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Abstract
Given a graph G = (V, E), a subgraph H is an additive +β spanner if distH(u, v) ≤ distG(u, v) + β

for all u, v ∈ V . A pairwise spanner is a spanner for which the above inequality is only required to
hold for specific pairs P ⊆ V × V given on input; when the pairs have the structure P = S × S for
some S ⊆ V , it is called a subsetwise spanner. Additive spanners in unweighted graphs have been
studied extensively in the literature, but have only recently been generalized to weighted graphs.

In this paper, we consider a multi-level version of the subsetwise additive spanner in weighted
graphs motivated by multi-level network design and visualization, where the vertices in S possess
varying level, priority, or quality of service (QoS) requirements. The goal is to compute a nested
sequence of spanners with the minimum total number of edges. We first generalize the +2 subsetwise
spanner of [Pettie 2008, Cygan et al., 2013] to the weighted setting. We experimentally measure the
performance of this and several existing algorithms by [Ahmed et al., 2020] for weighted additive
spanners, both in terms of runtime and sparsity of the output spanner, when applied as a subroutine
to multi-level problem.

We provide an experimental evaluation on graphs using several different random graph generators
and show that these spanner algorithms typically achieve much better guarantees in terms of sparsity
and additive error compared with the theoretical maximum. By analyzing our experimental results,
we additionally developed a new technique of changing a certain initialization parameter which
provides better spanners in practice at the expense of a small increase in running time.
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16:2 Multi-Level Weighted Additive Spanners

1 Introduction

Given an undirected graph, a spanner is a sparse subgraph with approximately the same
distance metric as the original graph. Spanners are used as a primitive for many algorithmic
tasks involving the analysis of distances or shortest paths in enormous input graphs; it is
often advantageous to first replace the graph with a spanner, which can be analyzed much
more quickly and stored in much smaller space, at the price of a small amount of error. See
the recent survey [5] for more details on these applications.

Spanners were first studied with multiplicative error, where for an input graph G and
an error (“stretch”) parameter k, the spanner H must satisfy distH(s, t) ≤ k · distG(s, t) for
all vertices s, t, where distG(s, t) denotes the distance in G between s and t. This setting
was quickly resolved in a seminal paper by Althöfer, Das, Dobkin, Joseph, and Soares [9],
where the authors proved that for all positive integers k, all n-vertex graphs have spanners
on O(n1+1/k) edges with stretch 2k − 1, and that this tradeoff is the best possible. Thus, as
expected, one can trade off error for spanner sparsity, increasing the stretch k to pay more
and more error for sparser and sparser spanners.

For very large graphs, additive error is arguably a much more appealing paradigm. Given
β > 0, a +β spanner of an n-vertex graph G is a subgraph H such that distH(s, t) ≤
distG(s, t) + β for all vertices s, t. Thus, for additive error the excess distance in H is
independent of the graph size and of distG(s, t), which can be large when n is large. Additive
spanners were introduced by Liestman and Shermer [29], and followed by three landmark
theoretical results on the sparsity of additive spanners in unweighted graphs: Aingworth,
Chekuri, Indyk, and Motwani [8] showed that all graphs have +2 spanners on O(n3/2) edges,
Chechik [14,18] showed that all graphs have +4 spanners on O(n7/5) edges, and Baswana,
Kavitha, Mehlhorn, and Pettie [12] showed that all graphs have +6 spanners on O(n4/3)
edges.

Despite the inherent appeal of additive error, spanners with multiplicative error remain
much more commonly used in practice. There are two reasons for this.
1. First, while the multiplicative spanner of Althöfer et al [9] works without issue for weighted

graphs, the previous additive spanner constructions hold only for unweighted graphs,
whereas the metrics that arise in applications often require edge weights. Addressing this,
recent work of the authors [3] and in two papers of Elkin, Gitlitz, and Neiman [23,24]
gave natural extensions of the classic additive spanner constructions to weighted graphs.
For example, the +2 spanner bound becomes the following statement: for all n-vertex
weighted graphs G, there is a subgraph H satisfying distH(s, t) ≤ distG(s, t) + 2W (s, t),
where W (s, t) denotes the maximum edge weight along an arbitrary s⇝ t shortest path
in G. The +4 spanner generalizes similarly, and the +6 spanner does as well with the
small exception that the error increases to +(6 + ε)W (s, t), for arbitrarily small ε > 0
which trades off with the implicit constant in the spanner size.

2. Second, poly(n) factors in spanner size can be quite serious in large graphs, and so
applications often require spanners of near-linear size, say O(n1.01) edges for an n-vertex
input graph. The worst case spanner sizes of O(n4/3) or greater for additive spanner
constructions are thus undesirable, and unfortunately, there is a theoretical barrier to
improving them: Abboud and Bodwin [1] proved that one cannot generally trade off more
additive error for sparser spanners, as one can in the multiplicative setting. Specifically,
for any constant c > 0, there is no general construction of +c spanners for n-vertex
input graphs on O(n4/3−0.001) edges. However, the lower bound construction is rather
pathological, and it is not likely to arise in practice. It is known that for many practical
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graph classes, e.g., those with good expansion, near-linear additive spanners always
exist [12]. Thus, towards applications of additive error, it is currently an important open
question whether modern additive spanner constructions on practical graphs of interest
tend to exhibit performance closer to the worst-case bounds from [1], or bounds closer to
the best ones available for the given input graphs We remark here that there are strong
computational barriers to designing algorithms that achieve the sparsest possible +c

spanners directly, or which even closely approximate this quantity in general [19].

The goal of this work is to address the second point, by measuring the experimental
performance of the state-of-the-art constructions for weighted additive spanners on graphs
generated from various popular random models and measuring their performance. We
consider both +cW spanners (where W = maxuv∈E w(uv) is the maximum edge weight)
and +cW (·, ·) spanners, whose additive error is +cW (s, t) for each pair s, t ∈ V . We are
interested both in runtime and in the ratio of output spanner size to the size of the sparsest
possible spanner (which we obtain using an ILP, discussed in Section 4). We specifically
consider generalizations of the three staple constructions for weighted additive spanners
mentioned above, in which the spanner distance constraint only needs to be satisfied for
given pairs of vertices.

In particular, the following extensions are considered. A pairwise spanner is a subgraph
that must satisfy the spanner error inequality for a given set of vertex pairs P taken on input,
and a subsetwise spanner is a pairwise spanner with the additional structure P = S × S for
some vertex subset S. See e.g., [13, 15,16,21,22,27,28,32] for recent prior work on pairwise
and subsetwise spanners, or the survey [5]. We then discuss a multi-level version of the
subsetwise additive spanner where we have an edge-weighted graph G = (V, E), a nested
sequence of terminals Sℓ ⊆ Sℓ−1 ⊆ · · · ⊆ S1 ⊆ V and a real number c ≥ 0 as input. We
want to compute a nested sequence of subgraphs Hℓ ⊆ Hℓ−1 ⊆ · · · ⊆ H1 such that Hi is
a +cW subsetwise spanner of G over Si. The objective is to minimize the total number of
edges in all subgraphs. Similar generalizations have been studied for the Steiner tree problem
under various names including Multi-level Network Design [10], Quality of Service Multicast
Tree (QoSMT) [17, 26], Priority Steiner Tree [20], Multi-Tier Tree [30], and Multi-level
Steiner Tree [2, 7]. However, multi-level or QoS generalizations of spanner problems appear
to have been much less studied in literature. These types of problems have applications in
multi-level graph visualization and other network design problems where vertices may require
different level or QoS requirements. Section 2 generalizes the clustering-based +2 subsetwise
spanner [22] to weighted graphs, and Section 3 generalizes to the multi-level setting. Section 5
contains an experimental comparison between several different spanner algorithms given here
and in [3] to infer that many of these spanner constructions typically achieve better error or
sparsity bounds than the theoretical worst-case bounds. This comparison also suggests that
spanners constructed by a certain light initialization technique given in [3] (Section 5.2.9)
tend to outperform spanners constructed by clustering and path buying in terms of the
sparsity; further, by varying an initialization parameter and selecting the sparsest spanner,
we can compute much sparser additive spanners in random graphs at the expense of a
logarithmic factor in running time.

2 Subsetwise spanners

All unweighted graphs have polynomially constructible +2 subsetwise spanners over S ⊆ V

on O(n
√

|S|) edges [22, 32]. For weighted graphs, Ahmed et al. [3] recently give a +4W

subsetwise spanner construction, also using O(n
√

|S|) edges. In this section we show how

SEA 2021



16:4 Multi-Level Weighted Additive Spanners

to generalize the +2 subsetwise construction [22, 32] to the weighted setting by giving a
construction which produces a subsetwise +2W spanner of a weighted graph (with integer
edge weights in [1, W ]) on O(nW

√
|S|) edges.

A clustering C = {C1, C2, . . . , Cq} is a set of disjoint subsets of vertices. Initially, every
vertex is unclustered. The subsetwise +2W construction has two steps: the clustering phase
and the path buying phase. The clustering phase is exactly the same as that of [22,32] in
which we construct a cluster subgraph GC as follows: set β = logn

√
|S|W , and while there

is a vertex v with at least ⌈nβ⌉ unclustered neighbors, we add a cluster C to C containing
exactly ⌈nβ⌉ unclustered neighbors of v (note that v ̸∈ C). We add to GC all edges vx

(x ∈ C) and xy (x, y ∈ C). When there are no more vertices with at least ⌈nβ⌉ unclustered
neighbors, we add all the unclustered vertices and their incident edges to GC .

In the second (path-buying) phase, we start with a clustering C and a cluster subgraph
G0 := GC. There are z :=

(|S|
2

)
unordered pairs of vertices in S; let π1, π2, . . . , πz denote

the shortest paths between these vertex pairs where πi = π(ui, vi) has endpoints {ui, vi}. As
in [22], we iterate from i = 1 to i = z and determine whether to add path πi to the spanner.
Define the cost and value of a path πi as follows:

cost(πi) := # edges of πi which are absent in Gi−1

value(πi) := # pairs (x, C) where x ∈ {ui, vi}, C ∈ C,

C contains at least one vertex in πi,
and distπi

(x, C) < distGi−1(x, C)

If cost(πi) ≤ (2W + 1)value(πi), then we add (“buy”) πi to the spanner by letting Gi =
Gi−1 ∪ πi. Otherwise, we do not add πi, and let Gi = Gi−1. The final spanner returned is
H = Gz.

The unweighted +2 subsetwise spanner [22] and corresponding cluster subgraph GC rely
on the following properties:

Missing-edge property: if an edge uv ∈ E is absent in GC, then u and v belong to two
different clusters
Cluster-diameter property: the distance in GC between two vertices in the same cluster is
at most 2 (2W for weighted graphs)

Using these properties, a lemma in [22] states that if a shortest u-v path π(u, v) contains
t ≥ 1 edges which are absent in GC , then there are at least t/2 clusters in C which contain
at least one vertex on π(u, v). This lemma does not quite hold in weighted graphs since a
shortest path can pass through the same cluster many times; we instead prove the following
generalization:

▶ Lemma 1. Let G be a weighted graph with edge weights in [1, W ] and let π(u, v) be a
shortest path which contains t edges which are absent from GC. Then there are at least
t/(W + 1) clusters of C which contain at least one vertex on π(u, v).

Proof. Consider pairs (x, e) where e is an edge of π(u, v) absent in GC and x is one of the
endpoints of e. There are t missing edges, so there are 2t such pairs. A cluster C ∈ C is said
to own the pair (x, e) if x ∈ C. By the missing-edge property, every missing edge is incident
to two different clusters, so each pair (x, e) is owned by some cluster.

Consider some cluster C ∈ C such that π(u, v) passes through some vertex in C. By the
cluster-diameter property and using the fact that all edges have weight at least 1, π(u, v)
cannot pass through more than 2W vertices in C. Using this we can show that C owns
at most 2W + 2 pairs (x, e). Since there are exactly 2t vertex-edge pairs and each cluster
passing through some point in π(u, v) owns at most 2W + 2 pairs, we conclude that there
are at least 2t

2W +2 = t
W +1 clusters which contain at least one vertex in π(u, v). ◀
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▶ Lemma 2. For any ui, vi ∈ S, we have distH(ui, vi) ≤ distG(ui, vi) + 2W .

▶ Lemma 3. For β = logn

√
|S|W , the +2W subsetwise spanner H has O(nW

√
|S|) edges.

The proofs of these lemmas are largely the same as in [22] except we incur an additional W

in the size bound due to the cost vs. value when considering when to buy the path πi to the
spanner.

▶ Corollary 4. Let G be a weighted graph with integer edge weights in [1, W ]. Then G has a
+6W pairwise spanner on O(Wn|P |1/4) edges.

This follows from applying the +8W construction of Ahmed et al. [3] (Appendix A, Al-
gorithm 3), except we use the above +2W subsetwise spanner instead of the +4W subsetwise
spanner construction given in [3] as a subroutine.

3 Multi-level spanners

Here we study a multi-level variant of graph spanners. We first define the problem:

▶ Definition 5 (Multi-level weighted additive spanner). Given a weighted graph G(V, E) with
maximum weight W , a nested sequence of subsets of vertices Sℓ ⊆ Sℓ−1 ⊆ . . . ⊆ S1 ⊆ V ,
and c ≥ 0, a multi-level +cW spanner is a nested sequence of subgraphs Hℓ ⊆ Hℓ−1 ⊆ . . . ⊆
H1 ⊆ G, where Hi is a subsetwise +cW spanner over Si.

Observe that Definition 5 generalizes the subsetwise spanner, which is a special case where
ℓ = 1. We define the sparsity of a multi-level spanner by sparsity({Hi}ℓ

i=1) :=
∑ℓ

i=1 |E(Hi)|,
where lower sparsity is more desirable. In the following sections, we also measure the quality
of a multi-level spanner in terms of the ratio of its sparsity to the minimum possible sparsity
over all candidate multi-level spanners (denoted by OPT).

The multi-level spanner can equivalently be phrased in terms of priorities and rates: each
vertex v ∈ S1 has a priority P (v) between 1 and ℓ (namely, P (v) = max{i : v ∈ Si}), and
we wish to compute a single subgraph containing edges of different rates such that for all
u, v ∈ S1, there is a +cW spanner path consisting of edges of rate at least min{P (u), P (v)}.
With this, we will typically refer to the priority of v to denote the highest i such that v ∈ Si,
or 0 if v ̸∈ S1. In this section, we show that the multi-level version is not significantly harder
than the ordinary “single-level” version: a subroutine which can compute an additive spanner
can be used to compute a multi-level spanner whose sparsity is comparably good.

We first describe a simple rounding-up approach based on an algorithm by Charikar et
al. [17] for the QoSMT problem, a similar generalization of the Steiner tree problem. For this
approach, assume we have a subroutine which computes an exact or approximate single-level
subsetwise spanner. Given v ∈ S1, let P (v) ∈ [1, ℓ] denote the priority of v. The rounding-up
approach is as follows: for each v, round P (v) up to the nearest power of 2. This effectively
constructs a “rounded-up” instance where all vertices in S1 have priority 1, 2, 4, . . . , or
2⌈log2 ℓ⌉. The sparsity of the optimum solution in the rounded-up instance is at most 2 OPT;
given the optimum solution to the original instance with sparsity OPT, a feasible solution to
the rounded-up instance with sparsity at most 2 OPT can be obtained by rounding up the
rate of each edge to the nearest power of 2.

For each i ∈ {1, 2, 4, . . . , 2⌈log2 ℓ⌉}, use the subroutine to compute a level-i subsetwise
spanner over all vertices whose rounded-up priority is at least i. The final multi-level additive
spanner is obtained by taking the union of these computed spanners, by keeping an edge at
the highest level it appears in. This requires O(log ℓ) calls to the single-level subroutine.

SEA 2021



16:6 Multi-Level Weighted Additive Spanners

(a) (b)

Figure 1 (a) The rounding-up approach computes an optimal spanner at each level (assuming an
exact subroutine), so the sizes of the spanners on each level are at most that of the optimal solution
(9 + 40 edges vs. 12 + 40). (b) However, when an edge is present in a top-level solution, it must be
present in lower-level solutions. The rounding-up approach takes the union of the spanners in the
bottom level; in this case, the sparsity of the rounded-up solution (9 + 48 vs. 12 + 40) is greater
than that of the optimum.

▶ Theorem 6. Assuming an exact subsetwise spanner subroutine, the solution computed by
the rounding-up approach has sparsity at most 4 · OPT.

This is proved using the same ideas as the 4ρ-approximation for QoSMT [17]. As
mentioned earlier, in practice we use an approximation algorithm to compute the subsetwise
spanner instead of computing the minimum spanner.

▶ Theorem 7. There exists a Õ(n/
√

|S1|)-approximation algorithm to compute multi-level
+2W spanners when W = O(log n).

This follows from using the +2W subsetwise construction in Section 2. The approximation
ratio of this subsetwise spanner algorithm is O(nW/

√
|S|) as the construction produces

a spanner of size O(nW
√

|S|), while the sparsest additive spanner trivially has at least
|S| − 1 = Ω(|S|) edges.

We also show that, under certain conditions, if we have a subroutine which computes a
subsetwise spanner of G, S of size O(na|S|b) where a and b are absolute constants, a very
naïve algorithm can be used to obtain a multi-level spanner also with sparsity O(na|S1|b).

▶ Theorem 8. Suppose there is an absolute constant 0 < α < 1 such that |Si| ≤ α|Si−1| for
all i ∈ {1, . . . , ℓ}. Then we can compute a multi-level spanner with sparsity O(na|S1|b).

Proof. Consider the following simple construction: for each i ∈ {1, 2, 3, . . . , ℓ}, compute
a level-i subsetwise spanner of size O(na|Si|b). Consider the union of these spanners, by
keeping each edge at the highest level it appears. The sparsity of the returned multi-level
spanner is at most

sparsity({Hi}) = O(na|S1|b + 2na|S2|b + 3na|S3|b + . . . + ℓna|Sℓ|b)

≤ O(na|S1|b(1 + 2αb + 3α2b + . . . + ℓα(ℓ−1)b))
= O(na|S1|b)

where we used the arithmetico-geometric series 1 + 2(αb) + 3(αb)2 + . . . = 1
(1−αb)2 which is

constant for fixed α, b. Note that 0 < α < 1 and b > 0, which implies 0 < αb < 1. ◀
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The assumption that |Si| ≤ α|Si−1| for some constant α is fairly natural, as many realistic
networks tend to have significantly fewer hubs than non-hubs.

▶ Corollary 9. Under the assumption |Si| ≤ α|Si−1| for all i ∈ {2, . . . , ℓ}, there exists a
poly-time algorithm which computes a multi-level +2 spanner of sparsity O(n

√
|S1|).

Proof. This follows by using the +2 construction by Cygan et al. [22] on O(n
√

|S|) edges as
the subroutine. ◀

4 Integer programming formulation

To compute a minimum size +cW spanner over vertex pairs P , we utilize a slight modification
of the ILP in [5, Section 9], wherein we choose the specific distortion function f(t) = t + cW

and minimize the sparsity rather than total weight of the spanner. For completeness, we
present the full ILP for computing a single-level additive subsetwise spanner below along
with a brief description of the multi-level extension. Here E′ represents the bidirected edge
set, obtained by adding directed edges (u, v) and (v, u) for each edge uv ∈ E. The binary
variable xuv

(i,j) is 1 if edge (i, j) is included on the selected u-v path and 0 otherwise, and w(e)
is the weight of edge e.

Minimize
∑
e∈E

xe subject to (1)∑
(i,j)∈E′

xuv
(i,j)w(e) ≤ distG(u, v) + cW ∀(u, v) ∈ P ; e = ij (2)

∑
(i,j)∈Out(i)

xuv
(i,j) −

∑
(j,i)∈In(i)

xuv
(j,i) =


1 i = u

−1 i = v

0 else
∀(u, v) ∈ P ; ∀i ∈ V (3)

∑
(i,j)∈Out(i)

xuv
(i,j) ≤ 1 ∀(u, v) ∈ P ; ∀i ∈ V (4)

xuv
(i,j) + xuv

(j,i) ≤ xe ∀(u, v) ∈ P ; ∀e = ij ∈ E (5)

xe, xuv
(i,j) ∈ {0, 1} (6)

Inequalities (3)–(4) enforce that for each (u, v) ∈ P , the selected edges corresponding to u,
v form a path; inequality (2) enforces that the length of this path is at most distG(u, v) + cW

(note that W may be replaced with W (u, v)). Inequality (5) ensures that if xuv
(i,j) = 1 or

xuv
(i,j) = 1, then edge ij is taken.

To generalize the ILP formulation to the multi-level problem, we take a similar set of
variables for every level. The rest of the constraints are similar, except we define xk

e = 1 if
edge e is present on level k and the variables xuv

(i,j) are also indexed by level. We add the
constraint xk

e ≤ xk−1
e for all k ∈ {2, . . . , ℓ} which enforces that if edge e is present on level

k, it is also present on all lower levels. Finally, the objective is to minimize the sparsity∑ℓ
k=1

∑
e∈E xk

e .

5 Experiments

In this section, we provide experimental results involving the rounding-up framework described
in Section 3. This framework needs a single level subroutine; we use the +2W subsetwise
construction in Section 2 and the three pairwise +2W (·, ·), +4W (·, ·), +6W constructions
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16:8 Multi-Level Weighted Additive Spanners

provided in [3]1 (see Appendix A). We generate multi-level instances and solve the instances
using the ILP and the four approximation algorithms. We consider natural questions about
how the number of levels ℓ, number of vertices n, and decay rate of terminals with respect
to levels affect the running times and (experimental) approximation ratios, defined as the
sparsity of the returned multi-level spanner divided by OPT.

We used CPLEX 12.6.2 as an ILP solver in a high-performance computer for all exper-
iments (Lenovo NeXtScale nx360 M5 system with 400 nodes). Each node has 192 GB of
memory. We have used Python for implementing the algorithms and spanner constructions.
Since we have run the experiment on several thousand instances, we run the solver for four
hours per instance.

5.1 Experiment parameters
We run experiments first to test experimental approximation ratio vs. the parameters, and
then to test running time vs. parameters. Each set of experiments has several parameters:
the graph generator, the number of levels ℓ, the number of vertices n, and how the size of
the terminal sets Si (vertices requiring level or priority at least i) decrease as i decreases.

In what follows, we use the Erdős–Rényi (ER) [25], Watts–Strogatz (WS) [33], Barabási–
Albert (BA) [11], and random geometric (GE) [31] models. Let p be the edge selection
probability. If we set p = (1 + ε) ln n

n , then the generated Erdős–Rényi graph is connected
with high probability for ε > 0 [25]. For our experiments we use ε = 1. In the Watts-Strogatz
model, we initially create a ring lattice of constant degree K. For our experiments we
use K = 6 and p = 0.2. In the Barabási–Albert model, a new vertex is connected to m

existing vertices. For our experiments we use m = 5. In the random geometric graph model,
two vertices are connected to each other if their Euclidean distance is not larger than a
threshold rc. For rc =

√
(1+ϵ) ln n

πn with ϵ > 0, the synthesized graph is connected with a high
probability [31]. We generate a set of small graphs (10 ≤ n ≤ 40) and a set of large graphs
(50 ≤ n ≤ 500). We only compute the exact solutions for the small graphs since the ILP has
an exponential running time. In this paper, we provide the results of Erdős–Rényi graphs
since it is the most popular model. However, the radius2 of Erdős–Rényi graphs is relatively
small; in our dataset, the range of the radius is 2-4. Hence, we also provide the results of
random geometric graphs which have larger radius (4-12). The remaining results and the
radius distribution of different generators are available at the supplement Github link. We
consider number of levels ℓ ∈ {1, 2, 3} for small graphs, ℓ ∈ {1, . . . , 10} for large graphs, and
adopt two methods for selecting terminal sets: linear and exponential. A terminal set S1
with lowest priority of size n(1 − 1

ℓ+1 ) in the linear case and n
2 in the exponential case is

chosen uniformly at random. For each subsequent level, 1
ℓ+1 vertices are deleted at random

in the linear case, whereas half the remaining vertices are deleted in the exponential case.
Levels/priorities and terminal sets are related via Si = {v ∈ S1 : P (v) ≥ i}. We choose edge
weights w(e) independently uniformly at random from {1, 2, 3 . . . , 10}.

An experimental instance of the multi-level problem here is thus characterized by four
parameters: graph generator, number of vertices n, number of levels ℓ, and terminal selection
method TSM ∈ {Linear,Exponential}. As there is randomness involved, we generated
five instances for every choice of parameters (e.g., ER, n = 30, ℓ = 2, Linear). For each

1 Note that, one can show that the +2W , +4W , +8W spanners in [3] are actually +2W (., .), +4W (., .)
and +6W spanners respectively by using a tighter analysis [4].

2 The minimum over all v ∈ V of maxw∈V dG(v, w) where dG(v, w) is the graph distance (by number of
edges, not total weight) between v and w
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instance of the small graphs, we compute the approximate solution using either the +2W ,
+2W (·, ·), +4W , or +6W spanner subroutine, and the exact solution using the ILP described
in Section 4. We compute the experimental approximation ratio (“Ratio”) by dividing the
sparsity of the approximate solution by the sparsity of the optimum solution (OPT). For
large graphs, we only compute the approximate solution.

5.2 Results
We consider different spanner constructions as the single level subroutine in the rounding-
up approach described in Section 3. We first consider the +2W subsetwise construction
(Section 2).

5.2.1 Multi-level +2W spanner
We first describe the experimental results on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal
selection method in Figure 2. The average experimental ratio increases as n increases
approximately linearly in n, which is expected since the theoretical approximation ratio of
Õ(n/

√
|S1|) is proportional to n. The average and minimum experimental ratio does not

change significantly as the number of levels increases; however, the maximum ratio increases.
The experimental ratio of the linear terminal selection method is slightly better compared to
that of the exponential method.

Figure 2 Performance of the algorithm that uses +2W subsetwise spanner as the single level
subroutine on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

5.2.2 Multi-level +2W (·, ·) spanner
We now consider the +2W (·, ·) pairwise construction [3] (Algorithm 1, Appendix A) as a
subroutine, with P = S × S. We first describe the experimental results on Erdős–Rényi
graphs w.r.t. n, ℓ, and terminal selection method in Figure 3. The average experimental
ratio increases as n increases. This is again expected since the theoretical approximation
ratio is proportional to n. The average and minimum experimental ratio do not change
that much as the number of levels increases, however, the maximum ratio increases. The
experimental ratio of the linear terminal selection method is also slightly better compared to
that of the exponential method.

5.2.3 Comparison between global and local spanners
One major difference between the subsetwise and pairwise construction is the subsetwise
construction considers the (global) maximum edge weight W of the graph in the error. On the
other hand, the +cW (·, ·) spanners consider the (local) maximum edge weight in a shortest
path for each pair of vertices s, t. We provide a comparison between the global and local
settings.
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Figure 3 Performance of the algorithm that uses +2W (·, ·) pairwise spanner as the single level
subroutine on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

We describe the experimental results on Erdős–Rényi graphs w.r.t. n, ℓ, and the terminal
selection method in Figure 4. The average experimental ratio increases as n increases for
both global and local settings. However, the ratio of the local setting is smaller compared to
that of the global setting. One reason for this difference is the solution to the global exact
algorithm is relatively smaller since the global setting considers larger errors. The ratio of
the global setting increases as the number of levels increases and for the exponential terminal
selection method. For the local setting, the ratio does not change significantly.

Figure 4 Performance of the global (subsetwise +2W ) and local (pairwise +2W (·, ·)) construction-
based algorithms on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

5.2.4 Multi-level +4W (·, ·) spanner
We now consider the +4W (·, ·) pairwise construction [3] (Algorithm 2, Appendix A) as a
single level subroutine. We first describe the experimental results on Erdős–Rényi graphs w.r.t.
n, ℓ, and terminal selection method in Figure 5. The average experimental ratio increases as
n increases. This is expected since the theoretical approximation ratio is proportional to n.
The average experimental ratio does not change significantly as the number of levels increases;
however, the maximum ratio increases. The experimental ratio of the linear terminal selection
method is also slightly better compared to that of the exponential method.

5.2.5 Comparison between +2W (·, ·) and +4W (·, ·) spanners
We now provide a comparison between the pairwise +2W (·, ·) and +4W (·, ·) construction-
based approximation algorithms. We first describe the experimental results on Erdős–Rényi
graphs w.r.t. n, ℓ, and the terminal selection method in Figure 6. The average experimental
ratio increases as n increases for both +2W (·, ·) and +4W (·, ·) settings. The +4W (·, ·)
construction-based algorithm slightly outperforms the +2W (·, ·) algorithm for ℓ = 3 and
exponential selection method.
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Figure 5 Performance of the algorithm that uses +4W (·, ·) pairwise spanner as the single level
subroutine on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

Figure 6 Performance of the pairwise +2W (·, ·) and +4W (·, ·) construction-based algorithms on
Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

5.2.6 Multi-level +6W spanner
We now consider the +6W pairwise construction [3] (Algorithm 3, Appendix A) as a single
level subroutine. We first describe the experimental results on Erdős–Rényi graphs w.r.t.
n, ℓ, and terminal selection method in Figure 7. The average experimental ratio increases
as n increases. This is expected since the theoretical approximation ratio is proportional
to n. The average experimental ratio does not change significantly as the number of levels
increases; however, the maximum ratio increases. The maximum and average experimental
ratios of the linear terminal selection method are slightly better compared to that of the
exponential method.

Figure 7 Performance of the algorithm that uses +6W pairwise spanner as the single level
subroutine on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

5.2.7 Comparison between +2W and +6W spanners
We now provide a comparison between the pairwise +2W and +6W construction-based
approximation algorithms. We first describe the experimental results on Erdős–Rényi graphs
w.r.t. n, ℓ, and the terminal selection method in Figure 8. The average experimental
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ratio increases as n increases for both +2W and +6W settings. As the number of vertices
increases, the ratio of the +6W construction-based algorithm gets smaller. This is expected
since a larger error makes the problem easier to solve. Similarly, as ℓ increases, the +6W

construction-based algorithm outperforms the +2W algorithm. The average experimental
ratio of the +6W construction based algorithm is smaller both in the linear and exponential
terminal selection methods.

Figure 8 Performance of the pairwise +2W and +6W construction-based algorithms on Erdős–
Rényi graphs w.r.t. n, ℓ, and terminal selection method.

5.2.8 Experiment on large graphs

We generate some large instances on up to 500 vertices and run different multi-level spanner
algorithms on them. We use n = {50, 100, 150, . . . , 500} and ℓ = {1, 2, 3, . . . , 10}. We describe
the experimental results on Erdős–Rényi graphs w.r.t. n, ℓ, and the terminal selection method
in Figure 9. We are comparing four multi-level algorithms, namely those using the +2W

subsetwise and +2W (·, ·), +4W (·, ·), +6W pairwise constructions [3] as subroutines with
P = S × S. Since computing the optimal solution exactly via ILP is computationally
expensive on large instances, we report the ratio in terms of relative sparsity, defined as
the sparsity of the multi-level spanner returned by one algorithm divided by the minimum
sparsity over the spanners returned by all four. The ratio of the +6W construction based
algorithm is lowest and the +2W construction based algorithm is highest. This is expected
since a higher additive error generally reduces the number of edges needed. Overall the ratio
decreases as n increases. This is because the significance of small additive error reduces as
the graph size and distances get larger. The relative ratio for the +2W construction increases
as ℓ increases, and for the exponential terminal selection method.

Figure 9 Performance of different approximation algorithms on large Erdős–Rényi graphs w.r.t.
n, ℓ, and terminal selection method.



R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:13

5.2.9 Impact of the initialization parameters
It is worth mentioning that the +2 subsetwise spanner [22] and +2W subsetwise spanner
(Section 2) begin with a clustering phase, while the algorithms described in Appendix A begin
with a d-light initialization. In d-light initialization, we add the d lightest edges incident to
each vertex, where d ≥ 1 is a parameter specific to the algorithm; these edges tend to be on
shortest paths. In practice, there may be relatively few edges which appear on shortest paths
and some of these edges might be redundant. Hence, we compute +2W (·, ·) spanners with
different values of d. We describe the experimental results on Erdős–Rényi graphs w.r.t. n,
ℓ, and the terminal selection method in Figure 10. We have computed the ratio as described
in Section 5.2.8. From the figures, we see that as we reduce the value of d exponentially,
the ratio decreases: in particular, the optimal choice of parameter d in practice might be
significantly smaller than the optimal value of d in theory. Generally, it could make sense
in practical implementations of spanner algorithms to try all values {d, d/2, d/4, d/8, . . . },
computing ≈ log2 d different spanners, and then use only the sparsest one. This costs only a
O(log d) factor in the running time of the algorithm, which is typically reasonable.

Figure 10 Impact of different values of d on large Erdős–Rényi graphs w.r.t. n, ℓ, and terminal
selection method.

5.3 Running time
We now provide the running times of the different algorithms. We show the running time of
the ILP on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method in Figure 11. The
running time of the ILP increases exponentially as n increases, as expected. The execution
time of a single level instance with 45 vertices is more than 64 hours using a 28 core processor.
Hence, we kept the number of vertices less than or equal to 40 for our small graphs. The
experimental running time should increase as ℓ increases, but we do not see that pattern in
these plots because some of the instances were not able to finish in four hours.

Figure 11 Running time of all exact algorithms on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal
selection method.

SEA 2021



16:14 Multi-Level Weighted Additive Spanners

We provide the experimental running time of the approximation algorithm on Erdős–
Rényi graphs in Figure 12. The running time of the +2W construction-based algorithm is
the largest. Overall, the running time increases as n increases. There is no straightforward
relation between the running time and ℓ. Although the number of calls to the single level
subroutine increases as ℓ increases, it also depends on the size of the subset in a single level.
Hence, if the subset sizes are larger, then it may take longer for small ℓ. The running time of
the linear method is larger.

Figure 12 Running time of all approximation algorithms on large Erdős–Rényi graphs w.r.t. n, ℓ,
and terminal selection method.

The running times appear reasonable in other settings too; see the supplemental Github
repository and the arXiv version [6] of this paper for details and experimental results.

5.4 Experimental additive error
Different spanner constructions provide theoretical guarantees on the maximum amount of
additive error. For example, a +2W subsetwise spanner over G, S ensures that any pair of
vertices in S does not have an error of more than +2W . Similarly, the +2W (·, ·), +4W (·, ·),
and +6W pairwise construction ensures that the error in the shortest path distance in the
spanner is no more than +2W (·, ·), +4W (·, ·), and +6W respectively. These are theoretical
upper bounds that directly appear from the construction. However, in our experiment, we
have found that the theoretical upper bound is never achieved, and most vertex pairs contain
a less additive error. We define the error ratio of an additive spanner H to be the sum of
additive errors in H (over all vertex pairs) divided by the maximum possible sum of errors.
For example, if H is a +2W (·, ·) spanner over vertex pairs P ⊆ V × V , then

error ratio :=
∑

(u,v)∈P (dH(u, v) − dG(u, v))∑
(u,v)∈P 2W (u, v) .

For a multi-level spanner, we define the error ratio similarly, except we additionally sum
the numerator (and denominator) over all subgraphs Hi from i = 1 to ℓ. We consider the
+2W (·, ·) pairwise construction [3] (Algorithm 1) as a single level subroutine and compute
the error ratios using Erdős–Rényi graphs w.r.t. n, ℓ, and the terminal selection method in
Figure 13. Figure 13 suggests that the average error ratio is typically less than 0.05; in other
words, the +2W (·, ·) spanner algorithm outputs a spanner whose average additive error is
around 5% of the maximum allowable error. We provide the comparison among all algorithms
on Erdős–Rényi graphs w.r.t. n, ℓ, and the terminal selection method in Figure 14.

5.5 Relative sparsity
In most of the previous figures, we provide the sparsity (number of edges) of the spanner,
relative to the optimum spanner. Here we provide a comparison of the spanner sparsities of
the four spanner algorithms (+2W subsetwise, +2W (·, ·), +4W (·, ·), and +6W ) relative to
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Figure 13 Average error ratios of the spanners computed using the algorithm that uses +2W (·, ·)
pairwise spanner as the single level subroutine on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal
selection method.

Figure 14 Average error ratios of the spanners computed using all algorithms on Erdős–Rényi
graphs w.r.t. n, ℓ, and terminal selection method.

each other in Figure 15. According to Figure 15, the +6W construction-based approximation
algorithm uses the fewest number of edges, and the +2W subsetwise spanner typically
outputs a spanner with 50% to 75% more edges than the +6W spanner; this is expected as
more additive error generally leads to sparser spanners in practice.

Figure 15 Sparsity ratio of the spanners computed using all algorithms on Erdős–Rényi graphs
w.r.t. n, ℓ, and terminal selection method.

5.6 Amount of reduction
One of the major goals of graph spanners is to sparsify the input graph without losing
significant information on distances in the original graph. A straightforward way to compute
the amount of reduction is to take the ratio of the number of edges removed from the input
graph in the spanner to the number of edges in the input graph. Since we are computing
multi-level spanners, we define the reduction ratio as the number of edges removed from
the input divided by |E|ℓ (in other words, (|E|ℓ − sparsity({Hi}))/(|E|ℓ)). We describe
these reduction ratios on Erdős–Rényi graphs w.r.t. n, ℓ, and the terminal selection method
in Figure 16. The global +2W construction-based approximation algorithm provides the
smallest reduction ratio which is also consistent with the idea that sparser spanners generally
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take on more additive error. Remember that the +2W construction uses clustering and
other construction uses d-initialization. This result again indicates that the clustering-based
approach performs worse compared to the initialization-based approach.

Figure 16 Reduction ratio of the spanners computed using all algorithms on Erdős–Rényi graphs
w.r.t. n, ℓ, and terminal selection method.

6 Conclusion

We have provided a framework where we can use different spanner subroutines to compute
multi-level spanners of varying additive error. We additionally introduced a generalization of
the +2 subsetwise spanner [22] to integer edge weights, and illustrate that this can reduce the
+8W error in [3] to +6W . A natural question is to provide an approximation algorithm that
can handle different additive error for different levels. We also provided an ILP to compute
the optimum spanner; computing this optimally is very slow, so natural directions include
using techniques such as graph reduction to sparsify the input graph before computing
a spanner. The experimental results in Section 5 suggest that the +2W clustering-based
approach is slower and returns worse spanners than the initialization based approaches. We
provided a method of changing the initialization parameter d which reduces the sparsity in
practice.
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A Pairwise spanner constructions [3]

Here, we provide pseudocode (Algorithms 1–3) describing the +2W , +4W , and +8W pairwise
spanner constructions3 by Ahmed et al. [3]. These spanner constructions have a similar
theme: first, construct a d-light initialization, which is a subgraph H obtained by adding the
d lightest edges incident to each vertex (or all edges if the degree is at most d). Then for
each pair (s, t) ∈ P , consider the number of edges in π(s, t) which are absent in the current
subgraph H. Add π(s, t) to H if the number of missing edges is at most some threshold ℓ,
or otherwise randomly sample vertices and either add a shortest path tree rooted at these
vertices, or construct a subsetwise spanner among them.

Algorithm 1 +2W pairwise spanner [3].

1: d = |P |1/3, ℓ = n/|P |2/3

2: H = d-light initialization
3: let m′ be the number of missing edges needed for a valid construction
4: while m′ > nd do
5: for (s, t) ∈ P do
6: x = |E(π(s, t)) \ E(H)|
7: if x ≤ ℓ then
8: add π(s, t) to H

9: R = random sample of vertices, each with probability 1/(ℓd)
10: for r ∈ R do
11: add a shortest path tree rooted at r to each vertex
12: add the m′ missing edges
13: return H

3 Using a tighter analysis or the above +2W subsetwise construction in place of the +4W construction in
Algorithm 3, the additive error can be improved to +2W (·, ·), +4W (·, ·), and +6W for integer edge
weights.
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Algorithm 2 +4W pairwise spanner [3].

1: d = |P |2/7, ℓ = n/|P |5/7

2: H = d-light initialization
3: let m′ be the number of missing edges needed for a valid construction
4: while m′ > nd do
5: for (s, t) ∈ P do
6: x = |E(π(s, t)) \ E(H)|
7: if x ≤ ℓ then
8: add π(s, t) to H

9: else if x ≥ n/d2 then
10: R1 = random sample of vertices, each w.p. d2/n

11: add a shortest path tree rooted at each r ∈ R1
12: else
13: add first ℓ and last ℓ missing edges of π(s, t) to H

14: R2 = i.i.d. sample of vertices, w.p. 1/(ℓd)
15: for each r, r′ ∈ R2 do
16: if exists r → r′ path missing ≤ n/d2 edges then
17: add to H a shortest r → r′ path among paths missing ≤ n/d2 edges
18: add the m′ missing edges
19: return H

Algorithm 3 +8W pairwise spanner [3].

1: d = |P |1/4, ℓ = n/|P |3/4

2: H = d-light initialization
3: let m′ be the number of missing edges needed for a valid construction
4: while m′ > nd do
5: for (s, t) ∈ P do
6: x = |E(π(s, t)) \ E(H)|
7: if x ≤ ℓ then
8: add π(s, t) to H

9: else
10: add first ℓ and last ℓ missing edges of π(s, t) to H

11: R = random sample of vertices, each w.p. 1/(ℓd)
12: H ′ = +4W subsetwise (R × R)-spanner [3]
13: add H ′ to H

14: add the m′ missing edges
15: return H

B Experiments

In the main paper, we mostly discussed the experimental results of Erdős–Rényi graphs. In
this section, we provide the results of random geometric graphs. The plots of Watts–Strogatz
and Barabási–Albert graphs are available in the Github repository.

SEA 2021



16:20 Multi-Level Weighted Additive Spanners

B.1 Multi-level +2W spanner
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and terminal
selection methods in Figure 17. In both cases the average ratio increases as n and ℓ increases.
The average ratio is relatively lower for the linear terminal selection method.

Figure 17 Performance of the algorithm that uses +2W subsetwise spanner as the single level
subroutine on random geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.2 Multi-level +2W (·, ·) spanner
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and terminal
selection method in Figure 18. The average experimental ratio increases as n increases. The
maximum ratio increases as ℓ increases. Again, the experimental ratio of the linear terminal
selection method is relatively smaller compared to the exponential method.

Figure 18 Performance of the algorithm that uses +2W (·, ·) pairwise spanner as the single level
subroutine on random geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.3 Comparison between global and local error
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and the
terminal selection method in Figure 19. The ratio of the local setting is smaller compared to
the global setting.

Figure 19 Performance of the global and local construction-based algorithms on random geometric
graphs w.r.t. n, ℓ, and terminal selection method.
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B.4 Multi-level +4W (·, ·) spanner

We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and terminal
selection method in Figure 20. The experimental ratio increases as the number of vertices
increases. The maximum ratio increases as the number of levels increases. Again, the
experimental ratio of the linear terminal selection method is relatively smaller compared to
the exponential method.

Figure 20 Performance of the algorithm that uses +4W (·, ·) pairwise spanner as the single level
subroutine on random geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.5 Comparison between +2W (·, ·) and +4W (·, ·) setups

We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and the
terminal selection method in Figure 21. As n increases the average ratio of +4W (·, ·)-based
approximation algorithm becomes smaller compared to the +2W (·, ·)-based algorithm. The
average ratio of +4W (·, ·) is relatively smaller for the exponential terminal selection method.

Figure 21 Performance of the pairwise +2W (·, ·) and +4W (·, ·) construction-based algorithms
on random geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.6 Multi-level +6W spanner

We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and terminal
selection method in Figure 22. The experimental ratio increases as the number of vertices
increases. The maximum ratio increases as the number of levels increases. Again, the
experimental ratio of the linear terminal selection method is relatively smaller compared to
the exponential method.
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Figure 22 Performance of the algorithm that uses +6W (·, ·) pairwise spanner as the single level
subroutine on random geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.7 Comparison between +2W and +6W setups
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and the
terminal selection method in Figure 23. We can see that as n gets larger the ratio of +6W

gets smaller. The situation is similar when ℓ increases.

Figure 23 Performance of the pairwise +2W and +6W construction-based algorithms on random
geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.8 Experiment on large graphs
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and the
terminal selection method in Figure 24.

Figure 24 Performance of different approximation algorithms on large random geometric graphs
w.r.t. n, ℓ, and terminal selection method.

B.9 Impact of the initialization parameters
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and the terminal
selection method in Figure 25. Again, the experiment suggests that we can exponentially
reduce the value of d and take the solution that has a minimum number of edges, with an
additional cost of O(log d) running time.
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Figure 25 Impact of different values of d on large random geometric graphs w.r.t. n, ℓ, and
terminal selection method.
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