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Abstract
Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations
in R2 to R3, we get precise relations in terms of Morse theoretic quantities for piecewise constant
functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in R3,
the number of regions in the order-k Voronoi tessellation is Nk−1 −

(
k
2

)
n + n, for 1 ≤ k ≤ n − 1, in

which Nk−1 is the sum of Euler characteristics of these function’s first k − 1 sublevel sets. We get
similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation.
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1 Introduction

The size of the Voronoi tessellation of n points in Rd (by which we mean the number
of cells of dimension between 0 and d) is reasonably well understood, although there are
still open questions. In contrast, little is known about higher order Voronoi tessellations,
except in R2, where induction can be used to determine the size; see Lee [6]. The original
motivation for the work described in this paper is the extension of the inductive argument
beyond 2 dimensions. A result like in R2, where the size depends solely on the number of
points, cannot be expected even in R3. Nevertheless, we report precise formulas in terms of
elementary Morse theoretic concepts, such as the critical cells of piecewise constant functions
on arrangements. This connection opens up the use of topological methods to counting cells
and related combinatorial quantities.

Prior work. While Voronoi tessellations go back more than 100 years to the seminal work of
Voronoi [10] or earlier, higher order Voronoi tessellations have been introduced only recently,
by Shamos and Hoey [8] in computational geometry and by Gábor Fejes Tóth [4] in discrete
geometry. Particularly important for this paper is the incremental algorithm of Lee [6],
which also serves as inductive counting argument and establishes that the order-k Voronoi
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16:2 Counting Cells of Order-k Voronoi Tessellations in R3 with Morse Theory

tessellation of n points in R2, as defined in Section 2.1, has Θ(kn) vertices, edges, and regions.
This implies that the first k higher order Voronoi tessellations have size Θ(k2n). The latter
bound was extended to Θ(k⌈ d+1

2 ⌉n⌊ d+1
2 ⌋) in Rd by Clarkson and Shor [2]. Indeed, it is easy

to give tight bounds on the total size, over all orders 1 ≤ k ≤ n− 1, but there are no good
bounds known for individual orders beyond 2 dimensions.

To illustrate the difficulties, we mention that the size of the (order-1) Voronoi tessellation
of n points in R3 depends not only on n but also on how the points are distributed in space. If
the points are uniformly distributed within the unit cube, the expected size is Θ(n), but if the
points are placed on the moment curve, then the size is Θ(n2). On the other hand, the total
size, over all orders, depends only on n and is therefore the same for both sets. This suggests
that for large values of k, the uniformly distributed points have larger Voronoi tessellations
than the points on the moment curve, and this has been experimentally quantified in [3].

Results. We extend the inductive approach of Lee [6] to 3 dimensions. The basis of this
extension is the contractibility of the skeleta that split the regions for order k − 1 into the
pieces that combine to the regions for order k. Weaker versions of this lemma can be found
in Lee [6] for R2 and in [3] for Rd. The inductive approach is simplified by interpreting the
tessellations in projective rather than Euclidean space. This effectively combines the order-k
and the order-(n− k) tessellations, with the benefit that in 2 dimensions we have precisely
(2k− 1)(n−k) − (k− 2) regions, and similar expressions for the number of edges and vertices,
provided the n points be in general position. Similarly, in 3 dimensions we have precisely
Nk−1 −

(
k
2
)
n + n regions, and similar expressions for the number of polygons, edges, and

vertices, again with the only requirement that the points be in general position. The Nk

form the connection to discrete Morse theory. Specifically, Nk = M1 +M2 + . . .+Mk, in
which Mi is the alternating sum of critical polygons of order at most i in

(
n
2
)

2-dimensional
arrangements of n− 2 lines each. For n points on the moment curve, each such arrangement
has only two critical polgyons: one at order k = 1 and the other at order k = n− 1. Hence
Nk = k

(
n
2
)
, for 1 ≤ k ≤ n− 2, and Nn−1 = n

(
n
2
)
, and we get a complete description of the

size but also of the combinatorial structure of the higher order Voronoi tessellations. For the
general case, the determination of the Nk is however a difficult question.

Outline. Section 2 explains the background needed to appreciate this paper, which are
basic geometric results on Voronoi tessellations, plane arrangements, and convex polytopes.
Section 3 extends the inductive argument of Lee [6] to 3 dimensions, getting relations for the
number of cells in terms of alternating sums of critical polygons. Section 4 introduces the
Morse theoretic framework within which the alternating sums can be interpreted as Euler
characteristics of sublevel sets of discrete Morse functions. Section 5 concludes the paper.

2 Geometric Background

We introduce order-k Voronoi tessellations and k-th Brillouin zones in d dimensions, together
with an explanation of the connection to arrangements in d + 1 dimensions. In addition,
we prove that the skeleta along which the regions in the order-k tessellations split are
contractible.

2.1 Voronoi Tessellations and Brillouin Zones
Let A be a finite set of points in Rd and write n = #A for the cardinality. For any subset
Q ⊆ A, the region of Q is the set of points in Rd that are at least as close to the points in Q
as to the points not in Q. Each such region is a d-dimensional convex polyhedron, and the
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common intersection of any collection of regions, each defined by the same number of points,
is either empty or a face common to all of them. We follow [6, 8] in defining the order-k
Voronoi tessellation of A, denoted Vork(A), as the polyhedral complex whose cells are the
regions defined by subsets Q of size k together with all their faces; see Figure 1, left panel.
By definition, the order-0 tessellation consists of a single region, which is the entire Rd.
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Figure 1 Left panel: starting with the blue (order-1) Voronoi tessellation of the points, we
construct the order-2 Voronoi tessellation by dividing up the order-1 regions with solid black lines
and merging them across the blue lines. Right panel: the bisectors of a and all other points divide
the plane into the Brillouin zones of a. The highlighed second Brillouin zone is where a expands
from the order-1 to the order-2 Voronoi tessellation; compare with left panel.

The set of points in Rd for which a ∈ A is the k-th nearest is the k-th Brillouin zone
of a. As illustrated in the right panel in Figure 1, this set consists of a number of regions in
the arrangement formed by the bisectors of a and the other points in A. The first Brillouin
zone is a convex polyhedron, and each of the other zones has the homotopy type of a sphere.
Furthermore, the union of the first k zones is star-convex, with a in the kernel; see [4].
Importantly, for k ≥ 2, every region in the k-th Brillouin zone is a d-dimensional convex
polytope whose boundary can be partitioned into the near boundary, which is visible from a,
the far boundary, which is not visible from a, and the silhouette, which separates the near
and far boundaries. By convexity, the silhouette is homeomorphic to a (d− 2)-sphere that
splits the boundary into two pieces, each homeomorphic to an open (d− 1)-ball.

2.2 Plane Arrangement
It is useful to consider the collection of d-dimensional planes in Rd+1 obtained by mapping
each point a ∈ A to the affine function α : Rd → R defined by α(x) = 2⟨x, a⟩ − ∥a∥2. Note
that α encodes the squared Euclidean distance from a: ∥x− a∥2 = ∥x∥2 − α(x). The graph
of α is a (non-vertical) d-plane in Rd+1. The collection of d-planes decomposes Rd+1 into
convex cells of dimension 0 ≤ i ≤ d + 1, referred to as the arrangement of d-planes. We
call the (d+ 1)-cells chambers, and the d-cells facets. For 1 ≤ k ≤ n, the k-th level of the
arrangement is the set of points (x, y) ∈ Rd × R such that α(x) < y for at most k − 1 affine
maps and α(x) > y for at most n− k affine maps. The k-th belt is the set of points between
the k-th level and the (k + 1)-st level.

▶ Lemma 2.1 (From Arrangement to Tessellation). Let A be a set of n points in Rd, let
0 ≤ k ≤ n, and recall that A defines an arrangement of n non-vertical d-planes in Rd+1.

There is a bijection between the regions of Vork(A) and the chambers of the k-th belt such
that each region is the vertical projection of the corresponding chamber.
The k-th Brillouin zone of a ∈ A is the vertical projection of the k-th level intersected
with the d-plane defined by a.

SoCG 2021



16:4 Counting Cells of Order-k Voronoi Tessellations in R3 with Morse Theory

As illustrated in Figure 2, it is convenient to take the projective view, in which we connect
the levels and belts at infinity. Henceforth, this is what we mean by the k-th belt, namely the
(non-projective) k-th and (n− k)-th belts connected at infinity, and similarly for the Voronoi
tessellations, and the Brillouin zones. Figure 1 shows the non-projective concepts, and to
make them projective, we would add the overlay of the order-7 and the order-6 to the left
panel, and we would shade the wedge on the lower right in the right panel since it belongs
to the shaded region that contains b on the left. Note that the k-th belt is the same as the
(n− k)-th belt, for every k. Counting every cell twice, this amounts to a double-covering of
the d-dimensional projective space. The main reason for adapting this view is the resulting
simplification of the counting arguments and the beautification of the results.

Figure 2 The first belt in the projective line arrangement consists of all chambers above exactly
one line and all chambers below exactly one line. The unbounded chambers are paired up, and each
pair is considered a single chamber. We thus count 6 (light blue) chambers in the first belt.

Another useful because simplifying assumption is that the points be in general position,
by which we mean that any i-dimensional plane in Rd passes through at most i+ 1 points,
and any i-dimensional sphere passes through at most i+ 2 points of A, for 0 ≤ i ≤ d − 1.
If the points are in general position, the corresponding arrangement of d-planes in Rd+1 is
generic; that is: any i+ 1 d-planes intersect in a (d− i)-dimensional plane. This implies that
any d+ 2 or more d-planes have an empty common intersection.

2.3 Convex Polytopes and Their Skeleta
Consider n ≥ d+ 2 points in general position in Rd. In the projective view, every chamber in
the corresponding arrangement in Rd+1 is a (bounded) convex (d+ 1)-polytope, and in the
doubly-covered view, there is a second, antipodal copy of the polytope in the arrangement.
The boundary of the chamber consists of i-dimensional cells, for 0 ≤ i ≤ d, each a (convex)
i-polytope itself. Because of general position, the chamber is simple, by which we mean that
every vertex belongs to d+ 1 facets, every edge belongs to d facets, etc. It follows that every
vertex belongs to d+ 1 edges, which we express by saying that the vertex has degree d+ 1.

By Lemma 2.1, every region in the order-k Voronoi tessellation is the vertical projection
of a chamber, and by construction, the projection is generic, in the sense that its restriction
preserves the dimension of every face in the boundary. Since the projection is in the vertical
direction, it makes sense to distinguish between lower and upper facets. The k-th belt consists
of chambers above k planes or below k planes, and to be consistent, we reverse upper/lower
for the latter type. This will not cause any confusion since we always look at a single
chamber, which we may assume is bounded and of the former type. The lower boundary of
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such a chamber consists of all lower facets and their faces, the upper boundary consists of
all upper facets and their faces, and the silhouette is the intersection of the lower and the
upper boundaries. The projection of the silhouette is the boundary of the projected chamber.
Although this is a generic projection of a simple (d + 1)-polytope, it is not necessarily a
simple d-polytope. Indeed, a vertex of the silhouette may be incident to i lower facets and
j = d+ 1 − i upper facets, for any 1 ≤ i ≤ d. Such a vertex belongs to ij (d− 1)-cells in the
silhouette. See the dodecahedron in Figure 3 as an example, which has 8 degree-3 vertices
and 6 degree-4 vertices.

Figure 3 Left: projecting the 4-cube along a diagonal gives the rhombic dodecahedron in R3,
which we see decomposed into four distorted 3-cubes. The projection of the silhouette is the boundary
of the dodecahedron. The projection of the upper 2-skeleton of the 4-cube consists of the vertices,
edges, and light blue polygons shared by the distorted 3-cubes. Its boundary is a graph in the
boundary of the dodecahedron, which we highlight with dark blue edges. Right: the analogous
construction one dimension lower, in which the 3-cube projects to a decomposed hexagon.

We call the cells of dimension less than d in the lower boundary minus the silhouette the
lower skeleton of the chamber. Symmetrically, we define the upper skeleton of the chamber.
Both skeleta are open and (d− 1)-dimensional. The boundary of the lower skeleton consists
of all proper faces of its (d− 1)-cells that belong to the silhouette, and similarly for the upper
skeleton. Adding their boundaries, we get the closed lower and upper skeleta. For example,
the blue open trigon in the projection of the 3-cube in Figure 3 is the upper skeleton, and
closed trigon is the closed upper skeleton. We will make heavy use of a topological property
of the closed skeleta that does not hold for general convex polyhedra and therefore also not
for chambers in general arrangements.

▶ Lemma 2.2 (Contractible Skeleta). Let A be a set of n ≥ d+ 2 points in general position
in Rd, let 1 ≤ k ≤ n − 1, and consider a chamber in the k-th belt of the corresponding
arrangement in Rd+1. Then the closed lower skeleton of this chamber is contractible unless
k = 1, and the closed upper skeleton is contractible, unless k = n− 1. In the two exceptional
cases, the skeleta are empty.

Proof. We consider the lower skeleton first. Let Q ⊆ A with #Q = k such that the projection
of the chamber to Rd is the region of points that satisfy ∥x− a∥ ≤ ∥x− b∥ for all a ∈ Q and
all b ∈ A \Q. We denote this region R, and for each a ∈ Q, we write Ra ⊆ R for the subset
of points for which a is the k-th nearest or, equivalently, the furthest of the points in Q.
We note that Ra is convex and indeed a region of the k-th Brillouin zone of a. Assuming
k ≥ 2, the boundary of Ra can be partitioned into the near boundary, which is visible from
a, the far boundary, which is not visible from a, and the silhouette, which separates the two.

SoCG 2021



16:6 Counting Cells of Order-k Voronoi Tessellations in R3 with Morse Theory

Indeed, the projection of the closed lower skeleton is the union of the near boundaries of all
Ra, with a ∈ Q. To prove that the closed lower skeleton is contractible, we give an explicit
deformation retraction from R to the projection of the closed lower skeleton. Within Ra, the
deformation retraction moves every point x ∈ Ra straight toward a until it reaches the near
boundary of Ra. This is well defined because k ≥ 2 so that a lies outside Ra. Because R is
convex and therefore contractible, the existence of this deformation retraction implies that
the lower skeleton is contractible.

We consider the upper skeleton second. For each b ∈ A \ Q, we write Rb ⊆ R for the
subset of points for which b is the (k+ 1)-st nearest or, equivalently, the nearest of the points
in A \Q. Now the near boundary of Rb belongs to the boundary of R, and the projection
of the closed upper skeleton is the union of far boundaries of all Rb, with b ∈ A \Q. Like
before, the deformation retraction moves a point y ∈ Rb straight away from b until it hits
the far boundary of Rb. This construction works for k ≤ n− 2, as claimed. ◀

For the cases in which Lemma 2.2 guarantees contractibility, we will refer to the closed
skeleta as closed (d− 1)-trees and their open versions simply as (d− 1)-trees.

3 Counting in Three Dimensions

We count the cells of the Voronoi tessellations in 3 dimensions inductively, following the
pattern of the 2-dimensional argument pioneered by Lee [6]. To begin, we need some
understanding of 4-dimensional convex polytopes and their projections.

3.1 Chambers Projected to Regions
It is instructive to look at the 4-cube and its projection along a diagonal direction, which is
known as the rhombic dodecahedron; see Figure 3. Each endpoint of the diagonal is incident to
four 3-cubes in the boundary, and their projections form two decompositions of the rhombic
dodecahedron into four distorted 3-cubes each. While the 4-cube is simple and the projection
is generic, the rhombic dodecahedron is not simple: it has vertices of degree 3 and of degree
4. The two decompositions into distorted 3-cubes are by projecting the lower skeleton and
the upper skeleton of the 4-cube, which by Lemma 2.2 are 2-trees. The boundary of each
2-tree is a graph in the silhouette of the 4-cube. Figure 3 shows one of these graphs, which
connects some of the degree-3 vertices and all of the degree-4 vertices by dark blue edges.
The other graph (not shown) uses the remaining edges in the silhouette. The two graphs are
disjoint except that they share all degree-4 vertices, where they cross. This is a pattern that
can be observed in general and not just in the example depicted in Figure 3.

We use the combinatorics of the 2-trees to count the cells in the order-k Voronoi tessellation,
which we recall are obtained by projecting the chambers in the k-th belt of the arrangement
in R4. It will be important to count the cells of different dimension and of different type
separately. We thus use the following notation:

uk = #old vertices, vk = #mid vertices, wk = #new vertices, (1)
dk = #old edges, ek = #new edges, (2)
pk = #polygons, rk = #regions, (3)

in which we call a vertex old, mid, or new in the order-k Voronoi tessellation if it belongs
to the tessellations of orders k − 2, k − 1, k, orders k − 1, k, k + 1, or orders k, k + 1, k + 2.
Similarly, we call an edge old or new in the order-k Voronoi tessellation if it belongs to the
tessellations of orders k − 1, k or orders k, k + 1.
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3.2 Graphs and 2-Trees
Recall that the upper 2-tree of a chamber contains all vertices, edges, and polygons shared by
at least two of the upper facets. This implies that the boundary of this 2-tree consists of the
new edges and the mid and new vertices in the silhouette. Symmetrically, the boundary of the
lower 2-tree consists of the old edges and the mid and old vertices in the silhouette. Together,
the two graphs exhaust all edges and vertices, and they intersect in the mid vertices, where
they cross. We call a cycle in the graph a loop and the cyclomatic number the number of
loops, which for a connected graph is #edges − #vertices + 1. Let u, v, w, d, e be the numbers
of old, mid, new vertices and old, new edges in the silhouette.

▶ Lemma 3.1 (Loops in Graphs). The boundary of the upper 2-tree is a connected graph with
1
2w + 1 loops, and the boundary of the lower 2-tree is a connected graph with 1

2u+ 1 loops.

Proof. It suffices to consider the boundary of the upper 2-tree. It is connected, else the
2-tree would not be contractible. It has e edges, v vertices of degree 2, and w vertices of
degree 3, which implies 2e = 2v + 3w. The number of loops is e− (v +w) + 1 = 1

2w + 1. ◀

The combinatorics of the boundary is important for the combinatorics of the 2-tree, but it
does not determine it. We therefore introduce a shape variable, which together with the graph
determines the number of vertices, edges, and polygons in the 2-tree. The corresponding
intuition will be revealed in Section 4.1. We call a polygon a minimum if its entire boundary
belongs to the 2-tree. Otherwise, the part of the boundary in the 2-tree consists of µ+ 1 arcs,
and we call the polygon a maximum if µ = −1, a non-critical polygon if µ = 0, and a saddle
with multiplicity µ if µ ≥ 1. The shape variable of the polygon is #edges − #vertices + 1, in
which we count only the faces in the 2-tree. Note that this is 1 for a minimum and maximum,
0 for a non-critical polygon, and −µ for a saddle with multiplicity µ. Taking the sum over
the polygons in the upper 2-tree, we get the characteristic of the chamber, which we denote
J . It is also defined for 2-skeleta that are not contractible, but the relation expressed in the
next lemma holds only for 2-trees.

▶ Lemma 3.2 (Size of 2-Tree). Let A be a set of n points in general position in R3 and
1 ≤ k ≤ n− 1. The numbers of vertices, edges, and polygons in the upper 2-tree of a chamber
in the k-th belt satisfy

W = 1
2w − 1 + J, (4)

E = 3
2w − 2 + 2J, (5)

P = 3
2w + J, (6)

in which w is the number of new vertices in the silhouette, and J is the characteristic of the
chamber.

Proof. We first dispose of an easy case: when the 2-tree contains a maximum. Then
J = 1 because the 2-tree contains only this one polygon and has no edges and no vertices.
Furthermore, w = 0, so the claimed relations give W = 0, E = 0, P = 1, as required.

We can therefore assume that the 2-tree contains no maximum, but there may be minima
and saddles beside the non-critical polygons. Consider the graph formed by the edges and
vertices in the 2-tree, to which we add the w new vertices in the silhouette so that each edge
has both endpoints. For each minimum in the 2-tree, this graph contains a loop, and for
each saddle with multiplicity µ, the graph contains µ extra components. The characteristic
is J = #loops − #components + 1, and the number of edges is

E = W + w + #loops − #components = W + w − 1 + J. (7)

SoCG 2021



16:8 Counting Cells of Order-k Voronoi Tessellations in R3 with Morse Theory

We also have 2E = 4W + w, which combined with (7) implies (4) and (5). To prove (6),
we recall that the closed 2-tree is contractible, which implies that its Euler characteristic
satisfies (W −E +P ) + (v+w− e) = 1. Substituting E = 2W + 1

2w and e = v+ 3
2w implies

P = W + w + 1 = 3
2w + J , as required. ◀

For counting purposes, we write Jk+1 for the sum of characteristics of the chambers in
the k-th belt, for 0 ≤ k ≤ n− 1. By Lemma 2.2, the upper 2-skeleton of every chamber is
contractible and therefore a 2-tree for 1 ≤ k ≤ n− 2. For k = 0, there is a single chamber
whose upper boundary projects to the entire first Voronoi tessellation. Its upper 2-skeleton is
therefore not a 2-tree, but its characteristics is still defined, namely the number of polygons
in Vor1(A).

3.3 Induction
We count the vertices, edges, polygons, and regions of the Voronoi tessellations inductively,
beginning with order k = 1.

▶ Lemma 3.3 (Induction Basis in R3). The order-1 Voronoi tessellation of n ≥ 5 points in
general position in R3 has

w1 = J1 − n vertices, (8)
e1 = 2J1 − 2n edges, (9)
p1 = J1 polygons, (10)
r1 = n regions. (11)

Proof. We have p1 = J1 by definition, and r1 = n because the order-1 Voronoi tessellation
has one region for each point. To get the relations for the vertices and edges, we note that
the order-1 Voronoi tessellation is a polyhedral complex that decomposes the 3-sphere, so
that Euler’s formula implies w1 − e1 + p1 − r1 = 0. By assumption of general position, every
vertex belongs to 4 edges, which gives 4w1 − 2e1 = 0. Combining these two relations, we can
express w1 and e1 in terms of p1 and r1 and therefore in terms of J1 and n, as stated. ◀

When we go from the order-(k − 1) to the order-k Voronoi tessellation, we see some cells
die, some cells age, and some cells get born according to relations (4), (5), (6).

▶ Lemma 3.4 (Induction Step in R3). The numbers of old, mid, new vertices, old and new
edges, polygons, and regions of the order-k Voronoi tessellation of n points in general position
in R3 satisfy

uk = vk−1, (12)
vk = wk−1, (13)
wk = 2wk−1 − rk−1 + Jk, (14)
dk = ek−1, (15)
ek = 6wk−1 − 2rk−1 + 2Jk, (16)
pk = 6wk−1 + Jk, (17)
rk = wk−1 − vk−1 + rk−1, (18)

for 2 ≤ k ≤ n− 1.
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Proof. Rules (12), (13), (15) express aging. By assumption of general position, each new
vertex of Vork−1(A) belongs to four regions, so we get rule (14) from (4), rule (16) from
(5), and rule (17) from (6). To get rule (18), we note that each of the uk + wk old and new
vertices has degree 4, and each of the vk mid vertices has degree 8, again by assumption of
general position. Hence 2(dk + ek) = 4(uk + 2vk +wk). Plugging this into the Euler formula
for the 3-sphere, we get rk = (uk + vk +wk) − (dk + ek) + pk = pk − (uk + 3vk +wk), which
implies (18). ◀

These rules can be used to find expressions for the cells in the Voronoi tessellations.
Recall that Jk is the alternating sum of critical polygons of order k; see text following
the proof of Lemma 3.2. It will be convenient to write Mk = J1 + J2 + . . . + Jk and
Nk = M1 +M2 + . . .+Mk = kJ1 + (k − 1)J2 + . . .+ Jk, and to set Jk = Mk = Nk = 0 for
k ≤ 0.

▶ Theorem 3.5 (Size of Order-k Voronoi Tessellations in R3). For 1 ≤ k ≤ n− 1, the order-k
Voronoi tessellation of n ≥ 5 points in R3 has

uk ≤ Nk−2 −
(

k−1
2

)
n old vertices, (19)

vk ≤ Nk−1 −
(

k
2
)
n mid vertices, (20)

wk ≤ Nk −
(

k+1
2

)
n new vertices, (21)

dk ≤ 2Nk−1 + 2Nk−2 − 2(k − 1)2n old edges, (22)
ek ≤ 2Nk + 2Nk−1 − 2k2n new edges, (23)
pk ≤ 6Nk−1 + Jk − 6

(
k
2
)
n polygons, (24)

rk ≤ Nk−1 −
(

k
2
)
n+ n regions, (25)

with equality in all seven cases if the points are in general position.

Proof. Let A be a set of n ≥ 5 points in R3. Whenever A is not in general position, we can
perturb it into general position without losing any vertex, edge, polygon, or region in any of
its Voronoi tessellations. We can therefore assume without loss of generality that A is in
general position and prove that in this case the seven claimed inequalities are equations.

For k = 1, we have u1 = v1 = 0, w1 = J1 −n, d1 = 0, e1 = 2J1 − 2n, p1 = J1, and r1 = n,
which agrees with Lemma 3.3. Assuming the relations are correct for index k − 1, we use
Lemma 3.4 to prove that they are correct for k. (19), (20), (22) follow straightforwardly
from (12), (13), (15) and (21), (23). To see (21), (23), (24), (25), we use (14), (16), (17),
(18) to compute

wk = [2Nk−1 −Nk−2 + Jk] − [2
(

k
2
)

−
(

k−1
2

)
+ 1]n = Nk −

(
k+1

2
)
n, (26)

ek = [6Nk−1 − 2Nk−2 + 2Jk] − [6
(

k
2
)

− 2
(

k−1
2

)
+ 2]n = 2Nk + 2Nk−1 − 2k2n, (27)

pk = [6Nk−1 + Jk] − 6
(

k
2
)
n, (28)

rk = [Nk−1 −Nk−2 +Nk−2] − [
(

k
2
)

−
(

k−1
2

)
+

(
k−1

2
)

− 1]n = Nk−1 −
(

k
2
)
n+ n, (29)

as claimed. ◀

3.4 Relations of Symmetry
By projective interpretation, the order-k Voronoi tessellation is also the order-(n−k) Voronoi
tessellation. Indeed, the only difference between the two is that upper and lower facets switch,
and so do old and new vertices and old and new edges. We state these relations formally
and use them to derive a similar relation for the characteristics of the belts.
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16:10 Counting Cells of Order-k Voronoi Tessellations in R3 with Morse Theory

▶ Theorem 3.6 (Symmetry Relations). The numbers of old, mid, new vertices, old and new
edges, polygons, regions, and the characteristics of the order-k Voronoi tessellations of n ≥ 5
points in general position in R3 satisfy uk = wn−k, vk = vn−k, wk = un−k, dk = en−k,
ek = dn−k, pk = pn−k, rk = rn−k, Jk = Jn−k, for 1 ≤ k ≤ n− 1.

Proof. The symmetry relations for the vertices, edges, polygons, and regions follow from the
symmetry of the projective definition of order-k Voronoi tessellations. To see the relation for
the characteristic, we note that

(
k+1

2
)

− 2
(

k
2
)

+
(

k−1
2

)
= 1 and that Nk − 2Nk−1 +Nk−2 =

Mk − Mk−1 = Jk, for 1 ≤ k ≤ n − 1. Using rk = Nk−1 −
(

k
2
)
n+ n from Theorem 3.5 and

the symmetry relation for the regions, we get

0 = [rk+1 − 2rk + rk−1] − [rn−k−1 − 2rn−k + rn−k+1] = [Jk − n] − [Jn−k − n]. (30)

Simplifying (30), we get the claimed symmetry relation for the characteristic. ◀

To provide examples, we list the number of cells and characteristics of belts for two sets
of six points each in Table 1. Observe the symmetry in the columns as predicted by Theorem
3.6, and note that the numbers given for the moment curve example are consistent with the
expressions given in Section 1.

Table 1 Numbers of vertices, edges, polygons, and regions for six points on the moment curve in
R3 in the upper table, and of the six points of the double suspended tetrahedron in the lower table.

k uk vk wk dk ek pk rk Jk Mk Nk

1 0 0 9 0 18 15 6 15 15 15
2 0 9 12 18 42 54 15 0 15 30
3 9 12 9 42 42 72 18 0 15 45
4 12 9 0 42 18 54 15 0 15 60
5 9 0 0 18 0 15 6 15 30 90∑

30 30 30 120 120 210 60 30 90 240
1 0 0 8 0 16 14 6 14 14 14
2 0 8 14 16 44 52 14 4 18 32
3 8 14 8 44 44 78 20 -6 12 44
4 14 8 0 44 16 52 14 4 16 60
5 8 0 0 16 0 14 6 14 30 90∑

30 30 30 120 120 210 60 30 90 240

4 A Morse Theoretic Perspective

The Jk,Mk, Nk have alternative interpretations in terms of sublevel sets of discrete Morse
functions. As we will see, these functions are closer in spirit to the discrete Morse theory
introduced by Banchoff [1] than the more popular version developed by Forman [5]. It
is convenient to adopt the language of great-circle arrangements in the sphere instead of
doubly-covered projective line arrangements in the plane, which are of course equivalent.

4.1 Arrangements of Great-Circles
Let A be a set of n points in general position, let a, b, c be three different points in A,
and recall that they correspond to affine functions α, β, γ : R3 → R. We are interested in
α(x) = β(x), which describes a plane in R3, in γ(x) = α(x) = β(x), which describes a line,
and in γ(x) ≤ α(x) = β(x), which describes a half-plane; see Figure 4. In our spherical
view, the plane becomes a sphere, denoted Sa,b, and for each point c, we get a hemi-sphere,
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Hc ⊆ Sa,b. The n − 2 lines decomposing the plane correspond to the same number of
great-circles that decompose the sphere into vertices, edges, and (spherical) polygons, which
appear in antipodal pairs. The main concept in this section is the function

fa,b(φ) = 1 + #{c ∈ A \ {a, b} | φ ⊆ Hc}, (31)

in which φ is a polygon in the great-circle arrangement on Sa,b. For completeness, we define
fa,b for an edge or a vertex equal to the smallest value of any polygon incident to the edge
or vertex. Write φ̄ for the antipodal polygon of φ, and call a polygon, ψ, a neighbor of φ if
the two share an edge. Then we have

fa,b(φ) = fa,b(ψ) ± 1, (32)

fa,b(φ) = n− fa,b(φ̄), (33)

for all neighbors ψ of φ. We get (32) by assumption of general position, and (33) by symmetry.
Consistent with Section 3, we call φ a minimum if fa,b(φ) = fa,b(ψ) − 1 and a maximum

Figure 4 An arrangement of lines in which the shading indicates the coverage with half-planes.
The arrows go from smaller to larger coverage. Considering only polygons that are fully contained
inside the box, we see one minimum, one simple saddle, and seven non-critical polygons.

if fa,b(φ) = fa,b(ψ) + 1 for all neighbors ψ of φ. Otherwise, the function values of the
cyclically ordered neighbors change 2(µ+ 1) ≥ 2 times between fa,b(φ) ± 1. For µ = 0, φ is
a non-critical polygon, and for µ ≥ 1, it is a saddle with multiplicity µ.

4.2 Sublevel Sets and Euler Characteristics

A common feature in Morse theoretic studies is the occurrence of sublevel sets and their
relations. For each k, the sublevel set f−1

a,b (−∞, k] is a closed subset of Sa,b, with well-
defined Betti numbers, βp(k), and Euler characteristic, χ(k) = β0(k) − β1(k) + β2(k). Define
index(φ) = 0, 1, 2 if φ is a minimum, saddle, maximum. In the discrete setting at hand, it is
not difficult to prove an analog of the Euler–Poincaré Theorem, which implies that χ(k) is
the sum of (−1)index(φ), over all critical polygons that satisfy fa,b(φ) ≤ k, in which a saddle
with multiplicity µ is counted as µ simple saddles. We define Jk(a, b) = χ(k) − χ(k − 1),
Mk(a, b) = χ(k), and Nk(a, b) = χ(1) + χ(2) + . . .+ χ(k). The connection to the previous
discussion and, in particular, Theorem 3.5 should be clear, namely
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Jk =
∑

a,b∈A
Jk(a, b), (34)

Mk =
∑

a,b∈A
Mk(a, b), (35)

Nk =
∑

a,b∈A
Nk(a, b), (36)

in which the sums are over all unordered pairs in A. In other words, we have a piecewise
constant function on the disjoint union of

(
n
2
)

spheres, f : S2 ⊔S2 ⊔ . . .⊔S2 → [1, n−1], whose
components are the functions fa,b, such that Mk is the Euler characteristic of f−1(−∞, k],
and Jk is the increment from k − 1 to k. Equivalently, Jk is the alternating sum of critical
polygons in f−1(k). We note that this interpretation implies a strengthening of the relation
Jk = Jn−k in Theorem 3.6: Jk(a, b) = Jn−k(a, b), for all pairs a ≠ b, because antipodal
polygons have the same contribution to the sum.

4.3 Relations for Sums
Observe that a generic arrangement of n 3-dimensional great-spheres in S4 has 2

(
n
4
)

vertices,
8
(

n
4
)

edges, 12
(

n
4
)

+ 2
(

n
2
)

polygons, 8
(

n
4
)

+ 4
(

n
2
)

facets, and 2
(

n
4
)

+ 2
(

n
2
)

+ 2 chambers. This
implies relations on the number of cells in the Voronoi tessellations.

▶ Theorem 4.1 (Sum Relations). The new vertices, new edges, polygons, and regions of the
Voronoi tessellations of n ≥ 5 points in general position in R3 satisfy∑n−1

k=1
wk = 2

(
n
4
)
, (37)∑n−1

k=1
ek = 8

(
n
4
)
, (38)∑n−1

k=1
pk = 12

(
n
4
)

+ 2
(

n
2
)
, (39)∑n−1

k=1
rk = 2

(
n
4
)

+ 2
(

n
2
)
. (40)

Similarly, the characteristics of the belts, their cumulative sums, and the cumulative sums of
those satisfy∑n−1

k=1
Jk = 2

(
n
2
)
, (41)∑n−1

k=1
Mk = n

(
n
2
)
, (42)∑n−1

k=1
Nk =

[(
n
2
)

+ 1
] (

n
2
)
. (43)

Proof. The new vertices, new edges, polygons, and regions of the order-k Voronoi tessellations,
for 1 ≤ k ≤ n− 1, are in bijection with the vertices, edges, polygons, and chambers of the
arrangement in S4. Exceptions are the chamber below and above all great-spheres, which
are not covered by the tessellations. This implies (37), (38), (39), (40).

We get (41) because the sum of the Jk is equal to the sum of the Euler characteristics of(
n
2
)

2-spheres. To see (42), we note that for a pair of antipodal critical polygons, we have
[n− f (φ)] + [n− f (φ̄)] = n because f (φ) + f (φ̄) = n by (33). The contribution of the pair to
the sum of the Mk is therefore n if φ, φ̄ are a minimum and a maximum, and −µn if φ, φ̄ are
saddles with multiplicity µ. The contributions cancel, except for one minimum/maximum
pair per 2-sphere, and since there are

(
n
2
)

2-spheres, the sum of the Mk is n
(

n
2
)
. To prove

(43), we use (40) and (25), which for points in general position is an equality:∑n−1

k=1
Nk−1 =

∑n−1

k=1
rk + n

∑n−1

k=1

(
k
2
)

− n
∑n−1

k=1
1 = 2

(
n
4
)

+ n
(

n
3
)
. (44)
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By index transformation, the left-hand side is
∑n−2

k=1 Nk, and by straightforward calculations,
the right-hand side is

(
n
2
)(

n−1
2

)
. Adding Nn−1 = n

(
n
2
)

from (42) on both sides implies the
claimed relation. ◀

Observe that the relations in Theorem 4.1 are consistent with the column sums in Table 1,
which are the same for the two sets of six points each.

4.4 Relation for Individual Sphere
The proofs of (41) and (42) show that each sphere contributes the same amount, namely 2
to

∑
Jk and n to

∑
Mk. The proof of (43) does not show the same for

∑
Nk, but it is still

true, that is: each sphere contributes the same amount to the sum of the Nk.

▶ Theorem 4.2 (Stronger Sum Relation). Let A be a set of n ≥ 5 points in general position
in R3. Then

∑n−1
k=1 Nk(a, b) = 1 +

(
n
2
)

for any two points a ̸= b in A.

Proof. Fix a, b ∈ A and consider the arrangement of n − 2 great-circles on Sa,b. For
convenience, we write Jk, Mk, Nk, and f for Jk(a, b), Mk(a, b), Nk(a, b), and fa,b throughout
this proof. The goal is to show

∑n−1
k=1 Nk = 1 +

(
n
2
)
, but we already have Nn−1 = n from

(42) and Nn−2 = Nn−1 −Mn−1 = n− 2 from (41) and (42). Indeed, the proofs of (41) and
(42) imply the stronger relations for individual spheres. Therefore it suffices to prove

X =
∑n−3

k=1
Nk = 1 +

(
n
2
)

− n− (n− 2) =
(

n−2
2

)
. (45)

We rewrite the sum in terms of the Jk. A polygon contributes to Jk only if f (ψ) = k, and
this contribution depends on the cyclic sequence of neighboring polygons. Distinguishing
between polygons φ with f (φ) = k ± 1, the contribution to Jk is 1 minus half the number of
alternations between these two types along the cycle. We therefore write Jk = pk − 1

2 tk, in
which pk is the number of polygons ψ ⊆ Sa,b with f (ψ) = k, and tk is the number of triplets
of polygons (φ,ψ, ϱ) with f (φ) + 1 = f (ψ) = f (ϱ) − 1 = k that share a common vertex. This
vertex is where the type of neighboring polygons changes. We call such an ordered triplet of
polygons a short increasing path. Using Nk = kJ1 + (k − 1)J2 + . . .+ Jk, we get

X = N1 +N2 + . . .+Nn−3 (46)
=

(
n−2

2
)
J1 +

(
n−3

2
)
J2 + . . .+

(2
2
)
Jn−3 (47)

=
∑n−3

k=1

(
n−k−1

2
)
pk − 1

2

∑n−3

k=1

(
n−k−1

2
)
tk. (48)

Write Y and Z for the two sums in (48) so that X = Y − 1
2Z. Observe that Y is the number

of triplets (ψ,H,H′), in which ψ is a polygon and H ̸= H′ are two hemi-spheres that both do
not contain ψ. Indeed, if f (ψ) = k, then there are (n− 2) − (k− 1) = n− k− 1 hemi-spheres
that do not contain ψ. Similarly, Z is the number of triplets ((φ,ψ, ϱ), H,H′), in which
(φ,ψ, ϱ) is a short increasing path and H ̸= H′ are two hemi-spheres that both do not contain
ψ. We call (ψ,H,H′) a captured polygon and ((φ,ψ, ϱ), H,H′) a captured short increasing
path. In words, X = Y − 1

2Z counts the captured polygons but subtracts half the captured
short increasing paths.

Now fix two hemi-spheres, H and H′, and consider their lune, which is the closure of the
points neither contained in H nor in H′; see Figure 5. We are interested in the portion of the
arrangement of great-circles in this lune. Each vertex of this portion lies either in the interior
or on the boundary. For each interior vertex, we get two captured short increasing paths, and

SoCG 2021
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Figure 5 A lune identifies a portion of the arrangement of great-circles. Within this arrangement,
we count polygons and short paths whose middle polygons are in the lune. We have two short
increasing paths for each interior vertex and one for each boundary vertex, unless it is a corner of
the lune, in which case we get no such path.

for each boundary vertex, we get one such path, except for the two corners of the lune for
which we get no such path. Writing Vint and Vbd for the numbers of vertices in the interior
and on the boundary, the number of captured short increasing paths is 2Vint + Vbd − 2. The
number of captured polygons is just the number of polygons in the lune, which we denote P .
Ordering the lunes arbitrarily and writing Xi, Yi, Zi for the contributions of the lune defined
by H and H′, we have

Xi = Yi − 1
2Zi = P − 1

2 [2Vint + Vbd − 2]. (49)

But P = Vint + 1
2Vbd, which is easy to prove by adding the great-circles one at a time

and counting how many vertices and polygons a great-circle adds to the portion of the
arrangement in the lune. Hence Xi = 1. This implies X =

∑
i Xi =

(
n−2

2
)

and therefore∑n−1
k=1 Nk = 1 +

(
n
2
)
, as required. ◀

5 Discussion

The main contributions of this paper are an extension of the inductive argument for counting
cells in order-k Voronoi tessellations from 2 to 3 dimensions, and the Morse theoretic
perspective in which the number of cells are interpreted as alternating sums of critical
polygons of 2-dimensional discrete Morse functions. Alternatively, we can state the results in
terms of k-sets of n points on the unit 3-sphere or, more generally, for n points in convex
position in R4. There are connections between the alternating sums and the persistent
homology of the discrete Morse functions, which may be interesting to develop in the future.
There are a number of open questions this work raises:

Can the Morse theoretic interpretation of higher order Voronoi tessellations be used
to prove new upper and lower bounds on the maximum size of the order-k Voronoi
tessellation of n points in R3? In particular, can we prove an upper bound asymptotically
smaller than k2n2 or a lower bound asymptotically larger than k2n; see [2, 7]?
Can the inductive approach be generalized to sets beyond 3 dimensions? Clearly yes, but
how much more complicated does it get? Can we still hope for relations that involve only
one independent variable, like Nk in R3, or do we get extra independent variables?
The regions in the order-k Voronoi tessellation correspond to k-sets of points on a sphere
in R4. Can the inductive approach be extended to points not necessarily in convex
position? Proving bounds on the maximum number of k-sets in this more general setting
is a notoriously difficult combinatorial problem, and any advance would be exciting [9].
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