨ δ [Σ]

(W∨2)
Γ ⊢ δ [Σ, γ ∨ δ]

[δ ̸∈ Σ]
Γ ⊢ γ ∨ δ [Σ]

(E→)
Γ ⊢ β → α [Σ, α] Γ ⊢ β [Σ, α]

[β, β → α ̸∈ Σ]
Γ ⊢ α [Σ]

(W→1)
Γ, γ ⊢ δ[∅]

[γ ̸∈ Γ]
Γ ⊢ γ → δ [Σ]

(W→2)
Γ ⊢ δ [Σ, γ → δ]

[δ ̸∈ Σ, γ ∈ Γ]
Γ ⊢ γ → δ [Σ]

Figure 1 Natural deduction.

It is convenient to use term notation to express properties of proofs. But the principal
use of lambda-terms is that they normalize, and thus proof search can be restricted to
lambda-terms in normal form [1].

We are very relaxed regarding the notation. For example we write Γ ⊢ M : α [Σ] when it
is convenient to mention the proof M , and and Γ ⊢ α [Σ] when M is not relevant. Lambda-
terms are, for simplicity, written in Curry-style (without type decoration) but types are
always implicit, and can be marked e.g. as superscripts, whenever it is useful. The notation
Γ ⊢ α and Γ ⊢ M : α means ordinary intuitionistic provability and term-assignment as in [1].
Substitution of N for free occurrences of x in M is written M [x := N].

The following definition is needed for the proof of completeness of our system (Lemma 2).
Let a term M be typable in a simple environment Γ. The set UΓ(M) of types directly used
in M with respect to Γ is defined by induction below. Informally, members of UΓ(M) are
(with one exception) types of proper subterms of M , not in scope of a variable binding in M .
The exception is a lambda-abstraction representing an unnecessary (duplicated) assumption.

UΓ(x) = ∅;
UΓ(P γ→δMγ) = UΓ(P) ∪ UΓ(M) ∪ {γ → δ, γ};
UΓ(λxγ . Nδ) = UΓ(N [x := y]) ∪ {δ}, when (y : γ) ∈ Γ, and UΓ(λxγ . Nδ) = ∅, otherwise;
UΓ(M [α]) = UΓ(M) ∪ {⊥};
UΓ(P γ∧δ{1}) = UΓ(P γ∧δ{2}) = UΓ(P) ∪ {γ ∧ δ};
UΓ(⟨Mγ , Nδ⟩) = UΓ(M) ∪ UΓ(N) ∪ {γ, δ};
UΓ(⟨Mγ⟩1) = UΓ(M) ∪ {γ}, and UΓ(⟨M δ⟩2) = UΓ(M) ∪ {δ};
UΓ(P γ∨δ[x.M, y.N]) = UΓ(P) ∪ {γ ∨ δ}.

TYPES 2020

11:4 Duality in Intuitionistic Propositional Logic

(Ax) Γ, x : α ⊢ x : α [Σ] (E⊥)
Γ ⊢ P : ⊥ [Σ, α]

[⊥ ̸∈ Σ]
Γ ⊢ P [α] : α [Σ]

(E∧1)
Γ ⊢ P : α ∧ β [Σ, α]

[α ∧ β ̸∈ Σ]
Γ ⊢ P{1} : α [Σ]

(E∧2)
Γ ⊢ P : β ∧ α [Σ, α]

[β ∧ α ̸∈ Σ]
Γ ⊢ P{2} : α [Σ]

(W∧)
Γ ⊢ M : γ [Σ, γ ∧ δ] Γ ⊢ N : δ [Σ, γ ∧ δ]

[γ, δ ̸∈ Σ]
Γ ⊢ ⟨M, N⟩ : γ ∧ δ [Σ]

(E∨)
Γ ⊢ P : γ ∨ δ [Σ, α] Γ, x : γ ⊢ M : α[∅] Γ, y : δ ⊢ N : α[∅]

[γ ∨ δ ̸∈ Σ, γ, δ ̸∈ Γ]
Γ ⊢ P [x.M, y.N] : α [Σ]

(W∨1)
Γ ⊢ M : γ [Σ, γ ∨ δ]

[γ ̸∈ Σ]
Γ ⊢ ⟨M⟩1 : γ ∨ δ [Σ]

(W∨2)
Γ ⊢ M : δ [Σ, γ ∨ δ]

[δ ̸∈ Σ]
Γ ⊢ ⟨M⟩2 : γ ∨ δ [Σ]

(E→)
Γ ⊢ P : β → α [Σ, α] Γ ⊢ M : β [Σ, α]

[β, β → α ̸∈ Σ]
Γ : PM : α [Σ]

(W→1)
Γ, x : γ ⊢ M : δ[∅]

[γ ̸∈ Γ]
Γ ⊢ λx M : γ → δ [Σ]

(W→2)
Γ ⊢ M : δ [Σ, γ → δ]

[δ ̸∈ Σ, γ ∈ Γ]
Γ ⊢ λx M : γ → δ [Σ]

Figure 2 Extended lambda-calculus.

▶ Lemma 1. If Γ ⊢ M : α, and β ∈ UΓ(M), then Γ ⊢ N : β, for some term N , shorter
than M . In particular, if M is the shortest term of type α in Γ, then α ̸∈ UΓ(M).

Proof. Easy induction with respect to M . ◀

▶ Lemma 2. The system in Figure 2 is sound and complete in the following sense:
If Γ ⊢ M : α [Σ], for some Σ, then Γ ⊢ M : α;
If Γ ⊢ M : α, and Γ is simple, then Γ ⊢ M : α [Σ], for all Σ with Σ ∩ UΓ(M) = ∅.

In particular, Γ ⊢ M : α is equivalent to Γ ⊢ M : α [∅].

Proof. The first part follows by a simple erasure of the unnecessary annotations. The second
part we prove by induction with respect to the size of a smallest possible witness M such
that Γ ⊢ M : α holds. From Lemma 1 we know that α ̸∈ UΓ(M).

If M is a variable then the claim holds trivially. Assume that M = P [α] with P of type ⊥.
Then α ̸∈ UΓ(M) = UΓ(P) ∪ {⊥}, hence (Σ, α) ∩ UΓ(P) = ∅. Observe that P is the shortest
term of type ⊥, hence Γ ⊢ P : ⊥ [Σ, α] holds by induction. Also Σ ∩ UΓ(M) = ∅, so ⊥ ̸∈ Σ,
rule (E⊥) applies, and yields Γ ⊢ M : α [Σ].

Consider the case M = P [x.R, y.N] with P of type γ ∨ δ. Then Γ ⊢ P : γ ∨ δ [Σ, α] holds
by induction, because Σ, α is disjoint with UΓ(P), as α ̸∈ UΓ(M) ⊇ UΓ(P). Now note that
γ, δ ̸∈ Γ, as otherwise either R or N would make a shorter inhabitant of α than M . It follows
that environments Γ, γ and Γ, δ are simple. Hence the judgments Γ, x : γ ⊢ R : α[∅] and
Γ, y : δ ⊢ N : α[∅] also hold by induction, because the empty set is disjoint with everything.
To apply rule (E∨) we check that γ ∨ δ ̸∈ Σ because γ ∨ δ ∈ UΓ(M).

P. Urzyczyn 11:5

As another example consider α = γ → δ, and let M = λx N . Then Γ, x : γ ⊢ N : δ,
and we have two cases depending on whether γ ∈ Γ or not. If γ ̸∈ Γ then Γ, x : γ is
a simple environment, and Γ, x : γ ⊢ N : δ [∅] holds by the induction hypothesis. Thus
Γ ⊢ λx N : γ → δ [Σ] using rule (W→1).

If γ ∈ Γ, say (y : γ) ∈ Γ, then Γ, x : γ is not simple. But then Γ ⊢ N [x := y] : δ. The
term N [x := y] is of the same size as N , so it is still a smallest possible term of type δ.
Now UΓ(N [x := y]) ∩ (Σ, γ → δ) = ∅ because γ → δ ̸∈ UΓ(M) ⊇ UΓ(N [x := y]) and
UΓ(M) ∩ Σ = ∅. So we can apply the induction hypothesis to Γ ⊢ N [x := y] : δ and infer
Γ ⊢ N [x := y] : δ [Σ, γ → δ]. Since δ ∈ UΓ(M), we have δ ̸∈ Σ, so rule (W→2) yields
Γ ⊢ λy. N [x := y] : γ → δ [Σ] and it remains to observe that λy. N [x := y] is just the same
term as λx N . Other cases are similar. ◀

The construction
In what follows we fix a formula φ and we define a formula φ to satisfy the equivalence:

⊬ φ ⇔ ⊢ φ. (*)

Let φ be of length n and let S be the set of all subformulas of φ. Then S has at most n

elements. For α, β ∈ S, and t = 0, ..., n, the following propositional symbols may occur in φ:
Dα,t – “Refute α in n − t phases”;
D′

α,t – “Refute α in n − t phases without addressing goal α again”;
Pα,t – “Assumption α present in phase t”;
Nα,t – “Assumption α not added in phase t”;
Xα,t – “Goal α cannot be derived in phase t using the axiom rule”;
Wα,t, W1

α,t, W2
α,t – “Goal α cannot be derived in phase t by introduction”;

Eα,β,t – “Goal α cannot be derived in phase t by elimination of β”.

Atoms subscripted by t are called t-atoms. The intuitive meaning of those is given above.
However, the role of Dα,t is twofold and depends on whether Dα,t occurs as a proof goal or as
an assumption. While proving Dα,t amounts to disproving α, an assumption of Dα,t should
be read as disqualifying α as a possible proof goal.
When β ∈ S, t ≤ n, Γ ⊆ S, we use the abbreviations:

Aβ,t = {Pβ,t} ∪ {Nα,t | α ∈ S ∧ α ̸= β} – “The unique assumption added in phase t is β”;
Nβ,t↓ = {Nβ,u | u ≤ t} – “Formula β not assumed until phase t”;
NΓ,t↓ = {Nβ,u | u ≤ t ∧ β ̸∈ Γ} – “No formula outside of Γ assumed until phase t”;
PΓ,t = {Pγ,t | γ ∈ Γ} – “Formulas in Γ assumed in phase t”;
DΣ,t = {Dβ,t | β ∈ Σ} – “Goals in Σ are forbidden in phase t”.

The formula φ to be defined has the form:

φ = ∆ → Dφ,0,

where ∆ is the set consisting of the following implicational formulas (called axioms):
1. Nα,0, for all α ∈ S;
2. Pα,t → Pα,t+1, for all α ∈ S, t < n;
3. (Dα,t → D′

α,t) → Dα,t, for all α ∈ S, and all t ≤ n;
4. Mα,t → D′

α,t, for all α ∈ S, and all t ≤ n, where the set Mα,t consists of the atoms:
Xα,t;
Eα,⊥,t, and Eα,β∧α,t, Eα,α∧β,t, Eα,β∨γ,t, Eα,β→α,t, for all β, γ ∈ S;
Wα,t, in case α is not an atom;

TYPES 2020

11:6 Duality in Intuitionistic Propositional Logic

5. Nα,t↓ → Xα,t;
6. Dγ,t → Wα,t, and Dδ,t → Wα,t, for α = γ ∧ δ;
7. Dγ,t → Dδ,t → Wα,t, for α = γ ∨ δ;
8. W1

α,t → W2
α,t → Wα,t, Pγ,t → W1

α,t, (Aγ,t+1 → Dδ,t+1) → W1
α,t, Nγ,t↓ → W2

α,t,
and Dδ,t → W2

α,t, for α = γ → δ;
9. D⊥,t → Eα,⊥,t;

10. Dα∧β,t → Eα,α∧β,t, and Dβ∧α,t → Eα,β∧α,t, for all β ∈ S;
11. Dβ,t → Eα,β→α,t, and Dβ→α,t → Eα,β→α,t, for all β ∈ S;
12. Dγ∨δ,t → Eα,γ∨δ,t, Pγ,t → Eα,γ∨δ,t, Pδ,t → Eα,γ∨δ,t, (Aδ,t+1 → Dα,t+1) → Eα,γ∨δ,t, and

(Aγ,t+1 → Dα,t+1) → Eα,γ∨δ,t, for all δ, γ ∈ S.
The main equivalence (*) follows from Lemma 3 below, for Γ = Σ = ∅, α = φ, and t = 0.
(Note that N∅,0↓ ⊆ ∆, P∅,0 = D∅,0 = ∅.)

▶ Lemma 3. For |Γ| = t, and α ̸∈ Σ:

Γ ⊬ α [Σ] iff ∆, NΓ,t↓, PΓ,t, DΣ,t ⊢ Dα,t.

Proof of Lemma 3
We begin with some additional notation and preparatory lemmas. Consider a set of atoms of
shape Ξ = N , P, D, where N , P , and D consist, respectively, of atoms of the form Nα,u, Pα,u,
and Dα,u. Write max Ξ for the largest u such that a u-atom occurs in Ξ. For t = max Ξ,
define |Ξ|t = |N |t↓, |P|t, |D|t, where:

|N |t↓ =
⋃

{Nα,t↓ | Nα,t↓ ⊆ N }, |P|t = {Pα,t | ∃u ≤ t. Pα,u ∈ P}, |D|t = {Dα,t | Dα,t ∈ D}.

The set |Ξ|t consists of atoms (either occurring in Ξ or derivable from Ξ) that are relevant
towards a t-atomic proof goal, as stated in Lemma 5.

▶ Lemma 4. Let Ξ = N , P, D be as above, with t = max Ξ. If ∆, Ξ ⊢ Pα,u, for some u ≤ t,
then there is v ≤ u such that Pα,v ∈ P. In particular, Pα,t ∈ |P|t.

Proof. Induction with respect to the size of a normal term M such that ∆, Ξ ⊢ M : Pα,u. If M

is a variable then v = u. Otherwise M = xN , where x is a variable of type Pα,u−1 → Pα,u

and N has type Pα,u−1, as only axioms (2) have targets of the form Pα,u. We apply the
induction hypothesis to N . ◀

We define the weight of a term M as the number of symbols in M , excluding parentheses
and occurrences of variables of type (2).

▶ Lemma 5. Let Ξ = N , P, D be as above, with t = max Ξ, and let Ct be a t-atom, not of
the form Nα,t. If ∆, Ξ ⊢ M : Ct, and M is normal, then also ∆, |Ξ|t ⊢ M ′ : Ct, where the
weight of the proof M ′ does not exceed the weight of M .

Proof. Induction with respect to the weight of a normal term M such that ∆, Ξ ⊢ M : Ct.
Clearly, M must be an application of an assumption variable to zero, one or more arguments.
If M is a variable (has no arguments), then Ct ∈ Ξ. Then also Ct ∈ |Ξ|t, by definition (recall
that atoms Nα,t are excluded), and we can take M ′ = M .

Otherwise let x be the head variable of M . The type of x is one of the axioms in ∆.
Assume first that x : Pα,t−1 → Pα,t. Then M has type Pα,t, whence Pα,t ∈ |P|t, by Lemma 4.
We take the appropriate variable as M ′.

Now M = xN⃗ , for some vector N⃗ of arguments. If types of these arguments are t-atoms
in Ξ, other than Nα,u, then we apply the induction hypothesis to each component of N⃗ .

P. Urzyczyn 11:7

Atoms Nα,u only occur as arguments in the axioms: Nα,t↓ → Xα,t and Nγ,t↓ → W2
γ→δ,t.

If one of them is the type of x then Nα,t↓ (resp. Nγ,t↓) must be a subset of Ξ, more precisely
a subset of N . But then it is actually a subset of |N |t↓, so we can take M ′ = M .

There are four cases when an assumption of an axiom is not an atom. The case of
axiom (3) is simple: then M = x(λy N) with y : Dα,t and N : D′

α,t. In this case we apply the
induction hypothesis to ∆, Ξ, Dα,t ⊢ N : D′

α,t.
A less obvious case is when the head variable of M has e.g. type (Aγ,t+1 → Dδ,t+1) → W1

α,t.
Then we have ∆, Ξ, Aγ,t+1 ⊢ N : Dδ,t+1, for a subterm N of M , to which we apply the
induction hypothesis. This yields

∆, |N , N ′|(t+1)↓, |P, Pγ,t+1|t+1, |D|t+1 ⊢ N ′ : Dδ,t+1

where N ′ = {Nα,t+1 | α ∈ S ∧α ≠ γ}. We want to show ∆, |Ξ|t, Aγ,t+1 ⊢ N ′′ : Dδ,t+1, that is,

∆, |N |t↓, |P|t, |D|t, Aγ,t+1 ⊢ N ′′ : Dδ,t+1 . (†)

First observe that |D|t+1 = ∅ ⊆ |D|t. We also have |N , N ′|(t+1)↓ ⊆ |N |t↓ ∪ Aγ,t+1. Indeed,
if Nα,u ∈ |N , N ′|(t+1)↓ then the whole set Nα,(t+1)↓ is contained in N ∪ N ′. Thus, for all v,
if v ≤ t then Nα,v ∈ N , and if v = t + 1 then Nα,v ∈ N ′, in particular α ̸= γ. It follows that
Nα,u ∈ |N |t, for u ≤ t, and Nα,u ∈ Aγ,t+1 when u = t + 1.

However, it is not the case that |P, Pγ,t+1|t+1 ⊆ |P|t, Aγ,t+1, so we cannot take N ′′ = N ′.
But the missing atoms Pβ,t+1 are derivable (for free) from Pβ,t ∈ |P|t. That is, we can
replace in N ′ any occurrence of a variable of type Pβ,t+1 by an application of one or more
axioms of type (2) without adding more weight. We conclude that the judgment (†) holds
with some term N ′′ of the same weight as N ′. ◀

Proof of Lemma 3 (“if” part). Assume ∆, NΓ,t↓, PΓ,t, DΣ,t ⊢ Dα,t, where |Γ| = t, and
α ̸∈ Σ. Suppose towards contradiction that Γ ⊢ α [Σ]. We proceed by induction with respect
to the weight of a normal proof of Dα,t. Of course Dα,t ̸∈ DΣ,t, so the proof is an application
of the axiom (Dα,t → D′

α,t) → Dα,t. Hence ∆, NΓ,t↓, PΓ,t, DΣ,t, Dα,t ⊢ D′
α,t, and this means

that ∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ Ct, for every atom Ct ∈ Mt. Indeed, no other axiom targets D′
α,t,

and we have DΣ,t, Dα,t = DΣ,α,t.
In particular, ∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ Xt , and that can only happen when Nα,t↓ ⊆ NΓ,t↓,

i.e., when α ̸∈ Γ. It follows that the judgment Γ ⊢ α [Σ] is not an axiom.
Since ∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ Eα,⊥,t, it must be the case that ∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ D⊥,t,

whence Γ ⊬ ⊥ [Σ, α] by induction. Thus, Γ ⊢ α [Σ] cannot be obtained from rule (E⊥).
Suppose Γ ⊢ α [Σ] is derived using (E∧1) in the last step. Then Γ ⊢ α ∧ β [Σ, α], for

some β such that α ∧ β ̸∈ Σ. But ∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ Eα,α∧β,t implies that Dα∧β,t is
derivable, whence Γ ⊬ α ∧ β [Σ, α], by the induction hypothesis.

In a similar fashion we exclude all rules where Γ remains unchanged in the premises. Let
us consider rule (E∨). For any γ, δ we have a proof of Eα,γ∨δ using one of the five available
axioms (12) targetting this atom.

Suppose that Eα,γ∨δ was derived using the axiom Dγ∨δ,t → Eα,γ∨δ,t. This means that
Dγ∨δ,t was proved in the same environment. If γ ∨ δ ̸∈ Σ then Γ ⊬ γ ∨ δ [Σ, α], by induction,
and rule (E∨) is not applicable. This rule is also excluded when γ ∨ δ ∈ Σ.

Axiom Pγ,t → Eα,γ∨δ,t can be used only if Pγ,t ∈ PΓ,t, i.e., when γ ∈ Γ. Then rule (E∨)
is not applicable too (and similarly for δ). So γ, δ ̸∈ Γ and we must have used e.g. the axiom
(Aδ,t+1 → Dα,t+1) → Eα,γ∨δ,t. It follows that M is of shape y(λx⃗ N), where

∆, NΓ,t↓, PΓ,t, DΣ,t, Dα,t, Aδ,t+1 ⊢ N : Dα,t+1 .

TYPES 2020

11:8 Duality in Intuitionistic Propositional Logic

From Lemma 5 we obtain:

∆, |NΓ,t↓, PΓ,t, DΣ,t, Dα,t, Aδ,t+1|t+1 ⊢ N ′ : Dα,t+1 ,

that is:

∆, |NΓ,t↓ ∪ {Nβ,t+1 | β ̸= δ}|(t+1)↓, |PΓ,t, Pδ,t+1|t+1, |DΣ,t, Dα,t|t+1 ⊢ N ′ : Dα,t+1 .

Now we should observe that:
|DΣ,t, Dα,t|t+1 = ∅ = D∅,t+1;
|NΓ,t↓ ∪ {Nβ,t+1 | β ̸= δ}|(t+1)↓ ⊆ NΓ,δ,(t+1)↓;
|PΓ,t, Pδ,t+1|t+1 = PΓ,δ,t+1.

Therefore, we can write:

∆, NΓ,δ,(t+1)↓, PΓ,δ,t+1, D∅,t+1 ⊢ N ′ : Dα,t+1 .

Since N ′ is smaller than M in weight, we have Γ, δ ⊬ α [∅] by the induction hypothesis, and
rule (E∨) is now excluded too. In other cases we proceed in an analogous way. ◀

Proof of Lemma 3 (“only if” part). Let Γ ⊬ α [Σ]. We prove ∆, NΓ,t↓, PΓ,t, DΣ,t ⊢ Dα,t, by
induction with respect to two parameters:

(1) the cardinality n − t of S − Γ, (2) the cardinality of S − Σ.

We need to show that all atoms in Mα,t can be derived from ∆, NΓ,t↓, PΓ,t, DΣ,t, Dα,t, which
is the same as ∆, NΓ,t↓, PΓ,t, DΣ,α,t. Then we can obtain Dα,t using the axioms Mα,t → D′

α,t

and (Dα,t → D′
α,t) → Dα,t.

We begin with Xα,t. From Γ ⊬ α [Σ] it follows that α ̸∈ Γ, hence all formulas Nα,u, for
u ≤ t, are in NΓ,t↓, and the axiom Nα,t↓ → Xα,t can be used to prove Xα,t.

In order to prove Eα,⊥,t, we consider two cases. If ⊥ ̸∈ Σ then we observe that Γ ⊬ ⊥[Σ, α],
as otherwise rule (E⊥) could be used to derive Γ ⊢ α [Σ]. By the induction hypothesis we have
∆, NΓ,t↓, PΓ,t, DΣ,α,t ⊢ D⊥,t, because the cardinality of Γ is unchanged and the cardinality of
Σ, α is greater by one than that of Σ. Our goal is accomplished with the axiom D⊥,t → Eα,⊥,t.
The case ⊥ ∈ Σ is simpler, because then D⊥,t just belongs to DΣ,t.

Consider a constant Eα,β→α,t. If β ∈ Σ or β → α ∈ Σ then Dβ,t ∈ DΣ,t or Dβ→α,t ∈ DΣ,t,
and Eα,β→α,t follows easily. Otherwise, one of the premises of rule (E→) does not hold, and
one can apply the induction hypothesis to derive either Dβ,t or Dβ→α,t. The induction could
fail when β = α, in which case β ∈ Σ, α. But then we already have Dβ,t = Dα,t ∈ DΣ,t.

As the next example we consider the atom Wα, where α = γ → δ. We should derive the
two atoms W1

α,t and W2
α,t .

If γ ∈ Γ then Pγ,t ∈ Pα,t and Pγ,t → W1
α,t implies W1

α,t. Otherwise Γ, γ ⊬ δ [∅], as γ → δ

should not be derivable using rule (W→1). We can apply the induction hypothesis, because
the set Γ, γ is larger than Γ. Thus, ∆, NΓ,γ,(t+1)↓, PΓ,γ,t+1, D∅,t+1 ⊢ Dδ,t+1 . Observe that
NΓ,γ,(t+1)↓ ⊆ NΓ,t↓ ∪Aγ,t+1, and that all atoms Pσ,t+1 ∈ PΓ,γ,t+1 can be derived from the set
PΓ,t, Aγ,t+1, because Pγ,t+1 ∈ Aγ,t+1. Therefore ∆, NΓ,t↓, PΓ,t, DΣ,t, Dα,t, Aγ,t+1 ⊢ Dδ,t+1.
Using the axiom (Aγ,t+1 → Dδ,t+1) → W1

α,t we obtain what we need.
The atom W2

γ→δ,t is easily derived from Dδ,t in case δ ∈ Σ. Similarly, if γ ̸∈ Γ then
we can use the axiom Nγ,t↓ → W2

α,t. So we assume δ ̸∈ Σ, γ ∈ Γ and we apply in-
duction to Γ ⊬ δ [Σ, γ → δ]. This yields ∆, NΓ,t↓, PΓ,t, DΣ,γ→δ,t ⊢ Dδ,t, and we use the
axiom Dδ,t → W 2

α,t to complete the job. Other cases are similar. ◀

P. Urzyczyn 11:9

A simple example
For a formula φ of length n, the “dual” formula φ is of size O(n3) with a decently large
constant, and may be quite incomprehensible even for short φ. We therefore consider an
extremely simple example φ = (p → p) → p. By our definition we have φ = ∆⃗ → Dφ,0,
where ∆⃗ abbreviates the sequence of all axioms (1–12). Not all of them are actually needed,
and some can be simplified in this case. For example, a normal proof of φ itself cannot be an
elimination, because only subformulas of φ are used and neither ⊥ or ∨ occurs in φ. Hence
the set Mφ,t in (4) reduces to two elements (cf. type of X4 below). Here we only list the
relevant part of ∆⃗, in the form of variable declarations. We use the abbreviation α = p → p.

1. X1 : Nφ,0, Z1 : Nα,0, Y1 : Np,0;
3. X3 : (Dφ,0 → D′

φ,0) → Dφ,0, Y3 : (Dp,1 → D′
p,1) → Dp,1, U3 : (Dφ,1 → D′

φ,1) → Dφ,1;
4. X4 : Xφ,0 → Wφ,0 → D′

φ,0, Y4 : Xp,1 → Ep,φ,1 → Ep,α,1 → D′
p,1, U4 : Xφ,1 → Wφ,1 → D′

φ,1;
5. X5 : Nφ,0 → Xφ,0, Y5 : Np,0 → Np,1 → Xp,1, U5 : Nφ,0 → Nφ,1 → Xφ,1;
8. X1

8 : W1
φ,0 → W2

φ,0 → Wφ,0, X3
8 : (Pα,1 → Nφ,1 → Np,1 → Dp,1) → W1

φ,0, X4
8 : Nα,0 → W2

φ,0 ,
U1

8 : W1
φ,1 → W2

φ,1 → Wφ,1, U2
8 : Pα,1 → W1

φ,1, U5
8 : Dp,1 → W2

φ,1.
11. Y 1

11 : Dp,1 → Ep,α,1, Y 2
11 : Dφ,1 → Ep,φ,1 .

A proof of Dφ,0 can now be presented as the lambda-term:

X3(λx:Dφ,0. X4(X5X1)(X1
8 T (X4

8 Z1))),

where T = X3
8 (λw:Pα,1λx1:Nφ,1λy1:Np,1. Y3(λy:Dp,1. Y4(Y5Y1y1) S (Y 1

11y))) has type W1
φ,0,

and S = Y 2
11(U3(λu:Dφ,1. U4(U5X1x1)(U1

8 (U2
8 w)(U5

8 y)))) has type Ep,φ,1.
The above term represents the following refutation of φ. First check that φ is not

assumed (this is the meaning of the subterm X5X1). Then check that φ cannot be obtained
by introduction from α ⊢ p. Since α is not yet assumed (X4

8 Z1) we now assume it (variable w)
but not the other formulas (variables x1, y1). The goal p is now addressed for the first time
and is marked as forbidden in this phase (variable y). It is easy to check that p is not an
assumption (Y5Y1y1) and that it cannot be derived by elimination from α: indeed, the latter
requires re-addressing the goal p in the same environment (Y 1

11y).
The subterm S refutes the possibility that p is obtained by elimination from φ, because

an attempt to derive α ⊢ φ will fail. Indeed, φ must be obtained by introduction from α ⊢ p

(the subterms U2
8 w and U5X1x1 certify that α has already been assumed, but φ has not).

But p is a forbidden goal (U5
8 y), hence using the introduction rule is illegal.

Conclusion
We have demonstrated a logarithmic space algorithm to construct a “dual” formula φ for
any given propositional formula φ, so that φ is provable in IPC if φ is not. The construction
is inspired by an automata-theoretic view of proof-search. This can be seen as alternative to
introducing rules to derive refutability: just apply the old ones towards a different task.

The formula φ uses only implication and (as a simple type) is of order (depth) at most 3.
Since φ is provable iff so is φ, we conclude that IPC provability reduces to provability of
formulas of particularly simple form.2 The formula φ is not equivalent to φ, but is computable
in logarithmic space (note the analogy with Cnf-Sat).

2 Of course that can be done much simpler in a direct way [8].

TYPES 2020

11:10 Duality in Intuitionistic Propositional Logic

Intuitionistic propositional logic can represent combinatorial problems as easily (or better)
as classical propositional satisfiability, and it is far more expressive because it reaches beyond
the class NP. Provability in IPC reduces to the case of order three. Those should be relatively
easy to simplify and manipulate by various heuristics (like joining and deleting some formula
components). It is about time for an intuitionistic analogue of Davis-Putnam algorithm.
This issue is raised in a subsequent work [8].

References
1 Philippe de Groote. On the strong normalisation of intuitionistic natural deduction with

permutation-conversions. Information and Computation, 178(2):441–464, 2002.
2 Camillo Fiorentini and Mauro Ferrari. A forward unprovability calculus for intuitionistic

propositional logic. In R. A. Schmidt and C. Nalon, editors, Proc. TABLEAUX 2017, volume
10501 of LNAI, pages 114–130. Springer, 2017.

3 D. Leivant. Assumption classes in natural deduction. Zeitschrift für mathematische Logik und
Grundlagen der Mathematik, 25:1–4, 1979.

4 Luis Pinto and Roy Dyckhoff. Loop-free construction of counter-models for intuitionistic
propositional logic. In R. Behara, M. Fritsch and R.G. Lintz, editors, Symposia Gaussiana,
Conf. A, 1993, pages 225–232. De Gruyter, 1995.

5 Sylvain Schmitz. Implicational relevance logic is 2-exptime-complete. J. Symb. Log., 81:641–
661, 2016.

6 Aleksy Schubert, Wil Dekkers, and Hendrik Pieter Barendregt. Automata theoretic account
of proof search. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer
Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany, volume 41 of LIPIcs, pages
128–143. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

7 Aleksy Schubert, Paweł Urzyczyn, and Daria Walukiewicz-Chrząszcz. How hard is positive
quantification? ACM Trans. Comput. Log., 17(4):30:1–30:29, 2016.

8 Aleksy Schubert, Paweł Urzyczyn, and Konrad Zdanowski. Between proof construction and
SAT-solving, 2021. To appear.

9 Tomasz Skura. Refutation systems in propositional logic. In D.M. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume 16, pages 115–157. Springer, 2011.

10 Paweł Urzyczyn. Intuitionistic games: Determinacy, completeness, and normalization. Studia
Logica, 104(5):957–1001, 2016.

