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Abstract
Given a closed simple polygon P , we say two points p, q see each other if the segment seg(p, q) is
fully contained in P . The art gallery problem seeks a minimum size set G ⊂ P of guards that sees
P completely. The only currently correct algorithm to solve the art gallery problem exactly uses
algebraic methods. As the art gallery problem is ∃R-complete, it seems unlikely to avoid algebraic
methods, for any exact algorithm, without additional assumptions.

In this paper, we introduce the notion of vision-stability. In order to describe vision-stability
consider an enhanced guard that can see “around the corner” by an angle of δ or a diminished guard
whose vision is by an angle of δ “blocked” by reflex vertices. A polygon P has vision-stability δ if
the optimal number of enhanced guards to guard P is the same as the optimal number of diminished
guards to guard P . We will argue that most relevant polygons are vision-stable. We describe a
one-shot vision-stable algorithm that computes an optimal guard set for vision-stable polygons
using polynomial time and solving one integer program. It guarantees to find the optimal solution
for every vision-stable polygon. We implemented an iterative vision-stable algorithm and show
its practical performance is slower, but comparable with other state-of-the-art algorithms. The
practical implementation can be found at: https://github.com/simonheng/AGPIterative. Our
iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and
only computes them when deemed necessary. Given a chord c of a polygon, we denote by n(c) the
number of vertices visible from c. The chord-visibility width (cw(P )) of a polygon is the maximum
n(c) over all possible chords c. The set of vision-stable polygons admit an FPT algorithm when
parameterized by the chord-visibility width. Furthermore, the one-shot algorithm runs in FPT time
when parameterized by the number of reflex vertices.
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Figure 1 a) A small positional change largely influences how much visibility of the two guards is
blocked by r1, but only has a small effect on the way that r2 or r3 blocks the visibility of the guards.
b) Shooting rays from reflex vertices. c) Enhanced visibility region. d) Diminished visibility region.
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44:2 A Practical Algorithm with Performance Guarantees for the Art Gallery Problem

1 Introduction

For most algorithmic problems, there is a practice-theory gap. That is a gap between
algorithms that perform best in practice and that perform best in theory. A striking example
is the euclidean traveling salesperson problem. It has long been known to be NP-hard,
see [46] for the most recent hardness results. Despite those theoretical hardness results, in
practice, new records of optimally solved large scale instances keep making the news [11].

In this work, we narrow this gap for the art gallery problem. We present several closely
related algorithms. Some of them have provable performance guarantees under some mild
assumptions. Other algorithms perform comparably well to the best state-of-the-art practical
algorithms on the art gallery problem, however at the cost of losing these theoretical
performance guarantees.

Motivation. The theoretical study [57] of algorithms has three main motivations:
Prediction: Given a specific algorithm, we want to predict how well it will perform. This

can help us to decide if we want to implement it in the first place.
Explanation: Assuming that we know how well an algorithm performs, we want to find an

underlying reason for its performance.
Invention: Can we design better algorithms in practice?
These goals are an important measure of success. In an ideal world, theory and practice go
hand-in-hand. Theory researchers design and analyze algorithms and practically oriented
researchers implement those algorithms and rigorously test them. These tests help to adapt
models, assumptions, and performance measures. At the same time, practical researchers
may find other approaches fruitful and then in turn theoretical researchers need to find out
why those approaches work. This theory-practice cycle should ideally lead to a very good
theoretical understanding and very fast practical algorithms. Unfortunately, as we will lay
out, the study on the art gallery problem has two almost independent lines of research. One
solely theoretical and another purely practical one. Thus our theoretical study has limited
value to predict, to explain, or to invent. We believe that a solid theoretical understanding
will be also useful for experimental research. Our main contribution is to narrow this gap
and give a starting point to the theory-practice cycle.

Related work. Let us start by considering practical research. Various researchers imple-
mented algorithms and found the optimal solution on synthetic instances of up to 500
vertices [68, 36, 21, 49, 25, 20, 26, 10, 27, 19]. The idea is to discretize the problem and hope
that the solution to the discretized problem also gives the optimal solution to the original
problem. To be more specific, the approach is to generate a candidate set C and a witness
set W , then compute the optimal way to guard W using the minimum number of guards
in C. In an iterative manner, more candidates and witnesses are generated until the optimal
solution is found. While these algorithms usually find the optimal solution, there is a simple
polygon on which these algorithms run forever [2]. We do not know sufficient conditions
under which these practical algorithms would give the optimal solution in a finite amount
of time.

Let us continue by considering worst-case optimality. We know that the art gallery
problem is decidable using tools from real algebraic geometry. The idea is to encode guards
by real numbers and use polynomial equations and inequalities to encode visibility [32].
Currently, researchers working on solving polynomial equations repeatedly report that 12 is
the maximum number of variables they could handle, using exact methods. (The second
author asked this at several conferences and workshops.) To express the art gallery problem
by polynomial equations has a considerable blow-up and needs existentially and universally
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quantified variables. To summarize, we would be surprised if these exact methods could even
find an optimal solution of size two for the art gallery problem. As the art gallery problem is
∃R-complete [3], we know that methods from real algebraic geometry are unavoidable for any
exact algorithm, without additional assumptions. The ∃R-completeness of the art gallery
problem [3] is a very good explanation of why researchers were not able to find algorithms
that avoid the aforementioned algebraic methods. Furthermore, it explains why it is hard
to prove that practical discretization schemes work from a theoretical perspective. To be
precise, if there would be a discretization scheme with worst-case guarantees then NP ≠ ∃R.

To the reader not familiar with the existential theory of the reals (∃R), it may be insightful
to get some background information. It is defined in an analogously to NP. Recall that a
problem is in NP if for every input there is a binary witness w ∈ {0, 1}∗ and a verification
algorithm that runs on the word RAM in polynomial time. We say a problem is contained
in ∃R if for every input there is a real witness w ∈ R∗ and a verification algorithm that
runs on the real RAM in polynomial time. Note that the usage of witness in the context of
complexity classes is very different from the usage of witness in the context of the art gallery
problem [35]. The complexity class ∃R is important as it gives a precise characterization
of many important algorithmic problems [1, 3, 5, 15, 22, 23, 29, 31, 34, 37, 42, 47, 51, 52,
53, 56, 58, 59, 60, 62, 63, 64, 4, 28]. None of these algorithmic problems are known to be
contained in NP. The problem to show NP-membership is that it is seemingly impossible
to describe a discrete witness of polynomial-size. The complexity-class ∃R relates the issue
for each of those algorithmic problems. To be more specific, either all of those algorithmic
problems admit a polynomial size witness or none of them do. This also makes it difficult to
discretize any of those problems as any such discretization, usually, would also give rise to a
polynomial sized witness.

Maybe the main approach to overcome the discretization problem for the art gallery
problem was to consider variants. Specifically, restricting guard placements to the vertices of
the polygon avoids the discretization problem, see [55, 14, 45, 7, 54, 38]. While many of these
results are very intricate and innovative, we are not aware of any of these algorithms being
implemented in practice. We think that there are two main reasons for this. In practice, the
discretization problem is solved to a fairly large degree. That is the candidates and witnesses
are usually sufficient to determine an optimal solution, even if this cannot be proven, i.e.,
restricting the guards to the vertices has only a small added benefit. The second reason is
that theoretical research focuses on the study of approximation algorithms, which may not
be so relevant in practice.

The study of approximation algorithms is mainly motivated by the fact that the art
gallery problem and many of its variants are NP-hard [33, 50, 61, 18]. Thus we cannot expect
a polynomial-time algorithm, assuming P ̸= NP. However, there are four important facts to
consider when dealing with the practical performance of approximation algorithms:
Discretization: While the concept of approximation relaxes the worst-case condition, it has

not been shown to help sufficiently to find a nice discretization [17]. (See below for a
detailed discussion.)

IP-solvers: For some inexplicable reason, once we have a discretization of the art gallery
problem, IP-solvers often find the optimum for that discretized problem very fast in
practice. (Often only 10% of the total running time is spent on solving IPs [27].) Thus
the aim of having a polynomial-time algorithm is not so important.

Visibility: The real bottleneck in practical performance seems to be computing visibilities
between candidates and witnesses. Approximation algorithms have to do these computa-
tions as well. Thus they may just not be any faster.

Non-optimality: By definition approximation algorithms do not give the optimal solution.
This may just be a too high price to pay.

SoCG 2021
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Contribution. In this paper, we introduce the notion of vision-stability. We argue that
most practical polygons are vision-stable. Using this assumption, we give a theoretical
solution to the discretization problem. Based on this discretization, we develop the one-shot
(vision-stable) algorithm that is guaranteed to find an optimal solution for every vision-stable
polygon. The algorithm takes polynomial preprocessing time and thereafter solves one integer
program. In particular, this shows that the art gallery problem is in NP for vision-stable
polygons. We refine the algorithm and present the iterative (vision-stable) algorithm. The
iterative algorithm delays many steps of the one-shot algorithm. Both algorithms are reliable,
in the sense that even if the input polygon is not vision-stable, the reported result is correct.
In order to make the iterative algorithm comparable in performance to the state-of-the-art,
we cut many corners in our implementation. The downside of this approach is that we are
not able to show theoretical performance guarantees for this practical version of the iterative
algorithm. On the upside, our implementation has slower but similar performance to previous
practical algorithms.

We believe that the concept of vision-stability contributed to all three main goals, as
mentioned above. It gives an explanation of why the discretization problem is solvable in
practice. It led to the design of a new practical algorithm, that, as we will see, works quite
differently from previous algorithms in many aspects. And finally, it predicted correctly that
this algorithm is feasible, which we verified in practice.

Let us emphasize here that there is still a large gap, between theory and practice. Our
predicted running times are far worse than the observed practical running time. Furthermore,
in practice, we used many techniques for which it seems very hard to give a profound
theoretical explanation of why they work so well. We hope our work contributes to a
deepened theoretical understanding of the art gallery problem.

Vision-stability. Before we formally define the notion of vision-stability, which is the key
concept of this paper, let us give some basic intuition on discretizing the art gallery problem.
The aim of the discretization process is to define a suitable candidate set C such that opt[C],
the optimum guard set restricted to C, is “pretty close” to the actual optimum opt. After
defining C in a suitable fashion, we can compute opt[C] by solving an integer program. We
know [17] that the grid Γ = wZ2 ∩ P with a small enough width w is a good such candidate
set in the sense that |opt[Γ]| ≤ 10 |opt|, under some mild general position assumptions. Using
smoothed analysis [30, 35] and a suitable random model of perturbation, we even know
that |opt[Γ]| = |opt|, with high probability. In summary, a fine enough grid contains the
optimal solution, under certain assumptions, however, the size of the candidate set C is also
important. The grid Γ as described above is huge. Thus computing opt[Γ] is infeasible in
practice, making it very desirable to attain a candidate set C with similar properties as Γ
and of polynomial size.

As a first step, we realize that a uniformly distributed candidate set would either be too
large or too coarse. Thus at some spots, we want the candidate set to be denser and at other
places in the polygon, we want it to be more sparse. Let us say two guard positions g, g′ have
almost the same visibility region then hopefully it is not so important to keep track of both
positions, but keeping only one of the positions is hopefully sufficient. Thus if the visibility
regions of g and g′ are very different, we should potentially include both of them in our
candidate set C. Another, almost trivial, observation is that a small movement of g towards
g′ may dramatically change visibility regions, if g and g′ are close to a reflex vertex. If g and
g′ are both very far away from all reflex vertices their visibility regions change almost not at
all, see Figure 1 a). Those two observations suggest that we may want to pick a candidate
set that is denser closer to reflex vertices and more sparse farther away from reflex vertices.
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Figure 2 A ray is rotated around a reflex vertex r. It defines a region that is either added or
removed from the visibility region.

x

opt(P, x)

Figure 3 On the x-axis, we have the value by which we either diminish or enhance guards. On
the y-axis we display the optimal number of guards. The function opt(P, x) only takes discrete
values and is monotonically decreasing. Thus it has a finite number of breakpoints.

This motivates the following approach. Shoot rays from every reflex vertex, such that the
angle between any two rays is at most some given angle δ. This defines an arrangement A.
All intersection points of the rays within the polygon P define our candidate set C, see
Figure 1 b). On an intuitive level, for every point p ∈ P there is a candidate c ∈ C such that
the visibility regions of p and c are similar. When r denotes the number of reflex vertices, we
get a total number of rays upper bounded by O( r

δ ). Thus, the candidate set has size O( r2

δ2 ).
We are now ready for the formal definition of vision-stability. Given a simple polygon P

and a point q, the visibility region of q is defined as vis(q) = {x ∈ P : x sees q}. Let r be
a reflex vertex of P and we assume that q sees r. Then, given some δ > 0, we can define
the visibility enhancing region A = A(q, r, δ) as follows. Rotate a ray v with apex r by some
angle of δ, clockwise and counter-clockwise. At each time of the rotation, the ray v defines a
maximal segment inside P with endpoint r. In some cases, the segment is the single point r,
see Figure 2. The region A(r, δ) is the union of all those segments. For some δ > 0, we define
the δ-enhanced visibility region visδ(q) of q as vis(q) and for every suitable reflex vertex, we
add the region A(r, δ). We define the δ-diminished visibility region vis−δ(q) of q as vis(q)
after we remove the regions A(r, δ), for every applicable reflex vertex r. To be precise, we
define visδ(q) to be a closed set, both for δ > 0 and δ ≤ 0. Given a polygon P , we say that
G is δ-guarding P if

⋃
g∈G visδ(g) = P . We denote by opt(P, δ) the size of the minimum

δ-guarding set. For brevity, we denote opt(P, 0), merely by opt(P ) or, if P is clear from the
context, by opt. We say that a polygon P is vision-stable or equivalently has vision-stability
δ > 0, if opt(P, −δ) = opt(P, δ). Note that for δ′ > δ > 0, it holds that P has vision-stability
δ′ implies that P also has vision-stability δ. Thus the smaller the vision-stability the larger
we expect the candidate set to be. To avoid confusion, at no time are we interested in
actually computing opt(P, x), for any value x ≠ 0. The notion of vision-stability is purely a
theoretical concept in order to formulate assumptions on the underlying polygon.

SoCG 2021



44:6 A Practical Algorithm with Performance Guarantees for the Art Gallery Problem

Here, we will give a summary of the justification of vision-stability. First, without any
assumption, we cannot avoid algebraic methods unless NP = ∃R. Furthermore, there is an
argument to be made related to smoothed analysis. Consider opt(P, x) as a function f of x,
see Figure 3. Clearly, f takes only a discrete number of values, by definition. Furthermore,
the function is monotonically decreasing, as visx(p) ⊆ visx′(p), if x ≤ x′. Thus the function f

has only a finite number of breakpoints. If a breakpoint happens to be at zero then P is not
vision-stable. Intuitively, this seems unlikely. See the full version for more details [40].

Discretization. Using vision-stability, we exhibit a candidate set C of polynomial size. The
idea is to use the vertices of arrangement A from Figure 1 b). For technical reasons, we will
not use the arrangement A, but a refinement of it. Note that the smaller the vision-stability,
the weaker the assumption on the underlying polygon, and thus the larger the required
candidate set.

▶ Theorem 1 (Candidate Set). Given a polygon with vision-stability δ and r reflex vertices,
it is possible to compute a candidate set C (of size O( r4

δ2 )) in polynomial time on a real RAM.
The candidate set C contains an optimal solution.

Although some of the details of the proof are tedious and involved, we see the main
contribution on a conceptual level. It is surprising to us that the vision-stability was not
formulated earlier. In particular, regarding the popularity of the art gallery problem within
computational geometry and the problematic lack of algorithmic results. Let us stress
that while we use augmented and diminished visibilities as abstract concepts, we are only
interested in solving the original art gallery problem.

Let us give an intuition of the proof idea of Theorem 1. As mentioned before, we use
all the vertices of a refinement of the arrangement A, as in Figure 1 b), as our candidate
set C. Consider a minimum size set G0 that is (−δ)-guarding P . Replace each guard g ∈ G0
by a guard g′ ∈ C that is “close by”. This gives a new solution G1 ⊆ C of equal size.
Using that G0 is (−δ)-guarding, we can show that G1 is guarding P in the usual sense. As
opt(P, −δ) = opt(P, 0) = opt(P, δ), we can conclude that G1 ⊆ C is of minimum size. The
technical demanding part of the proof is to show that for every point p ∈ P there exists a
point c ∈ C such that vis−δ(p) ⊆ vis(c).

Theorem 1 answers an open question posed by several authors of related works [10, 66,
67, 27]. For instance, De Rezende et al. [27] states “Therefore, it remains an important
open question whether there exists a discretization scheme that guarantees that the algorithm
always converges [...].”

In the next paragraph, we discuss how the discretization scheme leads to a correct
algorithm that avoids algebraic methods.

One-Shot vision-stable algorithm. Note that in practice there does not exist an algorithm
which can be used to compute whether or not a polygon has vision-stability δ. Therefore,
it is important that our algorithms work correctly even if the underlying polygon is not
vision-stable. Specifically, our algorithms will either compute the optimal solution or report
that the input polygon had lower vision-stability than specified by the user. We say our
algorithms are reliable, as they never return an incorrect answer.

▶ Theorem 2 (One-Shot vision-stable Algorithm). Let P be an n vertex polygon, with r reflex
vertices. We assume that a suggested value for δ is given as part of the input. Then the
one-shot algorithm has a preprocessing time of O( r8

δ4 log n + n log n) on a real RAM and
additionally solves exactly one integer program. The algorithm either returns the optimal
solution or reports that the given suggested value for δ is incorrect.
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This is the first algorithm for the classical art gallery problem that avoids using algebraic
methods and gives an exact solution.

The core idea of the algorithm is to utilize the candidates from Theorem 1 and use them
to build a set-cover instance, which can then be solved using integer programming.

Let us point out that next to vertex-candidates, we also use faces as candidates. This is a
distinct feature of our algorithm. All previous algorithms used only points as candidates. In
this way, we can easily check that we have not missed a better solution. Say the algorithm
returns a solution G of size k and suppose for the purpose of contradiction that there would
be a smaller solution G′ of size k′ < k. Pick for each g ∈ G′ a face containing g. (If g lies
on an edge or a vertex of A make an arbitrary choice.) This defines a set F of faces with
|F| = k′. Now we arrive at a contradiction, as F is a valid guarding of the polygon P . The
algorithm primarily minimizes the number of used guards (vertex or face guards), but among
the minimum size solutions, it prefers vertex guards over face guards. We say that using
vertex guards is a soft constraint.

Similar to previous algorithms, we also use witnesses. In the context of the art gallery
problem, we require only that all the witnesses are seen, instead of the entire polygon. The
hope is that the computed guards will also see the entire polygon. This is a second important
step to discretize the problem. In our case, the witness set W will be all faces and vertices
of some arrangement A. This is a second feature that makes our algorithm unique. As all
the faces of A are covering P , seeing all faces guarantees that P is completely seen. We
impose the hard constraint that all point-witnesses are seen and the soft constraint that each
face-witness must be seen by at least one guard.

Due to the hard constraints, we know that our solution is at most the optimal size
(theoretically it could be smaller, as face-guards are more powerful than point-guards). If we
see all face-witnesses, then we know that the guards are actually guarding P . Furthermore,
if all guards are points, we know that we have found a minimum size point guard set. In case
that one of the soft-constraints is violated, we will be able to deduce that the underlying
polygon was not vision-stable, with the suggested value δ given in the input. The last
statement is the technically demanding part of the proof. One of the central concepts of
the proof is the angular capacity of a face. It measures how small a face is while taking into
account the distance to reflex vertices.

For the remainder of the paper, whenever we refer to a candidate, witness or a guard, we
could mean either a point or a face, if not further specified.

Parameterized algorithms. As the size of the integer program of the one-shot algorithm
only depends on r and 1/δ, it exhibits an FPT algorithm, with respect to the number of
reflex vertices r, for every fixed δ. The most natural parameter for the art gallery problem
is the solution size. As the art gallery problem is W[1]-hard, when parameterized by the
solution size [18], research focused on other parameters [9, 7, 8, 12, 43, 44, 6]. Specifically,
Agrawal et al. [7] described an elegant FPT algorithm for the art gallery problem. They
considered three variants of the art gallery problem defined by restricting guard positions
and the part of the polygon that needs to be guarded. By considering the number of reflex
vertices as the parameter, they answered a question by Giannopoulos, for those variants.
“Guarding simple polygons has been recently shown to be W[1]-hard w.r.t. the number of
(vertex or point) guards. Is the problem FPT w.r.t. the number of reflex vertices of the
polygon?” [39]. We answer the same question, with respect to vision-stable polygons and the
classic variant of the art gallery problem.

SoCG 2021



44:8 A Practical Algorithm with Performance Guarantees for the Art Gallery Problem

▶ Corollary 3 (Reflex-FPT Algorithm). Given a vision-stable polygon, with any fixed vision-
stability. The one-shot algorithm is FPT with respect to the number of reflex vertices.

Practical algorithm. Although the one-shot algorithm does not require algebraic methods
and only polynomial preprocessing time, it is still way too slow to be considered practical.
Note that the performance bottleneck is not solving the integer program, but computing
visibilities. As a next step, we develop the iterative vision-stable algorithm. It is practical
and follows the basic principle of the one-shot algorithm. Ideally, we would also like to show
provable performance guarantees for the iterative algorithm. Note that the statement that
an algorithm is both practical and has theoretical guarantees must be taken with caution.
Once we have a practical algorithm P and a theoretical algorithm T , we can easily get a
third algorithm B that has both properties as follows. Run algorithm P within the running
time bound of T . If P does not return a solution abort and run T . Here, T serves as a safe
guard for P . Clearly B performs as well in practice as P and has the theoretical bounds of T .
Thus, when we say that we show theoretical performance guarantees of some algorithm, we
should really ask ourselves, if we show those guarantees for the algorithm that we actually
use or for some safe guards that aren’t ever used in practice.

The core idea of the iterative algorithm is as follows. We start with a very coarse
arrangement A. Using the faces and the vertices of A, we define a candidate set C and a
witness set W . We compute which candidates see which witnesses. This enables us to build
an integer program, that tries to find a minimum guard set G ⊆ C, as described for the
one-hot algorithm. Note that vertices and faces may serve as guards and some face-witnesses
may be unguarded. As a secondary objective function, the integer program tries to minimize
the number of face-guards used in G and the number of unseen face-witnesses. If the guard
set G contains only point guards and sees all face-witnesses, the iterative algorithm reports
the optimal solution. Otherwise, it refines the arrangement A and goes to the next iteration.

Irrational-Guard Polygon. In Figure 4 we show the first 8 iterations of the Irrational-Guard
polygon [2]. The orange points and faces represent point- and face-guards in the intermediate
solution. The green faces represent faces not fully seen by the current candidate solution.
Both orange and green faces are split in the next iteration. Note that for each of the orange
and green faces, we draw a random vertex in the same colour, to make also very small faces
visible.

Local complexity. One of the bottlenecks is the large number of possible visibilities between
candidates and witnesses that we have to compute. Due to the low local complexity of the
input polygons, most of those pairs are not seeing each other. We exploit this by building a
so-called weak visibility polygon tree. In this tree, any point p in node n(p) can see a point q

in node n(q), if the two nodes are siblings or in a parent-child relationship, see Figure 5.
Before, we can describe the weak visibility polygon tree, recall that the weak visibility

polygon vis(s) (of a segment s) is defined by vis(s) = {p ∈ P : ∃q ∈ s s.t. seg(p, q) ⊆ P}.
To build the weak visibility polygon tree T of P , we start with an arbitrary edge e on
the boundary of P . We compute the weak visibility polygon vis(e) of e, which is the root
of T . For every edge e′ of vis(e), which is not part of the boundary of P , we compute the
weak visibility polygon vis(e′) with respect to the polygon P \ vis(e). Those weak visibility
polygons are the children of vis(e). We continue recursively to compute the children of every
weak visibility polygon. Note that every node of T is a weak visibility polygon W of some
defining chord c.
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Figure 4 The first 8 iterations of the Irrational-Guard polygon [2].

Interestingly, this inspired a new structural parameter, which we call the chord-visibility
width. Given a chord c of P , we denote by n(c) the number of vertices visible from c. The
chord-visibility width (cw(P )) of a polygon is the maximum n(c) over all possible chords c.

We show that the art gallery problem is FPT with respect to the chord-visibility width.

▶ Theorem 4 (Chord-Width-FPT). Let P be a simple polygon with vision-stability at least
some fixed δ. Then there is an FPT algorithm for the art gallery problem with respect to the
chord-visibility width.

The core idea is to use dynamic programming along the weak visibility polygon tree,
similar to dynamic programming algorithms for tree-width. The challenge here is to find
bounds on the number of candidates per node.

Critical witnesses. Another practical idea is to reduce the total number of witnesses that
we use. Instead of using all faces and vertices of A as witnesses, we only use some random
selection, which we call critical witnesses. We use heuristics to update this critical witness
set. In deciding whether to add a critical witness or not, we are faced with some trade-offs. If
we add very few critical witnesses, we have to make more loops until the IP solution returns
a guard set that sees the entire polygon. If we add too many critical witnesses, the set of
critical witnesses grows unnecessarily fast and we have to compute many more visibilities.

SoCG 2021
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Figure 5 The polygon together with a weak visibility polygon tree. The polygon has 200 vertices,
but each node in the weak visibility polygon tree has only about 20 vertices. The red segment
indicates the starting edge of the weak visibility polygon tree.

Visibility queries. One of the major bottlenecks at the beginning of this project was the
computation of weak visibility queries. That is, we often need to decide if a given face sees
a given point or another face. In a follow-up project [41], we developed a fast practical
algorithm to compute weak visibility polygons.

Losing performance guarantees. The main reason that the iterative algorithm does not
have the same performance guarantees as the one-shot algorithm is as follows. It is possible
that the iterative algorithm keeps splitting a certain face (and its children) many times, only
to conclude much later that it was misled. It could have found a solution much earlier by
splitting one of the larger faces. In practice, it seems usually a very good idea to split the
faces that were selected by the Integer program solution. Especially, if those faces are small,
we made progress and avoided usually unnecessary splits of big unimportant faces. It is
easily possible to design an algorithm in a way that it will not split too small faces, before
also splitting occasionally bigger faces, that might be useful. In this way, we are still able
to ensure theoretical performance guarantees, see Theorem 5. However, this theorem adds
little to the goals of explanation, prediction, and invention. Quite the opposite, this analysis
suggests that faces should be split in a way that is harmful to practical performance. In the
full version [40], we describe several different versions of the iterative algorithm. When we
use the safeguard version of the algorithm, we get the following theorem.

▶ Theorem 5 (Iterative Algorithm). Let P be an n vertex polygon, with vision-stability δ.
Then the iterative algorithm returns the optimal solution to the art gallery problem. It has
a running time of (n

δ )O(1) + T per iteration and takes at most (n
δ )O(1) iterations. Here T

denotes the time it takes to solve one integer program.

Experimental results. We implemented and tested the iterative algorithm with a 64-bit
Windows 10 operating system, an 8-core Intel(R) Core i7-7700HQ CPU at 2800 Mhz and 16
GB of main memory. The practical implementation makes heavy use of version 4.13.1 of
CGAL [65]. The IP solver used was IBM ILOG CPLEX version 12.10 [16].

We compared our implementation directly with the algorithm from Tozoni et al. [68], as
this is the currently best algorithm, for which there was freely accessible code available. In
order to get a deeper understanding, we analyzed various aspects of the running time. One
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of them is the distribution of the running time w.r.t. different subroutines. Furthermore,
we studied the influence of vision-stability on the running time. We also study the effect
of our speed-up methods. Lastly, we study the iterative algorithm on the irrational-guard
polygon [2]. For an in-depth description of our experiments with all details, we refer the
reader to the full version [40]. Here, we only highlight the most important findings.

Comparison. We tested our algorithm and the algorithm of Tozoni et.al. on 5 sets of 30
polygons of sizes 60, 100, 200, and 500 vertices. The results can be seen in Table 1. We
see that, except for size 60, our algorithm is slightly faster. However, we want to point out
that comparing those running times should be taken with a grain of salt. Both algorithms
rely on a software environment that is not identical. To some degree, the differences in the
running time may come from performance differences from this software. First note, that
Tozoni et al. implemented their algorithm in Linux, whereas, we implemented our algorithm
in Windows. Interestingly, CGAL runs between factor 2 − 3 faster on Linux compared to
Windows [48]. Secondly, our algorithm has to compute visibilities of faces instead of point
visibilities. Thirdly, while testing the implementation of Tozoni et al, we could not use the
best available IP solver, which might skew the results a bit. Overall, our algorithm seems
faster for larger polygons, but does not make a very large improvement.

Table 1 A comparison of the iterative algorithm without safe guards with the results from Tozoni
et al. [68], both the results reported by Tozoni et al. themselves [68] and results found using their
implementation on our hardware.

Sizes
Average time (s)

Tozoni et al. Tozoni et al. (Our hardware) The Iterative Algorithm
60 0.26 0.18 0.39
100 0.94 0.68 0.52
200 3.77 2.54 2.02
500 35.04 22.34 18.2

CPU distribution. We analyzed the distribution of the CPU time of the iterative algorithm.
The results are shown below in a pie-chart. We see that solving integer programs is the
dominating factor of the running time. This shows that to improve the running time of the
algorithm, we must reduce the total number or the size of the IPs. Alternatively, we can
optimize the IP solver, or perhaps experiment with different IP solvers.

It may appear strange that we spend so much energy on reducing the CPU time spent on
speeding up visibility queries when the CPU usage is dominated by solving IPs. The reason
is that before we implemented all of the improvements described before, the running time
was dominated by weak-visibility queries.

In general, the CPU distribution needs to be regarded with a grain of salt. It seems
that there is usually one subroutine that dominates the running time. Often conceptual
improvements decrease the running time by several factors, which in turn makes a different
subroutine appear to dominate the running time. Thus the fact that solving IPs says more
about the components that we optimized rather than which parts are inherently more difficult.
Thus we consider it a success that the running time is now dominated by solving IPs.

SoCG 2021
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CPU distribution (200 vertex polygons)

Pre-processing

Point-guard visibility queries
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Figure 6 The chart shows the CPU distribution of the Iterative Algorithm implementation for
solving 30 polygons of size 200.

Vision-stability. Unfortunately, we cannot measure the vision-stability of a polygon nor
approximate it. To get a vague idea of the influence of the vision-stability on the running
time, we define the granularity of the subdivision at the end of the iterative algorithm. The
granularity is related to the smallest face in the final subdivision. Interestingly, even with
polygons of the same size the running times vary widely. The large correlations between
the observed running times and the granularity indicate that vision-stability may have a
significant influence on the total running time.

Table 2 The correlation coefficients between the measured minimum granularity and the running
time, computed per size.

Size 60 100 200 500
Correlation 0.07 0.32 0.21 0.76

Weak visibility polygon tree. To verify the amount of visibility queries that we save by
using the weak visibility polygon tree, we conducted an experiment. Note that computing the
weak visibility polygon tree requires the computation of weak visibility polygon. In practice,
this was achieved by using an efficient new algorithm, about which a follow-up paper will be
published [41]. The precise percentage highly depends on the type of polygon. See Table 3
for a detailed overview. Interestingly, the number of reflex vertices per node of the weak
visibility polygon grows much slower than the input size. This indicates that chord-visibility
width may be a useful practical parameter to study for geometric algorithms in polygons.

Table 3 We tested 30 input polygons from the AGPLIB library [24] of four sizes. For each size
class we see the averages of characteristics of the weak visibility polygon trees.

Size 60 100 200 500
Tree size 14.2 23.0 46.3 115.0

Largest polygon 20.5 23.3 26.2 28.4
Largest number of reflex vertices 5.9 6.2 7.0 9.2

Percentage of queries saved 16.7% 35.4% 63.5% 87.3%
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Figure 7 The iterative algorithm based on the notion of vision-stability reports a sequence of
solutions. The Graph shows on the x-axis the iterations from 1 to about 300 and on the y-axis, the
log2 of the Hausdorff distance to the optimal solution.

Irrational guards. We show that the implementation of our algorithm provides a rapidly
improving solution even for polygons that are not vision-stable. Specifically, Abraham-
sen et al. [2] introduced a small and simple polygon, which requires irrational guards for an
optimal guarding using point-guards. Although, the iterative algorithm avoids irrational
numbers it still returns a guard set Gi for each iteration i = 1, 2, 3, . . .. Recall that Gi consists
of faces and points. As we know the optimal solution G∗, we can compute di = d(G∗, Gi),
see Figure 7.

Future research. The vast majority of the work on the art gallery problem focused on
variants of the classic question. There are almost no positive theoretical algorithmic results
on the original art gallery problem, with some exceptions [13, 32, 17]. We believe that the
main reason for this focus on variants is the fact that the art gallery problem is inherently
continuous, as is reflected by its ∃R-completeness [3]. Now that we arguably broke that
barrier, we hope that more progress will be made on the original problem.

Can we adapt the algorithm to polygonal domains with holes? Here, the main bottleneck
seems to be adapting the visibility queries to polygons with holes.
Does the iterative algorithm always converge towards the optimal solution, even if the
underlying polygon is not vision-stable? Our experimental results suggest that we converge
exponentially fast to an optimal solution. It is intriguing to see if this also holds true in
general.
One simple way to make the one-shot algorithm more practical would be to find a smaller
witness and candidate set. What is the smallest integer program that guarantees to give
the optimal solution for vision-stable polygons? The bound we gave seems to have plenty
of room for improvement.
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