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Abstract
We study the problem of constructing weak ε-nets where the stabbing elements are lines or k-flats
instead of points. We study this problem in the simplest setting where it is still interesting – namely,
the uniform measure of volume over the hypercube [0, 1]d. Specifically, a (k, ε)-net is a set of k-flats,
such that any convex body in [0, 1]d of volume larger than ε is stabbed by one of these k-flats. We
show that for k ≥ 1, one can construct (k, ε)-nets of size O(1/ε1−k/d). We also prove that any such
net must have size at least Ω(1/ε1−k/d). As a concrete example, in three dimensions all ε-heavy
bodies in [0, 1]3 can be stabbed by Θ(1/ε2/3) lines. Note, that these bounds are sublinear in 1/ε,
and are thus somewhat surprising.
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1 Introduction

Range spaces and ε-nets. A range space is a pair X = (U , R), where U is the ground
set (finite or infinite) and R is a (finite or infinite) family of subsets of U . The elements of
R are ranges.

Suppose that U is a finite set. For a parameter ε ∈ (0, 1), a subset S ⊆ U is an ε-net
for the range space X, if for every range r ∈ R with |r ∩ U| ≥ ε|U| has r ∩ S ̸= ∅. The ε-net
theorem of Haussler and Welzl [5] implies the existence of ε-nets of size O(δε−1 log ε−1),
where δ is the VC dimension of the range space X. The use of ε-nets is widespread in
computational geometry [7, 4].

Weak ε-nets. Consider the range space (P, C), where C is the collection of all compact
convex bodies in Rd and P ⊂ Rd is a point set of size n. This range space has infinite
VC dimension – the standard ε-net constructions do not work for this range space. The
notion of weak ε-nets bypasses this issue by allowing the net S to use points outside of P .
Specifically, any convex body Ξ that contains at least εn points of P must contain a point of
S. The first construction of weak ε-net is due to Bárány et al. [1]. There was quite a bit of
work on this problem, culminating in the somewhat simpler construction of Matoušek and
Wagner [8], who constructed weak ε-nets of size O(ε−d logf(d) ε−1), where f(d) = O(d2 log d).
Recently, Rubin [10, 11] gave an improved bound, showing existence of weak ε-nets of size
O(ε−(d−0.5+α)) for arbitrarily small α > 0. For more detailed history of the problem, see
the introduction of Rubin [10, 11]. As for a lower bound, Bukh et al. [2] gave constructions
of point sets for which any weak ε-net must have size Ω(ε−1 logd−1 ε−1). Closing this gap
remains a major open problem.
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42:2 Stabbing Convex Bodies with Lines and Flats

(k, ε)-nets and uniform measure. A natural extension of weak ε-nets is to allow the net S
to contain other geometric objects. Given a collection of n points P ⊂ Rd and a parameter
0 ≤ k < d, we define a (weak) (k, ε)-net to be a collection of k-flats S such that if Ξ is a
convex body containing at least εn points of P , then there exists a k-flat in S intersecting Ξ.
Note that (0, ε)-nets are exactly weak ε-nets.

In general, one would expect that as k increases, the size of the (k, ε)-net shrinks. For
example, a (1, ε)-net for a collection of points in R3 can be constructed by projecting the
points down onto the xy-plane and applying Rubin’s construction in the plane to obtain a
weak ε-net S of size O(ε−(3/2+α)) [10]. Lifting S up back into three dimensions results in
a (1, ε)-net of the same size, which is smaller than the best known weak ε-net size in R3

[8, 10, 11]. However, one might expect that a (1, ε)-net of even smaller size is possible in R3,
as this construction uses a set of parallel lines (i.e., one would expect the lines in an optimal
net to be arbitrarily oriented).

Here, we study an even simpler version of the problem, where the ground set is the
hypercube B = [0, 1]d. In particular, for ε ∈ (0, 1) and 0 ≤ k < d, we are interested in
computing the smallest set K of k-flats, such that if Ξ is a convex body with vol(Ξ ∩ B) ≥ ε,
then there is a k-flat in K which intersects Ξ. For sake of exposition, throughout the rest of
the paper we refer to this set K as a (k, ε)-net for volume measure. We note that [0, 1]d
can be replaced with any arbitrary compact convex body in the definition (the size of the
(k, ε)-net increases by a factor depending on d, see Appendix B).

1.1 Our results & paper organization

Notation. Throughout, the notation Od, Ωd, and Θd hides constants depending on the
dimension d.

First, we show that any (k, ε)-net for volume measure must have size Ωd(1/ε1−k/d)
(Lemma 3). Perhaps surprisingly, we give a relatively simple construction of (k, ε)-nets for
volume measure of size Od(1/ε1−k/d) for k ≥ 1 (Theorem 6). For k = 0, we obtain nets of
size Od((1/ε) logd−1(1/ε)) (Theorem 11). Importantly, both constructions are deterministic
and explicit (see the discussion below).

As far as the authors are aware, this particular problem we study has not been addressed
before. The only related result known is the existence of explicit constructions of (0, ε)-nets
for volume measure for axis parallel boxes in Rd, and is briefly mentioned in [2]. In this case,
one can construct a (0, ε)-net for volume measure of size Od(1/ε) using Van der Corput sets
in two dimensions, and Halton-Hammersely sets in higher dimensions. For completeness, we
describe these construction in Appendix A.

Deterministic vs. explicit constructions of ε-nets. For the regular concept of ε-nets, there
are known deterministic constructions. They work by repeatedly halving the input point set,
using deterministic discrepancy constructions, until the set is of the desired size [6, 3]. On
the one hand, for our setting (i.e., the measure is uniform volume on the unit hypercube) it
is not clear what the generated ε-net is without running this construction algorithm outright.
On the other hand, we develop a construction of weak ε-nets – for uniform volume measure
over the hypercube for ellipsoids – which are much simpler and are explicit; one can easily
compute the ith point in this net using polylogarithmic space.
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Figure 3.1 The multi-level grid, and its associated lines.

2 Lower bound

▶ Definition 1. The affine hull of a point set P = {p1, . . . , pn} ⊆ Rd is the set{∑
i

αipi

∣∣∣ ∀i αi ∈ R and
∑

i

αi = 1
}

.

For 0 ≤ k < d, a k-flat is the affine hull of a set of k + 1 (affinely independent) points.

▶ Definition 2. For parameters ε ∈ (0, 1) and k ∈ {0, 1, . . . , d − 1}, a set K of k-flats is a
(k, ε)-net for volume measure if for any convex body Ξ ⊆ Rd with vol

(
Ξ ∩ [0, 1]d

)
≥ ε,

there exists a flat φ ∈ K such that φ ∩ Ξ ̸= ∅.

▶ Lemma 3. For a parameter ε ∈ (0, 1), any (k, ε)-net for volume measure must have size
Ωd(1/ε1−k/d).

Proof. Let K be a (k, ε)-net for volume measure. For each k-flat φ ∈ K, let H(φ, r) be the
locus of points in [0, 1]d within distance at most r from φ (for k = 1 in three dimensions,
this is the intersection of [0, 1]d and the cylinder with radius r centered at the line φ). Note
that a ball b with center c and radius r intersects a k-flat φ if and only if c ∈ H(φ, r).

Fix r = (ε/µ)1/d, where µ is a constant to be determined shortly. We claim that by
choosing µ appropriately, if K is a (k, ε)-net for volume measure, then the collection of
objects {H(φ, r) | φ ∈ K} covers [0, 1]d. Indeed, suppose not. Then there exists a point
p ∈ [0, 1]d not covered by any of the objects H(φ, r). This implies that a ball b centered at p

with radius r does not intersect any k-flat of K, and its volume is cdrd = cdε/µ, where cd

is a constant that depends on d. Choose µ = cd so that b has volume at least ε, but does
intersect any k-flat of K. A contradiction to the required net property.

Hence, by the choice of r, any (k, ε)-net for volume measure must satisfy the condition that
{H(φ, r) | φ ∈ K} covers [0, 1]d. For any k-flat φ, we have β = vol(H(φ, r)) = Od(rd−k) =
Od(ε1−k/d). Thus, to cover [0, 1]d, we have that |K| ≥ 1/β = Ωd(1/ε1−k/d). ◀

3 Constructing (k, ε)-nets for volume measure for k ≥ 1

Here, we give a self-contained proof of a deterministic, explicit construction of (k, ε)-nets for
volume measure of size Od(1/ε1−k/d) for k ≥ 1 which matches the lower bound of Lemma 3
up to constant factors. The construction will be done recursively on the dimension d.

Base case: k = d−1. Here a (d−1, ε)-net for volume measure of size d/ε1/d = Od(1/ε1−k/d)
follows readily by overlaying a d-dimensional grid of size length ε1/d and letting the net
consist of the hyperplanes forming the grid. As such, we assume k < d − 1.

SoCG 2021
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Figure 3.2 The slice volume, and its 1/9th power, for the unit radius ball Ξ in 10 dimensions.
This is an example of the concavity implied by the Brunn-Minkowski inequality, which in turn
implies that the slice function is unimodal.

3.1 Construction
The construction is based on quadtrees. Starting with the entire cube [0, 1]d, we construct d

orthogonal hyperplanes which split the cube into 2d cubes of side length 1/2. We refer to
such hyperplanes as splitting hyperplanes. This splitting process is continued recursively
inside each cell, for i = 0, . . . , τ , where

τ =
⌈

1
d

lg 1
ε

⌉
+ 3 ⌈log(3d)⌉ + 1 (3.1)

(and lg = log2), so that cubes at the ith level of the construction has side length 1/2i. The
number of such cubes at the ith level is 2di. Naturally, these cubes together form a grid with
side length 1/2i. See Figure 3.1 for an illustration of the construction in two dimensions.

For each splitting hyperplane h at level i ≥ 1, which splits cells of side length 1/2i−1

into cells of side length 1/2i, we recursively construct a (k, εi)-net for volume measure on h

(which lies in d − 1 dimensions), where

εi = 2iε

4d
. (3.2)

We collect all k-flats on all splitting hyperplanes at all levels into our (k, ε)-net for volume
measure K.

3.2 Analysis
▶ Lemma 4. The constructed (k, ε)-net for volume measure has size Od(1/ε1−k/d).

Proof. Let T (ε, d) denote the minimum size of a (k, ε)-net for volume measure over [0, 1]d.
The proof is by induction on d. When d = k + 1, we have T (ε, k + 1) ≤ (k + 1)/ε1/(k+1),
by the base case described above. So assume d ≥ k + 2 and T (δ, d′) ≤ β(d′)/δ1−k/d′ for all
d′ < d, where β(d′) is a constant to be determined. By the inductive hypothesis, the above
construction produces a (k, ε)-net for volume measure of size

|K| ≤ d

τ∑
i=1

2i−1T (εi, d − 1) ≤ d

τ∑
i=1

2i−1β(d − 1)
ε

1−k/(d−1)
i

≤ 4d2β(d − 1)
ε1−k/d

τ∑
i=1

2i−1

2i−ik/(d−1)

≤ 2d2β(d − 1)
ε1−k/d

τ∑
i=1

2ik/(d−1) ≤ 4d2β(d − 1)
ε1−k/(d−1) · 2τk/(d−1) ≤ 16d2β(d − 1)

ε1−k/d
.

The last inequality follows since τ ≤ 1
d lg 1

ε + 2. In particular, we obtain the recurrence
β(d) = 16d2β(d−1), which solves to β(d) = dO(d). As such, the size of K is Od(1/ε1−k/d). ◀
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riri+2

v

ri+1 r1

Figure 3.3 By the choice of rτ ≤ . . . ≤ r1, we have v(rτ ) ≥ . . . ≥ v(r1).

The Brunn-Minkowski inequality and unimodal functions. The Ξ be a convex body in
Rd. For a parameter α ∈ R, let f(α) denote the (d − 1)-dimensional volume of Ξ intersected
with the hyperplane x = α. The Brunn-Minkowski inequality [7, 4] implies that the function
g(α) = f(α)1/(d−1) is concave. In particular, g is unimodal. Namely, there exists a α ∈ R
such that g is non-decreasing on (−∞, α] and non-increasing on [α, ∞). As such, the function
f itself is unimodal. See Figure 3.2.

▶ Lemma 5. The set K is a (k, ε)-net for volume measure.

Proof. Let Ξ be a convex body contained in [0, 1]d with volume at least ε. Assume, for the
sake of contradiction, that Ξ is not stabbed by any of the k-flats of K.

Let h(α) be the hyperplane orthogonal to the first axis which intersects the first axis at
α ∈ R. Define the function

f(α) = vol
(
Ξ ∩ h(α)

)
.

By the Brunn-Minkowski inequality, the function g(α) = f(α)1/(d−1) is concave and unimodal.
Define the point x∗ ∈ [0, 1] so that x⋆ = arg maxα f(α).

Let V (∆) = f(x⋆ +∆), and let v(∆) = (V (∆))1/(d−1). The function v, being a translation
of g, is concave and unimodal. Let ri ≥ 0 be the maximum number such that V (ri) = εi,
for i = 1, . . . , τ . Observe that if ri ≥ 1/2i, then there is hyperplane orthogonal to the first
axis that has a recursive construction of a net on it, for εi. This by induction would imply
that the net intersects Ξ. We thus assume from this point on that

ri <
1
2i

,

for all i. Observe that r1 ≥ r2 ≥ · · · ≥ rτ , as ε1 < ε2 < · · · < ετ (more specifically,
εi = 2εi−1 for all i).

The concavity of v(·), see Figure 3.3, implies that

v(ri+2) − v(ri+1)
ri+2 − ri+1

≥ v(ri+1) − v(ri)
ri+1 − ri

=⇒ ri+1 − ri

ri+2 − ri+1
≤ v(ri+1) − v(ri)

v(ri+2) − v(ri+1) ,

as ri+1 − ri < 0 and v(ri+2) − v(ri+1) > 0. Since V (ri+1) = εi+1 = 2εi = 2V (ri), we have
that v(ri+1) = 21/(d−1)v(ri). For i < τ , let ℓi = ri − ri+1. Plugging this into the above,
observe

ℓi

ℓi+1
= ri − ri+1

ri+1 − ri+2
≤ v(ri+1) − v(ri)

v(ri+2) − v(ri+1) = (21/(d−1) − 1)v(ri)
21/(d−1)(21/(d−1) − 1)v(ri)

= 1
21/(d−1) .

SoCG 2021



42:6 Stabbing Convex Bodies with Lines and Flats

Since ℓτ−1 ≤ rτ−1 ≤ 1/2τ−1, we have

r1 = rτ +
τ−1∑
i=1

ℓi ≤ rτ + ℓτ−1

(
1 + 1

21/(d−1) + 1
22/(d−1) + · · ·

)
≤ rτ + 2dℓτ−1 ≤ (2d + 1)rτ−1 <

2d + 1
2τ−1 <

ε1/d

4d2 ,

by the value of τ , see Eq. (3.1).
Let I1 be the maximum interval, where the value of V (x) ≥ ε1, for any x ∈ I1. By the

above, we have that if the net does not intersect Ξ, then ∥I1∥ ≤ 2r1 ≤ 2ε1/d/(4d2).
We define I2, . . . , Id in a similar fashion on the other axes, and the same argumentation

would imply that ∥Ij∥ ≤ 2ε1/d/(4d2), for all j. Furthermore, any plane orthogonal to the
axes that avoids the box B = I1 × I2 · · · × Id has an intersection with Ξ of volume at most
ε1. We conclude that the total value of Ξ is at most

vol(Ξ) ≤ vol(B) +
d∑

j=1

∫
y∈[0,1]\Ij

vol
(

Ξ ∩ (xj = y)
)

dy ≤
d∏

j=1
∥Ij∥ + dε1 ≪ ε,

which is a contradiction to vol(Ξ) ≥ ε. ◀

▶ Theorem 6. Given ε ∈ (0, 1) and k ∈ {1, . . . , d − 1}, the above is a deterministic and
explicit construction of a (k, ε)-net for volume measure over [0, 1]d of size Od(1/ε1−k/d).

4 Constructing (0, ε)-nets for volume measure

4.1 Ellipsoids are enough
We now give constructions for (0, ε)-nets for volume measure. The following result shows
that it suffices to build such nets when the convex bodies are restricted to be ellipsoids.

▶ Lemma 7. Suppose there exists a (0, ε)-net for volume measure over [0, 1]d for ellipsoids
of size T (ε, τ), for τ = 1, . . . , d. Then one can construct a (0, ε)-net for volume measure over
[0, 1]d of size T (ε/dd, d).

Proof. Consider any convex body Ξ, such that vol
(
Ξ ∩ [0, 1]d

)
≥ ε. Let E be the ellipsoid

of largest volume contained inside Ξ ∩ [0, 1]d. By John’s ellipsoid theorem, we have that
E ⊆ Ξ ⊆ dE . In particular,

vol(E) = vol(dE)/dd ≥ vol(Ξ)
dd

≥ ε

dd
.

As such, any (0, ε/dd)-net for volume measure when the convex bodies are restricted to be
ellipsoids is a (0, ε)-net for volume measure in the general setting. ◀

Hence, we focus on building (0, ε)-nets for volume measure (equivalently, these are also
ε-nets for volume measure) for ellipsoids. Note that it is easy to obtain an ε-net of size
Od(ε−1 log ε−1) by random sampling [5]. Here, we give a deterministic, explicit construction
of such a net.

4.2 Stabbing ellipsoids with points
4.2.1 Net construction in 2D
Let E be an ellipse contained in the unit square [0, 1]2 with area(E) ≥ ε. The following
construction is inspired by a construction of Pach and Tardos [9].
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Figure 4.1 The net constructed.

Construction. Let M = 3 +
⌈
lg ε−1⌉

. For j = 1, . . . , M − 1, consider the rectangle

Rj = [0, 1/2M−j ] × [0, 1/2j ].

Consider the natural tiling of [0, 1]2 by the rectangle Ri, and let Pi be the set of vertices of
the resulting grid Gi in the interior of the unit square. Let N = ∪iPi. See Figure 4.1.

Correctness. We need the following easy observation, whose proof is included for the sake
of completeness.

▷ Claim 8. Let c be the center of an ellipse E , and let h be the longest horizontal segment
contained in E . The segment h passes through c.

Proof. By the central symmetry of E , if h does not pass through c, then it has a symmetric
reflection h′ through c, which is a horizontal segment of the same length. Let ℓ be the
horizontal line through c, and observe that |ℓ ∩ E| ≥ |h| by convexity. By the smoothness of
E , it follows that |ℓ ∩ E| > |h|, which is a contradiction. ◁

▶ Lemma 9. The set N constructed above is an ε-net for volume measure over [0, 1]2 for
ellipses. Furthermore, |N | = O(ε−1 log ε−1).

Proof. Observe that for any i, we have area(Ri) = 2−(M−j)−j = 2−M ≥ ε/8. As such,
|Pi| = O(1/ε), and |N | = O(M/ε) = O(ε−1 log ε−1).

Let E ⊆ [0, 1]2 be any ellipse with area(E) ≥ ε. Let Y denote the projection of E onto
the y-axis. Observe that |Y | ≥ ε. Let h be the longest horizontal segment contained in E
(which passes through the center of E by Claim 8). The two extreme y-axis points in E , and
the segment h forms a quadrilateral in E of area |h| |Y | /2, see Figure 4.2. Let Y = [y−, y+],
and for α ∈ Y , let g(α) = |{y = α} ∩ E|. We have that

|h| |Y | /2 ≤ area(E) =
∫ y+

α=y−

g(α)dα ≤ |h| |Y | .

Since area(E) ≥ ε, we conclude that |h| ≥ ε/ |Y |.
We set y1/4 = (3/4)y− + (1/4)y+ and y3/4 = (1/4)y− + (3/4)y+. Consider the two

horizontal segments h1/4 =
{

y = y1/4
}

∩ E and h3/4 =
{

y = y3/4
}

∩ E . These two segments
are of the same length and are parallel. Furthermore, γ =

∣∣h1/4
∣∣ =

∣∣h3/4
∣∣ ≥ |h| /2,

see Figure 4.2. Consider the parallelogram Z formed by the convex hull of h1/4 and
h3/4. Observe, that for any α ∈ [y1/4, y3/4], we have that |{y = α} ∩ Z| = γ. As such,
area(Z) = γ · |Y | /2 ≥ |h| /2 · |Y | /2 ≥ ε/4. Let k be the minimum integer such that
1/2k+1 ≤ |Y | /2. Since |Y | ≥ ε, it follows that k < M − 2.

SoCG 2021
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Y
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y3/4

y1/4
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h3/4

h1/4

Z

`k

β

h

E

Figure 4.2 The setup for proof of correctness.

This implies that the grid Gk+1 has a horizontal line ℓk that intersects Z. Furthermore,
we have

|ℓk ∩ E| ≥ |ℓk ∩ Z| = γ ≥ |h|
2 ≥ ε

2|Y |
≥ ε2k ≥ 8 · 2k

2M
= 1

2M−k−3 >
1

2M−(k+1) = β,

since M = 3 +
⌈
lg ε−1⌉

. Namely, the spacing of the points of Gk+1 on the line ℓk (i.e., β)
is shorter than the interval ℓk ∩ E . It follows that a point of Pk+1 ⊆ N lies in E , and thus
establishing the claim. ◀

4.2.2 The construction in higher dimensions
We now extend the previous construction to higher dimensions. The construction is recursive.
Namely, we assume that for all d′ < d we can construct an ε-net for volume measure over
[0, 1]d′ for ellipsoids of size (β(d′)/ε) lgd′−1(1/ε), where β(d′) is a constant depending on the
dimension d′ (to be determined shortly). Lemma 9 proves the claim when d = 2.

Construction. Label the d axes x1, . . . , xd. Let τ = ⌈(1/d) lg(1/ε)⌉ and define the function
∆(i) = 2iε1/d. We repeat the following construction for each axis xℓ, where ℓ = 1, . . . , d.
For each i = 0, . . . , τ , let Mi = ⌈lg(1/∆(i))⌉. For each i, and for each j = 0, . . . , Mi, form
2j + 1 evenly spaced hyperplanes which are orthogonal to the axis xℓ (thus consecutive
hyperplanes are separated by distance 2−j). For each hyperplane h, we recursively construct
a ε/∆(i + 2)-net Pℓ,i,j for [0, 1]d−1 on h ∩ [0, 1]d. Let Pℓ = ∪τ

i=1 ∪Mi
j=1 Pℓ,i,j . Finally, we claim

the point set P = ∪d
ℓ=1Pℓ is the desired ε-net for volume measure.

▶ Theorem 10. For ε ∈ (0, 2−2d], there exists a ε-net for volume measure over [0, 1]d for
ellipsoids, of size 2O(d2)ε−1 lgd−1 ε−1.

Proof. We first bound the size of the resulting net. Since ε ≤ 2−2d, by a direct calculation,

|P | ≤
d∑

ℓ=1
|Pℓ| ≤ d

τ∑
i=0

Mi∑
j=0

(2j + 1) · β(d − 1) ·
(

∆(i + 2)
ε

lgd−2
(

∆(i + 2)
ε

))

≤ 2d · β(d − 1)
ε

τ∑
i=0

2Mi+1 · 22∆(i) lgd−2
(

∆(i + 2)
ε

)

≤ 25d · β(d − 1)
ε

τ∑
i=0

lgd−2
(

2i+2

ε1−1/d

)
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≤ 25d · β(d − 1)
ε

τ∑
i=0

(
(i + 2) + lg

(
1

ε1−1/d

))d−2
.

Since i + 2 ≤ τ + 2 ≤ lg(1/ε) for ε ≤ 2−2d, we have

|P | ≤ 25d · β(d − 1)
ε

[
(τ + 1) · 2d−2 lgd−2

(
1
ε

)]
≤ 25d · β(d − 1)

ε

[
4
d

lg 1
ε

· 2d−2 lgd−2 1
ε

]
.

As such, |P | ≤ 2d+5·β(d−1)
ε lgd−1( 1

ε

)
. In particular, we obtain the recurrence β(d) = 2d+5β(d−

1), which solves to β(d) = 2O(d2). Hence, |P | = 2O(d2)ε−1 lgd−1 ε−1.
We now argue correctness. Let E be an ellipsoid of volume at least ε. Let B be the

smallest enclosing axis-aligned box for E . Suppose that the longest edge of B is along
the ℓth axis. In particular, along this ℓth axis B has side length s ≥ ε1/d, for otherwise
vol(E) ≤ vol(B) ≤ sd < ε. We claim that E intersects a point in the set Pℓ.

Let L = [ℓ−, ℓ+] be the projection of E onto the ℓth axis, with s = |L|. For x ∈ L, define
H(x) to be the hyperplane orthogonal to the ℓth axis which intersects the ℓth axis at x.
Finally, let K be the hyperplane through the center of E which is orthogonal to the ℓth
axis and set F = E ∩ K. We claim that vol(F) ≥ ε/s. To prove the claim, suppose towards
contradiction that vol(E ∩ K) < ε/s. Then,

vol(E) =
∫ ℓ+

ℓ−

vol(E ∩ H(x)) dx <
ε

s

∫ ℓ+

ℓ−

1 dx = ε

s
|L| = ε,

a contradiction.
Choose an integer i ≥ 0 such that s ∈ [∆(i), ∆(i + 1)). Let z1/4 = (3/4)ℓ− + (1/4)ℓ+ and

z3/4 = (1/4)ℓ− + (3/4)ℓ+. Observe that for all x ∈ [z1/4, z3/4], vol(E ∩ H(x)) ≥ ε/(2s) ≥
ε/∆(i + 2). Next, let j be the minimum integer such that 1/2j+1 ≤ s/2. Note that such
an integer exists, as we can choose j = ⌈lg(1/s)⌉. Since s ≥ ∆(i), j ≤ ⌈lg(1/∆(i))⌉ ≤ Mi.
Thus, for our choices of i and j, we have found a hyperplane h which intersects E with
vol(E ∩ h) ≥ ε/∆(i + 2). By our recursive construction, there is a point in the net Pℓ,i,j

which intersects E ∩ h and thus E . ◀

▶ Theorem 11. There is a deterministic, explicit construction of (0, ε)-nets for volume
measure over [0, 1]d of size

Od

(
1
ε

logd−1 1
ε

)
.

Proof. Follows by plugging in the bound for Theorem 10 into Lemma 7. ◀

5 Conclusion

The main open problem left by our work is bounding the size of (k, ε)-nets in the general case.
That is, the input is a set P of n points in Rd, and we would like to compute a minimum set
of k-flats which stab all convex bodies containing at least εn points of P . As noted earlier,
there is a (k, ε)-net of asymptotically the same size as of a weak ε-net in Rd−k. This follows
by projecting the point set to a subspace of dimension d − k, constructing a regular weak
ε-net, and lifting the net back to the original space. Can one do better than this somewhat
naive construction?

Note that it is easy to show a lower bound of size Ω(1/ε) for (1, ε)-nets in the general
case. Take a point set that consists of ⌈2/ε⌉ equally sized clusters of tightly packed points,
such that no line passes through three clusters. Namely, our sublinear results in 1/ε are
special for the uniform measure on the hypercube.
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A (0, ε)-nets for volume measure when the bodies are axis-aligned
boxes

Here we show the existence of a (0, ε)-net for volume measure of size O(1/ε) that intersects
any axis-aligned box B with vol

(
B ∩ [0, 1]2

)
≥ ε. The following constructions are essentially

described in [6] (in the context of low-discrepancy point sets), however the proofs use similar
tools. We give the proofs for completeness.

▶ Definition 12 (the Van der Corput set). For an integer α, let bin(α) ∈ {0, 1}⋆ denote the
binary representation of α, and rev(bin(α)) be the reversal of the string of digits in bin(α).
We define br(α) ∈ [0, 1] to be the bit-reversal of α, which is defined as the number obtained
by concatenating “0.” with the string rev(bin(α)). For example, br(13) = 0.1011. Formally, if
α =

∑∞
i=0 2ibi with bi ∈ {0, 1}, then br(α) =

∑∞
i=0 bi/2i+1.

For an integer n, the Van der Corput set is the collection of points p0, . . . , pn−1, where
pi = (i/n, br(i)). See Figure A.1.

▶ Lemma 13. For a parameter ε ∈ (0, 1),there is a collection of O(1/ε) points P ⊂ [0, 1]2
such that any axis-aligned box B with vol

(
B ∩ [0, 1]2

)
≥ ε contains a point of P .

Proof. Let n = ⌈4/ε⌉. We claim that the Van der Corput set of size n is the desired point
set P .

Let B be a box contained in [0, 1]2 of width w and height h, with wh ≥ ε. Let q ≥ 2 be
the smallest integer such that 1/2q < h/2 ≤ 1/2q−1. By the choice of q, the projection of B

onto the y-axis contains an interval of the form I = [k/2q, (k + 1)/2q) for some integer k. Let
BI = B ∩

{
(x, y) ∈ [0, 1]2

∣∣ y ∈ I
}

be the box restricted to I along the y-axis. Observe that

vol(BI) = w/2q = w/(4 · 2q−2) ≥ wh/4 ≥ ε/4 ⇐⇒ w ≥ 2qε/4.
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https://doi.org/10.1145/1542362.1542365
http://www.cs.princeton.edu/~chazelle/book.html
http://www.cs.princeton.edu/~chazelle/book.html
https://doi.org/10.1090/surv/173
https://doi.org/10.1007/BF02187876
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/s00454-004-1116-4
https://doi.org/10.1090/S0894-0347-2012-00759-0
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Figure A.1 The Van der Corput set with n = 16 (left) and n = 128 (right).

Let S = [0, 1] × I, so that each pj ∈ P ∩ S has br(j) ∈ I. In particular, the first q binary
digits of br(j) are fixed. This implies that the q least significant binary digits of j are fixed.
In other words, P ∩ S contains all points pj such that j ≡ ℓ (mod 2q) for some integer ℓ –
the x-coordinates of the points in P are regularly spaced in the strip S with distance 2q/n.
If the width of BI is at least 2q/n, then this implies that B contains a point of P in the strip
S. Indeed, by the choice of n, 2q/n ≤ 2qε/4 ≤ w. ◀

By extending the definition of the Van der Corput set to higher dimensions, the above
proof also generalizes.

▶ Definition 14 (the Halton-Hammersely set). For a prime number ρ and an integer α =∑∞
i=0 ρibi, bi ∈ {0, . . . , ρ − 1}, written in base ρ, define brρ(α) =

∑∞
i=0 bi/ρi+1. Note that

br2 = br from Definition 12.
For integers n and d, the Halton-Hammersely set is the collection of points

p1, . . . , pn−1,

where pi = (brρ1(i), brρ2(i), . . . , brρd−1(i), i/n), and ρ1, . . . , ρd−1 are the first d − 1 prime
numbers. (Making i/n the dth coordinate instead of the 1st coordinate simplifies future
notation.)

▶ Lemma 15. For a parameter ε ∈ (0, 1), there is a collection of 2O(d log d)/ε points P ⊂ [0, 1]d
such that any axis-aligned box B with vol

(
B ∩ [0, 1]d

)
≥ ε contains a point of P .

Proof. The proof is similar to Lemma 13, with the Chinese remainder theorem as the
additional tool.

Let n =
⌈
(2d−1/ε) · (d − 1)♯

⌉
, where k♯ is the primorial function, defined as the product

of the first k prime numbers. It is known that k♯ ≤ exp((1 + o(1))k log k), which implies
n = 2O(d log d)/ε. We claim that the Halton-Hammersely set of size n is the desired point
set P .

Denote the side lengths of the box B by s1, . . . , sd, with
∏d

i=1 si ≥ ε. For each i =
1, . . . , d − 1, let qi be the smallest integer such that 1/ρqi

i < si/2 ≤ 1/ρqi−1
i , where ρi is the

ith prime number. By the choice of qi, the projection of B onto the ith axis contains an
interval of the form Ii = [ki/ρqi

i , (ki + 1)/ρqi

i ] for some integer ki. Let S denote the box
I1 × . . . × Id−1 × [0, 1] and BS = B ∩ S. Observe that

vol(BS) = sd

d−1∏
i=1

1
ρqi

i

≥ sd

d−1∏
i=1

si

2ρi
≥ ε

2d−1

d−1∏
i=1

1
ρi

⇐⇒ sd ≥ ε

2d−1

d−1∏
i=1

ρqi−1
i .
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Similar to Lemma 13, we observe that the point pj ∈ P falls into S when j ≡ ℓi (mod ρqi

i )
for some integers ℓ1, . . . , ℓd−1. By the Chinese remainder theorem, there is exactly one
number in the set

{
0, 1, . . . ,

∏d−1
i=1 ρqi

i − 1
}

(the dth coordinate of pj) which satisfies these
d − 1 equations. In particular, the points in P ∩ S are spaced regularly along the dth axis
with distance δ = (1/n)

∏d−1
i=1 ρqi

i . Once again, we argue that the length of B along the dth
axis is at least δ, which implies the result. Indeed, by our choice of n we have that,

δ = 1
n

d−1∏
i=1

ρqi

i ≤ ε

2d−1

d−1∏
i=1

ρqi−1
i ≤ sd. ◀

B Extension: Replacing [0, 1]d with other convex bodies

▶ Lemma 16. Let C be an arbitrary compact convex body in Rd with non-empty interior.
Suppose there is a (k, ε)-net for volume measure over [0, 1]d of size T (ε, k, d). For a given
integer k < d and ε ∈ (0, 1), there is a collection of k-flats K of size T (Ωd(ε), k, d)), such
that any convex body Ξ with vol(Ξ ∩ C) ≥ ε vol(C) is intersected by a k-flat in K.

Proof. Assume without loss of generality that Ξ ⊆ C. John’s ellipsoid theorem [7] implies
that there exists a non-singular affine transformation M, and a ball b of diameter 1, such
that b/d ⊆ M(C) ⊆ b ⊆ [0, 1]d, where b/d is b scaled by a factor of 1/d. We have that
vol(b) = cd2−d, where cd is the volume of the unit ball in Rd. Additionally,

vol
(
[0, 1]d

)
= 1 = 2d

cd
vol(b) = (2d)d

cd
vol(b/d) ≤ (2d)d

cd
vol(M(C)).

Set δ = cd/(2d)d. Compute a (k, ε′)-net for volume measure K over [0, 1]d, where ε′ = ε/δ,
which has size T (ε′, k, d). We claim that this is a (k, ε)-net for volume measure with respect
to M(Ξ). Indeed, consider any convex body Ξ ⊆ C with vol(Ξ ∩ C) ≥ ε vol(C). Since M
preserves the ratios of volumes, we have that

vol
(
M(Ξ) ∩ [0, 1]d

)
≥ vol(M(Ξ) ∩ M(C)) ≥ ε vol(M(C)) ≥ ε

δ
vol

(
[0, 1]d

)
= ε′ vol

(
[0, 1]d

)
.

As such, one of the k-flats in K intersects M(Ξ). After applying the inverse transformation
M−1 to each k-flat in K, one of the k-flats in M−1(K) intersects Ξ. ◀
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