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Abstract
Hybrid logic extends modal logic with nominals that name worlds. Seligman-style tableau systems
for hybrid logic divide branches into blocks named by nominals to achieve a local proof style. We
present a Seligman-style tableau system with a formalization in the proof assistant Isabelle/HOL.
Our system refines an existing system to simplify formalization and we claim termination from this
relationship. Existing completeness proofs that account for termination are either analytic or based
on translation, but synthetic proofs have been shown to generalize to richer logics and languages.
Our main result is the first synthetic completeness proof for a terminating hybrid logic tableau
system. It is also the first formalized completeness proof for any hybrid logic proof system.
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1 Introduction

Hybrid logic increases the expressiveness of modal logic by adding a special sort of proposi-
tional symbol called nominals to the syntax. In regular modal logic we can only reference
worlds indirectly through the modalities, but nominals, that are true at exactly one world,
name worlds explicitly. A nominal i gives rise to the satisfaction operator @i that states what
world a formula is true “at.” These features make hybrid logic well suited for applications
like temporal logic [3], description logic [5] and epistemic logics for social networks [24].

There are many proof systems for classical hybrid logic [4] and we focus on tableau systems
in the following. Early work relied on loop checks to ensure termination [10] but Bolander and
Blackburn introduced a calculus that guarantees finite branches through local restrictions [9].
Their completeness proof is analytic, meaning that they reason about open branches directly.
Blackburn et al. [4] introduced the Seligman-style [25] system ST with a more local proof
style than previous systems. Jørgensen et al. [21] later introduced a synthetic completeness
proof for ST and showed that it scales with extensions to the logic. The synthetic approach
involves reasoning about maximal consistent sets and their properties [13, 26] and this also
opens the way for other developments, notably interpolation results [1].

Blackburn et al. [4] restricted ST into the terminating ST* but showed completeness by
translation from the system by Bolander and Blackburn [9]. The synthetic completeness
proof for ST relies on a symmetry in branches that neither terminating system has. We
present system STA, a refinement of ST* suitable for formalization, which is formalized in
the simple type theory of Isabelle/HOL [23]. Its proof of completeness fills a gap as the first
synthetic completeness proof for a terminating tableau system for hybrid logic. It is also
the first standalone completeness proof for a terminating Seligman-style system and, to our
knowledge, the first formalization of any proof system for hybrid logic.
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The formalization provides absolute trust in the correctness of the completeness proof
and serves as a companion to this paper, where the proofs can be seen in full detail.

Our system closely resembles ST* but with restrictions that are simpler to formalize and
we argue for termination based on this relationship. Formalizing termination remains future
work since we want a direct proof, not one based on translation. Blanchette [6] gives an
overview of efforts to formalize the metatheory of logical calculi and provers in Isabelle.

Other formalizations of hybrid logic itself exist. Doczkal and Smolka [12] formalized hybrid
logic with nominals in constructive type theory using the proof assistant Coq. They gave
algorithmic proofs of small model theorems and computational decidability of satisfiability,
validity, and equivalence of formulas. In Isabelle/HOL, Linker [22] formalized the semantic
embedding of a spatio-temporal multi-modal logic with a hybrid logic-inspired at-operator.

Our work is classical but hybrid logic also has a constructive variant. Braüner and de
Paiva [11] defined intuitionistic hybrid logic, and a natural deduction system, and Galmiche
and Salhi [19] showed its decidability via a sequent calculus. Jia and Walker [20] interpreted
modal proofs as distributed programs with nominals denoting places in the network.

We formalized the synthetic completeness of ST with some of the simpler ST* restric-
tions required for termination in our MSc thesis [17]. A short paper by From et al. [14]
briefly described an even earlier version of the formalization and we mentioned the present
completeness proof in a short presentation at Advances in Modal Logic 2020 [18].

The paper continues as follows. First, we give the syntax and semantics of basic hybrid
logic (Section 2). We introduce the proof system, corresponding rule restrictions and some
consequences (Section 3). Next, we show a number of properties of the system that are useful
for the completeness proof (Section 4). After that, we prove completeness of the system and
show how our proof relates to existing work (Section 5). We then show how STA relates
to ST* and argue for our choice of restrictions. From this relationship we claim that STA

must be terminating by sketching a possible translation (Section 6). We briefly discuss some
points about the formalization (Section 7) and conclude with future work (Section 8).

2 Syntax and Semantics

The well-formed formulas of the basic hybrid logic are given by the following grammar, where
we use p as a propositional symbol and i, j, k, a, b for nominals.

ϕ, ψ ::= p | i | ¬ϕ | ϕ ∨ ψ | ♢ϕ | @iϕ

The ♢ operator is the usual possibility modality and @i is the aforementioned satisfaction
operator. A formula of the form @iϕ is called a satisfaction statement.

We interpret the language on Kripke models M = (W,R, V ). The frame (W,R) consists
of a non-empty set of worlds W and a binary accessibility relation R between them. V is the
valuation of propositional symbols. An assignment g maps nominals to elements of W ; if
g(i) = w we say that nominal i denotes w. Formula satisfiability is defined as follows:

M, g, w |= p iff w ∈ V (p)
M, g, w |= i iff g(i) = w

M, g, w |= ¬ϕ iff M, g, w ̸|= ϕ

M, g, w |= ϕ ∨ ψ iff M, g, w |= ϕ or M, g, w |= ψ

M, g, w |= ♢ϕ iff for some w′, wRw′ and M, g, w′ |= ϕ

M, g, w |= @iϕ iff M, g, g(i) |= ϕ
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Figure 1 Internalized and Seligman-style tableau branches.

3 Our Seligman-Style Tableau System

Our proof system of choice is tableau. In tableau we decompose an initial set of root formulas
into a tree structure and show unsatisfiability by reaching a contradiction on each branch.
This is called “closing” the branch and a branch that cannot be closed remains “open.” If we
can close every branch that emerges then the root formulas have a closing tableau.

A hybrid logic formula is true relative to a given world and our proof system must handle
this. Internalized tableau systems, as depicted in Figure 1a, encode the information in
every formula on the branch by working exclusively with satisfaction statements. We follow
instead the Seligman style [25] adapted to tableau systems by Blackburn et al. [4]. Here, the
information is attached to a group of formulas at once by dividing the branch into blocks as
depicted in Figure 1b. The first formula on each block is ensured to be a nominal and called
the opening nominal. It denotes the world that the formulas on the block are true at. We
occasionally call a block’s opening nominal its “type” and use the following shorthands:

▶ Definition 1 (ϕ at i). If a formula ϕ occurs on a block with opening nominal i, then we
say that ϕ occurs “on an i-block” or simply that ϕ occurs “at i.”

3.1 Proof System

Figure 2 gives our tableau rules. We give the rule output below the vertical lines and the
rule input above them. The opening nominal of the latest, current, block is given below
the horizontal line. Above each input formula we write the opening nominal of the block it
occurs on. When a rule has multiple input we write these pairs side by side. Any formula on
the current block may be used as input under the same restrictions on opening nominals.

▶ Example 2. Consider the (¬¬) rule: if ¬¬ϕ occurs on an a-block and the current block
is an a-block, then ϕ is a legal extension of the branch. The intuition for the Nom rule is
that the current opening nominal a occurs on a b-block so nominals a and b must denote
the same world and it is sound to copy ϕ from b to a. The (♢) rule witnesses its input
formula, ♢ϕ, with a fresh witnessing nominal i by producing an accessibility formula, ♢i,
and a satisfaction statement, @iϕ, saying that ϕ holds at the reachable world denoted by i.

▶ Remark 3. In the internalized system, cf. Figure 1a, we may work on a formula prefixed
by @i one moment and one prefixed by @k the next. The Seligman-style blocks give rise to a
more local proof style by delegating this perspective switch, e.g. from i to k, to the GoTo
rule that opens a new block with corresponding opening nominal.

The soundness proof for STA follows existing work [4, 14] (cf. the formalization).

TYPES 2020
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Figure 2 Our Seligman-style tableau system STA.

3.2 Restrictions for Termination
Besides the side conditions, we need to impose the following four restrictions on the system
to ensure that we eventually run out of applicable rules (inspired by Blackburn et al. [4]):

S1 The output of a non-GoTo rule must include a formula new to the current block type.
S2 The (♢) rule can only be applied to input ♢ϕ on an a-block if ♢ϕ is not already witnessed

at a by formulas ♢i and @iϕ for some witnessing nominal i.
S3 We associate potential, a natural number n, with each line in the tableau. GoTo must

decrement the number, the other rules increment it and we may start from any amount.
S4 We parameterize the proof system by a fixed set of nominals A and impose the following:

a. The nominal introduced by the (♢) rule is not in A.
b. For any nominal i, Nom only applies to a formula ϕ = i or ϕ = ♢i when i ∈ A.

Restrictions S1 and S2 prevent us from applying the same rule to the same input repeatedly.
We motivate restriction S3 by the following examples and restriction S4 in Section 3.3.

▶ Example 4. In Figure 3a we prove the validity of ¬@iϕ ∨ @iϕ by constructing a closing
tableau for its negation. We start from potential 0 in the fourth column. Notice how regular
rule applications build up potential that is then discharged to open a new block on line 5.

▶ Example 5. In Figure 3b we start from the unsatisfiable formula @i¬i and potential n.
Restriction S3 prevents infinite applications of GoTo and eventually forces us to make progress
(or we might get stuck if no rules apply).

▶ Remark 6. The choice of a fresh opening nominal for the root block ensures that we do not
close the branch because of an interplay between the formula itself and the opening nominal
(imagine starting from ¬i on a block with opening nominal i).

Given restrictions S3 and S4 we say that a branch has a closing tableau with respect to a
set of allowed nominals A and potential n. We also introduce the following shorthand:

▶ Definition 7 (Allowed ϕ). A formula ϕ is allowed by A if it meets condition S4b.
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0. a

1. ¬(¬@iϕ ∨ @iϕ) [0]
2. ¬¬@iϕ (¬∨) 1 [1]
3. ¬@iϕ (¬∨) 1 [1]
4. @iϕ (¬¬) 2 [2]
5. i GoTo [1]
6. ¬ϕ (¬@) 3 [2]
7. ϕ (@) 4 [3]

×
(a) Building up potential.

0. a

1. @i¬i [n]
2. i GoTo [n− 1]
3. i GoTo [n− 2]
...

...
...

...
n+ 1. i GoTo [0]
n+ 2. ¬i (@) 1 [1]

×
(b) Running out of potential.

Figure 3 Two examples of potential.

3.3 Nominal Asymmetry
See Blackburn et al. [4] for why a restriction like S4 is needed. They conclude:

We . . . have to enforce some control on the “direction” we allow the copying of
formulas, so that we can establish a decreasing length argument. It is OK to copy a
formula true at a nominal i to a nominal j if j generated i, but not if i generated j [4].

Essentially, we need to ensure that blocks of generated nominals contain strictly smaller
formulas, so that any chain of them eventually terminates. It is the (♢) rule that generates a
fresh nominal i by producing the formulas ♢i and @iϕ. Only GoTo can decompose either
formula into the raw nominal i. Our restriction S4a ensures i /∈ A so by S4b, nominal i
cannot be copied to another block. Thus, unlike root nominals, the nominals generated by (♢)
can only appear raw as opening nominals. Since Nom requires the opening nominal of the
current block to appear on its own, formulas can only be copied to blocks with (♢)-generated
opening nominals, not from them. This matches the quote. It also shows how generated
nominals are treated differently, causing a “nominal asymmetry.”

We revisit termination in Section 6. For now, note that the fixed set A frees us from
formalizing the growing set of nominals generated by (♢). The reader may imagine the set A
to contain all root nominals, as it will in Section 5, such that these can be copied freely.

4 Properties

We briefly remark on some properties of STA that are useful for the completeness proof. We
start by noting that while restriction S3 allows us to start from any amount of potential, a
single unit is always sufficient to close a branch. Then we lift the S1 and S2 restrictions by
showing that unrestricted versions of the proof rules are admissible. This makes it simpler to
show further properties of the system, since we do not have to worry about the restrictions
any longer. Finally we show a structural property.

4.1 Sufficient Potential
That a single unit is sufficient is not surprising: simply never make a detour (i.e. two
applications of GoTo in a row) and the other rule applications will build up the potential
as needed. Similarly, given an existing tableau, construct a more “efficient” counterpart by
collapsing sequences of GoTo so only the last one remains. GoTo serves no other purpose
than starting a new block so any subsequent rule applications only depend on the final GoTo.
The single starting unit may, however, be needed for an initial application of the rule.

TYPES 2020
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▶ Lemma 8 (A single unit of potential). If branch Θ closes with respect to A and potential n
then Θ closes with respect to A and potential 1.

Proof. By induction on the closing tableau for Θ (see the formalization for details). ◀

4.2 Strengthening
▶ Lemma 9 (Strengthening). Let Θ be a branch and ∆ a set of occurrences of ϕ on i-blocks
in Θ. Assume that at least one “lasting occurrence” of ϕ at i is not in ∆. If Θ closes wrt. A
and potential n then so does Θ with all occurrences in ∆ removed.

Proof. By induction on the construction of the closing tableau for Θ. When an occurrence
in ∆ is used as rule input, use the lasting occurrence of ϕ instead to construct the tableau
for the strengthened branch. No rule applications are invalidated, so the new branch closes
under the same amount of potential. Similarly, we only apply rules that were applicable
before, so restriction S2 cannot be violated. See the formalization for exact details. ◀

In the formalization we represent the set of occurrences as a set of indices into the branch.
We state the lemma over such a set to make it work with the induction principle given by
Isabelle/HOL. To lift restriction S1, fix the set of occurrences to contain only the rule output,
which must occur elsewhere since S1 is violated, and apply the lemma to justify it.

4.3 Substitution
Next we show a substitution lemma. Note that substitution across a tableau can collapse
formulas such that an occurrence suddenly violates restriction S1 and cannot be justified as
before the substitution. This is why Lemma 9 is useful. But it also means that our substitution
lemma will quantify existentially over the potential needed to close the transformed branch:
we may need to start from more potential to account for the fewer rule applications. Another
complication is that restriction S2 may suddenly be violated by this collapsing but, as we
have also shown previously [14], collapsing witnessing nominals allows us to lift S2.

▶ Definition 10 (Θσ). Given a substitution σ, i.e. a mapping from nominals to nominals,
and a branch Θ, Θσ denotes the branch obtained by replacing every nominal i in Θ by σ(i).

Substitutions are allowed to change the type of nominals, e.g. from numbers to strings,
so in the following lemma we need to ensure that it leaves enough fresh nominals available.

▶ Lemma 11 (Substitution). Let Θ be a branch, A be a finite set of allowed nominals and σ
a substitution whose co-domain is at least as large as its domain. If Θ closes with respect to
A then Θσ closes with respect to the image of A under σ.

Proof. By induction on the construction of the closing tableau for an arbitrary σ.
In the (♢) case, let i be the generated witnessing nominal. After the (collapsing)

substitution, the rule input may become witnessed by some nominal σ(j), violating S2. In
this case, utilize that we can pick σ in the induction hypothesis such that it maps i to σ(j).
By the side condition on (♢), the image of A under the updated σ is the same, but now
Lemma 9 justifies the rule output. The rest of the branch is unaffected since i is fresh.

If S2 is not violated, it may still be that σ(i) is no longer fresh like i was before the
substitution. Therefore, use the finiteness of both the branch and A, and the size of the
co-domain of σ, to obtain a fresh nominal k. Apply the induction hypothesis at σ mapping i
to k. This guarantees that the (♢) rule applies to justify the rule output. ◀
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To lift S2, collapse the involved witnessing nominals in the same way as in the proof of
Lemma 11 and apply Lemma 9. The finiteness assumption on A is stronger than we need,
but we forgo generalization since we work with finite sets in Section 5 anyway.

4.4 Branch Structure

The following lemma shows that we can add, contract and rearrange blocks on a branch
without affecting the existence of a closing tableau. Such operations may violate both S1
and S2, but we have lifted these restrictions already, so we do not need to worry about them.

▶ Lemma 12 (Adding, contracting and rearranging blocks). Let Θ be a branch consisting of
the set of blocks {B1, . . . , Bn} and let Θ′ be a branch whose blocks are a finite superset of
{B1, . . . , Bn}. If Θ closes wrt. finite A then so does Θ′.

Proof. By induction on the construction of the closing tableau for arbitrary Θ′. In each case
we apply the induction hypothesis at Θ′ extended by B, where B is the current block of the
original branch. This makes the opening nominals agree on the two branches, so that the
original rule applies to the new branch as well. After applying this rule, we justify the B
block by Lemma 9 and the GoTo rule. Lemma 11 resolves (♢) cases where the fresh nominal
is not fresh on the new branch since we can substitute it with another fresh nominal. ◀

5 Completeness

Our completeness proof is a synthesis of two approaches, both based on showing completeness
via contradiction by constructing a model for formulas on open, exhausted branches.

Bolander and Blackburn reason about the shape of such branches directly from the proof
rules in their terminating, internalized calculus [9]. Jørgensen et al., on the other hand, define
Hintikka sets of blocks as an abstraction of their open, exhausted branches and show model
existence for formulas in such sets. They show that any set of blocks without a closing tableau
can be extended to a maximal consistent set of blocks and that these are Hintikka sets [21].
Their model construction, however, assumes that all nominals are treated uniformly, which
our termination restrictions prevent (cf. Section 3.3). We define Hintikka sets of blocks that
characterize open branches exhausted with respect to a set of allowed nominals A. We then
abstract the model existence result by Bolander and Blackburn, which is compatible with
such branches, and apply it to our Hintikka sets. In Section 5.4 we contrast our approach
with the existing work but the proof itself is self-contained.

5.1 Hintikka Sets

Figure 4 shows our definition of Hintikka sets of blocks. We reuse the “at” notation
from Definition 1 and suppress “in H” for brevity. Our goal is to show a model existence
result for formulas on blocks in such sets. ProP and NomP ensure consistency at the bottom
by forbidding certain contradictions. The remaining requirements match the proof rules. The
ones up to Nom ensure downwards saturation such that the satisfiability of a complex formula
is guaranteed by conditions on its subformulas [21]. The novel condition Nom ensures lateral
saturation of allowed formulas across blocks whose opening nominals denote the same world.
This allows us to treat such blocks uniformly when it comes to allowed formulas.

▶ Remark 13. Nom replaces three requirements by Jørgensen et al. [21, (iv, v, vii)] that
serve the same purpose for a smaller range of formulas.

TYPES 2020
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ProP If nominal b occurs at a and prop. symbol p occurs at b then ¬p does not occur at a.
NomP If nominal i occurs at a then ¬i does not occur at a.
NegN If ¬¬ϕ occurs at a then ϕ occurs at a.
DisP If ϕ ∨ ψ occurs at a then either ϕ or ψ occurs at a.
DisN If ¬(ϕ ∨ ψ) occurs at a then both ¬ϕ and ¬ψ occur at a.
DiaP If ♢ϕ occurs at a and ϕ is not a nominal then for some i, ♢i and @iϕ occur at a.
DiaN If ¬♢ϕ and ♢i both occur at a then ¬@iϕ occurs at a.
SatP If @aϕ occurs at b then ϕ occurs at a.
SatP If ¬@aϕ occurs at b then ¬ϕ occurs at a.
GoTo If ϕ occurs at a and i is a nominal in ϕ then some block in H has opening nominal i.
Nom If ϕ and nominal a both occur at b and ϕ is allowed by A then ϕ occurs at a.

Figure 4 Eleven requirements for a set of blocks H to be a Hintikka set with respect to A.

5.1.1 Equivalence
Assume for the rest of the section that H is a Hintikka set with respect to the set of allowed
nominals A. We define an equivalence between nominals:

▶ Definition 14 (Equivalence). Nominals i, j are equivalent, i ∼H j, if j occurs at i in H.

▶ Note 15 (∼ and ϕ at i). In the following we typically suppress the subscript in ∼H and
likewise the fragment “in H” in sentences like “ϕ occurs at i in H”.

The equivalence i ∼ j only implies j ∼ i if i ∈ A as otherwise Nom does not apply: only
allowed nominals are symmetric. This motivates the restriction on the following lemma:

▶ Lemma 16 (Equivalence relation). ∼H is an equivalence relation on the set of allowed
opening nominals in H.

Proof. Reflexivity: i ∼H i for any opening nominal i in H since opening nominals occur on
their own block. Symmetry: Assume i ∼H j with i ∈ A. That is, j occurs at i in H so by
Nom, i occurs at j in H: j ∼H i. Transitivity: Assume i ∼H j and j ∼H k with i, k ∈ A.
By symmetry, i occurs at j in H: j ∼H i. Moreover, k ∈ A occurs at j in H so by Nom, k
occurs at i in H: i ∼H k. ◀

▶ Note 17. Due to the GoTo Hintikka restriction, any nominal occurring in H also occurs as
opening nominal, so ∼H is an equivalence relation on the allowed nominals in H.

5.1.2 Model Construction
Let |i|∼H denote the set of nominals equivalent to i with respect to H.

We make use of the following shorthand in our model construction:

▶ Definition 18 (ϕ at a∗). We say that ϕ occurs at a set of nominals a∗ = {a0, a1, . . .} if it
occurs at some nominal ak ∈ a∗ and that ϕ occurs at all a∗ if it occurs at all nominals in a∗.

We can now define the model induced by Hintikka set H and allowed nominals A:

▶ Definition 19 (The model MH,A and assignment gH,A induced by H and A).
Worlds The worlds of MH,A are sets of equivalent nominals, written a∗, from H.
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Assignment The assignment gH,A maps a nominal to the equivalence class of an equivalent,
allowed nominal or a singleton set if no such nominal exists:

gH,A(a) =
{

|b|∼H ∃b ∈ A. a ∼H b

{a} otherwise

Reachability From world a∗ we can reach a world exactly if it is denoted by some nominal b
that is reachable at a∗ (as witnessed by ♢b occurring at a∗):

RH,A(a∗) = {gH,A(b) | ∃a ∈ a∗. ♢b occurs at a in H}

Valuation Propositional symbol p holds at world a∗ exactly if p occurs at a∗ in H:

VH,A(a∗)(p) = ∃a ∈ a∗. p occurs at a in H

5.1.3 Properties of the Model
Consider first a property of the assignment:

▶ Lemma 20 (Non-empty assignment). The induced assignment gH,A is always non-empty.

Proof. Fix an arbitrary nominal a. If gH,A(a) = {a} the thesis holds immediately. So assume
there is some b ∈ A such that a ∼H b and gH,A(a) = |b|. b ∈ |b| witnesses the thesis. ◀

The following lemma showcases the lateral saturation guaranteed by the Nom condition:

▶ Lemma 21 (Assignment closure). If ϕ is allowed by A and ϕ occurs at a in H then ϕ

occurs at all gH,A(a) in H (and at least one such world exists).

Proof. If gH,A(a) = {a} the thesis holds immediately. So assume there is some b ∈ A where
b occurs at a in H and gH,A(a) = |b|. Then by Hintikka requirement Nom, ϕ occurs not only
at b in H but at all a ∈ |b| in H, proving the thesis. Lemma 20 gives the parenthetical. ◀

5.1.4 Model Existence
We can now prove model existence:

▶ Lemma 22 (Model existence). Let H be a Hintikka set with respect to allowed nominals A.
We show two statements by mutual induction:

If ϕ occurs at i in H and ϕ is allowed by A then MH,A, gH,A, gH,A(i) |= ϕ.
If ¬ϕ occurs at i in H and ϕ is allowed by A then MH,A, gH,A, gH,A(i) ̸|= ϕ.

Proof. By induction on the structure of ϕ for an arbitrary nominal i. The proof follows the
one by Bolander and Blackburn [9]. We suppress subscripts for readability.

If p at i then p at g(i) by Lemma 21, which matches the valuation, so M, g, g(i) |= p.
If ¬p at i then ¬p at all g(i) so by ProP, p does not occur at g(i), so M, g, g(i) ̸|= p.
If a at i then from the assumption a ∈ A we have g(i) = |a| and g(a) = |a| and thereby

g(i) = g(a) so M, g, g(i) |= a.
If ¬a at i then ¬a at g(i) by Lemma 21. Moreover, a ∈ A by assumption so from

Lemma 21 we have that a occurs at all g(a). We thus have ¬a at g(i) but a at all g(a) so by
NomN, g(i) ̸= g(a) and therefore M, g, g(i) ̸|= a.

If ¬ϕ at i then M, g, g(i) ̸|= ϕ by the induction hypothesis so M, g, g(i) |= ¬ϕ.
If ¬¬ϕ at i then ϕ at i by NegN and M, g, g(i) ̸|= ¬ϕ by the induction hypothesis.

TYPES 2020
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The cases for ϕ ∨ ψ, ¬(ϕ ∨ ψ), @jϕ and ¬@jϕ at i all follow similarly to ¬ϕ and ¬¬ϕ.
If ♢j at i then j ∈ A by assumption. Thus ♢j at g(i) so g(i)Rg(j) and M, g, g(i) |= ♢j.
If ♢ϕ at i where ϕ is not a nominal then by DiaP (and Lemma 21) there is some witnessing

nominal k such that ♢k and @kϕ both appear at g(i). By SatP, ϕ then occurs at k and by
the induction hypothesis at k we have M, g, g(k) |= ϕ. From ♢k at g(i) we have g(i)Rg(k)
so combined we get M, g, g(i) |= ♢ϕ.

If ¬♢ϕ at i then ¬♢ϕ at g(i) by Lemma 21. We need to show that all worlds reachable
from g(i) falsify ϕ. So assume for some arbitrary j that ♢j occurs at some a ∈ g(i). By
Nom, we also have ¬♢ϕ at a so by DiaN we get ¬@jϕ at a and finally by SatN we have ¬ϕ
at j. The induction hypothesis at j then tells us that M, g, g(j) ̸|= ϕ as needed. Since j was
chosen arbitrarily, M, g, g(i) ̸|= ♢ϕ.

Each appeal to the induction hypothesis requires showing that the subformula is allowed
by A but since it is a subformula this holds trivially. ◀

5.2 Maximal Consistent Sets
Our next task is to follow the classical synthetic recipe: extend a consistent set of blocks to
be maximally consistent, show that such sets fulfill all Hintikka requirements and thus that
formulas in them are satisfiable. Consistency and maximality are standard but wrt. A:

▶ Definition 23 (Consistency). The set of blocks S is consistent wrt. A if there is no finite
subset S′ ⊆ S such that S′ has a closing tableau wrt. A and any amount of potential.

▶ Definition 24 (Maximality). The set of blocks S is maximal wrt. A if it is consistent wrt. A
and for any block B /∈ S the set S ∪ {B} is inconsistent wrt. A.

Besides maximally consistent, our constructed set will also be ♢-saturated [21]:

▶ Definition 25 (♢-Saturation). The set of blocks S is ♢-saturated if for any ϕ at any a in S,
where ϕ is not a nominal, there is a nominal i such that @ip and ♢i both occur at a in S.

We now construct our ♢-saturated maximally consistent set and show it is a Hintikka set:

▶ Definition 26 (Lindenbaum-Henkin construction). Assume an enumeration of all blocks
B0, B1, B2 . . . in the language. From a consistent set S0 we build an infinite sequence of
consistent sets S0, S1, S2, . . . in the following way. Given Sn, construct Sn+1 like so:

Sn+1 =
{
Sn if Sn ∪ {Bn} is inconsistent wrt. A
Sn ∪ {Bn} ∪ {B′} otherwise, where B′ is a ♢-witness for Bn

A ♢-witness for a block B is a block with the same opening nominal that witnesses all
♢ϕ-formulas in B using fresh and disallowed nominals (when ϕ is not a nominal).

▶ Lemma 27 (Lindenbaum-Henkin). Let S0 be a consistent set of blocks with respect to finite
A and over a finite set of nominals. Then

⋃
Sn as given by Definition 26 is a ♢-saturated

maximally consistent set.

Proof. The three-part proof follows the one by Jørgensen et al. [21].

Consistency. Proof by contradiction. Assume
⋃
Sn is inconsistent. Then some finite subset

S′ ⊆
⋃
Sn has a closing tableau. But the sequence S0, S1, S2, . . . grows with respect to ⊆

so there must be an m such that S′ ⊆ Sm. And since S0 is consistent, it follows by
induction on m that Sm is too (each ♢-witness preserves consistency due to the (♢) rule).
This contradicts the existence of an inconsistent, finite subset S′.
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Maximality. Proof by contradiction. Assume that there is some block Bm /∈
⋃
Sn such that⋃

Sn ∪ {Bm} is still consistent. This block is part of the enumeration of blocks, but
was not added to Sm+1. This can only be because Sm ∪ {Bm} is inconsistent. However,
Sm ∪ {Bm} ⊆

⋃
Sn ∪ {Bm} contradicting the consistency of the right-hand side.

♢-Saturation. Follows directly from the addition of ♢-witnesses. ◀

▶ Lemma 28 (Smullyan-Fitting block lemma). Assume S is a ♢-saturated maximal consistent
set of blocks wrt. a finite set A and a finite set of nominals. Then S is a Hintikka set.

Proof. The proof follows the one by Jørgensen et al. [21] but we have fewer cases since we
have fewer Hintikka requirements. The cases are straight-forward so we only exemplify three,
with the last being the typical one. The remaining cases can be found in the formalization.

Case ProP. Proof of negation. Assume that b occurs at a, p occurs at b and ¬p occurs at a
in S for some a, b, p. The set S is assumed to be consistent but we can construct a closing
tableau from these blocks by applying the Nom rule to get ¬p at b and immediately close
due to the existing p at b.

Case DiaP. Follows directly from ♢-saturation.
Case Nom. Assume that both ϕ and a occur at b in S and that ϕ is allowed by A. Assume

towards a contradiction that ϕ does not occur at a in S. Then by the maximality of S,
we can find an inconsistent finite subset S′ ∪ {([ϕ], a)} ⊆ S ∪ {([ϕ], a)} where ([ϕ], a) is
an a-block that only contains ϕ. If a closing tableau exists for S′ ∪ {([ϕ], a)} then it also
exists for the larger set S′ ∪ {([ϕ], a)} ∪ {([ϕ, a], b)} (Lemma 12). But now the Nom rule
tells us that ϕ at a is redundant, so just S′ ∪ {([], a)} ∪ {([ϕ, a], b)} is inconsistent. The
GoTo rule gets us to S′ ∪ {([ϕ, a], b)} and this set is trivially a subset of S, contradicting
its consistency. ◀

5.3 Tying It All Together

Completeness follows by constructing a model for any formula whose tableau does not close.

▶ Theorem 29 (Completeness). Assume that ϕ is a valid formula and a is some nominal.
Let A be the set containing all nominals in ϕ. Then the branch consisting solely of ¬ϕ on an
a-block has a closing tableau with respect to A and 1 unit of potential.

Proof. Assume towards a contradiction that the branch does not close. Then the set
S0 = {([¬ϕ], a)} is consistent with respect to A. We construct

⋃
Sn, which by Lemma 27 is

a ♢-saturated maximal consistent set of blocks, so by Lemma 28
⋃
Sn is a Hintikka set.

Since ¬ϕ occurs at a in
⋃
Sn, we obtain from Lemma 22 a model that does not satisfy ϕ,

namely MH,A, gH,A, gH,A(a) ̸|= ϕ. This contradicts our validity assumption, so the branch
must close. By Lemma 8 it must close from a single unit of potential. ◀

5.4 Relation to Existing Work

In this section we provide context for our induced model, Definition 19, and the corresponding
Lemma 22. Readers less familiar with tableau systems for hybrid logic may skip this section.
To refresh, Bolander and Blackburn give an analytic proof for a terminating, internalized
calculus [9] and Jørgensen et al. give a synthetic proof for the non-terminating system ST [21].
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5.4.1 Worlds

Jørgensen et al. have no restrictions on their Nom rule so they have no nominal asymmetry
(cf. Section 3.3) and ∼H is an equivalence relation on all nominals. They use representatives
of such equivalence classes as their worlds [21]. Since ∼H is only an equivalence relation on
a subset of our nominals, we cannot use equivalence classes directly. Instead we use sets of
equivalent nominals. Bolander and Blackburn use plain nominals as their worlds.

5.4.2 Assignment

Jørgensen et al. map each nominal i in H to its equivalence class |i|∼H [21]. If we artificially
fix A to contain all nominals in H then ∼H becomes an equivalence relation on all nominals.
Our assignment then reduces to its first clause and becomes equivalent to theirs.

Bolander and Blackburn map each nominal a to its “urfather” u(a): either an equivalent
“right nominal” or the nominal itself if no such nominal exists [9]. This is very similar to
our assignment that maps each nominal to the equivalence class of an equivalent allowed
nominal or the singleton set if no such nominal exists.

A right nominal, understood in terms of our setting, is a non-opening nominal that
occurs on its own. Since there may be multiple equivalent right nominals, Bolander and
Blackburn impose an ordering on them and always choose the smallest one to ensure that their
assignment is well-defined [9]. Working with sets of nominals frees us from such concerns.

5.4.3 Reachability and the Bridge Rule

It is worthwhile to compare the three different reachability relations from the considered
systems. By writing them in similar notation we get:

Jørgensen et al. |i|RH |j| iff ♢j occurs at i in H

Bolander and Blackburn i RH u(j) iff ♢j occurs at i in H

The present paper i∗ RH gH,A(j) iff ♢j occurs at i∗ in H

If we further note that g(j) = |j| for Jørgensen et al. [21] and g(j) = u(j) for Bolander and
Blackburn [9] we see that the relations are all defined in the same way over the assignment:
a world is reachable iff it is denoted by a nominal j such that ♢j occurs at the current world.
Only the treatment of the worlds differ. Since Jørgensen et al. use representatives of their
sets they need the following Hintikka requirement to ensure well-definedness:

If there is an i-block in H with ♢j on it, and a j-block in H with k on it, then there
is an i-block in H with ♢k on it [21, (vi)].

To see why, imagine that the premises hold but the conclusion does not. Then |i|RH |j|
and j ∼H k but not |i|RH |k| even though |j| = |k| by the second premise, so the choice of
representative matters when it should not. In our setting we side-step the problem completely
by having no representatives but quantifying existentially over the nominals in our worlds.

If we view the requirement as a rule, we get the known Bridge rule that produces ♢k at i
given ♢j at i and nominal k at j. Jørgensen et al. prove the admissibility of Bridge as part
of their completeness proof [21]. We include this result in the formalization (when j ∈ A)
because it is interesting in its own right [4] but do not need it for completeness.
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5.4.4 Valuation
Our valuation is standard but our use of sets instead of representatives slightly complicates
the ProP Hintikka requirement, where we take equivalence of nominals into account. For
Jørgensen et al. the following suffices: “if there is an i-block in H with atomic formula a on
it then there is no i-block in H with ¬a on it.” [21].

5.4.5 Model Existence
We turn now to the model existence result, Lemma 22, inspired by Blackburn and Bolander [9].

The two nominal cases and the ♢j case rely on the involved nominals being in A. Bolander
and Blackburn work with right nominals instead of allowed nominals [9]. This gives them
the positive nominal case for free, since the formula in that case is a right nominal. In the
negative nominal case, however, they need to rely on a special (¬) rule that upgrades a
negated nominal, “@i¬a”, to a right nominal “@aa”. They need this rule because of the
nature of internalized tableau systems: the nominal i in a satisfaction statement @ia has
lower status than the right nominal a. The status of nominals in our system is not defined
structurally but by the set A. Thus, we make the (¬) rule unnecessary by picking A carefully.

Finally, Bolander and Blackburn assume that the formula in question is not a ♢j formula
produced by the (♢) rule. Our assumption j ∈ A matches this, since the (♢) rule cannot
generate an allowed nominal, but we are free from keeping track of actual rule applications.

6 Relation to ST*

Here, we relate our restrictions S1-S4 to the restrictions R1-R5 and Nom* rule in ST* [4].

6.1 System ST*

For reasons of space we introduce ST* only briefly. To obtain ST*, take the rules in Figure 2,
add another rule called Name that introduces a fresh nominal to the branch and impose
restrictions R1-R5 and Nom* that we explain in the following. Since the rules of STA are a
subset of ST*, it is meaningful to compare the strength of our restrictions to those of ST*.

Blackburn et al. [4] need the Name rule since they allow the very first block to have no
opening nominal. We have dispensed with this flexibility to obtain a simpler formalization.

6.2 Restrictions R1-R5
Restriction R1 states that “a formula is never added to an i-block if it already occurs in an
i-block on the same branch” [4]. This formulation is more ambiguous than our S1, which
states when a rule is applicable. Any rule application outlawed by R1 is also outlawed by S1:

▶ Lemma 30 (R1 implies S1). If R1 outlaws a rule application then so does S1.

Proof. R1 outlaws the rule application so it must include no formulas new to the block type.
Therefore, S1 outlaws it too. ◀

Restriction R2 states that “the (♢) rule can not be applied twice to the same formula
occurrence” [4]. Note that formalizing this would require keeping track of (♢) rule applications.
This is why S2 is formulated in terms of branch content instead. It is at least as strict as R2:

▶ Lemma 31 (R2 implies S2). If R2 outlaws an application of (♢) then so does S2.
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Proof. Assume that an application of the rule (♢) to formula ♢ϕ at a is outlawed by R2.
This means that (♢) has already been applied to ♢ϕ at a. So for some nominal i there must
be formulas @iϕ and ♢i witnessing ♢ϕ at a. Thus the application is also outlawed by S2. ◀

Restriction R3 applies to the omitted name rule so we have no equivalent of it [4].
Restriction R4 states that “the GoTo rule can not be applied twice in a row” [4]. Our

counterpart is S3 that does allow repeated applications but still prevents repeating the rule
ad infinitum (cf. Figure 3b). We see in Section 6.5 why this extra flexibility is desirable. For
now recall the idea from Section 4.1 that any tableau with repeated applications of GoTo
can be translated into one where just the final application remains. We have the following:

▶ Lemma 32 (From S3 to R4). A tableau satisfying S3 collapses into one that satisfies R4
where only finite sequences of GoTo are removed and all non-GoTo applications are preserved.

Proof. By collapsing all sequences of GoTo applications into the last one (cf. Lemma 8). All
such sequences are finite due to decreasing potential so “the last one” is well-defined. ◀

Finally, restriction R5 can be ignored here: it restricts the more liberal variants of rules
(@) and (¬@) in system ST to the versions present in ST* and STA [4].

6.3 Nom* and Allowed Nominals
We turn now to the Nom* rule in ST* and its relationship to our set of allowed nominals A in
restriction S4. We first need the following by Blackburn et al. [4]: “A quasi-root subformula
is a formula of the form ϕ, ¬ϕ, @iϕ or ¬@iϕ where ϕ is a subformula of the root.”

Their Nom* rule is then defined as follows:

Suppose i and j are nominals, ϕ is a quasi-root subformula and j ̸= i, ϕ. If j and ϕ

both occur in i-blocks on a branch Θ, then ϕ can be added to any j-block on Θ [4].

By inspecting the rules of ST* and STA we see that only the (♢) rule can produce
formulas that are not quasi-root subformulas [4]. As such, the only formulas that Nom* does
not allow us to copy are formulas i and ♢i where i was introduced by (♢). This is exactly
what restriction S4 enforces on our Nom rule (cf. Section 3.3). So S4 is at least as strict:

▶ Lemma 33 (Nom implies Nom*). Suppose that ϕ and a both occur at b in a tableau
constructed under the allowed set of nominals A. If Nom can add ϕ to a then so can Nom*.

Proof. If ϕ can be added by Nom it must be allowed by A. Thus ϕ must be a quasi-root
subformula. Moreover, since adding ϕ to a does not violate S1 (or R1), a ≠ ϕ and likewise
a ̸= b. Ultimately, Nom* can also add ϕ to a. ◀

6.4 Termination
We have covered all differences between ST* and STA and seen how the restrictions compare.
This motivates the following unformalized theorem and proof sketch:

▶ Theorem 34 (STA is terminating). Any STA tableau is finite.

Proof. Lemmas 30–33 imply that we can translate any STA tableau into an ST* tableau of
similar size by collapsing repeated applications of GoTo (and adding an initial application of
the Name rule). Since all ST* tableaux are finite [4] so must any STA tableau be. ◀

Blackburn et al. [4] exemplify a number of infinite branches possible in system ST and
show that they are illegal in system ST*. In support of the above theorem, we note that the
sequences of rule applications leading to those infinite branches are also outlawed in STA.
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a

ϕ

a′ GoTo
ϕ′ R
i GoTo
ψ

(a) Possible segment on original closing tableau.

a

ϕ

a GoTo
ϕ R
σ(i) GoTo
ψσ

(b) R becomes invalid causing two GoTos in a row.

Figure 5 Unjustified GoTo after applying substitution σ that unifies a and a′ as well as ϕ and ϕ′.

6.5 Restricting the GoTo Rule
We should motivate our choice of S3 over R4. As Section 4 shows, we typically show lemmas of
the form “if branch Θ has a closing tableau then so does f(Θ)”, where f is some operation like
substitution or restructuring. In a proof by induction on the closing tableau under restriction
R4 we need to show in each non-GoTo case that GoTo becomes applicable, since we need
that assumption to discharge the GoTo case. However, the transformation may invalidate a
previously valid rule application and prevent us from making this promise. Figure 5 depicts a
possible case when proving the substitution lemma. Before the substitution, the application
of rule R was legal, but afterwards it violates restriction R1. We can still justify the extension
ϕ with the Strengthening Lemma 9 but doing so does not make GoTo applicable afterwards.

We might give a more intricate transformation that also prunes detours but that would
complicate an otherwise simple idea like substitution. We could also state the lemma in
weaker terms that allow for a different branch structure, but we prefer to give straight-forward
lemmas and transformations. Our S3 restriction resolves the issue by dealing with detours
separately. Consider Figure 5 from the perspective of potential: we need to start from more
potential to close the transformed branch since we lose a rule application, but we can simply
do this, so the detour becomes benign. Thus, we can give the transformation we want, we
just need to existentially quantify the potential required to close the resulting branch.

7 Formalization

In general, the formalization consists of close to 5000 lines in the intelligible semi-automated
reasoning language Isar [27] and follows the structure of the paper. It is accepted into the
Archive of Formal Proofs and thus kept up to date with new versions of Isabelle/HOL.

We formalize the logic as a deep embedding into higher-order logic by specifying the syntax
as a datatype and the semantics as a predicate on that datatype (alongside a model and an
assignment). Types in higher-order logic are non-empty so we represent the set of worlds as
a type variable ’w. Similarly, we use ’a for the universe of propositional symbols and ’b for
the universe of nominals. We formalize a block as a list of formulas paired with its opening
nominal and a branch as a list of blocks, where lists in Isabelle/HOL are finite, ordered
sequences. We use the inductive command to specify the proof system as ten inductive
cases. The command provides a predicate ⊢ for whether or not a given branch closes with
respect to a set A and potential n. Thus, we abstract away the concrete shape of a closing
tableau and reason only about its existence. This suffices for formalizing completeness but
not termination where we would need to inspect well-formed but infinite branches. However,
it permits induction over the proof rules instead of the trickier coinduction.

Imagine that we formalized ST* instead of STA. Section 6.5 motivated our choice of S3
over R4. Restriction R2 on the (♢) rule would require us to additionally index our predicate ⊢
by a list of indices, each pointing to a formula occurrence that (♢) cannot be applied to. When
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proving lemmas by induction, we would need to make suitable assumptions about this list.
Instead, our formulation S2 identifies the applicability of (♢) from the branch content itself,
which we already know. The Nom* rule considers quasi-root subformulas and would require
us to remember the root segment of the tableau as we extend it, complicating induction
proofs too. Our parameterization of the rules by the set A causes no such complications.

Imagine next that we adapted the completeness proof for ST* to STA. That proof works
by translation from a different system with an analytic completeness proof, which we would
have to formalize as well. This could be done: Blanchette, Popescu and Traytel [7, 8] have
formalized analytic completeness proofs for first-order logic in Isabelle/HOL. Instead, our
standalone synthetic completeness proof joins a family of such proofs in Isabelle/HOL [2, 15,
16]. While possible, a similar proof for ST* would, as described, be harder to formalize.

8 Conclusion and Future Work

We have presented a Seligman-style tableau system for hybrid logic with a formalization
in Isabelle/HOL of its soundness and completeness and argued that it is terminating. The
restrictions required for termination cause an asymmetry in branches that makes a previous
synthetic completeness proof for hybrid logic tableau systems inapplicable. We have presented
a novel proof that works in this case and described its relation to existing work. The use of
plain sets instead of representatives in the model construction relieves us of some concerns
about well-definedness. Our work is the first sound and complete formalized proof system
for hybrid logic and the first synthetic proof for a terminating hybrid logic tableau system.

Blackburn et al. showed termination of ST* by a translation of any branch into a
terminating system and we claim termination of STA by possible translation into ST*. We
are currently working on a direct, formalized termination proof for STA through a decreasing
measure argument in the style of Bolander and Blackburn [9]. This will allow code generation
for a verified decision procedure based on the tableau system. We also want to explore
extensions to the logic and investigate a Seligman-style system for intuitionistic hybrid logic.
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