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Abstract
We present highly optimized data structures for the dynamic predecessor problem, where the task is
to maintain a set S of w-bit numbers under insertions, deletions, and predecessor queries (return the
largest element in S no larger than a given key). The problem of finding predecessors can be viewed
as a generalized form of the membership problem, or as a simple version of the nearest neighbour
problem. It lies at the core of various real-world problems such as internet routing.

In this work, we engineer (1) a simple implementation of the idea of universe reduction, similar
to van-Emde-Boas trees (2) variants of y-fast tries [Willard, IPL’83], and (3) B-trees with different
strategies for organizing the keys contained in the nodes, including an implementation of dynamic
fusion nodes [Pǎtraşcu and Thorup, FOCS’14]. We implement our data structures for w = 32, 40, 64,
which covers most typical scenarios.

Our data structures finish workloads faster than previous approaches while being significantly
more space-efficient, e.g., they clearly outperform standard implementations of the STL by finishing
up to four times as fast using less than a third of the memory. Our tests also provide more general
insights on data structure design, such as how small sets should be stored and handled and if and
when new CPU instructions such as advanced vector extensions pay off.
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1 Introduction

Finding the predecessor of an integer key in a set of keys drawn from a fixed universe is a
fundamental algorithmic problem in computer science at the core of real-world applications
such as internet routing [8]. It can be considered a generalized form of the membership
problem or a simple version of the nearest neighbour problem. Navarro and Rojas-Ledesma
[20] recently gave a thorough survey on the topic, recapping the past four decades of research.

Data structures for the predecessor problem are designed to beat the Ω(lg n) lower time
bound for comparison-based searching. While optimal data structures have been shown
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7:2 Engineering Predecessor Data Structures for Dynamic Integer Sets

for static sets [21] that are known in advance and do not change, they do not necessarily
translate to the most practical implementations. Dinklage et al. [10] face the symmetrical
successor problem for a small universe and develop a simple data structure that accelerates
binary search. Despite not optimal in theory, it is the most efficient in their setting.

In this work, we focus on the dynamic problem, where the set of integers can be changed
at any time by inserting, deleting or updating keys. A prominent example of a dynamic
predecessor data structure is the van Emde Boas tree [24], which, despite near-optimal query
times in theory, has been proven irrelevant in practice due to its memory consumption [25].
Dementiev et al. [9] implemented a stratified trie as a heavily simplified practical variant
of the van Emde Boas tree for keys drawn from a 32-bit universe. Nowadays, with 64-bit
architectures dominating the landscape, the limitation to 32-bit keys can be considered
significant. The authors gave no hints as to how the data structure can be altered to properly
handle larger universes, and simply applying the same structure on a larger universe exceeds
practical memory limitations quite quickly. Nash and Gregg [19] thoroughly evaluated various
dynamic predecessor data structures in practice, including the aforementioned stratified tree.
They also implemented AVL trees, red-black trees and B-trees, as well as the trie hybrid
by Korda and Raman [17] and their self-engineered adaptation of burst tries [14] for integer
keys, which outperform the other data structures regarding both speed and memory usage.

Our contributions. We engineer new practical solutions for the dynamic predecessor problem
that are both faster and more memory efficient than the current best known to us. First, we
apply the idea of universe sampling following [10] to the dynamic case. Second, we engineer
y-fast tries [26], which, in our view, offer room for many practical optimizations. Finally, we
implement dynamic fusion nodes [22], for which Pǎtraşcu and Thorup give a very practical
description but no implementation. We embed them into B-trees and make use of modern
CPU instructions to accelerate some key low-level operations.

We note that our data structures are designed in a way often not optimal in theory. A
recurring observation that we made is that thanks to large CPU caches, naïve solutions
for queries on small datasets often outperform sophisticated data structures on modern
hardware, including linear scans of unsorted lists, or binary search in naïvely organized
sorted lists, where updates potentially require all items to be shifted. This observation has
been confirmed in the contexts of balanced parentheses [4, 11] and finding longest common
extensions in strings [10, 15]. We make use of this and replace predecessor data structures
for small input sets by sorted or unsorted lists without any auxiliary information.

This paper is organized as follows: we begin with definitions and notations in Section 2
and a description of our experimental setup in Section 3. Then, in Sections 4–6, we describe
our engineered data structures and give individual experimental results. In Section 7, we
conclude with a comparison of the best configurations with existing implementations.

2 Preliminaries

Let S be a set of n = |S| positive integers called keys drawn from a fixed universe U :=
[u] = [0, u − 1]. For any x ∈ U , we call predS(x) = max{y ∈ S | y ≤ x} the predecessor of x,
which is the largest key in S no larger than x. We consider the dynamic scenario, where keys
may be inserted into or deleted from S and the data structure must be updated accordingly.

In our analysis, we use the word RAM model, where we assume that we can perform
arithmetic operations on words of size w = Θ(lg u) in time O(1) (by default, logarithms are
to the base of two). Additionally, the binary logic operations OR (∨), AND (∧) and XOR
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(⊕) on words take constant time. With this, we can access the i-th bit in a word x, denoted
by x⟨i⟩, as well as the bits i to j (inclusively) of x, denoted by x⟨i .. j⟩, in constant time. We
refer to bit positions in MSBF order, e.g., x⟨0⟩ is the most significant bit of x.

We also require some advanced operations on words to be answered in constant time. Let
msb(x) denote the position of the most significant set bit of x and select1(x, k) the position
of the k-th set bit in x. Another needed operation is counting the number of trailing zero bits
of x. In theory, these queries can be answered in constant time using the folklore approach
of precomputing universal tables of size o(u1/c) bits, where we can look up the answers for
all possible queries on a constant number of c > 1 blocks of size w/c. In practice, we can
make use of special CPU instructions: LZCNT and TZCNT count the number of leading or
trailing zeroes, respectively, and POPCNT reports the number of set bits in a word. These
instructions are fairly widely spread, being implemented by current versions of the x86-64
(both Intel [16] and AMD [1]) instruction sets as well as ARM [3].

Tries. Tries are a long-known information retrieval data structure [12]. Here, we consider
binary tries for strings over a binary alphabet. Consider a key x ∈ U to be inserted into a
binary trie. We navigate the trie top-down according to the bits of the binary representation
of x in MSBF order: when reading a 0-bit, we go to the current node’s left child, and
otherwise to the right child. Inserting a new element x works accordingly, creating any node
that does not yet exist. Since the binary trie for a set of keys drawn from U has height ⌈lg u⌉,
this takes total time O(lg u). An example of a binary trie is shown in Figure 5a. Binary
tries are suitable for solving the dynamic predecessor problem: to find predS(x), we navigate
down the trie as if we were to insert it. If we reach a leaf labeled x, then x ∈ S and it is its
own predecessor. Otherwise, we eventually reach an inner node v that is missing the left or
right edge that we want to navigate, respectively. If the right edge is missing, the predecessor
of x is the label of the rightmost leaf in the left subtrie of v. Otherwise, if the left edge is
missing, we first navigate back up to the lowest ancestor v′ of v that has two children and
where v is in the right subtrie; then the predecessor is the label of the rightmost leaf in the
left subtrie of v′. In either case, we can report the predecessor of x in time O(lg u). Deleting
is done by locating a key’s leaf, removing it, and navigating back up removing any inner
node no longer connected to any leaves, all in time O(lg u). The number O(n lg u) of nodes
in the binary trie can be reduced to O(n) by contracting paths of branchless inner nodes to
single edges [18]. We call a trie compact if it does not contain any inner nodes with one child.

3 Methodology

We conduct the following three-step experiment for our data structures:
(1) insert n keys drawn uniformly at random from U into the initially empty data structure,
(2) perform ten million random predecessor queries for keys in the range of the inserted keys,

guaranteeing that there is always a predecessor that is never trivially the maximum, and
(3) delete the n keys from the data structure in the order in which they were inserted.
In preliminary experiments, we also considered distributions other than uniform, and also
intermingling insertions, queries and deletions. Apart from statistical fluctuations, the results
led to the same assertions and thus we solely consider the experiment described above.

For each data structure, we run five iterations using a different random seed each (but
the same seeds for all data structures and in the same order). We measure running times
by the wall clock time difference between start and finish of an iteration, as well as the
RAM usage using custom overridden versions of malloc and free and compute the averages
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7:4 Engineering Predecessor Data Structures for Dynamic Integer Sets

over the five iterations. Our code is written in C++17 and publicly available1; we compile
using GCC version 9.3. For hash tables (Sections 4 and 5), we use a public2 implementation
of Robin Hood hashing [6] that is both faster and more memory efficient than the STL
implementation (std::unordered_map). We conduct our experiments on Linux machines
with an Intel Xeon E5-4640v4 processor (12 cores at 2.1 GHz, 12×32 kB L1, 12×256 kB L2,
30 MB L3 shared, line size 64 B) and 256 GB of RAM.

4 Dynamic Universe Sampling

A common technique used by predecessor data structures is known as length reduction [5],
where we partition the universe into buckets of size b ≪ u and reduce the predecessor problem
to the much smaller sub-universe [b]. For each bucket, we determine a representative, e.g.,
the minimum contained key, which is entered into a top level predecessor data structure.
The buckets are maintained on the bucket level. When pred(x) is queried for some x ∈ U ,
we first solve the predecessor problem on the top level to find the bucket that x belongs into,
and then reduce the query to a smaller one answered on the bucket level. The van Emde
Boas tree [24] applies this approach recursively. In this work, we develop a dynamic version
the two-level data structure by Dinklage et al. [10] that achieved very good practical results
for the static predecessor problem.

We partition U into buckets of size b = 2k for some k > 0. Let i ∈ [u/b], then the i-th
bucket can only contain keys from the interval [bi, b(i + 1) − 1]. We call a bucket active if it
contains at least one key from S. Since b = 2k, the number i of the bucket that a key x ∈ U

belongs into is the number represented by the ⌈lg u⌉ − k highest bits of x. Hence, we only
store the lowest k bits for each key to reduce space usage in the buckets.

Top level. The top level maintains the set of active buckets. Consider a query for predS(x),
then it reports the rightmost active bucket i such that bi ≤ x. The predecessor of x is
then contained in bucket i if x is greater than the bucket’s current minimum. Otherwise,
it is the current maximum key contained in the active bucket preceding i. Clearly, the top
level requires a dynamic predecessor data structure on the set of active buckets, i.e., keys
drawn from the universe [u/b] represented by the keys’ high bits. We explore two basic
options. First, let imin and imax be the numbers of the leftmost and rightmost active buckets,
respectively. We store imax − imin = O(u/b) pointers in an array such that the i-th entry
points to the rightmost active bucket i′ with i′ ≤ i. Predecessor queries can trivially be
answered in time O(1) using a lookup, but updates may take time O(u/b) in the worst case
as we may need to shift pointers and/or update pointers for succeeding non-active buckets.
Furthermore, the array requires up to ⌈(u/b) lg(u/b)⌉ bits of space. Our alternative is a hash
table H containing only pointers to active buckets, identified by their numbers. Let b′ be
the number of active buckets, then H requires O(b′ lg(u/b)) bits of space. Updates can be
done in O(1) expected time, but since the order of buckets in H is arbitrary, queries may
require to perform up to b′ lookups: when a key belongs in bucket i, we look up i in H; if
that bucket is not active, we find no result and look up i − 1, and so on. This takes up to
O(b′) expected time.

1 Our code is published at https://github.com/pdinklag/tdc/tree/sea21-predecessor. Make sure to
check out the sea21-predecessor branch, which contains instructions in the readme.

2 Robin Hood hashing by Martin Ankerl: https://github.com/martinus/robin-hood-hashing.

https://github.com/pdinklag/tdc/tree/sea21-predecessor
https://github.com/martinus/robin-hood-hashing
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[0, 7] [8, 15] [16, 23] [24, 31]

01101011 5, 3B1 B2

Top:

Buckets:

Figure 1 Hybrid universe sampling data structure for S = {1, 2, 4, 6, 7, 19, 21} with w = 5, b = 8
and θmin = θmax = 3 . The top level holds bucket pointers for the partitioned universe. Since
there are no keys from the intervals [8, 15] and [24, 31] contained in S, their pointers point to the
respective preceding buckets. Bucket B1 is represented as a bit vector of length b such that each
1-bit corresponds to a key contained in S. Bucket B2, on the other hand, only contains two keys
that are represented as an unsorted list of keys relative to the left interval boundary.

Bucket level. On the bucket level, we first look at two basic data structures. We only store
the lowest k = lg b bits of the contained keys, called truncated keys in the following, as the
high bits are already defined by the bucket number. Let Si ⊆ S be the set of truncated
keys contained in the i-th bucket. We can store them in a bit vector Bi ∈ {0, 1}b where
Bi[x] = 1 if x ∈ Si and Bi[x] = 0 otherwise. Updates are then done in constant time by
setting or clearing the respective bit in Bi. To compute predSi

(x), we scan Bi linearly in
time O(b/ lg u) using word packing. However, Bi always requires b bits of space. Let n′ be
the current number of keys contained in a bucket and consider the case where n′ < b/ lg b.
An alternative is storing an unsorted list of n′ keys: this requires only n′ lg b < b bits of
space and retains O(1) time insertions, and predecessor queries and deletions take time
O(n′) = O(b/ lg b) = O(b/ lg u).

We now consider a hybrid of the two basic bucket structures. Let θmin and θmax be
thresholds with 0 < θmin ≤ θmax < b. We maintain a bucket as an unsorted list of keys as
long as n′ < θmax. If, after inserts, the bucket grows beyond θmax keys, we rebuild it to a
bit vector. If, after deletions, the bucket size falls below θmin keys, we revert to an unsorted
list. Rebuilding the bucket to a bit vector or unsorted list, respectively, takes time O(b).
Let θmin := cb/ lg b and θmax := θmin + c′ lg b for constants c, c′ > 0. Then, Θ(lg b) insertions
need to occur before we switch to a bit vector representation, followed by Θ(lg b) deletions
before reverting to an unsorted list. We can thus amortize the time needed for one insertion
and one deletion to O(b/ lg b). At all times, predecessor queries take at most O(b/ lg u) time
and the bucket requires at most b bits of space. Figure 1 shows an example.

Experimental evaluation. Following our considerations in Appendix B,
(1) we set b := 224 for buckets backed by bit vectors,
(2) we set b := 210 for buckets backed by unsorted lists and
(3) for hybrid buckets, we set θmin := 29 and θmax := 210 and try different sizes b.

Our results are shown in Figure 2. We first discuss the results for 32-bit keys. In most
configurations, we achieve throughputs higher than 222 operations per second for both updates
(insertions and deletions) and predecessor queries. Furthermore, we achieve compression in
that we require less than 32 bits per key, because we only store trunacted keys within the
buckets. The compression increases with larger n as for sufficiently large n, all buckets are
active and more (truncated) keys are inserted into the same number of buckets. We observe
that the top level organization, array versus hash table, barely appears to matter. The only
difference is a slightly slower performance, but also lower memory consumption of the hash
tables for smaller n, which was to be expected. However, as all buckets become active for
larger n, these differences become negligible.
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US Array/BV, b = 224 US Array/Hybrid, b = 214 US Array/Hybrid, b = 216

US Array/Hybrid, b = 220 US Array/Hybrid, b = 224 US Array/UL, b = 210

US Hash/BV, b = 224 US Hash/Hybrid, b = 214 US Hash/Hybrid, b = 216

US Hash/Hybrid, b = 220 US Hash/Hybrid, b = 224 US Hash/UL, b = 210

Figure 2 Throughputs for the insert, predecessor and delete operations, as well as memory usage
of the universe sampling data structures for 32-bit (top) and 40-bit keys (bottom). Best viewed in
colour. In the legend, US stands for universe sampling, BV stands for buckets backed by bit vectors,
UL for unsorted lists. Missing points indicate throughputs lower than 220 operations per second or
exceeding of 300 bits consumed per key, respectively, and are omitted for clarity.

We now look at the three types of bucket organization. The clear outliers are where we
implement buckets as unsorted lists of size at most 210: here, all operations are between 2–4
times slower than the rest, and the number of inserted keys visibly affects the performance of
queries and deletions negatively, which is due to linear scans facing a higher bucket fill rate.
Hybrid buckets and those backed by bit vectors appear to be on par especially for large n,
as the hybrid representation eventually switches to bit vectors. As expected, the bit vector
representation achieves higher compression than the unsorted list representation.

Now, we discuss the results for 40-bit keys. The memory consumption is obviously
different: while we still achieve compression below 40 bits per key for large n, the top level
now contains up to 230 active buckets (for buckets of size 210), causing a big memory overhead
that can only be compensated for sufficiently large n. Hybrid buckets may cause an explosion
of memory consumption when they switch to bit vectors, as can be seen for bucket size
224 at 230 keys. For 233 keys, we can see how it slowly starts to compensate. Regarding
performance, similar observations as for 32-bit keys can be made, except that the top level
organization now does matter: the smaller the buckets, the more linear scans weigh in, such
that the hash table approach becomes faster for updates but slower for queries. Since this
data structure is not suitable for large universes, we omit experiments for 64-bit keys.
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ℓ⊤

ℓ⊥

B1 B2 B3

Figure 3 Our y-fast trie for w = 5 and S = {3, 6, 7, 9, 17, 18, 19, 21, 23} with t = 2, c = 2 and
γ = 1. Edge and leaf labels of the conceptual trie are omitted for the sake of clarity: left edges are
labeled by 0, right edges by 1 and leaves are labeled by the corresponding keys. Keys contained
in S are shown as squares, where representatives of buckets have a thick border. Representatives
marked with an X are deleted: they are still representatives of buckets, but no longer contained in S

themselves. Buckets are shown as rectangles around the contained keys. Nodes on paths that lead
to representatives are contained in the x-fast trie’s LSS and are drawn with a thick border; other
nodes are not contained in the LSS. Levels ℓ⊤ and ℓ⊥ are highlighted by dashed lines.

5 Y-Fast Tries

The x-fast trie by Willard [26] is conceptually a variation of the binary trie where
(1) the keys of S are doubly-linked in ascending order and
(2) if a node does not have a left (right) child, then the corresponding pointer is replaced by

a descendant pointer that directly points to the smallest (largest) leaf descending from it.
The trie is stored in the level-search data structure (LSS). We say that a node of the trie is
on level ℓ if it has depth ℓ. For each level ℓ of the trie, the LSS stores an entry for every
node v that exists on level ℓ, which we identify by the bit sequence Bv ∈ {0, 1}ℓ that encodes
the path in the trie from the root to v. Specifically, the LSS associates Bv to v’s descendant
pointers. We can find predS(x) in expected time O(lg lg u) as follows: we first binary search
the ⌈lg u⌉ levels of the trie to find the bottom-most node v on the path leading to x if it
were contained in S. On each level ℓ that we inspect, we query the bit prefix x⟨0 .. ℓ − 1⟩
in the LSS in O(1) expected time to test if we are done. From v, by construction, we can
take a descendant pointer to the predecessor or successor of x. Updates of the x-fast trie
require O(lg u) expected time as in the worst case, the LSS needs to be updated for every
level following an insertion or deletion. The total memory consumption of the x-fast trie is
O(n lg u) words.

The y-fast trie improves this to O(n) words: we partition S into Θ(n/ lg u) buckets of
Θ(lg u) keys each and determine a representative for each bucket, e.g., the minimum contained
key. Then, we build an x-fast trie over only the representatives, which occupies O(n) words
of memory. For each bucket, we construct a binary search tree for the keys contained in it,
consuming O((n/ lg u) · lg u) = O(n) words. When looking for the predecessor of x, we can
locate its bucket using the x-fast trie over the representatives in expected time O(lg lg u) and
within the buckets, searching and updating can be done in time O(lg lg u). The sampling of
representatives also improves the amortized expected update times to O(lg lg u).

Implementation. Let t = Θ(lg u), γ > 0, and c > 2γ be parameters. We partition S into
buckets of size variable in [γt, ct]. We name the minimum key contained in a bucket its
representative and only representatives are contained in the x-fast trie, which has height
⌈lg u − lg t⌉ as the lowest lg t bits of the keys are maintained in the buckets. Within a bucket,
we store keys in a sorted or unsorted list rather than a binary search tree. This increases
the asymptotic time needed for updates and predecessor queries, but the additional memory
costs for structures such as binary trees, albeit asymptotically constant, would be too high
in practice. Figure 3 shows an example of our y-fast trie that we describe in the following.

SEA 2021



7:8 Engineering Predecessor Data Structures for Dynamic Integer Sets

We try to keep t small such that buckets fit into few consecutive cache lines and can be
searched quickly. Because this directly affects the height of the x-fast trie maintaining the
representatives, we speed up searches as follows: let ℓ⊤ be the bottommost level where all
possible nodes exist in the x-fast trie and let ℓ⊥ be the topmost level where no branching
nodes exist in the x-fast trie. Consider an operation involving a key x ∈ U : we locate its
bucket by a vertical binary search in the x-fast trie’s LSS. Because all levels above ℓ⊤ contain
all possible nodes and because all nodes on levels below ℓ⊥ point to the same buckets as
their respective ancestors on level ℓ⊥, we limit the binary search to the levels between ℓ⊤
and ℓ⊥ and maintain ℓ⊥ and ℓ⊤ under updates with no asymptotic extra cost. With this
strategy, we can also save space by avoiding storage of any nodes on levels below ℓ⊥; the
corresponding hash tables in the LSS simply remain empty. Intuitively, this cuts off trailing
unary paths in the x-fast trie. Note that due to the sampling mechanism, we always have
ℓ⊥ ≤ lg(γt), so the Θ(lg lg u) bottommost levels are never stored.

To speed up deletions, we allow the representative of a bucket to be no longer contained
in the bucket by itself. When it is deleted, we mark it as such, but it remains the bucket’s
representative and also remains in the x-fast trie. This strategy avoids the need of finding
a new representative and updating the x-fast trie every time a representative is deleted.
However, we must consider a special case when answering predecessor queries. Let yrep be
the deleted representative of a bucket and ymin > yrep the smallest key currently contained in
the bucket, and consider the query predS(x) with yrep ≤ x < ymin. The x-fast trie will lead
us to said bucket and yrep would be the predecessor of x. When we detect yrep as deleted,
we follow a pointer to the preceding bucket, which must contain the predecessor of x.

Buckets are merged and split as in B-trees [7, chapter 18] to ensure their size stays within
[γt, ct]. To avoid the creation of a new bucket each time a new minimum is inserted into
the data structure, we maintain a special bucket with representative −∞ that we allow to
become empty and will never be removed by a merge.

When using unsorted lists to maintain keys within a bucket, we can amortize insertion
costs. Unless a split is required, inserting a key into a bucket simply means appending it in
constant time. Thus, if we choose c := γ + Θ(t) > 2γ, we can amortize the time needed for a
split over Θ(t) constant-time insertions. This amortization leads to O((lg u)/t) = O(1) time
needed for inserting a key into a bucket followed by a potential split, such that the amortized
expected insertion time of the y-fast trie is O(lg lg u) as in the original. This cannot be
achieved for deletions, as the key to be deleted needs to be located in time O(lg u) first.

▶ Example 1 (insertion). Consider the y-fast trie in Figure 3 with t = 2 and c = 2. We insert
the new key 8. The binary search in the x-fast trie’s LSS is constrained only to the three
levels between ℓ⊤ and ℓ⊥ and leads to bucket B1 with (deleted) representative 0. We insert
x by appending it to the unsorted list of keys. However, we then have |B1| = 5 > 4 = ct,
thus we have to split B1. We create a new bucket B′

1 with representative 7 (the median) and
move keys such that B1 := {3, 6} and B′

1 := {7, 8, 9}. Even though 0 is no longer contained
in B1, it remains its representative. Finally, we enter key 7 into the x-fast trie, causing two
new nodes to be added to the LSS. However, ℓ⊥ remains unchanged, as the newly added
nodes form a unary path beginning at level ℓ⊥.

▶ Example 2 (deletion). Consider the y-fast trie in Figure 3 with t = 2 and γ = 1. We delete
key 21, which we find in bucket B3 as in Example 1. After deletion, we have |B3| = 1 < 2 = γt

(note how 20 is the representative, but is marked as deleted), thus we have to merge. As the
only neighbour, we merge with bucket B2 by moving key 23 such that B2 := {17, 18, 19, 23}.
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Figure 4 Throughputs for the insert, predecessor and delete operations, as well as memory usage
of the y-fast trie for U = [264]. Best viewed in colour. UL stands for unsorted, SL for sorted lists.

The former representative of B3, key 20, is now removed from the x-fast trie. Observe how
the path of nodes leading to B2 now becomes a unary path starting at level ℓ⊤. Because all
unary paths then start at level ℓ⊤, we set ℓ⊥ := ℓ⊤.

Experimental evaluation. In our experiments, we set c := 2 and γ := 1/4 and choose t as
powers of two to optimize memory alignments. Our results for t := 64 to 512 and 64-bit keys
are shown in Figure 4. (Additional results are given in Figure 8 in Appendix A.)

The fastest predecessor queries are achieved when buckets are organized as sorted lists
and binary search is used to answer bucket-level queries. Conversely, insertions are are up to
twice as fast in the unsorted list case, where new keys simply have to be appended without
preserving any order. Regarding deletions, there is no substantial difference between using a
sorted or unsorted list to organize the buckets: while we can find the item to be deleted using
binary search when using a sorted list, we have to shift up to t keys afterwards. As we use
simple arrays for storage in either case, there is also no difference in memory consumption.

As expected, the bucket size of t is a direct trade-off parameter for update versus query
performance and memory usage, which is very visible when buckets are organized as unsorted
lists. Here, insertions become faster as the bucket size grows since they are trivial on the
bucket level and the LSS needs to be updated less often. However, larger buckets mean
longer scans when answering predecessor queries. The bucket size is much less impactful on
query performance when sorted lists are used, as the bucket-level query time is then only
logarithmic in the bucket size. The memory consumption is also affected by the bucket size:
larger buckets imply less levels in the LSS and thus less memory needed.

As a conclusion, unsorted lists may be preferable when fast insertions are required and
the performance of predecessor queries is less important. For the general case, however, using
sorted lists appears to be preferable, as all operations then have similar throughputs.

6 Fusion Trees

Pǎtraşcu and Thorup [22] introduce dynamic fusion nodes as a sorted list data structure
for |S| ≤ k ≤

√
w keys that supports predecessor queries and updates in time O(1). It is

based on the fusion node, originally described by Fredman and Willard [13], that simulates
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(a) The binary trie for S. Branching nodes have
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M = 11001

x binary x̂ x̂? Branch Free
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3 00011 001 001 001 000

12 01100 010 01? 010 001
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(b) The keys x ∈ S, with binary representation
and compressed versions x̂ and x̂? without and
with don’t cares according to [13] and [22], respect-
ively. Branch and Free encode the matrix given
by column x̂? as described in [22]. The mask M
marks the distinguishing positions of S.

Figure 5 Binary trie and compressed keys for S = {2, 3, 12, 27} and w = 5.

navigation in a compact binary trie of S represented by compressed keys. Given a key
x ∈ S, we only consider those bits at distinguishing positions. A position ℓ < ⌈lg u⌉ is a
distinguishing position if there is at least one branch on level ℓ in the binary trie. For k

keys, there can be at most k branches in the binary trie, and thus there can be at most k

distinguishing positions. A compressed key x̂ consists of only the bits of x at distinguishing
positions moved to the k least significant positions. We maintain the set of distinguishing
positions in a mask M of w bits where the k distinguishing bits are set and all other bits are
clear. Figure 5b shows an example. From x, we can compute x̂ in constant time by masking
out unwanted bits using M , followed by multiplications to relocate the distinguishing bits.
The k compressed keys of S can be stored in a k × k bit matrix Ŝ that fits into a single word.
With this, we can compute predS(x) in time O(1) as Fredman and Willard describe in [13].
However, updates may cause a new position to become distinguishing after an insertion, or a
position to be no longer distinguishing after a deletion. In these cases, their data structure
needs to be rebuilt from scratch. To resolve this, Pǎtraşcu and Thorup introduce don’t care
bits (written ?) that indicate bits at distinguishing position that are, however, not used for
branching in a specific compressed key. The data structure now contains a k × k matrix
over the new alphabet {0, 1, ?}, which we encode using two k × k bit matrices that fit into
one word each. Examples for this can be seen in Figure 5b. The notion of wildcards allows
for updating the data structure in time O(1). We refer to Appendix C for a more detailed
description and examples, including an elaboration of the deletion of keys not given in [22].

A B-tree is a self-balancing multiary tree data structure for representing a dynamic
ordered set of items. With B the maximum degree of a node, it is guaranteed to maintain
height logB n, such that lookup – including predecessor – queries and updates can be done
in time O(logB n). We consider B-trees a well-known folklore data structure and refer to [7,
chapter 18] for a comprehensive introduction. Embedding fusion nodes into a B-tree, using
the keys contained in the nodes as splitters, are the typical ingredients of a fusion tree.

Implementation. As we deal with 64-bit architectures (w = 64), we choose k := 8, such
that a k × k bit matrix can be stored in a single word represented row-wise by an array
X̂ = [x̂0, . . . , x̂7] of compressed keys. We keep X̂ in ascending order, i.e., x̂0 < x̂1 < · · · < x̂7.

The most important operation is key compression, writing only the bits of x at distin-
guishing positions into a word x̂. Instead of an approach based on sparse tables [23], we make
use of the parallel bits extract (PEXT) instruction [16]. Let M be the w-bit mask identifying
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Figure 6 Throughputs for the insert, predecessor and delete operations, as well as memory usage
of the fusion trees and B-trees for U = [264]. Best viewed in colour. In the legend, LS stands for
linear searched nodes, BS for binary search and SIMD for use of SIMD instructions.

distinguishing positions. Then, conveniently, x̂ = PEXT(x, M). Another core operation is
finding the rank i of a compressed key ŷ in X̂. For this, we use the MMX SIMD instruction
PCMPGTB [16], which performs a byte-wise greater-than comparison of two 64-bit words.
First, we multiply ŷ by the constant (0k−11)k to retrieve the word ŷk containing k copies of
ŷ. Let j be the smallest rank such that x̂j > ŷ. The instruction PCMPGTB(X̂, ŷk) returns
the word BX̂>ŷ where the kj lowest bits are zero and the remaining bits are set (because X̂

is ordered). Therefore, j = ⌊TZCNT(BX̂>ŷ)/k⌋ and finally i = j − 1. Alternatively, because
X̂ easily fits into a cache line, we consider a naïve linear search.

We extend our implementation to support also k = 16 by simulating a 256-bit word using
four 64-bit words. The special CPU instructions can be extended by executing them on each
of the four 64-bit words and then combining the results. The processors to our disposal
actually support a variant of PCMPGTB for the parallel comparison of sixteen 16-bit words
contained in a 256-bit word (namely the Intel intrisic _mm256_cmpgt_epi16).

We implement B-trees largely following the description in [7, chapter 18]. Nodes have at
most B children and thus contain up to B − 1 keys used as splitters. When plugging fusion
nodes into B-trees of degree k, we have fusion trees.

Experimental evaluation. We use B := 8 and B := 16 for fusion trees with k = 8 and
k = 16, respectively, comparing fusion nodes using the PCMPGTB instruction for rank
queries against those using simple linear scans. Further, we compare fusion trees to straight
B-trees, finding predecessors in a node using O(lg B)-time binary or O(B)-time linear search.
There, we also consider much larger B, as preliminary experiments suggested that the
performance of all operations peaks at B := 64. Our results for 64-bit keys are presented in
Figure 6. (More results for smaller universes are given in Figure 9 in Appendix A.)

To our surprise, fusion trees achieve the lowest throughputs for all operations: B-trees
with large B are up to twice as fast, and even the B-trees with low degrees are visibly faster
overall. Fusion trees also require more memory per key, which was expected, as each node
needs to store three words (the compression mask and two matrices) in addition to the keys
themselves. Interestingly, the fusion nodes using linear scans for ranking outperform those

SEA 2021



7:12 Engineering Predecessor Data Structures for Dynamic Integer Sets

18 20 22
0

64

128

192

256

320

Avg. Throughput [log2 ops/s]

M
em

or
y

[b
it

s
pe

r
ke

y]
32-bit keys

18 19 20
Avg. Throughput [log2 ops/s]

40-bit keys

18 19 20
Avg. Throughput [log2 ops/s]

64-bit keys

STL set Burst Trie B-tree LS, B = 64
B-tree BS, B = 128 Y-Fast Trie UL, t = 64 Y-Fast Trie UL, t = 512
Y-Fast Trie SL, t = 512 US Array/Hybrid, b = 216 US Hash/Hybrid, b = 216

Figure 7 Comparing the average throughput of operations versus memory use of dynamic
predecessor data structures for different universes and n = 230.

that use the SIMD instructions in nearly all instances. The reason is presumably that the
corresponding MMX/AVX registers have to be filled prior to executing these instructions:
in a direct comparison answering immediately consecutive random rank queries, the SIMD
variant is about 28% faster than scanning. Fusion trees with B = 16 perform slower overall
than those with B = 8 despite their lower height, which is due to overheads in our simulation
of 256-bit words. It shall be interesting to redo these experiments with natively supported
wide registers (e.g., AVX-512) and necessary instructions in the future.

We have a brief closer look at B-trees. Our preliminary experiments are largely confirmed
in that B-trees with B = 64 perform best overall. For B ≤ 64, nodes backed by linear search
perform faster than those backed by binary search. The exact opposite is the case for B > 64,
where binary search becomes faster. Concerning memory, unsurprisingly, the higher B is
chosen, the less memory is required as the tree structure shrinks in height.

7 Comparison

In Figure 7, we plot the average throughput of insertions, predecessor queries and deletions
against the memory usage of a subset of our data structures from Sections 4–6 for a fixed
workload size of 230. For comparison, we also show the performance of the STL set (std::set,
an implementation of red-black trees), and the burst trie of Nash and Gregg [19] – to the
best of our knowledge the best practical dynamic predecessor data structure thus far. Note
that burst tries are associative and store a value along with each key, so for a fair comparison,
one should subtract w bits per key for each data point.

For all universes, at least one of our data structures is over four times faster than the
STL set, the extreme being for 32-bit keys, where our sampling structures achieve an average
throughput of approximately 222.2 operations per second, whereas the set does about 218.2.
Furthermore, our data structures consume less than a third of the set’s 320 bits per key.
For 32-bit keys, we also outperform burst tries completely, where even our slowest data
structure (B-trees with degree 128 and binary searched nodes) is about 33% faster. Our two
sampling data structures with hybrid buckets of size 216 are clearly the fastest. Their low
space consumption of just about 2 bits per key should, however, be interpreted with care,
as for n = 230, one quarter of all possible keys is contained in S, and hence they essentially
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store S in a bit vector. This also shows up for w = 40 (but less pronounced), where they
become the only data structure clearly faster than the burst tries. Our y-fast tries with
unsorted buckets of size 29 are about 6% faster than burst tries, but still require considerably
less memory even respecting that 40 bits per key in burst tries are for associated values.
It appears that y-fast tries with unsorted buckets scale best with the size of the universe:
for 64-bit keys, it is the fastest data structure with buckets of size either 26 or 29 and is
approximately 30% faster than burst tries, again consuming significantly less memory. The
y-fast tries with sorted buckets are about on par with our B-trees, which are overall between
14% and 56% slower than y-fast tries with unsorted buckets.

For 32-bit keys, we intended to include the stratified tree [9], but it failed to stay within
the memory limits (256 GB) starting at 230 keys. For 229 keys, it consumed about 1,480 bits
per key, ranking lowest with an average throughput of circa 217.7 operations per second.

Conclusions. Our dynamic predecessor data structures are the most memory efficient of all
tested. They clearly outperform the STL set and for all universes in question, at least one of
our data structures is faster than burst tries, the previously fastest known to us. We confirm
once more [4, 10, 11, 15] that naïve solutions can be more practical than sophisticated data
structures on modern hardware and sufficiently small inputs. We also observed that SIMD
instructions, while faster than sequences of classic (SISD) instructions when used in batches,
may turn out less useful in more complex scenarios.
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Figure 8 Throughputs for the insert, predecessor and delete operations, as well as memory usage
of the y-fast trie for 32-bit (top) and 40-bit keys (bottom). Best viewed in colour.
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Figure 9 Throughputs for the insert, predecessor and delete operations, as well as memory usage
of the fusion and B-trees for 32-bit (top) and 40-bit keys (bottom). Best viewed in colour.
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B Choosing Parameters For Universe Sampling

The key question for preparing the experiments for our sampling data structure (Section 4) is
how to configure the bucket size b, which is a direct trade-off parameter for the performance
of the top level versus that of the bucket level: at the top level, we have worst-case costs of
O(u/b) for updates or queries depending on the chosen data structure. At the bucket level,
we have costs of O(b) for queries. To that end, we want to pick b large enough so that the
top level does not end up with too many entries, and pick it small enough so that operations
on the bucket level do not take too much time.

We first do some considerations on the top level. When we assume a uniform distribution
of keys inserted into the data structure, we observe that the number of insertions required
until every bucket is active is distributed geometrically. What follows is that long scans for
active buckets on the top level occur more and more rarely as more keys are inserted into the
data structure. The same conclusion can be drawn when inserted keys are skewed towards
a range within U , because then it occurs rarely that active buckets far away from others
need to be accessed. Therefore, assuming that a large enough number of keys is going to be
inserted so that long top-level scans occur rarely, we focus on bucket-level performance.

On the bucket level, we have to consider our three strategies for maintaining the keys.
First, when using an unsorted list, smaller buckets clearly result in faster query times. In
preliminary experiments, the performance declined only marginally up to a bucket size of
blist := 210 keys, whereas buckets any larger caused a significant drop. When using a bit
vector, we benefit from scanning through bits packed into words, resulting in large buckets
of bbv := 224 keys still performing very well. Here, choosing larger buckets caused insertions
and deletions to become slower. Because these operations simply mean setting or clearing
bits, this effect can be explained by a higher number of cache misses. In the hybrid case,
the initial notion is that we want the unsorted list to never consume more memory than the
bit vector and thus switch to when a bucket exceeds b/ lg b keys. As we desire to maintain
the sweet spot threshold of θmax := blist = 210 for unsorted lists, we seek bhybrid such that
bhybrid/ lg bhybrid > 210. This is the case for bhybrid ≥ 214, such that the bucket size of
bbv = 224 is again an option. However, consider the case where the bucket is switched from an
unsorted list representation to a bit vector: we want to avoid a sudden explosion of memory
occupied – and potentially wasted – by a bucket. Because a perfect choice of bhybrid cannot
be done without any prior knowledge about the input, we explore different configurations.

We add here that we also tried sorted lists for maintaining the keys in the buckets,
enabling binary search to speed up queries. However, the performance of updates greatly
suffered and for smaller buckets, the query speedup compared to linear scans became marginal.
Sorted lists are therefore not considered in our experiments.

C Elaboration On Dynamic Fusion Nodes

We expand on the description of dynamic fusion nodes from Section 6. Let x̂? indicate a
compressed key that may contain don’t cares. The k ×k matrix Ŝ? over the alphabet {0, 1, ?}
is represented by two k × k binary matrices Branch and Free defined as follows:

Freeij =
{

0 , if Ŝ?
ij ̸= ?

1 , if Ŝ?
ij = ?

Branchij =
{

Ŝ?
ij , if Freeij = 0

0 , if Freeij = 1

Intuitively, Free identifies the don’t care bits in Ŝ?, and Branchij is either equal to Ŝ?
ij if

a bit is used for branching, or zero if it is a don’t care bit. The concatenation of the bits on
the i-th row of Ŝ? represent the compressed (with don’t cares) i-th key contained in S.
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We can find the predecessor of some key x ∈ U by determining its rank i < k among the
keys in S. In the following, we reduce this rank query to compressed keys. To that end, we
assume that Ŝ? is maintained such that the rows are in ascending order. If this is not the case,
we can afford to maintain an index as described in [2] without worsening the asymptotically
constant query and update times. We now seek the number i′ of the row in Ŝ? that
corresponds to the rank of x̂ among the compressed keys. We say that x̂ ∈ {0, 1}k matches a
compressed key ŷ? ∈ {0, 1, ?}k with don’t cares if all non-don’t care bits in ŷ? are equal to
the corresponding bits in x̂. Formally, this is the case if ∀j < k : ŷ?⟨j⟩ = ? ∨ x̂⟨j⟩ = ŷ?⟨j⟩.
We define the operation match(x) that, simultaneously for all j < k, tests whether x̂ matches
the compressed key encoded in the j-th row of Ŝ? and reports the smallest j where this is not
the case. Pǎtraşcu and Thorup [22] show how to perform this operation in constant time by

(1) computing Ŝx̂ by replacing the don’t care bits in Ŝ? by the corresponding bits of the
k × k bit matrix x̂k that contains k copies of x̂ and

(2) performing a parallel row-wise greater-than comparison of Ŝx̂ against x̂k.

We then have i′ = match(x). If x ∈ S, then i′ is also the rank of x within S as shown in
[13]. Therefore, if x = S[i′], we already found the predecessor of x after one match operation.
However, if x ≠ S[i′], it is x /∈ S. In the trie, consider the ancestor of the leaf of x – if x were
contained in S – at level j = msb(x ⊕ S[i′]). At this node, we branched off in a direction
that does not necessarily lead us to the predecessor of x. To see examples of this, refer to
Examples 3 and 4 below. To find the actual rank i of x within S and thus the predecessor
S[i] of x, we simulate the necessary trie navigation by performing another match operation.
Consider the case where x < S[i′]. In the trie, we navigate up to the lowest ancestor v that
has two children and take the path to the rightmost leaf in the left subtrie of v. An equivalent
approach is to take the path to the leftmost leaf in the right subtrie of v, and subtract one
from that leaf’s rank. The latter can be simulated by computing i = match(x ∧ 1w−j0j) − 1.
In the case that x > S[i′], symmetrically, we simulate navigation to the rightmost leaf in the
left subtrie of v by computing i = match(x ∨ 0w−j1j).

Pǎtraşcu and Thorup further show how to perform all the necessary manipulations of Ŝ?

in constant time in order to insert keys into the data structure. The intuition is always that
Ŝ? is stored in two words and all required word operations can be done in constant time.

▶ Example 3. We consider a predecessor search for x = 25 in the set S from Figure 5 with
w = 5. The binary representation of x is 11001, which we compress to x̂ = 111. We compute
i′ = match(x) = 4, corresponding to S[i′] = 27. This cannot be the predecessor of x because
x < S[i′]. The position at which we branched off in the wrong direction is j = msb(x⊕y) = 2,
at the node two levels above the leaf labeled by 27 in Figure 5a: a path leading to x = 25
would branch off to the left, whereas we branched off to the right. We simulate the necessary
trie navigation by computing i = match(x ∧ 1w−j0j) − 1 = match(11000) − 1 = 3. Now,
S[i] = 12 is the correct predecessor of x.

▶ Example 4. We consider a predecessor search for x = 4 in the set S from Figure 5
with w = 5. The binary representation of x is 00100, which we compress to x̂ = 000. We
compute i′ = match(x) = 1, corresponding to S[i′] = 2. Since x > S[i′], we have the opposite
case as in Example 3. The position at which we branched off in the wrong direction is
j = msb(x ⊕ y) = 2, at the node two levels above the leaf labeled by 2 in Figure 5a. We
compute i = match(x ∨ 0w−j1j) = match(00111) = 2, and S[i] = 3 is the predecessor of x.
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Deleting keys

Pǎtraşcu and Thorup thoroughly describe the process of inserting a key into a dynamic
fusion node in constant time [22]. They further claim that to delete a key, “we just have to
invert the [. . . ] process”. However, some details require special attention, which is why we
sketch the constant-time deletion of a key here. To that end, we use the same bag of tricks
to perform the necessary k × k matrix manipulations in constant time using word operations
and refer to [22] for the ideas.

Consider deleting a key x ∈ U from our set S containing at most k keys from U . Recall
that S is stored in a k × k matrix Ŝ? of bits and don’t cares represented by two words
Branch and Free, and that we maintain the k distinguishing positions by setting the
corresponding bits in a mask M of w bits. We first compute the rank i = match(x) of x

within S in constant time. To verify that x ∈ S, we compare x against S[i]. If x /∈ S, we
abort the deletion. Otherwise, we require the position j of the least significant distinguishing
bit at which x branches off in the trie. This position may no longer be distinguishing after the
deletion of x and the, the corresponding bit must be removed from all remaining compressed
keys in Ŝ? to retain optimal compression. If j remains a distinguishing position, we need
to replace the corresponding bits in all keys in the subtrie beneath node v by don’t cares,
where v is the ancestor of the leaf corresponding to x on level j. This is because due to
the deletion of x, v loses a child and is no longer a branching node. We will not consider
any distinguishing positions of significance higher than j, because for those, by construction,
there must be at least one other key in S that branches off the corresponding trie node. The
deletion of x works as follows:

1. Find the position j of the least significant distinguishing bit at which x branches off in
the trie. This corresponds to the position of the least significant non-don’t care bit in x̂?.
Compute h by adding one to the number of trailing don’t cares in x̂?, which equals the
number of trailing ones in the i-th row of Free. Then, j = select1(M, h).

2. Remove the i-th row, which contains x̂?, from Ŝ?.
3. Test if the deletion of x results in j no longer being a distinguishing position. This is

the case if all non-don’t care bits in the h-th column have the same value, indicating
that there are no more branches at any node in the trie on level j. This can be done in
constant time using a sequence of word operations; we refer to our code for details.

4. If that is the case, remove the h-th column from Ŝ? and clear the j-th bit in M .
5. Otherwise, if j remains distinguishing, find the range i0 to i1 of keys in the subtree

beneath j. This range must contain at least one key, because otherwise column h in row
i would have been a don’t care. For all compressed keys in the range, column h must be
updated to a a don’t care.

Compared to [22], we introduced two additional operations on words: counting trailing ones
and a binary select operation. In Section 2, we already mentioned briefly how these can be
performed in constant time both in theory and practice.

▶ Example 5. We consider the deletion of key x = 12 in Figure 5. It has rank i = 3 and
occupies the third row in the matrix. We follow the steps of our sketched algorithm:
1. Observe that x̂? = 01? has one trailing don’t care, so we have h = 2. The position of the

least significant distinguishing bit at which x branches off is thus j = select1(M, h) = 2.
This corresponds to the second level in the trie shown in Figure 5a.

2. We remove the third row from Ŝ?, conceptually removing the leaf for x = 12 in the trie.



P. Dinklage, J. Fischer, and A. Herlez 7:19

3. Observe how all non-don’t care bits in column h = 2 of the matrix now have the same
value 0. This corresponds to the fact that in the trie, on level h = 2, there are no longer
any branches, which means that position j is no longer distinguishing.

4. Because j is no longer distinguishing, we remove the second column from the matrix
completely and clear the corresponding bit in M .

The mask indicating distinguishing bits is now 10001, and the matrix now consists of the
compressed keys 00 (for key 2), 01 (for key 3) and 1? (for key 27).
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