
Why Not W?
Jasper Hugunin !

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
In an extensional setting, W types are sufficient to construct a broad class of inductive types, but
in intensional type theory the standard construction of even the natural numbers does not satisfy
the required induction principle. In this paper, we show how to refine the standard construction of
inductive types such that the induction principle is provable and computes as expected in intensional
type theory without using function extensionality. We extend this by constructing from W an internal
universe of codes for inductive types, such that this universe is itself an inductive type described by
a code in the next larger universe. We use this universe to mechanize and internalize our refined
construction.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases dependent types, intensional type theory, inductive types, W types

Digital Object Identifier 10.4230/LIPIcs.TYPES.2020.8

Supplementary Material Software (Source Code):
https://github.com/jashug/WhyNotW/releases/tag/v0.1

archived at swh:1:rel:75acce4d588f3622361f0adc3f1255ac24147669

Acknowledgements I want to thank Jon Sterling and the anonymous reviewers for their helpful
feedback.

1 Introduction

In intensional type theory with only type formers 0, 1, 2, Σ, Π, W, Id and U, can the natural
numbers be constructed?

The W type [12] captures the essence of induction (that we have a collection of possible
cases, and for each case there is a collection of sub-cases to be handled inductively), and in
extensional type theory it is straightforward to construct familiar inductive types out of it,
including the natural numbers [6]. Taking the elements of the two-element type 2 to be Ô
and Ŝ, we define

Ñ = Wb:2(case b of {Ô 7→ 0, Ŝ 7→ 1}). (1)

(the tilde distinguishes the standard construction from our refined construction of the natural
numbers in Section 2)

However, as is well known [6, 10, 13, 14], in intensional type theory we cannot prove the
induction principle for Ñ without some form of function extensionality. The obstacle is in
the Ô case, where we end up needing to prove P f for an arbitrary f : 0 → Ñ, when we only
know P (x 7→ case x of {}).

Can this obstacle be avoided? The answer turns out to be yes; in this paper, we show
that refining the standard construction allows the natural numbers and many other inductive
types to be constructed from W in intensional type theory. 1

1 These results have been formalized in Coq 8.12 [17]: see the link to supplementary material in the top
matter of this article.

© Jasper Hugunin;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Types for Proofs and Programs (TYPES 2020).
Editors: Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch; Article No. 8; pp. 8:1–8:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jasper@hugunin.net
https://orcid.org/0000-0002-1133-5354
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://github.com/jashug/WhyNotW/releases/tag/v0.1
https://github.com/jashug/WhyNotW/releases/tag/v0.1
https://archive.softwareheritage.org/swh:1:rel:75acce4d588f3622361f0adc3f1255ac24147669
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Why Not W?

Type-theoretic notations and assumptions

We work in a standard intensional type theory with dependent function types Πa:AB[a] (also
written ∀a:AB[a], (a : A) → B[a], non-dependent version A → B, constructed as (x 7→ y[x])
or (λx. y[x])), dependent pair types Σa:AB[a] (also written (a : A) × B[a], non-dependent
version A × B, constructed as (x, y), destructed as fst p, snd p), finite types 0, 1 (with
inhabitant ⋆), 2 (with inhabitants ff and tt, aliased to Ô and Ŝ when we are talking about
constructing the natural numbers), W types Wa:A B[a] (constructor sup af for a : A and
f : B[a] → Wa B[a]), identity types IdA x y (constructor refl, destruction of e : Id x y keeps
x fixed and generalizes over y and e), and a universe U. We define the coproduct A + B as∑

b:2 case b of {ff 7→ A, tt 7→ B}, and notate the injections as inl and inr.
Function extensionality is the principle that ∀x Id (f x) (g x) implies Id f g, and unique-

ness of identity proofs is the principle that IdId x y p q is always inhabited. We do not assume
either of these principles.

We require strict β-rules for all type formers, and strict η for Σ (that p = (fst p, snd p))
and Π (that f = (x 7→ fx)). For convenience we will also assume strict η for 1 (that u = ⋆).

2 Constructing N (for real this time)

We run into problems in the Ô case because we don’t know that f = (x 7→ case x of {}) for
an arbitrary f : 0 → Ñ. To solve those problems, we will assume them away. To construct
N, we will first define a predicate canonical : Ñ → U such that canonical(sup Ôf) implies
Id (x 7→ case x of {}) f . We then let N = Σx:Ñ canonical x be the canonical elements of Ñ
(with Ñ defined by Equation (1)). This predicate will be defined by induction on W, so we
can start out with

canonical(sup xf) = ? : U (x : 2, f : · · · → Ñ, may use canonical(f i) : U).

The obvious next thing to do is to split by cases on x : 2:

canonical(sup Ôf) = ? : U (f : 0 → Ñ, may use canonical(f i)),
canonical(sup Ŝf) = ? : U (f : 1 → Ñ, may use canonical(f i)).

We need canonical terms to be hereditarily canonical, that is, we want to include the
condition that all sub-terms are canonical. For the Ŝ case, thanks to the strict η rules for 1
and Π, the types canonical(f ⋆) and (i : 1) → canonical(f i) are equivalent; we can use
either one. This will be the only condition we need for the Ŝ case, so we can complete this
part of the definition:

canonical(sup Ŝf) = canonical(f ⋆).

The Ô case is the interesting one. The blind translation of “every sub-term is canonical”
is (i : 0) → canonical(f i), but this leads to the same problem as before: without function
extensionality we can’t work with functions out of 0. Luckily, we have escaped the rigid
constraints of the W type former, and have the freedom to translate the recursive condition
as simply 1. No sub-terms of zero, no conditions necessary!

canonical(sup Ôf) = ? : U (f : 0 → Ñ)

That is all well and good, but we can’t forget why we are here in the first place: we need
Id (x 7→ case x of {}) f . Luckily, there is a hole just waiting to be filled:

canonical(sup Ôf) = Id (x 7→ case x of {}) f.

J. Hugunin 8:3

Ñ = Wb:2(case b of {Ô 7→ 0, Ŝ 7→ 1}) : U,

canonical : Ñ → U,

canonical(sup Ôf) = Id (x 7→ case x of {}) f,

canonical(sup Ŝf) = canonical(f ⋆),
(2)

N = Σx:Ñ canonical x : U, (3)
O = (sup Ô(x 7→ case x of {}), refl) : N, (4)
S = n 7→ (sup Ŝ(⋆ 7→ fst n), snd n) : N → N. (5)

Figure 1 The complete definition of N.

Induction

Now we are ready for the finale: induction for N with the right computational behavior.
Assume we are given a type P [n] which depends on n : N, along with terms ISO : P [O]

and ISS : ∀n:NP [n] → P [S n]. Our mission is to define a term recN : ∀n:NP [n]. Happily, the
proof goes through if we simply follow our nose.

We begin by performing induction on fst n : Ñ, and then case on Ô vs Ŝ, just like the
definition of canonical.

recN(sup Ôf, y) = ? : P [(sup Ôf, y)] (f : 0 → Ñ, y : Id (x 7→ case x of {}) f),
recN(sup Ŝf, y) = ? : P [(sup Ŝf, y)] (f : 1 → Ñ, y : canonical(f ⋆)).
(where we may make recursive calls recN(f i, y′) for any i and y′)

In the Ŝ case, f = (⋆ 7→ f ⋆) by the η rules for 1 and Π, and thus (sup Ŝf, y) = S (f ⋆, y).
We can thus define

recN(sup Ŝf, y) = ISS (f ⋆, y) (recN(f ⋆, y)).

The Ô case is again the interesting one, but it is only a little tricky. We know ISO :
P [(sup Ô (x 7→ case x of {}), refl)], and we want P [(sup Ô f, y)]. But since we have y :
Id (x 7→ case x of {}) f , this is a direct application of the eliminator for Id. We thus
complete the definition of recN with

recN(sup Ôf, y) = case y of {refl 7→ ISO}.

Examining the definitions, we can see that as long as we have strict η for Σ and strict
β for Id, recNO = ISO and recN(S n) = ISS n (recN n). Thus we have indeed defined the
natural numbers with the expected induction principle and computational behavior in terms
of the W type.

▶ Theorem 1. The natural numbers can be constructed in intensional type theory with only
type formers 0, 1, 2, Σ, Π, W, Id and U, such that the induction principle has the expected
computational behavior.

3 The General Case

Above, we have refuted a widely held intuition about the expressiveness of intensional type
theory with W as the only primitive inductive type. Once we know we can construct the
natural numbers, that we can construct lots of other inductive types is much less surprising.

TYPES 2020

8:4 Why Not W?

Given

a type P [n] depending on n : N, (6)
ISO : P [O], (7)
ISS : ∀n:NP [n] → P [S n], (8)

we have

recN : ∀n:NP [n],
recN(sup Ôf, y) = case y of {refl 7→ ISO},

recN(sup Ŝf, y) = ISS (f ⋆, y) (recN(f ⋆, y)),
(9)

recNO = ISO, (10)
recN(S n) = ISS n (recN n). (11)

Figure 2 Induction for N.

Nevertheless, for completeness we define below an internal type of codes for inductive
types along with the construction from W types of the interpretation of those codes. For
convenience, in this section we assume that we have not just one universe U but an infinite
cumulative tower of universes U0 : U1 : · · · : Ui : Ui+1 : . . . all closed under 0, 1, 2, Σ, Π, W,
and Id such that A : Ui implies A : Ui+1.

The end result is a universe of inductive types which is self-describing, or “levitating” in
the sense of [4].

3.1 Inductive Codes

We will let Codei : Ui+1 be the type of codes for inductive types in Ui, and implement it for
now as a primitive inductive type. In Section 3.4 we will show how to construct Code itself
from W.

To define Code, we adapt the axiomatization of induction-recursion from [7]. Thus Codei

is generated by the constructors

nil : Codei, nonind : (A : Ui) → (A → Codei) → Codei, ind : Ui → Codei → Codei.

Looking at Ui as the usual category of types and functions, a code A : Codei defines an
endofunctor F A : Ui → Ui defined by recursion on A by

Fnil X = 1, (12)
Fnonind(A,B) X = Σa:AF(B a) X, (13)
Find(Ix,B) X = (Ix → X) × FB X. (14)

▶ Example 2. We can define a code for the natural numbers as

“N” = nonind(2, b 7→ case b of {Ô 7→ nil, Ŝ 7→ ind(1, nil)}) : Code0.

Each code also defines a polynomial functor GA X = Σs:SA
(PA s → X), which is what is

used in the standard construction:

J. Hugunin 8:5

Snil = 1 Pnil ⋆ = 0 (15)
Snonind(A,B) = Σa:AS(B a) Pnonind(A,B) (a, b) = P(B a) b (16)
Sind(Ix,B) = SB Pind(Ix,B) b = Ix + PB b. (17)
GA X = Σs:SA

(PA s → X) Ẽl A = Ws:SA
PA. (18)

The idea here is that SA collects up all the non-inductive data, and then PA counts the
number of inductive sub-cases.

There is an easy-to-define natural transformation ϵ : F ⇒ G, and it even has a left
inverse on objects, but without function extensionality ϵ does not have a right inverse
(roughly speaking, ϵ is not surjective); there are usually terms g : G X not in the image
of ϵ. This is exactly the problem we ran into in the case of the natural numbers: the map
(⋆ 7→ (x 7→ case x of {})) : 1 → (0 → X) is not surjective. (The above S, P , and ϵ roughly
correspond to Lemma 3 in [6])

The last component we need is AllA s : (Q : PA s → Uj) → Uj (for universe level j ≥ i),
the quantifier “holds at every position” (a refinement of ∀p, Q p):

Allnil ⋆ Q = 1, (19)
Allnonind(A,B)(a, b) Q = All(B a) b Q, (20)
Allind(Ix,B) b Q = (∀i, Q (inl i)) × AllB b (Q ◦ inr). (21)

Noting that snd(ϵ t) : P (fst(ϵ t)) → X enumerates the sub-terms of t : F X, we find
that All(Q ◦ snd(ϵ t)) lifts a predicate Q : X → Uj to a predicate over t : F X.

▶ Lemma 3. There is an equivalence r (à la Voevodsky, a function with contractible fibers)

r : F (Σx:XC x) ≃ Σ(t:F X) All(C ◦ snd(ϵ t)). (22)

Proof. Follows easily by induction on the code A. We use equivalences à la Voevodsky
as a concrete definition of coherent equivalences, which are the “right” way to define type
equivalence in the absence of UIP. ◀

3.2 The General Construction
We are finally ready to define the true construction of inductive types El : Code → Ui.
As with natural numbers, we define a “canonicity” predicate on Ẽl A, which says that “all
subterms are canonical, and this node is in the image of ϵ”. This translates as:

canonical(sup sf) = All(canonical ◦f) × (t : F (Ẽl A)) × IdG (Ẽl A) (ϵ t) (s, f) : Ui, (23)

and thus we finally have

El A = Σx:Ẽl A canonical x. (24)

For the constructors, we expect to have intro : F (El A) → El A, which we define by

intro x = (sup (ϵ (fst (r x))), (snd(r x), fst (r x), refl)). (25)

using the equivalence r from Lemma 3 to split x : F (El A) into fst(r x) : F (Ẽl A) and
snd(r x) : All(canonical ◦ snd(ϵ fst (r x))).

TYPES 2020

8:6 Why Not W?

3.3 General Induction
When we go to define the induction principle for El A, we are given P : El A → Uj for some
j ≥ i and the induction step IS : ∀(x:F (El A)) All(P ◦ snd(ϵ x)) → P (intro x), and want to
define rec : ∀(x:El A)P x. The definition proceeds by induction on fst x:

rec(sup sf, (h, t, e)) = ? : P (sup sf, (h, t, e)) h : All(canonical ◦f) e : Id (ϵ t) (s, f),

and we have induction hypothesis H = p 7→ c 7→ rec(f p, c) : ΠpΠcP (f p, c). Next, we
destruct the identity proof e, generalizing over both h and H, leaving us with

rec(sup(ϵ t), (h, t, refl)) = ? : P (sup(ϵ t), (h, t, refl)),

for t : F (Ẽl A), h : All(canonical ◦ snd(ϵ t)), and H : ΠpΠcP (snd(ϵ t) p, c). The last step
to bring us in line with the definition of intro is to use the equivalence from Lemma 3 to
replace (t, h) with r x for some x : F (El A), leaving us with

rec(sup(ϵ (fst(r x))), (snd(r x), fst(r x), refl)) = ? : P (intro x)

and induction hypothesis H : ΠpΠcP (snd(ϵ (fst(r x))) p, c). We can then apply IS, but
that leaves us with an obligation to prove All(P ◦ snd(ϵ x)). Fortunately, it is easy to show
by induction on the code A that our hypothesis H is sufficient to dispatch this obligation.

This completes the definition of the induction principle, and it can be observed on concrete
examples like the natural numbers to have the expected computational behavior. We can also
prove a propositional equality Id (rec(intro x)) (IS x (rec ◦ snd(ϵ x))) witnessing the expected
computation rule, and observe on concrete examples that this witness computes to reflexivity.
The details of this construction have all been formalized in Coq.

3.4 Bootstrapping
In Section 3.1 we postulated the type Codei to be a primitive inductive type, which leads
to the question of whether the general construction we have proposed is really constructing
inductive types out of W or whether it is making sneaky use of the inductive structure of
Codei to perform the construction.

As a first observation, Codei : Ui+1 while El : Codei → Ui, thus Codei can’t appear as
data in El A: it is too big! However, this argument doesn’t show that we can completely
eliminate Codei from the construction.

Next, we observe that the inductive type Codei itself has a code “Codei” : Codei+1:

“Codei” = nonind((1 + Ui) + Ui, t 7→ case t of {
inl(inl ⋆) 7→ nil, (case nil)
inl(inr A) 7→ ind(A, nil), (case nonind)
inr Ix 7→ ind(1, nil), (case ind)

}).

Then we can propose to define Codei = El “Codei”, but this is a circular definition: we
define Codei by using recursion on Codei+1. What we really want, and in some ways should
be able to expect, is that El “Codei” computes to a normal form which no longer mentions
Code but is expressed purely in terms of W. We could then tie the knot by defining Codei to
be what El “Codei” will compute to, once we have defined El.

J. Hugunin 8:7

There is just one minor, rather technical problem to resolve, which is that currently El
(which is defined by recursion on codes) gets stuck on El(case t of {. . .}) which is used to
branch on constructor tags; we are missing some sort of commuting conversion [9, section
10]. Fortunately, this problem is easy to work around by reifying the operation of branching
on constructor tags as part of Code. We add another constructor

choice : Codei → Codei → Codei, F choice(A,B) X = FA X + FB X (26)

which encodes the simple binary sum of functors, specializing the dependent sum of functors
nonind(2, b 7→ case b of {. . .}) (but with all proofs essentially the same). With this in hand,
we can define

“Codei” = choice(choice((27)
nil, (case nil)
choice(

nonind(Ui, A 7→ ind(A, nil)), (case nonind)
ind(1, ind(1, nil)))), (case choice)

nonind(Ui, Ix 7→ ind(1, nil))). (case ind)

With this adjustment, the structure of the code is not hidden inside case, and the
computation of El “Codei” proceeds to completion without becoming stuck, resulting in
a term which does not mention Code at all. From there, we can define El such that
El “Codei” = Codei, as in [4] but with no invisible cables, just the W type.

▶ Theorem 4. In intensional type theory with type formers 0, 1, 2, Σ, Π, W, Id and an
infinite tower of universes Ui, we can construct terms Codei : Ui+1 and El : Codei → Ui

such that El A is an inductive type, and we can also construct terms “Codei” : Codei+1 such
that El “Codei” = Codei. Furthermore, Codei is not trivial: it contains codes for natural
numbers, lists, binary trees, and many other inductive types, including inductive types such
as W that have infinitary inductive arguments.

4 Discussion

4.1 Composition
Being codes for functors, one may ask if Codei is closed under composition of functors? As
with the codes for inductive-recursive types we have modified, without function extensionality
we do not appear to have composition (for similar reasons as considered in [8]). Indeed,
experiments suggest that the general construction of a class of inductive types closed under
composition of the underlying functors essentially requires function extensionality. Even
worse, to get definitional computation rules for the resulting inductive types, all our attempts
have required that transporting over funext(x 7→ refl) computes to the identity, a property
which not even cubical type theory [5] satisfies (it is satisfied, however, by observational type
theory [2]). Thus, we do not know how to combine a class of inductive types closed under
composition constructed from the W type as we have in Section 3 with the the principle of
Univalence [16] while maintaining good computational behavior.

We do however wish to emphasize that the construction in Section 3 (which is not closed
under composition) is completely compatible with Univalence, and could be implemented in
cubical type theory as long as an identity type with strict β rule is used.

TYPES 2020

8:8 Why Not W?

4.2 Canonicity
Despite being constructed from W types, our natural numbers enjoy the canonicity property
(that for every closed term n of type N, either n = O or n = S m for some closed m : N), at
least as long as 2 and Id enjoy canonicity (closed b : 2 implies b = Ô or b = Ŝ, and closed
e : Id x y implies e = refl and x = y). The trick is that when we have some representation
of zero, it looks like (sup Ôf, e), where e is a closed term of type Id (x 7→ case x of {}) f ,
and thus by canonicity for Id, this must be (sup Ô(x 7→ case x of {}), refl) = O.

However, in a situation like cubical type theory where function extensionality holds, Id
no longer enjoys canonicity, and neither does our construction of the natural numbers.

4.3 Problems
What are the problems with using this construction as the foundation for inductive types in
a proof assistant? While we have shown bare possibility, this is not an obviously superior
solution when compared to the inductive schemes present in proof assistants today.

The construction is complex, which has the possibility of confusing unification and other
elaboration algorithms. While the reduction behavior simulates the expected such, the
reduction engine has to make many steps to simulate one step of a primitive inductive type,
which can lead to a large slowdown. As an example, we observed the general construction
slow down from seconds to check to half an hour when replacing primitive inductive types
the bootstrapped definition of Code. Understanding exactly why this slowdown happens and
how to alleviate it is an important question to be answered before attempting to apply this
construction in practice.

There are also some (fairly esoteric) limitations to the expressivity of this construction.
Nested inductive types such as Inductive tree := node : list tree → tree do not appear
to be constructible, nor do mutual inductive types landing in a mixture of impredicative and
predicative sorts at different levels, and nor do inductive-inductive types.

4.4 Setoids
In [15], Palmgren uses W types to construct a setoid model of extensional type theory in
intensional type theory, including the natural numbers. In contrast, we have different goals (we
are not concerned with extensional type theory), and our construction has different properties:
we construct the natural numbers as a set not a setoid, with definitional computation rules
and canonicity rather than working only up to an extensional setoid notion of equality. Other
work on setoid models includes [11] and [1].

4.5 Conclusion
We have shown that intensional type theory with W and Id types is more expressive than was
previously believed. It supports not only the natural numbers, but a whole host of inductive
types, generated by an internal type of codes, which is itself an inductive type coded for by
itself (one universe level up). This brings possibilities for writing generic programs acting on
inductive types internally (like in [3]), and perhaps simplifies the general study of extensions
of intensional type theory: once you know W works, you know lots of inductive types work.

Thus we return to the titular question: why not use W as the foundation of inductive
types, for example in a proof assistant like Coq or Agda? Equipped with this result, one can
no longer say that it is impossible.

J. Hugunin 8:9

References
1 Thorsten Altenkirch. Extensional equality in intensional type theory. In 14th Annual IEEE

Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 412–420. IEEE
Computer Society, 1999. doi:10.1109/LICS.1999.782636.

2 Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality, now!
In Aaron Stump and Hongwei Xi, editors, Proceedings of the ACM Workshop Programming
Languages meets Program Verification, PLPV 2007, Freiburg, Germany, October 5, 2007,
pages 57–68. ACM, 2007. doi:10.1145/1292597.1292608.

3 Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic programs and proofs
in dependent type theory. Nord. J. Comput., 10(4):265–289, 2003.

4 James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The gentle
art of levitation. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the 15th
ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, pages 3–14. ACM, 2010. doi:10.1145/1863543.
1863547.

5 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:
A Constructive Interpretation of the Univalence Axiom. In Tarmo Uustalu, editor, 21st
International Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:34, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.TYPES.2015.5.

6 Peter Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s type theory.
Theoretical Computer Science, 176(1):329–335, 1997. doi:10.1016/S0304-3975(96)00145-4.

7 Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions. In
Jean-Yves Girard, editor, Typed Lambda Calculi and Applications, 4th International Conference,
TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings, volume 1581 of Lecture Notes in
Computer Science, pages 129–146. Springer, 1999. doi:10.1007/3-540-48959-2_11.

8 Neil Ghani, Conor McBride, Fredrik Nordvall Forsberg, and Stephan Spahn. Variations on
inductive-recursive definitions. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François
Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages
63:1–63:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
MFCS.2017.63.

9 Jean-Yves Girard. Proofs and Types. Cambridge University Press, 1990. Translated and with
appendices by Paul Taylor and Yves Lafont. URL: http://www.paultaylor.eu/stable/prot.
pdf.

10 Healfdene Goguen and Zhaohui Luo. Inductive data types: Well-ordering types revisited. Logical
Environments, 1992. URL: https://www.cs.rhul.ac.uk/home/zhaohui/WTYPES93.pdf.

11 Martin Hoffman. Extensional Constructs in Intensional Type Theory. PhD thesis, University
of Edinburgh, 1995.

12 Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984. Notes by G. Sambin of a series
of lectures given in Padua, 1980.

13 Conor McBride. W-types: good news and bad news, March 2010. URL: https://mazzo.li/
epilogue/index.html%3Fp=324.html.

14 Bengt Nordsrtöm, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s Type Theory.
Oxford University Press, 1990.

15 Erik Palmgren. From type theory to setoids and back, 2019. arXiv:1909.01414.
16 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/
book/.

17 The Coq Development Team. The Coq proof assistant, version 8.12.0, 2020. doi:10.5281/
zenodo.4021912.

TYPES 2020

https://doi.org/10.1109/LICS.1999.782636
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/10.1007/3-540-48959-2_11
https://doi.org/10.4230/LIPIcs.MFCS.2017.63
https://doi.org/10.4230/LIPIcs.MFCS.2017.63
http://www.paultaylor.eu/stable/prot.pdf
http://www.paultaylor.eu/stable/prot.pdf
https://www.cs.rhul.ac.uk/home/zhaohui/WTYPES93.pdf
https://mazzo.li/epilogue/index.html%3Fp=324.html
https://mazzo.li/epilogue/index.html%3Fp=324.html
http://arxiv.org/abs/1909.01414
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://doi.org/10.5281/zenodo.4021912
https://doi.org/10.5281/zenodo.4021912

	1 Introduction
	2 Constructing ℕ (for real this time)
	3 The General Case
	3.1 Inductive Codes
	3.2 The General Construction
	3.3 General Induction
	3.4 Bootstrapping

	4 Discussion
	4.1 Composition
	4.2 Canonicity
	4.3 Problems
	4.4 Setoids
	4.5 Conclusion

