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Abstract
Given a collection of strings, document listing refers to the problem of finding all the strings (or
documents) where a given query string (or pattern) appears. Index data structures that support
efficient document listing for string collections have been the focus of intense research in the last
decade, with dozens of papers published describing exotic and elegant compressed data structures.
The problem is now quite well understood in theory and many of the solutions have been implemented
and evaluated experimentally. A particular recent focus has been on highly repetitive document
collections, which have become prevalent in many areas (such as version control systems and genomics
– to name just two very different sources).

The aim of this paper is to describe simple and efficient document listing algorithms that
can be used in combination with more sophisticated techniques, or as baselines against which the
performance of new document listing indexes can be measured. Our approaches are based on
simple combinations of scanning and hashing, which we show to combine very well with dictionary
compression to achieve small space usage. Our experiments show these methods to be often much
faster and less space consuming than the best specialized indexes for the problem.
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1 Introduction

Given a collection of strings T0, T1, . . . , Td, called documents the document listing problem
is to preprocess the documents and build an index data structure so that later, given a
previously unseen string Q (the pattern or query), we can report all i ∈ 0..d for which Ti

contains Q as a substring.
The document listing problem was introduced, almost 20 years ago now, by Muthukrish-

nan [14] as a natural variant of the pattern matching problem. At the time, finding all
the occ occurrences of a pattern in a set of texts in time proportional to occ, was efficiently
solvable using suffix trees and arrays. The algorithmics attractiveness of the document listing
problem lay in cases where docc – the number of documents containing the pattern – was
very much smaller than occ, where the “brute force” solution of enumerating over the set of
all occ occurrences to find the distinct document ids seems wasteful. Muthukrishnan gave a
O(docc + |Q|) time solution, which is optimal.

A convenient way of thinking about Muthukrishnan’s approach is in terms of the suffix
array [13], SA, for the string T formed by concatenating the Ti strings of the collection into
one string T = T0$T1$ . . . Td$ where $ is a ”separator” symbol guaranteed not to be part of
any query pattern. The suffix array, SA[0, n − 1], for a string T of length n is an array of
integers containing a permutation of (0 . . . n − 1), so that the suffixes of T starting at the

© Simon J. Puglisi and Bella Zhukova;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 12; pp. 12:1–12:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:puglisi@cs.helsinki.fi
mailto:bzhukova@cs.helsinki.fi
https://doi.org/10.4230/LIPIcs.SEA.2021.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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consecutive positions indicated in SA are in lexicographical order: T[SA[i], n] < T[SA[i+1], n].
Because of the lexicographic ordering, all the suffixes starting with a given substring Q of
T form an interval SA[s, e], which can be determined by binary search in O(|Q| log n) time.
Muthukrishnan’s solution to document listing defines an array DA[0, n−1] in which DA[i] = x

if and only if suffix T[SA[i], n] has its starting position inside the area of T corresponding to
document Tx. We say that DA[i] contains the document id for the suffix starting at SA[i].

With DA in hand, document listing for pattern Q then becomes simply a matter of
enumerating the distinct elements in the interval DA[s, e]. Muthukrishnan shows this can
be done in optimal O(docc) time via a range minimum query data structure after finding
interval [s, e] in O(m) time using the suffix tree of T. The solution requires O(n log n) bits of
space, and subsequent work by several authors [2, 4, 5, 7, 8, 16, 22] has aimed to reduce space
in pursuit of practical solutions (we refer the reader to [15] for a survey of results prior to
2014, and [4] for more recent results). Almost all solutions make use of DA in some form.

A particular recent focus [2, 4, 5, 7, 16] has been on document retrieval indexes for highly
repetitive document collections, which have become prevalent in many areas, such as version
control systems and genomics – to name just two very different sources (see [17,18] for recent
surveys of results on highly repetitive data in general).

Our contribution. The main results of this paper are twofold:
1. We describe and implement a handful of algorithms for document listing that work

by gathering the distinct document ids in DA[s, e] while scanning that interval. These
algorithms are so simple as to be almost trivial, but nonetheless seem to have escaped
scrutiny to date. We show experimentally that these algorithms are very fast, and
represent a new baseline against which the speed of more complex document listing
indexes should be gauged.

2. We show that the DA for a highly-repetitive collection can be effectively compressed
via relative Lempel-Ziv (RLZ) parsing, a compression method that is known to support
fast extraction of arbitrary intervals from its underlying sequence. We show that RLZ-
compressed document arrays combine well with the aforementioned scan-based document
listing algorithms, leading to the smallest (or near smallest) indexes we know of for
that problem, which are often an order of magnitude or faster than the best competing
methods.

Roadmap. In the next section we describe our new scan-based method for document listing
and compare it experimentally to another, previously described, brute-force method for the
problem. Then, in Section 3 we describe how DA is amenable to RLZ compression and
combine this representation of DA with variants of our scan-based document listing algorithm.
We also show that for certain types of repetitive document collection, run-length encoding
can be an effective way to compress DA. Section 4 compares our new document listing
indexes to state-of-the-art methods, showing them to be significantly faster and often less
space consuming. We then conclude with some possible directions for future work.

2 Refined Brutes

We begin with a “brute-force” document listing method that scans, copies and sorts DA[s, e].
It is the only published method we know of that explicitly inspects every element of DA[s, e],
and is used in several papers [4, 5, 7] where it is reported to be faster than specialized
document listing methods when e − s + 1 = occ is small. We refer to this method as sort1.

1 The same method is referred to as Packed-sort in [4, 5] and SORT in [7].
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The approach taken is to allocate a buffer of occ integers, copy the contents of DA[s, e]
into it, sort the buffer (bringing duplicate document ids together) and then scan the buffer
removing duplicates. The final contents of the buffer are the distinct elements in DA[s, e].

While sort certainly gets the job done, it also looks and sounds suspiciously like a straw
man: all that movement of data. The obvious alternative to sorting, of course, is something
akin to the counting part of counting sort: scan DA[s, e] and use an array B of d elements
(initially all 0) to simply record which document ids are present in the interval – indeed, d bits
will do. Whenever B[DA[i]] = 0 we add document DA[i] to the result set (again implemented
as a vector) and set B[DA[i]] to 1. If desirable, we can reuse B between queries by scanning
the result set at the end of the scan of DA[s, e] and resetting all the set bits to 0. We call
this document listing method bv (for bit vector).

A possible concern with bv is the d extra bits it uses. The minimum extra space (without
trying too hard) for document listing is the size of the result set itself docc log d bits. We
note, however, that d bits can easily be less than the O(occ log n) bits that sort uses when it
copies DA[s, e] to its buffer for sorting. In any case, we can reduce the working space in at
least two ways.

For cases when O(occ log n) extra space is preferable, hashing is a simple option. To this
end, we implemented a simple linear probing hash table that indicates on inserting DA[i]
whether that element is already present in the table. If not, it is inserted into the table and
added to the result set. The hash table allocates space for 2⌈log occ⌉ elements, ensuring a
low load factor (maximum 0.5) and therefore fast insert time. We call this variant hash and
implemented a second version of it, uset, that uses a C++ std::unordered_set as a sanity
check to our hand-rolled linear-probing hash table. Working space usage can be further
reduced to O(docc log n) by using a search tree to accumulate distinct elements instead of
a hash table. We implemented such a variant, which we denote tree, variant using a C++
std::set, which is backed by a red-black tree.

We measured the performance of the above scan-based document listing algorithms
(including the previously described sort-based method) on three document collections. These
data sets are described in Section 4 and Table 1. We tried all variants on two trivial encodings
of DA. The first, Plain stores DA as an array of 32-bit unsigned integers. The second, Packed,
packs elements of DA into ⌈log d⌉ bits each, with each element still being accessible in O(1)
time, albeit with a higher constant of proportionality than element access with the Plain
encoding.

Results for query patterns with 4-mers of high frequencies are shown in Figure 1. The
bitvector-based scanning approach (bv) is a clear winner on all data sets. It is on average
an order of magnitude faster than the sort-based baseline (sort) on the Page data set, and
two order of magnitude faster on Revision and Influenza. The linear probing hash-based
method (hash) is also significantly faster than sort on all data sets (1.32-2.27×). Somewhat
unsurprisingly, Plain document arrays always led to faster queries than did Packed document
arrays for all methods. We did not include Packed-tree and Packed-uset to save space in the
plots because they are dominated by other methods. Figure 1 also shows that the differences
between the two variants Plain-bv and Packed-bv are bigger than the differences for other
variants. Taking into account that the number of DA access must be the same in all scanning
algorithms, we do not yet have a good explanation for it, but it could be due to the overhead
of the function call required with Packed-bv that makes the loop more difficult to unroll for
the compiler.
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Page Revision Influenza
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Figure 1 Boxplots showing time for Packed-sort versus our variants. These results are obtained
on query patterns with k-mers of length 4 with high frequencies (see Section 4 and Table 1 for
details of data sets and patterns). Note that the vertical axis is logarithmic.

3 Petite Brutes

On highly repetitive collections, the size of the compressed index used to find the interval of
DA containing the document occurrences for the query pattern is dwarfed by the space used
by DA. Even when DA is stored bit-packed in n⌈log d⌉ bits, it is still almost 70 times bigger
than the interval finding component on all our data sets. Reducing the space used by DA is
therefore important.

As several authors have now observed [4,19], repeated substrings in T give rise to repeated
intervals in DA. To see this, consider two lexicographically adjacent suffixes of T [SA[i], n]
and T [SA[i + 1], n]. If SA[i] and SA[i+1] are preceded by an identical symbol c ̸= $ (i.e.
BWT[i] = BWT[i + 1] = c ̸= $) then the lexicographical ordering of suffixes in SA dictates
that suffixes T [SA[i] − 1, n] and T [SA[i + 1] − 1, n] will be adjacent too, and so DA[i, i + 1]
will be repeated. More generally, a run of x suffixes SA[i, i + x] having identical preceding
symbols implies the sequence DA[i, i + x] is repeated in DA.

In [4], Cobas and Navarro employ grammar compression [1] to capture such repetitions
and so reduce the size of DA. They preprocess the resulting grammar so that the compressed
representation of DA supports the extraction of arbitrary intervals, and use this to implement
sort-based document listing: the relevant interval is extracted and copied to a buffer, which
is then sorted so that distinct elements can be reported.

In this section we explore compression of DA using relative Lempel-Ziv (RLZ) dictionary
compression, as an alternative to grammar compression of DA. Our rational for RLZ is
twofold. Firstly, it is known to support fast random-access decompression of arbitrary
substrings (in our context, intervals of DA), and, secondly, it has been recently shown to be
effective at compressing suffix arrays. Given the tight relationship between SA and DA, it is
reasonable to expect RLZ to compress DA well too.
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3.1 RLZ-Compressed Document Array
RLZ parsing [9, 10] is a variant of the classic LZ77 parsing [24], in which a sequence X is
compressed relative to a second sequence R (the reference) by encoding X as a sequence of z

substrings, or phrases, that occur in R. In our context X = DA.
Intuitively, if the substrings of sequence R are “similar” to those in X, then the parsing

will produce a small number of phrases. There are a number of ways to determine a good R
for a given X. Random sampling substrings from X has been shown to give good results in
practice [9] and also in theory [6]. Several authors have advocated more judicious selection
of substrings [11] and reference pruning methods to eliminate sparsely used parts of the
reference [23]. We return to the problem of reference selection for DA below.

Data Structure. We now describe how, given an reference R, the resulting RLZ parsing of
DA is encoded to facilitate fast random access to arbitrary intervals of DA. The approach is
essentially the way in which random access is supported in RLZ-compressed text [10], but
we include the description here for completeness.

The RLZ parsing of DA is stored in two arrays, S and P , both of length z. S contains
the starting position in DA of each phrase in ascending order. Elements of S are kept in a
predecessor data structure. P contains either literal DA values or positions in R as output
by the parsing algorithm (the second components of each pair). The type of the ith (literal
or repeat) is determined from the phrase length, which is in turn computed from the phrase
starting positions: ℓi = S[i + 1] − S[i]. If ℓi = 1 then P [i] should be interpreted as containing
the value of a literal phrase, and otherwise P [i] is the position in R at which the ℓi symbols
constituting the ith phrase begin.

Scanning (i.e. decoding) an arbitrary interval DA[s, e] is performed as follows. An output
buffer B of size e − s + 1 will contain the decoded elements. At a high level, the phrases
covering DA[s, e] are decoded and copied to B (some parts of the first and last phrase may
not be) until B is full, at which point we are done. To this end, begin by finding the index
in S of the predecessor of s. Let x denote this index, and so S[x] ≤ s. If P [x] is a literal
phrase, copy its value to the output buffer. Otherwise, (P [x] is non-literal) find the position
where the interval in this phrase begins, which is s − S[x] elements from the start of the
phrase. The length of the phrase is ℓ = S[x + 1] − S[x]. So we need to decode from this phase
min (l − (s − S[x]), e − s + 1) elements. If S[x] = s, to decode phrase x we access R[P [x]],
copy R[P [x]] to the output buffer, continuing then to copy (R[P [x] + 1]) to B, and so on
until either the whole phrase has been decoded, or the output buffer is full. And if S[x] < s,
the copying starts from (R[P [x]] + (s − S[x])). After decoding phrase x, if the output buffer
is not full, then phrase x + 1 is decoded, and so on, until all e − s + 1 values have been
decoded.

The time to decode the desired interval from the RLZ-compressed DA is O(e−s+log log n),
where log log n is the time need for the initial predecessor query.

Reference Selection. In earlier work [20, 21] we explored compression of SA using a
combination of differential encoding and RLZ compression, with [20] using random sampling
of substrings, and [21] obtaining superior compression performance via a more sophisticated
algorithm (adapted from [11]), in which substrings are selected for inclusion in the reference
according to the abundance of smaller substrings of length k (k-mers) contained therein.

We adopt a similar approach to derive a good reference for DA, which we now describe.
DA is logically divided into n/s substrings of equal length s called segments (the last segment
may have length < s). The frequency of each distinct k-mer in DA is then computed. Each

SEA 2021
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segment is assigned an initial score according to the k-mers it contains. In particular, let
f(x), for k-mer x be the frequency of x in DA. Let x ∈ Xi denote that k-mer x has at least
one occurrence in segment Xi. Then the initial score for segment Xi, i ∈ [0..n/s + 1] is the
ℓp norm of the vector of its constituent k-mers, calculated as:

score(Xi) = (Σx∈Xi
f(x)p)1/p.

The highest scoring Xi is then selected for inclusion in the reference, and frequencies f(.) are
then reduced for every k-mer x ∈ Xi, in particular f(x) is reduced by the frequency of k-mer
of x in Xi. This process of segment selection and subsequent score adjustment is repeated
until the sum of the lengths of the selected segments has reached the target reference length
(an input parameter).

Apart from the target reference length, there are three parameters to this process: s, the
segment size; k, the k-mer length; and p, which affects the way in which k-mer frequencies
affect segment scores (we set p = 0.5 in all experiments in this paper). Figure 2 shows the
effect of parameters s and k on the index size for the Influenza dataset for a fixed target
reference size. The figure shows that the choice of k and s can significantly influence the
size of the index and should be chosen with care. Having said this, the range illustrated
in the figure across all tested (k, s) settings is from just under 130MB to just over 270MB
for the 336,798,466-entry long DA sequence. This corresponds to a range of 3.2 to 6.7 bits
per symbol, which is significantly less than the log d = log(227, 356) = 18 bits per symbol
required to store DA uncompressed. Our point here is that while finding the minimum index
size may be difficult, finding a “good” one seems not to be.

We also found that not every position in our constructed references was actually covered
by any phrase, and removing the symbols at those positions led to around a small reduction
in reference length: 1.5% for Page, 9.35% for Revision, and 2.64% for Influenza.
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Figure 2 Effect of segment size s and k-mer length on overall index size (reference and phrases),
in bytes. Target reference size requested for every case is the same, and is equal to 61.24MB. Actual
reference size (ref) in the index varies a little due to removal of symbols that were not referred to
during the RLZ compression (see text). Predecessor size (pred) grows with the number of phrases,
though it is difficult to see on this plot.

3.2 Run-Length Compressed Document Array
To our initial surprise, we found that DA for the Page collection (n = 1, 036, 000, 000)
consisted of just 17, 224, 529 runs of equal document ids. We believe this phenomenon can be
explained as follows. Recall that in Page all versions of a given Wikipedia entry are treated
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as a single document, sharing the same document id. For a given entry with, say, document
id x, substrings corresponding to terminology (or, e.g., dates) specific to that entry are likely
to be shared across versions, and suffixes prefixed with such patterns will be concentrated
together in SA, with a corresponding concentration of id x in DA.

With this in mind, we implemented a run-length encoded version of DA that supports
random access to intervals via a predecessor data structure holding the starting positions of
runs in DA. We call this data structure RLED, and include it in experiments only for the
Page collection (Revision and Influenza both had average run length around 1 in their DAs –
far too low for RLED to acheive any compression).

3.3 Experiments Results

We implemented the RLZ- and RLE-based encodings of DA and combined them with the
scan-based “brute-force” methods for document listing described in Section 2. Results
of experiments on our three test collections are shown in Figure 3. Plain-bv, the fastest
uncompressed method from Section 2 is included as a reference point. On the Page dataset,
the methods using RLE are clearly fastest, with RLED-bv being the fastest overall. However
the RLZ-based methods also show good performance, with RLZD-bv being only marginally
slower than the uncompressed Plain-bv baseline (0.07 vs. 0.06 nanoseconds per query). On
the Revision and Influenza datasets, where the RLE method does not apply, we observe a
similar pattern in the RLZ-based methods as was observed in Section 2 for the uncompressed
methods: RLZD-bv is fastest, followed by RLZD-hash.
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Figure 3 Boxplots showing query times for our RLZ- and RLE-compressed DA variants. We
include the fastest among uncompressed methods, Plain-bv, as a reference point. Note that the
vertical axis is logarithmic. These results were obtained on patterns with 4-mers of high frequency
(see Section 4 and Table 1 for details of data sets and patterns). The RLZD index was constructed
with the following parameters: for Page k = 312, s = 2048, reference size 7.95MB, for Revision k =
8, s = 1024, 36.38MB reference, and for Influenza k = 12, s = 256, 61.24MB reference. Reference
sizes were computed experimentally. For Revision and Influenza there is no data for RLED because
on these datasets it does not achieve any compression (see text, Section 3.2).
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Table 1 Statistics for document collections: Collection name; Size in megabytes; Docs, number of
documents; Doc size, average document length; k-mer, length of k-mers in the patterns; F requency,
frequency of k-mers chosen for patterns; number of P atterns; Occs, average number of occurrences;
Doc occ, average number of document occurrences; Occs/doc, average ratio of occurrences to
document occurrences.

Collection Size, MB Docs Doc size k-mer F requency P atterns Occs Doc occs Occs/doc

(n) (D) (n/D) (occ) (docc) ( occ
docc

)
high 318 136.00 153.81 2 068.32
mid 11 994.35 34.23 350.434
low 500.50 4.80 104.16
high 87 081.25 55.31 1 574.51
mid 7 148.71 19.90 359.25

Page 1 037 280 38 883 145

8
low 500.50 6.54 76.56
high 317 512.93 31 850.79 9.97
mid 12 017.48 5 937.12 2.024
low 500.50 389.86 1.28
high 86 895.30 11 627.18 7.47
mid 7 147.44 3 814.97 1.87

Revision 1 035 65 565 16 552

8
low

1 000

500.50 390.65 1.28
high 1 819 407.80 224 449.40 8.11
mid

141
562 380.65 161 793.77 3.484

low 142 75.18 70.52 1.07
high 41 721.84 37 822.00 1.10
mid 9 784.96 9 665.94 1.01

Influenza 321 227 356 1 480

8
low

1 000
500.50 498.79 1.00

4 Performance Comparison

In this section we report on the practical performance of our document listing approaches to
other state-of-the art solutions.

4.1 Experimental Setup
Test Machine. All our experiments2 were conducted on a 2.10 GHz Intel Xeon E7-4830
v3 CPU equipped with 30 MiB L3 cache and 1.5 TiB of main memory. The machine
had no other significant CPU tasks running and only a single thread of execution was
used. The OS was Linux (Ubuntu 18.04.5 LTS) running kernel 5.4.0-58-generic. Programs
were compiled using g++ version 7.5.0. All given runtimes were recorded with the C++11
high_resolution_clock time measurement facility.

Datasets. Table 1 summarizes the collections and patterns used. Page and Revision are
repetitive collections generated from a Finnish-language Wikipedia archive with full version
history: 280 pages with a total of 65, 565 revisions. In Page, all the revisions of a page form
a single document. In the case of Revision, each page revision becomes a separate document.
Influenza is composed of 227, 356 sequences of the H. influenzae virus genomes3.

Query Patterns. To form the query patterns for each dataset (see statistics in Table 1) we
first computed the set of all distinct substrings of printable characters of lengths 4 and 8,
and their number of occurrences. Each such set of these substrings were then sorted based

2 Code is available at https://www2.helsinki.fi/en/researchgroups/algorithmic-bioinformatics/
compressed-data-structures.

3 All data sets are available at https://jltsiren.kapsi.fi/rlcsa.

https://www2.helsinki.fi/en/researchgroups/algorithmic-bioinformatics/compressed-data-structures
https://www2.helsinki.fi/en/researchgroups/algorithmic-bioinformatics/compressed-data-structures
https://jltsiren.kapsi.fi/rlcsa
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on their occurrences, and divided into three equal subsets based on their frequencies: high,
middle, and low. In the subset if there were less than a 1000 patterns, then all the patterns
in this subset form a corresponding file with queries, and if there were more than 1000, we
choose a 1000 out of them that represent the subset: for high – 1000 most frequent, for mid –
1000 that are exactly at the middle of the list with the sorted frequencies, and for the low –
1000 least frequent. Patterns with high occ represent hard cases for our scan-based methods.

Indexes Measured. We used the recent study of Cobas and Navarro [4] as a guide for
selecting the best-performing document listing methods to include for each data set. In
particular, we measured the following indexes.

Brute Force. Apart from sort, the method from Section 2, which is referred to as Packed-
sort in [4], we also include Brute-C a variant from [4] that uses a grammar-compressed
DA, augmented with the length of the expansion of each nonterminal. If the resulting
grammar tree has height h the interval DA[s, e] can be extracted in time O(h + e − s).
Grammar-Compressed Document Array (GCDA), the proposal of Cobas and Navarro [4],
which precomputes answers to document listing queries and stores them grammar com-
pressed to reduce space. We set parameters b and β as described in [4].
Sadakane (Sada). Sada-D is the index of Sadakane [22] in which the query time was sped
up by explicitly storing DA, as first suggested in [5].
Interleaved Longest Common Prefix (ILCP). ILCP-D is a variant of the ILCP index of Gagie
et al. [5] that uses DA. ILCP-C uses, instead, Cobas and Navarro’s [4] grammar-compressed
DA, which can access any cell of DA in O(h) time.

All indexes tested (including our own) use the same RLCSA implementation [12] to
find the relevant interval [s, e] of DA for each query pattern. This RLCSA uses (r log σ +
2r log(n/r))(1 + o(1)) bits of space, where r is the number of runs in the BWT of T, and
finds the interval in O(m log r) time. RLCSA for Page and Revision required 0.13 bits per
symbol, and 0.26 bits per symbol for Influenza.

4.2 Results
Figure 4 shows the tradeoff between time and space for the indexes that were shown in [4] to
be among fastest and smallest, and the ones described in this paper: Packed-bv, which was
the second fastest among uncompressed versions (Figure 1) after Plain-bv (but uses much less
space); and the two fastest variants for RLZD and RLED: -bv and -hash (Figure 3). RLZD
on these datasets has shown the best compression on Page (0.341 for RLZD and 0.412 for
Brute-C, which is the closest) and second best after Brute-C on Revision (0.812 for RLZD and
0.595 for Brute-C) and Influenza (2.958 for RLZD and 2.541 for Brute-C). These space results
for RLZD were received with the following parameters to generate the reference: for Page k

= 312, s = 2048, ref = 1, 987, 456 integers requested, for Revision k = 8, s = 1024, ref =
9, 096, 048, and for Influenza k = 12, s = 256, ref = 15, 310, 000. Ref values were computed
experimentally. In terms of time RLZD-bv yields only to Packed-bv (and in half of the cases
outperforms it), but the time difference is marginal and Packed-bv requires 6-20× more space.

RLED dominates on Page (where there are few and large documents), especially on high
frequent patterns, where the closest competitor GCDA is 6 times slower. RLZD-bv in this
case is 41 times slower than RLED-bv, but requires 3 times less space; compared to GCDA,
RLZD-bv is almost 5 times slower, but needs almost half the space (GCDA takes 0.584 bits per
symbol, RLZD 0.341). On the moderately frequent pattern set the time difference between
RLZD-bv and GCDA becomes negligible, and RLZD-bv is starting to win on longer patterns.
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On low frequent queries RLZD-bv becomes 3 times faster than GCDA, only 1.6 times slower
than RLED-bv and is indeed only marginally slower than Packed-bv.

102

103

104

tim
e

(µ
s/

qu
er

y)

Page, high

101

102

Page, mid

101

Page, low

4-
m

er
s

0 5 10
101

102

103

tim
e

(µ
s/

qu
er

y)

0 5 10

101

102

0 5 10

101

8-
m

er
s

103

104

tim
e

(µ
s/

qu
er

y)

Revision, high

102

103

Revision, mid

101

Revision, low

4-
m

er
s

0 5 10 15 20

103

tim
e

(µ
s/

qu
er

y)

0 5 10 15 20

102

0 5 10 15 20

101

102

8-
m

er
s

104

105

tim
e

(µ
s/

qu
er

y)

Influenza, high

104

Influenza, mid

100

101

Influenza, low
4-

m
er

s

5 10 15 20
index size (bits/symbol)

103

tim
e

(µ
s/

qu
er

y)

5 10 15 20
index size (bits/symbol)

102

103

5 10 15 20
index size (bits/symbol)

101

102

8-
m

er
s

ILCP-D
ILCP-C
Sada-D
GCDA
Brute-C
Packed-sort
Packed-bv
RLZD-bv
RLZD-hash
RLED-bv
RLED-hash

Figure 4 Document listing indexes on real repetitive collections. The x axis shows the total size
of the index in bits per symbol. The y axis shows the average time per query in microseconds. Note
that the vertical axis is logarithmic.

In the case of Revision, where are more and smaller documents, RLZD-bv is about 1.4-1.5×
faster than Packed-bv on frequent patterns, showing almost the same time results on middle
and low frequent queries. ILCP-D is 2.5-3× slower on high frequent patterns (taking more
than 22 times more space, requiring 18.155 bit per symbol), slowing down to 4.5-5× on low
frequent. GCDA is 5.3-6.7× slower than RLZD-bv here. Brute-C with the index size of 1.36×
smaller than RLZD, takes 8.5 − 23.8× more time compared to RLZD-bv. Here RLZD-hash is
9.7-14× slower than RLZD-bv variant.
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Influenza, with many small documents, is the worst case for many indexes. Here the
smallest index, Brute-C, takes 1.16× less space than the nearest competitor, RLZD, and from
10.3 (on 8-mers with low frequency) upto 27.6 (on 4-mers with high frequency) more time
than RLZD-bv. Packed-bv is 1.06 upto 1.42 times faster (271 microseconds for Packed-bv
versus 388 for RLZD-bv on 8-mers with high frequency) and requires 6.3× more space. The
other three nearest competitors: ILCP-D is 4-28× slower and as big as Packed-bv, GCDA is
8-13.6× slower, requiring 1.6 more space, and ILCP-C, which is third best space-wise, requires
1.14 more space (0.923 bits per symbol) and 4.7-10.2 more time.

In most cases the best previous indexes (from [4]) are either much slower, much larger, or
both, compared to the ones we describe.

5 Conclusions and Future Work

We have shown that very simple algorithms based on scanning intervals of the document
array lead to very fast document listing times on three highly repetitive data sets of versioned
documents and genome collections. We have further shown these approaches to work well with
new compressed representations of the document array based on relative Lempel-Ziv parsing
and run-length encoding. We speculate that there are many ways to further engineer and
improve the approaches we have described, however, our experiments here strongly indicate
that they already exhibit significant performance improvements over existing methods. Our
indexes are among the smallest document listing approaches known (at least on the data
sets tested) and are an order of magnitude or faster.

There are numerous avenues for future work. Firstly, the results of this paper should lead
directly to greatly improved performance for the metagenomics applications of document
listing investigated in [3]. Extending our results to more complex versions of the document
listing problem, such as document listing with frequencies and top-k document retrieval
should also be possible. It may also be fruitful to apply RLZ compression to improve other
document listing methods, as was done with grammar compression by Cobas and Navarro [4].

Finally, it would seem important to determine the interval size at which specialized
document listing methods begin to overhaul scanning-based methods. Such an investigation
would necessarily involve indexing large test collections, which bring their own different
challenges for the more intricate indexes, such as index construction. Our results here show
that scanning-methods still have the edge for interval sizes into the millions.
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