
On Undecided LP, Clustering and Active Learning
Stav Ashur !

Department of Computer Science, University of Illinois, Urbana, IL, USA

Sariel Har-Peled !

Department of Computer Science, University of Illinois, Urbana, IL, USA

Abstract
We study colored coverage and clustering problems. Here, we are given a colored point set, where
the points are covered by k (unknown) clusters, which are monochromatic (i.e., all the points covered
by the same cluster have the same color). The access to the colors of the points (or even the
points themselves) is provided indirectly via various oracle queries (such as nearest neighbor, or
separation queries). We show that one can correctly deduce the color of all the points (i.e., compute
a monochromatic clustering of the points) using a polylogarithmic number of queries, if the number
of clusters is a constant.

We investigate several variants of this problem, including Undecided Linear Programming and
covering of points by k monochromatic balls.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Linear Programming, Active learning, Classification

Digital Object Identifier 10.4230/LIPIcs.SoCG.2021.12

Related Version Full Version: https://arxiv.org/abs/2103.09308

Funding Sariel Har-Peled: Work on this paper was partially supported by a NSF AF award
CCF-1907400.

Acknowledgements The authors thank Pankaj Agarwal for useful discussions. We thank Lev Reyzin
for pointing out the work by Maass and Turán [15, 16].

1 Introduction

Given a set of points P in Rd that are labeled (say, colored as red and blue), the problem of
learning a classifier that labels the points correctly is a standard machine learning question.
In the active learning settings, querying/exposing the label of an input is an expensive
endeavor, and one tries to minimize such queries while performing the learning task.

We are interested in a somewhat related question: If the input point set has a “simple”
structure, but we are given access to the input via oracles that performs more “interesting”
queries than just exposing the label of a point, can one classify correctly all the input points
using relatively few oracle queries?

Implicit input model. In particular, consider the situation that instead of the algorithm
reading the input, as in the classical settings, the access to the input is via input primitives,
or oracles. Such indirect access to the data rises naturally if the data is already stored in
a preexisting database or data-structure. This approach is of relevance nowadays as large
amount of data makes even the basic task of reading the input infeasible or prohibitively
expensive.

This gives rise to the main motivation for this work – what input primitives/oracles one
needs, so that one can derive efficient algorithms. Here, of special interest are algorithms
with running times that are sublinear in the input size.

© Stav Ashur and Sariel Har-Peled;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Computational Geometry (SoCG 2021).
Editors: Kevin Buchin and Éric Colin de Verdière; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stava2@illinois.edu
https://orcid.org/0000-0003-0533-8978
mailto:sariel@illinois.edu
https://orcid.org/0000-0003-2638-9635
https://doi.org/10.4230/LIPIcs.SoCG.2021.12
https://arxiv.org/abs/2103.09308
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 On Undecided LP, Clustering and Active Learning

Problem I: Undecided linear programs. An instance of linear programming is a set of n

linear inequalities on d variables, where one needs to find an assignment of real values to the
variables, such that all the inequalities hold. We consider a new variant of LP, first studied
by Maass and Turán [14], where the n linear constraints are given, but we do not know a
priori whether the inequality is ≤ or ≥ for each one of them. Geometrically, this corresponds
to being given n hyperplanes in Rd, each having two closed halfspaces associated with it.
Which of the two halfspaces is the one used in the LP, can be revealed by querying an oracle.
For example, the “standard” separation oracle, which returns for a given query point p, a
violated constraint of the LP, or alternatively returns that p is feasible.

y = − 4
3x+ 4

y = 5
6x− 1

y = − 1
6x+ 3

(i) A set of “undecided” constraints in 2d... (ii) ... is a set of lines in the plane.

(iii) A possible commitment of the constraints,
and the feasible polygon induced.

(iv) An alternative commitment of the under-
lying constraints, and the induced polygon.

Figure 1 An instance of 3 undecided constraints (bottom) with two possible sets of underlying
decided constraints (top left and right).

Problem II: Separating red and blue points, with a counterexample oracle. The above
problem, in the dual, is the following: The input is a set of unlabeled points, and the task is
to compute a hyperplane separating the blue points from the red points. The “separation”
oracle here, is given an oriented hyperplane that is supposed to separate the points, and the
oracle returns a misclassified point. A natural question is how many queries of this type one
has to perform until classifying all the points correctly.

The learning model. Our model seems to be Angluin’s equivalence query model for active
learning [1]. In particular, Maass and Turán [16, 15] studied the above two problems. See
Remark 7 for more details.

S. Ashur and S. Har-Peled 12:3

Problem III: Covering/clustering points with a ball using proximity oracle. Consider the
situation where the input is a set of colored points in Rd, where all the (say) red points are
inside a ball, and all the points outside the ball are blue. Here, our access to the color of the
points is via an oracle that can answer colored nearest-neighbor (NN) or furthest-neighbor
(FN) queries (that is, the oracle can return the closest red [or blue] point to the query point).
The task at hand is to label (i.e., color the points) correctly using a minimal number of
oracle queries.

The challenge. To appreciate the difficulty in solving the above problem, consider the
natural naive algorithm – pick a random sample, expose the colors of the points in the sample
(in this case the colored NN queries can do that), compute a ball separating the red points
and blue points in the sample, and feed it into the “counterexample” oracle (which returns a
colored point that is on the wrong side of the ball – this oracle can be implemented using the
NN/FN queries). The algorithm adds this counterexample to the current set of points that
their color is known. Now the algorithm repeats the process finding an updated separating
circle for the points their colors are known. This algorithm does arrive to the right answer,
but it is easy to come up with examples where it has to do a linear number of iterations. As
such, the challenge is to get a sublinear number of iterations.

Problem IV: Covering points by monochromatic balls. Consider the situation where the
input is a set of points that can be covered by k balls (i.e., clusters). All the points covered
by the same ball, have the same label/color (i.e., red or blue). Furthermore, given a query
point, the oracle returns the closest point of a prespecified color.

(a) A NN (blue) oracle query marked by an “x”
reveals that the points in the interior of the disk
are red, and the returned point is blue.

(b) The same query with the underlying colors of
the points, and an optimal solution with k = 12
monochromatic disks.

Figure 2 An instance of Problem IV.

Related work. Linear programming has a long history, see the survey by [5].
In active learning, also known as query learning or experimental design, the purpose of

the algorithm is learning a concept but by querying specific input entries for their label. The
main criteria for efficiency is minimizing the number of queries. The basic premise is that
asking a specialist to label a specific example is an expensive operation. See Settles [17] for a
survey on the topic of active learning.

SoCG 2021

12:4 On Undecided LP, Clustering and Active Learning

Table 1 A summary of the results on ULP. Here δ can be chosen to be any constant in (0, 1).
The Od hides constants that depends (probably exponentially or worse) on the dimension.

dim ref RT # queries Oracle

d = 2 Lemma 11 O(n log n) O(log n) Separation

Lemma 5 O(n) O(log2 n)
Lemma 13 O(n) O(log n) Separation + labeling

d = 3 Lemma 15 Õ(n3/2) O(log n) Separation

Theorem 18 Õ(n1+δ) O(δ−1 log n)

d
[16, 15]
Lemma 2

nO(d2) O(d2 log n) Separation

Lemma 2 Õ
(
nd

)
O(d3 log n)

Lemma 5 Od(n) Od(logd n)

Remark 12 Od(n log n) Od(logd−1 n)

Theorem 14 Od(n) Od(logd−1 n) Separation + labeling

d > 3 Remark 19 Õ
(
n1+δ

)
Od(logd−2 n) Separation

Closer to our settings, Har-Peled et al. [10], studied algorithms for actively learning a
convex body using a separation oracle. Such an oracle either confirms that that the query
point is within the convex body, or alternatively, returns a hyperplane separating the point
and the convex region.

Kane et al. [13] studied half plane classifiers using comparison queries, and showed an
exponential query complexity improvement over learning with only membership queries.
Their model is somewhat similar to the model of Problem II above (of separating red and
blue points), except that their model assumes that the oracle can return the distance of a
query point to the optimal separating hyperplane, while our model is somewhat different,
only assuming that the oracle can identify a misclassified point.

In general, computational models that involve various oracles as algorithmic building
blocks have been studied in computational geometry, as they represent algorithms in which
the input is given implicitly, and access to any information provided by the input is done by
oracle queries. See Har-Peled et al. [11] and references therein for such examples.

As mentioned above, Maass and Turán [16, 15] studied Problems I and II – our results
are better, but only in constant dimensions, see Remark 7 for details.

1.1 Our results
(A) Undecided LP. We present several algorithms for solving undecided LPs. In Section 2.1,

we revisit the algorithm of Maass and Turán, showing ULPs can be solved using
O(d2 log n) oracle queries, the main tool is repeatedly computing a centerpoint and
feeding it to the oracle to further truncate the search space. This bound is polynomial
in d, but the algorithm itself is doubly exponential in the dimension d. The running
time can be improved to (roughly) O(nd), with the number of queries deteriorating to
O(d3 log n).
We present a linear time algorithm, for constant dimension, that uses cutting in Sec-
tion 2.2, but the number of separation oracle queries is now O(logd n).

S. Ashur and S. Har-Peled 12:5

In Section 2.3, we show that in the plane, if one is allowed also to use an exposure
oracle (i.e., an oracle that returns the color of a specific point), then one can reduce
the number of oracle queries to O(log n) (instead of O(log2 n) described above). The
algorithm is a (potentially interesting) combination of the two previous algorithms.

(B) Covering (red) points by a single ball. In Section 3.1 we study Problem III,
we present an algorithm that uses O(log2 n) colored NN/FN queries, and computes the
single ball that covers (say) all the red points, and avoids all the blue points. The
algorithm works by lifting the input point set to three dimensions, and then using the
algorithm for undecided LP.

(C) Covering points by k monochromatic balls. In Section 3.2 we address Problem
IV above, where the input is covered by k monochromatic balls, and we have access to a
colored NN oracle. Inspired by the one ball case, we show a greedy algorithm that finds
a ball that covers O(1/k) faction of the uncovered points. This leads to an algorithm
that performs O(kd+2 logd+2 n) queries (see Theorem 24) and correctly classifies all the
points.

2 Algorithms for solving undecided linear programs

▶ Remark 1. All the algorithms described below for undecided LP work in the same fashion
– they generate a sequence of separation oracle queries. Specifically, if any of the query
points are feasible, the algorithm immediately stops, and output the ULP is feasible, with the
queried point as a proof. As such, for the clarity of description, in the following we always
assume a separation oracle that returns a separating hyperplane.

2.1 Centerpoint based algorithm for solving ULPs
We review the algorithm of Maass and Turán [16, 15] for solving undecided LP (they did not
provide running time bounds for their algorithm, which we do).

Observe that for a set of d-dimensional (closed) hyperplanes H, if there exists a feasible
point, then, under general position assumption, there exists a vertex of the arrangement
A(H) that is feasible.

Let P be a set of n points in Rd. For a parameter α ∈ (0, 1), a point c ∈ Rd is an
α-centerpoint if all halfspaces containing c also contain at least αn points of P . A classical
implication of Helly’s theorem, is that for any set P of n points in Rd, there is a 1/(d + 1)-
centerpoint. Such a point is simply a centerpoint of P . Such a centerpoint can be computed
in O(nd−1) time [12, 3]. A 2/d2-centerpoint can be computed in near linear time [8] (here,
the running time is polynomial in d).

The algorithm. The input is a set H of n hyperplanes in d dimensions. The first step of
the algorithm is to compute the set P of vertices of the arrangement A(H). The number of
such vertices is ≤

(
n
d

)
. As long as P has more than d2 log n points, the algorithm computes a

centerpoint c of P . The algorithm then queries the separation oracle on c to decide whether
c is feasible. If it is, then the algorithm is done, as it computed a feasible point. Otherwise,
the oracle returned a violated constraint of the given LP (this also provides the algorithm
with the direction of the constraint for the associated input hyperplane). The algorithm
removes all the points of P that violate this constraint, and repeats until |P | = O(d2 log n).
Once P is that small, the algorithm simply checks the feasibility of each of the remaining
vertices by querying it with the separation oracle.

SoCG 2021

12:6 On Undecided LP, Clustering and Active Learning

▶ Lemma 2 (proof in full version [2]). The above algorithm computes a feasible point of
H using O(d2 log n) separation oracle queries. The runtime of this algorithm, ignoring the
oracle calls, is O(nd(d−1)) time.

Alternatively, the algorithm can be modified so that it computes a feasible point using
O(d3 log n) separation oracle queries. The running time of this algorithm, ignoring the oracle
calls, is Õ(nd) time, where Õ hides polylogarithmic terms.

2.2 Cutting based algorithm
Here, we present the new algorithm to solved undecided LP using cuttings.

▶ Definition 3. For a set of n d-dimensional hyperplanes H, a 1/r-cutting of H is a
partition Ξ of Rd into O(rd) simplices, such that the interior of each simplex of the cutting
intersects at most n/r hyperplanes of H. The list of hyperplanes intersecting the interior of
a simplex ∇ ∈ Ξ, is the conflict list of ∇.

A 1/r-cutting, and its conflict list can be computed in O(nrd−1) time [7].
▶ Remark 4. The algorithm we present next call recursively on subsets of the constraints,
and it also calls recursively on lower dimensional subspaces. In particular, the oracle can
be applied to any lower dimensional affine subspace F , by using the original oracle in the
ambient space – a returned constraint can be intersected with F to get a constraint in F .
We emphasize that the oracle always work on the whole original input set of constraints –
the recursive calls on subsets of the constraints are done for efficient bookkeeping, and do
not effect how the oracle works.

The Algorithm. The algorithm computes a 1/r-cutting of H. This is a partition of Rd

into O(rd) simplices, such that each simplex intersects at most n/r of the hyperplanes of
H, where n = |H|. Let Ξ be this set of simplices, and let Ξd−1(Ξ) be the set of O(rd)
(d− 1)-dimensional simplices that form the faces of the simplices of Ξ. The algorithm now
solves the problem recursively on each of the (d− 1)-dimensional simplices of Ξd−1(Ξ), and
the hyperplanes of H that intersects it. Each recursive call is on a problem that is one
dimensional lower, and involves only n/r constraints, the oracle still applies to the whole set
of constraints), see Remark 4.

If any of these recursive calls finds a feasible point, then we are done. Otherwise, the
recursive calls performed involved the oracle, and forced some of the constraints to expose
themselves. Let C be the set of these committed halfspaces (i.e., all the halfspaces returned by
the separation oracle). If the intersection of all these constraints is empty (i.e., the associated
LP is infeasible), then this can be discovered, in O(|C|) time, by invoking a standard LP
solver on C. If the LP is feasible, then it returns us a point p inside the polytope

K =
⋂

h+∈C

h+.

Furthermore, this polytope must be fully contained in the interior of one of the simplices of
Ξ (otherwise, the algorithm would have found a feasible point in one of the recursive calls).
By scanning Ξ, we discover the simplex ∇ ∈ Ξ that contains p. The algorithm now call
recursively on ∇ and its conflict list (passing C as the current set of committed constraints).

Algorithm in one dimension. The 1-dimensional case is solved using a binary search.
Indeed, we have n uncommitted rays on the real line, and our purpose is to find an atomic
interval that is feasible. To this end, the algorithm computes a median among the points

S. Ashur and S. Har-Peled 12:7

Cells of a cutting of an arrangement of un-
decided constraints.

A single cell of the cutting might contain a
possibly feasible region in its interior.

Figure 3 Illustration of an iteration of the cutting-based algorithm. A cutting of an arrangement
of undecided constraints is depicted on the left. After solving the problem recursively on the cuttings
of the edges, some of the constraints are now committed. Their feasible region (the red polygon)
they induce is now a polygon that must be fully contained in one of the cells of the cutting.

defining the rays. The algorithm then asks the oracle to commit the direction of the ray.
This decrease the number of potential atomic intervals that might be feasible by half. In the
end of the process, the algorithm is left with a single atomic interval that might be feasible –
the algorithm asks the oracle whether the middle of this interval is feasible or not.

As such, after O(log n) iterations, the algorithm is done, as each iteration either finds a
feasible point, or throws away half the rays as being irrelevant. The running time is O(n),
and the number of oracle queries performed is O(log n).

Analysis: Number of oracle queries. The query complexity of this algorithm is

Qd(n) = O(rd)Qd−1

(n

r

)
+ Qd

(n

r

)
,

with Q1(n) = O(log n). The solution of this recurrence is O(logd n), for r chosen to be a
sufficiently large constant. Indeed, using induction, we have Qd(n) = O(rd logd−1 n

r)+Qd

(
n
r

)
,

Running time. As for the running time, we have

Td(n) = O(nrd−1) + O(rd)Td−1(n/r) + Td(n/r),

with T1(n) = O(n). Assuming Td−1(n) ≤ cd−1n, and for two constants c′
d and c′′

d , we have

Td(n) ≤ c′
dnrd−1 + c′′

drdcd−1
n

r
+ cd

n

r
≤

(
c′

drd−1 + c′′
drd−1cd−1 + cd

r

)
n ≤ cdn,

which holds if cd ≥ 2(c′
drd−1 + c′′

drd−1cd−1). This implies that Td(n) = O(n). We thus get
the following result.

▶ Lemma 5. Undecided LP with n constraints in Rd, can be solved in Od(n) time, using
O(logd n) separation oracle queries.

▶ Remark 6 (An implicit undecided LP). In the following, we need a variant of the above
problem – the input is a set of undecided constraints, but the real undecided LP instance I
corresponds to an (unknown) subset of these constraints. Fortunately, the given separation
oracle works on the “real” instance of constraints I. It is easy to verify that the above
algorithm of Lemma 5 works verbatim in this case.

SoCG 2021

12:8 On Undecided LP, Clustering and Active Learning

▶ Remark 7. The work of Maass and Turán [16, 15] also studied the dual settings of our
problem (i.e., Problem II of separating red and blue points) They assume the input points
are taken from a grid of bounded spread. They use the ellipsoid algorithm to get an efficient
algorithm with small number of queries.

2.3 Better algorithms in two dimensions
The algorithm of Lemma 5 above uses only a separation oracle. One can get a faster algorithm
if one is allowed to use a labeling oracle – this oracle, given an input point, returns its
label/color. In our case, the labeling oracle reveals the underlying halfspace constraint
defined by (undecided) input hyperplane.

We need the following lemma, due to Har-Peled and Mitchell [9].

▶ Lemma 8 ([9]). Let D be a fixed polygon with k edges, and let L be a set of m lines that
intersect the interior of D. After O(m(log k + log m)) preprocessing, one can compute the
number of vertices of A(L) that lie inside D, or sample such a vertex in O(log m) time.

2.3.1 Polygon and point set reduction
▶ Lemma 9 (proof in full version [2]). Consider an instance of undecided LP in the plane,
and a polygon D with t edges, such that the feasible region is contained in D. Using O(log t)
separation queries, and O(t) time, one can either compute a feasible point, or compute a
polygon D′ ⊆ D with (say) at most 10 edges, such that the feasible region must be contained
in D′.

▶ Lemma 10 (proof in full version [2]). Consider an instance of undecided LP in Rd, and a
set P of n points. In O(n) time, using O(log n) separation oracle queries, one can compute
either: (i) a feasible point to the ULP, or alternatively, (ii) a polytope D with O(log n) faces,
such that the feasible solution for the ULP lies inside D, and D contains no point of P .

2.3.2 Near linear running time in two dimensions
Let L be the input set of n lines (i.e., undecided constraints). Let L0 = L, and D0 = R2.

Let Vi denote the set of vertices of A(Li−1) that lie in Di−1. The algorithm computes
ni = |Vi|, using the algorithm of Lemma 8. There are two possibilities:
(A) If ni = 0, then the algorithm picks any point pi in Di−1, and calls the separation oracle

on pi. If pi is feasible the algorithm is done, otherwise, the algorithm returns that the
given instance is infeasible.

(B) If ni = O(n log n), the algorithm computes Vi by clipping the lines of L to Di−1,
and computing the arrangement of the resulting segments. This takes O(n log n + ni)
expected time, as this the time for computing the arrangement of n segments with ni

intersections.
The algorithm uses Lemma 10 on Vi to either find a feasible point, or a polygon D′

1
that must contain the feasible region, has at most O(log n) edges, and contains no point
of Vi. The algorithm next uses Lemma 9 to further reduce the polygon into a polygon
Di ⊆ D′

i with constant number of edges.
(C) Otherwise, the algorithm samples O(n) vertices from Vi, and let Ri be the resulting

sample. This is done using the algorithm of Lemma 8 in O(n log n) time. Next, the
algorithm applies, as above, Lemma 10 and Lemma 9 to get a constant complexity
polygon Di ⊆ Di−1 that does not contain any of the points of Ri.

S. Ashur and S. Har-Peled 12:9

The algorithm now scans the lines of Li−1, computes the set of all lines Li ⊆ Li−1 that
intersect Di, and continues to the next iteration.

▶ Lemma 11 (proof in full version [2]). The above algorithm solves two dimensional undecided
LP in expected O(n log n) time, using O(log n) separation oracle queries.

▶ Remark 12. Combining the algorithm of Lemma 5 together with the algorithm of Lemma 11,
when the dimension is two, results in an algorithm that solves ULP in d dimensions, with
O(logd−1 n) separation queries, and running time O(n log n).

2.3.3 A linear time algorithm (using labeling oracle)
In the ith iteration, the algorithm computes a polygon Di, with at most k = 10 boundary
edges, that might contain a feasible point, and a list of lines Li that intersect it in the ith
iteration. Initially, D0 is the whole plane, and Li = H.

In the beginning of the ith iteration, the algorithm computes a random sample Ri ⊆ Li

of size O(ε−1k log k log ε−1) = O(1), where ε = 1/2. The sample Ri is, with probability close
to one, an ε-net of Li for polygons that have at most k boundary edges. The algorithm now
calls the oracle for each undecided constraint of Ri to expose its true constraint. Let Fi be
the face of the arrangement of the revealed constraints that is still feasible (if no such face
exists, then we are done). The algorithm next considers the polygon D′

i = Fi ∩Di−1. If this
polygon is empty, then the algorithm is done. If D′

i has at most k edges, then the algorithm
sets Di = D′

i, computes Li = Li−1 ∩Di, and continues to the next iteration.
The only bad case here, is that D′

i has too many edges. Clearly, in the worst case, it can
have at most |Ri| + k edges. The algorithm now computes a centerpoint for the vertices
of this polygon, and sends it to the oracle. If the point is feasible, then the algorithm is
done. Otherwise, the oracle returned a violated constraint, and the polygon is split into two
polygons, each with at most two thirds of its original vertices. Namely, in the new feasible
polygon the number of edges is decreased by a constant factor. After a constant number
of such iterations, the feasible polygon has at most k edges. The algorithm then sets this
polygon to be Di, and continues to the next iteration, as described above.

if Li is empty, then the algorithm asks the oracle if some point in the interior of the
polygon is feasible, and if not the given ULP is not feasible.

Analysis. Observe that Di intersects no lines of Ri, and it has at most k edges. As such,
by the ε-net theorem, with constant probability (say ≥ 0.99), the interior of Di intersects
at most ε |Li−1| lines. Namely, |Li| ≤ |Li−1| /2. This implies that the algorithm performs,
in expectation (and also with high probability), at most O(log n) iterations. Each iteration
requires O(1) + O(|Ri|) = O(1) oracle queries, which readily implies a bound of O(log n)
oracle queries.

The correctness of the algorithm itself follows as the feasible region if the LP is always
contained inside Di.

As for running time, each iteration requires O(1 + |Li|) amount of work. As such, the
total expected running time is

∑
i O(1 + |Li|) = O(n).

▶ Lemma 13 (proof in full version [2]). Undecided LP with n constraints in R2, can be solved
in O(n) expected time, using O(log n) separation and labeling oracle queries.

Combining the above algorithm with the cutting based algorithm of Lemma 5, results in
the following slightly improved algorithm.

▶ Theorem 14. Undecided LP with n constraints in Rd, for d ≥ 2, can be solved in Od(n)
time, using O(logd−1 n) separation and labeling oracle queries.

SoCG 2021

12:10 On Undecided LP, Clustering and Active Learning

2.4 A query efficient algorithm in three dimensions

2.4.1 Emulating the two dimensional algorithm

In three dimensions, one can still get O(log n) queries, albeit getting running time Õ(n3/2).
The input is a set H of n planes in three dimensions. The algorithm randomly samples a

set V1 of O(n3/2 log3 n) vertices of A(H). Each vertex is generated by randomly choosing
three constraints (planes) from H, and computing their intersection. Using the algorithm of
Lemma 10, one computes a convex polytope K1 with O(log n) faces, which does not contain
any vertex of V1 (since Lemma 10 returns the O(log n) halfspaces whose intersection form
the desired polytope, the polytope itself can be computed in O(log n log log n) time).

Next, the algorithm computes all the vertices of A(H) inside K1 – this can be done in an
output sensitive fashion. To this end, one “walks” around the arrangement of A(H), starting
(say) with the bottom vertex of K1. Specifically, one walks on edges of the arrangement (inside
K1) using the data-structure of Chan [4], which provide dynamic maintenance of convex-hull
in three dimensions, and extreme point queries. Each operation takes O(log4 n) amortized
time. The exact details of this exploration are somewhat delicate, but straightforward, and
we omit them as they are similar in nature to the 2d algorithms (see [6] and references
therein). Let V2 be the resulting set of vertices. As we show below, with high probability
|V2| = O(n3/2). As such, computing this set takes O(n3/2 log4 n) time.

Deploying the algorithm of Lemma 10, one computes a convex polytope K2 with O(log n)
faces, which does not contain any vertex of V2. Consider the intersection polytope K = K1∩K2.
It avoids the vertices of V1 and V2 and thus avoids all the vertices of the arrangement of
A(H). Furthermore, K is formed by the intersection of halfspaces, all induces by planes of
H. It follows that K is a 3d face of the arrangement. As such, perform a single query on a
point in the interior of K, and return it as the output of the algorithm.

The algorithm again invokes Lemma 10 to compute a polytope K2 that contains no
vertex of V2. The algorithm computes the polytope K1 ∩K2 (in polylogarithmic time). If the
intersection is empty then the given instance is infeasible. Otherwise, the algorithm query
an point inside this intersection using the separation oracle. If the point is feasible then the
algorithm is done, and otherwise, again, the instance is infeasible.

▶ Lemma 15 (proof in full version [2]). The above algorithm solves Undecided LP with n

constraints, in R3, in O
(
n3/2 log3 n

√
log log n

)
time, using O(log n) separation oracle queries.

2.4.2 A faster algorithm

In the following, we assume that the set of planes of H is in general position – no three
planes passes through a common line, and no four planes have a common intersection point.

Idea. A natural approach for getting a faster algorithm is to maintain a polytope Ki,
sample an ε-net for the vertices of the arrangement inside Ki (for an ε to yet be specified),
and use the algorithm of Lemma 9 to find a low complexity polytope that avoids all the
points in this ε-net. Intersecting this polytope with the previous active polytope, results in a
shrunken feasible region Ki. Furthermore, Ki contains an ε-fraction of the vertices of the
arrangement inside it compared to Ki−1. The algorithm then continues to the next iteration,
till the polytope contains no vertices of Ki, and then a single query in its interior settles the
feasibility of the given ULP.

S. Ashur and S. Har-Peled 12:11

The challenge is that despite Ki being simple (i.e., having few faces), we do not know
how to sample uniformly and efficiently from V ∩ Ki, where V = V(H) is the set of vertices
of A(H). We leave this an open problem for further research. Instead, we offer the following
over-sampling approach.

▶ Lemma 16 (proof in full version [2]). Let K be a polytope in three dimensions with k faces,
and let H be a set of n planes, where all the faces of K lie on planes of H. One can sample a
non-empty set X of at most n− 1 vertices, such that (i) X ⊆ V ∩ K, where V = V(H), and
the probability of any vertex of V ∩ K to be included in the sample is the same.

The preprocessing time of the algorithm is O(nk log n), and a sampled set can be computed
in O(n) time.

▶ Lemma 17 (proof in full version [2]). Let δ ∈ (0, 1) be a fixed constant, let K be a polytope in
three dimensions with t = O(log n) faces, and let H be a set of n planes, where all the faces of
K lie on planes of H. Let V = V(H)∩K be the set of vertices of A(H) that lie inside K. One
can compute a polytope K′, that is the intersection of K with O(log n) halfspaces, such that
K′ contains at most |V|/nδ vertices of A(H). The algorithm runs in O(n1+δ log3 n log log n)
time. The algorithm uses O(log n) separation oracle queries.

Starting with R3 as the initial polytope, the algorithm repeatedly uses Lemma 17 to
reduce the number of vertices of the arrangement inside the current polytope by a factor of
1/nδ. In the ith iteration, the current polytope has O(i log n) faces, and as such the final
polytope has at most O((3/δ) log n) faces, as the algorithm has no vertices in it after ⌈3/δ⌉
iterations. We conclude the following.

▶ Theorem 18. For any δ ∈ (0, 1), an instance of undecided LP in three dimensions with n

constraints, one can solved using O((log n)/δ) separation oracle queries, in

O(n1+δ log4 n log log n)

time.

▶ Remark 19. Combining the algorithm of Lemma 5, together with the algorithm of The-
orem 18, when the dimension is three, results in an algorithm that solves ULP in d > 3
dimensions, with O(δ−1 logd−2 n) separation queries, and running time Õ(n1+δ).

3 Covering points by monochromatic balls using proximity queries

3.1 Learning a single monochromatic ball using NN/FN queries
Problem statement. The input is a set P = {p1, ..., pn} of n points in Rd. The points
are either blue or red, but their color is not initially provided. We have an access to a
nearest-neighbor (NN) oracle, such that given a query point, and a color, it returns the closest
point of this color to the query point. Similarly, we are given access to a furthest-neighbor
(FN) oracle, that returns the furthest point of this color in P .

The task at hand is to correctly classify all the given points as either red or blue,
minimizing the number of queries used.

Assumption: Single ball. Here we assume that all the red points in P can be covered by a
single ball, while all the blue points are outside this ball. Our purpose here is to develop an
efficient algorithm that performs as few oracle queries as possible, and exposes the color of
all the points of P .

SoCG 2021

12:12 On Undecided LP, Clustering and Active Learning

q

Figure 4 A set of red and blue points in R2 where a single disk suffices to separate the labels.
A red furthest-neighbor (FN) query and a blue nearest-neighbor (NN) query at q confirms that a
monochromatic disk centered at that point cannot contain every red point of the input.

The algorithm is described in the plane, but it also works in higher dimensions with
minor modifications.

3.1.1 Lifting to three dimensions
Let disk(p, r) denote the disk of radius r centered at p. Consider the mapping of such a disk
to the point

d= ϑ(disk(p, r)) =
(
2px, 2py, r2 − p2

x − p2
y

)
.

This can be interpreted as a somewhat bizarre encoding of disks as points in three dimensions.
We also map a point q ∈ R2 in the plane, to the plane

φ(q) =
(
z = −qxx− qyy + q2

x + q2
y

)
.

Note that if d is above h = φ(q) then

dz ≥ −qxdx − qydy + q2
x + q2

y. ⇐⇒ r2 − p2
x − p2

y ≥ −2qxpx − 2qypy + q2
x + q2

y.

⇐⇒ r2 ≥
(
px − qx

)2 +
(
py − qy

)2 ⇐⇒ q ∈ disk(p, r).

3.1.2 The algorithm
The above lifting of disks to points (in three dimensions), and points to planes, has the
property that a point is above a plane ⇐⇒ the original disk contains the original point. In
particular, if a lifted disk d∈ R3 is strictly below a plane h, then the original disk does not
contain q (i.e., the original point lifted to h).

In the lifted space, the input is a set of n planes in three dimensions. If a plane h is
red, then the computed disk must contain the original point, which means that the encoded
disk d must lie above h. Namely, every red point, corresponds to a commitment of the
corresponding plane, to the halfspace lying (vertically) above it. Similarly, an original blue
point corresponds to a commitment to the downward halfspace. We want to find a point in
this space which is feasible (after all the constraints have been committed).

The ULP oracle queries. A labeling oracle query on a plane, corresponds to providing the
color of the original point, which can be done using a single NN colored query. A feasibility
oracle query, is a point d in three dimensions, which corresponds to a disk, which asks

S. Ashur and S. Har-Peled 12:13

whether it contains all the red points, and no blue points. The later can be answered by
performing a blue NN query, and a red FN query, and then making a decision according to
how the points interact with the query disk.

As such, we can plug the lifted instance into the algorithm of Theorem 14. This algorithm
also works verbatim in higher dimensions. We thus get the following.

▶ Theorem 20. Let P be a set of n points in Rd. Assume that there is an underlying coloring
of the point set by (say) red and blue, and there is an oracle that can answer nearest-neighbor
and furthest-neighbor colored queries on P . The above algorithm computes a ball that contains
only the red points, and no blue points, if such a ball exists, using O(logd−1 n) NN/FN oracle
queries. The running time of the algorithm is Od(n).

3.2 Learning a cover by k monochromatic balls using NN queries
Problem statement. The input is a set of n colored points P , and assume that the points
of P can be covered by k balls, such that each ball covers only points of a single color. Here,
we assume that we are given access to the points via a NN oracle queries (i.e., no FN queries).
The task at hand is to classify the points correctly (i.e., decide their color) using a small
number of oracle queries, by an efficient algorithm.

3.2.1 The algorithm
▶ Lemma 21 (proof in full version [2]). Let Q be a set of m points in Rd, and let R be the
(infinite) set of all balls in Rd. One can compute, in O(md+2) time, the family of O(md+1)
canonical sets induced by R on Q, that is F(Q) = {b∩Q | b ∈ R} .

For i > 0, let Pi denote the set of unlabeled points at the beginning of the ith iteration
and let ni = |Pi| (i.e., P1 = P , and n1 = n). The algorithm computes a random sample
Ri ⊆ Pi of size O(k log k), and determines the color of the points in Ri using NN queries.
The algorithm then computes the set of canonical sets Fi = F(Ri), using Lemma 21. For

every range r ∈ Fi, such that sRi
(r) = |r ∩Ri|

|Ri|
≥ 1

2k , and such that all the points in r are of

the same color, the algorithm runs a subroutine, described below in Section 3.2.2, to decide
if there is a monochromatic ball that contains all the points of r. Formally, the subroutine
decides if there is ball b, such that all the points of P ∩ bi are colored by the same color,
and r ⊆ b. If no such ball is found, the algorithm repeats this iteration until success.

The algorithm sets bi to be the ball computed, such that |bi ∩ Pi| is maximized among
all such balls. The algorithm then adds bi to the computed cover, assigns all the points in
bi ∩ Pi their color, and sets Pi+1 ← Pi \ bi.

The algorithm stops once all points have been assigned their correct color (i.e., Pi = ∅).

3.2.2 Searching for a monochromatic ball containing a set r
The subroutine is given a set of points r that are all (say) red. The subroutine is searching
for a ball b such that the point in P ∩ b are all red points, and r ⊆ b. The subroutine is
similar in spirit to the single ball case of Section 3.1, but the details are somewhat different.

Specifically, consider the set B of all blue points in P (this set is not explicitly known,
as many of the points color is yet unknown), and consider the problem of computing a ball
that contains all the points of r and none of the points of B. This is an implicit undecided
optimization problem, which via the lifting of Section 3.1.1, reduces to implicit undecided LP.

SoCG 2021

12:14 On Undecided LP, Clustering and Active Learning

A separation oracle here, in the original settings, is a query ball q. If q contains a blue
point, one can find it by performing a colored nearest-neighbor query on the blue points.
Similarly, one can verify that b contains all the red points of r. Thus, one can use the implicit
undecided LP algorithm of Lemma 5 (see Remark 6).

3.2.3 Analysis
Informally, each successful iteration reveals the color of a Ω(1/k)-fraction of the unlabeled
points. Specifically, at the ith iteration, at least one of the k balls of the optimal solution
must contain at least ni/k points of Pi, which are all of the same color (and are yet unlabeled).
As such, after O(k log n) iterations, the algorithm correctly exposes the colors of the points
in P .

▶ Lemma 22 (proof in full version [2]). Given a set r ⊆ P of (say) red points, such that
there exists a ball b such that all the points of b∩ P are of the same color, and r ⊆ b, the
subroutine of Section 3.2.2 returns a monochromatic ball that covers the points of r.

▶ Lemma 23 (proof in full version [2]). Under the assumption that the input can be covered by
k monochromatic balls, an iteration of the above algorithm succeeds with probability close to
one, and computes a monochromatic ball that covers at least 2/(5k) fraction of the uncolored
points.

▶ Theorem 24 (proof in full version [2]). Let P be a set of n points Rd, such that there are
(unknown) k monochromatic balls that cover all the points of P . Furthermore, assume we are
given an oracle that can answer NN colored queries on P . Then, one can compute the color
of all the points of P using O

(
kd+2 log2d+3 n

)
queries (this bound holds in expectation). The

expected running time of the algorithm is O
(

kd+2n logd+1 k
)

.

References
1 Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342, 1987. doi:

10.1007/BF00116828.
2 Stav Ashur and Sariel Har-Peled. On undecided LP, clustering and active learning. CoRR,

abs/2103.09308, 2021. arXiv:2103.09308.
3 Timothy M. Chan. An optimal randomized algorithm for maximum Tukey depth. In

J. Ian Munro, editor, Proc. 15th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 430–436,
Philadelphia, PA, USA, 2004. SIAM. URL: http://dl.acm.org/citation.cfm?id=982792.
982853.

4 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. In Proc. 35th Int.
Annu. Sympos. Comput. Geom. (SoCG), pages 24:1–24:13, 2019. doi:10.4230/LIPIcs.SoCG.
2019.24.

5 Martin E. Dyer, Nimrod Megiddo, and Emo Welzl. Linear programming. In Jacob E. Goodman
and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry, Second
Edition, pages 999–1014. Chapman and Hall/CRC, 2004. doi:10.1201/9781420035315.pt6.

6 S. Har-Peled. Taking a walk in a planar arrangement. SIAM J. Comput., 30(4):1341–1367,
2000.

7 S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Math. Surveys & Mono-
graphs. Amer. Math. Soc., Boston, MA, USA, 2011. doi:10.1090/surv/173.

8 Sariel Har-Peled and Mitchell Jones. Journey to the center of the point set. In Gill Barequet
and Yusu Wang, editors, Proc. 35th Int. Annu. Sympos. Comput. Geom. (SoCG), volume
129 of LIPIcs, pages 41:1–41:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.
doi:10.4230/LIPIcs.SoCG.2019.41.

https://doi.org/10.1007/BF00116828
https://doi.org/10.1007/BF00116828
http://arxiv.org/abs/2103.09308
http://dl.acm.org/citation.cfm?id=982792.982853
http://dl.acm.org/citation.cfm?id=982792.982853
https://doi.org/10.4230/LIPIcs.SoCG.2019.24
https://doi.org/10.4230/LIPIcs.SoCG.2019.24
https://doi.org/10.1201/9781420035315.pt6
https://doi.org/10.1090/surv/173
https://doi.org/10.4230/LIPIcs.SoCG.2019.41

S. Ashur and S. Har-Peled 12:15

9 Sariel Har-Peled and Mitchell Jones. On separating points by lines. Discret. Comput. Geom.,
63(3):705–730, 2020. doi:10.1007/s00454-019-00103-z.

10 Sariel Har-Peled, Mitchell Jones, and Saladi Rahul. Active learning a convex body in low
dimensions. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, Proc. 47th Int.
Colloq. Automata Lang. Prog. (ICALP), volume 168 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 64:1–64:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2020.64.

11 Sariel Har-Peled, Nirman Kumar, David M. Mount, and Benjamin Raichel. Space ex-
ploration via proximity search. Discrete Comput. Geom., 56(2):357–376, 2016. doi:
10.1007/s00454-016-9801-7.

12 S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar set of points in
linear time. Discrete Comput. Geom., 12:291–312, 1994.

13 Daniel M. Kane, Shachar Lovett, Shay Moran, and Jiapeng Zhang. Active classification with
comparison queries. In Proc. 58th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages
355–366, 2017. doi:10.1109/FOCS.2017.40.

14 Wolfgang Maass and György Turán. On the complexity of learning from counterexamples and
membership queries. In Proc. 31st Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages
203–210. IEEE Computer Society, 1990. doi:10.1109/FSCS.1990.89539.

15 Wolfgang Maass and György Turán. Algorithms and lower bounds for on-line learning of
geometrical concepts. Machine Learning, 14(3):251–269, 1994. doi:10.1007/BF00993976.

16 Wolfgang Maass and György Turán. How fast can a threshold gate learn? In Proc. Work.
Comput. Learning Theory and Nat. Learn. Systems, pages 381––414, Cambridge, MA, USA,
1994. MIT Press.

17 Burr Settles. Active learning literature survey. Technical Report #1648, Computer Science,
Univ. Wisconsin, Madison, 2009. URL: https://minds.wisconsin.edu/bitstream/handle/
1793/60660/TR1648.pdf?sequence=1&isAllowed=y.

SoCG 2021

https://doi.org/10.1007/s00454-019-00103-z
https://doi.org/10.4230/LIPIcs.ICALP.2020.64
https://doi.org/10.1007/s00454-016-9801-7
https://doi.org/10.1007/s00454-016-9801-7
https://doi.org/10.1109/FOCS.2017.40
https://doi.org/10.1109/FSCS.1990.89539
https://doi.org/10.1007/BF00993976
https://minds.wisconsin.edu/bitstream/handle/1793/60660/TR1648.pdf?sequence=1&isAllowed=y
https://minds.wisconsin.edu/bitstream/handle/1793/60660/TR1648.pdf?sequence=1&isAllowed=y

	1 Introduction
	1.1 Our results

	2 Algorithms for solving undecided linear programs
	2.1 Centerpoint based algorithm for solving ULPs
	2.2 Cutting based algorithm
	2.3 Better algorithms in two dimensions
	2.3.1 Polygon and point set reduction
	2.3.2 Near linear running time in two dimensions
	2.3.3 A linear time algorithm (using labeling oracle)

	2.4 A query efficient algorithm in three dimensions
	2.4.1 Emulating the two dimensional algorithm
	2.4.2 A faster algorithm

	3 Covering points by monochromatic balls using proximity queries
	3.1 Learning a single monochromatic ball using NN/FN queries
	3.1.1 Lifting to three dimensions
	3.1.2 The algorithm

	3.2 Learning a cover by {{k}} monochromatic balls using NN queries
	3.2.1 The algorithm
	3.2.2 Searching for a monochromatic ball containing a set {r}
	3.2.3 Analysis

