
19th International Symposium on
Experimental Algorithms

SEA 2021, June 7–9, 2021, Nice, France

Edited by

David Coudert
Emanuele Natale

LIPIcs – Vo l . 190 – SEA 2021 www.dagstuh l .de/ l ip i c s

Editors

David Coudert
I3S (CNRS-UCA)/Inria, Sophia Antipolis, France
david.coudert@inria.fr

Emanuele Natale
Université Côte d’Azur, CNRS, France
emanuele.natale@inria.fr

ACM Classification 2012
Theory of computation → Design and analysis of algorithms

ISBN 978-3-95977-185-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-185-6.

Publication date
June, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SEA.2021.0

ISBN 978-3-95977-185-6 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-3306-8314
mailto:david.coudert@inria.fr
https://orcid.org/0000-0002-8755-3892
mailto:emanuele.natale@inria.fr
https://www.dagstuhl.de/dagpub/978-3-95977-185-6
https://www.dagstuhl.de/dagpub/978-3-95977-185-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.SEA.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-185-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

SEA 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
David Coudert and Emanuele Natale . 0:vii

Regular Papers

Engineering Nearly Linear-Time Algorithms for Small Vertex Connectivity
Max Franck and Sorrachai Yingchareonthawornchai . 1:1–1:18

Parallel Five-Cycle Counting Algorithms
Louisa Ruixue Huang, Jessica Shi, and Julian Shun . 2:1–2:18

Fast and Robust Vectorized In-Place Sorting of Primitive Types
Mark Blacher, Joachim Giesen, and Lars Kühne . 3:1–3:16

Minimum Scan Cover and Variants - Theory and Experiments
Kevin Buchin, Sándor P. Fekete, Alexander Hill, Linda Kleist, Irina Kostitsyna,
Dominik Krupke, Roel Lambers, and Martijn Struijs . 4:1–4:16

Three Is Enough for Steiner Trees
Emmanuel Arrighi and Mateus de Oliveira Oliveira . 5:1–5:15

A Fast and Tight Heuristic for A* in Road Networks
Ben Strasser and Tim Zeitz . 6:1–6:16

Engineering Predecessor Data Structures for Dynamic Integer Sets
Patrick Dinklage, Johannes Fischer, and Alexander Herlez . 7:1–7:19

Multilevel Hypergraph Partitioning with Vertex Weights Revisited
Tobias Heuer, Nikolai Maas, and Sebastian Schlag . 8:1–8:20

On Tamaki’s Algorithm to Compute Treewidths
Ernst Althaus, Daniela Schnurbusch, Julian Wüschner, and Sarah Ziegler 9:1–9:18

Practical Implementation of Encoding Range Top-2 Queries
Seungbum Jo, Wooyoung Park, and Srinivasa Rao Satti . 10:1–10:13

On Computing the Diameter of (Weighted) Link Streams
Marco Calamai, Pierluigi Crescenzi, and Andrea Marino . 11:1–11:21

Document Retrieval Hacks
Simon J. Puglisi and Bella Zhukova . 12:1–12:12

O’Reach: Even Faster Reachability in Large Graphs
Kathrin Hanauer, Christian Schulz, and Jonathan Trummer . 13:1–13:24

Approximation Algorithms for 1-Wasserstein Distance Between Persistence
Diagrams

Samantha Chen and Yusu Wang . 14:1–14:19

Fréchet Mean and p-Mean on the Unit Circle: Decidability, Algorithm, and
Applications to Clustering on the Flat Torus

Frédéric Cazals, Bernard Delmas, and Timothee O’Donnell . 15:1–15:16
19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Multi-Level Weighted Additive Spanners
Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm,
Stephen Kobourov, and Richard Spence . 16:1–16:23

Targeted Branching for the Maximum Independent Set Problem
Demian Hespe, Sebastian Lamm, and Christian Schorr . 17:1–17:21

Nearest-Neighbor Queries in Customizable Contraction Hierarchies and
Applications

Valentin Buchhold and Dorothea Wagner . 18:1–18:18

A Graph-Based Similarity Approach to Classify Recurrent Complex Motifs from
Their Context in RNA Structures

Coline Gianfrotta, Vladimir Reinharz, Dominique Barth, and Alain Denise 19:1–19:18

Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice
Loukas Georgiadis, Konstantinos Giannis, Giuseppe F. Italiano, and
Evangelos Kosinas . 20:1–20:19

How to Find the Exit from a 3-Dimensional Maze
Miki Hermann . 21:1–21:12

Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane
Thomas Bläsius, Tobias Friedrich, and Maximilian Katzmann . 22:1–22:18

An Experimental Study of External Memory Algorithms for Connected
Components

Gerth Stølting Brodal, Rolf Fagerberg, David Hammer, Ulrich Meyer,
Manuel Penschuck, and Hung Tran . 23:1–23:23

Preface

We are pleased to present the collection of papers accepted for presentation at the 19th
edition of the International Symposium on Experimental Algorithms (SEA 2021), originally
planned to be held in Nice (France) from June 6 to 9, 2021. Unfortunately, due to the health
situation in France and in the rest of world, we were unable to organize a physical event,
and the symposium will be again a virtual event, as it has been last year.

SEA, previously known as Workshop on Experimental Algorithms (WEA), is an interna-
tional forum for researchers in the area of the design, analysis, and experimental evaluation
and engineering of algorithms, as well as in various aspects of computational optimization
and its applications (telecommunications, transport, bioinformatics, cryptography, learning
methods, etc.). The symposium aims at attracting papers from both the Computer Science
and the Operations Research/Mathematical Programming communities. The main theme of
the symposium is the role of experimentation and of algorithm engineering techniques in the
design and evaluation of algorithms and data structures. Submissions to SEA are requested
to present significant contributions supported by experimental evaluation, methodological
issues in the design and interpretation of experiments, the use of heuristics and meta-heuritics,
or application-driven case studies that deepen the understanding of the complexity of a
problem. A main goal of SEA is also the creation of a friendly environment that can lead
to and ease the establishment or strengthening of scientific collaborations and exchanges
among attendees. For this reason, the symposium solicits high-quality original research
papers (including significant work-in-progress) on any aspect of experimental algorithms.

Each submission to SEA 2021 was reviewed by at least three Program Committee members
or external reviewers. After a careful peer review and evaluation process, 23 papers were
accepted for presentation and for inclusion in the LIPIcs proceedings, according to the
reviewers’ recommendations. The acceptance rate was 56%. The scientific program of the
symposium also includes presentations by three keynote speakers: Dominik Kempa (Johns
Hopkins University, USA), Petra Mutzel (University of Bonn, Germany) and Blair D. Sullivan
(University of Utah, USA).

The 19th edition of SEA was organized by the I3S laboratory (Université Côte d’Azur,
CNRS). We thank Corinne Julien-Haddad for her help in the organization of this symposium.
We also thanks Université Côte d’Azur, the research center Inria Sophia Antipolis - Méditer-
ranée, and the city of Nice (Comité Doyen Lépine) for their financial support. We also thank
the SEA steering committee for giving us the opportunity to host SEA 2021. We express our
gratitude to the EasyChair platform. Thanks are also due to the editors of the ACM Journal
of Experimental Algorithmics for their interest in hosting a special issue of the best papers
presented at SEA 2021. Finally, we express our gratitude to the members of the Program
Committee for their support, collaboration, and excellent work.

Nice, June 6 2021
David Coudert and Emanuele Natale

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Steering Committee

Edoardo Amaldi (Politecnico di Milano, Italy)
David A. Bader (New Jersey Institute of Technology US)
Josep Diaz (Universitat Politecnica de Catalunya, Spain)
Giuseppe F. Italiano (University of Rome Tor Vergata, Italy)
Klaus Jansen (University of Kiel, Germany)
Kurt Mehlhorn (Max-Planck-Institut für Informatik, Germany)
Ian Munro (University of Waterloo, Canada)
Sotiris Nikoletseas (Patras University, Greece)
Jose Rolim (University of Geneva, Switzerland)
Pavlos Spirakis (University of Liverpool, UK)

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

Program Chairs

David Coudert (Université Côte d’Azur, INRIA, CNRS, I3S, France)
Natale, Emanuele (Université Côte d’Azur, INRIA, CNRS, I3S, France)

Program Committee

Thomas Bläsius (KIT, Germany)
Maike Buchin (Ruhr-Universität Bochum, Germany)
Eranda Çela (Graz University of Technology, Austria)
Gianlorenzo D’Angelo (GSSI, Italy)
Simone Faro (University of Catania, Italy)
Paola Festa (University of Naples Federico II, Italy)
Cyril Gavoille (Université de Bordeaux, France)
Loukas Georgiadis (University of Ioannina, Greece)
Oguzhan Kulekci (Istanbul Technical University, Turkey)
Erwan Le Merrer (INRIA Rennes, France)
Stefano Leucci (Università dell’Aquila, Italy)
Henning Meyerhenke (Humboldt-Universität zu Berlin, Germany)
Shin-Ichi Minato (Hokkaido University, Japan)
Gonzalo Navarro (University of Chile, Chile)
Marcin Pilipczuk (University of Warsaw, Poland)
Ely Porat (Bar-Ilan University, Israel)
Michael Poss (LIRMM, France)
Mauricio G. C. Resende (Amazon.com, USA)
Celso C. Ribeiro (U. Federal Fluminense, Brasil)
Kunihiko Sadakane (Univesity of Tokyo, Japan)
Stefan Schmid (University of Vienna, Austria)
Celine Scornavacca (ISEM, France)
Bertrand Simon (CC-IN2P3, France)
Sabine Storandt (University of Konstanz, Germany)
Hisao Tamaki (Meiji University, China)
Annegret K. Wagler (Isima - Limos, France)

External Reviewers

Ali Al Zoobi, Amihood Amir, Eugenio Angriman, Diego Arroyuelo, Berenger Bramas,
Luciana Buriol, Arthur Carvalho Walraven da Cunha, Richard Chen, Dustin Cobas,
Francesco d’Amore, Diego Delle Donne, Mattia D’Emidio, Yuanyuan Dong, Stefan Edelkamp,
Konstantinos Giannis, Shay Golan, Adrián Gómez Brandón, Dionysios Kefallinos,
Hervé Kervin, Matan Kraus, Alberto Kummer, Nelson Maculan, Spyridon Maniatis,
Anna Mpanti, Arnur Nigmetov, Thiago Noronha, André Nusser, Noujan Pashanasangi,
Maria Predari, Mirko Rossi, Stefano Scafiti.
19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Engineering Nearly Linear-Time Algorithms for
Small Vertex Connectivity
Max Franck !

Department of Computer Science, Aalto University, Espoo, Finland

Sorrachai Yingchareonthawornchai !

Department of Computer Science, Aalto University, Espoo, Finland

Abstract
Vertex connectivity is a well-studied concept in graph theory with numerous applications. A graph
is k-connected if it remains connected after removing any k − 1 vertices. The vertex connectivity of
a graph is the maximum k such that the graph is k-connected. There is a long history of algorithmic
development for efficiently computing vertex connectivity. Recently, two near linear-time algorithms
for small k were introduced by [Forster et al. SODA 2020]. Prior to that, the best known algorithm
was one by [Henzinger et al. FOCS’96] with quadratic running time when k is small.

In this paper, we study the practical performance of the algorithms by Forster et al. In addition,
we introduce a new heuristic on a key subroutine called local cut detection, which we call degree
counting. We prove that the new heuristic improves space-efficiency (which can be good for caching
purposes) and allows the subroutine to terminate earlier. According to experimental results on
random graphs with planted vertex cuts, random hyperbolic graphs, and real world graphs with
vertex connectivity between 4 and 15, the degree counting heuristic offers a factor of 2-4 speedup
over the original non-degree counting version for most of our data. It also outperforms the previous
state-of-the-art algorithm by Henzinger et al. even on relatively small graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Algorithm Engineering, Algorithmic Graph Theory, Sublinear Algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.1

Related Version Full Version: https://arxiv.org/abs/2103.15703

Supplementary Material Software (Source Code): https://github.com/untellect/
local-vertex-connectivity

archived at swh:1:dir:5afaa6ba812ccf4708141e05db5cd5bee88281fb

Funding This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant agreement
No 759557.

1 Introduction

Given an undirected graph, the vertex connectivity problem is to compute the minimum size of
a vertex set S such that after removing S, the remaining graph is disconnected or a singleton.
Such a vertex-set is called a minimum vertex cut. Vertex connectivity is well-studied concept
in graph theory with applications in many fields. For example, for network reliability [13, 20],
a minimum vertex-cut has the highest chance to disconnect the network assuming each node
fails independently with the same probability; in sociology, vertex connectivity of a social
network measures social cohesion [29].

There is a long history of algorithmic development for efficiently computing vertex
connectivity (see [23] for more elaborated discussion of algorithmic development). Let n and
m be the number of vertices and edges respectively in the input graph. The time complexity
for computing vertex connectivity has been O(n2) since 1970 [17] even for the special case

© Max Franck and Sorrachai Yingchareonthawornchai;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 1; pp. 1:1–1:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:max.franck@aalto.fi
https://orcid.org/0000-0003-3583-8033
mailto:sorrachai.yingchareonthawornchai@aalto.fi
https://orcid.org/0000-0002-7169-0163
https://doi.org/10.4230/LIPIcs.SEA.2021.1
https://arxiv.org/abs/2103.15703
https://github.com/untellect/local-vertex-connectivity
https://github.com/untellect/local-vertex-connectivity
https://archive.softwareheritage.org/swh:1:dir:5afaa6ba812ccf4708141e05db5cd5bee88281fb
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Engineering Nearly Linear-Time Algorithms for Small Vertex Connectivity

where the connectivity is a constant until very recently, when [9] introduced randomized
(Monte Carlo)1 algorithms to compute vertex connectivity in time O(m + nκ3 log2 n) (for
undirected graphs) where κ is the vertex connectivity of the graph. The algorithm follows
the framework by [23]. This makes progress toward the conjecture (when κ is a constant) by
Aho, Hopcroft and Ullman [1] (Problem 5.30) that there exists a linear time algorithm for
computing vertex connectivity. Before that, the state-of-the-art algorithm was due to [15],
which runs in time O(n2κ log n).

In this paper, we study the practical performance of the near-linear time algorithms by [9]
for small vertex connectivity. We briefly describe their framework and point out the potential
improvement of the framework. [23] provide a fast reduction from vertex connectivity to a
subroutine called local vertex-cut detection. Roughly speaking, the framework deals with
two extreme cases: detecting balanced cuts and unbalanced cuts. The balanced cuts can be
detected using (multiple calls to) a standard st-max flow algorithm; the unbalanced cuts can
be detected using (multiple calls to) local vertex-cut detection. Reference [9] follow the same
framework and observe that local vertex-cut detection can be further reduced to another
subroutine called local edge-cut detection as well as provide fast edge cut detection algorithms
that finally prove the near-linear time vertex connectivity algorithm for any constant κ. The
full algorithm is discussed in Appendix B. From our internal testing, we observe that, overall
the framework, the performance bottleneck is on the local edge detection algorithm.

Therefore, our focus is on speeding up the local edge-cut detection algorithm. To define
the problem precisely, we first set up notations. Let G = (V, E) be a directed graph.
Let E(S, T) be the set of edges from vertex-set S to vertex-set T . For any vertex-set S,
let volout(S) :=

∑
v∈S degout(v) denote the volume of S which is total number of edges

originating in S. Undirected edges are treated as one directed edge in each direction. We
now define the interface of the local edge-cut detection algorithm.

▶ Definition 1. An algorithm A is LocalEC if it takes as input a vertex x of a graph
G = (V, E), and two parameters ν, k such that νk = O(|E|), and output in the following
manner:

either output a vertex-set S such that x ∈ S and |E(S, V \ S)| < k or,
the symbol ⊥ certifying that there is no non-empty vertex-set S such that

x ∈ S, volout(S) ≤ ν, and |E(S, V \ S)| < k. (1)

The algorithm is allowed to have bounded one-sided error in the following sense. If there
is a non-empty vertex-set S satisfying Equation (1) then ⊥ is returned with probability at
most 1/2.

Reference [9] introduced two LocalEC algorithms with the running time O(νk2). The
algorithms are very simple: they use repeated DFS (depth-first search) with different
conditions for early termination. We note that this running time is enough to get a near-
linear time algorithm for small connectivity using the framework by [23].

Our Results and Contribution. We introduce a heuristic called degree counting that is
applicable to both variants of LocalEC in [9], which we call Local1+ and Local2+. We
prove that the degree counting heuristic version is more space-efficient in terms of edge-query
complexity and vertex-query complexity. Edge-query complexity is defined as the number of

1 With at most 1
nc error rate for any constant c.

M. Franck and S. Yingchareonthawornchai 1:3

edges that the algorithm accesses, and vertex-query complexity is defined as the number of
vertices that the algorithm accesses. The results are shown in Table 1. These complexity
measures can be relevant in practice. For example, an algorithm with low query complexity
may be able to store the accessed data in a smaller cache than an algorithm with high query
complexity.

Table 1 Comparisons among various implementation of LocalEC algorithms. Local1+ denotes
Local1 with the degree counting heuristic. Similarly, Local2+ denotes Local2 with the degree
counting heuristic.

LocalEC Variants Time Edge-query Vertex-query Reference
Local1 O(νk2) O(νk2) O(νk2) [9]

Local1+ O(νk2) O(νk2) O(νk) This paper
Local2 O(νk2) O(νk) O(νk) [9]

Local2+ O(νk2) O(νk) O(ν) This paper

We conducted experiments on three types of undirected graphs: (1) graphs with planted
cuts where we have control over size and volume of the cuts, and (2) random hyperbolic
graphs, and (3) real-world networks. We denote LOCAL1, LOCAL1+, and LOCAL2+ to be
the same local-search based vertex connectivity algorithm [9] (see Appendix B for details)
except that the unbalanced part is implemented with different LocalEC algorithms using
Local1, Local1+, Local2+, respectively. We use Local1 as a baseline for LocalEC algorithms.
We denote HRG to be the preflow-push-relabel-based algorithm by [15]. We implement HRG
as a baseline because when k is small (say k = O(1)) HRG is the fastest known alternative to
[9, 23]. The implementation detail can be found in Appendix C. By sparsification algorithm
[22], we can assume that the input graph size depends on n and k. The following summarize
the key finding of our empirical studies.

1. Internal Comparisons (Section 5.5). We compare three LocalEC algorithms (Local1,
Local1+, Local2+). According to the experiments (Figure 4), for any ν parameter,
Local1+ and Local2+ visit significantly fewer edges than Local1. Also, Local2+ visits
slightly fewer edges than Local1+ overall. The degree counting is also very effective
at low volume parameter. When plugging into full vertex connectivity algorithms, the
degree counting heuristics (LOCAL1+ and LOCAL2+) improve the performance over
non-degree counting counter part (LOCAL1) by a factor 2 to 4 for most data used in our
experiments, although for some larger graphs the speedup was noticeably larger. The
greatest observed speedup over LOCAL1 is 18.4x for LOCAL2+ at n = 100000, κG = 16.
For graphs of this size, LOCAL2+ performs slightly better than LOCAL1+. Finally,
according to CPU sampling, the local search is the main bottleneck for the performance
of LOCAL1 at roughly at least 90% for large instances. On the other hand, for the degree
counting versions (LOCAL1+ and LOCAL2+), the CPU usage of local search part is
improved to be almost the same as the other main component (i.e., finding a balanced
cut using the Ford-Fulkerson’s max-flow algorithm).

2. Comparisons to HRG. We compare four vertex connectivity algorithms, namely HRG,
LOCAL1, LOCAL1+, LOCAL2+. For planted cuts (Section 5.2), LOCAL1, LOCAL1+,
and LOCAL2+ scale with n much better than HRG when κG is fixed. In particular,
LOCAL1+ and LOCAL2+ start to outperform HRG on graphs as small as n ≤ 500
(when κ ≤ 15). For random hyperbolic graphs (Section 5.3), HRG performs much
better than on the planted cut instances, but is still outperformed relatively early. In
particular, LOCAL1+ and LOCAL2+ outperform HRG for n ≥ 5000 when κ ≤ 12. In

SEA 2021

1:4 Engineering Nearly Linear-Time Algorithms for Small Vertex Connectivity

real-world graphs (Section 5.4), LOCAL1+ and LOCAL2+ are the fastest among the four
algorithms with LOCAL2+ being slightly faster than LOCAL1+. We also observe that
the performance of all four algorithms is very similar on part of the real world dataset
and graphs with planted cuts with the same size and vertex connectivity.

Organization. We discuss related work in Section 2, and preliminaries in Section 3. Then,
we review two variants of LocalEC algorithms (Local1,Local2) [9], and describe new degree
counting heuristic versions (Local1+, Local2+) in Section 4. Then, all the experimental
results are discussed in Section 5. We conclude and discuss future work in Section 6.

2 Related Work

Fast Vertex Connectivity Algorithms. We consider a decision version where the problem is
to decide if G has a vertex cut of size at most k − 1 (the general vertex connectivity can
be solved using a binary search on k). We highlight only recent state-of-the-art algorithms.
For more elaborated discussion, see [23]. When k = O(1), the fastest known algorithm
is by [9] with running time O(m + nk3 log2 n). The algorithm is based on local search
approach. For larger k, the fastest known algorithm are based on preflow-push-relabel by
[15] with the running time O(n2k log n), and based on algebraic techniques by [19] with the
running time O(nω log2 n + kωn log n) where ω denotes the matrix multiplication exponent,
currently ω ≤ 2.37286 [2]. When k is small (say k = O(1)), the preflow-push-relabel-based
algorithm by [15] is the fastest alternative to [9, 23]. Therefore, we implement the preflow-
push-relabel-based algorithm [15] as a baseline for performance comparisons. We note both
all aforementioned algorithms are randomized. Deterministic algorithms are much slower
than the randomized ones. The fastest known deterministic algorithms are by [10] for large
k and by [11] for k = O(1).

Deciding (k, s, t)-Vertex Connectivity. We mention another related problem which is to
decide if the there is a vertex cut separating s and t of size at most k − 1. By a standard
reduction [7], it can be solved by st-maximum flow. st-maximum flow can be solved in time
O(mk) by augmenting paths algorithm by Ford-Fulkerson algorithm [8]. For larger k, a
simple blocking flow algorithm by [6] runs in time O(m

√
n). The current state-of-the art

algorithms are O(m4/3+o(1))-time algorithm by [21], and Õ(m + n1.5)-time2 algorithm by
[27]. Note that when k is small (e.g., k = O(1)), then Ford-Fulkerson algorithm [8] is the
fastest, and we thus implement Ford-Fulkerson algorithm as a subroutine to find vertex cut
for the balanced case.

Local Search. There are quite a few local search algorithm with different running time.
The first LocalEC algorithm by [4] has running time of O(νkk). [9] introduced a new local
search algorithm with improved time O(νk2). [9] also provide a reduction to local vertex cut
detection problem, which we called LocalVC (similar to Definition 1, but uses vertex cut
instead of edge cut). Therefore, there is a LocalVC algorithm with running time O(νk2).
This improved the previous bound for LocalVC with running time O(ν1.5k) by [23] when k

is small. For our purpose, when k is small (say k = O(1)), the algorithm by [9] is the fastest,
and thus we consider the LocalEC algorithm by [9].

2 Õ(f(n)) = O(poly(log n)f(n)).

M. Franck and S. Yingchareonthawornchai 1:5

Implementation and Experimental Studies. To the best of our knowledge, this paper is the
first experimental study on vertex connectivity algorithms; there were no prior experimental
studies on vertex connectivity algorithms3. This is in stark contrast to the edge-connectivity
problem (which is considered as a sibling problem) where we compute the minimum number
of edges to be removed to disconnect the graph. For edge-connectivity, there are many
experimental studies [16, 5, 24, 14]. More recently, the work by [12] implemented the local
search framework in [9] to compute directed edge-connectivity.

3 Preliminaries

Let G = (V, E) be an undirected graph. In general, we denote m = |E| and n = |V |. We
denote E(S, T) be the set of edges from vertex-set S to vertex-set T . We say that S ⊂ V is
a vertex cut if G− S (the graph after removing S from G) is disconnected. If no vertex cut
of size k exists, the graph is k-(vertex)-connected. We say that S is an xy-vertex cut if x

cannot reach y in G− S. Let κG be vertex connectivity of G, i.e., the size of the minimum
vertex-cut (or n− 1 if no cut exists). Let κG(x, y) denote the size of the minimum xy-vertex
cut in G or n − 1 if the xy-vertex cut does not exist. We say that a triplet (L, S, R) is a
separation triple if L, S and R form a partition of V , L and R are not ∅ and E(L, R) = ∅.
In this case, S is a vertex-cut in G. The decision problem for vertex connectivity which we
call k-connectivity problem is the following: Given G = (V, E), and integer k, decide if G is
k-connected, and if not, output a vertex-cut of size < k.

Sparsification. For an undirected graph G = (V, E), the algorithm by Nagamochi and
Ibaraki [22] runs in O(m) time and partitions E into a sequence of forests E1, . . . , En (possibly
Ei = Ei+1 = . . . = En = ∅ for some i). For each k ≤ n, the subgraph FGk := (V,

⋃
i≤k Ei)

has the property that FGk is k-connected if and only if G is k-connected. Moreover, any
vertex cut of size < k in FGk is also a vertex cut in G. Clearly, |E(FGk)| ≤ nk.

From now, with preprocessing in O(m) time, we assume that the input graph to the
k-connectivity problem is FGk. In particular, we can assume that the number of edges is
O(nk). We can also assume that the minimum degree is at least k (because otherwise we
can output the neighbor of the vertex with minimum degree).

Split Graph. The split graph construct is a standard reduction from vertex connectivity
based problems to edge connectivity based problems, used in the algorithms featured in this
paper, among others [7, 9, 15]. Given graph G, we define the split graph SG as follows. For
each vertex v in G, we replace v with an “in-vertex” vin and an “out-vertex” vout, and add
an edge from vin and vout. The reduction follows from the observation that edge-disjoint
paths in SG that start at an outvertex and end at an invertex correspond to (non-endpoint)
vertex-disjoint paths in G. For each edge (u, v) in G, we add an edge from (vin, uout) in SG.

4 LocalEC Algorithms and Degree Counting Heuristics

In this section, we review two variants of LocalEC algorithms by [9], and describe their corres-
ponding new version using the degree counting heuristic. For completeness, we describe the
complete vertex connectivity algorithm by [9] and some implementation details in Appendix B.

3 The experimental work by [25] mentioned k-vertex connectivity problem. However, in the experiment,
they studied only the algorithm for deciding (k, s, t)-vertex connectivity where the source s and sink t
are given as inputs.

SEA 2021

1:6 Engineering Nearly Linear-Time Algorithms for Small Vertex Connectivity

All the algorithms in this section follow a common framework called AbstractLocalEC as
described in Algorithm 1. Let G = (V, E) be the graph that we work on. The algorithm takes
as inputs x ∈ V and two integers ν, k. The basic idea is to apply Depth-first Search (DFS)
on the starting vertex x but force early termination. We repeat for k iterations. If DFS
terminates normally at some iteration, i.e., without having to apply the early termination
condition, then the set of reachable vertices satisfy Equation (1). Otherwise, we certify that
no cut satisfying Equation (1) exists. The only main difference is at line 2 where we need to
specify the condition for early termination and selection of the vertex y ∈ V (T) in such a
way that the entire algorithm outputs correctly with constant probability. If the minimum
degree is less than k, we set k to the minimum degree and return the trivial cut if no smaller
cut is found.

Algorithm 1 AbstractLocalECG(x, ν, k).

1 repeat k times
2 Grow a DFS tree T starting from x, stopping early at some point to get y ∈ V (T).
3 If the DFS terminates normally, then return V (T).
4 Reverse all edges along the unique path from x to y in the tree T , unless this is

the last iteration.
5 return ⊥.

Next, we define time and space complexity (in terms of edges and vertices required to
run the algorithm) of a LocalEC algorithm.

▶ Definition 2. Let A(x, ν, k) be a LocalEC algorithm. A has (t, se, sv)-complexity if A
terminates in O(t) time and accesses at most O(se) distinct edges, and at most O(sv) distinct
vertices.

4.1 Local1 and Degree Counting Version

Algorithm for Local1. Replace line 2 in Algorithm 1 with the following process. Grow a
DFS tree starting on vertex x and stop when the number of accessed edges is exactly 8νk.
Let E′ be the set of accessed edges. We sample an edge (u, v) ∈ E′ uniformly at random.
Finally, we set y ← u. If we sample (u, v) to be the τ -th edge visited, we can stop the DFS
early after that edge (similarly to Local1+ below).

▶ Theorem 3 (Theorem A.1 in [9]). Local1(x, ν, k) is LocalEC with (νk2, νk2, νk2)-
complexity.

Next, we present the degree counting version of Local1, which we call Local1+.

Algorithm for Local1+. Replace line 2 in Algorithm 1 with the following process. Let τ be
a random integer in the range [1, 8νk]. If this is in the last iteration, we set τ ← 8νk. Then,
we grow a DFS tree T starting on vertex x. At any time step, let V (T) be the set of vertices
visited by the DFS so far. We stop as soon as volout(V (T)) ≥ τ . Finally, we set y to be the
last vertex that the DFS visited.

▶ Theorem 4. Local1+(x, ν, k) is LocalEC with (νk2, νk2, νk)-complexity.

M. Franck and S. Yingchareonthawornchai 1:7

4.2 Local2 and Degree Counting Version
We say that an edge is new if it has not been accessed in earlier iterations. Otherwise, it is
old. It follows that reversed edges are old.

Algorithm for Local2. 4 Replace line 2 in Algorithm 1 with the following process. We grow
a DFS tree T starting at vertex x. Let E′(T) be the set of new edges visited. We stop as
soon as E′(T) ≥ 8ν. Let (u, v) be a random edge in E′(T). Finally, we set y ← u. We do
not need to store E′(T) to sample from if we sample τ in the range [1, 8ν] and choose the
τ -th new edge.

▶ Theorem 5 (Equivalent to Theorem 3.1 in [9]). Local2(x, ν, k) is LocalEC with
(νk2, νk, νk)-complexity.

Next, we present the degree counting version of Local2, which we call Local2+. The
algorithm is slightly more complicated. We set up notations. For each v ∈ V , let c(v) be the
remaining capacity for v, representing uncounted edge volume. Initially, c(v) = degout(v).

Algorithm for Local2+. Replace line 2 in Algorithm 1 with the following process. Let τ be
a random integer in the range [1, 8νk]. We grow a DFS tree starting on vertex x. At any
time step, let v1, v2, ..., vi be the sequence of vertices visited by the DFS so far. For the first
vertex where

∑
j≤i c(vj) ≥ τ , we set y ← vi. As soon as

∑
j≤i c(vj) ≥ 8ν, we stop the DFS

and update the remaining capacity c(v) on each v as follows. We set c(vj)← 0 for all j < i

and set c(vi)←
∑

j≤i c(vj)− 8ν.
Intuitively, we collect previously uncounted outgoing edges and choose the origin vertex

for one of them at random.

▶ Theorem 6. Local2+(x, ν, k) is LocalEC with (νk2, νk, ν)-complexity.

4.3 Proof of Theorems 3–6
In this section, we address proofs for Theorems 3–6.

Correctness. It can be shown that all four algorithms (Local1, Local1+, Local2, Local2+)
are LocalEC through a similar argument as used in [9]. For completeness, we provide the
proofs in Appendix A.

Complexity. Let A be an LocalEC algorithm (Definition 1), and let ν, and k be the
parameters of the algorithm. We define three measure of complexity T (A, G), UE(A, G),
and UV (A, G) on input graph G and LocalEC algorithm A as follows. Let T (A, G) be the
number of times that the algorithm accesses edges on the input graph G. T (A, G) measures
time complexity of the algorithm. Let UE(A, G) be the number of unique edges accessed
by the algorithm on graph G. This measures how much information (in terms of number
of edges) that the algorithm needs to run. Let UV (A, G) be the number of unique vertices
accessed by the algorithm on graph G.

▶ Observation 7. For any graph G and LocalEC algorithm A, T (A, G) ≥ UE(A, G) ≥
UV (A, G).

4 The algorithm Local2 described in this paper is similar to Algorithm 1 in [9]. Our description here is
simpler, and achieves the same properties as Algorithm 1 in [9].

SEA 2021

1:8 Engineering Nearly Linear-Time Algorithms for Small Vertex Connectivity

Local1. To see that Local1 has (O(νk2), O(νk2), O(νk2))-complexity, it is enough to prove
that T (Local1, G) = O(νk2). This follows easily because each iteration we stop the DFS
after visiting exactly 8νk edges, and there are at most k iterations.

Local1+. We first prove that T (Local1+, G) = O(νk2). Since there are k iterations, it is
enough to bound one iteration. Let S be the set of vertices visited by the DFS before the
step at which it stops early. Clearly, volout(S) < 8νk, or we would have stopped earlier. By
design, new edges can be only visited within the set E(S, S) or at the last step. Therefore,
the number of edges visited is at most |E(S, S)|+ 1 ≤ volout(S) + 1 = O(νk) per iteration
and O(νk2) in total. We have T (Local1+, G) = O(νk2).

Remember that if the minimum degree is initially at least k to avoid trivial cuts. When
paths are reversed, no vertex other than x will have reduced degree. Therefore we have
k(|S| − 1) ≤ volout(S) < 8νk. It follows that we visit at most O(ν) vertices in each iteration
and O(νk) in total.

Local2. We first prove that UE(Local2, G) = O(νk). By design, for each iteration, we
collect at most 8ν new edges. Since we repeat for k iterations, we collect at most 8νk total
new edges. Next, we prove T (Local2, G) = O(νk2). Since each edge can be revisited at most
k times, we have T (Local2, G) ≤ kUE(Local2, G) = O(νk2).

Local2+. We first prove that UE(Local2+, G) = O(νk). If true, then we also have
TE(Local2+, G) ≤ kUE(Local2+, G) = O(νk2). We will never visit an outgoing edge of
vertex v unless all its capacity has been exhausted. Therefore the total used capacity
(at most k times 8ν) is an upper bound for the number of distinct edges visited. For
UV (Local2+, G), fix any iteration. Let S be the set of vertices visited by the DFS one step
before terminating and S′ ⊆ S the subset of S that have not been visited before. Clearly, we
have k|S′| ≤ volout(S′) =

∑
v∈S′ c(v) ≤

∑
v∈S c(v) < 8ν. The first inequality follows since

the minimum degree is at least k. We visit at most |S′|+ 1 = O(ν/k) distinct vertices per
iteration for a total of O(ν) distinct vertices.

5 Experimental Results

5.1 Experimental Setup
The algorithms were implemented and compiled using C++17 with Microsoft Visual Studio
2019. All experiments were run on a Windows 10 computer with Intel i7-9750H CPU
(2.60GHz) and 16 GB DDR4-2667 RAM.

Four algorithms are compared. LOCAL1, LOCAL1+ and LOCAL2+ are implement-
ations based on the algorithm by Forster et al [9]. The full algorithm to compute vertex
connectivity using LocalEC is described in Appendix B and originally by [23]. LOCAL1 and
LOCAL1+ use Local1 and Local1+ as their LocalEC algorithm with 2νk substituted for 8νk.
LOCAL2+ uses the LocalEC algorithm Local2+ with 3ν substituted for 8ν. HRG is an
implementation of the randomised version of the algorithm by Henzinger, Rao and Gabow [15].
The implementation details are described in Appendix C. All algorithms were implemented
using parameters that bound theoretical success probability from below by a roughly equal
constant. Since the data consists of undirected graphs only, the sparsification algorithm by
Nagamochi and Ibaraki [22] is used together with each algorithm. The O(m) partitioning
of the edges into disjoint forests is not included in the measured time. Construction of the
sparse graphs in O(nk) time is included. As a result, none of the algorithms have time
complexity dependent on m. Graph size is reported only in terms of vertices.

M. Franck and S. Yingchareonthawornchai 1:9

5.1.1 Data
The data consists of random graphs with planted vertex cuts, random hyperbolic graphs and
real world data.

The first artificial dataset consists of graphs with a planted unique minimum vertex cut,
which can be generated with full control over vertex connectivity and balancedness. We
partition a complete graph into three sets L, S and R and use a subset of the edges in
E \E(L, R), chosen using a modified version of the sparsification algorithm by Nagamochi
and Ibaraki [22]. Like Nagamochi and Ibaraki, we label the edges to partition them into
disjoint forests {E1, E2, ...} such that (x, y) ∈ Ei implies that there is a path between x and
y in E1, E2, ..., Ei−1. Nagamochi and Ibaraki show that if this property holds for all edges,
then the union of the k first forests is k-connected if the original graph is k-connected. Unlike
Nagamochi and Ibaraki, we randomly partition the edges by placing them in the applicable
forest with the lowest index in a random order. We choose k = 60 > |S| to guarantee that S

is a unique vertex cut that separates L from R. For each set of parameters we generate five
graphs and run the algorithm five times each and report the average.

The second artificial dataset consists of random hyperbolic graphs, generated using
NetworKIT [26], which provides an implementation of the generator by von Looz et al. [28].
The properties of random hyperbolic graphs include a degree distribution that follows a
power law and small diameter, which are common in real world graphs [3]. The graphs are
generated with average degree 32 and a power law exponent of 10. We generate 20 graphs
each for sizes 210, 211, ..., 218 vertices and group them according to vertex connectivity. We
run the algorithm five times per graph and report the average for each group with the same
size and vertex connectivity.

The real world data is based on three graphs from the SNAP dataset [18], soc-Epinions1,
com-LiveJournal and web-BerkStan. The LiveJournal dataset is originally undirected. The
other two are directed graphs read as undirected, which means that we compute weak vertex
connecitivity for these graphs. We preprocess these graphs by taking the largest connected
component for a k-core. A k-core is defined as the edge-maximal subgraph with minimum
degree at least k. Only k-cores whose vertex connectivity is over 1 but less than the minimum
degree are used. For each k-core we run the algorithms 25 times and report the average.

5.2 Planted Cuts
In theory the running time for HRG is linear in κ and the algorithms based on Forster et al.
[9] are cubic in κ. Figure 1a shows that the running time for HRG indeed grows much slower
with κ. The running time for LOCAL1 exceeds that of HRG much earlier, at κ ≥ 17, than
LOCAL1+ (κ ≥ 40) and LOCAL2+ (κ ≥ 48).

Figure 1b shows that all four algorithms perform reasonably well both for graphs with
unbalanced cuts and balanced cuts, although HRG is faster for unbalanced graphs by a
factor of 2. Internal testing suggests that the running time of HRG is roughly proportional
to |L|2 + |R|2. The difference between the highest and lowest running time is a factor of 1.99
for HRG, 1.19 for LOCAL1, 1.27 for LOCAL1+ and 1.16 for LOCAL2+.

When κ < 16, LOCAL1, LOCAL1+ and LOCAL2+ outperform the quadratic-time HRG
on very small graphs with planted cuts. At κ = 4 in figure 2a, HRG takes 23 ms for 100
vertices, which is already slower than both LOCAL1+ and LOCAL2+. LOCAL1 is faster
than HRG at n ≥ 200. When κ = 15 (figure 2d), HRG is slower than LOCAL1+ and
LOCAL2+ at n ≥ 250 and LOCAL1 at n ≥ 550.

SEA 2021

1:10 Engineering Nearly Linear-Time Algorithms for Small Vertex Connectivity

LOCAL1+ and LOCAL2+ perform very similarly for small graphs but on larger graphs,
LOCAL2+ is faster, as shown by figure 2e.

0 20 40 60

0

5

κ

(a) |L| = 5, n = 1000

100 101 102
0

0.1

0.2

0.3

|L|

(b) κ = 5, n = 1000

HRG
LOCAL1
LOCAL1+
LOCAL2+

Figure 1 Running time (seconds) for Planted Cuts with variable |L| or κ.

0 500 1,000
0

1

2

3

·10−4

n

(a) κ = 4, |L| = 5

0 500 1,000
0

1

2

3

·10−4

n

(b) κ = 7, |L| = 5

0 500 1,000
0

2

4

·10−4

n

(c) κ = 8, |L| = 5

0 500 1,000
0

2

4

6
·10−4

n

(d) κ = 15, |L| = 5

0.5 1

·105

1

1.5

2

·10−3

n

(e) κ = 31, |L| = 5

HRG
LOCAL1
LOCAL1+
LOCAL2+

Figure 2 Running time (seconds) per vertex for Planted cuts with fixed |L| and |S|.

5.3 Random Hyperbolic Graphs

HRG is much faster on random hyperbolic graphs than on the planted cut dataset. Comparing
figures 2c and 3c, the performance of HRG on 1000 vertex graphs with planted cuts of size
8 is similar to that on random hyperbolic graphs with the same vertex connectivity and
over 30000 vertices. The performance differences are smaller for LOCAL1, LOCAL1+ and

M. Franck and S. Yingchareonthawornchai 1:11

LOCAL2+, which means that the point at which these algorithms outperform HRG occurs
at somewhat higher n.

For random hyperbolic graphs with κ = 7 (figure 3b), HRG and LOCAL1 are equally
fast at 4096 vertices (0.6 seconds). HRG is faster than LOCAL1 for all included random
hyperbolic graphs where κ > 7, including graphs up to 32768 vertices. The running time
for LOCAL1+ and LOCAL2+ is close to that of HRG for random hyperbolic graphs where
κ = 12 and n ∈ [1024, 4196] (figure 3e).

0 1 2

·105

0

1

2

·10−3

n

(a) κ = 4

0 2 4 6

·104

0

2

4

6

8

·10−4

n

(b) κ = 7

1 2 3

·104

2

4

6

·10−4

n

(c) κ = 8

0 0.5 1 1.5

·104

2

4

6

·10−4

n

(d) κ = 10

1,000 2,000 3,000 4,000

2

4

6
·10−4

n

(e) κ = 12

HRG
LOCAL1
LOCAL1+
LOCAL2+

Figure 3 Running time (seconds) per vertex for Random Hyperbolic Graphs.

5.4 Real-World Networks
Table 2 presents real world network data. Each row represents a δ-core, where δ is the
minimum degree of the resulting graph. Note that in general, minimum degree for a k-core
can exceed k. Table 3 shows data for graphs with planted cuts with similar parameters to
the real world graphs, for comparison.

LOCAL1+ and LOCAL2+ clearly outperform LOCAL1 on real-world networks, as on
artificial data. The k-cores of soc-Epinions1 have very similar performance in real world
networks and graphs with planted cuts in table 3. Performance for other real network data
is generally faster for all four algorithms than for planted cuts, especially for HRG, which is
5-8 times faster on real world data. Similarly, running times for LOCAL1, LOCAL1+ and
LOCAL2+ are also higher on random hyperbolic graphs than on k-cores of com-lj.ungraph
and web-BerkStan.

SEA 2021

1:12 Engineering Nearly Linear-Time Algorithms for Small Vertex Connectivity

Table 2 Running times (milliseconds) per vertex on k-cores for real world networks.

n κ δ LOCAL1 LOCAL1+ LOCAL2+ HRG graph
1493 10 160 0.192706 0.059531 0.055352 0.117033 com-lj.ungraph
1205 9 200 0.174805 0.056589 0.053237 0.097187 com-lj.ungraph
853 8 231 0.146436 0.054068 0.052052 0.069566 com-lj.ungraph
781 8 250 0.130679 0.054225 0.052612 0.06589 com-lj.ungraph
10147 5 9 0.143089 0.027456 0.027409 5.207559 soc-Epinions1
8106 11 12 0.896141 0.095449 0.084268 6.20417 soc-Epinions1
6246 16 17 3.063016 0.299094 0.236018 6.537896 soc-Epinions1
5719 17 19 3.104109 0.325849 0.238042 5.831964 soc-Epinions1
5480 2 80 0.011066 0.006058 0.006547 0.359113 web-BerkStan
5352 12 93 0.214441 0.055435 0.053617 0.800785 web-BerkStan

Table 3 Running times (milliseconds) per vertex on Planted Cuts (|L| = 5).

n κ LOCAL1 LOCAL1+ LOCAL2+ HRG
1493 10 0.34756 0.07509 0.07251 0.93666
1205 9 0.28973 0.06567 0.06596 0.71276
853 8 0.21861 0.05829 0.05881 0.46607
781 8 0.21249 0.05725 0.05921 0.44556
10147 5 0.14592 0.02637 0.02763 5.12975
8106 11 0.83576 0.11107 0.104 6.34581
6246 16 2.96568 0.33908 0.30892 6.61489
5719 17 2.99657 0.3346 0.29596 5.93766
5480 2 0.01858 0.00811 0.00853 1.69671
5352 12 0.77961 0.1108 0.10384 3.98331

5.5 Effectiveness of Degree Counting
In figure 4 we study internal measurements from LocalEC in the different algorithms. Note
that Local1 and Local1+ apply a multiplicative factor of 2 to ν and Local2+ a factor of
3. The values used here include this increase. The number of edges visited by the average
call to LocalEC at each value for ν is normalised by νk. This metric approximately doubles
for Local1 and Local1+ when k is doubled, as expected for algorithms quadratic in k. The
metric grows for Local2+ too, but by a smaller factor around 1.5 for most values. The growth
is faster for higher values for ν and for the highest values it is approximately by a factor 2,
like the other two algorithms.

The number of edges explored relative to ν is higher for high ν for all algorithms and
parameters in figure 4. For LOCAL1, it converges towards νk

2 , which is the average of [1, νk],
the range of possible early stopping points τ .

Local1 clearly visits more edges than in Local1+ and Local2+ by a large factor, according
to figure 4. Table 4 shows that most of the running time of LOCAL1 is used searching
for unbalanced cuts with LocalEC. However, LOCAL1+ and LOCAL2+ spend a similar
amount of time on balanced and unbalanced cuts. The only difference between the versions
is the choice of LocalEC. These results suggest that degree counting improves the practical
performance of LocalEC significantly but there is not much more room for improvement
through LocalEC without also further optimising x-y max flow to search for balanced cuts.
When the number of vertices is increased by a factor of 10, the time spent searching for
unbalanced cuts does not seem to grow faster than the time spent searching for balanced
cuts. The category “other” is dominated by initial setup for the data structures.

M. Franck and S. Yingchareonthawornchai 1:13

101 102 103 104 105
0

2

4

ν

(a) k=8, ELocalEC

νk

101 102 103 104 105
0

2

4

6

8

ν

(b) k=16, ELocalEC

νk

101 102 103 104 105
0

5

10

15

ν

(c) k=32, ELocalEC

νk

101 102 103 104 105
0

0.5

1

ν

(d) k=8, ELocalEC

νk

101 102 103 104 105
0

0.5

1

ν

(e) k=16, ELocalEC

νk

101 102 103 104 105
0

0.5

1

ν

(f) k=32, ELocalEC

νk

LOCAL1
LOCAL1+
LOCAL2+

Figure 4 Planted cuts with n = 100000, |L| = 5, k = κ

(Non-unique) average edges per LocalEC call, normalised by νk.

Table 4 CPU use: balanced cuts/Ford-Fulkerson(FF) vs unbalanced cuts/LocalEC(Local).
Running time was measured separately.

(a) n = 10000, κ = 8

algorithm FF Local Other Seconds
LOCAL 6.2% 92.5% 1.3% 5.96
LOCAL+ 45.7% 44.2% 10.2% 0.79
LOCAL2+ 47.7% 42.3% 10% 0.85

(b) n = 10000, κ = 16

algorithm FF Local Other Seconds
LOCAL 4.5% 95.2% 0.3% 34.82
LOCAL+ 48.3% 48.2% 3.5% 3.32
LOCAL2+ 42.7% 53.5% 3.7% 3.07

(c) n = 100000, κ = 8

algorithm FF Local Other Seconds
LOCAL1 4.3% 95.2% 0.5% 205.2
LOCAL1+ 52.1% 42.5% 5.3% 15.8
LOCAL2+ 51.9% 43% 5.1% 14.1

(d) n = 100000, κ = 16

algorithm FF Local Other Seconds
LOCAL1 2.6% 97.3% 0.1% 1546.1
LOCAL1+ 49.5% 48.9% 1.6% 96.8
LOCAL2+ 51.2% 47.1% 1.6% 84.3

5.6 Success rate

We define the success rate of a vertex connectivity algorithm as the percentage of attempts
that yields an optimal cut. The observed success rate for HRG is at or near 100% on all
featured datasets. For random hyperbolic graphs, none of the algorithms returned nonoptimal
cuts. For graphs with planted cuts and k-cores of real world networks, the success rates are
97%+ for LOCAL1, 96%+ for LOCAL1+ and 95%+ for LOCAL2+.

SEA 2021

1:14 Engineering Nearly Linear-Time Algorithms for Small Vertex Connectivity

6 Conclusion and Future Work

We study the experimental performance of the near-linear time algorithm by [9] when the
input graph connectivity is small. The algorithm is based on local search. We also introduce
a new heuristic for the local search algorithm, which we call degree counting. Based on
experimental results, the degree counting heuristic significantly improves the empirical
running time of the algorithm over its non-degree counting counterpart. For future work, we
plan to extend the experiments to directed graphs, and on larger instances of datasets (in
the order of millions of edges).

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.
2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. CoRR, abs/2010.05846, 2020.
3 Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and al-

gorithms. ACM Comput. Surv., 38(1):2, 2006.
4 Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Veronika Loitzenbauer, and

Nikos Parotsidis. Faster algorithms for computing maximal 2-connected subgraphs in sparse
directed graphs. In SODA, pages 1900–1918. SIAM, 2017.

5 Chandra Chekuri, Andrew V. Goldberg, David R. Karger, Matthew S. Levine, and Clifford
Stein. Experimental study of minimum cut algorithms. In SODA, pages 324–333. ACM/SIAM,
1997.

6 Yefim Dinitz. Dinitz’ algorithm: The original version and even’s version. In Essays in Memory
of Shimon Even, volume 3895 of Lecture Notes in Computer Science, pages 218–240. Springer,
2006.

7 Shimon Even. An algorithm for determining whether the connectivity of a graph is at least k.
SIAM J. Comput., 4(3):393–396, 1975.

8 Lester Randolph Ford and Delbert Ray Fulkerson. Maximal flow through a network. Canadian
journal of Mathematics, 8:399–404, 1956.

9 Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Computing and testing small connectivity in near-linear time and
queries via fast local cut algorithms. In SODA, pages 2046–2065. SIAM, 2020.

10 Harold N. Gabow. Using expander graphs to find vertex connectivity. J. ACM, 53(5):800–844,
2006.

11 Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Deterministic graph cuts in subquadratic time: Sparse, balanced,
and k-vertex. CoRR, abs/1910.07950, 2019.

12 Loukas Georgiadis, Dionysios Kefallinos, Luigi Laura, and Nikos Parotsidis. An experimental
study of algorithms for computing the edge connectivity of a directed graph. ALENEX, pages
85–97, 2021.

13 Olivier Goldschmidt, Patrick Jaillet, and Richard Lasota. On reliability of graphs with node
failures. Networks, 24(4):251–259, 1994.

14 Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Practical minimum
cut algorithms. ACM J. Exp. Algorithmics, 23, 2018.

15 Monika Rauch Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex connectivity:
New bounds from old techniques. In FOCS, pages 462–471. IEEE Computer Society, 1996.

16 Michael Jünger, Giovanni Rinaldi, and Stefan Thienel. Practical performance of efficient
minimum cut algorithms. Algorithmica, 26(1):172–195, 2000.

17 D Kleitman. Methods for investigating connectivity of large graphs. IEEE Transactions on
Circuit Theory, 16(2):232–233, 1969.

M. Franck and S. Yingchareonthawornchai 1:15

18 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

19 Nathan Linial, László Lovász, and Avi Wigderson. Rubber bands, convex embeddings and
graph connectivity. Comb., 8(1):91–102, 1988.

20 Shaobin Liu, Kam-Hoi Cheng, and Xiaoping Liu. Network reliability with node failures.
Networks, 35(2):109–117, 2000.

21 Yang P. Liu and Aaron Sidford. Faster divergence maximization for faster maximum flow.
CoRR, abs/2003.08929, 2020.

22 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.

23 Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai. Break-
ing quadratic time for small vertex connectivity and an approximation scheme. In STOC,
pages 241–252. ACM, 2019.

24 Manfred Padberg and Giovanni Rinaldi. An efficient algorithm for the minimum capacity cut
problem. Math. Program., 47:19–36, 1990.

25 Azzeddine Rigat. An experimental study of k-vertex connectivity algorithms. INFOCOMP,
11, 2012.

26 Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool suite for
large-scale complex network analysis. Netw. Sci., 4(4):508–530, 2016.

27 Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. In FOCS, pages 919–930. IEEE, 2020.

28 Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating random hyperbolic
graphs in subquadratic time. In ISAAC, volume 9472 of Lecture Notes in Computer Science,
pages 467–478. Springer, 2015.

29 Douglas R. White and Frank Harary. The cohesiveness of blocks in social networks: Node
connectivity and conditional density. Sociological Methodology, 31(1):305–359, 2001.

A Omitted Proofs

A.1 Correctness
To show that any algorithm among Local1, Local1+, Local2, and Local2+ is LocalEC,
it is enough to prove that it satisfies two properties:

▶ Property 1. If V (T) is returned, then |E(V (T), V − V (T))| < k and ∅ ̸= V (T) ⊊ V .

▶ Property 2. If there is a vertex-set S satisfying Equation (1), then ⊥ is returned with
probability at most 1/2.

The following simple observation is due to [4].

▶ Observation 8. Let S be a vertex-set in graph G and x ∈ S. Let P be a path from x to y.
Let G′ be G after reversing all edges along P . If y ∈ S, then |EG′(S, V −S)| = |EG(S, V −S)|.
Otherwise, |EG′(S, V − S)| = |EG(S, V − S)| − 1.

For the first property, the following argument works for all four algorithms.

▶ Lemma 9. Local1, Local1+, Local2 and Local2+ satisfy Property 1.

Proof. Let S = V (T) be the cut the algorithm returned. Observe that x ∈ S by design. By
Observation 8, each iteration can only reduce the number of crossing edges by at most one.
This can happen at most k − 1 times before the final iteration, which implies that initially’
|E(S, V − S)| ≤ k − 1. ◀

SEA 2021

http://snap.stanford.edu/data

1:16 Engineering Nearly Linear-Time Algorithms for Small Vertex Connectivity

For the second property, the following argument works for Local1, and Local1+

▶ Lemma 10. Local1 and Local1+ satisfy Property 2.

Proof. We focus on proving that LOCAL1 satisfies Property 2 (the proof for Local1+ will be
essentially identical). If the algorithm terminates before the k-th iteration, then it outputs
V (T), and thus ⊥ is never returned. So now we assume that the algorithm terminates at the
k-th iteration. Let y1, . . . yk−1 be the sequence of chosen path endpoints y in DFS iterations.
We first bound the probability that yi ∈ S. Let volout

i (S) be the volume of S at iteration i.
So,

Pr(yi ∈ S) ≤ volout
i (S)
8νk

≤ volout(S)
8νk

≤ ν

8νk
= 1

8k
. (2)

The first inequality follows by design. The second inequality follows by Observation 8.
By Observation 8, the algorithm can only return ⊥ at the final iteration if at least one

of the yi’s is in S (or if there is not viable cut). Let 1[yi ∈ S] be an indicator function.
Let Y =

∑
i≤k−1 1[yi ∈ S]. Observe that Y ≥ 1 if and only if the algorithm outputs

⊥. We now bound the probability that Y ≥ 1. By linearity of expectation, we have
E[Y] =

∑
i≤k−1 E[1[yi ∈ S]] =

∑
i≤k−1 Pr(yi ∈ S) ≤ 1

8 . Therefore, by Markov’s inequality,
we have

Pr(Y ≥ 1) = Pr(Y ≥ 8 · 1
8) ≤ Pr(Y ≥ 8E[Y]) ≤ 1

8 . (3)

This completes the proof for LOCAL1. To see that the same proof works for LOCAL1+,
observe that the proof above (Equation (2) in particular) does not use the identity of the
edges. Outgoing edges of a vertex are interchangible. The degree counting variant counts
edges ensures that each outgoing edge for visited vertices is included in the collection of
edges without collecting explicitly. The precomputed random number τ corresponds to a
random edge from the collection. ◀

It remains to prove the second property for Local2 and Local2+. However, the
arguments for Local2 and Local2+ are very similar to Local1 and Local1+:

▶ Lemma 11. Local2 and Local2+ satisfy Property 2.

Proof. For Local2, each edge in E(S, V) has a 1
8ν probability to be chosen if the edge is

visited. The probabilities are not independent but can be used for Markov’s inequality. If Y

is the number of edges in E(S, V) that are chosen, or equivalently the number of times a
vertex in S is chosen, we have E[Y] ≤ ν

8ν = 1
8 , resulting in the same equation as Equation (3).

If we consider the case where all edges in E(S, V) are visited in a single iteration, we can see
that the bound is tight. For Local2+, apply the same logic to c(v) instead of edges. ◀

B Full Near-Linear Vertex Connectivity Algorithm

B.1 Vertex Connectivity via Local Edge Connectivity in Undirected
Graphs

In this section, we describe the vertex connectivity algorithm that we implement in this
paper. We will assume that we have a LocalEC algorithm (Definition 1) with time complexity
O(νk2).

Let G be a directed graph with n vertices and m edges, such that (x, y) ∈ E(G) ⇐⇒
(y, x) ∈ E(G). This is a directed representation of an undirected graph. Given a positive
integer k, the following algorithm, which is very closely based on the framework by Nanongkai

M. Franck and S. Yingchareonthawornchai 1:17

et al. [23], finds a minimum vertex cut of size less than k or certifies that κ ≥ k with constant
probability. Let k′ be the size of the minimum cut found so far in the algorithm, or k if no
cut has been found yet.

Suppose that there is a vertex cut in G, represented by a separation triple (L, S, R).
Assume without loss of generality that volout(L) ≤ volout(R). If volout(L) < 2δ, where δ is
the minimum degree, then |L| = 1. We find δ and such trivial cuts with a linear sweep.

Fix some value a = Θ(m/k), which must be a valid value for the parameter ν in LocalEC.

Balanced Cut. Suppose that volout(L) ≥ a. If we sample pairs of edges (x, x′), (y, y′) ∈ E(G)
we can show that x ∈ L, y ∈ R with probability Θ(a/m) for each sample. We can find a x-y
vertex cut of size less than k′ if one exists by using a max flow algorithm on the split graph
through a well-known reduction (e.g. [7]). A sample size of Θ(m/a) is sufficient to find such
a cut with high probability.

Unbalanced Cut. Now, for ν ∈ {2iδ|i ∈ Z≥0, 2iδ < a}, i.e., power of two multiples of δ up
to a. we sample Θ(m/ν) edges (x, x′) ∈ E(G) and run LocalEC(xout, ν, k′) on the split graph
for each x. If volout(L) = Θ(ν), the probability that any given edge yields x ∈ L is Θ(ν/m),
which means that a sample size of Θ(m/ν) is sufficient to find one with high probability. Let
L′ = {xin, xout|x ∈ L} ∪ {xin|x ∈ S}. L′ is one side of an edge cut that corresponds to the
vertex cut S, as in the reduction used for x-y connectivity for balanced cuts. We can show
that volout(L′) = k+1

k volout(L) + k = Θ(volout(L)). Clearly, if volout(L) = o(a), we will run
LocalEC with some value ν for a sufficient sample size to find the cut with high probability.

In practice, if volout(L) = Θ(a), there is a fairly high probability to find the cut both
with the max flow algorithm and LocalEC. At a

2 , the max flow algorithm finds the cut
at approximately half the probability at a. LocalEC, when configured to find cuts with
reasonably high probability at ν will also often find cuts at higher volumes with diminishing
probability as the actual volume goes up.

If we do not start with some k > κ, we can find one by doubling k until we find a cut.
When a cut can be found, a minimum cut will be find with high probability.

Time Complexity. Assuming Ford-Fulkerson max flow that runs in Θ(mk) time, the running
time for finding balanced cuts is Θ(mk)Θ(m/(m/k)) = Θ(mk2). Assuming LocalEC that
runs in O(νk2) time, the running time for each of the Θ(log(m/k)) values for the parameter
ν is Θ(νk2)Θ(m/ν) = Θ(mk2). Due to preprocessing by Nagamochi and Ibaraki, which runs
in Θ(m) time, we have m = Θ(nk), for a final time complexity of Θ(m + k3n log n). If we
repeat for high rather than constant probability we square the logfactor.

B.2 Implementation Details
We use the following numbers for the unspecified values above: a = m

3k , m
a = 3k samples for

Ford-Fulkerson and ⌊m
ν ⌋ for LocalEC. For Local1 and Local1+ we collect/count 2νk edges

rather than 8νk and for Local2+ we count to 3ν rather than 8ν. Local2+ seems to need a
slightly higher factor for similar success rate.

The graph implementation used for this paper is based on adjacency lists with c++
vectors. When we reverse edges along a path we save the relevant vector indices to enable
us to perform the opposite operations later, in order from the newest reversed path to the
oldest. We store information such as DFS visited vertex flags and the number of uncounted
edges/coins in LOCAL2+ per vertex. To avoid resetting this information for every vertex,
we also maintain lists of vertices that have been visited within the most recent DFS or
LocalEC call.

SEA 2021

1:18 Engineering Nearly Linear-Time Algorithms for Small Vertex Connectivity

C Preflow-push based Vertex Connectivity Algorithm

We use the algorithm by Henzinger, Rao and Gabow [15] with only minor optimisations.
We omit most details here. The core algorithm uses a preflow based algorithm to calculate
the minimum Sixi-cut, where Si = {x} ∪ {xj : j < i}, for each vertex xi not adjacent to x.
The algorithm maintains an “awake” set W of vertices from where the current sink may be
reachable. If there exists a minimum vertex cut S ∋ x, which is very probable for small κ,
then the minimum of these cuts will be a minimum vertex cut. The algorithm is repeated if
needed to achieve a 50% or lower error rate, which should not be the case for any included
test case. As with the algorithms by Forster et al. [9], we use the spit graph reduction and
the sparsification algorithm by Nagamochi and Ibaraki [22] to reduce the average degree of
the graph to at most k, doubling k until we find a cut smaller than k. In case of weighted
edges, dynamic trees would be used to improve time complexity, but this article only uses
unweighted edges.

On page 10 of [15], Henzinger et al. describe a guaranteed method of doubling k to find
some k ∈ (κ, 4κ). There, the algorithm is run on an arbitrary nonrandom vertex of degree k.
To obtain an optimal cut with any probability guarantee, the algorithm needs to be repeated
on a random seed vertex. We use random seed vertices during doubling to avoid having to
repeat the algorithm after already finding a cut of size less than k. For small k, the “bad
case” of not finding a cut despite κ < k is highly unlikely.

On page 20 of [15], Henzinger et al. describe multiple auxiliary data structures used to
achieve the desired time complexity. One of these is a partition of vertices in the awake set
W by their current distance values. We add another auxiliary data structure that stores the
index of a vertex in this data structure to speed up finding and removing a vertex, which
happened frequently enough to create a CPU hotspot.

Parallel Five-Cycle Counting Algorithms
Louisa Ruixue Huang !

MIT, CSAIL, Cambridge, MA, USA

Jessica Shi !

MIT, CSAIL, Cambridge, MA, USA

Julian Shun !

MIT, CSAIL, Cambridge, MA, USA

Abstract
Counting the frequency of subgraphs in large networks is a classic research question that reveals the
underlying substructures of these networks for important applications. However, subgraph counting
is a challenging problem, even for subgraph sizes as small as five, due to the combinatorial explosion
in the number of possible occurrences. This paper focuses on the five-cycle, which is an important
special case of five-vertex subgraph counting and one of the most difficult to count efficiently.

We design two new parallel five-cycle counting algorithms and prove that they are work-
efficient and achieve polylogarithmic span. Both algorithms are based on computing low out-degree
orientations, which enables the efficient computation of directed two-paths and three-paths, and the
algorithms differ in the ways in which they use this orientation to eliminate double-counting. We
develop fast multicore implementations of the algorithms and propose a work scheduling optimization
to improve their performance. Our experiments on a variety of real-world graphs using a 36-core
machine with two-way hyper-threading show that our algorithms achieves 10–46x self-relative speed-
up, outperform our serial benchmarks by 10–32x, and outperform the previous state-of-the-art serial
algorithm by up to 818x.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms; Theory of
computation → Graph algorithms analysis; Computing methodologies → Shared memory algorithms

Keywords and phrases Cycle counting, parallel algorithms, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.2

Supplementary Material Software (five-cycle counting code): https://github.com/ParAlg/gbbs/
tree/master/benchmarks/CycleCounting

archived at swh:1:dir:ce4ed35f4a35d29a32825f5e1b982e74c1497b87

Funding This research was supported by NSF Graduate Research Fellowship #1122374, DOE Early
Career Award #DESC0018947, NSF CAREER Award #CCF-1845763, Google Faculty Research
Award, DARPA SDH Award #HR0011-18-3-0007, and Applications Driving Architectures (ADA)
Research Center, a JUMP Center co-sponsored by SRC and DARPA.

1 Introduction

Subgraph or graphlet counting is a long standing research topic in graph processing with
rich applications in bioinformatics, social network analysis, and network model evaluation
[25, 14, 20, 21]. While there has been significant recent work on counting subgraphs of size
three or four [18, 19, 2], counting subgraphs of size five or more is a difficult task even on
the most modern hardware due to the massive number of such subgraphs in large graphs.
As the subgraph sizes grow, the number of possible subgraphs grows exponentially.

We consider specifically the efficient counting of five-cycles. This pattern is particularly
important for fraud detection [35]. Compared to other connected five-vertex patterns, five-
cycles are much more difficult to count because they are the only such pattern that requires
first counting all directed three-paths. Notably, the Efficient Subgraph Counting Algorithmic

© Louisa Ruixue Huang, Jessica Shi, and Julian Shun;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 2; pp. 2:1–2:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rlhuang@mit.edu
mailto:jeshi@mit.edu
mailto:jshun@mit.edu
https://doi.org/10.4230/LIPIcs.SEA.2021.2
https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting
https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting
https://archive.softwareheritage.org/swh:1:dir:ce4ed35f4a35d29a32825f5e1b982e74c1497b87
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Parallel Five-Cycle Counting Algorithms

PackagE (ESCAPE), a software package by Pinar et al. that serially counts all five-vertex
subgraphs in large graphs [34], spends between 25–58% of the total runtime on counting
five-cycles alone based on our measurement.

While there has been prior work on developing and implementing serial five-cycle count-
ing algorithms [27, 34, 24], there has been no prior work on designing and implementing
theoretically-efficient and scalable parallel five-cycle counting algorithms. We focus on
designing multicore solutions, as all publicly-available graphs (which have up to hundreds of
billions of edges [31]) can fit on a commodity multicore machine [16, 17].

We present two new parallel five-cycle counting algorithms that not only have strong
theoretical guarantees, but are also demonstrably fast in practice. These algorithms are
based on two different serial algorithms, namely by Kowalik [27] and from ESCAPE by Pinar
et al. [34]. Kowalik studied 𝑘-cycle counting in graphs for 𝑘 ≤ 6 and proposed a five-cycle
counting algorithm that runs in 𝑂(𝑚𝑑2) = 𝑂(𝑚𝛼2) time for 𝑑-degenerate graphs [27], where
𝑚 is the number of edges in the graph and 𝛼 is the arboricity of the graph.1 The ESCAPE
implementation contains a five-cycle counting algorithm that, with an important modification
that we make, achieves the same asymptotic complexity of 𝑂(𝑚𝛼2) [34]. The arboricity of a
graph is a measure of its sparsity, and having running times parameterized by 𝛼 is desirable
since most real-world graphs have low arboricity [16].

The main procedure in both algorithms and the essential modification to the ESCAPE
algorithm is to first compute an appropriate arboricity orientation of the graph in parallel,
where the vertices’ out-degrees are upper-bounded by 𝑂(𝛼). This orientation then enables
the efficient counting of directed two-paths and three-paths, which are then appropriately
aggregated to form five-cycles. Notably, the counting and aggregation steps can each be
efficiently parallelized. The two algorithms differ fundamentally in the ways in which they
use the orientations of these path substructures to eliminate double-counting. We prove
theoretical bounds that show that both of our algorithms match the work of the best sequential
algorithms, taking 𝑂(𝑚𝛼2) work and 𝑂(log2 𝑛) span with high probability (w.h.p.).2

We present optimized implementations of our algorithms, which use thread-local data
structures, fast resetting of arrays, and a new work scheduling strategy to improve load
balancing. We provide a comprehensive experimental evaluation of our five-cycle counting
algorithms. On a 36-core machine with 2-way hyperthreading, our parallel algorithms
achieve between 10–46x self-relative speed-up, and between 162–818x speed-ups over the
fastest prior serial five-cycle counting implementation, which is from ESCAPE [34]. We
also implement our own serial versions of the two algorithms, which are 7–38.91x faster
than ESCAPE’s algorithm due to improved theoretical work complexities. Our best parallel
algorithms achieve between 10–32x speed-ups over our best serial algorithms. Our parallel
five-cycle counting code is available at https://github.com/ParAlg/gbbs/tree/master/
benchmarks/CycleCounting.

2 Background and Related Work

The difficulty of cycle counting has attracted considerable research effort over the years.
Counting the number of 𝑘-cycles with 𝑘 as an input parameter is NP-complete since it
includes the problem of finding a Hamiltonian cycle. However, efficient algorithms have been
developed to count 𝑘-cycles for 𝑘 ≤ 5. Notably, Alon et al. [3] developed algorithms for

1 A graph is 𝑑-degenerate if every subgraph has a vertex of degree at most 𝑑, and a graph has arboricity
𝛼 if the minimum number of spanning forests needed to cover all of the edges of the graph is 𝛼.

2 With high probability (w.h.p.) means that the probability is at least 1− 1/𝑛𝑐 for some constant 𝑐 > 0
for an input of size 𝑛.

https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting
https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting

L. R. Huang, J. Shi, and J. Shun 2:3

efficiently finding a 𝑘-cycle for general 𝑘, but these translate to efficient 𝑘-cycle counting
algorithms only for planar graphs where 𝑘 ≤ 5. For 𝑘 = 3, 4, Chiba and Nishizeki [15]
proposed algorithms that take 𝑂(𝑚𝛼) time. More recently, Bera et al. [7] analyzed the
subgraph counting problem for 𝑘 = 5 and gave an algorithm that takes 𝑂(𝑚𝛼3) time, and
the five-cycle counting part of the algorithm takes 𝑂(𝑚𝛼3) time. However, it is shown in the
same study that this result is unlikely to be extended to 𝑘 > 5, due to the Triangle Detection
Conjecture, which puts a lower bound of Ω(𝑚1+𝛾) time with 𝛾 > 0 on any triangle detection
algorithm on an input graph with 𝑚 edges [1]. If the conjecture holds, a reduction of the
triangle detection problem to the six-cycle counting problem implies that there cannot be a
𝑜(𝑓(𝛼)𝑚1+𝛾) time algorithm for six-cycle counting.

Until recently, because of the high computational power required, exact five-vertex
subgraph counting was often deemed impractical on graphs with more than a few million
edges. Most effort has focused on obtaining approximate counts or approximate graphlet
frequency distributions [46, 10, 36]. Hocevar and Demsar [24] developed Orca to count
subgraphs of up to size five and tested them on graphs with tens of thousands of vertices.
Pinar et al. [34] developed ESCAPE, which is the first package that aims to perform exact
counting of all five-vertex subgraphs on moderately large graphs. However, ESCAPE does
not exploit parallelism and is not optimized for cycle-counting. Kowalik [27] gave a serial
algorithm for five-cycle counting that takes 𝑂(𝑚𝛼2), the best known theoretical bound for
five-cycle counting, but does not provide an implementation. In Section 4, we describe
Kowalik’s and Pinar et al.’s five-cycle counting algorithms in more detail.

While there has not been prior work on parallel five-cycle counting algorithms, parallel
cycle counting algorithms for smaller cycles have been studied over the years. Specifically,
for the case of three-cycles, or triangles, there has been a significant amount of attention
over the past two decades (e.g., [40, 43, 33, 8], among many others).

Moreover, fast sequential algorithms for four-cycles have been studied extensively. For
bipartite graphs, four-cycles, also known as butterflies, are the smallest non-trivial subgraphs.
Chiba and Nishizeki’s [15] described a four-cycle counting algorithm that takes 𝑂(𝑚𝛼) work
by using a degree ordering of the graph. Subsequently, butterfly counting algorithms using
degree ordering and other orderings have also been designed [47, 44, 38, 48, 39].

There have been fewer studies on parallel four-cycle counting algorithms. The Para-
metrized Graphlet Decomposition package by Ahmed et al. [2] provides efficient parallel
implementations of exact counting of subgraphs of up to size four, including four-cycles.
Wang et al. [44] implement a distributed algorithm using MPI that partitions the vertices
across processors, where each processor sequentially counts the number of butterflies for
vertices in its partition. Shi and Shun [42] presented a framework for parallel butterfly
counting with several algorithms achieving 𝑂(𝑚𝛼) expected work and 𝑂(log 𝑚) span with
high probability. Wang et al. [45] describe a similar parallel butterfly counting algorithm,
with an additional cache optimization in their implementation.

3 Preliminaries

Graph Notation. The input to our algorithms is a simple, undirected, unweighted graph
𝐺(𝑉, 𝐸). The number of vertices is |𝑉 | = 𝑛 and the number of edges is |𝐸| = 𝑚. Vertices
are labeled 0, 1, . . . , 𝑛− 1. In our analysis, we assume that 𝑚 = Ω(𝑛). For a vertex 𝑣, we use
𝑁(𝑣) to denote the neighbors of 𝑣 and deg(𝑣) to denote the degree of v. When discussing
directed graphs, 𝑁→(𝑣) denotes 𝑣’s out-neighbors and 𝑁←(𝑣) denote the in-neighbors.

Furthermore, we use 𝑁𝑣(𝑢) (𝑁→𝑣 (𝑢) for directed graphs) to represent the neighbors of
vertex 𝑢 that are after 𝑣 given a non-increasing degree ordering. When vertices are relabeled
by non-increasing degree order, we can easily obtain 𝑁𝑣(𝑢) = 𝑁(𝑢) ∩ {𝑤 ∈ 𝑉 | 𝑤 > 𝑣}.

SEA 2021

2:4 Parallel Five-Cycle Counting Algorithms

The arboricity of a graph 𝐺, denoted 𝛼(𝐺), is defined as the minimum number of
spanning forests needed to cover the graph. 𝛼(𝐺) is known to be upper-bounded by
𝑂(
√

𝑚). Due to the fact that graphs modeling the real world tend to be sparse, 𝛼(𝐺)
tends to be small for graphs that we are interested in processing. It is also known that∑︀

(𝑢,𝑣)∈𝐸 min(deg(𝑢), deg(𝑣)) = 𝑂(𝑚𝛼(𝐺)) [15]. Closely related to arboricity is the degen-
eracy of a graph 𝐺, 𝑑(𝐺), or the smallest 𝑘 such that every subgraph of 𝐺 contains a vertex
of degree at most 𝑘. It is known that 𝑑(𝐺) = Θ(𝛼(𝐺)) [32]. As such, our asymptotic bounds
can use 𝛼(𝐺) or 𝑑(𝐺) interchangeably. When it is unambiguous, we write the arboricity and
degeneracy of a graph as 𝛼 and 𝑑, respectively.

Graph Format. For the theoretical analysis, we assume the graphs are stored in hash tables
in the adjacency list format, to obtain constant time edge queries. In our implementations,
graphs are stored in Compressed Sparse Row (CSR) format, which is more compact and has
better cache locality.

The Work-Span Model. To analyze the complexity of our parallel algorithms, we use the
work-span model [26] with arbitrary forking. In this model, a computation is seen as a
series-parallel DAG. Each instruction is a vertex, and sequential executions in a thread are
composed in series and different children threads forked together are composed in parallel.
The work in a computation is the total number of vertices and the span is the length of the
longest path in the computation graph. The work of a sequential algorithm is the same as
its time. A work-efficient parallel algorithm has a work complexity matching the time of
the best sequential algorithm for the problem. For an algorithm with work 𝑊 and span 𝑆,
the running time on 𝑃 processors is upper bounded by 𝑊/𝑃 + 𝑆 [13]. Since the number of
processors in practice is modest, it is important to be work-efficient in addition to minimizing
the span of the computation.

Parallel Primitives. We use the following parallel primitives. A parallel for-loop (parfor)
with 𝑛 iterations that can be executed in parallel launches all of its iterations in 𝑂(𝑛) work
and 𝑂(1) span. Parallel integer sort sorts 𝑛 integers in the range [0, 𝑂(𝑛)] in 𝑂(𝑛) work
and 𝑂(log 𝑛) span w.h.p. [37]. We also use parallel hash tables, which support a batch of
𝑛 instructions in 𝑂(𝑛) work and 𝑂(log* 𝑛) span w.h.p. [22]. We assume atomic adds take
𝑂(1) work and span.

4 Five-Cycle Counting Algorithms

In this section, we present two new parallel algorithms for counting five-cycles. The first
algorithm is based on the serial algorithm by Kowalik [27]. Kowalik shows that the algorithm
achieves a time complexity of 𝑂(𝑚) on planar graphs, in which 𝛼 = 𝑂(1), or 𝑂(𝑚𝑑2) =
𝑂(𝑚𝛼2) on 𝑑-degenerate graphs. The second algorithm is based on the serial algorithm by
Pinar et al. in their ESCAPE framework for counting all 5-vertex subgraphs in a graph [34].
We show that both of the parallel algorithms that we design are provably work-efficient with
polylogarithmic span.

4.1 Preprocessing: Graph Orientation
Similar to many previous subgraph counting algorithms [7, 41], a key step in our algorithms is
a preprocessing step that orients the graph 𝐺, creating a directed acyclic graph 𝐺→ where the
out-degrees of vertices are upper-bounded. We use 𝑙-orientation to refer to an orientation

L. R. Huang, J. Shi, and J. Shun 2:5

where each vertex’s out-degree is bounded by 𝑙. Furthermore, orientations in our context are
always induced from a total ordering of the vertices, where directed edges point from vertices
lower in the ordering to vertices higher in the ordering. As such, the problem of orienting
the graph is reduced to the problem of finding an appropriate ordering of the vertices.

Degree Orientation. The core idea of orienting an undirected input graph based on ordering
the vertices by non-increasing degree to perform subgraph counting or listing is attributed
to Chiba and Nishizeki [15]. Using degree ordering, they proposed efficient triangle and
four-cycle counting algorithms based on this key result:

▶ Lemma 1 ([15]). For a graph 𝐺 = (𝑉, 𝐸),
∑︀

(𝑢,𝑣)∈𝐸 min{deg(𝑢), deg(𝑣)} ≤ 2𝛼𝑚.

This result allows us to bound the number of wedges in graph 𝐺 by 2𝑚𝛼, where a wedge is
defined as a triple (𝑣, 𝑤, 𝑢) where (𝑣, 𝑤), (𝑤, 𝑢) ∈ 𝐸, deg(𝑣) ≥ deg(𝑤) and deg(𝑣) ≥ deg(𝑢).
In Kowalik’s five-cycle algorithm, wedges are the building blocks of five-cycles, and we can
show that 𝑂(𝛼) work is done for each wedge. Combined with the 𝑂(𝑚𝛼) bound on the
number of wedges, this gives us the 𝑂(𝑚𝛼2) running time bound.

Arboricity Orientation. An arboricity orientation of a graph is one where the vertices’
out-degrees are upper-bounded by 𝑂(𝛼(𝐺)). An arboricity-oriented graph has slightly
different theoretical properties compared to a degree-oriented graph, but literature has shown
that in some algorithms arboricity orientation can achieve the same practical efficiency as
degree orientation [41]. We note that in Kowalik’s five-cycle counting algorithm as well as
our parallelization of the algorithm, both a degree ordering and an arboricity ordering are
required to achieve work-efficiency.

One way to obtain an arboricity orientation is by computing the degeneracy ordering
using a standard 𝑘-core decomposition algorithm [30, 6]. The algorithm repeatedly removes
the vertex with the lowest degree from the graph. When we direct edges using this orientation,
we obtain a DAG where each vertex’s out-degree is bounded by 𝑑(𝐺). While this algorithm
can be parallelized to be work-efficient, it does not attain polylogarithmic span; notably, the
problem is P-complete [4].

Since the parallel algorithm for exact degeneracy ordering has sub-optimal span, we use
approximate algorithms with polylogarithmic span. We test two such algorithms: Goodrich-
Pszona and Barenboim-Elkin. Both algorithms work by peeling low-degree vertices in
batches. Goodrich and Pszona originally designed the algorithm in the external-memory
model [23], while Barenboim and Elkin designed the algorithm for a distributed model [5].
Shi et al. adapted both algorithms for shared memory and showed that both compute an
𝑂(𝛼)-orientation in 𝑂(𝑚) work and 𝑂(log2 𝑛) span (one of which is deterministic and the
other of which is randomized) [41]. A different algorithm with the same (deterministic) work
and span bounds was described by Besta et al. [9].

4.2 Kowalik’s Algorithm
We present in Algorithm 1 our parallelization of Kowalik’s serial five-cycle counting al-
gorithm [27]. In this algorithm, vertices are sorted and processed in non-increasing degree
order. Each vertex is processed by counting all five-cycles with the vertex itself as the
lowest-ranked (i.e., highest-degree) vertex. After processing all vertices, each five-cycle is
counted exactly once and the counts are summed and outputted.

Recall that we use 𝑁𝑣(𝑢) (𝑁→𝑣 (𝑢) for directed graphs) to represent the neighbors of vertex
𝑢 that are after 𝑣 in the non-increasing degree ordering. Since the vertices are relabeled by
non-increasing degree order on line 3, we can easily obtain 𝑁𝑣(𝑢) = 𝑁(𝑢)∩ {𝑤 ∈ 𝑉 | 𝑤 > 𝑣}.

SEA 2021

2:6 Parallel Five-Cycle Counting Algorithms

Algorithm 1 Kowalik’s Five-Cycle Counting Algorithm Parallelized.

1: procedure COUNT-FIVE-CYCLES(𝐺 = (𝑉, 𝐸))
2: #𝑐 ← 0
3: Relabel vertices of 𝐺 such that 𝑑(0) ≥ 𝑑(1) ≥ · · · ≥ 𝑑(𝑛− 1)
4: Orient 𝐺 using arboricity orientation to produce 𝐺→

5: parfor 𝑣 ← 0 to 𝑛− 1 do
6: Initialize an empty parallel hash table 𝑈𝑣

7: parfor 𝑢 ∈ 𝑁𝑣(𝑣) do
8: parfor 𝑤 ∈ 𝑁𝑣(𝑢) do 𝑈𝑣[𝑤]← 𝑈𝑣[𝑤] + 1
9: parfor 𝑢 ∈ 𝑁𝑣(𝑣) do

10: Initialize an empty parallel hash table 𝑇𝑣,𝑢

11: parfor 𝑤 ∈ 𝑁𝑣(𝑢) do
12: 𝑇𝑣,𝑢[𝑤]← 1
13: parfor 𝑤 ∈ 𝑁𝑣(𝑢) do
14: parfor 𝑥 ∈ 𝑁→𝑣 (𝑤) do
15: if 𝑥 ̸= 𝑢 then
16: if 𝑤 ∈ 𝑁→(𝑣) or 𝑣 ∈ 𝑁→(𝑤) then
17: #𝑐 ← #𝑐 + 𝑈𝑣[𝑥]− 𝑇𝑣,𝑢[𝑥]− 1
18: else
19: #𝑐 ← #𝑐 + 𝑈𝑣[𝑥]− 𝑇𝑣,𝑢[𝑥]
20: return #𝑐

We now focus on the iteration 𝑣 of the outer for-loop. An example is shown in Figure 1.
We note that for each 𝑣, we consider only vertices ranked higher than 𝑣 to complete five-cycles
containing 𝑣. Lines 7–8 count in a parallel hash table 𝑈𝑣 all wedges, where 𝑣 is one of the
endpoints and 𝑣 is the lowest-ranked vertex in the wedge. Then, lines 11–12 store in a parallel
hash table 𝑇𝑣,𝑢 all wedges where 𝑣 is one of the endpoints, 𝑣 is the lowest-ranked vertex in
the wedge, and 𝑢 is the center. Both hash tables are indexed on 𝑤, the other endpoint of the
wedge.

On each iteration of the loop in line 13, the algorithm counts all five-cycles that contain
the wedge 𝑣 𝑢 𝑤. To accomplish this, the algorithm iterates through each neighbor
𝑥 of 𝑤 in 𝐺→, and considers the number of wedges that 𝑥 shares with 𝑣, which is stored
in 𝑈𝑣[𝑥]. Note that three vertices of the cycle are given (𝑣, 𝑢, and 𝑤), so the algorithm
must ensure that the two vertices used to complete the cycle do not include these existing
vertices. Line 15 ensures that 𝑥 ̸= 𝑢 in the cycle; note that 𝑥 ̸= 𝑤 because the graph is
assumed to not contain self-loops, and 𝑥 ̸= 𝑣 by definition of 𝑁→𝑣 . Lines 16–19 check if 𝑣

and 𝑤 are neighbors; if so, then the number of wedges ending in 𝑥 includes the wedge 𝑣 𝑤

𝑥, which does not properly complete a five-cycle. In this case, there is one fewer five-cycle
completed by the wedges ending in 𝑥, and so we subtract one on line 17. Finally, note that if
there exists the wedge 𝑣 𝑢 𝑥, then this similarly does not properly complete a five-cycle,
so we subtract 𝑇𝑣,𝑢[𝑥], which stores precisely this wedge. We assume that indexing an entry
that does not exist in a hash table returns a value of 0.

As every thread operates on the variable #𝑐, we use atomic add for all of these operations,
which takes 𝑂(1) work. In practice, we use thread-local variables to keep the count and
sum them in the end to avoid heavy contention. We now show that the parallel algorithm is
work-efficient and has polylogarithmic span.

▶ Theorem 2. Algorithm 1 can be performed in 𝑂(𝑚𝛼2) work and 𝑂(log2 𝑛) span w.h.p.,
and 𝑂(𝑚𝛼) space on a graph with 𝑚 edges and arboricity 𝛼.

Proof. For line 3, we sort 𝑛 integers in the range [0, 𝑛− 1], which can be done in 𝑂(𝑛) work
and 𝑂(log 𝑛) span w.h.p. using parallel integer sorting [37]. As discussed in Section 4.1, line
4 can be implemented in 𝑂(𝑚) work and 𝑂(log2 𝑛) span [41]. As a result, the for-loops on

L. R. Huang, J. Shi, and J. Shun 2:7

0

1 4

2 3

5

Example graph 𝐺.

0

1 4

2 3

5

𝐺→ under degree orientation.

0

1 4

2 3

5

(a) 𝑈0 = [0, 1, 1, 2, 1, 1]
#𝑐 += 2 - 1.

0

1 4

2 3

5

(b) 𝑈0 = [0, 1, 1, 2, 1, 1]
#𝑐 += 1.

0

1 4

2 3

5

(c) 𝑈0 = [0, 0, 2, 1, 1, 2]
#𝑐 += 1 - 1.

0

1 4

2 3

5

(d) 𝑈0 = [0, 1, 1, 2, 0, 2]
#𝑐 += 1 - 1.

0

1 4

2 3

5

(e) 𝑈0 = [0, 1, 2, 1, 1, 1]
#𝑐 += 1.

0

1 4

2 3

5

(f) 𝑈1 = [0, 0, 0, 0, 1, 0]
#𝑐 += 1.

Figure 1 This figure outlines steps in our parallelization of Kowalik’s five-cycle counting algorithm
where #𝑐 is updated (Algorithm 1). Each subfigure considers a different {𝑢, 𝑣, 𝑤, 𝑥} from lines
13–14, and the corresponding 𝑈𝑣 is displayed for each subfigure. For simplicity, the 𝑈𝑖 hash tables
are depicted as arrays, with the appropriate wedge counts stored at the index on the corresponding
endpoint, and the updates to the parallel hash tables 𝑇𝑣,𝑢 in lines 11–12 of Algorithm 1 are shown
as subtracted directly from the corresponding 𝑈𝑣 for a fixed 𝑢 from line 9.
The vertices have already been relabeled by non-increasing degree and the entries in each 𝑈𝑣 have
already been computed (lines 10–12). The vertex 𝑣 that we are considering on line 5 is colored
in red. The edges colored in blue form wedges 𝑣 𝑢 𝑤, and the direction of those edges is
irrelevant. The red edges represent the out-edge 𝑤 → 𝑥 on line 14. When 𝑤 and 𝑣 are neighbors
(the edge is colored grey), the condition checked on line 16 returns true, and the subsequent line in
each algorithm is executed (sub-figures (a), (c), and (d)). Otherwise, line 19 is executed (sub-figures
(b), (e), and (f)). The final value of #𝑐 is 4.

lines 7 and 9 iterating over 𝑢 ∈ 𝑁𝑣(𝑣) take at most min(deg(𝑢), deg(𝑣)) iterations, and by
Lemma 1, the total number of times we iterate through 𝑤 ∈ 𝑁𝑣(𝑢) on each of lines 8, 11,
and 13 is at most 2𝑚𝛼.

Since parallel hash tables can perform a batch of 𝑘 operations in 𝑂(𝑘) work and 𝑂(log* 𝑘)
span w.h.p., the time complexities of lines 8 and 12 are given by 𝑂(𝑚𝛼) work and 𝑂(log* 𝑛)
span w.h.p. Then, the for-loop of line 14 has at most 𝑂(𝛼) iterations because of the 𝑂(𝛼)-
orientation of the graph. In total, lines 15–19 are executed at most 𝑂(𝛼) · 2𝑚𝛼 = 𝑂(𝑚𝛼2)
times, and again due to the parallel hash tables, the time complexity is given by 𝑂(𝑚𝛼2)
work and 𝑂(log* 𝑛) span w.h.p. In all, the total time complexity is given by 𝑂(𝑚𝛼2) work
and 𝑂(log2 𝑛) span w.h.p.

Finally, this algorithm uses 𝑂(𝑚𝛼) space. Based on Lemma 1, the total number of keys
stored over all 𝑈𝑣’s is upper-bounded by 𝑂(𝑚𝛼), as is the number of keys stored over all
𝑇𝑣,𝑢’s (over all pairs (𝑣, 𝑢)). The parallel hash table’s space usage is linear in the number of
keys [22]. Hence, the total space usage is 𝑂(𝑚𝛼). ◀

SEA 2021

2:8 Parallel Five-Cycle Counting Algorithms

Algorithm 2 Five-Cycle Counting in ESCAPE Parallelized.

1: procedure Count-Five-Cycles(𝐺 = (𝑉, 𝐸))
2: #𝑐 ← 0
3: Orient 𝐺 using arboricity orientation to produce 𝐺→

4: parfor 𝑣 ← 0 to 𝑛− 1 do
5: Initialize an empty parallel hash table 𝑈𝑣

6: parfor 𝑤 ∈ 𝑁←(𝑣) do
7: parfor 𝑢 ∈ 𝑁(𝑤) do
8: 𝑈𝑣[𝑢]← 𝑈𝑣[𝑢] + 1
9: parfor 𝑤 ∈ 𝑁→(𝑣) do

10: parfor 𝑢 ∈ 𝑁→(𝑤) do
11: 𝑈𝑣[𝑢]← 𝑈𝑣[𝑢] + 1
12: parfor 𝑢 ∈ 𝑁←(𝑣) do
13: parfor 𝑤 ∈ 𝑁←(𝑢) do
14: parfor 𝑥 ∈ 𝑁→(𝑤) do
15: if 𝑥 ̸= 𝑣 and 𝑥 ̸= 𝑢 then
16: #𝑐 ← #𝑐 + 𝑈𝑣[𝑥]
17: if 𝑤 ∈ 𝑁(𝑣) then
18: #𝑐 ← #𝑐 − 1
19: if 𝑥 ∈ 𝑁(𝑢) then
20: #𝑐 ← #𝑐 − 1
21: return #𝑐

4.3 ESCAPE Algorithm
Another serial five-cycle counting algorithm is given by Pinar et al. as part of ESCAPE,
which counts all 5-vertex subgraphs in a graph serially [34].

The first step of the ESCAPE five-cycle counting algorithm is to orient the graph. The
ESCAPE framework uses degree orientation and achieves a time complexity of 𝑂(𝑚2). We
note that, if instead an arboricity orientation is used, the five-cycle counting algorithm
achieves an improved time complexity of 𝑂(𝑚𝛼2). We include this modification in our
parallelization of the ESCAPE five-cycle counting algorithm to achieve work-efficient bounds.
The proof of the serial time complexity with the arboricity orientation follows directly from
the proof of our parallel algorithm.

We present in Algorithm 2 our parallelization of the algorithm from ESCAPE, and an
example is shown in Figure 2. We use 𝑢 ≺ 𝑣 to indicate that 𝑢 precedes 𝑣 in the ordering
that produced the orientation, and so an edge from 𝑢 to 𝑣 exists in the directed graph 𝐺→ if
and only if 𝑢 ≺ 𝑣.

After orienting the graph using an arboricity orientation (line 3), for each vertex 𝑣 (line
4), the algorithm counts all out-wedges and inout-wedges (see Figure 3). We denote the
number of out-wedges with endpoints 𝑣 and 𝑢 by 𝑊++(𝑣, 𝑢), and the number of inout-wedges
with endpoints 𝑣 and 𝑢, starting with a directed edge out of 𝑣, by 𝑊+−(𝑣, 𝑢). For each 𝑣,
the algorithm computes 𝑊++(𝑢, 𝑣) + 𝑊+−(𝑢, 𝑣) on lines 6–8 and 𝑊+−(𝑣, 𝑢) on lines 9–11,
and stores these counts in a parallel hash table 𝑈𝑣.

Figure 4 shows all possible orientations of acyclically directed five-cycles. We iterate over
the 3-path shown in Figure 4 from vertex 𝑣 to vertex 𝑥 (lines 12–15), each of which can be
completed by either an inout-wedge or an out-wedge with endpoints 𝑣 and 𝑥, assuming 𝑥 ̸= 𝑣

and 𝑥 ̸= 𝑢. Now, any orientation of a five-cycle has one of the three configurations shown
in Figure 4, where exactly one of the vertices can be assigned to be 𝑣. Thus, every 3-path
between a pair (𝑣, 𝑥) contributes 𝑊+−(𝑣, 𝑥) + 𝑊++(𝑣, 𝑥) + 𝑊+−(𝑥, 𝑣) (which is stored in
𝑈 from lines 6–11) to the five-cycle count. However, this over-counts five-cycles since the
wedge and the 3-path may overlap. Lines 16–20 deal with the over-counting when adding
the number of wedges to the total count.

L. R. Huang, J. Shi, and J. Shun 2:9

0

1 4

2 3

5

Example graph 𝐺.

0

1 4

2 3

5

𝐺→ under degree orientation.

0

1 4

2 3

5

(a) 𝑈0 = [0, 1, 2, 2, 1, 2]
#𝑐 += 2 - 1.

0

1 4

2 3

5

(b) 𝑈0 = [0, 1, 2, 2, 1, 2]
#𝑐 += 1.

0

1 4

2 3

5

(c) 𝑈0 = [0, 1, 2, 2, 1, 2]
#𝑐 += 1 - 1.

0

1 4

2 3

5

(d) 𝑈0 = [0, 1, 2, 2, 1, 2]
#𝑐 += 1.

0

1 4

2 3

5

(e) 𝑈4 = [1, 1, 1, 0, 0, 0]
#𝑐 += 1.

0

1 4

2 3

5

(f) 𝑈4 = [1, 1, 1, 0, 0, 0]
#𝑐 += 1 - 1.

Figure 2 This figure outlines steps in the ESCAPE five-cycle counting algorithm where #𝑐 is
updated (Algorithm 2). Each subfigure considers a different {𝑢, 𝑣, 𝑤, 𝑥} from lines 12–15, and the
corresponding 𝑈𝑣 is displayed for each subfigure. For simplicity, the 𝑈𝑖 hash tables are depicted as
arrays, with the appropriate wedge counts stored at the index on the corresponding endpoint.
Note that the entries in each 𝑈𝑣 have already been computed (lines 6–11). The vertex 𝑣 that we are
considering on line 4 is colored in red. The red edges represent the directed 3-paths 𝑣 ← 𝑢← 𝑤 → 𝑥

found on lines 12–15. Lines 17 and 19 check whether 𝑣 and 𝑤 or 𝑢 and 𝑥 are neighbors, respectively.
When either of the conditions holds, the relevant edge is colored grey. Each grey edge subtracts one
from the five-cycle count. Note that in sub-figures (a) and (c), the condition that 𝑣 is adjacent to 𝑤

from line 17 holds, and in sub-figure (f), the condition that 𝑢 is adjacent to 𝑥 from line 19 holds. In
sub-figures (b), (d), and (e), neither conditions hold, and therefore 1 is not subtracted from the final
count. The final value of #𝑐 is 4.

u v u v

Figure 3 An inout-wedge (left) and an out-
wedge (right).

v x

u w

v x

u w

v x

u w

Figure 4 All three possible orientations of
directed five-cycles. All three forms have the
component 𝑣 ← 𝑢 ← 𝑤 → 𝑥, which is a 3-
path between 𝑣 and 𝑥. They are completed
by an inout-wedge from 𝑥 to 𝑣, an out-wedge
between 𝑣 and 𝑥, and an inout-wedge from 𝑣 to
𝑥, respectively.

In more detail, Line 16 first adds 𝑈𝑣[𝑥] to the count (again, assume that indexing an entry
that does not exist in a hash table returns a value of 0). Line 17 checks if 𝑤 is adjacent to 𝑣;
if so, depending on the direction of the edge between 𝑤 and 𝑣, there is either an out-wedge
or an inout-wedge on 𝑣, 𝑤, and 𝑥, that does not complete a five-cycle with the 3-path. Line
18 subtracts the five-cycle counted for this case. Similarly, line 19 checks if 𝑥 is adjacent to
𝑢, and if so, there is either an out-wedge or an inout-wedge on 𝑣, 𝑢, and 𝑥, that does not
complete a five-cycle; line 20 corrects this.

SEA 2021

2:10 Parallel Five-Cycle Counting Algorithms

Similar to the parallelization of Kowalik’s algorithm, in theory we use atomic adds for all
of the increments on the #𝑐 variable, and in practice we use thread-local variables.

▶ Theorem 3. Algorithm 2 can be performed in 𝑂(𝑚𝛼2) work and 𝑂(log2 𝑛) span w.h.p.,
and 𝑂(𝑚𝛼) space on a graph with 𝑚 edges and arboricity 𝛼.

Proof. As discussed in Section 4.1, line 3 can be implemented in 𝑂(𝑚) work and 𝑂(log2 𝑛)
span [41]. Lines 6–11 go through all inout-wedges and out-wedges where 𝑣 is an endpoint.
Because of the arboricity orientation, there are at most 𝑚𝛼 inout-wedges and out-wedges.
Each wedge is counted at most twice, and so lines 6–11 incur 𝑂(𝑚𝛼) hash table operations,
which takes 𝑂(𝑚𝛼) work and 𝑂(log* 𝑛) span w.h.p.

There are 𝑂(𝑚𝛼2) 3-paths (i.e., 𝑣 ← 𝑢← 𝑤 → 𝑥) and each is encountered exactly once
in the triply-nested for-loop (lines 12–20). Again, by using an arboricity orientation, the
algorithm executes lines 15–20 for at most 𝑂(𝑚𝛼2) times, which due to the hash table
operations, takes 𝑂(𝑚𝛼2) work and 𝑂(log* 𝑛) span w.h.p.

Overall, the algorithm takes 𝑂(𝑚𝛼2) work and 𝑂(log2 𝑛) span w.h.p.
The parallel hash tables and the space to store the accumulated cycle counts account for

all of the additional space usage. Since each wedge results in at most two additional keys in
the hash tables, the number of keys in all of the hash tables 𝑈𝑖 is upper-bounded by twice
the total number of out-wedges and inout-wedges. For the arboricity-oriented graph, there
are 𝑂(𝑚𝛼) out-wedges and 𝑂(𝑚𝛼) inout-wedges, and so the number of keys across all hash
tables is bounded by 𝑂(𝑚𝛼). Thus, the algorithm takes 𝑂(𝑚𝛼) space. ◀

4.4 Implementation
We implement the serial and parallel versions of Kowalik’s algorithm and Pinar et al.’s
algorithm using the Graph Based Benchmark Suite framework (GBBS) [16, 17]. GBBS
provides many utilities for parallel algorithms, including sorting, parallel data structures, and
implementations of the arboricity ordering algorithms mentioned above. In GBBS, graphs are
represented in compressed sparse row (CSR) format. The compact representation improves
memory locality, but this format does not allow us to check edge existence in 𝑂(1) work,
which is an operation required by both five-cycle counting algorithms. Using a separate data
structure to store edges adversely affects locality, and so to improve performance, we sort
the neighbor lists in the preprocessing step and use binary search to locate neighbors.

In our parallel implementation, we only parallelize the outer for-loop for each algorithm
since there is sufficient parallelism provided by the outer for-loop alone. For Kowalik’s
algorithm, instead of using parallel integer sort, we use a cache-efficient implementation
of parallel sample sort [11] provided by GBBS to sort the vertices by degree. We also use
vertex-indexed size-𝑛 arrays instead of parallel hash tables for 𝑈𝑖 and 𝑇𝑖,𝑗 . While hash tables
have lower space usage for sparse graphs, they tend to have worse cache locality and are
slower in practice. We introduce further practical optimizations below.

Thread-local Data Structures. As we parallelize the outer for-loop, the arrays 𝑈𝑖 in
both algorithms must be allocated per iteration. We optimize this allocation by using the
parallel_for_alloc construct in GBBS, which allocates one array per thread and reuses
this space over iterations. Each iteration uses the array as a local array, and so this incurs
no synchronization overhead. With this optimization, the algorithm only requires 𝑂(𝑃𝑛)
space, where 𝑃 is the number of processors.

Fast Reset. Additionally, the thread-local arrays must be reset after each iteration of
the outer for-loop. Depending on the structure of the graph, the array can be sparse,

L. R. Huang, J. Shi, and J. Shun 2:11

and naively resetting the entire array incurs 𝑂(𝑛2) extra work, which is costly. We use a
separate thread-local array to record the non-zero entries and reset only those entries after an
iteration of the outer for-loop. The sparser the graph, the more effective this optimization is.
This optimization at most doubles the space requirement for the algorithm, but drastically
improves the running time by avoiding unnecessary writes.

Work Scheduling. The naive parallelization of the five-cycle counting algorithms blocks a
fixed number of vertices together and processes them in series. For our experiments, we use
a block size of 16, which we found to give the best performance in this setting. However,
due to the nature of the algorithm, the amount of work per vertex is not uniform. This is
particularly true for Kowalik’s algorithm, which processes vertices in non-increasing degree
order and deletes a vertex after processing it. The number of five-cycles that can be counted
under a given vertex 𝑣 in the outermost loop falls off rapidly with the vertex’s degree rank.
In our work scheduling optimization, we block vertices together into groups that require
similar amounts of work by estimating the work required for each vertex. We use the sum of
the degrees of a vertex’s neighbors as the estimator. That is, for each vertex 𝑣, we estimate
the amount of work done on the vertex to be

∑︀
𝑤∈𝑁(𝑣) deg(𝑤).

5 Experiments

Environment. We run our experiments on a c5.18xlarge AWS EC2 instance, which is a
dual-processor system with 18 cores per processor (2-way hyper-threading, 3.00GHz Intel
Xeon(R) Platinum 8124M processors), and 144 GiB of main memory. We use Cilk Plus for
parallelism [28, 12]. We use the g++ compiler (version 8.2.1) with the -O3 flag.

We test the performance of our two parallel five-cycle counting algorithms. Our parallel
implementations use all of the optimizations described in Section 4.4, except that we test
the performance with and without the work scheduling optimization. We compare the
performance of the parallel implementations against our implementations of Kowalik’s
algorithm and the ESCAPE algorithm. We also tested the performance of the serial five-cycle
counting algorithm in the ESCAPE package, the fastest known implementation of five-cycle
counting. This algorithm is embedded inside the ESCAPE code for counting all five-vertex
patterns, and so we obtained timings by running only the five-cycle counting portion of the
code. We found our serial ESCAPE implementation to be 1.1–2.95x faster than the one
provided in the ESCAPE package, and hence present only our running times in the tables.

We also test the effect of using different arboricity ordering algorithms. Besides Goodrich-
Pszona, Barenboim-Elkin, and 𝑘-core, we also tested non-decreasing degree ordering as an
approximation of degeneracy ordering. Intuitively, it limits the out-degree of the graph by
directing edges from lower-degree vertices to higher-degree neighbors.

We perform these tests on a number of real-world graphs from the Stanford Network
Analysis Platform [29]. Table 1 describes the properties of these graphs. All graphs are
simple, unweighted, and undirected.

Serial Five-cycle Counting. Table 2 lists the running time of the two of serial five-cycle
counting algorithms. Our serial Kowalik implementation always outperforms our serial
ESCAPE implementation, and the difference in running times between the ESCAPE algorithm
and Kowalik’s algorithm grows as the graph size grows. The serial Kowalik algorithm achieves
between 6.37–14.77x speed-up over our serial ESCAPE implementation, and between 7–38.91x
speed-up over the original ESCAPE implementation.

SEA 2021

2:12 Parallel Five-Cycle Counting Algorithms

Table 1 Relevant statistics of our input graphs.

Dataset |𝑉 | |𝐸| # 5-cycles
email-Eu-Core (email) 1005 32128 245,585,096
com-DBLP (dblp) 425957 2.10× 106 3,440,276,253
com-YouTube (youtube) 1.16× 106 5.98× 106 34,643,647,544
com-LiveJournal (lj) 4.03× 106 6.94× 107 6,668,633,603,006
com-Orkut (orkut) 3.27× 106 2.34× 108 42,499,585,526,270
com-Friendster (friendster) 1.25× 108 3.61× 109 96,281,214,210,322

Table 2 Running times (seconds) of the two serial implementations and the two parallel five-cycle
counting implementations without the work scheduling optimization. All running times include both
preprocessing (graph orienting) and five-cycle counting time. We stop each experiment after 5.5
hours, and “TL” indicates that the time limit was exceeded. For the serial algorithms, 𝑇𝐸 is our
implementation of the ESCAPE algorithm with arboricity orientation, and 𝑇𝐾 is our implementation
of the serial Kowalik’s algorithm. The serial runtimes are measured using the Goodrich-Pszona
degeneracy ordering algorithm. For the parallel algorithms, we use superscripts to indicate the
orientation that achieved the best running time. g refers to Goodrich-Pszona, b refers to Barenboim-
Elkin, and k refers to 𝑘-core orientation. Note that degree orientation is never the fastest orientation.
For the parallel algorithms, we list the runtimes obtained on a single thread (𝑇1), 36 cores without
hyper-threading (𝑇36), and 36 cores with hyper-threading (𝑇36ℎ). We also tested all implementations
on friendster, but they all exceeded the time limit.

Serial Runtimes Parallel Kowalik Algorithm Parallel ESCAPE Algorithm
Running times (s) Speedup Running times (s) Speedup

𝑇𝐸 𝑇𝐾 𝑇1 𝑇36 𝑇36ℎ
𝑇1

𝑇36ℎ
𝑇1 𝑇36 𝑇36ℎ

𝑇1
𝑇36ℎ

email 0.36 0.026 0.027b 0.0027g 0.0029b 9.3 0.376b 0.017g 0.0177g 21.2
dblp 2.93 0.46 0.48g 0.046b 0.046g 10.4 3.24g 0.34k 0.277k 11.7
youtube 40.70 4.73 4.80b 1.73g 1.69g 2.8 43.94g 14.5g 9.96g 4.4
lj 2579.34 174.60 174.60b 29.0g 25.72g 6.8 2582.30g 426.38g 308.41g 8.4
orkut 38K 2878.38 2867.07b 504.61b 487.4b 5.9 TL 8192.33g 6384.24g –

Parallel Five-cycle Counting. Table 2 shows the best performance with the Kowalik and
ESCAPE algorithms with 1 thread, 36 cores without hyper-threading, and 72 hyper-threads,
without the work scheduling optimization. We see that the algorithms achieve decent speed-
up without the work scheduling optimization. The parallel speed-up plateaus from 36 to 72
hyper-threads, especially for the parallelization of Kowalik’s algorithm. The speed-up for the
Kowalik algorithm is usually lower since, due to its degree ordering, it does not distribute
work evenly across vertices, but rather concentrates the work on high-degree vertices. Our
naive parallel algorithm groups a fixed number of vertices together regardless of whether
they are high- or low-degree, resulting in unbalanced work distribution across workers.

From both the serial and parallel running times, we observe that the ESCAPE algorithm,
with all of the same optimizations as the parallel Kowalik’s algorithm, generally has about
a 10x slowdown compared to Kowalik’s algorithm. We attribute this difference to the
discrepancy in the number of edge queries the two algorithms must perform. Since we store
graphs in CSR format, each edge query requires a binary search. In Kowalik’s algorithm,
an edge query is performed for every (𝑣, 𝑤)-pair, and it can be performed just before the
for-loop with 𝑥, so there only needs to be 𝑂(𝑚𝛼) binary searches. In the ESCAPE algorithm,
(𝑥, 𝑢) needs to be queried 𝑂(𝑚𝛼2) times. Table 3 shows that the ESCAPE algorithm does
significantly more binary searches than Kowalik’s algorithm.

L. R. Huang, J. Shi, and J. Shun 2:13

Table 3 These are the number of binary searches each algorithm performed for each dataset, and
the ratio of the number of binary searches in the ESCAPE algorithm to Kowalik’s algorithm.

#binary searches
Dataset Kowalik ESCAPE ESCAPE/Kowalik

email 5.15× 105 2.98× 107 58
dblp 8.41× 106 2.32× 108 28
youtube 6.28× 107 2.96× 109 47
lj 1.39× 109 1.72× 1011 124
orkut 1.25× 1010 3.44× 1012 273

Table 4 Single-thread (𝑇1) and 36-core with hyper-threading (𝑇36ℎ) running times (seconds) of
the parallel Kowalik and ESCAPE algorithms with the work scheduling optimization, and their
parallel speed-ups. All running times include both preprocessing (graph orienting) and five-cycle
counting time. We stop each experiment after 5.5 hours, and “TL” indicates that the time limit
was exceeded. The superscripts indicate the orientation that achieved the best runtime. g refers to
Goodrich-Pszona, b refers to Barenboim-Elkin, and ∘ refers to degree orientation. In the appendix,
we present the data for all orientations.

Parallel Kowalik Algorithm Parallel ESCAPE Algorithm
𝑇1 𝑇36ℎ

𝑇1
𝑇36ℎ

𝑇1 𝑇36ℎ
𝑇1

𝑇36ℎ

email 0.0265b 0.00252∘ 10.5 0.357b 0.0165b 21.6
dblp 0.46g 0.0143g 32.2 3.07b 0.0866g 35.5

youtube 4.75b 0.338b 14.1 43.32g 1.42g 30.0
lj 171.92b 5.85g 29.4 2510.97b 58.75g 42.7

orkut 2858.18b 136.98g 20.9 TL 1269.1b –
friendster TL 8417.31g – TL TL –

Compared to the state-of-the-art serial five-cycle counting implementation provided in
the ESCAPE package, without the work scheduling optimization, our parallel Kowalik imple-
mentation achieves a speed-up of 33.78–229.79x, and our parallel ESCAPE implementation
achieves a speed-up of 5.73–23.16x.

Work Scheduling Optimization. We present the best running times of the parallel Kowalik
and ESCAPE algorithms using work scheduling in Table 4. Compared to Table 2, we see
that the work scheduling optimization is effective on both parallel algorithms. It allows
five-cycle counting to be performed on the Friendster graph in under 2.5 hours using the
parallel Kowalik algorithm. Figure 5 shows the relative running time of the parallel Kowalik
algorithm with 72 hyper-threads with different arboricity orientation subroutines, including
Goodrich-Pszona, Barenboim-Elkin, degree ordering, and 𝑘-core orientation, with and without
the work scheduling optimization. The comparison shows that work scheduling significantly
improves the running time and scaling of the parallel Kowalik algorithm.

Throughout our tests, we use the sum of neighbors’ degrees as the estimator of the
amount of work. Other work estimators were tested, including a simple out-degree count
and the two-hop neighbor out-degree sum, but did not result in improved performance.

Compared to the state-of-the-art serial five-cycle counting implementation provided in
the ESCAPE package, using the work scheduling optimization, our parallel Kowalik imple-
mentation achieves a speed-up of 162.70–818.12x, and our parallel ESCAPE implementation
achieves a speed-up of 23.56–72.13x. Compared to our best serial baselines, our parallel
Kowalik implementation achieves a speed-up of 10.5–32.2x.

SEA 2021

2:14 Parallel Five-Cycle Counting Algorithms

Figure 5 Running time of the parallel Kowalik algorithm vs. number of threads. “36h” is 36 cores
with hyper-threading. Dashed lines indicate that the work scheduling optimization is disabled and
solid lines indicate that the work scheduling optimization is enabled. The lines for Goodrich-Pszona,
Barenboim-Elkin, and degree ordering overlap each other for the most part.

Figure 6 Five-cycle counting times, excluding preprocessing steps like relabeling and orienting the
graph, under different orientation schemes for each of the graphs, using 36 cores with hyper-threading.

Graph Orientation. Figure 6 compares the performance of our parallel Kowalik implement-
ation using different orientation schemes. Goodrich-Pszona and Barenboim-Elkin have very
similar performance. 𝑘-core performs slightly worse on all graphs except for the small email
graph. From our experiments, degree ordering results in running times that are comparable
to both Goodrich-Pszona and Barenboim-Elkin.

While Goodrich-Pszona, Barenboim-Elkin, and 𝑘-core produce arboricity orderings, we
may want to use degree ordering as it is much more efficient to compute and can compensate
for the potentially worse counting time. Figure 7 shows the proportion of time spent on
preprocessing (𝑇𝑝) versus counting (𝑇𝑐) on different orientation methods on three of the
graphs. As the graph size grows, the preprocessing time takes up a smaller fraction of the
total running time and becomes negligible in the case of the orkut graph. However, for
smaller graphs, degree orientation has a clear advantage, because it takes much less time to
compute while allowing for similar performance in the counting step. 𝑘-core ordering does
not perform well when considering the times for both preprocessing and counting.

L. R. Huang, J. Shi, and J. Shun 2:15

Figure 7 Breakdown of time spent on preprocessing (𝑇𝑝) vs. counting (𝑇𝑐) for different orientation
subroutines, using 36 cores with hyper-threading. G-P is Goodrich-Pszona; B-E is Barenboim-Elkin.
For the orkut graph, the time spent on preprocessing is not visible.

6 Conclusion

We designed the first theoretically work-efficient parallel five-cycle counting algorithms with
polylogarithmic span. On 36 cores, our implementations outperform the fastest existing
serial implementation by up to 818x, and achieve self-relative speed-ups of 10–46x. Designing
parallel algorithms for counting larger cycles is interesting for future work, although such
algorithms are likely to require super-linear work, even for low-arboricity graphs [7].

References
1 A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic

problems. In Proceedings of the IEEE Symposium on Foundations of Computer Science, pages
434–443, 2014.

2 Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, Nick G. Duffield, and Theodore L.
Willke. Graphlet decomposition: framework, algorithms, and applications. Knowl. Inf. Syst.,
50(3):689–722, 2017.

3 N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,
17(3):209–223, 1997.

4 Richard Anderson and Ernst W. Mayr. A P-complete problem and approximations to it.
Technical report, Stanford University, 1984.

5 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distributed Computing, 22:363–379, 2010.

6 Vladimir Batagelj and Matjaž Zaveršnik. Fast algorithms for determining (generalized) core
groups in social networks. Advances in Data Analysis and Classification, 5(2):129–145, 2011.

7 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Linear Time Subgraph Counting,
Graph Degeneracy, and the Chasm at Size Six. In Proceedings of the Innovations in Theoretical
Computer Science Conference, pages 38:1–38:20, 2020.

8 Jonathan W. Berry, Luke K. Fostvedt, Daniel J. Nordman, Cynthia A. Phillips, C. Seshadhri,
and Alyson G. Wilson. Why do simple algorithms for triangle enumeration work in the real
world? In Proceedings of the Conference on Innovations in Theoretical Computer Science,
page 225–234, 2014.

9 Maciej Besta, Armon Carigiet, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, and
Torsten Hoefler. High-performance parallel graph coloring with strong guarantees on work,
depth, and quality. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020.

10 M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan. GUISE: Uniform sampling of
graphlets for large graph analysis. In Proceedings of the IEEE International Conference on
Data Mining, pages 91–100, 2012.

SEA 2021

2:16 Parallel Five-Cycle Counting Algorithms

11 Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. Low depth cache-
oblivious algorithms. In Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures, page 189–199, 2010.

12 Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work
stealing. Journal of the ACM, 46(5):720–748, September 1999.

13 Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–
206, April 1974.

14 Ronald S. Burt. Structural holes and good ideas. American Journal of Sociology, 110(2):349–
399, 2004.

15 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.
Comput., 14(1):210–223, February 1985.

16 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient parallel graph
algorithms can be fast and scalable. In Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures, page 393–404, 2018.

17 Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun. The graph
based benchmark suite (GBBS). In Proceedings of the Joint International Workshop on Graph
Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA),
2020.

18 Ethan R. Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and Alexandros G.
Dimakis. Beyond triangles: A distributed framework for estimating 3-profiles of large graphs.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, page 229–238, 2015.

19 Ethan R. Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and Alexandros G.
Dimakis. Distributed estimation of graph 4-profiles. In Proceedings of the International
Conference on World Wide Web, page 483–493, 2016.

20 Giorgio Fagiolo. Clustering in complex directed networks. Physical Review E, 76(2):026107,
2007.

21 Katherine Faust. A puzzle concerning triads in social networks: Graph constraints and the
triad census. Social Networks, 32(3):221–233, 2010.

22 J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel algorithms.
In Proceedings of the IEEE Symposium of Foundations of Computer Science, pages 698–710,
1991.

23 Michael T. Goodrich and Paweł Pszona. External-memory network analysis algorithms for
naturally sparse graphs. In Proceedings of the European Symposium on Algorithms, pages
664–676, 2011.

24 Tomaz Hocevar and Janez Demsar. A combinatorial approach to graphlet counting. Bioin-
formatics, pages 559–65, 2014.

25 Paul W. Holland and Samuel Leinhardt. A method for detecting structure in sociometric data.
American Journal of Sociology, 76(3):492–513, 1970.

26 Joseph Jaja. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.
27 Łukasz Kowalik. Short cycles in planar graphs. In Proceedings of the International Workshop

on Graph-Theoretic Concepts in Computer Science, pages 284–296, 2003.
28 Charles E. Leiserson. The Cilk++ concurrency platform. J. Supercomputing, 51(3), 2010.
29 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, 2019.
30 David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring

algorithms. J. ACM, 30(3), July 1983.
31 Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The graph structure

in the Web–analyzed on different aggregation levels. The Journal of Web Science, 1(1):33–47,
2015.

32 Crispin Nash-Williams. Decomposition of finite graphs into forests. Journal of the London
Mathematical Society, s1-39(1):12–12, 1964.

http://snap.stanford.edu/data

L. R. Huang, J. Shi, and J. Shun 2:17

33 Rasmus Pagh and Charalampos E. Tsourakakis. Colorful triangle counting and a MapReduce
implementation. Inf. Process. Lett., 112(7), March 2012.

34 Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. ESCAPE: Efficiently counting all 5-vertex
subgraphs. In Proceedings of the International Conference on World Wide Web, page 1431–1440,
2017.

35 Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and Jingren
Zhou. Real-time constrained cycle detection in large dynamic graphs. Proc. VLDB Endow.,
11(12):1876–1888, 2018.

36 M. Rahman, M. A. Bhuiyan, and M. Al Hasan. Graft: An efficient graphlet counting
method for large graph analysis. IEEE Transactions on Knowledge and Data Engineering,
26(10):2466–2478, 2014.

37 S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized parallel sorting
algorithms. SIAM J. Comput., 18(3):594–607, June 1989.

38 Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. Butterfly counting
in bipartite networks. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, page 2150–2159, 2018.

39 Ahmet Erdem Sarıyüce and Ali Pinar. Peeling bipartite networks for dense subgraph discovery.
In Proceedings of the ACM International Conference on Web Search and Data Mining, page
504–512, 2018.

40 T. Schank. Algorithmic aspects of triangle-based network analysis. PhD Thesis, Universitat
Karlsruhe, 2007.

41 Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel clique counting and peeling algorithms.
arXiv preprint arXiv:2002.10047, 2020. arXiv:2002.10047.

42 Jessica Shi and Julian Shun. Parallel algorithms for butterfly computations. In Bruce M.
Maggs, editor, Proceedings of the SIAM Symposium on Algorithmic Principles of Computer
Systems, pages 16–30, 2020.

43 Charalampos E. Tsourakakis, Petros Drineas, Eirinaios Michelakis, Ioannis Koutis, and Christos
Faloutsos. Spectral counting of triangles via element-wise sparsification and triangle-based
link recommendation. Social Network Analysis and Mining, 1(2):75–81, April 2011.

44 J. Wang, A. W. Fu, and J. Cheng. Rectangle counting in large bipartite graphs. In Proceedings
of the IEEE International Congress on Big Data, pages 17–24, 2014.

45 Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. Vertex priority based
butterfly counting for large-scale bipartite networks. Proc. VLDB Endow., 12(10):1139–1152,
2019.

46 Sebastian Wernicke and Florian Rasche. FANMOD: a tool for fast network motif detection.
Bioinformatics, 22(9):1152–1153, 2006.

47 Xiangzhou Xia. Efficient and scalable listing of four-vertex subgraphs. Master’s thesis, Texas
A&M University, 2016.

48 R. Zhu, Z. Zou, and J. Li. Fast rectangle counting on massive networks. In Proceedings of the
IEEE International Conference on Data Mining, pages 847–856, 2018.

SEA 2021

http://arxiv.org/abs/2002.10047

2:18 Parallel Five-Cycle Counting Algorithms

A Appendix

We present in Table 5 the running times of the parallelized Kowalik’s algorithm and the
ESCAPE algorithm using the work scheduling optimization for the different orientations
described.

Table 5 Single-thread (𝑇1) and 36-core with hyper-threading (𝑇36ℎ) running times (seconds) of
the parallel Kowalik and ESCAPE algorithms with the work scheduling optimization using all four
orientations. All running times include both preprocessing (graph orienting) and five-cycle counting
time. We stop each experiment after 5.5 hours, and “TL” indicates that the time limit was exceeded.
The bold values mark the best serial and parallel runtimes for each of Kowalik and ESCAPE, out of
the four orientations, which are used in Table 4.

(a) Goodrich-Pszona.

Kowalik ESCAPE
𝑇1 𝑇36ℎ

𝑇1
𝑇36ℎ

𝑇1 𝑇36ℎ
𝑇1

𝑇36ℎ

email 0.0267 0.00289 9.3 0.396 0.0174 22.7
dblp 0.459 0.0143 32.2 3.17 0.0866 36.6

youtube 4.81 0.361 13.3 43.3 1.42 30.6
lj 174.40 5.85 29.8 2546.95 58.75 43.4

orkut 2867.78 136.98 20.9 TL 1552.70 -

(b) Barenboim-Elkin.

Kowalik ESCAPE
𝑇1 𝑇36ℎ

𝑇1
𝑇36ℎ

𝑇1 𝑇36ℎ
𝑇1

𝑇36ℎ

0.0265 0.00294 9.0 0.357 0.0165 21.6
0.465 0.0147 31.6 3.07 0.0992 31.0
4.75 0.338 14.0 48.05 1.43 33.6

171.92 5.95 28.9 2510.97 59.03 42.5
2858.18 139.87 20.4 TL 1269.07 -

(c) Degree.

Kowalik ESCAPE
𝑇1 𝑇36ℎ

𝑇1
𝑇36ℎ

𝑇1 𝑇36ℎ
𝑇1

𝑇36ℎ

email 0.0276 0.00252 10.9 1.49 0.0403 37.0
dblp 0.472 0.0144 32.7 10.71 0.773 13.9

youtube 4.79 0.344 13.9 2177.52 59.61 36.5
lj 178.02 5.96 29.9 16651.40 417.00 39.9

orkut 2949.47 139.37 21.2 TL 16129.4 -

(d) K-Core.

Kowalik ESCAPE
𝑇1 𝑇36ℎ

𝑇1
𝑇36ℎ

𝑇1 𝑇36ℎ
𝑇1

𝑇36ℎ

0.0278 0.00304 9.2 0.675 0.0245 27.6
0.473 0.0161 29.3 7.80 0.240 32.4
5.84 0.531 11.0 922.19 23.62 39.0

198.16 8.06 24.6 11151.50 309.71 36.0
3100.79 147.83 21.0 TL 7113.44 -

Fast and Robust Vectorized In-Place Sorting of
Primitive Types
Mark Blacher !

Institute for Theoretical Computer Science, Friedrich Schiller Universität Jena, Germany

Joachim Giesen !

Institute for Theoretical Computer Science, Friedrich Schiller Universität Jena, Germany

Lars Kühne !

German Aerospace Center (DLR), Jena, Germany

Abstract
Modern CPUs provide single instruction-multiple data (SIMD) instructions. SIMD instructions
process several elements of a primitive data type simultaneously in fixed-size vectors. Classical
sorting algorithms are not directly expressible in SIMD instructions. Accelerating sorting algorithms
with SIMD instruction is therefore a creative endeavor. A promising approach for sorting with SIMD
instructions is to use sorting networks for small arrays and Quicksort for large arrays. In this paper
we improve vectorization techniques for sorting networks and Quicksort. In particular, we show how
to use the full capacity of vector registers in sorting networks and how to make vectorized Quicksort
robust with respect to different key distributions. To demonstrate the performance of our techniques
we implement an in-place hybrid sorting algorithm for the data type int with AVX2 intrinsics. Our
implementation is at least 30% faster than state-of-the-art high-performance sorting alternatives.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases Quicksort, Sorting Networks, Vectorization, SIMD, AVX2

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.3

Supplementary Material Software (Source Code): https://github.com/simd-sorting/
fast-and-robust archived at swh:1:dir:945e0841401092b83647202f46e8a60b084619f9

Funding This work has been supported by the German Research Foundation (DFG) grant GI-711/5-1
within the Priority Program 1736 Algorithms for Big Data.

1 Introduction

Sorting is a fundamental problem in computer science, since sorting algorithms are part
of numerous applications in both commercial and scientific environments. Among others,
sorting plays an important role in combinatorial optimization [28], astrophysics [29], molecular
dynamics [15], linguistics [39], genomics [33] and, weather forecasting [36]. Sorting is used in
databases for building indices [30], in statistics software for estimating distributions [13], and
in object recognition for computing convex hulls [2]. Sorting enables binary search, simplifies
problems such as checking the uniqueness of elements in an array, or finding the closest pair
of points in the plane [10]. Faster sorting implementations can thus reduce the computing
time in a wide area of applications.

Some of the performance-critical applications mentioned above extensively sort arrays of
numbers [36], that is, primitive types like int or float. High-performance libraries like Intel
Performance Primitives (IPP) [21] or Boost.Sort [35] therefore offer fast sorting procedures
for primitive types. But, these implementations do not take advantage of the available vector
instruction sets, which are an integral part of modern CPUs. In computational domains such
as linear algebra [4, 14], image processing [25], or cryptography [23] vector instructions are
ubiquitous, however, vector instructions are rarely used in practice for sorting. One reason is
that the vectorization of sorting algorithms is cumbersome, since existing sorting algorithms

© Mark Blacher, Joachim Giesen, and Lars Kühne;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mark.blacher@uni-jena.de
mailto:joachim.giesen@uni-jena.de
mailto:lars.kuehne@dlr.de
https://doi.org/10.4230/LIPIcs.SEA.2021.3
https://github.com/simd-sorting/fast-and-robust
https://github.com/simd-sorting/fast-and-robust
https://archive.softwareheritage.org/swh:1:dir:945e0841401092b83647202f46e8a60b084619f9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Fast and Robust Vectorized In-Place Sorting of Primitive Types

cannot be directly expressed in SIMD instructions. Another reason is that current vectorized
sorting algorithms often cannot outperform an optimized radix sort. Furthermore, current
vectorized Quicksort implementations [5, 16] are not robust to different key distributions.

The idea of using vector instructions for sorting is not new. The field of vectorized sorting
has been explored since the 1970s, first on vector supercomputers with their specialized
instruction sets and later on modern architectures (see our discussion of related work below).
A large part of the work on vectorized sorting algorithms has been done on old hardware
from today’s point of view. Since then, SIMD instruction sets continued to evolve and
vector registers became wider. Also, new vectorization techniques such as vectorized in-place
partitioning in Quicksort [5] have been discovered. Due to these changes, a new look at
vectorized sorting algorithms seems worthwhile.

Related Work. Vectorized sorting is a topic that has been extensively researched on vector
supercomputers [31, 37, 38, 41]. However, the knowledge gained there cannot be transferred
uncritically to modern hardware. For example, Zagha and Blelloch [41] vectorize Radix Sort
on the vector supercomputer CRAY Y-MP. Compared to a vectorized hybrid algorithm of
Quicksort and Odd-Even Transposition Sort [31], they achieve speedup factors of three to
five with their Radix Sort. The speedup is partly due to the fact that the CRAY Y-MP has
no hardware prefetcher, which means accessing data elements in RAM in random order takes
the same time as accessing them sequentially.

Studies on vectorized sorting, which take into account modern hardware, that is, vector
instructions, instruction-level parallelism, CPU caches, and multicore parallelism, focus
primarily on the vectorization of Mergesort [8, 19, 20]. Essentially, a vectorized Mergesort is
a hybrid of merging networks and the usual Mergesort or some multiway variant of it. Despite
efficient utilization of the underlying hardware, single-threaded vectorized Mergesort variants
on mainstream CPUs do not achieve the speed of a hardware optimized Radix Sort such as
Intel’s platform-aware Radix Sort (IPP Radix Sort) [21]. For special hardware like the Xeon
Phi 7210 processor, which features AVX-512 instructions and high bandwidth memory, a
fast vectorized Mergesort variant exists, but unfortunately without publicly available source
code for testing [40].

Gueron and Krasnov [16] show that Quicksort can be vectorized on modern hardware using
the AVX and AVX2 instruction sets. Their partitioning function requires O(n) additional
memory. The pivot value is always the last element of the partition. After the vectorized
compare operation with the pivot value, the elements in the vector register are shuffled using
shuffle masks that are stored in a lookup table. Gueron and Krasnov miss the opportunity
to sort even small arrays with vector instructions. For sub-partitions with fewer than 32
elements, they use insertion sort, similarly to the C++ Standard Template Library (STL).
The running times of their vectorized Quicksort are higher than those of IPP radix sort when
sorting randomly distributed 32-bit integers.

Using AVX-512 instructions, Bramas [5] designs a vectorized hybrid algorithm based
on Quicksort and Bitonic Sort that outperforms IPP radix sort on random input data by
a factor of 1.4. Using the new compress instructions in AVX-512, Bramas implements
Quicksort’s partitioning function without the use of pre-computed permutation masks.
Compress instructions arrange elements contiguously in a vector according to a bitmask.
Compress instructions are not new per se. Both Stone [38] and Levin [31] have already
used compress instructions on vector supercomputers to implement Quicksort’s partitioning
function. The true contribution of Bramas is that he implements the partitioning function
without additional memory. He does this by buffering the two SIMD vectors at the outer ends

M. Blacher, J. Giesen, and L. Kühne 3:3

of the array. The pivot value for partitioning the array is determined with the median-of-three
strategy. For sorting small sub-partitions with less than or equal to 256 integers Bramas
uses a branch-free vectorized Bitonic Sort.

Practically Important Features for Sorting. Among the sorting implementations mentioned
above, the fastest are sort AVX-512 [5] and Intel’s IPP radix sort [21]. In addition to
speed, the following features are often equally important in practice: low memory usage,
robustness against different key distributions, portability, and efficient parallelization. Table 1
summarizes the features of our and other sorting implementations for primitive types. In this
paper we consider only the single-threaded case, since our goal is to show that pure vectorized
sorting is indeed the fastest available option for sorting primitive types. Vectorization
and parallelization are orthogonal concepts. Parallelization would make the results highly
dependent on the parallelization technique. The efficient combination of our vectorization
techniques with parallelization is a topic that we plan to explore in future work.

Table 1 Features of various high performance sorting implementations for primitive types. The
state-of-the-art general purpose sorting algorithm IPS4o [1] is included here for comparison, although
it is not optimized for sorting primitive types. We use the term in-place if the sorting algorithm
requires no more than O(log n) additional non-constant memory on average.

this paper sort AVX-512 [5] IPP radix sort [21] IPS4o [1]

in-place ✓ ✓ ✗ ✓

robust (distributions) ✓ ✗ ✓ ✓

robust (duplicate keys) ✓ ✗ ✓ ✓

portable (≤ AVX2) ✓ ✗ ✓ ✓a

fast (n ≤ 1000) ✓ ✓ ✗ ✗

fast (n > 1000) ✓ ✓ ✓ ✗

parallelized efficiently ✗ ✗ ✗ ✓

a Code does not compile on Windows.

Our Contributions. The main contributions of this paper are vectorization techniques for
sorting networks and Quicksort that allow to design faster, more robust and memory efficient
sorting algorithms for primitive types. In particular, we introduce the following techniques:

For sorting small to medium-sized arrays we show how to use the full capacity of vector
registers in sorting networks.
To implement the vectorized partitioning function of Quicksort in-place with AVX2
instructions, we combine the lookup table strategy of Gueron and Krasnov [16] with the
in-place partitioning of Bramas [5].
To make vectorized Quicksort robust to different key distributions, we design an alternative
pivot selection strategy that is used for unbalanced sub-arrays during partitioning. With
this strategy, which is related to Radix Exchange Sort [7, 11], the worst case running
time of our Quicksort is O(kn), where k is the number of bits in the primitive type.

Based on these techniques we implement a sorting algorithm with AVX2 vector instructions
that outperforms general purpose and competing high-performance sorting implementations
for primitive types. The source code of our implementation is available at https://github.
com/simd-sorting/fast-and-robust. Additionaly, we provide an efficiently vectorized
implementation of Quickselect [36], which uses the same vectorization techniques to find the
kth smallest element in an unordered array.

SEA 2021

https://github.com/simd-sorting/fast-and-robust
https://github.com/simd-sorting/fast-and-robust

3:4 Fast and Robust Vectorized In-Place Sorting of Primitive Types

2 Preliminaries

Vector Instructions. Vector instructions (SIMD instructions) in the x86 instruction set
exist since 1997 [6]. The register width was steadily increased since then. Larger registers
allow more elements of a primitive type to be processed simultaneously. Starting with 64
bits in MMX (Multi Media Extension), the register width increased to 128 bits for SSE
(Streaming SIMD Extensions) and again doubled to 256 bits in AVX (Advanced Vector
Extensions). Current CPUs for high-performance computing have 512-bit registers and
support the AVX-512 instruction set [22]. Modern mainstream CPUs, however, support at
most AVX2. Like its predecessor AVX, AVX2 uses vectors of up to 256 bits, but has a larger
instruction set. Since we want our implementation to run on a large variety of available CPUs
we use AVX2 and not AVX-512 to implement our ideas. Instead of writing the vectorized
part of the algorithms in assembly language, we use intrinsic functions. Intrinsic functions
have the advantage that explicit assignments of registers are omitted. Intrinsic functions are
also more portable between different compilers and operating systems.

Latency and Throughput. Besides the vector width, the two metrics latency and throughput
provide further information about the performance of an instruction. Latency is the number of
cycles that an instruction takes until its result is available for another instruction. Throughput,
on the other hand, indicates how many cycles it takes on average until an identical independent
instruction can begin its execution [12]. If the throughput of an instruction is smaller than
the latency, executing several identical independent instructions in sequence can lower the
accumulated latency of the computation, because instructions can begin before the results of
previous instructions are available. We exploit this heavily by simulating larger vectors to
increase instruction-level parallelism of our implementation.

3 The Algorithm

In this section we describe the design and implementation of our algorithm for sorting arrays
of data type int (32-bit signed integer). Most state-of-the-art sorting implementations
combine several sorting algorithms for achieving good performance on different array sizes
and key distributions. Here, we also take this approach and combine vectorized Quicksort
with vectorized sorting networks into a fast and robust in-place sorting algorithm. The
overall design of our algorithm is shown in the simplified C++ Listing 1.

The remainder of this section is organized as follows: In Subsection 3.1 we discuss
our techniques to vectorize sorting networks for sorting small and medium-sized arrays,
respectively. In Subsections 3.2 and 3.3 we describe our combined pivot strategy that makes
Quicksort robust with respect to different key distributions and also makes it robust with
respect to duplicate keys. As will be discussed in Subsection 3.4, our algorithm is in-place in
the sense that the only non-constant memory overhead comes from the recursive function calls.
This Section finishes with a brief worst and average running time analysis in Subsection 3.5.

3.1 Sorting Networks
The building blocks of sorting networks are Compare-and-exchange (COEX) modules.
A COEX module consists of two inputs and two outputs. Each input receives a value. The
two values are sorted in the module and transferred to the two outputs. In our representation
of a COEX module, the upper output track contains the smaller and the lower output track
the larger value. See Figure 1 for different options of visualizing a COEX module.

M. Blacher, J. Giesen, and L. Kühne 3:5

Listing 1 Our vectorized Quicksort algorithm partitions arrays with vector instructions until
the sub-arrays become small enough (≤ 512 elements) and then switches to vectorized sorting
networks. For achieving higher performance, two different techniques are used to vectorize sorting
networks (not shown in Listing 1). One for small arrays (n < 128) and one for medium-sized arrays
(128 ≤ n ≤ 512). To detect sub-arrays in which all elements are equal, the smallest and largest
values in the array are computed during the partitioning phase. We combine two pivot strategies to
make our Quicksort robust with respect to various distributions. After partitioning, we do not set
the pivot element to its correct position in the sorted array. This allows us to use values as pivots
that are not contained in the array.
void qs_core(int *arr, int left, int right, bool choose_avg = false, int avg = 0) {

if (right - left <= 512) { // sorting networks for array sizes <= 512
sort_with_sorting_networks(arr + left, right - left + 1);
return;

}
int pivot = choose_avg ? avg : get_pivot_median_medians(arr, left, right);
int smallest = INT32_MAX; // smallest value in the array after partitioning
int largest = INT32_MIN; // largest value in the array after partitioning
int bound = partition(arr, left, right + 1, pivot, &smallest, &largest);
// the ratio of the size of the smaller partition to the size of the array
double ratio = min(right - (bound - 1), bound - left) / double(right - left + 1);
if (ratio < 0.2) // if unbalanced sub-arrays, change pivot strategy

choose_avg = !choose_avg;
if (pivot != smallest) // if values not identical in left sub-array, recurse

qs_core(arr, left, bound - 1, choose_avg, average(smallest, pivot));
if (pivot + 1 != largest) // if values not identical in right sub-array, recurse

qs_core(arr, bound, right, choose_avg, average(largest, pivot));
}

In a sorting network, the COEX modules are combined in such a way that they always
sort a fixed-length sequence of values. The amount of modules and their execution order are
fixed for a network and do not depend on the input values. Sorting networks are therefore
data-oblivious algorithms. A sorting network for eight elements is shown in Figure 2. The
number of parallel steps and the number of COEX modules are the two key parameters
that are used to optimize sorting networks. A sorting network with the minimum number of
COEX modules does not necessarily have the fewest parallel steps and vice versa [9].

There are regular [3, 34] and irregular sorting networks [9, 27]. For a regular
sorting network, an algorithmic rule exists that generates the network and can also generate
larger networks of the same type. For irregular sorting networks it is not known how the
construction of these networks can be generalized to create larger networks [26].

min

max

3

3 7

7

(a) Detailed.

7 3

3 7

(b) Simplified.

Figure 1 Compare-and-exchange module visualizations. To represent modules in sorting networks
we use the simplified visualization depicted in (b).

SEA 2021

3:6 Fast and Robust Vectorized In-Place Sorting of Primitive Types

6
3
2
4
1
5
8
7

1

6
3
4
2
5
1
8
7

2

6
4
3
2
7
8
1
5

3

6
4
3
2
8
7
5
1

4

6
5
7
8
2
3
4
1

5

7
8
6
5
4
3
2
1

6

8
7
6
5
4
3
2
1

Figure 2 Bitonic sorting network for eight elements (24 modules, six parallel steps). The input
comes from the left and runs to the right through the network. The numbers above the gray
boxes index the parallel steps. Each parallel step is characterized by the fact that there are
no dependencies between individual modules. All COEX modules within a gray box can thus be
executed simultaneously.

In the following two paragraphs we show how to efficiently vectorize sorting networks for
sorting small (n < 128) and medium-sized (128 ≤ n ≤ 512) arrays. We define n = 128 as the
boundary between small and medium-sized arrays, since we use different types of sorting
networks. The technique we use for sorting small arrays is especially efficient for Bitonic
Sort. Therefore, we apply it to small Bitonic sorting networks. In contrast, the technique we
use for sorting medium-sized arrays can efficiently vectorize irregular sorting networks that
have a minimum amount of COEX modules.

Sorting Small Arrays With Sorting Networks. To efficiently vectorize small Bitonic sorting
networks, it is important to distinguish between modules and nodes. A COEX module
schematically consists of two nodes and a vertical connecting line between them. (see
Figure 1b). The elements passing through the two nodes are compared within a module.
Here, we represent a COEX module as a tuple of two comma separated numbers. For
example, (1, 2) stands for a module in which the element at the first node is compared to the
second. The numbers in brackets represent the nodes to be compared and not the values to
be sorted. Nodes correspond only to the positions of elements in a sorting network.

The aim of vectorizing sorting networks is to execute as many modules as possible at
once. To perform a vectorized COEX operation, the two nodes of a module must be at the
same index in two different vectors. By computing the pairwise minimum and maximum
between these two vectors, the vectorized COEX operation is executed. Before we perform a
vectorized COEX operation, we use shuffle instructions to place the two nodes of a module
under the same index in the two vectors. We use two different shuffle instructions. The first
shuffles the elements only within one vector. The second called shuffle*, receives two vectors
as input and mixes them according to a mask to create a new vector.

In our approach nodes are considered only virtually, while the values to be sorted are
actually stored in the vector registers. When a COEX operation is executed, two types
of exchanges are possible. On the one hand, values can be exchanged between the vector
registers, on the other hand, nodes within a module can also be swapped. Since the nodes
are virtual, the swaps of the nodes are also only virtual, and thus do not consume CPU
cycles. Here, in order to simplify the presentation of our approach, the capacity of vectors is
limited to four elements. Figure 3 shows our technique for sorting eight elements with the
bitonic sorting network from Figure 2.

Our technique distributes nodes within modules to different vectors and thus uses the full
capacity of vector registers. Bramas [5] uses, unlike our approach, only half the capacity of a
vector register because the two nodes of a module are held within one vector. Furthermore,
Bramas uses only permutation instructions for implementing sorting networks. We use shuffle
instructions with lower latency wherever possible.

M. Blacher, J. Giesen, and L. Kühne 3:7

11 29 13 23

37 17 19 31

1 3 5 7

2 4 6 8

11 17 13 23

37 29 19 31

1 3 5 7

2 4 6 8

11 17 13 23

29 37 31 19

1 3 5 7

4 2 8 6

11 17 13 19

29 37 31 23

1 2 5 6

4 3 8 7

11 13 29 31

17 19 37 23

1 5 4 8

2 6 3 7

11 13 29 23

17 19 37 31

1 5 3 7

2 6 4 8

11 13 29 23

31 37 19 17

1 5 3 7

8 4 6 2

11 13 19 17

31 37 29 23

1 4 3 2

8 5 6 7

11 13 31 37

19 17 29 23

1 4 8 5

3 2 6 7

11 13 29 23

19 17 31 37

1 2 6 5

3 4 8 7

11 29 19 31

13 23 17 37

1 6 3 8

2 5 4 7

11 23 17 31

13 29 19 37

1 5 3 7

2 6 4 8

11 13 17 19

23 29 31 37

1 2 3 4

5 6 7 8

Step 1

Step 4

Step 5 Step 6

unsorted

sorted

Step 2

Step 3

COEX

COEX shuffle*

COEX

COEX

COEX

COEX

shuffle

blend

shuffle

shuffle

s
h

u
f
f
l
e

*

s
h

u
f
fl

e
*

nodes

nodes

upper vector

lower vector

Figure 3 Bitonic Sort of 8 elements with two vectors. Each vector has a capacity of 4 elements.
We call the six parallel steps in which the COEX operations are executed Step 1, . . . , Step 6. In
the first parallel step, Bitonic Sort has the four COEX modules {(1, 2), (3, 4), (5, 6), (7, 8)}. The
association of the nodes and indices in the vectors at the beginning of the sorting operation is freely
selectable. We start under the assumption that the upper vector represents the Nodes 1, 3, 5, 7 and
the lower vector represents the Nodes 2, 4, 6, 8. This initial distribution of nodes prevents unnecessary
shuffles of elements before executing the first parallel step because the nodes within modules are
at the same index in the two vectors. In the vectorized COEX operation of the first parallel step
only the values 29 and 17 are exchanged, which is indicated by the gray box in Step 1. The second
parallel step requires the modules {(1, 4), (2, 3), (5, 8), (6, 7)}. Before executing Step 2, the lower
vector is shuffled so that the nodes to be compared face each other. The COEX operation in Step 2
exchanges the values 23 and 19. The nodes within two modules must also be swapped (3 with 2,
and 7 with 6). These swaps are necessary, because the minimum of two nodes after executing the
vectorized COEX operation is always in the upper vector and the minimum is assigned to the node
with the smaller index. The next four parallel steps are performed in a similar way. After executing
Step 6, the upper vector always contains the elements at the Nodes 1, 5, 3 and 7, and, the lower
vector contains the elements at the Nodes 2, 6, 4 and 8, respectively. The elements are sorted, but
must be rearranged according to the indices of the nodes. After rearranging the elements with two
shuffle and two blend instructions, the eight elements are properly sorted.

Sorting Medium-Sized Arrays With Sorting Networks. For sorting medium-sized arrays
(128 ≤ n ≤ 512) we interpret the array as a matrix in row-major order, where the number of
columns corresponds to the number of elements that can be placed in a vector. In an AVX2
vector there is space for eight values of data type int. An array with 128 values of datatype
int thus corresponds to a matrix with eight columns and 16 rows.

To sort column-wise, the vectorized COEX operation is sufficient. Only pairwise minima
and maxima between the vectors are computed, and no permutations or shuffles of the
elements within the vectors are required for sorting the columns of a matrix. During a
vectorized COEX operation, the same COEX module is executed in all columns. The number
of vectorized COEX operations therefore depends on the number of modules in a sorting
network. The advantage of sorting the elements inside columns is that even sorting networks
with an irregular distribution of modules can be used, since each vectorized COEX operation
uses only one module of the sorting network.

Sorting networks with a minimum number of COEX modules are particularly suitable
for sorting the values in columns. To sort eight columns each containing 16 values of data
type int, we use Green’s irregular sorting network [27], which consists of only 60 COEX

SEA 2021

3:8 Fast and Robust Vectorized In-Place Sorting of Primitive Types

16 9 10 7

4 11 3 5

15 14 1 13

6 12 8 2

4 9 1 2

6 11 3 5

15 12 8 7

16 14 10 13

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

merge
columns

sort
columns

unsorted columns sorted sorted

Figure 4 Sorting medium-sized arrays. We interpret the array as a matrix in row-major order.
For sorting columns we use sorting networks with a minimum number of COEX modules. To merge
the sorted columns, we apply Bitonic Merge directly, without transposing the columns first.

modules. To fully sort the 128 values, the eight sorted columns must be merged. Instead of
transposing the 16 × 8 matrix and merging the sorted rows with a Bitonic Merge network, we
apply Bitonic Merge directly to the sorted columns of the matrix. The technique for merging
sorted columns is similar to the technique we use for sorting small arrays. Before we execute
a COEX operation, we shuffle or permute elements of vectors such that the nodes of each
module are placed in different vectors at the same index. Figure 4 summarizes our approach
for sorting medium-sized arrays with vector instructions.

3.2 Pivot Selection
To make our vectorized Quicksort robust with respect to various distributions, we combine
two different pivot selection strategies and switch between them when one strategy leads to
unbalanced sub-arrays (see Listing 1).

First Strategy. The first strategy determines the pivot with a heuristic similar to the
median of medians. Without the necessity to place the pivot to its final position in the
array, determining the median of medians becomes faster since the index of the pivot is not
needed. With AVX2 vector instructions we can compute eight medians simultaneously. To
compute eight times the median-of-nine, we gather 72 random elements from the array to
be partitioned and store them in nine vectors. The 72 random indices for the nine gather
instructions are computed with the random number generator xoroshiro128+ [26]. We
implement xoroshiro128+ with vector instructions to speed up the computation of random
numbers. The nine vectors with its 72 elements are interpreted as a 9×8 matrix in row-major
order. We compute the medians column-wise with a median network [32], which we implement
with min and max vector instructions. After applying a median network to the columns of
the matrix, the fifth vector contains all eight medians. We sort the eight medians with vector
instructions and choose as pivot the average of the fourth and fifth largest medians. If the
resulting average is not an integer, we round down to the next smaller integer.

Second Strategy. If the vectorized median of medians heuristic leads to unbalanced sub-
arrays, we switch to the second pivot strategy, where we choose the average of the smallest
value and the current pivot as the pivot in the left sub-array, and, in the right sub-array, the
average of the largest value and the current pivot as the pivot. The quadratic worst case
of Quicksort is avoided, since choosing the average of the lower and upper bounds of the
sub-array as pivot guarantees that the range of possible values is halved with each recursive
call. The difference to Radix Exchange Sort [7, 11] in our second pivot strategy is that
instead of bits, actual values are used to halve the range of possible values at each recursive
call. If the second pivot strategy leads to unbalanced sub-arrays, the first pivot selection
strategy is used in the next recursive call.

M. Blacher, J. Giesen, and L. Kühne 3:9

To realize the second pivot strategy, we always compute the smallest and the largest
values in the array with min and max vector instructions when partitioning the array. We
take advantage of instruction-level parallelism of modern processors to hide the execution
time of the minimum and maximum computations. The latency of min and max vector
instructions is only one cycle and the throughput is half a cycle [24], which means that their
execution time can almost be hidden if they are called while waiting for the results of high
latency instructions.

3.3 Many Duplicate Keys
The knowledge about the smallest and the largest values in an array also allows us to detect
sub-arrays where all values are equal. If the smallest value in an array and the current
pivot are identical, no further partitioning of the left sub-array is required, or, if the largest
value and the current pivot + 1 in an array are identical, no further partitioning of the
right sub-array is necessary. Applying these checks before partitioning sub-arrays makes our
vectorized Quicksort robust against arrays with many duplicate keys.

3.4 In-place Partitioning
We start partitioning the array without vector instructions until the number of unpartitioned
elements corresponds to a multiple of the number of elements in a vector. Next, we cache
two vectors with unpartitioned elements from the outer ends of the array. This creates space
to perform the partitioning in-place with Bramas’ [5] technique. To partition a single vector
we use, similar to Gueron and Krasnov [16], permutation masks that are stored in a lookup
table. Only one permutation instruction is sufficient for partitioning a vector, since we fill,
like Bramas, the array from left to right with values smaller than or equal to the pivot, and,
from right to left with values greater than the pivot. After storing a partitioned vector on
the left and right side of the array we choose the next vector to partition from the side of
the array with fewer already partitioned elements. Overwriting of not yet partitioned values
of the array is impossible, because there is space for storing a partitioned vector on each side
of the array due to the two initially cached vectors. This space is only used up as soon as
the vectors cached at the beginning are partitioned and stored in the array. See Appendix A
for a worked example of our vectorized in-place partitioning algorithm.

To reduce the total latency of partitioning big arrays and thus increase instruction-level
parallelism, we load 64 elements into eight vector registers, partition the eight vectors
individually and save them back to the array. In order to realize the partitioning of big
arrays in-place we cache 16 vectors instead of two, at the beginning of the partitioning.

3.5 Running Time Analysis
The running time of our vectorized sorting algorithm is determined by the two employed pivot
strategies, namely, the (vectorized) median of the medians strategy and the strategy that
is inspired by Radix Exchange Sort. While we can control the worst case behaviour of our
vectorized sorting algorithm with the latter strategy, the median of medians strategy allows
to control the average case behaviour. In particular, we can give the following guarantees.

▶ Lemma 1. The worst case running time of our vectorized sorting algorithm is O(kn) where
n is the number of keys and k is the number of bits per key.

SEA 2021

3:10 Fast and Robust Vectorized In-Place Sorting of Primitive Types

Proof. (Sketch) The claim follows since we always switch from the median of the medians
pivot strategy to the second pivot strategy whenever the first strategy leads to unbalanced
sub-arrays. The second pivot strategy uses the average of the smallest and the largest values
in the array as pivot element. This is similar to Radix Exchange Sort that uses the most
significant bit to subdivide the keys in an array. It follows that the worst case complexity
of our algorithm when using the second pivot strategy is the same as for Radix Exchange
Sort, namely O(kn). Hence, our algorithm runs in worst case time O(kn) if k ≥ log n. If
k < log n, then the array needs to contain duplicate keys that our algorithm detects such
that the worst case running time still is in O(kn). ◀

▶ Lemma 2. The average case running time of our vectorized sorting algorithm is O(n log n),
where the average is with respect to the uniform distribution over the set of permutations of
n different keys.

Proof. (Sketch) This follows immediately from the analogous results for Quicksort with
median of the medians pivot strategy. Remember that we only switch to the second pivot
strategy when the median of medians strategy leads to unbalanced sub-arrays. Hence,
switching the pivot strategy cannot degrade the asymptotic average running time. ◀

For putting our running time analysis into perspective, note that our vectorized sorting
algorithm is not a comparison based algorithm, since we use an arithmetic operation in the
pivot strategy that is inspired by Radix Exchange Sort.

4 Experiments

Single-Threaded Performance. We compare the single-threaded performance of our imple-
mentation with its high-speed competitors, sort AVX-512 [5], Intel’s platform-aware radix
sort (IPP radix sort) [21], and IPS4o [1]. IPP radix sort is generally accepted as a benchmark
for high-performance sorting of primitive data types [5, 16, 40]. IPS4o is one of the fastest
general purpose sorting algorithms. We report the performance of each algorithm in terms of
speedup factors over std::sort from the C++ STL for different array sizes and distributions
of integers. For computing a single speedup factor we divide the running time of std::sort by
the running time of the respective algorithm. In our measurements we consider array sizes in
the range of 101 to 109, whereby the next larger array size contains ten times more elements
than the previous one. To evaluate the speed and robustness of our sorting algorithm, we fill
the arrays with integers according to the following four distributions:

(a) Uniform. Random integers in the range [−231, 231 − 1].
(b) Gaussian. Normally distributed random numbers with expected value µ = 0 and standard

deviation σ = 100. We round the numbers to the nearest integer, resulting in many
duplicate values in large arrays.

(c) Zero. Every value is set to a constant: an input distribution with zero entropy [17].
(d) Almost Sorted. Array of size n with ⌊ 1

2 · 2log10 n⌋ misplaced numbers. For example, an
array of the size 106 that contains 32 integers in wrong positions.

For our experiments, we use a machine with an Intel i9-10980XE 18-core processor running
Ubuntu 20.04.1 LTS with 128 GB of RAM. Each core has a base frequency of 3.0 GHz and
a max turbo frequency of 4.6 GHz and supports the AVX-512 vector instruction set. We
compile our experiments with the Intel C++ compiler version 19.1.2.254 for 64 bit using the
optimization flags -Ofast and -march=native.

M. Blacher, J. Giesen, and L. Kühne 3:11

Figure 5 shows how the speedup factors of our implementation over std::sort compared
to speedup factors of state-of-the-art high-speed sorting algorithms. Starting from an
array length of 104 our implementation is always significantly faster for the considered
distributions of integers. We are on par with sort AVX-512, when sorting small arrays.
Both our implementation and sort AVX-512 use vectorized sorting networks for small arrays,
but our implementation only uses the more portable AVX2 vector instructions, but not
AVX-512. In the AVX-512 instruction set the vectors are twice as wide than in AVX2, and in
AVX-512 there are more suitable instructions for sorting available. Furthermore, Figure 5b
and Figure 5c show the in general poor performance of Sort AVX-512, when sorting arrays
with many duplicate keys, while our vectorized Quicksort implementation can handle this
case efficiently. It also becomes apparent that a general purpose sorting algorithm like IPS4o
cannot keep up with the performance of an efficient vectorized sorting algorithm when sorting
primitive data types, at least for the single-threaded case. For the multi-threaded case, the
results may not be as clear-cut, since memory bandwidth becomes the ultimate performance
limit for sorting algorithms.

16.3 ns

135 ns

1.65 µs

22.3 µs
290 µs

3.61 ms

48.7 ms

601 ms
7.25 s

0

2

4

6

8

10

12

14

16

18

20

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

array size

sp
e
e
d

u
p

o
v
e
r

st
d

::
so

rt

this paper sort AVX-512 IPP radix sort IPS4o

(a) Uniform over the range [−231, 231 − 1].

16.4 ns

133 ns

1.71 µs

22.7 µs

201 µs

1.69 ms

23.1 ms

287 ms

3.29 s

0

2

4

6

8

10

12

14

16

18

20

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

array size

sp
e
e
d

u
p

o
v
e
r

st
d

::
so

rt

this paper sort AVX-512 IPP radix sort IPS4o

(b) Gaussian (µ = 0, σ = 100).

16.9 ns

136 ns

292 ns

2.15 µs

15.7 µs
198 µs

4.22 ms

36.3 ms

339 ms

0

5

10

15

20

25

30

35

40

45

50

55

60

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

array size

sp
e
e
d

u
p

o
v
e
r

st
d

::
so

rt

this paper sort AVX-512 IPP radix sort IPS4o

(c) Zero (all values are equal).

16.4 ns

131 ns

1.70 µs

22.4 µs
281 µs

3.56 ms
49.3 ms

616 ms
7.61 s

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

array size

sp
e
e
d

u
p

o
v
e
r

st
d

::
so

rt

this paper sort AVX-512 IPP radix sort IPS4o

(d) Almost Sorted (⌊ 1
2 · 2log10 n⌋ misplaced numbers).

Figure 5 Speedup factors of our implementation, sort AVX-512 [5], IPP radix sort [21], and,
IPS4o [1] over std::sort for four different distributions of 32-bit signed integers. In addition, the
graphs also contain the absolute running times of our implementation.

Performance Indicators. For finding out the reasons why our implementation performs
better than state-of-the-art high-speed sorting algorithms, we look at performance indicators
such as cycles required per sorted integer, cache misses, and instructions per cycle of the
various implementations. Table 2 contains performance indicators for the evaluated sorting
algorithms. Additionally, we also show performance indicators for std::sort. Each algorithm
sorts an array of 109 random integers. Our implementation needs on average 73 instructions

SEA 2021

3:12 Fast and Robust Vectorized In-Place Sorting of Primitive Types

per integer, while IPP radix sort requires only about 44 instructions. Also sort AVX-512
requires on average fewer instructions per integer (≈ 46) than our implementation. But
both IPP radix sort and sort AVX-512 need more cycles to execute these fewer instructions
than our implementation. This means the CPU utilization (instruction-level parallelism) of
our implementation is higher than that of IPP radix sort or sort AVX-512. At the same
wall-clock time, our implementation sorts more than 30% more integers than IPP radix sort
or sort AVX-512. In addition, it should be noted that our implementation is in-place, while
IPP radix sort uses O(n) extra memory.

Table 2 Performance indicators per sorted integer. Each algorithm sorts an array of length 109

populated with random integers from the range [−231, 231 − 1]. For example, sorting an integer
with std::sort, on average, takes 377.14 CPU cycles and requires 226.25 instructions. The number of
instructions per cycle (IPC) is defined as the quotient of the number of instructions and the number
of cycles. A high IPC indicates efficient CPU utilization in terms of instruction-level parallelism.
GHz denotes the average clock speed while sorting. When the integer is not in the cache, a cache
miss occurs. The average number of cache misses per sorted integer is shown for the first level cache
(L1) and the last level cache (LLC). The performance indicator branch-misses denotes the average
number of mispredictions of the CPU branch-predictor per sorted integer.

cycles instructions L1-misses LLC-misses branch-misses IPC GHz

std::sort 377.14 226.25 1.41 0.75 13.04 0.60 4.76
this paper 34.44 72.68 1.25 0.59 0.06 2.11 4.76

sort AVX-512 43.32 46.44 1.42 0.71 0.34 1.07 3.97
IPP radix sort 48.83 43.68 5.53 0.46 0.00 0.89 4.71

IPS4o 137.96 273.83 1.78 0.28 1.46 1.98 4.76

5 Conclusions

In this paper we presented a highly efficient single-threaded in-place sorting algorithm that we
implemented for the data type int with AVX2 intrinsics in C++. To make our implementation
fast and robust, we improved vectorization techniques for sorting networks and Quicksort.
In particular, we showed how to utilize the full capacity of vector registers for executing
the modules of sorting networks and developed a pivot selection technique to efficiently
sort arrays of different key distributions. Furthermore, we presented a vectorized in-place
partitioning technique for vectorized Quicksort that has a high degree of instruction-level
parallelism. With our implementation we achieve a speedup of at least 30% over state-of-
the-art high-performance sorting algorithms. The worst case running time of our sorting
algorithm is O(kn), where k is the number of bits in the primitive type. Our implementation
is easily extensible to other primitive types like unsigned int or float, and can also be
adapted to sort primitive 64-bit types. Actually, there is no need to consider the sorting of
floating-point numbers separately, since the IEEE format was designed in such a way that
with some additional bit-twiddling floating-point numbers can be sorted with integer sorting
routines [6, 18]. On future processors with larger vector registers and more diverse vector
instructions, the speed difference in favor of vectorized sorting algorithms for primitive types
is likely to increase further. Hence, we see a vectorized in-place hybrid algorithm based on
sorting networks and Quicksort as a possible replacement for current sorting implementations
in high-performance libraries.

M. Blacher, J. Giesen, and L. Kühne 3:13

References
1 Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. In-Place Parallel Super

Scalar Samplesort (IPSSSSo). In 25th Annual European Symposium on Algorithms (ESA
2017), volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:14.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.9.

2 Jakob Andreas Bærentzen, Jens Gravesen, François Anton, and Henrik Aanæs. Guide to
Computational Geometry Processing. Springer, 2012. doi:10.1007/978-1-4471-4075-7.

3 Kenneth E. Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, pages 307–314. ACM, 1968. doi:
10.1145/1468075.1468121.

4 BLAS. Basic linear algebra subprograms. URL: http://www.netlib.org/blas/.
5 Berenger Bramas. A novel hybrid quicksort algorithm vectorized using avx-512 on intel

skylake. International Journal of Advanced Computer Science and Applications, 8(10), 2017.
doi:10.14569/IJACSA.2017.081044.

6 Randal Bryant. Computer Systems: A Programmer’s Perspective. Pearson, 3rd edition, 2016.
7 Shi-Kuo Chang. Data Structures and Algorithms. World Scientific, 2003.
8 Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mostafa Hagog, Yen-

Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey. Efficient implementation of
sorting on multi-core simd cpu architecture. Proceedings of the VLDB Endowment, 1(2):1313–
1324, 2008. doi:10.14778/1454159.1454171.

9 Michael Codish, Luís Cruz-Filipe, Thorsten Ehlers, Mike Müller, and Peter Schneider-Kamp.
Sorting networks: To the end and back again. Journal of Computer and System Sciences,
2016. doi:10.1016/j.jcss.2016.04.004.

10 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT press, 3rd edition, 2009.

11 Amjad M. Daoud, Hussein Abdel-jaber, and Jafar Ababneh. Efficient non-quadratic quick
sort (nqquicksort). In Ezendu Ariwa and Eyas El-Qawasmeh, editors, Digital Enterprise and
Information Systems, pages 667–675. Springer, 2011.

12 Developer Zone. Intel ® Software Developer Zone, 2008. URL: https://software.intel.com/
en-us/articles/measuring-instruction-latency-and-throughput.

13 Jay Devore and Kenneth Berk. Modern Mathematical Statistics With Applications. Springer,
2012.

14 Jack J. Dongarra, Fred G. Gustavson, and Alan H. Karp. Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine. SIAM Review, 26(1):91–112, 1984.
doi:10.1137/1026003.

15 Michael Griebel. Numerical Simulation in Molecular Dynamics: Numerics, Algorithms,
Parallelization, Applications. Springer, 2007.

16 Shay Gueron and Vlad Krasnov. Fast quicksort implementation using avx instructions. The
Computer Journal, 59(1):83–90, 2016. doi:10.1093/comjnl/bxv063.

17 David R. Helman, David A. Bader, and Joseph JáJá. A randomized parallel sorting algorithm
with an experimental study. Journal of Parallel and Distributed Computing, 52(1):1–23, 1998.
doi:10.1006/jpdc.1998.1462.

18 Michael Herf. Radix tricks, 2001. URL: http://stereopsis.com/radix.html.
19 Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, and Toshio Nakatani. Aa-sort: A new

parallel sorting algorithm for multi-core simd processors. In 16th International Conference
on Parallel Architecture and Compilation Techniques (PACT 2007), pages 189–198, 2007.
doi:10.1109/PACT.2007.4336211.

20 Hiroshi Inoue and Kenjiro Taura. Simd- and cache-friendly algorithm for sorting an array
of structures. Proceedings of the VLDB Endowment, 8(11):1274–1285, 2015. doi:10.14778/
2809974.2809988.

21 Intel Corporation. Developer Reference for Intel ® Integrated Performance Primitives. URL:
https://software.intel.com/en-us/ipp-dev-reference.

SEA 2021

https://doi.org/10.4230/LIPIcs.ESA.2017.9
https://doi.org/10.1007/978-1-4471-4075-7
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
http://www.netlib.org/blas/
https://doi.org/10.14569/IJACSA.2017.081044
https://doi.org/10.14778/1454159.1454171
https://doi.org/10.1016/j.jcss.2016.04.004
https://software.intel.com/en-us/articles/measuring-instruction-latency-and-throughput
https://software.intel.com/en-us/articles/measuring-instruction-latency-and-throughput
https://doi.org/10.1137/1026003
https://doi.org/10.1093/comjnl/bxv063
https://doi.org/10.1006/jpdc.1998.1462
http://stereopsis.com/radix.html
https://doi.org/10.1109/PACT.2007.4336211
https://doi.org/10.14778/2809974.2809988
https://doi.org/10.14778/2809974.2809988
https://software.intel.com/en-us/ipp-dev-reference

3:14 Fast and Robust Vectorized In-Place Sorting of Primitive Types

22 Intel Corporation. Intel ® 64 and IA-32 Architectures Software Developer’s Manual, 2016.
23 Intel Corporation. Intel® Integrated Performance Primitives Cryptography: Developer Guide,

2020. URL: https://software.intel.com/sites/default/files/ippcp-devguide.pdf.
24 Intrinsics Guide. Intel intrinsics guide. URL: https://software.intel.com/sites/

landingpage/IntrinsicsGuide/.
25 Adrian Kaehler and Gary Bradski. Learning OpenCV 3: Computer Vision in C++ With the

OpenCV Library. O’Reilly Media, 2016.
26 Ronald Kneusel. Random Numbers and Computers. Springer, 1st edition, 2018.
27 Donald E. Knuth. The Art of Computer Programming: Volume 3: Sorting and Searching.

Addison-Wesley, 2nd edition, 1998.
28 Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.

Springer, 2006.
29 Ibrahim Küçük. Astrophysics. IntechOpen, 2012.
30 Tapio Lahdenmäki and Michael Leach. Relational Database Index Design and the Optimizers.

John Wiley & Sons, 2005.
31 Stewart A. Levin. A fully vectorized quicksort. Parallel Computing, 16:369–373, 1990.

doi:10.1016/0167-8191(90)90074-J.
32 Peng Li, David J. Lilja, Weikang Qian, Kia Bazargan, and Marc D. Riedel. Computation on

stochastic bit streams digital image processing case studies. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 22(3):449–462, 2014. doi:10.1109/TVLSI.2013.2247429.

33 Michal Ozery-Flato and Ron Shamir. Sorting by translocations via reversals theory. In
Comparative Genomics, pages 87–98. Springer, 2006. doi:10.1007/11864127_8.

34 Ian Parberry. The pairwise sorting network. Parallel Processing Letters, 2:205–211, 1992.
doi:10.1142/S0129626492000337.

35 Steven Ross. Boost.sort. URL: https://www.boost.org/doc/libs/1_67_0/libs/sort/doc/
html/index.html.

36 Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley, 4th edition, 2011.
37 Howard Jay Siegel. The universality of various types of simd machine interconnection networks.

SIGARCH Comput. Archit. News, 5(7):70–79, 1977. doi:10.1145/633615.810655.
38 Harold S. Stone. Sorting on star. IEEE Transactions on Software Engineering, SE-4(2):138–146,

1978. doi:10.1109/TSE.1978.231484.
39 Martin Weisser. Essential Programming for Linguistics. Edinburgh University Press, 2009.
40 Zekun Yin, Tianyu Zhang, André Müller, Hui Liu, Yanjie Wei, Bertil Schmidt, and Weiguo

Liu. Efficient parallel sort on avx-512-based multi-core and many-core architectures. In 2019
IEEE 21st International Conference on High Performance Computing and Communications;
IEEE 17th International Conference on Smart City; IEEE 5th International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), pages 168–176. IEEE, 2019. doi:
10.1109/HPCC/SmartCity/DSS.2019.00038.

41 Marco Zagha and Guy E. Blelloch. Radix sort for vector multiprocessors. In Proceedings
of the 1991 ACM/IEEE conference on Supercomputing, pages 712–721. ACM, 1991. doi:
10.1145/125826.126164.

A Worked Example of Vectorized In-Place Partitioning

Our vectorized partitioning technique is a hybrid of the techniques of Gueron and Krasnov
[16], and, Bramas [5] with additional optimizations. Our technique for partitioning an array
is demonstrated in Figure 6 using vectors that can hold four elements.

In the example in Figure 6, the array to be partitioned consists of 20 elements. The pivot
is 49. An arrow, with the text partition vector above, indicates the partitioning of a single
vector using the pivot vector v_pivot. While partitioning a vector, the elements smaller
than or equal to the pivot are arranged contiguously at the beginning of the vector, and
the elements greater than the pivot are arranged thereafter. The function partition vector
returns the number of elements greater than the pivot. Based on this information the indices

https://software.intel.com/sites/default/files/ippcp-devguide.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://doi.org/10.1016/0167-8191(90)90074-J
https://doi.org/10.1109/TVLSI.2013.2247429
https://doi.org/10.1007/11864127_8
https://doi.org/10.1142/S0129626492000337
https://www.boost.org/doc/libs/1_67_0/libs/sort/doc/html/index.html
https://www.boost.org/doc/libs/1_67_0/libs/sort/doc/html/index.html
https://doi.org/10.1145/633615.810655
https://doi.org/10.1109/TSE.1978.231484
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00038
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00038
https://doi.org/10.1145/125826.126164
https://doi.org/10.1145/125826.126164

M. Blacher, J. Giesen, and L. Kühne 3:15

84 22 8 38v_left 92 9 37 48v_right49 49 49 49v_pivot

84 22 8 38 2 79 25 49 91 67 59 22 99 69 17 15 92 9 37 48array

1

left_store right_store

left right

2

2 79 25 49v_current 2 25 49 79v_current

2 25 49 79 2 79 25 49 91 67 59 22 99 69 17 15 2 25 49 79array

left_store right_store

left right

partition vector

3

99 69 17 15v_current 17 15 99 69v_current

2 25 49 17 15 99 69 49 91 67 59 22 99 69 17 17 15 99 69 79array

left_store right_store

left right

partition vector

4

91 67 59 22v_current 22 91 67 59v_current

2 25 49 17 15 22 91 67 59 67 59 22 99 22 91 67 59 99 69 79array

left_store right_store

left == right

partition vector

5

84 22 8 38v_left 22 8 38 84v_left

2 25 49 17 15 22 22 8 38 84 22 8 38 84 91 67 59 99 69 79array

left_store

partition vector

6

92 9 37 48v_right 9 37 48 92v_right

2 25 49 17 15 22 22 8 38 9 37 48 92 84 91 67 59 99 69 79array

left_store

partition vector

Figure 6 Vectorized partitioning example.

left_store and right_store are updated. The indices left_store and right_store indicate the
store points in the array for a partitioned vector. The left and right indices, on the other
hand, are used to determine the next elements to load for partitioning. Already partitioned
elements are printed in bold. Elements that can be overwritten are grayed out. The details
of the procedure in Figure 6 are as follows:
1 At the beginning of partitioning, the first four elements of the array are stored in the

vector v_left and the last four elements in the vector v_right. The vectors v_left and
v_right are partitioned only after all the other elements of the array have been processed.

2 The four elements at the index left are loaded to v_current. The vector v_current is
partitioned and stored at the outer ends of the array. The store point left_store moves
three index positions to the right, because in v_current three elements are smaller than
or equal to the pivot. Equivalently, right_store moves one index position to the left, since
in v_current one element is greater than the pivot.

SEA 2021

3:16 Fast and Robust Vectorized In-Place Sorting of Primitive Types

3 Since the array contains fewer partitioned elements on the right side than on the left
(one element on the right side and three on the left), the four elements are loaded into
v_current from the right side of the array. After the partitioning of v_current and its
storage on both sides of the array according to the store points left_store and right_store
a total of five elements are partitioned to the left and three to the right side of the array.
The store points left_store and right_store are updated and right is moved four index
positions to the left.

4 The vector v_current is again loaded from the index right, since the right side of the
array contains fewer partitioned elements than the left side. The vector v_current is
partitioned and stored according to the store points left_store and right_store. The index
right and the store points are updated. The indices left and right are the same, which
means that the vectors v_left and v_right must be partitioned before the complete array
is fully partitioned.

5 The initially created vector v_left is partitioned and stored on both sides of the array
according to left_store and right_store. Three elements are smaller than the pivot, so
left_store is moved three index positions to the right. The store point right_store can be
ignored because it is no longer needed.

6 The initially created vector v_right is partitioned and stored according to left_store.
Three elements are smaller than the pivot, so left_store is moved three index positions to
the right.

Minimum Scan Cover and Variants -
Theory and Experiments
Kevin Buchin !

Department of Mathematics & Computer Science,
TU Eindhoven, The Netherlands

Sándor P. Fekete !

Department of Computer Science,
TU Braunschweig, Germany

Alexander Hill !

Department of Computer Science,
TU Braunschweig, Germany

Linda Kleist !

Department of Computer Science,
TU Braunschweig, Germany

Irina Kostitsyna !

Department of Mathematics & Computer Science,
TU Eindhoven, The Netherlands

Dominik Krupke !

Department of Computer Science,
TU Braunschweig, Germany

Roel Lambers !

Department of Mathematics & Computer Science,
TU Eindhoven, The Netherlands

Martijn Struijs !

Department of Mathematics & Computer Science,
TU Eindhoven, The Netherlands

Abstract
We consider a spectrum of geometric optimization problems motivated by contexts such as satellite
communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs,
we are given a graph G that is embedded in Euclidean space. The edges of G need to be scanned,
i.e., probed from both of their vertices. In order to scan their edge, two vertices need to face each
other; changing the heading of a vertex incurs some cost in terms of energy or rotation time that is
proportional to the corresponding rotation angle. Our goal is to compute schedules that minimize
the following objective functions: (i) in Minimum Makespan Scan Cover (MSC-MS), this is the
time until all edges are scanned; (ii) in Minimum Total Energy Scan Cover (MSC-TE), the
sum of all rotation angles; (iii) in Minimum Bottleneck Energy Scan Cover (MSC-BE), the
maximum total rotation angle at one vertex.

Previous theoretical work on MSC-MS revealed a close connection to graph coloring and the
cut cover problem, leading to hardness and approximability results. In this paper, we present
polynomial-time algorithms for 1D instances of MSC-TE and MSC-BE, but NP-hardness proofs
for bipartite 2D instances. For bipartite graphs in 2D, we also give 2-approximation algorithms
for both MSC-TE and MSC-BE. Most importantly, we provide a comprehensive study of practical
methods for all three problems. We compare three different mixed-integer programming and two
constraint programming approaches, and show how to compute provably optimal solutions for
geometric instances with up to 300 edges. Additionally, we compare the performance of different
meta-heuristics for even larger instances.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry; Applied computing → Operations research

Keywords and phrases Graph scanning, angular metric, makespan, energy, bottleneck, complexity,
approximation, algorithm engineering, mixed-integer programming, constraint programming

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.4

Related Version Full Version: http://arxiv.org/abs/2103.14599 [11]

Supplementary Material Software: https://github.com/ahillbs/minimum_scan_cover
archived at swh:1:dir:7524ee7b5783c34cf8bb187a116438dcb5c7beb8

Funding Work at TU Braunschweig was partially supported under grant FE407/21-1, “Computa-
tional Geometry: Solving Hard Optimization Problems” (CG:SHOP).

© Kevin Buchin, Sándor P. Fekete, Alexander Hill, Linda Kleist, Irina Kostitsyna, Dominik Krupke,
Roel Lambers, and Martijn Struijs;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.a.buchin@tue.nl
https://orcid.org/0000-0002-3022-7877
mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-9062-4241
mailto:a.hill@tu-bs.de
https://orcid.org/0000-0002-9270-9871
mailto:l.kleist@tu-bs.de
https://orcid.org/0000-0002-3786-916X
mailto:i.kostitsyna@tue.nl
https://orcid.org/0000-0003-0544-2257
mailto:d.krupke@tu-bs.de
https://orcid.org/0000-0003-1573-3496
mailto:r.lambers@tue.nl
https://orcid.org/0000-0002-0314-6094
mailto:m.a.c.struijs@tue.nl
https://orcid.org/0000-0002-0116-7238
https://doi.org/10.4230/LIPIcs.SEA.2021.4
http://arxiv.org/abs/2103.14599
https://github.com/ahillbs/minimum_scan_cover
https://archive.softwareheritage.org/swh:1:dir:7524ee7b5783c34cf8bb187a116438dcb5c7beb8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Minimum Scan Cover and Variants

1 Introduction

For many aspects of wireless communication, the relative direction, i.e., the angle of visibility
between different locations, plays a crucial role. A particularly striking example occurs
in the context of inter-satellite communication, which requires focused transmission, with
communication partners facing each other with directional, paraboloid antennas or laser
beams. This makes it impossible to exchange information with multiple partners at once.
Moreover, a change of communication partner requires a change of heading, which is costly
in the context of space missions with limited resources, making it worthwhile to invest in
good schedules. Problems of this type do not only arise from long-distance communication.
They also come into play when astro- and geophysical measurements are to be performed,
in which groups of spacecraft can determine physical quantities not just at their current
locations, but also along their common line of sight; see [21] for a description.

In previous theoretical work [15], we considered an optimization problem arising from
this context: How can we schedule a given set of intersatellite communications, such that
the overall timetable is as efficient as possible? In the problem Minimum Scan Cover
with Angular Costs (MSC), the task is to establish a collection of connections between a
given set of locations, described by a graph G = (V, E) that is embedded in space. For any
connection (or scan) of an edge, the two involved vertices need to face each other; changing
the heading of a vertex to cover a different connection takes an amount of time proportional
to the corresponding rotation angle. In [15], the goal considered was to minimize the time
until all tasks are completed, i.e., compute a geometric schedule of minimum makespan.

Given the importance of conserving energy on space (or drone) missions, this Minimum
Makespan Scan Cover (MSC-MS) is not the only important objective: In Minimum
Total Energy Scan Cover (MSC-TE), the goal is to minimize the sum of all rotation
angles; in Minimum Bottleneck Energy Scan Cover (MSC-BE), the task is to limit
the energy used by any one vertex by minimizing the maximum total rotation at one vertex.

In this paper, we complement the previous theoretical results on MSC-MS (hardness
and approximation) [15] by presenting an NP-hardness proof and a 2-approximation for
MSC-TE and MSC-BE for bipartite graphs in two dimensions. For one-dimensional instances
of MSC-TE and MSC-BE, we show a polynomial time algorithm and an upper bound
independent of the chromatic number, which shows a fundamental difference to MSC-MS.
Most importantly, we provide a comprehensive study of practical methods for all three
objective functions. We compare three different mixed-integer programming (MIP) and
two constraint programming (CP) approaches, and show how to compute provably optimal
solutions for geometric instances with up to 300 edges. Additionally, we evaluate the practical
performance of approximation algorithms and heuristics for even larger instances.

1.1 Previous Work
The use of directional antennas has introduced a number of geometric questions. The paper
at hand expands on previous work of Fekete, Kleist, and Krupke [15], who investigated
MSC-MS and identified a close connection to graph coloring and the (directed) cut cover
number. More precisely, MSC-MS in 1D and 2D is in Θ(log χ(G)), which implies that even
in 1D, there exists no constant-factor approximation for MSC-MS. For 2D, they present a
4.5-approximation for bipartite instances and show inapproximability for a constant better
than 3/2. This yields an O(c)-approximation for k-colored graphs with k ≤ χ(G)c.

Further problems involving directional antennas have been considered by Carmi et al. [12],
who study the α-MST problem. This problem arises from finding orientations of directional
antennas with α-cones, such that the connectivity graph yields a spanning tree of minimum

K. Buchin et al. 4:3

weight, based on bidirectional communication. They prove that for α < π/3, a solution may
not exist, while α ≥ π/3 always suffices. See Aschner and Katz [7] for more recent hardness
proofs and constant-factor approximations for some specific values of α.

Many other geometric optimization problems deal with turn cost. Arkin et al. [5, 6] show
hardness of finding an optimal milling tour with turn cost, even in relatively constrained
settings, and give approximation algorithms. The complexity of finding an optimal cycle cover
in a 2-dimensional grid graph was stated as Problem 53 in The Open Problems Project [14] and
shown to be NP-hard in [16], which also provides constant-factor approximations; practical
methods and results are given in [17], and visualized in the video [9].

Finding a fastest roundtrip for a set of points in the plane for which the travel time depends
only on the turn cost is called the Angular Metric Traveling Salesman Problem.
Aggarwal et al. [1] prove hardness and provide an O(log n) approximation algorithm. For the
abstract version on graphs in which “turns” correspond to weighted changes between edges,
Fellows et al. [19] show that the problem is fixed-parameter tractable in the number of turns,
the treewidth, and the maximum degree. Fekete and Woeginger [18] consider the problem of
connecting a set of points by a tour in which the angles of successive edges are constrained.

MSC-MS is a special case of scheduling in which the cost of a current job depends on the
sequence of the already processed ones; e.g., Allahverdi et al. [2, 3, 4] provide a comprehensive
overview, especially on practical work. In the context of earth observation, Li et al. [22]
and Augenstein et al. [8] describe MIPs and heuristics to schedule image acquisition and
downlink for satellites for which rotation and setup costs are taken into account.

1.2 Preliminaries and Problem Definitions

For all considered versions of Minimum Scan Cover (MSC), the input consists of a
(straight-line) embedded (not necessarily crossing-free) graph G = (V, E) with a finite vertex
set V ⊂ R2. We refer to the elements of V as points when their specific locations in R2 are
relevant; if we focus on graph properties, we may also refer to them as vertices. We denote
the undirected edge between u, v ∈ V by uv. For v ∈ V , we let N(v) = {u ∈ V : uv ∈ E}
be all vertices adjacent to v, and E(v) = {uv : u ∈ N(v)} be all edges incident to v. For
two adjacent edges uv, vw ∈ E(v), let α(uv, vw) ∈ [0, 180°] denote the smaller angle between
the lines supporting the segments uv and vw. The output for each problem is a scan cover
S : E → R+, such that for all pairs of adjacent edges e, e′, we have |S(e) − S(e′)| ≥ α(e, e′).
The geometric interpretation of a scan cover is that all points v ∈ V have a heading that can
change over time, and that if S(uv) = t then u and v face each other at time t. In this case,
we say that the edge uv is scanned at time t. Thus, the above condition on S guarantees
that S complies with the necessary rotation time if rotation speed is bounded by 1.

A rotation scheme describes the geometric change of headings of the vertices over a time
interval of length T , i.e., it is a map r : V × [0, T] 7→ [0°, 360°]. The total rotation angle of a
vertex v in r is the total amount that v rotates over [0, T]. For a given scan cover S, we are
particularly interested in edges that are scanned consecutively. Therefore, let νS(e, e′) = 1 if
e and e′ share exactly one vertex v and the edge e′ is scanned directly after e at v; otherwise
νS(e, e′) = 0.

The Problems. We consider the following three problems, defined by their respective
objectives. For a given graph G = (V, E) with vertices in the plane, find a scan cover S with

Minimum Makespan (MSC-MS): min max
e∈E

S(e)

SEA 2021

4:4 Minimum Scan Cover and Variants

Minimum Total Energy (MSC-TE): min
∑
v∈V

∑
e,e′∈E(v)

α(e, e′) · νS(e, e′)

Minimum Bottleneck Energy (MSC-BE): min max
v∈V

∑
e,e′∈E(v)

α(e, e′) · νS(e, e′)

Concentrating on the expensive and algorithmically challenging part of efficient rotations
between the edges, we do not fix the initial heading of the satellites. In fact, all algorithms
can be easily adapted to handle fixed initial headings. Furthermore, for every of the three
objectives, an f -approximation can be converted into a (f +1)-approximation for the problem
variant with fixed initial headings.

For a vertex v, we denote by Λ(v) the minimum angle, such that a cone of this angle with
apex v contains all edges in E(v). We call such a cone a Λ-cone of v and call the complement
of such a cone an outer cone of v. A Λ-cover is a scan cover for which every vertex v rotates
in a single direction, either clockwise or counterclockwise, with a total rotation angle equal
to Λ(v). Note that different vertices can rotate in different directions. A Λ-cover minimizes
both the MSC-TE and MSC-BE objectives.

1.3 Outline and Results
This paper consists of a theoretical part (Section 2) and a practical part (Section 3). Our
theoretical results complement the work on MSC-MS [15] by hardness and approximation
results for the two new objectives MSC-TE and MSC-BE. In Section 2, we show that both
problems can be solved efficiently in 1D; on the other hand, we prove that they are NP-hard
in 2D, even for bipartite graphs. Finally, we complement the hardness results by providing
2-approximations for bipartite graphs and O(log n)-approximations for general graphs. Our
practical study in Section 3 considers optimal solutions in Section 3.1 and heuristic solutions
in Section 3.2. For optimal solutions, we develop three mixed integer linear programs (MIPs),
as well as two constraint programs (CPs) and evaluate their practical performance on a
suite of benchmark instances. Solving instances of MSC-TE and MSC-BE to provable
optimality turned out to be quite difficult; for MSC-MS, we were able to solve instances with
up to 300 edges, based on one CP. In addition, we compared the solution quality of four
(meta-)heuristics and the approximation algorithms on larger instances with up to 800 edges.
In our experiments, a genetic algorithm and the intermediate solution after timeout of one
CP produced the best solutions. All omitted proofs can be found in the full version [11].

2 Complexity Results

Fekete, Kleist, and Krupke studied the computational complexity of MSC-MS [15]. In this
section, we provide new results for MSC-BE and MSC-TE.

For MSC-MS in 1D, when all vertices are placed on a line, there exists no constant-factor
approximation unless P = NP [15]. In contrast, we show that MSC-TE and MSC-BE in 1D
can be solved efficiently.

▶ Theorem 1. MSC-TE and MSC-BE in 1D are in P . Moreover, denoting by k the number
of vertices with neighbors to both sides, the objective value is 0 for k = 0, while for k > 0 it
is 180° · k for MSC-TE and 180° for MSC-BE.

Next we show that for 2D instances of MSC-TE and MSC-BE, there does not exist
an efficient algorithm, unless P = NP . Specifically, we show that MSC-TE and MSC-BE
are NP-hard in 2D, even when the underlying graph G = (V, E) is bipartite. Our proof is

K. Buchin et al. 4:5

based on the observation that if a Λ-cover exists, any scan cover optimal for MSC-TE is a
Λ-cover. If additionally all vertices have the same Λ(v), any scan cover optimal for MSC-BE
is a Λ-cover. We show finding a Λ-cover is NP-hard via a reduction from the NP-complete
problem Monotone Not-all-equal 3-satisfiability (MNAE3SAT) [23, 27], defined as
follows: Given a set of Boolean variables X and a set of clauses C with at most 3 literals
from X all of which are not negated, is there a 0/1-assignment to the variables in X, such
that for each clause in C, not all variables have the same value?

Given an instance I of the MNAE3SAT, we construct an MSC instance GI (with the
same Λ(v) for all vertices) that has a Λ-cover if and only if I has a valid variable assignment.
Recall that in a Λ-cover, the edges of each vertex are scanned in either clockwise or counter-
clockwise order. We encode variable assignment by the rotation direction of the vertices
in GI in a Λ-cover. A variable is encoded by a subgraph that contains a set of vertices that
have the same rotation direction in a Λ-cover, and a clause by a subgraph that contains three
vertices that cannot all have the same rotation direction in a Λ-cover. We connect variables
to clauses via wires, which are encoded by a subgraph that contains two vertices that have
the same rotation direction in a Λ-cover. See Figure 1 for an example of the construction.

▶ Theorem 2. MSC-TE and MSC-BE in 2D are NP-hard, even for bipartite graphs.

x4 = 0x2 = 0x1 = 1

C1 C2

x3 = 1

C3

Variable Gadget

W
ire

G
ad
get

Clause Gadget

Figure 1 The constructed graph GI for the instance (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)
of MNAE3SAT. The gadgets are drawn symbolically; also shown are the directions of the connector
vertices corresponding to the satisfying assignment x1 = x3 = 1, x2 = x4 = 0.

The construction in the proof of Theorem 2 establishes a gap between optimal and
suboptimal solutions, which implies a constant-factor approximation lower bound for MSC-
BE.

▶ Corollary 3. MSC-BE in 2D is NP-hard to approximate within a factor of 1.04, even for
bipartite graphs.

Next, we complement the 4.5-approximation algorithm for MSC-MS in bipartite graphs
in the plane [15] by presenting an approximation algorithms for both remaining objectives.

▶ Theorem 4. There exists a 2-approximation algorithm for MSC-BE and MSC-TE for each
bipartite graph G = (V1 ·∪ V2, E) embedded in the plane.

SEA 2021

4:6 Minimum Scan Cover and Variants

Proof. Defining V := V1 ∪ V2, the values maxv∈V Λ(v) and
∑

v∈V Λ(v) are clearly lower
bounds on the value of a scan cover minimizing MSC-BE and MSC-TE, respectively.

We use the following geometric property based on alternating angles that is also used
in [15]: Starting with opposite headings, two vertices face their edge at the same time when
both start a full clockwise rotation simultaneously. Defining start headings r(v, 0) := 0° for
v ∈ V1 and r(v, 0) := 180° for v ∈ V2, the clockwise rotation scheme induces a scan cover S

by defining the scan time S(e) of edge e as the time when its two vertices face each other.
We now show that in the rotation scheme r′ induced by S, i.e., every vertex v starts to

head towards its edge first scanned in S and then follows the order on E(v) defined by S,
the total rotation angle of each vertex v is at most 2Λ(v). To this end, we consider three
types of vertices; for an illustration consider Figure 2.

(a) Case (a). (b) Case (b). (c) Case (c).

Figure 2 Illustration for the rotation scheme r′ in the proof of Theorem 4.

(a) Case: r(v, 0) lies outside the Λ-cone of v. Then all edges of v are scanned by a clockwise
rotation, one after the other. Hence, v has a total rotation angle of Λ(v).

(b) Case: r(v, 0) lies inside the Λ-cone of v and Λ(v) ≥ 180°. Going over all edges clockwise
takes at most a full rotation of 360° ≤ 2Λ(v).

(c) Case: r(v, 0) lies inside the Λ-cone of v and Λ(v) < 180°. Let e1 and e2 denote the
bounding edges of the Λ-cone such that S(e1) ≤ S(e2). By definition, the minimal angle
of e1 and e2 is Λ(v) < 180°. Splitting the Λ-cone of v into two halves at r(v, 0), v scans
the edges in each half in clockwise direction, rotating an angle of Λ(v) counterclockwise
between e1 and e2. It follows that the total rotation angle of v is at most 2Λ(v).

As the total rotation angle is at most 2Λ(v) for each vertex v, MSC-BE and MSC-TE
are upper bounded by 2 · maxv∈V Λ(v) and 2 ·

∑
v∈V Λ(v). Together with the lower bounds

provided above, this shows that this scan cover is a 2-approximation for either objective. ◀

▶ Corollary 5. Let G = (V1 ·∪ V2, E) be a bipartite graph embedded in the plane such that the
points of V1 and V2 can be separated by a line. Then an optimal MSC-BE and MSC-TE of
G can be found in polynomial time.

Proof. We follow the same technique as in the proof of Theorem 4. We may assume without
loss of generality that the separating line is vertical and that the points of V1 lie left of the
line. Then, with the above definitions, every vertex is in case (a), i.e., the total rotation
angle for each vertex v is Λ(v). Consequently, the resulting scan cover is optimal for both
MSC-BE and MSC-TE. ◀

The insights from Theorem 4 yield an approximation algorithm for k-colored graphs.

▶ Corollary 6. For MSC-TE and MSC-BE of k-colored graphs embedded in 2D, there exists
an O (log (k))-approximation.

K. Buchin et al. 4:7

Proof. The edges of a k-colored graph G can be covered by ⌈log2(k)⌉ bipartite graphs Gi [25].
For each Gi, we use the 2-approximation of Theorem 4. Clearly, for both objectives, the
optimal scan time of G is lower bounded by the optimal scan time of every subgraph.
Consequently, scanning all Gi takes at most

∑
i 2 · OPT (Gi) ≤ 2⌈log2(k)⌉ · OPT (G), where

OPT denotes the optimum scan time for the respective objective. For adjusting the headings
between the scan covers of the bipartite graphs, we need (⌈log2(k)⌉ − 1) transition phases
each of which needs at most OPT (G). Hence, the total scan time is upper bounded by
(3⌈log2(k)⌉ − 1) · OPT (G). ◀

3 Experiments

For our experimental evaluation, we considered two types of benchmark instances in 2D,
which we call random and celestial. Random instances are generated by placing n points
chosen uniformly at random from the unit square, with each edge chosen with probability
p. Note that the visible area of a satellite constellation on the same altitude in low Earth
orbit is fairly close to a set of co-planar points and hence the square (or plane) serves as a
reasonable approximation.

Celestial instances are inspired by real-world instances of satellites in a shared orbit, in
which they maintain their relative positions while orbiting around a central body like Earth,
as long as no explicit orbit-changing maneuvers are carried out. They are characterized by a
set of points on a circle and a central circular obstacle. The points on the circle are chosen
uniformly at random; an edge exists if and only if its vertices see each other, i.e., the edge
does not intersect the central obstacle. Examples and the distribution of the nearly 2000
instances with up to 800 edges used for our experiments can be seen in Figure 3.

All experiments were run on Intel Core i7-3770 with 3.4 GHz and 32 GB of RAM.

(a) A celestial instance. (b) Instance distribution. (c) A random instance.

Figure 3 Examples of instances with 15 vertices and ∼ 70 edges: (a) celestial, (c) random, and
(b) the instance distribution. Auxiliary lines in (b) indicate graphs with edge densities 50% (dashed)
and 100% (solid) of complete graphs.

3.1 Exact Algorithms
We developed three mixed integer programs (MIPs) and two constraint programs (CPs)
to solve instances to provable optimality. Note that not every program solves all three
problems. An experimental evaluation is given at the end of this section. While we focus on
2-dimensional geometric instances, all formulations are applicable to all metric cost functions.

SEA 2021

4:8 Minimum Scan Cover and Variants

3.1.1 Mixed Integer Program 1 (MSC-MS, MSC-TE, MSC-BE)
Our first MIP, denoted by MIP-1, uses two types of variables. The first type are real variables
te ≥ 0 for all e ∈ E. The second type are Boolean variables x(e,e′) for all ordered edge pairs
(e, e′) ∈ E2. In a computed solution, the variables te define a scan cover in which S(e) := te

and the value of x(e,e′) corresponds to νS(e, e′). Because νS(e, e′) = 0 if |e ∩ e′| ̸= 1, we
directly set x(e,e′) := 0 in these cases. Consequently, the objective functions can be expressed
by substitution of S(e) with te and νS(e, e′) with x(e,e′). Note that a min-max objective can
be implemented by a single additional real variable and one additional constraint for each
term in the objective.

We introduce a set of constraints to guarantee that the t-variables and the x-variables
arise from a valid scan cover. Because the angle function α fulfills the triangle inequality,
it suffices to ensure the time difference of the t-variables for all x(e,e′) = 1. We know that
M1 := log2 n · 360° is an upper bound on the minimal makespan for a graph G in 2D with n

vertices [15]. Moreover, a makespan of M2 := |E| · 180° allows to scan each edge individually,
and thus an optimal scan cover of MSC-BE and MSC-TE can be realized in this makespan.
Therefore, by inserting the correct Mi, we can enforce feasible scan times by using the Big-M
method.

∀v ∈ V, ∀(e, e′) ∈ E(v) × E(v), e ̸= e′ : te′ ≥ te + α(e, e′) − (1 − x(e,e′)) · Mi. (1)

This leaves us with ensuring that the x-variables correspond to a feasible scan cover. First,
for every vertex v, an incident scanned edge e has at most one predecessor edge and one
successor edge in the scan order.

∀v ∈ V, e ∈ E(v) :
∑

e′∈E(v),e′ ̸=e

x(e,e′) ≤ 1 and
∑

e′∈E(v),e′ ̸=e

x(e′,e) ≤ 1 (2)

Second, the total number of scanned edges at vertex v is |E(v)|, i.e., the number of consecu-
tively scanned edge pairs, is |E(v)| − 1.

∀v ∈ V :
∑

e,e′∈E(v)×E(v),e̸=e′

x(e,e′) = |E(v)| − 1 (3)

Together, Equations (2) and (3) enforce that every vertex has exactly one first and one last
scanned edge in the induced scan order. Because Equation (1) enforces that the scan times
obey the rotation times, there are no cycles in the sequence defined by x if all angles are
positive. This fact is very similar to the Miller-Tucker-Zemlin formulation of the TSP [24]. In
the presence of 0°-angles, we dynamically add the following constraint similar to the Dantzig
formulation [13] to separate these cycles.

∀v ∈ V, ∀S ⊊ E(v), S ̸= ∅ :
∑

e∈S,e′∈E(v)\S

x(e,e′) + x(e′,e) ≥ 1 (4)

3.1.2 Mixed Integer Program 2 (MSC-MS)
The abstract definition of the MSC [15] can be directly implemented as a MIP, because
absolute values can be implemented using a Boolean variable. Some modern solvers like
Gurobi actually provide this functionality directly. Like for MIP-1 (Section 3.1.1), we have
a real-valued variable te ≥ 0 for each e ∈ E that states its scan time. We try to keep the
maximum value assigned to any te, e ∈ E as low as possible. For every two incident edges

K. Buchin et al. 4:9

vw and vu, we only have the constraint that tvw and tvu have to be at least the time apart
that v needs to rotate between these two. This results in the following MIP-2.

min max
e∈E

te (5)

s.t. |tvw − tvu| ≥ α(vu, vw) ∀vw, vu ∈ E (6)
te ≥ 0 ∀e ∈ E (7)

The main difference to MIP-1 is that we do not keep a record of the actually performed
rotations. As a consequence, MIP-2 can only be used for MSC-MS. However, on the positive
side, we do not need to dynamically add additional cycle constraints.

3.1.3 Mixed Integer Program 3 (MSC-TE, MSC-BE)
The third MIP (defined by Equations (2)–(4) and (8)), denoted by MIP-3, is a variant of
MIP-1 (Section 3.1.1) in which the t-variables and the corresponding Big-M based constraint
(Equation (1)) are removed. As a consequence, we may use it for MSC-BE and MSC-TE, as
they only need the x-variables.

It is possible that the scan orders at the individual vertices are cycle free, but that the
overall schedule has a deadlock when the vertices wait for each other, see Figures 4a and 4b.
We therefore prohibit directed cycles in the scan order defined by the x-variables (if not
already separated by Equation (4)) dynamically via callbacks for every newly found integral
solution. Violated constraints can be found via a simple DFS search.

∀k ∈ N|V |, ∀(e0, e1, . . . , ek−1) ∈ Ek : x(ek−1,e0) +
∑

i=0,1,...k−2
x(ei,ei+1) ≤ k − 1 (8)

Note that these cycles can also happen in MIP-1, but only with zero rotation costs between
the involved edges. Thus, they are irrelevant for the solution, as all of these edges can be
scanned at once.

3.1.4 Constraint Program 1 (MSC-MS)
Our first constraint program (denoted by CP-1) has the same formulation as MIP-2. The
only difference between the CP version and the MIP version lies in the employed solver. In
particular, absolute values can be modeled directly.

v0

v1

v2

v3

v4

v5

v6

v7

(a) Rotation scheme.

v0v7 v0v1

v1v2

v2v3

v3v4v4v5

v5v6

v6v7

v1v7
v0v2

v1v3

v2v4
v3v5

v4v6

v5v7

v0v6

(b) Cycle in scan order.

Figure 4 A globally infeasible edge order fulfilling Equations (2) and (3), i.e., it is cycle-free at
each vertex: (a) its rotations scheme (b) the resulting edge order that contains a cycle. An arc (e, e′)
in this graph corresponds to an x(e,e′) = 1.

SEA 2021

4:10 Minimum Scan Cover and Variants

3.1.5 Constraint Program 2 (MSC-TE, MSC-BE)
Our second constraint program (defined by Equations (2), (3), and (9)), denoted by CP-2,
is similar to MIP-3 described in Section 3.1.3. However, MIP-3 adds Equations (4) and (8)
dynamically, which our CP does not support. Because adding all these constraints directly
results in a prohibitively large formulation, we instead use a conditional variant of the
Miller-Tucker-Zemlin [24] formulation to eliminate cycles in the scan order. Different from
MIPs, we do not need the Big M method for CPs, but can implement conditional constraints
directly. More precisely, we add the variables oe ∈ N|E|, e ∈ E that state the cycle-free scan
order of the edges, which is enforced by the constraints

∀(e, e′) ∈ E × E : oe′ − oe ≥ 1 if x(e,e′) = 1. (9)

3.1.6 Experimental Evaluation of Exact Algorithms
We used Gurobi (v9.0.1) for solving the MIPs and CP-SAT of Google’s or-tools (v7.7.7810)
for solving the CPs. CP-SAT, which is based on a SAT solver, requires all coefficients and
variables to be integral for computational efficiency. We therefore convert the floating point
values to integral values including the first eight floating point digits (rounded, decimal).
While this weakens the accuracy, we calculated a theoretical maximal deviation of less than
1 × 10−4 %, which we consider negligible and comparable to the accuracy of the MIP solver.

We considered all solvers for the three objectives on the two instance types described
in the preliminaries. We evaluated how many instances of which size could still be solved
to provable optimality within a time limit of 900 sec; see Figure 5. For MSC-MS, CP-1 has
a clear lead, solving 50 % of the instances with 242 ± 5% edges for random instances, and
125 ± 5% edges for celestial instances. In our experiments, neither MIPs was able to solve
any instance with more than 70 edges to provable optimality. For MSC-TE, MIP-1 and
MIP-3 performed better than CP-2, but all solvers could barely solve instances with more
than 30 edges. While MIP-1 has a more direct objective without auxiliary constraints and
variables as needed for MSC-MS, its actual performance was slightly worse. For MSC-BE,
CP-2 performed considerably better; for celestial instances, it can solve instances nearly twice
as large (≥ 50 % at 48 ± 5% edges) than the MIPs. Surprisingly, MIP-1 was slightly better
than CP-2 for random instances, being able to solve 50 % of the instances with 61 ± 5% edges.
Overall, CPs appear to be considerably more effective than MIPs, and random instances
show to be easier to solve than celestial ones.

3.2 Approximations and Heuristics
For larger instances (beyond the size that was solvable to provable optimality), we developed
additional methods based on approximation algorithms and heuristics that provided good
(but not provably optimal) solutions.

3.2.1 Bipartite Approximation Algorithms with Coloring Partition
The constant-factor approximation algorithms for bipartite graphs extend to general graphs
by partitioning them into bipartite graphs and applying the corresponding approximation
algorithm to each of the bipartite subgraphs. More specifically, assigning a vector over
{0, 1} with ⌈log2 k⌉ bits to each color class of a k-colored graph induces a covering of its
edge set with ⌈log2 k⌉ bipartite graphs; for more details see Motwani and Naor [25]. For
MSC-MS, this even preserves the approximation factor [15]. We use the well-engineered

K. Buchin et al. 4:11

(a) Makespan.

(b) Total Energy. (c) Bottleneck Energy.

Figure 5 Performance of the exact solver measured in how many instances with m ± 5% edges
can be solved to provable optimality within 900 sec. The bump for CP-1 starting at 200 can be
explained by the instance distribution that at this point includes more instances with lower degree.

dsatur heuristic [10] for the graph coloring problem, which is shipped with the pyclustering-
package [26]. Concatenating the solutions of the bipartite graphs yields a feasible scan cover;
here we use a greedy approach to minimize the transition costs. We denote this method by
APX.

3.2.2 (Meta-)Heuristics

We also considered a number of (meta-)heuristics for optimizing the three objectives.
Greedy: Scan the first edge regarding a given or random order and then scan the edge that

increases the objective the least, until all edges are scanned. If multiple edges are equally
good, the first one regarding the order is selected. Many edges can be inserted without
extra cost and thus the initial edge order has a strong influence on the result.

Iterated Local Search (ILS): This simple but potentially slow heuristic considers for a given
start solution (in this case of Greedy) all possible swaps of edges; the locally best swap is
carried out, until no further improvement is possible.

Simulated Annealing (SA): This common variation of Iterated Local Search performs swaps
according to a probability based on the Boltzmann function Boltzmann(T, s1, s2) =
e1/T ·(s2−s1), where s1 is the objective value of the current best solution, s2 is the objective
value of the considered solution, and T ∈ R+ is the current temperature. The temperature

SEA 2021

4:12 Minimum Scan Cover and Variants

decreases over time and with it the likelihood of a worse solution being used. If the
objective does not improve for some time, the temperature is increased in order to escape
the local minimum. Due to randomization, we can run multiple searches in parallel. We
terminate if the solution has not improved for some time.

Genetic Algorithm (GA): We start with an initial population of 200 solutions generated by
a randomized Greedy. A solution is encoded by assigning each edge a fractional number
between 0.0 and 1.0, similar to [20]. The scan order is determined by sorting the edges
by these numbers. In each round, we build a new population by selecting the best 10%
of the old population (elitism) and then fill the rest of the population by crossovers of
the old generation. For a crossover, we select two solutions of the old generation with
a probability matching their objective values (uniform selection) and for each edge we
choose with equal probability either the number from the first or second solution (uniform
crossover). If by chance, two edges get the same number, we randomly change one of
them without influencing the order. Of the new generation of solutions, 3% are selected
for mutation. A mutation applies Greedy with a probability of 60% (the old order is
used as initial edge order) or changes each edge with a 3% probability to a new random
number. This is repeated until we either reach a time limit of 900 sec, 300 generations, or
60 generations without improvement. The best solution found during this process is then
returned.

3.2.3 Experimental Evaluation of Approximations and Heuristics
Figure 6 shows experimental results for heuristically solving instances with up to 800 edges
with a 900 sec time limit (at which point the current solution is returned). For MSC-MS,
CP-1 yields the best results even for larger instances (where it is aborted by the time limit)
by a margin of 25 % to 50 % to the next best algorithm, GA. For MSC-TE, the genetic
algorithm turned out to be the best approach for celestial instances by a margin of over
50 % for the larger instances. Surprisingly, CP-1 (optimizing for MSC-MS) yields slightly
better solutions than the genetic algorithm for random instances of MSC-TE. The most
interesting results are for MSC-BE. Here, CP-1 achieves the best results by a margin of
over 20 % for random instances, and GA (TE) the best results for celestial instances by
a margin of over 40 %. The excellent performance of CP-1 can be explained by a strong
correlation of MSC-MS and MSC-BE for random graphs, as shown in Figure 7. The fact that
GA (TE) is actually better in optimizing MSC-BE than GA (BE) can be explained by the
weaker gradients of bottleneck objectives, because only a small part of the solution (the most
expensive vertex) actually contributes to the value. However, the initial bump, at which the
exact solver of MSC-BE still yields (better) solutions, indicates that these solutions could be
far from optimal and that there may still be room for improvement.

Overall, either CP-1 or GA (TE) yields the best solutions. CP-1 is especially strong on
random instances for all three objectives. The approximation algorithm is usually among
the worst. For MSC-MS, the algorithm performs a full rotation for nearly all instances, as
maxv∈V Λ(v) is usually above 180°. Note that the factor can be worse than the approximation
factor 4.5 (resp. 2), because these are not bipartite graphs.

In Figure 7 (first row, fourth and last column) we can additionally see that for MSC-MS
the objective correlates strongly with the number of edges for celestial instances and with
the average degree for random instances. Total energy seems to primarily correlate with the
number of edges for both types; our random instances are on average twice as expensive. For
MSC-BE, only random graphs seem to have a significant correlation to MSC-MS and the
average degree.

K. Buchin et al. 4:13

(a) Makespan.

(b) Total energy. (c) Bottleneck energy.

Figure 6 Relative performance of the non-exact methods, measured by the obtained objective
value divided by the best known value. We used the same instances for the exact solver, so the better
denominator creates a small bump for smaller instance sizes, in particular for MSC-BE. Except for
CP-1, the exact solvers did not yield good solutions for larger instances, if any at all, and are thus
excluded for readability. The plots show the mean and the corresponding 95 % confidence interval.
We highlight the difference between the two instance types by using different styles for the lines.
Note that because these are relative values, a comparison of the performance over the different
objectives is not possible. ILS and SA are excluded for readability and perform only slightly better
than Greedy.

4 Conclusion and Open Problems

We studied problems of minimum scan cover with three different practically relevant objective
functions, providing both theoretical and practical contributions: complexity and algorithmic
results for the new objectives (MSC-TE and MSC-BE), and practical methods for computing
provably optimal solutions for smaller and near-optimal solutions for larger instances.

In particular, we developed multiple MIP and CP formulations and demonstrated that
instances of MSC-MS can be solved reliably for instances with more than 100 edges using
constraint programming which performs much better than our MIP approaches. While
this approach generalizes also to 3D, we only tested 2D instances; it is open whether these
results also carry over to 3D. MSC-TE and MSC-BE can only be solved to optimality for
much smaller instances. For solving larger instances without guarantee of optimality, we

SEA 2021

4:14 Minimum Scan Cover and Variants

Figure 7 Correlation and distribution of the best known objectives and instance properties. The
diagonal shows the density distribution of the x-values. The scatter plots have a point for every
existing value pair, which allows to detect correlations.

evaluated approximation algorithms and a spectrum of meta-heuristics. Within the given
time limit, CP-1 provided the best solutions for all MSC-MS instances, and even the random
instances for MSC-TE and MSC-BE, despite only optimizing for MSC-MS. For celestial
instances of MSC-TE and MSC-BE, the genetic algorithm optimizing for MSC-TE provides
the best solutions. However, the results indicate perspectives for improving the optimization
of MSC-BE.

At this point, fully dynamic instances (in which the vertices change their relative positions
to each other over time, such as for satellites with different orbit parameters) are yet to be
explored. These promise to be even more challenging, due to bigger gaps between optimal
and suboptimal solutions, resulting from possibly long delays when a limited communication
window has been missed.

K. Buchin et al. 4:15

References
1 Alok Aggarwal, Don Coppersmith, Sanjeev Khanna, Rajeev Motwani, and Baruch Schieber.

The angular-metric traveling salesman problem. SIAM J. Comp., 29(3):697–711, 1999.
2 Ali Allahverdi. The third comprehensive survey on scheduling problems with setup times/costs.

Eur. J. Oper. Res., 246(2):345–378, 2015.
3 Ali Allahverdi, Jatinder N.D. Gupta, and Tariq Aldowaisan. A review of scheduling research

involving setup considerations. Omega, 27(2):219–239, 1999.
4 Ali Allahverdi, C.T. Ng, T.C. Edwin Cheng, and Mikhail Y. Kovalyov. A survey of scheduling

problems with setup times or costs. Eur. J. Oper. Res., 187(3):985–1032, 2008.
5 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sándor P. Fekete, Joseph S. B. Mitchell,

and Saurabh Sethia. Optimal covering tours with turn costs. In Symp. Disc. Alg. (SODA),
pages 138–147, 2001.

6 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sándor P. Fekete, Joseph S.B. Mitchell,
and Saurabh Sethia. Optimal covering tours with turn costs. SIAM J. Comp., 35(3):531–566,
2005.

7 Rom Aschner and Matthew J. Katz. Bounded-angle spanning tree: modeling networks with
angular constraints. Algorithmica, 77(2):349–373, 2017.

8 Sean Augenstein, Alejandra Estanislao, Emmanuel Guere, and Sean Blaes. Optimal scheduling
of a constellation of Earth-imaging satellites, for maximal data throughput and efficient human
management. In Int. Conf. Automated Planning & Scheduling, pages 345–352, 2016.

9 Aaron T. Becker, Mustapha Debboun, Sándor P. Fekete, Dominik Krupke, and An Nguyen.
Zapping Zika with a mosquito-managing drone: Computing optimal flight patterns with
minimum turn cost. In Symp. Comp. Geom. (SoCG), pages 62:1–62:5, 2017.

10 Daniel Brélaz. New methods to color the vertices of a graph. Comm. ACM, 22(4):251–256,
1979.

11 Kevin Buchin, Sándor P. Fekete, Alexander Hill, Linda Kleist, Irina Kostitsyna, Dominik
Krupke, Roel Lambers, and Martijn Struijs. Minimum scan cover and variants – theory and
experiments, 2021. arXiv:2103.14599.

12 Paz Carmi, Matthew J. Katz, Zvi Lotker, and Adi Rosén. Connectivity guarantees for wireless
networks with directional antennas. Comp. Geom., 44(9):477–485, 2011.

13 George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the Op. Res. Soc. of America, 2(4):393–410, 1954.

14 Erik D. Demaine, Joseph S. B. Mitchell, and Joseph O’Rourke. The Open Problems Project.
URL: http://cs.smith.edu/~orourke/TOPP/.

15 Sándor P. Fekete, Linda Kleist, and Dominik Krupke. Minimum scan cover with angular
transition costs. In Symp. Comp. Geom. (SoCG), volume 164, pages 43:1–43:18, 2020.
doi:10.4230/LIPIcs.SoCG.2020.43.

16 Sándor P. Fekete and Dominik Krupke. Covering tours and cycle covers with turn costs:
Hardness and approximation. In Int. Conf. Algor. Complexity (CIAC), pages 224–236, 2019.

17 Sándor P. Fekete and Dominik Krupke. Practical methods for computing large covering tours
and cycle covers with turn cost. In Alg. Engin. Exp. (ALENEX), pages 186–198, 2019.

18 Sándor P. Fekete and Gerhard J. Woeginger. Angle-restricted tours in the plane. Comp.
Geom., 8:195–218, 1997.

19 Mike Fellows, Panos Giannopoulos, Christian Knauer, Christophe Paul, Frances A. Rosamond,
Sue Whitesides, and Nathan Yu. Milling a graph with turn costs: A parameterized complexity
perspective. In Worksh. Graph Theo. Conc. Comp. Sci. (WG), pages 123–134, 2010.

20 M. Gholami, M. Zandieh, and A. Alem-Tabriz. Scheduling hybrid flow shop with sequence-
dependent setup times and machines with random breakdowns. Int. J. Adv. Manufact. Tech.,
42(1-2):189–201, 2009.

21 Haje Korth, Michelle F. Thomsen, Karl-Heinz Glassmeier, and W. Scott Phillips. Particle
tomography of the inner magnetosphere. J. Geophys. Res.: Space Phys., 107(A9):SMP–5,
2002.

SEA 2021

http://arxiv.org/abs/2103.14599
http://cs.smith.edu/~orourke/TOPP/
https://doi.org/10.4230/LIPIcs.SoCG.2020.43

4:16 Minimum Scan Cover and Variants

22 Guoliang Li, Lining Xing, and Yingwu Chen. A hybrid online scheduling mechanism with revi-
sion and progressive techniques for autonomous Earth observation satellite. Acta Astronautica,
140:308–321, 2017.

23 László Lovász. Coverings and colorings of hypergraphs. In Southeastern Conf. Combin., Graph
Th., Comput. (SEICCGTC), pages 3–12, 1973.

24 Clair E. Miller, Albert W. Tucker, and Richard A. Zemlin. Integer programming formulation
of traveling salesman problems. J. ACM, 7(4):326–329, 1960.

25 Rajeev Motwani and Joseph (Seffi) Naor. On exact and approximate cut covers of graphs.
Technical report, Stanford University, Stanford, CA, USA, 1994.

26 Andrei Novikov. PyClustering: Data mining library. J. Open Source Softw., 4(36):1230, 2019.
27 Thomas J. Schaefer. The complexity of satisfiability problems. In Symp. Th. Comp. (STOC),

pages 216–226, 1978. doi:10.1145/800133.804350.

https://doi.org/10.1145/800133.804350

Three Is Enough for Steiner Trees
Emmanuel Arrighi ! Ï

University of Bergen, Norway

Mateus de Oliveira Oliveira ! Ï

University of Bergen, Norway

Abstract
In the Steiner tree problem, the input consists of an edge-weighted graph G together with a set
S of terminal vertices. The goal is to find a minimum weight tree in G that spans all terminals.
This fundamental NP-hard problem has direct applications in many subfields of combinatorial
optimization, such as planning, scheduling, etc. In this work we introduce a new heuristic for the
Steiner tree problem, based on a simple routine for improving the cost of sub-optimal Steiner trees:
first, the sub-optimal tree is split into three connected components, and then these components are
reconnected by using an algorithm that computes an optimal Steiner tree with 3-terminals (the
roots of the three components). We have implemented our heuristic into a solver and compared it
with several state-of-the-art solvers on well-known data sets. Our solver performs very well across all
the data sets, and outperforms most of the other benchmarked solvers on very large graphs, which
have been either obtained from real-world applications or from randomly generated data sets.

2012 ACM Subject Classification Theory of computation → Theory of randomized search heuristics

Keywords and phrases Steiner Tree, Heuristics, 3TST

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.5

Supplementary Material Software: https://github.com/AutoProving/3TST
archived at swh:1:dir:740b703cb9dceee55ef1571f49d1b58701a2082f

Funding Emmanuel Arrighi: Research Council of Norway (Grant no. 274526).
Mateus de Oliveira Oliveira: Research Council of Norway (Grant no. 288761) and Sigma2 Network
(NN9535K).

1 Introduction

In the Steiner tree problem, we are given an undirected graph G whose edges are weighted
with non-negative values, and a subset of vertices S, whose elements are called terminals.
The goal is to find a minimum-weight tree in G whose nodes span all terminal in S. This is a
fundamental NP hard problem [14], which has been studied since the seventies [11] and which
has found applications in several fields of research such as planning [16], social networks
[17], sensor networks [18], community detection [7], VLSI circuit design [13], as well as in
numerous applications in industry [6].

Since Steiner tree is an NP-hard problem, most research surrounding this problem
has been devoted both to the task of developing heuristics that work reasonably well in
practice, and to the task of developing approximation algorithms that provide approximation
guarantees within polynomial time. In particular, a short list of heuristic paradigms that
have been used to attack the Steiner-tree problem include simulated annealing [19], genetic
algorithms [5], logic programming [20] and constraint solving [8]. On the other hand, when
it comes to approximation algorithms, the approximation ratio guarantee achievable by
algorithms running in polynomial time was gradually improved from 2 [27] to 1.39 [4] in a
span of two and a half decades[27, 29, 1, 30, 21, 15, 12, 24, 25, 4]. It is worth noting that
unless P = NP , the Steiner tree problem in general graphs cannot be approximated within
a factor of 1 + ϵ for sufficiently small ϵ > 0 [2].

© Emmanuel Arrighi and Mateus de Oliveira Oliveira;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emmanuel.arrighi@uib.no
https://www.uib.no/en/persons/Emmanuel.Arrighi
https://orcid.org/0000-0002-0326-1893
mailto:mateus.oliveira@uib.no
http://unitslice.org/
https://orcid.org/0000-0001-7798-7446
https://doi.org/10.4230/LIPIcs.SEA.2021.5
https://github.com/AutoProving/3TST
https://archive.softwareheritage.org/swh:1:dir:740b703cb9dceee55ef1571f49d1b58701a2082f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Three Is Enough for Steiner Trees

In this work, we introduce a new heuristic for the Steiner tree problem and show that on
large graphs, it outperforms several state of the art algorithms. Our heuristic has two main
components. First, we devise a method that can be used to quickly compute a good initial
Steiner tree. The second component is based on an improvement procedure that takes a
Steiner tree as input and tries to output a lighter Steiner tree. Essentially, this procedure is
executed until a specific time limit is up. It is worth noting that our improvement strategy is
similar in spirit to an improvement procedure used in a celebrated approximation algorithm
due to Robins and Zelikovsky [25].

This improvement procedure can be explained in two high-level steps. First, given a
(potentially suboptimal) Steiner tree T0, one appropriately split it into three subtrees T1, T2
and T3 such that, all terminals are contained in T1 ∪ T2 ∪ T3. Then those three subtrees are
reconnected together by solving an instance of the Steiner tree problem with three terminals.
This gives a new Steiner tree T ′

0. As the Steiner tree problem with three terminals can be
solve exactly and efficiently, the weight of T ′

0 is at most the weigh t of T0.
We observe that there are two crucial differences between the optimization procedure used

in our heuristic and the one used in the algorithm of [25]. The first is that their algorithm is
run in a complete graph where for each two vertices v and u, the weight of the edge {v, u} is
the weight of the shortest path between v and u in the original graph, while our algorithm is
run without the need to compute shortest paths between all possible pairs of vertices. The
second difference is that in Robins and Zelikovsky’s algorithm, the split is chosen to be the
optimal one, while in our algorithm we replace optimality by a greedy selection strategy.
Building the complete graph and looking for the optimum splitting is costly and cannot
be done on large graphs. Therefore, the algorithm of [25] cannot handle large real world
instances. By doing something that does not need such large structures our approach can
handle large instances. As a consequence, our optimization procedure performs especially
well on large graphs. We also note that this optimization procedure can also be used to
improve the weight of sub-optimal Steiner trees output by other solvers.

To validate our new heuristic, we implement a solver in C++ and benchmark it against
several state of the art solvers for the Steiner tree problem on well known data sets. These
solvers implement several paradigms, such as genetic algorithms, linear programming al-
gorithms, local search algorithms as well as algorithms with approximation guarantees. The
data sets were obtained from a variety of sources, such as established real-world benchmarks
for the Steiner tree problem, data sets of common use in the field of road networks, and a
synthetic data set where instances are generated at random. Our solver obtained very good
results in most data sets. In particular our solver was able to obtain solutions that are on par
with those obtained by solvers that employed large scale mixed-linear programming suites
such as SCIP [10]. Our solver was also able to handle very large instances, with millions of
vertices and edges, while most of the solvers failed in these instances. A detailed exposition
of these results can be found in Section 4.

2 Preliminaries

In this section, we set notation for basic graph-theoretic concepts used in the description
of our algorithm. We let N denote the set of natural numbers. For a finite set V , we let
P(V, 2) = {{u, v} : u, v ∈ V, u ̸= v} be the set of unordered pairs of elements from V .

An undirected graph is a pair G = (V, E) where V is a set of vertices and E ⊆ P(V, 2) is
a set of undirected edges. We may write V (G) to denote the vertex-set of G and E(G) to
denote the edge-set of G. An edge-weighted graph is a graph G = (V, E) together with a cost
function cost : E → N. We let cost(G) be the sum of the costs of all edges in G.

E. Arrighi and M. de Oliveira Oliveira 5:3

We say that a graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
For each subset X ⊆ V (G), the subgraph of G induced by X is the graph G[X] with vertex
set X and edge set E(G) ∩ P(X, 2).

A walk in a graph G is a sequence of vertices v1, . . . , vk such that for each i in {1, . . . , k−1},
{vi, vi+1} ∈ E(G). A path in G is a walk in which all vertices are distinct. We let dist(v, v′)
be the minimum number of edges in a path between v and v′. We say that G is connected if
for each two vertices v1 and v2 there is a path between v1 and v2. A cycle is a walk v1, . . . , vk

such that v1 = vk and vi ̸= vj for i, j ≤ k and i ̸= j. A graph is acyclic if it contains no
cycle.

A tree is a connected acyclic graph T . A rooted tree is a tree T together with a distinguished
vertex r. If T is a rooted tree with root r, and v ∈ V (T) is such that r ̸= v, then the parent
of v is the unique neighbour v′ of v such that dist(r, v′) < dist(r, v). Note that the root r

does not have a parent. Each neighbour v′ of v with dist(r, v′) > dist(r, v) is called a child
of v. A leaf of T is a vertex with no child. A descendant of a vertex v is a vertex v′ such
that any path between r and v′ contains v. We consider v to be a descendant of itself. The
subtree of T rooted at v is the subgraph of T induced by the set of descendants of v.

Given a graph G, a spanning tree for G is a tree T such that T is a subgraph of G

and V (T) = V (G). Given a connected edge-weighted graph G, and a vertex v ∈ v(G), a
shortest-path tree for G rooted at v is an edge-weighted spanning tree T of G rooted at v such
that for each vertex u ∈ V (G), the distance between v and u in G is equal to the distance
between v and u in T .

Let G be an undirected edge-weighted graph and let S ⊆ V (G) be a subset of vertices of
G whose elements are called terminals. A Steiner tree in G is a subgraph T of G such that
T is a tree and S ⊆ V (T). We note that T may contain non-terminal vertices. We call the
vertices in V (T)\S, Steiner points. The cost of a tree, cost(T), is the sum of the costs of its
edges.

Let G be a graph and H be a connected subgraph of G. The contraction of H in G,
written G/H , is the graph obtained from G by first deleting all vertices of H , then by adding
a new vertex vH , and finally by connecting vH to a vertex u ∈ V (G)\V (H) in G/H if and
only if there is an edge between u and some vertex from V (H) in G. The weight of an edge
between vH and u is the minimum weight of an edge connecting a vertex of H to u. We
note that in practice, since our graphs are weighted, contraction of a subgraph H will be
simulated by simply setting the weights of the edges of H to 0, and therefore, the topology
of the original graph remains unchanged.

3 Our Heuristics

In this section, we describe the main components of the heuristic used in our Steiner tree
solver. There are three main components. A pre-processing component, which simplifies
the input graph, a greedy procedure that constructs an initial Steiner tree, an optimization
function that takes a given Steiner tree as input and outputs another Steiner tree that is
at least as light as the original one. This optimization procedure is then repeated until it
stabilizes, or until the time is up. Once the solution can not be improved, our solver starts
again with a new starting Steiner tree. It repeats this procedure until it receives a timeout
signal. These three components are described in more details below.

SEA 2021

5:4 Three Is Enough for Steiner Trees

c

t0

t1 t2

Figure 1 A Steiner tree with three terminals t0, t1 and t2 is a union of shortest paths between a
center vertex c and t0, t1 and t2 respectively.

3.1 Preprocessing

During the preprocessing step, we modify the input graph by applying two standard rules [28,
22] with the goal of eliminating redundancies. Once a solution is obtained in the modified
graph, this solution can be easily converted into a solution to the original graph. The two
preprocessing rules we apply are the following.

1. The first rule removes non-terminal vertices of degree 1 from the graph. These vertices
are redundant because if a Steiner tree contains such a vertex, then one can safely delete
it from the tree and still obtain a valid Steiner tree.

2. The second rule eliminates non-terminal vertices of degree 2. More precisely, let u be a
non-terminal vertex of degree 2 connected to vertices v1 and v2 by edges e1 = {u, v1} and
e2 = {u, v2} respectively. Then we delete the vertex u and the edges e1 and e2 from the
graph. If the graph has an edge of cost c connecting v1 and v2, then we update the cost of
this edge to min(c, cost(e1) + cost(e2)). Otherwise, we just add a new edge e = {v1, v2}
of cost cost(e1) + cost(e2) to the graph. This rule is repeated until no vertex of degree 2
is left.

This preprocessing step can be done in time O(n) where n is the number of vertices. Note
that if a solution to the modified graph contains an edge e = {u, v} that is not present in
the original graph, then one can obtain a solution to the original graph by replacing each
such edge e by a path between u and v in which all internal vertices have degree 2.

3.2 Minimum Steiner trees with 2 or 3 terminals

A fact that we will use often both in the construction of an initial Steiner tree and in our
optimization procedure is the fact that Steiner trees with two or three terminals can be
computed very quickly by using elementary algorithms. Indeed, a Steiner tree with two
terminal vertices t0 and t1 is simply a shortest path between these two vertices. On the other
hand, it can be shown that if T is a Steiner tree with 3 terminals {t0, t1, t2} then there is a
center vertex c such that T is obtained by taking the union of the shortest paths p0, p1 and p2
between c and the terminals t0, t1 and t2 respectively. We call c the center of T (Figure 1).
We observe that c can be one of the terminals. Therefore, to construct such a Steiner tree, we
can iterate through the vertices of G and set as the center the vertex that minimizes the sum
of the lengths of the shortest paths p0, p1 and p2. In this paper, we will call this procedure
3Steiner(G, t0, t1, t2). We note that 3Steiner(G, t0, t1, t2) is a deterministic procedure that
produces an optimal Steiner tree with three terminals, and runs in time O(n + m log(m))
where n the number of vertices and m the number of edges.

E. Arrighi and M. de Oliveira Oliveira 5:5

3.3 Constructing an Initial Solution
Once the preprocessing procedure has been applied, our algorithm proceeds to construct
suitable initial solutions. We actually implement two initialization functions. Both functions
take as input a triple (G, S, r) consisting of a graph G, a set of terminals S and a root vertex
r as input, and return a Steiner tree with terminals S rooted at r. We note that the root
can be an arbitrary vertex in the graph, but in our implementation we always choose this
root to be a terminal.

The first function, DetInitialST(G, S, r), is used to construct a reasonable first-solution
when our algorithm is executed for the first time. This function is completely deterministic.
At each step, the function DetInitialST(G, S, r) maintains the following data:
1. a partial Steiner tree T spanning some of the terminals;
2. a graph G/T obtained from G by contracting T to its root r; and
3. a shortest-path tree D for G/T rooted at r.

In the beginning, T contains only the root r, G/T = G, and D is simply the shortest-path
tree for G rooted at r. After this initialization has taken place, the algorithm enters in a
loop, where at each iteration, two new terminals t1 and t2 are incorporated to the tree. Each
iteration consists of three steps.
1. First, one applies a function SelectTerminals that selects terminals t1, t2 that will be

added to the tree. This function proceeds as follows. First, it sets t1 as the terminal with
greatest distance to the root vertex r in the graph G/T . Note that that the contraction
of T is simulated by setting the costs of its edges to 0 in the graph G. Subsequently,
a shortest path from r to t1 is contracted, and t2 is selected as the terminal with the
greatest distance to r.

2. Once the terminals t1 and t2 have been determined, one calls the function 3Steiner to
compute the minimum Steiner tree T ′ in G/T with respect to the terminal set {r, t1, t2}.

3. Finally, the two trees T and T ′ are merged. This merging process consists in taking the
spanning tree of the union T ∪ T ′.

The three steps above are repeated until a Steiner tree spanning at least |S| − 1 terminals
in S has been obtained. Suppose that some last terminal t ∈ S is not spanned by T ,
and that v is a vertex in T of minimum distance1 to t. Then the tree T is updated by
incorporating to it the shortest path between v and t. The algorithm described above
is specified more formally in Algorithm 1. The procedure DetInitialST(G, S, r) has time
complexity O(|S| · (n + m log(m))), where n the number of vertices, m the number of edges
of G.

Once we have a starting Steiner tree, we will improve it by applying the optimization
procedure described in Subsection 3.4. Since this optimization procedure may converge to a
local minimum, we will repeat the optimization process with respect to several initial Steiner
trees. Nevertheless, from this point on, each initial Steiner tree will be selected using a much
cheaper procedure, which we call RandomInitialST(G, S, r). This procedure simply selects
random path between some terminal t1 in S and the root vertex r. Subsequently, it selects a
random path between some terminal t2 and some vertex in the first path, then a random
path between some terminal t3 and some vertex in the previous paths and so on, until all
terminals have been selected. Each random path is selected by performing a random walk in
the graph starting at the terminal to be added.

1 More precisely dist(v, t) = minu∈T dist(u, t), where the distance function is computed with respect to G.

SEA 2021

5:6 Three Is Enough for Steiner Trees

Algorithm 1 DetInitialST(G, S, r).

Input: An edge weighted graph G, a set of terminals S, a vertex r

Output: A Steiner tree in G connecting all terminals in S

T ← r

while there are two terminals in S not spanned by T do
G′ ← G/T

D ← ShortestPathTree(G′, r)
t1, t2 ← SelectTerminals(G′, D)
T ′ ← 3Steiner(G′, r, t1, t2)
T ← SpanningTree(T ∪ T ′)

end
if some terminal t ∈ S is not spanned by T then

Let v be the vertex of T with smallest distance to t

Set T ← T ∪ p where p is a shortest path between v and t in G

end
return T

3.4 Optimization Procedure

Once the preprocessing stage has been completed, and an initial Steiner tree has been
computed using the procedure described in the previous subsection, our algorithm applies an
optimization procedure that takes a Steiner tree T rooted at a terminal vertex r as input,
and outputs a Steiner tree T ′, also rooted at r, with equal or smaller weight than T . This
optimization procedure is repeated until the time is up or until it has stabilized. Alternatively,
the procedure can be halted by an external algorithm even if it has not stabilized. In this
case the best Steiner tree computed so far is given as the result.

Intuitively, this optimization procedure works in two stages. In the first stage, we split
the Steiner tree T into three subtrees T1, T2 and Tr, where T1 and T2 are rooted at vertices
v1 and v2 respectively, and Tr is rooted at r. Subsequently, we select a vertex vr among the
leaves of Tr and reconnect the three subtrees by finding a suitable Steiner tree with respect
to terminals {v1, v2, vr}.

Figure 2 (a) A Steiner tree T , a pair {v1, v2} of vertices in SelectCut(T), and Steiner paths
p1 and p2. (b) The internal vertices of p1 and p2 are removed. This results into three trees Tr,
T1 and T2. (c) {r, v1, v2} are connected using an optimal 3-terminal Steiner tree obtained using
3Steiner(G, r, v1, v2) function.

E. Arrighi and M. de Oliveira Oliveira 5:7

Before describing the details of the procedure, we need to define the concept of a relevant
vertex. Let T be Steiner tree of G a rooted at a vertex r. We say that a vertex v ∈ V (T)
is relevant for T if v is a terminal or if v has at least 2 children in T . A path p in T is a
Steiner path if the two endpoints of p are relevant for T and if the remaining vertices of p are
Steiner points of degree 2 in T . Note that each middle vertex of a Steiner path has a unique
child. Let v and v′ be relevant vertices. We say that v′ is a relevant child of v if these two
vertices are the endpoints of a relevant path in T and if dist(r, v) < dist(r, v′).

The algorithm starts by applying a simple routine that prunes the input Steiner tree.
More precisely, this routine processes the input tree by removing every Steiner point that
does not have a terminal as descendant. Such Steiner points do not connect the root to any
terminal, and therefore can be safely removed. The resulting tree is still a Steiner tree and
every leaf is a terminal.

Subsequently, the algorithm executes a procedure Improve(G, S, T) that takes a graph G,
a set of terminals S and a tree T as input, and tries to modify T with the goal of reducing
its cost by proceeding as follows.

1. First, we construct a set SelectCut(T) containing all pairs of the form {v1, v2} where both
v1 and v2 are relevant vertices, and the unique path connecting v1 to v2 in T has no
relevant vertex, other than possibly the root (which is always relevant).

2. Now, for each pair of vertices (v1, v2) in the list SelectCut(T) built in the previous step,
we call a function Cut(T, v1, v2) that cuts the tree above each of the vertices v1 and v2.
More precisely, for each i ∈ {1, 2}, one deletes from T the internal vertices of the unique
Steiner path pi that starts at vi that is contained in the unique path between vi and vr

in T . Such Steiner paths p1 and p2 are always guaranteed to exist because the root is a
relevant vertex. This process splits the original tree into three disjoint subtrees Tr, T1,
T2 (Figure 2.(b)).

3. Subsequently, the algorithm contracts each of the three subtrees into a single vertex.
More precisely, Tr is contracted to r, T1 is contracted to v1, and T2 is contracted to v2.
We let G′ be the contracted graph. We note that in practice, the contraction of a subtree
is simulated by setting the cost of each edge of the subtree to 0.

4. Finally we apply the subroutine 3Steiner(G′, r, v1, v2) to computes an optimal 3-terminal
Steiner tree with terminal set {r, v1, v2}. This tree, together with the three subtrees Tr,
T1 and T2 give rise to a graph Tr ∪T1 ∪T2 ∪ 3Steiner(G′, r, v1, v2) whose weight is at most
the weight of the input tree T . The algorithm then returns a spanning-tree of this graph.

A summary of the algorithm is provided below (Algorithm 2). Let t be the number of
terminals in the graph, and ∆ be the maximum degree of the graph G. We note that relevant
vertices are either terminals or have degree at least 2, therefore, there are at most O(t) relevant
vertices. And for each relevant vertices, the algorithm generates at most ∆2 pair of vertices.
Therefore, the time complexity of the function Improve(G, S, r) is O(t ·∆2 · (n + m log(m))),
where n is the number of vertices and m is the number of edges in G.

4 Experimental results

We have implemented our heuristic algorithm in C++ and compared it with six state-of-the
art solvers for the Steiner tree problem, including solvers that competed at the PACE
challenge 2018 [3]. We refer to our solver as 3TST, an acronym for 3-Terminal Steiner Tree.
The remaining solvers in our benchmark are named according to the surnames, or initials of
their respective authors. These solvers are listed below.

SEA 2021

5:8 Three Is Enough for Steiner Trees

Algorithm 2 Improve(G, S, T).

Input: An edge weighted graph G, a set of terminals S and a Steiner tree T in G

spanning S

Output: A Steiner tree T ′ of cost at most cost(T) spanning S.
for {v1, v2} ∈ SelectCut(T) do

G′ ← G

if v1 ∈ T and v2 ∈ T then
(Tr, T1, T2)← Cut(T, v1, v2)
G′ ← G′/Tr/T1/T2 (G′ is obtained by contracting Tr, T1 and T2)
T ← SpanningTree(Tr ∪ T1 ∪ T2 ∪ 3Steiner(G′, r, v1, v2))

end
end
return T

1. Grandcola’s Solver2 implements a local search algorithm.
2. HTKME Solver3 combines a star contraction algorithm from [9] with several auxiliary

heuristics.
3. HGSSB Solver4 performs a shortest path heuristic followed by a local optimization step.
4. RCLG Solver5 implements an evolutionary algorithm.
5. KR Solver6 reduces the Steiner tree problem to a linear programming problem.
6. AO solver7 is based on a local optimization heuristic.

We used the original implementation of each of these solvers in our benchmark, without
any modification in the code. We benchmarked all the solvers on different data sets, some
of which are well established datasets for the Steiner tree problem (PACE2018 dataset [3],
Vienna dataset), and some of which are well known datasets in the field of networks (Urban
Road Networks set [23], Network repository [26]). Finally, we also compared the solvers on
synthetic data sets obtained by generating random d-regular graphs for distinct values of d.

For each graph considered in our benchmark, we run each solver with a time limit of 30
minutes. When the time limit was reached, each solver received a Unix signal SIGTERM,
and had 30 seconds to output a solution before being killed. This is the same experimental
setting used in the PACE challenge 2018, whose theme was the Steiner tree problem. Each
solution is associated with a score, which is defined as the relative distance of the solution to
the best solution found during the whole experiments. If the value of the solution is v and
the best solution is b then the score is the ratio v−b

b . The score of a solver on a data set is
the sum of the scores over all graphs in the data set. With this measure, the lower the score
the better is the performance of the solver. In particular, a solver that gets a score of 0 in a
given instance is the best solver on that instance.

For some instances of some data sets, some solvers did not output a feasible solution. In
these cases, we assigned a default value for the instance. To avoid penalizing excessively a
solver on such instances, we have defined the default value as the weight of a Steiner tree
obtained by computing a minimum spanning tree of the input graph and subsequently by
pruning this tree in such a way that each leaf is a terminal.

2 http://www.dil.univ-mrs.fr/~gcolas/sgls.c
3 https://github.com/goderik01/PACE2018
4 https://github.com/maxhort/Pacechallenge-TrackC/
5 https://github.com/HeathcliffAC/SteinerTreeProblem
6 https://github.com/dRehfeldt/scipjack/
7 https://github.com/SteinerGardeners/TrackC-Version1

http://www.dil.univ-mrs.fr/~gcolas/sgls.c
https://github.com/goderik01/PACE2018
https://github.com/maxhort/Pacechallenge-TrackC/
https://github.com/HeathcliffAC/SteinerTreeProblem
https://github.com/dRehfeldt/scipjack/
https://github.com/SteinerGardeners/TrackC-Version1

E. Arrighi and M. de Oliveira Oliveira 5:9

Table 1 Summary: ratios for all algorithms and all data sets. The smallest the value the better
is the solver on a given data set. A value of 0 means that the solver was the best in all instances
of the data set. Values in bold are the smallest values on the dataset among all the solvers. The
superscript number in the column of our solver give the rank of our solver on that data set. For
example 0.03972 means that our solver is the second best solver on the data set. (*) means that for
some instances, the solver did not output a feasible solution. NC means that the solver could not
find a solution for any of the instances of the data set.

Set/Solvers AO Grandcolas HGSSB HTKME KR RCLG 3TST

PACE 2018 1.3756 1.6682 3.6119 0.6589 0.1994 0.1755 0.71303

Geo Original 0.2579 0.4889 1.0904 0.1032 2.2048e-05 0.0707 0.03972

Geo Prepro. 0.0661 0.0639 0.9802 0.0723 0.0009 0.0543 0.04722

I Simple 0.0081 0.0354 0.2454 0.0054 0. 0.0102 0.00563

I Advanced 0.0294 0.0393 0.4100 0.0146 0. 0.0128 0.01994

3-regular 0.3081 0.1656 1.1526 0.2324 0. 0.0610 0.12523

4-regular 0.3027 0.2385 1.1380 0.3453 5.0182* 0.0616 0.14142

5-regular 0.4151 0.2642 1.0573 0.4176 9.8697* 0.0123 0.13252

6-regular 0.3472 0.1668 1.1315 0.4133 8.2781* 0.0304 0.17293

7-regular 0.4414 0.2909 1.0943 3.2680* 8.7525* 0.0332 0.21792

8-regular 0.4854 0.2840 1.1815 1.1467* 3.1947* 0.0997 0.31233

9-regular 0.3554 0.2205 1.0640 2.9180* 2.4698* 0.1008 0.27623

10-regular 0.6159 0.2950 1.2266 4.5041* 4.0639* 0.0942 0.35853

20-regular 0.5437 0.2385 8.4318* 13.2870* 6.4683* 0.0671 0.45913

City Road 4.5950* 3.2082* 10.8455* 0.5466 0. 5.3683* 0.92243

Big Road 4.9210* NC NC 4.1762* 3.4190* NC 0.4513*1

Each solver that uses a random procedure has an option to choose a particular seed with
the goal of making a computation deterministic, and therefore reproducible. We used the
same seed for all experiments (seed = 10). This seed was chosen before experiments were
run. All our experiments were executed on CoreTM i7-4770S computers with 16 Gb of RAM
running UbuntuTM 16.04.

In all figures and tables, our implementation is called 3TST. Table 1 summarises all
experiments. This table gathers the sum of ratios obtained by each algorithm on each data
set. The symbol (*) following an entry in the table is used to indicate that for some graphs
in the data set, the solver did not output a feasible solution. NC means that the solver did
not output a feasible solution for any of the graph in the data set. We can see that our
implementation (3TST) obtains good results in most data sets. Additionally, it is worth
noting that our implementation is the one that could find feasible solutions more often in
the Big Road Networks data set, which contains graphs with millions of nodes.

PACE-Challenge

Graphs of the PACE Challenge 2018 dataset were selected by the organizers of the competition
from the hard instances of the well known Steinlib and Vienna data sets. The average number
of vertices is 27K, the average number of edges is 48K, and the average number of terminals
is 1114, with a median at 360.5. Finally, most of these instances have treewidth above 40.

SEA 2021

5:10 Three Is Enough for Steiner Trees

Figure 3 shows the score of each solver on each instance. Instances are sorted by increasing
number of vertices. On the first half of the instances, our implementation provide decent
solution but not as good as RCLG, KR or HTKME which are among the four first in the
PACE Challenge 2018. And Figure 4 show a focus on the second half without the HGSSB
solver for clarity because it has quite large ratio compare to the other solvers. On those larger
instances with smaller average degree, our implementation is very good and almost on par
with KR which is the best solver on this part of the data. We note that the implementation
of KR is based on the SCIP Optimization Suite, a state-of-the-art tool for mixed integer
programming [10]. We also note that the maximum ratio of our solver on these instances
was 0.008, while in most instances this ratio was much smaller.

Vienna set

Graphs in the Vienna set were generated from real-world telecommunication networks at the
University of Vienna. This dataset is split into several types of instances. We realized our
benchmark in the so called I-Instances sub-dataset, which contains 85 instances representing
deployment areas from various Austrian cities, but they also include rural areas with smaller
population density and very sparse infrastructure. The underlying graphs contain between
7K and 178K nodes, 9K and 239K edges, and between 38 and 4991 terminals. I-instances
are available after simple preprocessing that eliminates non-terminal nodes of degrees 1 and
that contracts non-terminal nodes of degree 2.

Figure 5 shows the score of each solver on each instance of the I simple preprocessed
instances data set without the HGSSB solver for clarity because it has quite large ratio
compare to the other solvers. Instances are sorted by increasing number of vertices. We
can see a similar behaviour as for the PACE Challenge instances. On small instances, our
implementation gives decent solutions and show its strength on larger instance where it give
very good solutions. The instances of this data set are small enough so that the KR Solver,
which is base on an exact solver, manage to give the best solution in all case. On such data
set solutions given by KR Solver can be seen as the ground truth.

d-regular graphs

We generated random d-regular graphs using the random generator from the python pack-
age Networkx. The number of vertices were chosen uniformly at random from the range
[10000; 200000]. The weights on the edge follow a normal distribution with mean uniformly
chosen from the range [2000; 10000] and standard deviation uniformly chosen from the
range [200; 2000]. Negative weights were set to 0. The number of terminals was chosen
uniformly at random between 2% and 10% of the number of vertices. Terminals were
chosen uniformly at random from the vertices. We generated 10 graphs for each d in the set
{3, 4, 5, 6, 7, 8, 9, 10, 20}.

Figure 6 and Table 1 show the evolution of the ratio for each solver with respect to
the degree d of the vertices of the graphs. The best solver in these datasets was the solver
RCLG, which implements a genetic algorithm. The ratios obtained by our solver (3TST)
alternated between the second best and third best. This ratio varied from 0.1252 for 3-regular
graphs, to 0.4591 for 20-regular graphs. We note that starting from k = 4, the solver KR,
which reduces the Steiner tree problem to mixed integer-programming, started failing to give
feasible solutions for some instances.

E. Arrighi and M. de Oliveira Oliveira 5:11

Table 2 Big road networks: ratios for all algorithms on the big road networks data set. The
smallest the value the better is the solver on a given data set. A value of 0 means that the solver
was the best the instance. The superscript number in the column of our solver give the rank of our
solver on that instance. For example 0.08912 means that our solver is the second best solver on the
instance. NC means that the solver could not find a solution for the instance.

Set/Solvers AO Grandcolas HGSSB HTKME KR RCLG 3TST

Instance 1 NC NC NC NC NC NC 0.1

Instance 2 NC NC NC 0. NC NC 0.08912

Instance 3 NC NC NC NC NC NC 0.1

Instance 4 NC NC NC NC 0. NC 0.12192

Instance 5 NC NC NC NC 0. NC NC

City Road Networks

This well known data set contains graphs associated with road networks for 80 of the most
populated urban areas in the world. As the original graphs were not connected we filtered
each instance by taking only the largest connected component of each graph. Since these
graphs do not come originally with information about terminal nodes, we selected these
terminals at random. First, we selected a number r uniformly at random in the range
between 2% and 10% of the number of vertices. Subsequently, we selected r distinct vertices
uniformly at random among the vertices of the graph. The graphs contain between 2K and
685K nodes, 3K and 924K edges and between 246 and 53275 terminals

Figure 7 shows the score of each solver on each instance of the City Road Networks set.
Instances are sorted by increasing number of vertices. We can see that on the first half of the
instances, almost all solvers manage to give really good solution. As the size of the instances
grow, the solver KR, which reduces Steiner tree to mixed-integer programming, starts to be
the dominant best solver. Nevertheless, our solver still outputs solutions with a very good
ration (of at most 0.2).

Big Road Networks

In this data set was used to push the solvers to their limits. We selected 9 unweighted
road networks with more than 1 million nodes. As in the previous data set, the number of
terminals was chosen uniformly at random between 2% and 10% of the number of vertices.
Since no solver could output a feasible solution for the 4 largest graphs we only show results
for the remaining five. These graphs contain between 1087K and 6686K nodes, 1541K and
7013K edges, and between 52K and 661K terminals

Table 2 shows the ratio of each solver on each of these five instances. On this data set
only KR, RCLG and our algorithm (3TST) managed to output some solution for some
of the instances. On the 9 graphs, KR output 2 solutions, HTKME 1 solution, and our
implementation 4 solutions. This dataset highlights one of the strengths of our solver, which
is the ability to handle very large instances and still give good solutions, when compared
with other solvers.

5 Conclusion

In this work, we introduced a simple combinatorial heuristic algorithm for the Steiner tree
problem. Our heuristic is similar in spirit to the classic approximation algorithm of Robin and
Zelikovsky [25], that works by replacing sub-trees of a prospective solution with Steiner trees

SEA 2021

5:12 Three Is Enough for Steiner Trees

on a small set of terminals. In our case, we use a routine that splits a prospective solution
Steiner tree into three disjoint subtrees, and that reconnects these subtrees by taking the
union with a 3-terminal Steiner tree, where the terminals are the roots of the subtrees. We
note that one distinguishing feature of our algorithm is that it is well suited for large graphs,
since it does not require the book-keeping of the distances between all pairs of vertices in the
graph. Indeed we almost only need to keep track of of the edges of a slightly pre-processed
version of the input graph, where non-terminal vertices of degree 1 are removed, and edges
containing non-terminal vertices of degree 2 are contracted.

Our experimental results have shown that our algorithm fits well the category of a general
purpose Steiner tree heuristic, since it was able to obtain good solutions in all benchmarked
datasets when compared with other solvers. We note that the best solver in some datasets
was built upon a state-of-the art mixed-integer programming package. In some other datasets,
the best solver was based on genetic algorithms. On the other hand, our algorithm essentially
consists in the application of a single simple replacement routine that is applied multiple
times until the time limit is reached. Still the solutions obtained by our solvers were very
competitive, often being the second best in the benchmarks and with a very small ratio
(v − b)/b where v is the weight of our solution and b the weight of the best solver. It is also
worth noting that our algorithm was able to handle graphs with millions of vertices, while
most of the other solvers failed in all these big instances. Finally, it is worth noting that one
possible application of our Steiner-tree improvement sub-routine is as a black-box that can
be used to improve the solution output by other solvers.

References
1 Piotr Berman and Viswanathan Ramaiyer. Improved approximations for the steiner tree

problem. J. Algorithms, 17(3):381–408, 1994.
2 Marshall W. Bern and Paul E. Plassmann. The steiner problem with edge lengths 1 and 2.

Inf. Process. Lett., 32(4):171–176, 1989.
3 Édouard Bonnet and Florian Sikora. The PACE 2018 Parameterized Algorithms and Compu-

tational Experiments Challenge: The Third Iteration. In Proc. of IPEC 2018, volume 115,
pages 26:1–26:15, 2019.

4 Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree approx-
imation via iterative randomized rounding. J. ACM, 60(1):6:1–6:33, 2013.

5 Goutam Chakraborty. Genetic algorithm approaches to solve various steiner tree problems. In
Steiner Trees in Industry, pages 29–69. Springer, 2001.

6 Xiuzhen Cheng, Yingshu Li, Ding-Zhu Du, and Hung Q Ngo. Steiner trees in industry. In
Handbook of combinatorial optimization, pages 193–216. Springer, 2004.

7 Mung Chiang, Henry Lam, Zhenming Liu, and H. Vincent Poor. Why steiner-tree type
algorithms work for community detection. In Proc. of (AISTATS 2013), volume 31, pages
187–195, 2013.

8 Diego de Uña, Graeme Gange, Peter Schachte, and Peter J Stuckey. Steiner tree problems
with side constraints using constraint programming. In Proc. of the 30th AAAI Conference on
Artificial Intelligence, 2016.

9 Pavel Dvorák, Andreas Emil Feldmann, Dusan Knop, Tomás Masarík, Tomas Toufar, and
Pavel Veselý. Parameterized approximation schemes for steiner trees with small number of
steiner vertices. In Proc. of (STACS 2018), volume 96, pages 26:1–26:15, 2018.

10 Ambros Gleixner, Leon Eifler, Tristan Gally, Gerald Gamrath, Patrick Gemander, Robert Lion
Gottwald, Gregor Hendel, Christopher Hojny, Thorsten Koch, Matthias Miltenberger, Benjamin
Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Franziska Schlösser, Felipe
Serrano, Yuji Shinano, Jan Merlin Viernickel, Stefan Vigerske, Dieter Weninger, Jonas T.

E. Arrighi and M. de Oliveira Oliveira 5:13

Witt, and Jakob Witzig. The SCIP Optimization Suite 5.0. ZIB-Report 17-61, Zuse Institute
Berlin, December 2017. URL: http://nbn-resolving.de/urn:nbn:de:0297-zib-66297.

11 S Louis Hakimi. Steiner’s problem in graphs and its implications. Networks, 1(2):113–133,
1971.

12 Stefan Hougardy and Hans Jürgen Prömel. A 1.598 approximation algorithm for the steiner
problem in graphs. In Proc. of the 10th Symposium on Discrete Algorithms (SODA 1999),
pages 448–453, 1999.

13 Rostam Joobbani. An artificial intelligence approach to VLSI routing, volume 9. Springer
Science & Business Media, 2012.

14 Richard M. Karp. Reducibility among combinatorial problems. In Proc. of Complexity of
Computer Computations, The IBM Research Symposia Series, pages 85–103, 1972.

15 Marek Karpinski and Alexander Zelikovsky. New approximation algorithms for the steiner
tree problems. J. Comb. Optim., 1(1):47–65, 1997.

16 Emil Keyder and Hector Geffner. Trees of shortest paths vs. steiner trees: Understanding and
improving delete relaxation heuristics. In Proc. of the 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), pages 1734–1739, 2009.

17 Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of experts in social networks.
In Proc. of 15th International Conference on Knowledge Discovery and Data Mining (KDD
2009), pages 467–476, 2009.

18 Sookyoung Lee and Mohamed F. Younis. Recovery from multiple simultaneous failures in
wireless sensor networks using minimum steiner tree. J. Parallel Distrib. Comput., 70(5):525–
536, 2010.

19 M Lundy. Applications of the annealing algorithm to combinatorial problems in statistics.
Biometrika, 72(1):191–198, 1985.

20 Mohamed El Bachir Menai. A logic-based approach to solve the steiner tree problem. In IFIP
International Conference on Artificial Intelligence Applications and Innovations, pages 73–79.
Springer, 2009.

21 Hans Jürgen Prömel and Angelika Steger. Rnc-approximation algorithms for the steiner
problem. In Proc. of the 14th Annual Symposium on Theoretical Aspects of Computer Science
(STACS 1997), Proceedings, volume 1200 of LNCS, pages 559–570, 1997.

22 Daniel Rehfeldt, Thorsten Koch, and Stephen J. Maher. Reduction techniques for the
prize collecting steiner tree problem and the maximum-weight connected subgraph problem.
Networks, 73(2):206–233, 2019. doi:10.1002/net.21857.

23 Urban Road Networks. Urban road network data, January 2016. doi:10.6084/m9.figshare.
2061897.v1.

24 Gabriel Robins and Alexander Zelikovsky. Improved steiner tree approximation in graphs. In
Proc. of the 11th Symposium on Discrete Algorithms (SODA 2000), pages 770–779, 2000.

25 Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph steiner tree approximation.
SIAM J. Discrete Math., 19(1):122–134, 2005.

26 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In AAAI, 2015. URL: http://networkrepository.com.

27 Hiromitsu Takahashi. An approximate solution for the steiner problem in graphs. Math.
Japonica., 6:573–577, 1990.

28 Eduardo Uchoa, Marcus Poggi de Aragão, and Celso C. Ribeiro. Preprocessing steiner problems
from VLSI layout. Networks, 40(1):38–50, 2002. doi:10.1002/net.10035.

29 Alexander Zelikovsky. An 11/6-approximation algorithm for the network steiner problem.
Algorithmica, 9(5):463–470, 1993.

30 Alexander Zelikovsky. Better approximation bounds for the network and euclidean steiner
tree problems. University of Virginia, Charlottesville, VA, 1996.

SEA 2021

http://nbn-resolving.de/urn:nbn:de:0297-zib-66297
https://doi.org/10.1002/net.21857
https://doi.org/10.6084/m9.figshare.2061897.v1
https://doi.org/10.6084/m9.figshare.2061897.v1
http://networkrepository.com
https://doi.org/10.1002/net.10035

5:14 Three Is Enough for Steiner Trees

Figure 3 PACE Challenge: Show the ratio obtained by each solver on each instance of the PACE
Challenge data set. Instances are sorted by increasing number of vertices.

Figure 4 PACE Challenge: Show the ratio obtained by each solver on the 50 largest instances of
the PACE Challenge data set. Instances are sorted by increasing number of vertices.

Figure 5 I simple: Show the ratio obtained by each solver on each instance of the I simple
preprocessed instances data set. Instances are sorted by increasing number of vertices.

E. Arrighi and M. de Oliveira Oliveira 5:15

Figure 6 d-regular: Show the ratio obtained by each solver on d-regular random graph. Show
the evolution of the ratio with respect to increasing values of d.

Figure 7 City road networks: Show the ratio obtained by each solver on each instance of the
City road networks data set. Instances are sorted by increasing number of vertices.

SEA 2021

A Fast and Tight Heuristic for A* in Road
Networks
Ben Strasser !

Stuttgart, Germany

Tim Zeitz !

Karlsruhe Institute of Technology, Germany

Abstract
We study exact, efficient and practical algorithms for route planning in large road networks. Routing
applications often require integrating the current traffic situation, planning ahead with traffic
predictions for the future, respecting forbidden turns, and many other features depending on the
exact application. While Dijkstra’s algorithm can be used to solve these problems, it is too slow for
many applications. A* is a classical approach to accelerate Dijkstra’s algorithm. A* can support
many extended scenarios without much additional implementation complexity. However, A*’s
performance depends on the availability of a good heuristic that estimates distances. Computing
tight distance estimates is a challenge on its own. On road networks, shortest paths can also be
quickly computed using hierarchical speedup techniques. They achieve speed and exactness but
sacrifice A*’s flexibility. Extending them to certain practical applications can be hard. In this paper,
we present an algorithm to efficiently extract distance estimates for A* from Contraction Hierarchies
(CH), a hierarchical technique. We call our heuristic CH-Potentials. Our approach allows decoupling
the supported extensions from the hierarchical speed-up technique. Additionally, we describe A*
optimizations to accelerate the processing of low degree nodes, which often occur in road networks.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of
computing → Graph algorithms; Applied computing → Transportation

Keywords and phrases route planning, shortest paths, realistic road networks

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.6

Supplementary Material Software (Source Code): https://github.com/kit-algo/ch_potentials
archived at swh:1:dir:816552e5789f95afc8d6a2afe5b3dc40de537165

1 Introduction

The past decade has seen a plethora of research on route planning in large street networks [1].
Routing a user through a road network can be formalized as the shortest path problem in
weighted graphs. Nodes represent intersections. Roads are modeled using edges. Edges are
weighted by their traversal times. The problem can be solved with Dijkstra’s algorithm [20].
Unfortunately, on continental sized networks, it is too slow for many applications. Thus,
speed-up techniques have been developed. One popular example are Contraction Hierarch-
ies (CH) [25]. They have been used successfully in many real world applications. A CH
exploits the inherent hierarchy of road networks. In a preprocessing step, additional shortcut
edges are inserted, which allow skipping unimportant parts of the network at query time.
Another popular example is Multi-Level-Dijkstra (MLD) [38] also known as CRP [14]. It is
also used in practice [35]. MLD also uses shortcut edges. Both approaches achieve speed-ups
of at least three orders of magnitude over Dijkstra’s algorithm.

Unfortunately, for many real world applications, this basic graph model is too simplistic.
For realistic routing, many additional features need to be considered. This includes turn costs
and restrictions, live traffic, user preferences, and traffic predictions. Some applications may
have additional application-specific requirements. Extending Dijkstra’s algorithm to support

© Ben Strasser and Tim Zeitz;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:academia@ben-strasser.net
mailto:tim.zeitz@kit.edu
https://orcid.org/0000-0003-4746-3582
https://doi.org/10.4230/LIPIcs.SEA.2021.6
https://github.com/kit-algo/ch_potentials
https://archive.softwareheritage.org/swh:1:dir:816552e5789f95afc8d6a2afe5b3dc40de537165
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 A Fast and Tight Heuristic for A* in Road Networks

Figure 1 Nodes explored by A*. Color indicates the node removal order from the queue. Blue
was removed first. Next is green. Red was removed last.

these features is usually easy. Extending hierarchical speed-up techniques is also possible.
However, the algorithm development is vastly more complex. For every feature, dedicated
research paper(s) exist that extend CH. Supporting the combination of several features is
even harder. For example, we are not aware of any work combining all features mentioned
above. In this paper, we describe an algorithmic building block, that allows handling the
combination of all above mentioned features – and probably more.

Our approach decouples extensions from the hierarchical speed-up technique by utilizing
the A* algorithm [31]. A* is a goal-directed variant of Dijkstra’s algorithm. See Figure 1
for an example of nodes traversed during an A* search. A* uses a heuristic to guide the
search towards the goal. A heuristic is function that maps a node v onto an estimate of the
distance from v to the goal. A*’s running time crucially depends on how tight this estimate
is. Further, evaluating the heuristic must be fast. In this paper, we describe CH-Potentials,
a fast heuristic with tight estimates. Internally, the heuristic uses a CH. Fortunately, this is
an implementation detail from the perspective of the A*. To support a new feature, we only
need to modify the A* algorithm. The heuristic core containing the CH remains untouched.
Extending A* is vastly easier than extending a CH. This enables us to design algorithms
for a multitude of features. In addition, we describe query optimizations for handling of
low-degree nodes, common in road networks. These low degree optimizations are applicable
to Dijkstra’s algorithm and A*.

The rest of the paper is organized as follows. In Section 2, we discuss related works
on goal directed search and extensions for realistic applications for hierarchical techniques.
CH-Potentials, our new distance estimation function is introduced in Section 3. Section 4
discusses our improvements for the handling of low-degree nodes. In Section 5, we demonstrate
CH-Potential’s flexibility, by describing how to apply the approach to different practical
applications. Finally, in Section 6, we present an experimental evaluation of our approach.

2 Related Work

There is a lot of work that extends hierarchical speed-up techniques to more complex
settings [1]. For example, in [26] turn information is integrated into CH. A considerable
amount of research and engineering effort has been put into studying the combination
of traffic predictions with CH. Several papers [3, 4, 32, 5] and an entire dissertation [2]

B. Strasser and T. Zeitz 6:3

have been published on the subject. Different variants with trade-offs regarding exactness,
query speed and space consumption were proposed [5]. Recently, a new approach has been
published [40] which simultaneously achieves competitive results in all three aspects but
only at the cost of considerable implementation complexity. CRP (Customizable Route
Planning) [14] is an engineered variant of MLD [38] which was developed to allow updating
weights without invalidating the entire preprocessing. For this, a faster, second preprocessing
phase is introduced. It can be run regularly to update weights. In theory, this enables the
integration of live traffic and user preferences. In practice, live traffic feed data is imperfect.
Computing “good” routes without undesired detours due to artifacts in the data requires
additional algorithmic extensions [16]. CRP also supports turn costs. Integrating traffic
predictions into CRP was studied in [9]. On continental sized networks, TD-CRP can only
compute approximate shortest distances (rather than paths). In [19], CH is extended to
Customizable CH (CCH). CCH also has a second preprocessing phase where weights can be
altered. Supporting turn costs in CCH was studied in [11]. Other extensions studied include
electric vehicle routing [8, 22] or multi-criteria optimization [23, 24]. While these works show
that it is possible to extend hierarchical approaches, they also show that it is non-trivial.
Further, in every extension the flexibility available at query time is fairly limited. Combining
these hierarchical extensions is an unsolved problem.

CH-Potentials is not the first work to combine hierarchical approaches and A* [6, 28, 7].
However, previous works mostly focused on accelerating hierarchical approaches further
rather than exploiting A*’s flexibility.

ALT [27, 29] and CPD-Heuristics [10] are the two techniques with high conceptual
similarity to CH-Potentials. ALT has been combined with shortcuts [6] and also extended for
dynamic graphs [17] and time-dependent routing [36, 15]. CPD-Heuristics are a combination
of A* and Compressed Path Databases (CPD). A CPD can quickly compute the first edge
of a shortest path between any two nodes. In [10], SRC [39] is used as CPD. For every
distance estimation, a shortest path to the target is computed, whose length is used as the
heuristic value. Unfortunately, the employed CPD’s quadratic preprocessing running time is
problematic on large street networks. In [12] the weighted graph is embedded into Euclidean
space using FastMap. The Euclidean distance is then used as a distance estimate for A*.

3 Algorithm

In this section, we first discuss the framework in which CH-Potentials can be used. Then, we
describe the building blocks of CH-Potentials: Contraction Hierarchies and PHAST, a CH
extension. Finally, we introduce the CH-Potentials heuristic.

3.1 Formal Setup: Inputs, Outputs, and Phases
In this paper, we consider different applications, with slightly different problem models. The
goal is always to quickly answer many shortest path queries. For the purpose of describing
our framework, we establish a shared notation: Input to each query are nodes s and t, and a
graph Gq with query weights wq. However, the precise formal inputs of the query and what
exactly wq represents depends on the application. In the simplest case, wq will be scalar edge
weights. However, this is not a requirement. It can be any function that computes a weight
for an edge. This function can also take additional parameters from the state of the search.
For example, in the case of live-traffic, wq represents scalar edge weights. However, values of
wq might change between queries. In the case of traffic predictions, wq is a function which
maps the edge entry time to the traversal time and the query takes an additional departure
time parameter.

SEA 2021

6:4 A Fast and Tight Heuristic for A* in Road Networks

a
n
ce

im
p
or
t-

n
o
d
e

m

ts

Figure 2 Solid lines are edges in G. Dotted lines are shortcuts. Red is shortest st-path in G.
Blue is equaly long up-down st-path in G+. m is the mid node.

To enable quick shortest path computations, we consider a two phase setup with an
additional off-line preprocessing phase before the on-line query phase. The input to the
preprocessing phase is a graph Gℓ with lower bound weights wℓ and a node mapping function
ϕ. wℓ(e) must be a scalar value for every edge e of Gℓ. We require that wq(u, v) is greater or
equal to the shortest distance distℓ(ϕ(u), ϕ(v)) from ϕ(u) to ϕ(v) in Gℓ. The output of the
preprocessing is auxiliary data that enables an efficient heuristic function ht(x). ht(x) is the
exact distance from ϕ(x) to ϕ(t) in Gℓ. In the applications considered in this paper, wℓ is
always the freeflow travel time.

The query phase uses this heuristic in an A* search between nodes s and t on Gq and wq.
The exact implementation of this A* search depends on the application. Our approach only
provides the heuristic ht for the A* search. In contrast, the preprocessing phase remains the
same for all applications.

Our heuristic is always feasible [31], i.e. wq(u, v)− ht(u) + ht(v) ≥ 0 holds for all edges.
By requirement and because of the triangle inequality the following holds:

wq(u, v)− ht(u) + ht(v) ≥ distℓ(ϕ(u), ϕ(v))− distℓ(ϕ(u), ϕ(t)) + distℓ(ϕ(v), ϕ(t)) ≥ 0

Thus, A* will always determine the correct shortest distances.

3.2 Contraction Hierarchy (CH)

Algorithm 1 CH backward search.

Data: B[x]: tentative distance from x to target t

Data: Min. priority queue Q, also called open list
B[x]← +∞ for all x ̸= t; B[t]← 0;
Make Q only contain t with weight 0;
while not Q empty do

y ← pop minimum element from Q;
for xy is down-edge in G+

ℓ do
if B[x] > wℓ(xy) + B[y] then

B[x]← wℓ(xy) + B[y];
Add x or decrease x’s key in Q to B[x];

A CH is a two phase technique to efficiently compute exact, shortest paths. For details,
we refer to [25, 19]. In this section, we give an introduction.

A CH places nodes into levels. No edge must connect two nodes within one level. Levels
are ordered by “importance”. The intuition is that dead-ends are unimportant and at the
bottom while highway bridges are very important and at the top. An edge goes up when it
goes from a node in a lower level to higher level. Down edges are defined analogously. An
up-down path is a path where only one node m is more important than both its neighbors. m

B. Strasser and T. Zeitz 6:5

is called the mid node. An up path is a path where the last node is the mid node. Similarly,
the first node is the mid node of a down path. In the preprocessing phase, a CH adds
shortcut edges to the input graph G to obtain G+. This is done by repeatedly contracting
unimportant nodes and adding shortcuts between its neighbors. After the preprocessing, for
every pair of nodes s and t there exists a shortest up-down st-path in G+ with the same
length as a shortest path in G. See Figure 2 for a proof sketch. From every shortest path
(red) in G, an up-down path of equal length in G+ (blue) exists. Thus, we can restrict our
search to up-down paths in G+. The search is bidirectional. The forward search starts from
s and only follows up-edges. Similarly, the backward search starts at t and only follows
down-edges in reversed direction. The two searches meet at the mid node. Pseudo-code for
the backward search, i.e., the path from m to t, is presented in Algorithm 1. The forward
search works analogously. A CH query is fast, if the number of nodes reachable via only up-
or down-nodes is small. On road networks, this is the case [25, 14]. On graphs with low
treewidth, this is also the case [19, 30].

Using the CH query algorithm, we can already give a simple heuristic. The heuristic
evaluation ht(x) performs a CH-query from x to t. This yields tight estimates but a high
overhead for the heuristic evaluation. While a single CH query is fast, answering one for
every node explored in the A∗ search is slow. Fortunately, we can do better.

3.3 PHAST based Heuristic

Algorithm 2 PHAST basic all-to-one search.

Data: P [x]: tentative distance from x to t

Execute Algorithm 1;
for all CH levels L from most to least important do

for all up edges xy in G+
ℓ with x in L do

if P [x] < P [y] + wℓ(xy) then
P [x]← P [y] + wℓ(xy);

PHAST [13] is a CH extension that computes distances from all nodes to one target node.
The preprocessing phase remains unchanged. The query phase is split into two steps. The
first step is analogue to the CH query: From t, all reachable nodes via reversed down-edges
are explored. Algorithm 1 shows this first step. The second step iterates over all CH levels
from top to bottom. In each iteration, all up-edges starting within the current level are
followed in reverse. After all levels are processed, the shortest distances from all nodes to
t were computed. Pseudo-code is provided in Algorithm 2. Using PHAST, we can also
compute a tight A* heuristic. In the query phase, we first run PHAST to compute the
distances from every node to t with respect to wℓ and store the result in an array H. Next,
we run A∗ and implement the heuristic as a lookup in the array H.

The H lookup and by extension the A∗ search is indeed fast. However, the PHAST step
before the search is comparatively expensive. The reason is that the distances towards t

are computed for all nodes. Ideally, we only want to compute the distances from the nodes
explored in the A∗ search.

SEA 2021

6:6 A Fast and Tight Heuristic for A* in Road Networks

Algorithm 3 CH-Potentials Algorithm.

Data: B[x]: tentative distance from x to t as computed by Algorithm 1
Data: P [x]: memoized potential at x, ⊥ initially
Function Pot(x):

if P [x] = ⊥ then
P [x]← B[x];
for all up edges xy in G+

ℓ do
P [x]← min{P [x], wℓ(xy) + Pot(y)};

return P [x];

3.4 CH-Potentials
Fortunately, the PHAST computation can be done lazily using memoization as depicted in
Algorithm 3. In a first step, we run the backward CH search from t to obtain an array B.
B[x] is the minimum down xt-path distance or +∞, if there is no such path. B is computed
as shown in Algorithm 1.

To compute the heuristic ht(x), we recursively compute for all up-edges (x, y) the heuristic
ht(y). Next, we compute the minimum distance over all up-down paths that contain at least
one up-edge using d = miny{wℓ(x, y) + ht(y)}. As not all shortest up-down paths contain
an up-edge, we set ht(x) = min{B[x], d}. This calculation is correct, as it computes the
minimum up-down xt-path distance in G+

ℓ , which corresponds to the minimum xt-path
distance in a CH. A* with this heuristic is the basic CH-Potentials algorithm.

4 Low Degree A* Improvements

Preliminary experiments showed, that a significant amount of query running time is spent in
heuristic evaluations and queue operations. We can reduce both by keeping some nodes out
of the queue, as the heuristic needs to be evaluated when a node is pushed into the queue.
Avoiding pushing low degree nodes into the queue is the focus of this section. The techniques
discussed here are a lazy variant of the ideas used in TopoCore [18].

We modify A* by processing low degree nodes consecutively without pushing them into
the queue. Our algorithm uses the undirected degree d(x) of a node x. Formally, d(x) is the
number of nodes y such that (x, y) ∈ E or (y, x) ∈ E.

Analogous to A*, our algorithm stores for every node x a tentative distance D[x].
Additionally, it maintains a minimum priority queue. Diverging from A*, not all nodes can
be pushed but every node has a tentative distance.

4.1 Skip Degree Two Nodes
Our algorithm differs from A* when removing a node x from the queue. A* iterates over
the outgoing arcs (x, y) of x and tries to reduce D[y] by relaxing (x, y). If A* succeeds, y’s
weight in the queue is set to D[y] + ht(y). Our algorithm, however, behaves differently, if
d(y) ≤ 2. Our algorithm determines the longest degree two chain of nodes x, y1, . . . , yk, z

such that d(yi) = 2 and d(z) > 2. If our algorithm succeeds in reducing D[y1], it does not
push y1 into the queue. Instead, it iteratively tries to reduce all D[yi]. If it does not reach z,
then only D is modified but no queue action is performed. If D[z] is modified and d(z) > 2,
z’s weight in the queue is set to D[z] + ht(z).

B. Strasser and T. Zeitz 6:7

As the target node t might have degree two, our algorithm cannot rely on stopping, when
t is removed from the queue. Instead, our algorithm stops as soon as D[t] is less than the
minimum weight in the queue.

4.2 Skip Degree Three Nodes
We can also skip some degree three nodes. Denote by x, y1, . . . , yk, z a degree two chain as
described in the previous section. If d(z) > 3 or z is in the queue, our algorithm proceeds as
in the previous section. Otherwise, there exist up to two degree chains z, a1, . . . , ap, b and
z, α1, . . . , αq, β such that a1 ≠ yk ̸= α1. Our algorithm iteratively tries to reduce all D[ai]
and D[αi]. If it reaches β, β’s weight in the queue is set to D[β] + ht(β). Analogously, if b is
reached, b’s weight is set to D[b] + ht(b). If b respectively β are not reached, our algorithm
does nothing.

4.3 Stay in Largest Biconnected Component
A lot of nodes in road networks lead to dead-ends. Unless the source or target is in this
dead-end, it is unnecessary to explore these nodes.

In the preprocessing phase, we compute the subgraph GC , called core. GC is induced by
the largest biconnected component of the undirected graph underlying G. We do this using
Tarjan’s algorithm [43]. For every node v in the input graph G, we store the attachment
node av to the core. For nodes in the core, av = v. We exploit that all attachment nodes are
single node separators and the problem can be decomposed along them.

The query phase is divided into two steps. In the first step, we apply A* with CH-
Potentials to GC combined with the component that contains s. This can be achieved
implicitly by removing edges from GC into other components during preprocessing. If t is
part of GC or in the same component as s, this A* search finds it. Otherwise, we find at. In
that case, we continue by searching a path from at towards t restricted to t’s biconnected
component. The final result is the concatenation of both paths.

5 Applications

We describe some extended routing problems and how to apply CH-Potentials to them.
Unless stated otherwise, Gq and Gℓ are the same graph and only wq changes for the queries.

5.1 Avoiding Tunnels and/or Highways
Avoiding tunnels and/or highways is a common feature of navigation devices. Implementing
this feature with CH-Potentials is easy. We set wℓ to the freeflow travel time. If an edge is a
tunnel and/or a highway, we set wq to +∞. Otherwise, wq is set to the freeflow travel time.

5.2 Forbidden Turns and Turn Costs
The classical shortest path problem allows to freely change edges at nodes. However, in the
real world, turn restrictions, such as a forbidden left or right turn, exist. Also, taking a left
turn might take longer than going straight. This can be modeled using turn weights [26, 14, 11].
A turn weight wt maps a pair of incident edges onto the turning time or +∞ for forbidden
turns. For CH-Potentials, we use zero as lower bound for every turn weight in the heuristic.
Thus, the graph Gℓ and weights wℓ for preprocessing is the unmodified input graph without
turn weights.

SEA 2021

6:8 A Fast and Tight Heuristic for A* in Road Networks

A path with nodes v1, v2, . . . vk has the following turn-aware weight:

wℓ(v1, v2) +
k−1∑
i=2

wt(vi−1, vi, vi+1) + wℓ(vi, vi+1)

The objective is to find a path between two given edges with minimum turn-aware weight.
The first term wℓ(v1, v2) is the same for all paths, as it only depends on the source edge. It
can thus be ignored during optimization.

We solve this problem by constructing a turn-expanded graph as Gq. Edges in the input
graph Gℓ correspond to expanded nodes in Gq. For every pair of incident edges (x, y) and
(y, z) in Gℓ, there is an expanded edge in Gq with expanded weight wt(x, y, z) + wℓ(y, z). A
sequence of expanded nodes in the expanded graph Gq corresponds to a sequence of edges in
the input graph Gℓ. The weight of a path in Gq is equal to the turn-aware weight of the
corresponding path in Gℓ minus the irrelevant wℓ(v1, v2) term. Thus, the turn-aware routing
problem can be solved by searching for shortest paths in Gq.

In this scenario, preprocessing and query use different graphs Gℓ and Gq. We define the
node mapping function ϕ as ϕ(x, y) = y. Obviously, wq(xy, yz) = wt(x, y, z) + wℓ(y, z) ≥
distℓ(ϕ(x, y), ϕ(y, z)) and this approach yields a feasible heuristic. Sadly, the undirected
graph underlying Gq is always biconnected, if the input graph is strongly connected. The
optimization described in Section 4.3 is therefore ineffective. With this setup, CH-Potentials
support turns without requiring turn information in the CH.

5.3 Predicted Traffic or Time-Dependent Routing
The classical shortest path problem assumes that edge weights are scalars. However, in
practice, travel times vary along an edge due to the traffic situation. Recurring traffic can
be predicted by observing the traffic in the past. It is common [5, 9, 40] to represent these
predictions as travel time functions. An edge weight is no longer a scalar value but a function
that maps the entry time onto the traversal time.

In this setting, the query weight wq is a function from E×R to R+. wq(e, τ) is the travel
time through edge e when entering it at moment τ . The input to the extended problem
consists of a source node s and a target node t, as in the classical problem formulation.
Additionally, the input contains a source time τs. A path with edges e1, e2 . . . ek is weighted
using αk, which is defined recursively as follows:

α1 = wq(e1, τs)
αk = αk−1 + wq(e1, αk−1)

The objective is to find a path to t that minimizes αk.
If all travel time functions fulfill the FIFO property, this problem can be solved using a

straight forward extension of Dijkstra’s algorithm [21]. The necessary modification to A*
is analogous. Without the FIFO property the problem becomes NP-hard [37]. The FIFO
property states that it is not possible to arrive earlier by departing later. Formally stated, the
following must hold ∀e ∈ E, τ ∈ R, δ ∈ R+ : wq(e, τ) ≤ wq(e, τ + δ) + δ. Our implementation
stores edge travel times using piece-wise linear functions. The A* search uses the tentative
distance τ at a node x when to evaluating the travel time of outgoing edges (x, y). This
strategy is very similar to TD-ALT [36, 17].

For the preprocessing, we set wℓ(e) = minτ wq(e, τ), that is the minimum travel time.
By keeping travel time functions out of the CH, we avoid a lot of algorithmic complications
compared to [5, 9, 40, 15] which have to create shortcuts of travel time functions.

B. Strasser and T. Zeitz 6:9

5.4 Live and Predicted Traffic
Beside predicted traffic, we also consider live traffic. Live traffic refers to the current traffic
situation. It is important to distinguish between predicted and live traffic. Live traffic data
is more accurate for the current moment than predicted data. It is possible that it differs
significantly from predicted traffic, if unexpected events like accidents happen. However, just
using live traffic data is problematic for long routes as traffic changes while driving. At some
point, one wants to switch from live traffic to the predicted traffic. In this section, we first
describe a setup with only live traffic and then combine it with predicted traffic.

To support only live traffic, we set wℓ to the freeflow travel time. wq is set to the travel
time accounting for current traffic. As traffic only increases the travel time along an edge, wℓ

is a valid lower bound for wq. In a real world application, values from wq could be updated
between queries. This is all that is necessary to apply CH-Potentials in a live traffic scenario.

To combine live traffic with predicted traffic, we define a modified travel time function wq

that is then used as query weights. Denote by wp(e, τ) the predicted travel time along edge
e at moment τ . Further, wc(e) is the travel time according to current live traffic. Finally, we
denote by τsoon the moment when we switch to predicted traffic. In our experiments, we set
τsoon to one hour in the future. We need to make sure that the modified travel time function
fulfills the no-waiting property. For this reason, we cannot make a hard switch at τsoon. Our
modified travel time function linearly approaches the predicted travel time. Formally, we
set wq(e, τ) to wc(e), if τ ≤ τsoon. Otherwise, we check whether wp(e, τsoon) < wc(e) is true.
If it is the case, we set wq(e, τ) to max{wc(e) + (τsoon − τ), wp(e, τ)}. Otherwise, we set
wq(e, τ) to min{wc(e)− (τsoon − τ), wp(e, τ)}. In our implementation, we to not modify the
representation of wp but evaluate the formulas above at each travel time evaluation. We set
wℓ again to the freeflow travel time.

With this setup, CH-Potentials support a combination of live and predicted traffic. We
did not make any modification, that would hinder a combination with other extensions.
Further adding tunnel and/or highway avoidance or turn-aware routing is simple. This
straight-forward integration of complex routing problems is the strength of the CH-Potentials.

5.4.1 Three-Phase Setups
Supporting live traffic is also possible with a three-phase setup: A slow preprocessing phase,
a faster customization phase, and fast queries. The customization phase is run regularly and
incorporates updates to the weights into the auxiliary preprocessing data. CRP [14] and
CCH [19] follow this setup. Luckily, a CCH is just a CH with some additional properties.
The CH in CH-Potentials can be replaced by a CCH without further modifications. Thus,
CCH-Potentials could also support a three-phase setup. However, evaluating CCH-Potentials
is beyond the scope of this paper. We focus on evaluating CH-Potentials as a simple building
block in the two-phase setup.

5.5 Temporary Driving Bans
Truck routing differs from car routing due to night driving bans and other restrictions. In [33],
a preliminary version of CH-Potentials1 is used for such a scenario. The work considers

1 In [33], CH-Potentials are used as a blackbox referring to an early ArXiv preprint [41] of ours. Our
submitted paper is the finished version of the ArXiv preprint. [33] does not describe any of the
contributions of this paper.

SEA 2021

6:10 A Fast and Tight Heuristic for A* in Road Networks

Table 1 Instances used in the evaluation.

Nodes Edges Preprocessing
[·106] [·106] [s]

OSM Ger 16.2 35.4 295.2
TDEur17 25.8 55.5 292.6
TDGer06 4.7 10.8 58.9

time-dependent blocked edges and waiting at parking locations. Further, a trade-off between
arrival time and route quality is considered.

6 Evaluation

In this section, we present our experimental evaluation. Our benchmark machine runs
openSUSE Leap 15.1 (kernel 4.12.14), and has 128 GiB of DDR4-2133 RAM and an Intel
Xeon E5-1630 v3 CPUs which has four cores clocked at 3.7 Ghz and 4 × 32 KiB of L1,
8 × 256 KiB of L2, and 10 MiB of shared L3 cache. All experiments were performed
sequentially. Our code is written in Rust and compiled with rustc 1.47.0-nightly in the release
profile with the target-cpu=native option. The source code of our implementation and the
experimental evaluation can be found on Github2.

Inputs and Methodology. Our main benchmark instance is a graph of the road network of
Germany obtained from Open Street Map3. To obtain the routing graph, we use the import
from RoutingKit4. The graph has 16M nodes and 35M edges. For this instance, we have
proprietary traffic data provided by Mapbox5. The data includes a live traffic snapshot from
Friday 2019/08/02 afternoon and comes in the form of 320K OSM node pairs and live speeds
for the edge between the nodes. It also includes traffic predictions for 38% of the edges as
predicted speeds for all five minute periods over the course of a week. We exclude speed
values which are faster than the freeflow speed computed by RoutingKit. Additionally, we
have two graphs with proprietary traffic predictions provided by PTV6. The PTV instances
are not OSM-based. One is an old instance of Germany with traffic predictions from 2006 for
7% of the edges and the other one a newer instance of Europe with predictions for 27% of
the edges. Table 1 contains an overview over our instances. In this table, we further include
the sequential running time necessary to construct the CH. We report preprocessing running
times as averages over 10 runs. For queries, we perform 10 000 point-to-point queries where
both source and target are nodes drawn uniformly at random and report average results.

Experiments. The performance of A* depends on the tightness of the heuristic. CH-
Potentials computes optimal distance estimates with respect to wℓ. However, for most
applications, there will be a gap between wq and wℓ (otherwise one could use CH without
A*). We evaluate the impact of the difference between wq and wℓ on the performance of A*.

2 https://github.com/kit-algo/ch_potentials
3 https://download.geofabrik.de/europe/germany-200101.osm.pbf
4 https://github.com/RoutingKit/RoutingKit
5 https://mapbox.com
6 https://ptvgroup.com

https://github.com/kit-algo/ch_potentials
https://download.geofabrik.de/europe/germany-200101.osm.pbf
https://github.com/RoutingKit/RoutingKit
https://mapbox.com
https://ptvgroup.com

B. Strasser and T. Zeitz 6:11

1.0 1.05 1.1 1.15 1.2 1.25
Weight Factor

10
1

10
0

10
1

10
2

10
3

R
un

ni
ng

 T
im

e
[m

s]

Figure 3 Running times on a logarithmic scale for queries on OSM Ger with scaled edge weights
wq = α · wℓ. The boxes cover the range between the first and third quartile. The band in the box
indicates the median, the diamond the mean. The whiskers cover 1.5 times the interquartile range.
All other running times are indicated as outliers.

Table 2 Average query running times and number of queue pushs with different heuristics and
optimizations on OSM Ger with wq = 1.05 · wℓ.

BCC Deg2 Deg3 Zero ALT CH-Pot. Oracle

R
un

ni
ng

tim
e

[m
s] ✗ ✗ ✗ 1 947.4 279.5 50.6 32.0

✓ ✗ ✗ 1 253.1 217.3 36.3 23.9
✓ ✓ ✗ 713.6 117.3 18.8 11.8
✓ ✓ ✓ 558.9 88.3 15.7 9.5

Q
ue

ue
pu

sh
s

[·1
03

] ✗ ✗ ✗ 8 120.7 859.4 138.0 138.0
✓ ✗ ✗ 6 326.5 684.1 114.0 114.0
✓ ✓ ✗ 2 915.7 301.3 42.1 42.1
✓ ✓ ✓ 1 689.8 178.4 26.0 26.0

The lower bound wℓ is set to the freeflow travel time. The query weights wq are set to α ·wℓ,
where α ≥ 1. Increasing α degrades the heuristic’s quality. Figure 3 depicts the results.
Clearly, α has significant influence on the running time. Average running times range from
below a millisecond to a few hundred milliseconds depending on α. Up to around α = 1.1
the running time grows quickly. For α > 1.1, the growth slows down. This illustrates both
the strengths and limits of our approach and goal directed search in general. CH-Potentials
can only achieve competitive running times if the application allows for a sufficiently tight
lower bounds at preprocessing time.

We observe that the running times for a fixed α vary strongly. This is an interesting
observation, as with uniform source and target sampling, nearly all queries are long-distance.
The query distance is thus not the reason. After some investigation, we concluded that this is
due to non-uniform road graph density. Some regions have more roads per area than others.
The number explored A* nodes depends on the density of the search space area. As the
density varies, the running times vary.

Table 2 depicts the performance of A* with different heuristics and optimizations. We
compare CH-Potentials to three other heuristics. First, the Zero heuristic where h(x) = 0 for
all nodes x. This corresponds to using Dijkstra’s algorithm. Second, we compare against our
own implementation of ALT [29]. We use 16 landmarks generated with the avoid strategy [29]

SEA 2021

6:12 A Fast and Tight Heuristic for A* in Road Networks

Table 3 CH-Potentials performance for different route planning applications. We report average
running times and number of queue pushes. We also report the average length increase, that is
how much longer the final shortest distance is compared to the lower bound. Finally, we report the
average running time of Dijkstra’s algorithm as a baseline and the speedup over this baseline.

Running Queue Length Dijkstra Speedup
time [ms] [·103] incr. [%] [ms]

OSM Ger

Unmodified (wq = wℓ) 0.6 0.5 0.0 1 952.8 3 243.1
Turns 2.8 6.0 1.1 4 244.4 1 540.8
No Tunnels 25.9 40.7 5.3 1 990.1 76.9
No Highways 342.9 518.5 42.4 1 843.9 5.4
Live 127.3 192.1 14.8 1 884.1 14.8
TD 195.5 163.1 17.6 3 186.2 16.3
TD + Live 209.7 179.1 21.4 3 152.2 15.0
TD + Live + Turns 508.5 765.5 22.7 6 179.5 12.2

TDEur17 TD 89.7 81.5 3.9 3 479.9 38.8
TDGer06 TD 4.5 6.4 3.1 602.4 135.4

and activate all during every query. Our ALT implementation is uni-directional. In this
work, we do not consider bidirectional search as it creates problems for some settings, such
as predicted traffic. Finally, we compare against a hypothetical Oracle-A* heuristic. This
heuristic has instant access to a shortest distance array with respect to wℓ, i.e. it is faster
than the fastest heuristic possible in our model. We fill this array before each query using a
reverse Dijkstra search from the target node. Thus, the reported running times of Oracle-A*
do not account for any heuristic evaluation. CH-Potentials compute the same distance
estimates but the heuristic evaluation has some overhead. Comparing against Oracle-A*
allows us to measure this overhead. Also, no other heuristic, which only has access to the
preprocessing weights, can be faster than Oracle-A*.

We observe that the number of queue pushes roughly correlates with running time.
Each optimization reduces both queue pushes and running times. All optimizations yield a
combined speed-up of around 3. CH-Potentials outperform ALT by a factor of between six
and seven and settle correspondingly fewer nodes. This is not surprising, since ALT computes
worse distance estimates. In contrast, CH-Potentials already compute exact distances with
respect to wℓ. The number of popped nodes is the same for CH-Potentials and Oracle-A*.
The only difference between CH-Potentials and Oracle-A* is the overhead of the heuristic
evaluation. This overhead leads to a slowdown of around 1.6. Thus, CH-Potentials are
already very close to the best possible heuristic in this model. This means that no competing
algorithm such as ALT or CPD-Heuristics can be significantly faster.

Table 3 depicts the running times of CH-Potentials in various applications, such as those
described in Section 5. We report speedups compared to extensions of Dijkstra’s algorithm
for each application respectively. We start with the base case where wq = wℓ. This is the
problem variant solved by the basic CH algorithm. CH achieves average query running times
of 0.16 ms on OSM Ger. CH-Potentials are roughly four times slower but still achieve a huge
speedup of 3243 over Dijkstra. Such large speedups are typical for CH. This shows that
CH-Potentials gracefully converges toward a CH in the wq = wℓ special case.

In the other scenarios, the performance of CH-Potentials strongly depends on the quality
of the heuristic. We measure this quality using the length increase of wq compared to wℓ.

B. Strasser and T. Zeitz 6:13

Forbidding highways results in the largest length increase and in the smallest speedup. The
other extreme are turn restrictions. They have only a small impact on the length increase.
The achieved speedups are therefore comparable to CH speedups. Mapbox live traffic has a
length increase of around 15%, which yields running times of 127 ms. The length increase
of Mapbox traffic predictions are about 18%, and results in a running time of 200 ms. The
speedup in the predicted scenario is larger than in the live setting, as the travel time function
evaluations slow down Dijkstra’s algorithm. Combining predicted and live traffic results in
a running time only slightly higher than for the predicted scenario. Further adding turn
restrictions, increases the running times. This increase is mostly due to the BCC optimization
of Section 4.3 becoming ineffective when considering turns. It is not due to the length increase
of using turns. With everything activated, our algorithm still has a speedup of 12.2 over the
baseline. Interestingly, the PTV traffic predictions have a much smaller length increase than
the Mapbox predictions. This results in smaller running times of our algorithm.

7 Conclusion

In this paper, we introduced CH-Potentials, a fast, exact, and flexible two-phase algorithm
based on A* and CH for finding shortest paths in road networks. The approach can
handle a multitude of complex, integrated routing scenarios with very little implementation
complexity. CH-Potentials provides exact distances with respect to lower bound weights
known at preprocessing time as an A* heuristic. Thus, the query performance of CH-
Potentials crucially depends on the availability of good lower bounds in the preprocessing
phase. Our experiments show, that this availability highly depends on the application.
We also show that the overhead of our heuristic is within a factor 1.6 of a hypothetical
A*-heuristic that can instantly access lower bound distances. Achieving significantly faster
running times could still be possible in variations of the problem setting.

Dropping the provable exactness requirement using a setup similar to anytime A* [45, 34]
would be interesting. Another promising research avenue would be to investigate graphs other
than road networks. A lot of research into grid maps exists including a series of competitions
called GPPC [42]. Hierarchical techniques have been shown to work well on these graphs [44].

References

1 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in Trans-
portation Networks. In Lasse Kliemann and Peter Sanders, editors, Algorithm Engineering -
Selected Results and Surveys, volume 9220 of Lecture Notes in Computer Science, pages 19–80.
Springer, 2016.

2 Gernot Veit Batz. Time-Dependent Route Planning with Contraction Hierarchies. PhD thesis,
Karlsruhe Institute of Technology (KIT), 2014.

3 Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-Dependent
Contraction Hierarchies. In Proceedings of the 11th Workshop on Algorithm Engineering and
Experiments (ALENEX’09), pages 97–105. SIAM, April 2009.

4 Gernot Veit Batz, Robert Geisberger, Sabine Neubauer, and Peter Sanders. Time-Dependent
Contraction Hierarchies and Approximation. In Paola Festa, editor, Proceedings of the 9th
International Symposium on Experimental Algorithms (SEA’10), volume 6049 of Lecture Notes
in Computer Science, pages 166–177. Springer, May 2010. URL: http://www.springerlink.
com/content/u787292691813526/.

SEA 2021

http://www.springerlink.com/content/u787292691813526/
http://www.springerlink.com/content/u787292691813526/

6:14 A Fast and Tight Heuristic for A* in Road Networks

5 Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Minimum Time-
Dependent Travel Times with Contraction Hierarchies. ACM Journal of Experimental Al-
gorithmics, 18(1.4):1–43, April 2013.

6 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-Up Techniques for
Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics, 15(2.3):1–31, January 2010.
Special Section devoted to WEA’08.

7 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf. Shortest
Feasible Paths with Charging Stops for Battery Electric Vehicles. Transportation Science,
2019.

8 Moritz Baum, Julian Dibbelt, Thomas Pajor, Jonas Sauer, Dorothea Wagner, and Tobias
Zündorf. Energy-optimal routes for battery electric vehicles. Algorithmica, 82(5):1490–1546,
2020. doi:10.1007/s00453-019-00655-9.

9 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Dynamic Time-Dependent
Route Planning in Road Networks with User Preferences. In Proceedings of the 15th Interna-
tional Symposium on Experimental Algorithms (SEA’16), volume 9685 of Lecture Notes in
Computer Science, pages 33–49. Springer, 2016.

10 Massimo Bono, Alfonso Emilio Gerevini, Daniel Damir Harabor, and Peter J. Stuckey. Path
planning with CPD heuristics. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019, pages 1199–1205. ijcai.org, 2019. doi:10.24963/ijcai.2019/167.

11 Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zündorf. Customizable Con-
traction Hierarchies with Turn Costs. In Dennis Huisman and Christos Zaroliagis, editors,
Proceedings of the 20th Symposium on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS’20), OpenAccess Series in Informatics (OASIcs), 2020.
Accepted for publication.

12 Liron Cohen, Tansel Uras, Shiva Jahangiri, Aliyah Arunasalam, Sven Koenig, and T. K. Satish
Kumar. The fastmap algorithm for shortest path computations. In Jérôme Lang, editor,
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1427–1433. ijcai.org, 2018. doi:
10.24963/ijcai.2018/198.

13 Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck. PHAST:
Hardware-accelerated shortest path trees. Journal of Parallel and Distributed Computing,
73(7):940–952, 2013.

14 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
Route Planning in Road Networks. Transportation Science, 51(2):566–591, 2017.

15 Daniel Delling and Giacomo Nannicini. Core Routing on Dynamic Time-Dependent Road
Networks. Informs Journal on Computing, 24(2):187–201, 2012.

16 Daniel Delling, Dennis Schieferdecker, and Christian Sommer. Traffic-Aware Routing in Road
Networks. In Proceedings of the 34rd International Conference on Data Engineering. IEEE
Computer Society, 2018. doi:10.1109/ICDE.2018.00172.

17 Daniel Delling and Dorothea Wagner. Landmark-Based Routing in Dynamic Graphs. In Camil
Demetrescu, editor, Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07),
volume 4525 of Lecture Notes in Computer Science, pages 52–65. Springer, June 2007.

18 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Fast exact shortest path and distance
queries on road networks with parametrized costs. In Jie Bao, Christian Sengstock, Mo-
hammed Eunus Ali, Yan Huang, Michael Gertz, Matthias Renz, and Jagan Sankaranarayanan,
editors, Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, Bellevue, WA, USA, November 3-6, 2015, pages 66:1–66:4. ACM,
2015. doi:10.1145/2820783.2820856.

19 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction Hierarchies.
ACM Journal of Experimental Algorithmics, 21(1):1.5:1–1.5:49, April 2016.

https://doi.org/10.1007/s00453-019-00655-9
https://doi.org/10.24963/ijcai.2019/167
https://doi.org/10.24963/ijcai.2018/198
https://doi.org/10.24963/ijcai.2018/198
https://doi.org/10.1109/ICDE.2018.00172
https://doi.org/10.1145/2820783.2820856

B. Strasser and T. Zeitz 6:15

20 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959.

21 Stuart E. Dreyfus. An Appraisal of Some Shortest-Path Algorithms. Operations Research,
17(3):395–412, 1969.

22 Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal route planning for electric vehicles
in large networks. In Wolfram Burgard and Dan Roth, editors, Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA,
August 7-11, 2011. AAAI Press, 2011. URL: http://www.aaai.org/ocs/index.php/AAAI/
AAAI11/paper/view/3637.

23 Stefan Funke, André Nusser, and Sabine Storandt. On k-Path Covers and their Applications.
In Proceedings of the 40th International Conference on Very Large Databases (VLDB 2014),
pages 893–902, 2014.

24 Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route Planning with Flexible
Objective Functions. In Proceedings of the 12th Workshop on Algorithm Engineering and
Experiments (ALENEX’10), pages 124–137. SIAM, 2010.

25 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing in
Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388–404,
August 2012.

26 Robert Geisberger and Christian Vetter. Efficient Routing in Road Networks with Turn Costs.
In Panos M. Pardalos and Steffen Rebennack, editors, Proceedings of the 10th International
Symposium on Experimental Algorithms (SEA’11), volume 6630 of Lecture Notes in Computer
Science, pages 100–111. Springer, 2011.

27 Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path: A* Search Meets
Graph Theory. In Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA’05), pages 156–165. SIAM, 2005.

28 Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Better Landmarks Within Reach.
In Camil Demetrescu, editor, Proceedings of the 6th Workshop on Experimental Algorithms
(WEA’07), volume 4525 of Lecture Notes in Computer Science, pages 38–51. Springer, June
2007.

29 Andrew V. Goldberg and Renato F. Werneck. Computing Point-to-Point Shortest Paths
from External Memory. In Proceedings of the 7th Workshop on Algorithm Engineering and
Experiments (ALENEX’05), pages 26–40. SIAM, 2005.

30 Michael Hamann and Ben Strasser. Graph Bisection with Pareto Optimization. ACM Journal
of Experimental Algorithmics, 23(1):1.2:1–1.2:34, 2018. doi:10.1145/3173045.

31 Peter E. Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Determ-
ination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,
4:100–107, 1968.

32 Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Distributed Time-Dependent
Contraction Hierarchies. In Paola Festa, editor, Proceedings of the 9th International Symposium
on Experimental Algorithms (SEA’10), volume 6049 of Lecture Notes in Computer Science,
pages 83–93. Springer, May 2010.

33 Alexander Kleff, Frank Schulz, Jakob Wagenblatt, and Tim Zeitz. Efficient Route Planning
with Temporary Driving Bans, Road Closures, and Rated Parking Areas. In Simone Faro and
Domenico Cantone, editors, Proceedings of the 18th International Symposium on Experimental
Algorithms (SEA’20), volume 160 of Leibniz International Proceedings in Informatics, 2020.
doi:10.4230/LIPIcs.SEA.2020.17.

34 Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. Ara*: Anytime a* with provable
bounds on sub-optimality. In Sebastian Thrun, Lawrence K. Saul, and Bernhard Schölkopf,
editors, Advances in Neural Information Processing Systems 16 [Neural Information Processing
Systems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British Columbia,
Canada], pages 767–774. MIT Press, 2003. URL: https://proceedings.neurips.cc/paper/
2003/hash/ee8fe9093fbbb687bef15a38facc44d2-Abstract.html.

SEA 2021

http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3637
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3637
https://doi.org/10.1145/3173045
https://doi.org/10.4230/LIPIcs.SEA.2020.17
https://proceedings.neurips.cc/paper/2003/hash/ee8fe9093fbbb687bef15a38facc44d2-Abstract.html
https://proceedings.neurips.cc/paper/2003/hash/ee8fe9093fbbb687bef15a38facc44d2-Abstract.html

6:16 A Fast and Tight Heuristic for A* in Road Networks

35 Bing maps new routing engine. https://blogs.bing.com/maps/2012/01/05/
bing-maps-new-routing-engine/. Accessed: 2020-01-25.

36 Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes. Bidirectional A*
Search on Time-Dependent Road Networks. Networks, 59:240–251, 2012. Best Paper Award.

37 Ariel Orda and Raphael Rom. Traveling without waiting in time-dependent networks is NP-
hard. Technical report, Dept. Electrical Engineering, Technion-Israel Institute of Technology,
1989.

38 Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using Multi-Level Graphs for
Timetable Information in Railway Systems. In Proceedings of the 4th Workshop on Algorithm
Engineering and Experiments (ALENEX’02), volume 2409 of Lecture Notes in Computer
Science, pages 43–59. Springer, 2002.

39 Ben Strasser, Daniel Harabor, and Adi Botea. Fast first-move queries through run-length
encoding. In Stefan Edelkamp and Roman Barták, editors, Proceedings of the Seventh Annual
Symposium on Combinatorial Search, SOCS 2014, Prague, Czech Republic, 15-17 August 2014.
AAAI Press, 2014. URL: http://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/
8906.

40 Ben Strasser, Dorothea Wagner, and Tim Zeitz. Space-efficient, Fast and Exact Routing in
Time-dependent Road Networks. In Proceedings of the 28th Annual European Symposium on
Algorithms (ESA’20), Leibniz International Proceedings in Informatics, September 2020.

41 Ben Strasser and Tim Zeitz. A* with perfect potentials, 2019. arXiv:1910.12526.
42 Nathan R. Sturtevant, Jason M. Traish, James R. Tulip, Tansel Uras, Sven Koenig, Ben Strasser,

Adi Botea, Daniel Harabor, and Steve Rabin. The grid-based path planning competition:
2014 entries and results. In Levi Lelis and Roni Stern, editors, Proceedings of the Eighth
Annual Symposium on Combinatorial Search, SOCS 2015, 11-13 June 2015, Ein Gedi, the
Dead Sea, Israel, page 241. AAAI Press, 2015. URL: http://www.aaai.org/ocs/index.php/
SOCS/SOCS15/paper/view/11290.

43 Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing,
1972.

44 Tansel Uras and Sven Koenig. Identifying hierarchies for fast optimal search. In Carla E.
Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada, pages 878–884. AAAI
Press, 2014. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8497.

45 Rong Zhou and Eric A. Hansen. Multiple sequence alignment using anytime a*. In Rina Dechter,
Michael J. Kearns, and Richard S. Sutton, editors, Proceedings of the Eighteenth National
Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications
of Artificial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada, pages 975–
977. AAAI Press / The MIT Press, 2002. URL: http://www.aaai.org/Library/AAAI/2002/
aaai02-155.php.

https://blogs.bing.com/maps/2012/01/05/bing-maps-new-routing-engine/
https://blogs.bing.com/maps/2012/01/05/bing-maps-new-routing-engine/
http://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8906
http://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8906
http://arxiv.org/abs/1910.12526
http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/view/11290
http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/view/11290
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8497
http://www.aaai.org/Library/AAAI/2002/aaai02-155.php
http://www.aaai.org/Library/AAAI/2002/aaai02-155.php

Engineering Predecessor Data Structures for
Dynamic Integer Sets
Patrick Dinklage !

TU Dortmund University, Germany

Johannes Fischer !

TU Dortmund University, Germany

Alexander Herlez !

TU Dortmund University, Germany

Abstract
We present highly optimized data structures for the dynamic predecessor problem, where the task is
to maintain a set S of w-bit numbers under insertions, deletions, and predecessor queries (return the
largest element in S no larger than a given key). The problem of finding predecessors can be viewed
as a generalized form of the membership problem, or as a simple version of the nearest neighbour
problem. It lies at the core of various real-world problems such as internet routing.

In this work, we engineer (1) a simple implementation of the idea of universe reduction, similar
to van-Emde-Boas trees (2) variants of y-fast tries [Willard, IPL’83], and (3) B-trees with different
strategies for organizing the keys contained in the nodes, including an implementation of dynamic
fusion nodes [Pǎtraşcu and Thorup, FOCS’14]. We implement our data structures for w = 32, 40, 64,
which covers most typical scenarios.

Our data structures finish workloads faster than previous approaches while being significantly
more space-efficient, e.g., they clearly outperform standard implementations of the STL by finishing
up to four times as fast using less than a third of the memory. Our tests also provide more general
insights on data structure design, such as how small sets should be stored and handled and if and
when new CPU instructions such as advanced vector extensions pay off.

2012 ACM Subject Classification Theory of computation → Predecessor queries

Keywords and phrases integer data structures, dynamic data structures, predecessor, universe
reduction, y-fast trie, fusion tree, B-tree

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.7

Related Version Full Version: https://arxiv.org/abs/2104.06740

Supplementary Material Software: https://github.com/pdinklag/tdc/tree/sea21-predecessor
archived at swh:1:dir:40d4000cd5f3302b2d037401280dcf1bea2c8b31

Funding Patrick Dinklage: Supported by the German Research Foundation (DFG), priority pro-
gramme “Algorithms for Big Data” (SPP 1736).
Alexander Herlez : Supported by the German Research Foundation (DFG), priority programme
“Algorithms for Big Data” (SPP 1736).

1 Introduction

Finding the predecessor of an integer key in a set of keys drawn from a fixed universe is a
fundamental algorithmic problem in computer science at the core of real-world applications
such as internet routing [8]. It can be considered a generalized form of the membership
problem or a simple version of the nearest neighbour problem. Navarro and Rojas-Ledesma
[20] recently gave a thorough survey on the topic, recapping the past four decades of research.

Data structures for the predecessor problem are designed to beat the Ω(lg n) lower time
bound for comparison-based searching. While optimal data structures have been shown

© Patrick Dinklage, Johannes Fischer, and Alexander Herlez;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 7; pp. 7:1–7:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:patrick.dinklage@tu-dortmund.de
https://orcid.org/0000-0002-2004-6781
mailto:johannes.fischer@cs.tu-dortmund.de
mailto:alexander.herlez@tu-dortmund.de
https://doi.org/10.4230/LIPIcs.SEA.2021.7
https://arxiv.org/abs/2104.06740
https://github.com/pdinklag/tdc/tree/sea21-predecessor
https://archive.softwareheritage.org/swh:1:dir:40d4000cd5f3302b2d037401280dcf1bea2c8b31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Engineering Predecessor Data Structures for Dynamic Integer Sets

for static sets [21] that are known in advance and do not change, they do not necessarily
translate to the most practical implementations. Dinklage et al. [10] face the symmetrical
successor problem for a small universe and develop a simple data structure that accelerates
binary search. Despite not optimal in theory, it is the most efficient in their setting.

In this work, we focus on the dynamic problem, where the set of integers can be changed
at any time by inserting, deleting or updating keys. A prominent example of a dynamic
predecessor data structure is the van Emde Boas tree [24], which, despite near-optimal query
times in theory, has been proven irrelevant in practice due to its memory consumption [25].
Dementiev et al. [9] implemented a stratified trie as a heavily simplified practical variant
of the van Emde Boas tree for keys drawn from a 32-bit universe. Nowadays, with 64-bit
architectures dominating the landscape, the limitation to 32-bit keys can be considered
significant. The authors gave no hints as to how the data structure can be altered to properly
handle larger universes, and simply applying the same structure on a larger universe exceeds
practical memory limitations quite quickly. Nash and Gregg [19] thoroughly evaluated various
dynamic predecessor data structures in practice, including the aforementioned stratified tree.
They also implemented AVL trees, red-black trees and B-trees, as well as the trie hybrid
by Korda and Raman [17] and their self-engineered adaptation of burst tries [14] for integer
keys, which outperform the other data structures regarding both speed and memory usage.

Our contributions. We engineer new practical solutions for the dynamic predecessor problem
that are both faster and more memory efficient than the current best known to us. First, we
apply the idea of universe sampling following [10] to the dynamic case. Second, we engineer
y-fast tries [26], which, in our view, offer room for many practical optimizations. Finally, we
implement dynamic fusion nodes [22], for which Pǎtraşcu and Thorup give a very practical
description but no implementation. We embed them into B-trees and make use of modern
CPU instructions to accelerate some key low-level operations.

We note that our data structures are designed in a way often not optimal in theory. A
recurring observation that we made is that thanks to large CPU caches, naïve solutions
for queries on small datasets often outperform sophisticated data structures on modern
hardware, including linear scans of unsorted lists, or binary search in naïvely organized
sorted lists, where updates potentially require all items to be shifted. This observation has
been confirmed in the contexts of balanced parentheses [4, 11] and finding longest common
extensions in strings [10, 15]. We make use of this and replace predecessor data structures
for small input sets by sorted or unsorted lists without any auxiliary information.

This paper is organized as follows: we begin with definitions and notations in Section 2
and a description of our experimental setup in Section 3. Then, in Sections 4–6, we describe
our engineered data structures and give individual experimental results. In Section 7, we
conclude with a comparison of the best configurations with existing implementations.

2 Preliminaries

Let S be a set of n = |S| positive integers called keys drawn from a fixed universe U :=
[u] = [0, u − 1]. For any x ∈ U , we call predS(x) = max{y ∈ S | y ≤ x} the predecessor of x,
which is the largest key in S no larger than x. We consider the dynamic scenario, where keys
may be inserted into or deleted from S and the data structure must be updated accordingly.

In our analysis, we use the word RAM model, where we assume that we can perform
arithmetic operations on words of size w = Θ(lg u) in time O(1) (by default, logarithms are
to the base of two). Additionally, the binary logic operations OR (∨), AND (∧) and XOR

P. Dinklage, J. Fischer, and A. Herlez 7:3

(⊕) on words take constant time. With this, we can access the i-th bit in a word x, denoted
by x⟨i⟩, as well as the bits i to j (inclusively) of x, denoted by x⟨i .. j⟩, in constant time. We
refer to bit positions in MSBF order, e.g., x⟨0⟩ is the most significant bit of x.

We also require some advanced operations on words to be answered in constant time. Let
msb(x) denote the position of the most significant set bit of x and select1(x, k) the position
of the k-th set bit in x. Another needed operation is counting the number of trailing zero bits
of x. In theory, these queries can be answered in constant time using the folklore approach
of precomputing universal tables of size o(u1/c) bits, where we can look up the answers for
all possible queries on a constant number of c > 1 blocks of size w/c. In practice, we can
make use of special CPU instructions: LZCNT and TZCNT count the number of leading or
trailing zeroes, respectively, and POPCNT reports the number of set bits in a word. These
instructions are fairly widely spread, being implemented by current versions of the x86-64
(both Intel [16] and AMD [1]) instruction sets as well as ARM [3].

Tries. Tries are a long-known information retrieval data structure [12]. Here, we consider
binary tries for strings over a binary alphabet. Consider a key x ∈ U to be inserted into a
binary trie. We navigate the trie top-down according to the bits of the binary representation
of x in MSBF order: when reading a 0-bit, we go to the current node’s left child, and
otherwise to the right child. Inserting a new element x works accordingly, creating any node
that does not yet exist. Since the binary trie for a set of keys drawn from U has height ⌈lg u⌉,
this takes total time O(lg u). An example of a binary trie is shown in Figure 5a. Binary
tries are suitable for solving the dynamic predecessor problem: to find predS(x), we navigate
down the trie as if we were to insert it. If we reach a leaf labeled x, then x ∈ S and it is its
own predecessor. Otherwise, we eventually reach an inner node v that is missing the left or
right edge that we want to navigate, respectively. If the right edge is missing, the predecessor
of x is the label of the rightmost leaf in the left subtrie of v. Otherwise, if the left edge is
missing, we first navigate back up to the lowest ancestor v′ of v that has two children and
where v is in the right subtrie; then the predecessor is the label of the rightmost leaf in the
left subtrie of v′. In either case, we can report the predecessor of x in time O(lg u). Deleting
is done by locating a key’s leaf, removing it, and navigating back up removing any inner
node no longer connected to any leaves, all in time O(lg u). The number O(n lg u) of nodes
in the binary trie can be reduced to O(n) by contracting paths of branchless inner nodes to
single edges [18]. We call a trie compact if it does not contain any inner nodes with one child.

3 Methodology

We conduct the following three-step experiment for our data structures:
(1) insert n keys drawn uniformly at random from U into the initially empty data structure,
(2) perform ten million random predecessor queries for keys in the range of the inserted keys,

guaranteeing that there is always a predecessor that is never trivially the maximum, and
(3) delete the n keys from the data structure in the order in which they were inserted.
In preliminary experiments, we also considered distributions other than uniform, and also
intermingling insertions, queries and deletions. Apart from statistical fluctuations, the results
led to the same assertions and thus we solely consider the experiment described above.

For each data structure, we run five iterations using a different random seed each (but
the same seeds for all data structures and in the same order). We measure running times
by the wall clock time difference between start and finish of an iteration, as well as the
RAM usage using custom overridden versions of malloc and free and compute the averages

SEA 2021

7:4 Engineering Predecessor Data Structures for Dynamic Integer Sets

over the five iterations. Our code is written in C++17 and publicly available1; we compile
using GCC version 9.3. For hash tables (Sections 4 and 5), we use a public2 implementation
of Robin Hood hashing [6] that is both faster and more memory efficient than the STL
implementation (std::unordered_map). We conduct our experiments on Linux machines
with an Intel Xeon E5-4640v4 processor (12 cores at 2.1 GHz, 12×32 kB L1, 12×256 kB L2,
30 MB L3 shared, line size 64 B) and 256 GB of RAM.

4 Dynamic Universe Sampling

A common technique used by predecessor data structures is known as length reduction [5],
where we partition the universe into buckets of size b ≪ u and reduce the predecessor problem
to the much smaller sub-universe [b]. For each bucket, we determine a representative, e.g.,
the minimum contained key, which is entered into a top level predecessor data structure.
The buckets are maintained on the bucket level. When pred(x) is queried for some x ∈ U ,
we first solve the predecessor problem on the top level to find the bucket that x belongs into,
and then reduce the query to a smaller one answered on the bucket level. The van Emde
Boas tree [24] applies this approach recursively. In this work, we develop a dynamic version
the two-level data structure by Dinklage et al. [10] that achieved very good practical results
for the static predecessor problem.

We partition U into buckets of size b = 2k for some k > 0. Let i ∈ [u/b], then the i-th
bucket can only contain keys from the interval [bi, b(i + 1) − 1]. We call a bucket active if it
contains at least one key from S. Since b = 2k, the number i of the bucket that a key x ∈ U

belongs into is the number represented by the ⌈lg u⌉ − k highest bits of x. Hence, we only
store the lowest k bits for each key to reduce space usage in the buckets.

Top level. The top level maintains the set of active buckets. Consider a query for predS(x),
then it reports the rightmost active bucket i such that bi ≤ x. The predecessor of x is
then contained in bucket i if x is greater than the bucket’s current minimum. Otherwise,
it is the current maximum key contained in the active bucket preceding i. Clearly, the top
level requires a dynamic predecessor data structure on the set of active buckets, i.e., keys
drawn from the universe [u/b] represented by the keys’ high bits. We explore two basic
options. First, let imin and imax be the numbers of the leftmost and rightmost active buckets,
respectively. We store imax − imin = O(u/b) pointers in an array such that the i-th entry
points to the rightmost active bucket i′ with i′ ≤ i. Predecessor queries can trivially be
answered in time O(1) using a lookup, but updates may take time O(u/b) in the worst case
as we may need to shift pointers and/or update pointers for succeeding non-active buckets.
Furthermore, the array requires up to ⌈(u/b) lg(u/b)⌉ bits of space. Our alternative is a hash
table H containing only pointers to active buckets, identified by their numbers. Let b′ be
the number of active buckets, then H requires O(b′ lg(u/b)) bits of space. Updates can be
done in O(1) expected time, but since the order of buckets in H is arbitrary, queries may
require to perform up to b′ lookups: when a key belongs in bucket i, we look up i in H; if
that bucket is not active, we find no result and look up i − 1, and so on. This takes up to
O(b′) expected time.

1 Our code is published at https://github.com/pdinklag/tdc/tree/sea21-predecessor. Make sure to
check out the sea21-predecessor branch, which contains instructions in the readme.

2 Robin Hood hashing by Martin Ankerl: https://github.com/martinus/robin-hood-hashing.

https://github.com/pdinklag/tdc/tree/sea21-predecessor
https://github.com/martinus/robin-hood-hashing

P. Dinklage, J. Fischer, and A. Herlez 7:5

[0, 7] [8, 15] [16, 23] [24, 31]

01101011 5, 3B1 B2

Top:

Buckets:

Figure 1 Hybrid universe sampling data structure for S = {1, 2, 4, 6, 7, 19, 21} with w = 5, b = 8
and θmin = θmax = 3 . The top level holds bucket pointers for the partitioned universe. Since
there are no keys from the intervals [8, 15] and [24, 31] contained in S, their pointers point to the
respective preceding buckets. Bucket B1 is represented as a bit vector of length b such that each
1-bit corresponds to a key contained in S. Bucket B2, on the other hand, only contains two keys
that are represented as an unsorted list of keys relative to the left interval boundary.

Bucket level. On the bucket level, we first look at two basic data structures. We only store
the lowest k = lg b bits of the contained keys, called truncated keys in the following, as the
high bits are already defined by the bucket number. Let Si ⊆ S be the set of truncated
keys contained in the i-th bucket. We can store them in a bit vector Bi ∈ {0, 1}b where
Bi[x] = 1 if x ∈ Si and Bi[x] = 0 otherwise. Updates are then done in constant time by
setting or clearing the respective bit in Bi. To compute predSi

(x), we scan Bi linearly in
time O(b/ lg u) using word packing. However, Bi always requires b bits of space. Let n′ be
the current number of keys contained in a bucket and consider the case where n′ < b/ lg b.
An alternative is storing an unsorted list of n′ keys: this requires only n′ lg b < b bits of
space and retains O(1) time insertions, and predecessor queries and deletions take time
O(n′) = O(b/ lg b) = O(b/ lg u).

We now consider a hybrid of the two basic bucket structures. Let θmin and θmax be
thresholds with 0 < θmin ≤ θmax < b. We maintain a bucket as an unsorted list of keys as
long as n′ < θmax. If, after inserts, the bucket grows beyond θmax keys, we rebuild it to a
bit vector. If, after deletions, the bucket size falls below θmin keys, we revert to an unsorted
list. Rebuilding the bucket to a bit vector or unsorted list, respectively, takes time O(b).
Let θmin := cb/ lg b and θmax := θmin + c′ lg b for constants c, c′ > 0. Then, Θ(lg b) insertions
need to occur before we switch to a bit vector representation, followed by Θ(lg b) deletions
before reverting to an unsorted list. We can thus amortize the time needed for one insertion
and one deletion to O(b/ lg b). At all times, predecessor queries take at most O(b/ lg u) time
and the bucket requires at most b bits of space. Figure 1 shows an example.

Experimental evaluation. Following our considerations in Appendix B,
(1) we set b := 224 for buckets backed by bit vectors,
(2) we set b := 210 for buckets backed by unsorted lists and
(3) for hybrid buckets, we set θmin := 29 and θmax := 210 and try different sizes b.

Our results are shown in Figure 2. We first discuss the results for 32-bit keys. In most
configurations, we achieve throughputs higher than 222 operations per second for both updates
(insertions and deletions) and predecessor queries. Furthermore, we achieve compression in
that we require less than 32 bits per key, because we only store trunacted keys within the
buckets. The compression increases with larger n as for sufficiently large n, all buckets are
active and more (truncated) keys are inserted into the same number of buckets. We observe
that the top level organization, array versus hash table, barely appears to matter. The only
difference is a slightly slower performance, but also lower memory consumption of the hash
tables for smaller n, which was to be expected. However, as all buckets become active for
larger n, these differences become negligible.

SEA 2021

7:6 Engineering Predecessor Data Structures for Dynamic Integer Sets

32-bit keys

27 28 29 30

20

21

22

23

Keys [log2]

T
hr

ou
gh

pu
t

[lo
g 2

op
s/

s]
Insert

27 28 29 30
Keys [log2]

Predecessor

27 28 29 30
Keys [log2]

Delete

27 28 29 30
0

10

20

Keys [log2]

M
em

or
y

[b
it

s
pe

r
ke

y]

Memory

40-bit keys

27 28 29 30 31 32 33
16

18

20

22

Keys [log2]

T
hr

ou
gh

pu
t

[lo
g 2

op
s/

s]

Insert

27 28 29 30 31 32 33
Keys [log2]

Predecessor

27 28 29 30 31 32 33
Keys [log2]

Delete

27 28 29 30 31 32 33

40

100

200

300

Keys [log2]

M
em

or
y

[b
it

s
pe

r
ke

y]

Memory

US Array/BV, b = 224 US Array/Hybrid, b = 214 US Array/Hybrid, b = 216

US Array/Hybrid, b = 220 US Array/Hybrid, b = 224 US Array/UL, b = 210

US Hash/BV, b = 224 US Hash/Hybrid, b = 214 US Hash/Hybrid, b = 216

US Hash/Hybrid, b = 220 US Hash/Hybrid, b = 224 US Hash/UL, b = 210

Figure 2 Throughputs for the insert, predecessor and delete operations, as well as memory usage
of the universe sampling data structures for 32-bit (top) and 40-bit keys (bottom). Best viewed in
colour. In the legend, US stands for universe sampling, BV stands for buckets backed by bit vectors,
UL for unsorted lists. Missing points indicate throughputs lower than 220 operations per second or
exceeding of 300 bits consumed per key, respectively, and are omitted for clarity.

We now look at the three types of bucket organization. The clear outliers are where we
implement buckets as unsorted lists of size at most 210: here, all operations are between 2–4
times slower than the rest, and the number of inserted keys visibly affects the performance of
queries and deletions negatively, which is due to linear scans facing a higher bucket fill rate.
Hybrid buckets and those backed by bit vectors appear to be on par especially for large n,
as the hybrid representation eventually switches to bit vectors. As expected, the bit vector
representation achieves higher compression than the unsorted list representation.

Now, we discuss the results for 40-bit keys. The memory consumption is obviously
different: while we still achieve compression below 40 bits per key for large n, the top level
now contains up to 230 active buckets (for buckets of size 210), causing a big memory overhead
that can only be compensated for sufficiently large n. Hybrid buckets may cause an explosion
of memory consumption when they switch to bit vectors, as can be seen for bucket size
224 at 230 keys. For 233 keys, we can see how it slowly starts to compensate. Regarding
performance, similar observations as for 32-bit keys can be made, except that the top level
organization now does matter: the smaller the buckets, the more linear scans weigh in, such
that the hash table approach becomes faster for updates but slower for queries. Since this
data structure is not suitable for large universes, we omit experiments for 64-bit keys.

P. Dinklage, J. Fischer, and A. Herlez 7:7

ℓ⊤

ℓ⊥

B1 B2 B3

Figure 3 Our y-fast trie for w = 5 and S = {3, 6, 7, 9, 17, 18, 19, 21, 23} with t = 2, c = 2 and
γ = 1. Edge and leaf labels of the conceptual trie are omitted for the sake of clarity: left edges are
labeled by 0, right edges by 1 and leaves are labeled by the corresponding keys. Keys contained
in S are shown as squares, where representatives of buckets have a thick border. Representatives
marked with an X are deleted: they are still representatives of buckets, but no longer contained in S

themselves. Buckets are shown as rectangles around the contained keys. Nodes on paths that lead
to representatives are contained in the x-fast trie’s LSS and are drawn with a thick border; other
nodes are not contained in the LSS. Levels ℓ⊤ and ℓ⊥ are highlighted by dashed lines.

5 Y-Fast Tries

The x-fast trie by Willard [26] is conceptually a variation of the binary trie where
(1) the keys of S are doubly-linked in ascending order and
(2) if a node does not have a left (right) child, then the corresponding pointer is replaced by

a descendant pointer that directly points to the smallest (largest) leaf descending from it.
The trie is stored in the level-search data structure (LSS). We say that a node of the trie is
on level ℓ if it has depth ℓ. For each level ℓ of the trie, the LSS stores an entry for every
node v that exists on level ℓ, which we identify by the bit sequence Bv ∈ {0, 1}ℓ that encodes
the path in the trie from the root to v. Specifically, the LSS associates Bv to v’s descendant
pointers. We can find predS(x) in expected time O(lg lg u) as follows: we first binary search
the ⌈lg u⌉ levels of the trie to find the bottom-most node v on the path leading to x if it
were contained in S. On each level ℓ that we inspect, we query the bit prefix x⟨0 .. ℓ − 1⟩
in the LSS in O(1) expected time to test if we are done. From v, by construction, we can
take a descendant pointer to the predecessor or successor of x. Updates of the x-fast trie
require O(lg u) expected time as in the worst case, the LSS needs to be updated for every
level following an insertion or deletion. The total memory consumption of the x-fast trie is
O(n lg u) words.

The y-fast trie improves this to O(n) words: we partition S into Θ(n/ lg u) buckets of
Θ(lg u) keys each and determine a representative for each bucket, e.g., the minimum contained
key. Then, we build an x-fast trie over only the representatives, which occupies O(n) words
of memory. For each bucket, we construct a binary search tree for the keys contained in it,
consuming O((n/ lg u) · lg u) = O(n) words. When looking for the predecessor of x, we can
locate its bucket using the x-fast trie over the representatives in expected time O(lg lg u) and
within the buckets, searching and updating can be done in time O(lg lg u). The sampling of
representatives also improves the amortized expected update times to O(lg lg u).

Implementation. Let t = Θ(lg u), γ > 0, and c > 2γ be parameters. We partition S into
buckets of size variable in [γt, ct]. We name the minimum key contained in a bucket its
representative and only representatives are contained in the x-fast trie, which has height
⌈lg u − lg t⌉ as the lowest lg t bits of the keys are maintained in the buckets. Within a bucket,
we store keys in a sorted or unsorted list rather than a binary search tree. This increases
the asymptotic time needed for updates and predecessor queries, but the additional memory
costs for structures such as binary trees, albeit asymptotically constant, would be too high
in practice. Figure 3 shows an example of our y-fast trie that we describe in the following.

SEA 2021

7:8 Engineering Predecessor Data Structures for Dynamic Integer Sets

We try to keep t small such that buckets fit into few consecutive cache lines and can be
searched quickly. Because this directly affects the height of the x-fast trie maintaining the
representatives, we speed up searches as follows: let ℓ⊤ be the bottommost level where all
possible nodes exist in the x-fast trie and let ℓ⊥ be the topmost level where no branching
nodes exist in the x-fast trie. Consider an operation involving a key x ∈ U : we locate its
bucket by a vertical binary search in the x-fast trie’s LSS. Because all levels above ℓ⊤ contain
all possible nodes and because all nodes on levels below ℓ⊥ point to the same buckets as
their respective ancestors on level ℓ⊥, we limit the binary search to the levels between ℓ⊤
and ℓ⊥ and maintain ℓ⊥ and ℓ⊤ under updates with no asymptotic extra cost. With this
strategy, we can also save space by avoiding storage of any nodes on levels below ℓ⊥; the
corresponding hash tables in the LSS simply remain empty. Intuitively, this cuts off trailing
unary paths in the x-fast trie. Note that due to the sampling mechanism, we always have
ℓ⊥ ≤ lg(γt), so the Θ(lg lg u) bottommost levels are never stored.

To speed up deletions, we allow the representative of a bucket to be no longer contained
in the bucket by itself. When it is deleted, we mark it as such, but it remains the bucket’s
representative and also remains in the x-fast trie. This strategy avoids the need of finding
a new representative and updating the x-fast trie every time a representative is deleted.
However, we must consider a special case when answering predecessor queries. Let yrep be
the deleted representative of a bucket and ymin > yrep the smallest key currently contained in
the bucket, and consider the query predS(x) with yrep ≤ x < ymin. The x-fast trie will lead
us to said bucket and yrep would be the predecessor of x. When we detect yrep as deleted,
we follow a pointer to the preceding bucket, which must contain the predecessor of x.

Buckets are merged and split as in B-trees [7, chapter 18] to ensure their size stays within
[γt, ct]. To avoid the creation of a new bucket each time a new minimum is inserted into
the data structure, we maintain a special bucket with representative −∞ that we allow to
become empty and will never be removed by a merge.

When using unsorted lists to maintain keys within a bucket, we can amortize insertion
costs. Unless a split is required, inserting a key into a bucket simply means appending it in
constant time. Thus, if we choose c := γ + Θ(t) > 2γ, we can amortize the time needed for a
split over Θ(t) constant-time insertions. This amortization leads to O((lg u)/t) = O(1) time
needed for inserting a key into a bucket followed by a potential split, such that the amortized
expected insertion time of the y-fast trie is O(lg lg u) as in the original. This cannot be
achieved for deletions, as the key to be deleted needs to be located in time O(lg u) first.

▶ Example 1 (insertion). Consider the y-fast trie in Figure 3 with t = 2 and c = 2. We insert
the new key 8. The binary search in the x-fast trie’s LSS is constrained only to the three
levels between ℓ⊤ and ℓ⊥ and leads to bucket B1 with (deleted) representative 0. We insert
x by appending it to the unsorted list of keys. However, we then have |B1| = 5 > 4 = ct,
thus we have to split B1. We create a new bucket B′

1 with representative 7 (the median) and
move keys such that B1 := {3, 6} and B′

1 := {7, 8, 9}. Even though 0 is no longer contained
in B1, it remains its representative. Finally, we enter key 7 into the x-fast trie, causing two
new nodes to be added to the LSS. However, ℓ⊥ remains unchanged, as the newly added
nodes form a unary path beginning at level ℓ⊥.

▶ Example 2 (deletion). Consider the y-fast trie in Figure 3 with t = 2 and γ = 1. We delete
key 21, which we find in bucket B3 as in Example 1. After deletion, we have |B3| = 1 < 2 = γt

(note how 20 is the representative, but is marked as deleted), thus we have to merge. As the
only neighbour, we merge with bucket B2 by moving key 23 such that B2 := {17, 18, 19, 23}.

P. Dinklage, J. Fischer, and A. Herlez 7:9

27 28 29 30 31 32 33
18

19

20

21

22

Keys [log2]

T
hr

ou
gh

pu
t

[lo
g 2

op
s/

s]
Insert

27 28 29 30 31 32 33
Keys [log2]

Predecessor

27 28 29 30 31 32 33
Keys [log2]

Delete

27 28 29 30 31 32 33

96

98

100

102

Keys [log2]

M
em

or
y

[b
it

s
pe

r
ke

y]

Memory

Y-Fast Trie UL, t = 64 Y-Fast Trie UL, t = 128 Y-Fast Trie UL, t = 256
Y-Fast Trie UL, t = 512 Y-Fast Trie SL, t = 64 Y-Fast Trie SL, t = 128
Y-Fast Trie SL, t = 256 Y-Fast Trie SL, t = 512

Figure 4 Throughputs for the insert, predecessor and delete operations, as well as memory usage
of the y-fast trie for U = [264]. Best viewed in colour. UL stands for unsorted, SL for sorted lists.

The former representative of B3, key 20, is now removed from the x-fast trie. Observe how
the path of nodes leading to B2 now becomes a unary path starting at level ℓ⊤. Because all
unary paths then start at level ℓ⊤, we set ℓ⊥ := ℓ⊤.

Experimental evaluation. In our experiments, we set c := 2 and γ := 1/4 and choose t as
powers of two to optimize memory alignments. Our results for t := 64 to 512 and 64-bit keys
are shown in Figure 4. (Additional results are given in Figure 8 in Appendix A.)

The fastest predecessor queries are achieved when buckets are organized as sorted lists
and binary search is used to answer bucket-level queries. Conversely, insertions are are up to
twice as fast in the unsorted list case, where new keys simply have to be appended without
preserving any order. Regarding deletions, there is no substantial difference between using a
sorted or unsorted list to organize the buckets: while we can find the item to be deleted using
binary search when using a sorted list, we have to shift up to t keys afterwards. As we use
simple arrays for storage in either case, there is also no difference in memory consumption.

As expected, the bucket size of t is a direct trade-off parameter for update versus query
performance and memory usage, which is very visible when buckets are organized as unsorted
lists. Here, insertions become faster as the bucket size grows since they are trivial on the
bucket level and the LSS needs to be updated less often. However, larger buckets mean
longer scans when answering predecessor queries. The bucket size is much less impactful on
query performance when sorted lists are used, as the bucket-level query time is then only
logarithmic in the bucket size. The memory consumption is also affected by the bucket size:
larger buckets imply less levels in the LSS and thus less memory needed.

As a conclusion, unsorted lists may be preferable when fast insertions are required and
the performance of predecessor queries is less important. For the general case, however, using
sorted lists appears to be preferable, as all operations then have similar throughputs.

6 Fusion Trees

Pǎtraşcu and Thorup [22] introduce dynamic fusion nodes as a sorted list data structure
for |S| ≤ k ≤

√
w keys that supports predecessor queries and updates in time O(1). It is

based on the fusion node, originally described by Fredman and Willard [13], that simulates

SEA 2021

7:10 Engineering Predecessor Data Structures for Dynamic Integer Sets

2
0

3
1

1

0

0

12
0

0

1

1

0

27
1

1

0

1

1

(a) The binary trie for S. Branching nodes have
thicker outlines and bits at distinguishing positions
are written in bold.

M = 11001

x binary x̂ x̂? Branch Free

2 00010 000 000 000 000
3 00011 001 001 001 000

12 01100 010 01? 010 001
27 11011 111 1?? 100 011

(b) The keys x ∈ S, with binary representation
and compressed versions x̂ and x̂? without and
with don’t cares according to [13] and [22], respect-
ively. Branch and Free encode the matrix given
by column x̂? as described in [22]. The mask M
marks the distinguishing positions of S.

Figure 5 Binary trie and compressed keys for S = {2, 3, 12, 27} and w = 5.

navigation in a compact binary trie of S represented by compressed keys. Given a key
x ∈ S, we only consider those bits at distinguishing positions. A position ℓ < ⌈lg u⌉ is a
distinguishing position if there is at least one branch on level ℓ in the binary trie. For k

keys, there can be at most k branches in the binary trie, and thus there can be at most k

distinguishing positions. A compressed key x̂ consists of only the bits of x at distinguishing
positions moved to the k least significant positions. We maintain the set of distinguishing
positions in a mask M of w bits where the k distinguishing bits are set and all other bits are
clear. Figure 5b shows an example. From x, we can compute x̂ in constant time by masking
out unwanted bits using M , followed by multiplications to relocate the distinguishing bits.
The k compressed keys of S can be stored in a k × k bit matrix Ŝ that fits into a single word.
With this, we can compute predS(x) in time O(1) as Fredman and Willard describe in [13].
However, updates may cause a new position to become distinguishing after an insertion, or a
position to be no longer distinguishing after a deletion. In these cases, their data structure
needs to be rebuilt from scratch. To resolve this, Pǎtraşcu and Thorup introduce don’t care
bits (written ?) that indicate bits at distinguishing position that are, however, not used for
branching in a specific compressed key. The data structure now contains a k × k matrix
over the new alphabet {0, 1, ?}, which we encode using two k × k bit matrices that fit into
one word each. Examples for this can be seen in Figure 5b. The notion of wildcards allows
for updating the data structure in time O(1). We refer to Appendix C for a more detailed
description and examples, including an elaboration of the deletion of keys not given in [22].

A B-tree is a self-balancing multiary tree data structure for representing a dynamic
ordered set of items. With B the maximum degree of a node, it is guaranteed to maintain
height logB n, such that lookup – including predecessor – queries and updates can be done
in time O(logB n). We consider B-trees a well-known folklore data structure and refer to [7,
chapter 18] for a comprehensive introduction. Embedding fusion nodes into a B-tree, using
the keys contained in the nodes as splitters, are the typical ingredients of a fusion tree.

Implementation. As we deal with 64-bit architectures (w = 64), we choose k := 8, such
that a k × k bit matrix can be stored in a single word represented row-wise by an array
X̂ = [x̂0, . . . , x̂7] of compressed keys. We keep X̂ in ascending order, i.e., x̂0 < x̂1 < · · · < x̂7.

The most important operation is key compression, writing only the bits of x at distin-
guishing positions into a word x̂. Instead of an approach based on sparse tables [23], we make
use of the parallel bits extract (PEXT) instruction [16]. Let M be the w-bit mask identifying

P. Dinklage, J. Fischer, and A. Herlez 7:11

27 28 29 30 31 32 33

18

19

20

Keys [log2]

T
hr

ou
gh

pu
t

[lo
g 2

op
s/

s]
Insert

27 28 29 30 31 32 33
Keys [log2]

Predecessor

27 28 29 30 31 32 33
Keys [log2]

Delete

27 28 29 30 31 32 33

100

120

140

160

Keys [log2]

M
em

or
y

[b
it

s
pe

r
ke

y]

Memory

B-tree LS, B = 128 B-tree LS, B = 16 B-tree LS, B = 256
B-tree LS, B = 64 B-tree LS, B = 8 B-tree BS, B = 128
B-tree BS, B = 16 B-tree BS, B = 256 B-tree BS, B = 64
B-tree BS, B = 8 Fusion Tree SIMD, k = 16 Fusion Tree SIMD, k = 8
Fusion Tree LS, k = 16 Fusion Tree LS, k = 8

Figure 6 Throughputs for the insert, predecessor and delete operations, as well as memory usage
of the fusion trees and B-trees for U = [264]. Best viewed in colour. In the legend, LS stands for
linear searched nodes, BS for binary search and SIMD for use of SIMD instructions.

distinguishing positions. Then, conveniently, x̂ = PEXT(x, M). Another core operation is
finding the rank i of a compressed key ŷ in X̂. For this, we use the MMX SIMD instruction
PCMPGTB [16], which performs a byte-wise greater-than comparison of two 64-bit words.
First, we multiply ŷ by the constant (0k−11)k to retrieve the word ŷk containing k copies of
ŷ. Let j be the smallest rank such that x̂j > ŷ. The instruction PCMPGTB(X̂, ŷk) returns
the word BX̂>ŷ where the kj lowest bits are zero and the remaining bits are set (because X̂

is ordered). Therefore, j = ⌊TZCNT(BX̂>ŷ)/k⌋ and finally i = j − 1. Alternatively, because
X̂ easily fits into a cache line, we consider a naïve linear search.

We extend our implementation to support also k = 16 by simulating a 256-bit word using
four 64-bit words. The special CPU instructions can be extended by executing them on each
of the four 64-bit words and then combining the results. The processors to our disposal
actually support a variant of PCMPGTB for the parallel comparison of sixteen 16-bit words
contained in a 256-bit word (namely the Intel intrisic _mm256_cmpgt_epi16).

We implement B-trees largely following the description in [7, chapter 18]. Nodes have at
most B children and thus contain up to B − 1 keys used as splitters. When plugging fusion
nodes into B-trees of degree k, we have fusion trees.

Experimental evaluation. We use B := 8 and B := 16 for fusion trees with k = 8 and
k = 16, respectively, comparing fusion nodes using the PCMPGTB instruction for rank
queries against those using simple linear scans. Further, we compare fusion trees to straight
B-trees, finding predecessors in a node using O(lg B)-time binary or O(B)-time linear search.
There, we also consider much larger B, as preliminary experiments suggested that the
performance of all operations peaks at B := 64. Our results for 64-bit keys are presented in
Figure 6. (More results for smaller universes are given in Figure 9 in Appendix A.)

To our surprise, fusion trees achieve the lowest throughputs for all operations: B-trees
with large B are up to twice as fast, and even the B-trees with low degrees are visibly faster
overall. Fusion trees also require more memory per key, which was expected, as each node
needs to store three words (the compression mask and two matrices) in addition to the keys
themselves. Interestingly, the fusion nodes using linear scans for ranking outperform those

SEA 2021

7:12 Engineering Predecessor Data Structures for Dynamic Integer Sets

18 20 22
0

64

128

192

256

320

Avg. Throughput [log2 ops/s]

M
em

or
y

[b
it

s
pe

r
ke

y]
32-bit keys

18 19 20
Avg. Throughput [log2 ops/s]

40-bit keys

18 19 20
Avg. Throughput [log2 ops/s]

64-bit keys

STL set Burst Trie B-tree LS, B = 64
B-tree BS, B = 128 Y-Fast Trie UL, t = 64 Y-Fast Trie UL, t = 512
Y-Fast Trie SL, t = 512 US Array/Hybrid, b = 216 US Hash/Hybrid, b = 216

Figure 7 Comparing the average throughput of operations versus memory use of dynamic
predecessor data structures for different universes and n = 230.

that use the SIMD instructions in nearly all instances. The reason is presumably that the
corresponding MMX/AVX registers have to be filled prior to executing these instructions:
in a direct comparison answering immediately consecutive random rank queries, the SIMD
variant is about 28% faster than scanning. Fusion trees with B = 16 perform slower overall
than those with B = 8 despite their lower height, which is due to overheads in our simulation
of 256-bit words. It shall be interesting to redo these experiments with natively supported
wide registers (e.g., AVX-512) and necessary instructions in the future.

We have a brief closer look at B-trees. Our preliminary experiments are largely confirmed
in that B-trees with B = 64 perform best overall. For B ≤ 64, nodes backed by linear search
perform faster than those backed by binary search. The exact opposite is the case for B > 64,
where binary search becomes faster. Concerning memory, unsurprisingly, the higher B is
chosen, the less memory is required as the tree structure shrinks in height.

7 Comparison

In Figure 7, we plot the average throughput of insertions, predecessor queries and deletions
against the memory usage of a subset of our data structures from Sections 4–6 for a fixed
workload size of 230. For comparison, we also show the performance of the STL set (std::set,
an implementation of red-black trees), and the burst trie of Nash and Gregg [19] – to the
best of our knowledge the best practical dynamic predecessor data structure thus far. Note
that burst tries are associative and store a value along with each key, so for a fair comparison,
one should subtract w bits per key for each data point.

For all universes, at least one of our data structures is over four times faster than the
STL set, the extreme being for 32-bit keys, where our sampling structures achieve an average
throughput of approximately 222.2 operations per second, whereas the set does about 218.2.
Furthermore, our data structures consume less than a third of the set’s 320 bits per key.
For 32-bit keys, we also outperform burst tries completely, where even our slowest data
structure (B-trees with degree 128 and binary searched nodes) is about 33% faster. Our two
sampling data structures with hybrid buckets of size 216 are clearly the fastest. Their low
space consumption of just about 2 bits per key should, however, be interpreted with care,
as for n = 230, one quarter of all possible keys is contained in S, and hence they essentially

P. Dinklage, J. Fischer, and A. Herlez 7:13

store S in a bit vector. This also shows up for w = 40 (but less pronounced), where they
become the only data structure clearly faster than the burst tries. Our y-fast tries with
unsorted buckets of size 29 are about 6% faster than burst tries, but still require considerably
less memory even respecting that 40 bits per key in burst tries are for associated values.
It appears that y-fast tries with unsorted buckets scale best with the size of the universe:
for 64-bit keys, it is the fastest data structure with buckets of size either 26 or 29 and is
approximately 30% faster than burst tries, again consuming significantly less memory. The
y-fast tries with sorted buckets are about on par with our B-trees, which are overall between
14% and 56% slower than y-fast tries with unsorted buckets.

For 32-bit keys, we intended to include the stratified tree [9], but it failed to stay within
the memory limits (256 GB) starting at 230 keys. For 229 keys, it consumed about 1,480 bits
per key, ranking lowest with an average throughput of circa 217.7 operations per second.

Conclusions. Our dynamic predecessor data structures are the most memory efficient of all
tested. They clearly outperform the STL set and for all universes in question, at least one of
our data structures is faster than burst tries, the previously fastest known to us. We confirm
once more [4, 10, 11, 15] that naïve solutions can be more practical than sophisticated data
structures on modern hardware and sufficiently small inputs. We also observed that SIMD
instructions, while faster than sequences of classic (SISD) instructions when used in batches,
may turn out less useful in more complex scenarios.

References
1 Advanced Micro Devices Inc. AMD64 Architecture – Programmer’s Manual Volume 3: General-

Purpose and System Instructions, September 2020. URL: https://www.amd.com/system/files/
TechDocs/24594.pdf.

2 Miklós Ajtai, Michael L. Fredman, and János Komlós. Hash functions for priority queues. Inf.
Control., 63(3):217–225, 1984. doi:10.1016/S0019-9958(84)80015-7.

3 Arm Limited. A64 Instruction Set Reference, 2018. URL: https://developer.arm.com/
documentation/100076/0100/a64-instruction-set-reference.

4 Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit. Practical range minimum
queries revisited. In 16th International Symposium on Experimental Algorithms (SEA), pages
12:1–12:16. Dagstuhl, 2017. doi:10.4230/LIPIcs.SEA.2017.12.

5 Djamal Belazzougui. Predecessor search, string algorithms and data structures. In Encyclopedia
of Algorithms, pages 1605–1611. Springer, 2016. doi:10.1007/978-1-4939-2864-4_632.

6 Pedro Celis, Per-Åke Larson, and J. Ian Munro. Robin hood hashing (preliminary report). In
26th Symposium on Foundations of Computer Science (FOCS), pages 281–288. IEEE, 1985.
doi:10.1109/SFCS.1985.48.

7 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

8 Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink. Small forwarding
tables for fast routing lookups. In ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 3–14. ACM, 1997. doi:
10.1145/263105.263133.

9 Roman Dementiev, Lutz Kettner, Jens Mehnert, and Peter Sanders. Engineering a sorted list
data structure for 32 bit key. In 6th Workshop on Algorithm Engineering and Experiments (ALE-
NEX), pages 142–151. SIAM, 2004. URL: https://web.archive.org/web/20201111145353/
http://algo2.iti.kit.edu/dementiev/files/veb.pdf.

10 Patrick Dinklage, Johannes Fischer, Alexander Herlez, Tomasz Kociumaka, and Florian
Kurpicz. Practical performance of space efficient data structures for longest common extensions.

SEA 2021

https://www.amd.com/system/files/TechDocs/24594.pdf
https://www.amd.com/system/files/TechDocs/24594.pdf
https://doi.org/10.1016/S0019-9958(84)80015-7
https://developer.arm.com/documentation/100076/0100/a64-instruction-set-reference
https://developer.arm.com/documentation/100076/0100/a64-instruction-set-reference
https://doi.org/10.4230/LIPIcs.SEA.2017.12
https://doi.org/10.1007/978-1-4939-2864-4_632
https://doi.org/10.1109/SFCS.1985.48
https://doi.org/10.1145/263105.263133
https://doi.org/10.1145/263105.263133
https://web.archive.org/web/20201111145353/http://algo2.iti.kit.edu/dementiev/files/veb.pdf
https://web.archive.org/web/20201111145353/http://algo2.iti.kit.edu/dementiev/files/veb.pdf

7:14 Engineering Predecessor Data Structures for Dynamic Integer Sets

In 28th European Symposium on Algorithms (ESA), pages 39:1–39:20. Dagstuhl, 2020. doi:
10.4230/LIPIcs.ESA.2020.39.

11 Héctor Ferrada and Gonzalo Navarro. Improved range minimum queries. J. Discrete Algorithms,
43:72–80, 2017. doi:10.1016/j.jda.2016.09.002.

12 E. Fredkin. Trie memory. Commun. ACM, 3:490–499, 1960. doi:10.1145/367390.367400.
13 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with

fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. doi:10.1016/0022-0000(93)90040-4.
14 Steffen Heinz, Justin Zobel, and Hugh E. Williams. Burst tries: a fast, efficient data structure

for string keys. ACM Trans. Inf. Syst., 20(2):192–223, 2002. doi:10.1145/506309.506312.
15 Lucian Ilie and Liviu Tinta. Practical algorithms for the longest common extension problem.

In 16th International Symposium on String Processing and Information Retrieval (SPIRE),
pages 302–309. Springer, 2009. doi:10.1007/978-3-642-03784-9_30.

16 Intel Corporation. Intel (R) 64 and IA-32 Architectures – Software Developer’s
Manual – Volume 2: Instruction Set Reference, A-Z, September 2016. URL:
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-instruction-set-reference-manual-325383.pdf.

17 Maureen Korda and Rajeev Raman. An experimental evaluation of hybrid data structures for
searching. In 3rd International Workshop on Algorithm Engineering (WAE), pages 214–228.
Springer, 1999. doi:10.1007/3-540-48318-7_18.

18 Kurt Maly. Compressed tries. Commun. ACM, 19(7):409–415, 1976. doi:10.1145/
360248.360258.

19 Nicholas Nash and David Gregg. Comparing integer data structures for 32- and 64-bit keys.
ACM J. Exp. Algorithmics, 15, 2010. doi:10.1145/1671970.1671977.

20 Gonzalo Navarro and Javiel Rojas-Ledesma. Predecessor search. ACM Comput. Surv., 53(5),
2020. doi:10.1145/3409371.

21 Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In 31st
Annual ACM Symposium on Theory of Computing (STOC), pages 232–240. ACM, 2006.
doi:10.1145/1132516.1132551.

22 Mihai Pǎtraşcu and Mikkel Thorup. Dynamic integer sets with optimal rank, select, and
predecessor search. In 55th Symposium on Foundations of Computer Science (FOCS), pages
166–175. IEEE, 2014. doi:10.1109/FOCS.2014.26.

23 Robert Endre Tarjan and Andrew Chi-Chih Yao. Storing a sparse table. Commun. ACM,
22(11):606–611, 1979. doi:10.1145/359168.359175.

24 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In 16th
Symposium on Foundations of Computer Science (FOCS), pages 75–84. IEEE, 1975. doi:
10.1109/SFCS.1975.26.

25 M. Wenzel. Wörterbücher für ein beschränktes Universum (dictionaries for a bounded universe).
Master’s thesis, Saarland University, Germany, 1992.

26 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space theta(n).
Inform. Process. Lett., 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

A Additional Results

We give experimental results in addition to those presented in Sections 4 through 6, which have
been omitted there for the sake of clarity as they lead to largely the same conclusions. Figure 8
shows results for our y-fast tries (Section 5) for 32-bit and 40-bit universes, respectively,
Figure 9 for our fusion and B-trees (Section 6).

https://doi.org/10.4230/LIPIcs.ESA.2020.39
https://doi.org/10.4230/LIPIcs.ESA.2020.39
https://doi.org/10.1016/j.jda.2016.09.002
https://doi.org/10.1145/367390.367400
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1145/506309.506312
https://doi.org/10.1007/978-3-642-03784-9_30
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://doi.org/10.1007/3-540-48318-7_18
https://doi.org/10.1145/360248.360258
https://doi.org/10.1145/360248.360258
https://doi.org/10.1145/1671970.1671977
https://doi.org/10.1145/3409371
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1109/FOCS.2014.26
https://doi.org/10.1145/359168.359175
https://doi.org/10.1109/SFCS.1975.26
https://doi.org/10.1109/SFCS.1975.26
https://doi.org/10.1016/0020-0190(83)90075-3

P. Dinklage, J. Fischer, and A. Herlez 7:15

32-bit keys

27 28 29 30
18

20

22

Keys [log2]

T
hr

ou
gh

pu
t

[lo
g 2

op
s/

s] Insert

27 28 29 30
Keys [log2]

Predecessor

27 28 29 30
Keys [log2]

Delete

27 28 29 30
48

50

52

54

56

Keys [log2]

M
em

or
y

[b
it

s
pe

r
ke

y]

Memory

40-bit keys

27 28 29 30 31 32 33

18

20

22

Keys [log2]

T
hr

ou
gh

pu
t

[lo
g 2

op
s/

s] Insert

27 28 29 30 31 32 33
Keys [log2]

Predecessor

27 28 29 30 31 32 33
Keys [log2]

Delete

27 28 29 30 31 32 33
60

62

64

66

68

Keys [log2]

M
em

or
y

[b
it

s
pe

r
ke

y]

Memory

Y-Fast Trie UL, t = 64 Y-Fast Trie UL, t = 128 Y-Fast Trie UL, t = 256
Y-Fast Trie UL, t = 512 Y-Fast Trie SL, t = 64 Y-Fast Trie SL, t = 128
Y-Fast Trie SL, t = 256 Y-Fast Trie SL, t = 512

Figure 8 Throughputs for the insert, predecessor and delete operations, as well as memory usage
of the y-fast trie for 32-bit (top) and 40-bit keys (bottom). Best viewed in colour.

32-bit keys

27 28 29 30
18

19

20

21

Keys [log2]

T
hr

ou
gh

pu
t

[lo
g 2

op
s/

s] Insert

27 28 29 30
Keys [log2]

Predecessor

27 28 29 30
Keys [log2]

Delete

27 28 29 30

60

80

100

Keys [log2]

M
em

or
y

[b
it

s
pe

r
ke

y]

Memory

40-bit keys

27 28 29 30 31 32 33

18

19

20

Keys [log2]

T
hr

ou
gh

pu
t

[lo
g 2

op
s/

s] Insert

27 28 29 30 31 32 33
Keys [log2]

Predecessor

27 28 29 30 31 32 33
Keys [log2]

Delete

27 28 29 30 31 32 33

60

80

100

120

Keys [log2]

M
em

or
y

[b
it

s
pe

r
ke

y]

Memory

B-tree LS, B = 128 B-tree LS, B = 16 B-tree LS, B = 256
B-tree LS, B = 64 B-tree LS, B = 8 B-tree BS, B = 128
B-tree BS, B = 16 B-tree BS, B = 256 B-tree BS, B = 64
B-tree BS, B = 8 Fusion Tree SIMD, k = 16 Fusion Tree SIMD, k = 8
Fusion Tree LS, k = 16 Fusion Tree LS, k = 8

Figure 9 Throughputs for the insert, predecessor and delete operations, as well as memory usage
of the fusion and B-trees for 32-bit (top) and 40-bit keys (bottom). Best viewed in colour.

SEA 2021

7:16 Engineering Predecessor Data Structures for Dynamic Integer Sets

B Choosing Parameters For Universe Sampling

The key question for preparing the experiments for our sampling data structure (Section 4) is
how to configure the bucket size b, which is a direct trade-off parameter for the performance
of the top level versus that of the bucket level: at the top level, we have worst-case costs of
O(u/b) for updates or queries depending on the chosen data structure. At the bucket level,
we have costs of O(b) for queries. To that end, we want to pick b large enough so that the
top level does not end up with too many entries, and pick it small enough so that operations
on the bucket level do not take too much time.

We first do some considerations on the top level. When we assume a uniform distribution
of keys inserted into the data structure, we observe that the number of insertions required
until every bucket is active is distributed geometrically. What follows is that long scans for
active buckets on the top level occur more and more rarely as more keys are inserted into the
data structure. The same conclusion can be drawn when inserted keys are skewed towards
a range within U , because then it occurs rarely that active buckets far away from others
need to be accessed. Therefore, assuming that a large enough number of keys is going to be
inserted so that long top-level scans occur rarely, we focus on bucket-level performance.

On the bucket level, we have to consider our three strategies for maintaining the keys.
First, when using an unsorted list, smaller buckets clearly result in faster query times. In
preliminary experiments, the performance declined only marginally up to a bucket size of
blist := 210 keys, whereas buckets any larger caused a significant drop. When using a bit
vector, we benefit from scanning through bits packed into words, resulting in large buckets
of bbv := 224 keys still performing very well. Here, choosing larger buckets caused insertions
and deletions to become slower. Because these operations simply mean setting or clearing
bits, this effect can be explained by a higher number of cache misses. In the hybrid case,
the initial notion is that we want the unsorted list to never consume more memory than the
bit vector and thus switch to when a bucket exceeds b/ lg b keys. As we desire to maintain
the sweet spot threshold of θmax := blist = 210 for unsorted lists, we seek bhybrid such that
bhybrid/ lg bhybrid > 210. This is the case for bhybrid ≥ 214, such that the bucket size of
bbv = 224 is again an option. However, consider the case where the bucket is switched from an
unsorted list representation to a bit vector: we want to avoid a sudden explosion of memory
occupied – and potentially wasted – by a bucket. Because a perfect choice of bhybrid cannot
be done without any prior knowledge about the input, we explore different configurations.

We add here that we also tried sorted lists for maintaining the keys in the buckets,
enabling binary search to speed up queries. However, the performance of updates greatly
suffered and for smaller buckets, the query speedup compared to linear scans became marginal.
Sorted lists are therefore not considered in our experiments.

C Elaboration On Dynamic Fusion Nodes

We expand on the description of dynamic fusion nodes from Section 6. Let x̂? indicate a
compressed key that may contain don’t cares. The k ×k matrix Ŝ? over the alphabet {0, 1, ?}
is represented by two k × k binary matrices Branch and Free defined as follows:

Freeij =
{

0 , if Ŝ?
ij ̸= ?

1 , if Ŝ?
ij = ?

Branchij =
{

Ŝ?
ij , if Freeij = 0

0 , if Freeij = 1

Intuitively, Free identifies the don’t care bits in Ŝ?, and Branchij is either equal to Ŝ?
ij if

a bit is used for branching, or zero if it is a don’t care bit. The concatenation of the bits on
the i-th row of Ŝ? represent the compressed (with don’t cares) i-th key contained in S.

P. Dinklage, J. Fischer, and A. Herlez 7:17

We can find the predecessor of some key x ∈ U by determining its rank i < k among the
keys in S. In the following, we reduce this rank query to compressed keys. To that end, we
assume that Ŝ? is maintained such that the rows are in ascending order. If this is not the case,
we can afford to maintain an index as described in [2] without worsening the asymptotically
constant query and update times. We now seek the number i′ of the row in Ŝ? that
corresponds to the rank of x̂ among the compressed keys. We say that x̂ ∈ {0, 1}k matches a
compressed key ŷ? ∈ {0, 1, ?}k with don’t cares if all non-don’t care bits in ŷ? are equal to
the corresponding bits in x̂. Formally, this is the case if ∀j < k : ŷ?⟨j⟩ = ? ∨ x̂⟨j⟩ = ŷ?⟨j⟩.
We define the operation match(x) that, simultaneously for all j < k, tests whether x̂ matches
the compressed key encoded in the j-th row of Ŝ? and reports the smallest j where this is not
the case. Pǎtraşcu and Thorup [22] show how to perform this operation in constant time by

(1) computing Ŝx̂ by replacing the don’t care bits in Ŝ? by the corresponding bits of the
k × k bit matrix x̂k that contains k copies of x̂ and

(2) performing a parallel row-wise greater-than comparison of Ŝx̂ against x̂k.

We then have i′ = match(x). If x ∈ S, then i′ is also the rank of x within S as shown in
[13]. Therefore, if x = S[i′], we already found the predecessor of x after one match operation.
However, if x ≠ S[i′], it is x /∈ S. In the trie, consider the ancestor of the leaf of x – if x were
contained in S – at level j = msb(x ⊕ S[i′]). At this node, we branched off in a direction
that does not necessarily lead us to the predecessor of x. To see examples of this, refer to
Examples 3 and 4 below. To find the actual rank i of x within S and thus the predecessor
S[i] of x, we simulate the necessary trie navigation by performing another match operation.
Consider the case where x < S[i′]. In the trie, we navigate up to the lowest ancestor v that
has two children and take the path to the rightmost leaf in the left subtrie of v. An equivalent
approach is to take the path to the leftmost leaf in the right subtrie of v, and subtract one
from that leaf’s rank. The latter can be simulated by computing i = match(x ∧ 1w−j0j) − 1.
In the case that x > S[i′], symmetrically, we simulate navigation to the rightmost leaf in the
left subtrie of v by computing i = match(x ∨ 0w−j1j).

Pǎtraşcu and Thorup further show how to perform all the necessary manipulations of Ŝ?

in constant time in order to insert keys into the data structure. The intuition is always that
Ŝ? is stored in two words and all required word operations can be done in constant time.

▶ Example 3. We consider a predecessor search for x = 25 in the set S from Figure 5 with
w = 5. The binary representation of x is 11001, which we compress to x̂ = 111. We compute
i′ = match(x) = 4, corresponding to S[i′] = 27. This cannot be the predecessor of x because
x < S[i′]. The position at which we branched off in the wrong direction is j = msb(x⊕y) = 2,
at the node two levels above the leaf labeled by 27 in Figure 5a: a path leading to x = 25
would branch off to the left, whereas we branched off to the right. We simulate the necessary
trie navigation by computing i = match(x ∧ 1w−j0j) − 1 = match(11000) − 1 = 3. Now,
S[i] = 12 is the correct predecessor of x.

▶ Example 4. We consider a predecessor search for x = 4 in the set S from Figure 5
with w = 5. The binary representation of x is 00100, which we compress to x̂ = 000. We
compute i′ = match(x) = 1, corresponding to S[i′] = 2. Since x > S[i′], we have the opposite
case as in Example 3. The position at which we branched off in the wrong direction is
j = msb(x ⊕ y) = 2, at the node two levels above the leaf labeled by 2 in Figure 5a. We
compute i = match(x ∨ 0w−j1j) = match(00111) = 2, and S[i] = 3 is the predecessor of x.

SEA 2021

7:18 Engineering Predecessor Data Structures for Dynamic Integer Sets

Deleting keys

Pǎtraşcu and Thorup thoroughly describe the process of inserting a key into a dynamic
fusion node in constant time [22]. They further claim that to delete a key, “we just have to
invert the [. . .] process”. However, some details require special attention, which is why we
sketch the constant-time deletion of a key here. To that end, we use the same bag of tricks
to perform the necessary k × k matrix manipulations in constant time using word operations
and refer to [22] for the ideas.

Consider deleting a key x ∈ U from our set S containing at most k keys from U . Recall
that S is stored in a k × k matrix Ŝ? of bits and don’t cares represented by two words
Branch and Free, and that we maintain the k distinguishing positions by setting the
corresponding bits in a mask M of w bits. We first compute the rank i = match(x) of x

within S in constant time. To verify that x ∈ S, we compare x against S[i]. If x /∈ S, we
abort the deletion. Otherwise, we require the position j of the least significant distinguishing
bit at which x branches off in the trie. This position may no longer be distinguishing after the
deletion of x and the, the corresponding bit must be removed from all remaining compressed
keys in Ŝ? to retain optimal compression. If j remains a distinguishing position, we need
to replace the corresponding bits in all keys in the subtrie beneath node v by don’t cares,
where v is the ancestor of the leaf corresponding to x on level j. This is because due to
the deletion of x, v loses a child and is no longer a branching node. We will not consider
any distinguishing positions of significance higher than j, because for those, by construction,
there must be at least one other key in S that branches off the corresponding trie node. The
deletion of x works as follows:

1. Find the position j of the least significant distinguishing bit at which x branches off in
the trie. This corresponds to the position of the least significant non-don’t care bit in x̂?.
Compute h by adding one to the number of trailing don’t cares in x̂?, which equals the
number of trailing ones in the i-th row of Free. Then, j = select1(M, h).

2. Remove the i-th row, which contains x̂?, from Ŝ?.
3. Test if the deletion of x results in j no longer being a distinguishing position. This is

the case if all non-don’t care bits in the h-th column have the same value, indicating
that there are no more branches at any node in the trie on level j. This can be done in
constant time using a sequence of word operations; we refer to our code for details.

4. If that is the case, remove the h-th column from Ŝ? and clear the j-th bit in M .
5. Otherwise, if j remains distinguishing, find the range i0 to i1 of keys in the subtree

beneath j. This range must contain at least one key, because otherwise column h in row
i would have been a don’t care. For all compressed keys in the range, column h must be
updated to a a don’t care.

Compared to [22], we introduced two additional operations on words: counting trailing ones
and a binary select operation. In Section 2, we already mentioned briefly how these can be
performed in constant time both in theory and practice.

▶ Example 5. We consider the deletion of key x = 12 in Figure 5. It has rank i = 3 and
occupies the third row in the matrix. We follow the steps of our sketched algorithm:
1. Observe that x̂? = 01? has one trailing don’t care, so we have h = 2. The position of the

least significant distinguishing bit at which x branches off is thus j = select1(M, h) = 2.
This corresponds to the second level in the trie shown in Figure 5a.

2. We remove the third row from Ŝ?, conceptually removing the leaf for x = 12 in the trie.

P. Dinklage, J. Fischer, and A. Herlez 7:19

3. Observe how all non-don’t care bits in column h = 2 of the matrix now have the same
value 0. This corresponds to the fact that in the trie, on level h = 2, there are no longer
any branches, which means that position j is no longer distinguishing.

4. Because j is no longer distinguishing, we remove the second column from the matrix
completely and clear the corresponding bit in M .

The mask indicating distinguishing bits is now 10001, and the matrix now consists of the
compressed keys 00 (for key 2), 01 (for key 3) and 1? (for key 27).

SEA 2021

Multilevel Hypergraph Partitioning with Vertex
Weights Revisited
Tobias Heuer ! Ï

Karlsruhe Institute of Technology, Germany

Nikolai Maas !

Karlsruhe Institute of Technology, Germany

Sebastian Schlag ! Ï

Karlsruhe Institute of Technology, Germany

Abstract
The balanced hypergraph partitioning problem (HGP) is to partition the vertex set of a hypergraph
into k disjoint blocks of bounded weight, while minimizing an objective function defined on the
hyperedges. Whereas real-world applications often use vertex and edge weights to accurately model
the underlying problem, the HGP research community commonly works with unweighted instances.

In this paper, we argue that, in the presence of vertex weights, current balance constraint
definitions either yield infeasible partitioning problems or allow unnecessarily large imbalances and
propose a new definition that overcomes these problems. We show that state-of-the-art hypergraph
partitioners often struggle considerably with weighted instances and tight balance constraints (even
with our new balance definition). Thus, we present a recursive-bipartitioning technique that is able
to reliably compute balanced (and hence feasible) solutions. The proposed method balances the
partition by pre-assigning a small subset of the heaviest vertices to the two blocks of each bipartition
(using an algorithm originally developed for the job scheduling problem) and optimizes the actual
partitioning objective on the remaining vertices. We integrate our algorithm into the multilevel
hypergraph partitioner KaHyPar and show that our approach is able to compute balanced partitions
of high quality on a diverse set of benchmark instances.

2012 ACM Subject Classification Mathematics of computing → Hypergraphs; Mathematics of
computing → Graph algorithms

Keywords and phrases multilevel hypergraph partitioning, balanced partitioning, vertex weights

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.8

Supplementary Material Software (Source Code): https://github.com/kahypar/kahypar
archived at swh:1:dir:c66f21225656426f1f902c5dc86404a622964a04

Dataset (Benchmark Set & Experimental Results): http://algo2.iti.kit.edu/heuer/sea21/

1 Introduction

Hypergraphs are a generalization of graphs where each hyperedge can connect more than
two vertices. The k-way hypergraph partitioning problem (HGP) asks for a partition of
the vertex set into k disjoint blocks, while minimizing an objective function defined on the
hyperedges. Additionally, a balance constraint requires that the weight of each block is
smaller than or equal to a predefined upper bound (most often Lk := (1 + ε)⌈ c(V)

k ⌉ for some
parameter ε, where c(V) is the sum of all vertex weights). The hypergraph partitioning
problem is NP-hard [32] and it is even NP-hard to find good approximations [8]. The most
commonly used heuristic to solve HGP in practice is the multilevel paradigm [1, 11, 29] which
consists of three phases: First, the hypergraph is coarsened to obtain a hierarchy of smaller
hypergraphs. After an initial partitioning algorithm is applied to the smallest hypergraph,
coarsening is undone, and, at each level, refinement algorithms are used to improve the
quality of the solution.

© Tobias Heuer, Nikolai Maas, and Sebastian Schlag;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tobias.heuer@kit.edu
https://algo2.iti.kit.edu/english/heuer.php
mailto:nikolai.maas@student.kit.edu
mailto:research@sebastianschlag.de
http://sebastianschlag.de/
https://doi.org/10.4230/LIPIcs.SEA.2021.8
https://github.com/kahypar/kahypar
https://archive.softwareheritage.org/swh:1:dir:c66f21225656426f1f902c5dc86404a622964a04
http://algo2.iti.kit.edu/heuer/sea21/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

The two most prominent application areas of HGP are very large scale integration (VLSI)
design [3, 29] and parallel computation of the sparse matrix-vector product [11]. In the
former, HGP is used to divide a circuit into two or more blocks such that the number of
external wires interconnecting circuit elements in different blocks is minimized. In this setting,
each vertex is associated with a weight equal to the area of the respective circuit element [2]
and tightly-balanced partitions minimize the total area required by the physical circuit [18].
In the latter, HGP is used to optimize the communication volume for parallel computations
of sparse matrix-vector products [11]. In the simplest hypergraph model, vertices correspond
to rows and hyperedges to columns of the matrix (or vice versa) and a partition of the
hypergraphs yields an assignment of matrix entries to processors [11]. The work of a processor
(which can be measured in terms of the number of non-zero entries [7]) is integrated into the
model by assigning each vertex a weight equal to its degree [11]. Tightly-balanced partitions
hence ensure that the work is distributed evenly among the processors.

Despite the importance of weighted instances for real-world applications, the HGP re-
search community mainly uses unweighted hypergraphs in experimental evaluations [38]. The
main rationale hereby being that even unweighted instances become weighted implicitly due
to vertex contractions during the coarsening phase. Many partitioners therefore incorporate
techniques that prevent the formation of heavy vertices [13, 24, 27] during coarsening to
facilitate finding a feasible solution during the initial partitioning phase [38]. However, in
practice, many weighted hypergraphs derived from real-world applications already contain
heavy vertices – rendering the mitigation strategies of today’s multilevel hypergraph par-
titioners ineffective. The popular ISPD98 VLSI benchmark set [2], for example, includes
instances in which vertices can weigh up to 10% of the total weight of the hypergraph.

Contributions and Outline. After introducing basic notation in Section 2 and presenting
related work in Section 3, we first formulate an alternative balance constraint definition
in Section 4 that overcomes some drawbacks of existing definitions in presence of vertex
weights. In Section 5, we then present an algorithm that enables partitioners based on the
recursive bipartitioning (RB) paradigm to reliably compute balanced partitions for weighted
hypergraphs. Our approach is based on the observation that usually only a small subset of
the heaviest vertices is critical to satisfy the balance constraint. We show that pre-assigning
these vertices to the two blocks of each bipartition (i.e., treating them as fixed vertices) and
optimizing the actual objective function on the remaining vertices yields provable balance
guarantees for the resulting k-way partition. We implemented our algorithms in the open
source HGP framework KaHyPar [38]. The experimental evaluation presented in Section 6
shows that our new approach (called KaHyPar-BP) is able to compute balanced partitions
for all instances of a large real-world benchmark set (without increasing the running time
or decreasing the solution quality), while other partitioners such as the latest versions of
KaHyPar, hMetis, and PaToH produced imbalanced partitions on 4.9% up to 42% of the
instances for ε = 0.01 (4.3% up to 23.1% for ε = 0.03). Section 7 concludes the paper.

2 Preliminaries

A weighted hypergraph H = (V, E, c, ω) is defined as a set of vertices V and a set of
hyperedges/nets E with vertex weights c : V → R>0 and net weights ω : E → R>0, where
each net e is a subset of the vertex set V (i.e., e ⊆ V). We extend c and ω to sets in the
natural way, i.e., c(U) :=

∑
v∈U c(v) and ω(F) :=

∑
e∈F ω(e). Given a subset V ′ ⊆ V , the

subhypergraph HV ′ is defined as HV ′ := (V ′, {e ∩ V ′ | e ∈ E : e ∩ V ′ ̸= ∅}, c, ω).

T. Heuer, N. Maas, and S. Schlag 8:3

A k-way partition of a hypergraph H is a partition of the vertex set V into k non-empty
disjoint subsets Πk = {V1, . . . , Vk}. We refer to a k-way partition Ψk = {P1, . . . , Pk} of a
subset P ⊆ V as a k-way prepacking. We call a vertex v ∈ P a fixed vertex and a vertex
v ∈ V \P an ordinary vertex. During partitioning, fixed vertices are not allowed to be moved
to a different block of the partition. A k-way partition Πk is ε-balanced if each block Vi

satisfies the balance constraint: c(Vi) ≤ Lk := (1 + ε)⌈ c(V)
k ⌉ for some parameter ε. The k-way

hypergraph partitioning problem initialized with a k-way prepacking Ψk = {P1, . . . , Pk} is to
find an ε-balanced k-way partition Πk = {V1, . . . , Vk} of a hypergraph H that minimizes an
objective function and satisfies that ∀i ∈ {1, . . . , k} : Pi ⊆ Vi. In this paper, we optimize the
connectivity metric (λ− 1)(Π) :=

∑
e∈E(λ(e)− 1) ω(e), where λ(e) := |{Vi ∈ Π | Vi ∩ e ≠ ∅}|.

The most balanced partition problem is to find a k-way partition Πk of a weighted
hypergraph H = (V, E, c, ω) such that max(Πk) := maxV ′∈Πk

c(V ′) is minimized. For
an optimal solution ΠOPT it holds that there exists no other k-way partition Π′

k with
max(Π′

k) < max(ΠOPT). We use OPT(H, k) := max(ΠOPT) to denote the weight of the
heaviest block of an optimal solution. Note that the problem is equivalent to the most
common version of the job scheduling problem: Given a sequence J = ⟨j1, . . . , jn⟩ of n

computing jobs each associated with a processing time pi for i ∈ [1, n], the task is to find an
assignment of the n jobs to k identical machines (each job ji runs exclusively on a machine
for exactly pi time units) such that the latest completion time of a job is minimized.

3 Related Work

In the following, we will focus on work closely related to our main contributions. For an extens-
ive overview on hypergraph partitioning we refer the reader to existing literature [3, 5, 35, 38].
Well-known multilevel HGP software packages with certain distinguishing characteristics
include PaToH [4, 11] (originating from scientific computing), hMetis [29, 30] (originating
from VLSI design), KaHyPar [26, 27] (general purpose, n-level), Moondrian [41] (sparse matrix
partitioning), UMPa [14] (multi-objective) and Zoltan [16] (distributed partitioner).

Partitioning with Vertex Weights. The most widely used techniques to improve the quality
of a k-way partition are move-based local search heuristics [19, 31] that greedily move vertices
according to a gain value (i.e., the improvement in the objective function). Vertex moves
violating the balance constraint are usually rejected, which can significantly deteriorate
solution quality in presence of varying vertex weights [10]. This issue is addressed using
techniques that allow intermediate balance violations [18] or use temporary relaxations of
the balance constraint [9, 10]. Caldwell et al. [10] proposed to preassign each vertex with
a weight greater than the average block weight Lk to a seperate block before partitioning
(treated as fixed vertices) and build the actual k-way partition around them. All of these
techniques were developed and evaluated for flat (i.e., non-multilevel) partitioning algorithms.
In the multilevel setting, even unweighted instances become implicitly weighted due to
vertex contractions in the coarsening phase, which is why the formation of heavy vertices is
prevented by penalizing the contraction of vertices with large weights [13, 24, 40] or enforcing
a strict upper bound for vertex weights throughout the coarsening process [1, 27]. If the
input hypergraph is unweighted, the aforementioned techniques often suffice to find a feasible
solution [38]. PaToH [12] additionally uses bin packing techniques during initial partitioning.

Job Scheduling Problem. The job scheduling problem is NP-hard [20] and we refer the
reader to existing literature [23, 36] for a comprehensive overview of the research topic. In this
work, we make use of the longest processing time (LPT) algorithm proposed by Graham [22].

SEA 2021

8:4 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

We will explain the algorithm in the context of the most balanced partition problem defined
in Section 2: For a weighted hypergraph H = (V, E, c, ω), the algorithm iterates over the
vertices of V sorted in decreasing vertex-weight order and assigns each vertex to the block of
the k-way partition with the lowest weight. The algorithm can be implemented to run in
O(|V | log |V |) time, and for a k-way partition Πk produced by the algorithm it holds that
max(Πk) ≤ (4

3 −
1

3k)OPT(H, k).

KaHyPar. The Karlsruhe Hypergraph Partitioning framework takes the multilevel para-
digm to its extreme by only contracting a single vertex in every level of the hierarchy. KaHyPar
provides recursive bipartitioning [37] as well as direct k-way partitioning algorithms [1] (direct
k-way uses RB in the initial partitioning phase). It uses a community detection algorithm as
preprocessing step to restrict contractions to densely connected regions of the hypergraph
during coarsening [27]. Furthermore, it employs a portfolio of bipartitioning algorithms for
initial partitioning of the coarsest hypergraph [25, 37], and, during the refinement phase,
improves the partition with a highly engineered variant of the classical FM local search [1]
and a refinement technique based on network flows [21, 26].

During RB-based partitioning, KaHyPar ensures that the solution is balanced by adapting
the imbalance ratio for each bipartition individually. Let HV ′ be the subhypergraph of the
current bipartition that should be partitioned recursively into k′ ≤ k blocks. Then,

ε′ :=
(

(1 + ε)c(V)
k
· k′

c(V ′)

) 1
⌈log2(k′)⌉

− 1 (1)

is the imbalance ratio used for the bipartition of HV ′ . The equation is based on the observation
that the worst-case block weight of the resulting k′-way partition of HV ′ obtained via RB is
smaller than (1 + ε′)⌈log2(k′)⌉ c(V ′)

k′ , if ε′ is used for all further bipartitions. Requiring that
this weight must be smaller or equal to Lk = (1 + ε)⌈ c(V)

k ⌉ leads to the formula defined in
Equation 1.

4 A New Balance Constraint For Weighted Hypergraphs

A k-way partition of a weighted hypergraph H = (V, E, c, ω) is balanced, if the weight of
each block is below some predefined upper bound. In the literature, the most commonly used
bounds are Lk := (1 + ε)⌈ c(V)

k ⌉ (standard definition) and Lmax
k := Lk + maxv∈V c(v) [19, 38,

39]. The latter was initially proposed by Fiduccia and Mattheyses [19] for bipartitioning to
ensure that the highest-gain vertex can always be moved to the opposite block.

Both definitions exhibit shortcomings in the presence of heavy vertices: As soon as the
hypergraph contains even a single vertex with c(v) > Lk, no feasible solution exists when the
block weights are constrained by Lk, while for Lmax

k it follows that Lmax
k > 2Lk – allowing

large variations in block weights even if ε is small. In the following, we therefore propose a
new balance constraint that (i) guarantees the existence of an ε-balanced k-way partition
and (ii) avoids unnecessarily large imbalances.

While the optimal solution of the most balanced partition problem would yield a partition
with the best possible balance, it is not feasible in practice to use LOPT

k := (1 + ε)OPT(H, k)
as balance constraint, because finding such a k-way partition is NP-hard [20]. Hence, we
propose to use the bound provided by the LPT algorithm instead:

LLPT
k := (1 + ε) LPT(H, k) ≤

(
4
3 −

1
3k

)
LOPT

k . (2)

T. Heuer, N. Maas, and S. Schlag 8:5

2 2 4

2

2

2

2 4

4

2 2 4

2

2

2

2 4

4

2 2 4

2

2

2

2 4

4

V1 V2

V1

V2

V1

V2

V3

V4 V1

V3

V4

V2

c(V4) = 8 > 6 = L4 ∀i ∈ [1, 4] : c(Vi) = 6 ≤ 6 = L4k = 4 and ε = 0

Figure 1 Illustration of a deeply (left, green line) and a non-deeply balanced bipartition (left,
red line). The numbers in each circle denotes the vertex weights. In both cases, the hypergraph is
partitioned into k = 4 blocks with ε = 0 via recursive bipartitioning. Thus, the weight of heaviest
block must be smaller or equal to L4 = 6 and for the first bipartition, we use L2 = 12 as an upper
bound.

Note that if the hypergraph is unweighted, the LPT algorithm will always find an optimal
solution with OPT(H, k) = ⌈ |V |

k ⌉ and thus, LLPT
k is equal to Lk. Since all of today’s

partitioning algorithms bound the maximum block weight by Lk, Section 6 gives more details
on how we employ this new balance constraint definition in our experimental evaluation.

5 Multilevel Recursive Bipartitioning with Vertex Weights Revisited

Most multilevel hypergraph partitioners either employ recursive bipartitioning directly [11,
16, 29, 37, 41] or use RB-based algorithms in the initial partitioning phase to compute an
initial k-way partition of the coarsest hypergraph [1, 4, 14, 30]. In both settings, a k-way
partition is derived by first computing a bipartition Π2 = {V1, V2} of the (input/coarse)
hypergraph H and then recursing on the subhypergraphs HV1 and HV2 by partitioning V1
into ⌈k

2 ⌉ and V2 into ⌊k
2 ⌋ blocks. Although KaHyPar adaptively adjusts the allowed imbalance

at each bipartitioning step (using the imbalance factor ε′ as defined in Equation 1), an
unfortunate distribution of the vertices in some bipartitions Π2 can easily lead to instances
for which it is impossible to find a balanced solution during the recursive calls – even though
the current bipartition Π2 satisfies the adjusted balance constraint. An example is shown
in Figure 1 (left): Although the current bipartition (indicated by the red line) is perfectly
balanced, it will not be possible to recursively partition the subhypergraph induced by the
vertices of V2 into two blocks of equal weight, because each of the three vertices has a weight
of four.

To capture this problem, we introduce the notion of deep balance:

▶ Definition 1. (Deep Balance). Let H = (V, E, c, ω) be a weighted hypergraph for which
we want to compute an ε-balanced k-way partition, and let HV ′ be a subhypergraph of H

which should be partitioned into k′ ≤ k blocks via recursive bipartitioning. A subhypergraph
HV ′ is deeply balanced w.r.t. k′, if there exists a k′-way partition Πk′ of HV ′ such that
max(Πk′) ≤ Lk := (1 + ε)⌈ c(V)

k ⌉. A bipartition Π2 = {V1, V2} of HV ′ is deeply balanced w.r.t.
k′, if the subhypergraphs HV1 and HV2 are deeply balanced with respect to ⌈k′

2 ⌉ resp. ⌊k′

2 ⌋.

If a subhypergraph HV ′ is deeply balanced with respect to k′, there always exists a k′-way
partition Πk′ of HV ′ such that weight of the heaviest block satisfies the original balance
constraint Lk imposed on the partition of the input hypergraph H. Moreover, there also
always exists a deeply balanced bipartition Π2 := {V1, V2} (V1 is the union of the first ⌈k′

2 ⌉

SEA 2021

8:6 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

and V2 of the last ⌊k′

2 ⌋ blocks of Πk′). Hence, a RB-based partitioning algorithm that is
able to compute deeply balanced bipartitions on deeply balanced subhypergraphs will always
compute ε-balanced k-way partitions (assuming the input hypergraph is deeply balanced).

Deep Balance and Adaptive Imbalance Adjustments. Computing deeply balanced bipar-
titions in the RB setting guarantees that the resulting k-way partition is ε-balanced. Thus,
the concept of deep balance could replace the adaptive imbalance factor ε′ employed in
KaHyPar [37] (see Equation 1). However, as we will see in the following example, combining
both approaches gives the partitioner more flexibility (in terms of feasible vertex moves during
refinement). Assume that we want to compute a 4-way partition via recursive bipartitioning
and that the first bipartition Π2 := {V1, V2} is deeply balanced with c(V1) = (1 + ε)⌈ c(V)

2 ⌉.
The deep-balance property ensures that we can further partition V1 into two blocks such
that the weight of the heavier block is smaller than L4. However, this bipartition has to be
perfectly balanced:

L2 = (1 + ε)
⌈c(V1)

2

⌉
= (1 + ε)

⌈ (1 + ε)⌈ c(V)
2 ⌉

2

⌉
≤ (1 + ε)

⌈c(V)
4

⌉
= L4 ⇒ ε ≈ 0. (3)

If we would have computed the first bipartition with an adjusted imbalance factor ε′,
then max(Π2) ≤ (1 + ε′)⌈ c(V)

2 ⌉ =
√

1 + ε⌈ c(V)
2 ⌉ – providing more flexibility for subsequent

bipartitions. In the following, we therefore focus on computing deeply ε′-balanced bipartitions.

Deep Balance and Multilevel Recursive Bipartitioning. In general, computing a deeply
balanced bipartition Π2 := {V1, V2} w.r.t. k is NP-hard, as we must show that there exists a
k-way partition Πk of H with max(Πk) ≤ Lk, which can be reduced to the most balanced
partition problem presented in Section 2. However, we can first compute a k-way partition
Πk := {V ′

1 , . . . , V ′
k} using the LPT algorithm, thereby approximating an optimal solution.

If max(Πk) ≤ Lk, we can then construct a deeply balanced bipartition Π2 = {V1, V2} by
choosing V1 := V ′

1 ∪ . . . ∪ V ′
⌈ k

2 ⌉ and V2 := V ′
⌈ k

2 ⌉+1 ∪ . . . ∪ V ′
k. Unfortunately, this approach

completely ignores the optimization of the objective function – yielding balanced partitions
of low quality. If such a bipartition were to be used as initial solution in the multilevel
setting, the objective could still be optimized during the refinement phase. However, this
would necessitate that refinement algorithms are aware of the concept of deep balance and
that they only perform vertex moves that don’t destroy the deep-balance property of the
starting solution. Since this is infeasible in practice, we propose a different approach that
involves fixed vertices.

The key idea of our approach is to compute a prepacking Ψ = {P1, P2} of the m = |P1|+
|P2| heaviest vertices of the hypergraph and to show that this prepacking suffices to ensure
that each ε′-balanced bipartition Π2 = {V1, V2} with P1 ⊆ V1 and P2 ⊆ V2 is deeply balanced.
Note that the upcoming definitions and theorems are formulated from the perspective of the
first bipartition of the input hypergraph H to simplify notation. They can be generalized
to subhypergraphs HV ′ in a similar fashion as was done in Definition 1. Furthermore, we
say that the bipartition Π2 = {V1, V2} respects a prepacking Ψ = {P1, P2}, if P1 ⊆ V1 and
P2 ⊆ V2, and that the bipartition is balanced, if max(Π2) ≤ L2 := (1 + ε′)⌈ c(V1∪V2)

2 ⌉ (with
ε′ as defined in Equation 1). The following definition formalizes our idea.

▶ Definition 2. (Sufficiently Balanced Prepacking). Let H = (V, E, c, ω) be a hypergraph for
which we want to compute an ε-balanced k-way partition via recursive bipartitioning. We
call a prepacking Ψ of H sufficiently balanced if every balanced bipartition Π2 respecting Ψ is
deeply balanced with respect to k.

T. Heuer, N. Maas, and S. Schlag 8:7

Our approach to compute ε-balanced k-way partitions is outlined in Algorithm 1. We
first compute a bipartition Π2. Before recursing on each of the two induced subhypergraphs,
we check if Π2 is deeply balanced using the LPT algorithm in a similar fashion as described
in the beginning of this paragraph. If it is not deeply balanced, we compute a sufficiently
balanced prepacking Ψ and re-compute Π2 – treating the vertices of the prepacking as fixed
vertices. If this second bipartitioning call was able to compute a balanced bipartition, we
found a deeply balanced partition and proceed to partition the subhypergraphs recursively.

Note that, in general, we may not detect that Π2 is deeply balanced or fail to find a
sufficiently balanced prepacking Ψ or a balanced bipartition Π2, since all involved problems
are NP-hard. However, as we will see in Section 6, Algorithm 1 computes balanced partitions
for all instances of our large real-world benchmark set. This seems to indicate that the
above-mentioned problems only happen rarely in practice.

Algorithm 1 Recursive Bipartitioning Algorithm.
Data: Hypergraph H for which we seek an ε-balanced k-way partition and subhypergraph

HV ′ of H which is to be to bipartitioned recursively into k′ ≤ k blocks.
1 Function recursiveBipartitioning(H, k, ε HV ′ , k′):
2 L2 ← (1 + ε′)⌈ c(V ′)

2 ⌉ // with ε′ as defined in Equation 1
3 Π2 := {V1, V2} ← multilevelBipartitioning(HV ′ , L2, ∅) // ∅ = empty prepacking
4 if k′ = 2 then return Π2
5 else if Π2 is not deeply balanced w.r.t. k′ then
6 Ψ← sufficientlyBalancedPrepacking(H, k, ε, HV ′ , k′) // see Algorithm 2
7 Π2 ← multilevelBipartitioning(HV ′ , L2, Ψ) // treating Ψ as fixed vertices

8 Πk1 ← recursiveBipartitioning(H, k, ε, HV1 , k1) with k1 := ⌈k′

2 ⌉
9 Πk2 ← recursiveBipartitioning(H, k, ε, HV2 , k2) with k2 := ⌊k′

2 ⌋
10 return Πk1 ∪Πk2

Computing a Sufficiently Balanced Prepacking. The prepacking Ψ is constructed by
incrementally assigning vertices to Ψ in decreasing order of weight and checking a property
P after each assignment that, if satisfied, implies that the current prepacking is sufficiently
balanced. In the proof of property P , we will extend a k-way prepacking Ψk to an ε-balanced
k-way partition Πk using the LPT algorithm and use the following upper bound on the
weight of the heaviest block of Πk.

▶ Lemma 3. (LPT Bound). Let H = (V, E, c, ω) be a weighted hypergraph, Ψk be a k-way
prepacking for a set of fixed vertices P ⊆ V , and let O := ⟨v1, . . . , vm | vi ∈ V \ P ⟩ be the
sequence of all ordinary vertices of V \ P sorted in decreasing order of weight. If we assign
the remaining vertices O to the blocks of Ψk by using the LPT algorithm, we can extend Ψk

to a k-way partition Πk of H such that the weight of the heaviest block is bound by:

max(Πk) ≤ max{1
k

c(P) + hk(O), max(Ψk)}, with hk(O) := max
i∈{1,...,m}

c(vi) + 1
k

i−1∑
j=1

c(vj).

The proof of Lemma 3 can be found in Appendix A. O is sorted in decreasing order of
weight because for any permutation O′ of O, it holds that hk(O) ≤ hk(O′) – resulting in the
tightest bound for max(Πk).

Assuming that the number k of blocks is even (i.e., k1 = k2 = k/2) to simplify notation, the
balance property P is defined as follows (the generalized version can be found in Appendix B):

SEA 2021

8:8 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

▶ Definition 4. (Balance Property P). Let H = (V, E, c, ω) be a hypergraph for which
we want to compute an ε-balanced k-way partition and let Ψ be a prepacking of H for a
set of fixed vertices P ⊆ V . Furthermore, let Ot := ⟨v1, . . . , vt⟩ be the sequence of the t

heaviest ordinary vertices of V \ P sorted in decreasing order of weight such that t is the
smallest number that satisfies max(Ψ) + c(Ot) ≥ L2 (see Line 2, Algorithm 1). We say that
a prepacking Ψ satisfies the balance property P if the following two conditions hold:

(i) the prepacking Ψ is deeply balanced
(ii) 1

k/2
max(Ψ) + hk/2(Ot) ≤ Lk.

In the following, we will show that the LPT algorithm can be used to construct a k/2-way
partition Πk/2 for both blocks of any balanced bipartition Π2 = {V1, V2} that respects Ψ,
such that the weight of the heaviest block can be bound by the left term of Condition (ii).
This implies that max(Πk/2) ≤ Lk (right term of Condition (ii)) and thus proofs that any
balanced bipartition Π2 respecting Ψ is deeply balanced. Note that choosing t as the smallest
number that satisfies max(Ψ) + c(Ot) ≥ L2 minimizes the left term of Condition (ii) (since
hk(Ot) ≤ hk(Ot+1)).

▶ Theorem 5. A prepacking Ψ of a hypergraph H = (V, E, c, ω) that satisfies the balance
property P is sufficiently balanced with respect to k.

Proof. For convenience, we use k′ := k/2. Let Π2 = {V1, V2} be an abitrary balanced
bipartition that respects the prepacking Ψ = {P1, P2} with max (Π2) ≤ L2. Since Ψ is
deeply balanced (see Definition 4(i)), there exists a k′-way prepacking Ψk′ of P1 such that
max(Ψk′) ≤ Lk. We define the sequence of the ordinary vertices of block V1 sorted in
decreasing weight order with O1 := ⟨v1, . . . , vm | vi ∈ V1 \ P1⟩. We can extend Ψk′ to a
k′-way partition Πk′ of V1 by assigning the vertices of O1 to the blocks in Ψk′ using the
LPT algorithm. Lemma 3 then establishes an upper bound on the weight of the heaviest
block.

max(Πk′)
Lemma 3
≤ max{ 1

k′ c(P1) + hk′(O1), max(Ψk′)}
max(Ψ

k′)≤Lk

≤ max{ 1
k′ c(P1) + hk′(O1), Lk}

Let Ot be the sequence of the t heaviest ordinary vertices of V \ P with P := P1 ∪ P2 as
defined in Definition 4.

▷ Claim 6. It holds that: 1
k′ c(P1) + hk′(O1) ≤ 1

k′ max(Ψ) + hk′(Ot).

For a proof of Claim 6 see Appendix C. We can conclude that

1
k′ c(P1) + hk′(O1)

Claim 6
≤ 1

k′ max(Ψ) + hk′(Ot)
Definition 4(ii)

≤ Lk.

This proves that the subhypergraph HV1 is deeply balanced. The proof for block V2 can be
done analogously, which then implies that Π2 is deeply balanced. Since Π2 is an abitrary
balanced bipartition respecting Ψ, it follows that Ψ is sufficiently balanced. ◀

Algorithm 2 outlines our approach to efficiently compute a sufficiently balanced prepacking
Ψ. In Line 6, we compute a k′-way prepacking Ψk′ of the i heaviest vertices with the
LPT algorithm and if Ψk′ satisfies max(Ψk′) ≤ Lk, then Line 7 constructs a deeply balanced
prepacking Ψ (which fullfils Condition (i) of Definition 4). We store the blocks P ′

j of Ψk′

together with their weights c(P ′
j) as key in an addressable priority queue such that we can

T. Heuer, N. Maas, and S. Schlag 8:9

determine and update the block with the smallest weight in time O(log k′) (Line 6). In
Line 9, we compute the smallest t that satisfies max(Ψ) + c(Ot) ≥ L2 via a binary search in
logarithmic time over an array containing the vertex weight prefix sums of the sequence O,
which can be precomputed in linear time. Furthermore, we construct a range maximum query
data structure over the array Hk′/2 = ⟨c(v1), c(v2) + 1

k′/2
c(v1), . . . , c(vn) + 1

k′/2

∑n−1
j=1 c(vj)⟩.

Caculating hk′/2(Ot) (Line 10) then corresponds to a range maximum query in the interval
[i+1, i+t] in Hk′/2, which can be answered in constant time after Hk′/2 has been precomputed
in time O(n) [6]. In total, the running time of the algorithm is O(n(log k′ + log n)). Note
that if the algorithm reaches Line 12, we could not proof that any of the intermediate
constructed prepackings were sufficiently balanced, in which case Ψ represents a bipartition
of HV ′ computed by the LPT algorithm.

Algorithm 2 Prepacking Algorithm.
Data: Hypergraph H = (V, E, c, ω) for which we seek an ε-balanced k-way partition and

subhypergraph HV ′ = (V ′, E′, c, ω) of H which is to be to bipartitioned recursively
into k′ ≤ k blocks.

1 Function sufficientlyBalancedPrepacking(H, k, ε HV ′ , k′):
2 Ψ = ⟨P1, P2⟩ ← ⟨∅, ∅⟩ and Ψk′ = ⟨P ′

1, . . . , P ′
k′⟩ ← ⟨∅, . . . , ∅⟩ // Initialization

3 L2 ← (1 + ε′)⌈ c(V ′)
2 ⌉ and Lk ← (1 + ε)⌈ c(V)

k ⌉ // with ε′ as defined in Equation 1
4 O ← ⟨v1, . . . , vn | vi ∈ V ′⟩ // V ′ sorted in decreasing order of weight ⇒ O(n log n)
5 for i = 1 to n do
6 Add vi ∈ O to bin P ′

j ∈ Ψk′ with smallest weight // LPT algorithm

7 Ψ← {P ′
1 ∪ . . . ∪ P ′

x, P ′
x+1 ∪ . . . ∪ P ′

k′} with x := ⌈k′

2 ⌉
8 if max(Ψ) ≤ L2 and max(Ψk′) ≤ Lk then // ⇒ Ψ is deeply (ε′-)balanced
9 t← min({t | max(Ψ) + c(Ot) ≥ L2}) // Ot := ⟨vi+1, . . . , vi+t⟩

10 if 2
k′ max(Ψ) + hk′/2(Ot) ≤ Lk then // Condition (ii) of Definition 4

11 return Ψ // ⇒ Ψ is sufficiently balanced (Theorem 5)

12 return Ψ // No sufficiently balanced prepacking found ⇒ treat all vertices as fixed vertices

6 Experimental Evaluation

We integrated the prepacking technique (see Algorithms 1 and 2) into the recursive bipartition-
ing algorithm of KaHyPar. Our implementation is available from http://www.kahypar.org.
The code is written in C++17 and compiled using g++9.2 with the flags -mtune=native
-O3 -march=native. Since KaHyPar offers both a recursive bipartitioning and direct k-way
partitioning algorithm (which uses the RB algorithm in the initial partitioning phase), we
refer to the RB-version using our improvements as KaHyPar-BP-R and to the direct k-way
version as KaHyPar-BP-K (BP = Balanced Partitioning).

Instances. The following experimental evaluation is based on two benchmark sets. The
RealWorld benchmark set consists of 50 hypergraphs originating from the VLSI design and
scientific computing domain. It contains instances from the ISPD98 VLSI Circuit Benchmark
Suite [2] (18 instances), the DAC 2012 Routability-Driven Placement Benchmark Suite [42]
(9 instances), 16 instances from the Stanford Network Analysis (SNAP) Platform [33], and 7
highly asymmetric matrices of Davis et al. [15] (referred to as ASM). For VLSI instances

SEA 2021

http://www.kahypar.org

8:10 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

ISPD98 DAC ASM SNAP

1 2.5 5 10 15 20 1 2.5 5 10 15 20 1 2.5 5 10 15 20 1 2.5 5 10 15 20
0

102

104

106

Vertex Weight / Total Hypergraph Weight [%]

N
o.

of
Ve

rt
ic

es

Figure 2 Vertex weight distributions for each instance type. Each bucket of a histogram shows the
number of vertices (y-axis) that contribute x% to the total weight of the corresponding hypergraph.

(ISPD98 and DAC), we use the area of a circuit element as the weight of its corresponding
vertex. We translate sparse matrices (SNAP and ASM instances) to hypergraphs using
the row-net model [13] and use the degree of a vertex as its weight. The vertex weight
distributions of the individual instance types are depicted in Figure 2.1

Additionally, we generate ten Artificial instances that use the net structure of the ten
largest ISPD98 instances. Instead of using the area as weight, we assign new vertex weights
that yield instances for which it is difficult to satisfy the balance constraint: Each vertex
is assigned either unit weight or a weight chosen randomly from an uniform distribution in
[1, W] ⊆ N+. Both the probability that a vertex has non-unit weight and the parameter W

are determined (depending on the total number of vertices) such that the expected number
of vertices with non-unit weight is 120 and the expected total weight of these vertices is half
the expected total weight of the resulting hypergraph.

System and Methodology. All experiments are performed on a single core of a cluster
with Intel Xeon Gold 6230 processors running at 2.1 GHz with 96GB RAM. We compare
KaHyPar-BP-R and KaHyPar-BP-K with the latest recursive bipartitioning (KaHyPar-R) and
direct k-way version (KaHyPar-K) of KaHyPar [21], the default (PaToH-D) and quality preset
(PaToH-Q) of PaToH 3.3 [11], as well as with the recursive bipartitioning (hMetis-R) and
direct k-way version (hMetis-K) of hMetis 2.0 [29, 30]. Details about the choices of config
parameters that influence partitioning quality or imbalance can be found in Appendix D.

We perform experiments using k ∈ {2, 4, 8, 16, 32, 64, 128}, ε ∈ {0.01, 0.03, 0.1}, ten
repetitions using different seeds for each combination of k and ε, and a time limit of eight
hours. We call a combination of a hypergraph H = (V, E, c, ω), k, and ε an instance. Before
partitioning an instance, we remove all vertices v ∈ V from H with a weight greater than
Lk = (1 + ε)⌈ c(V)

k ⌉ as proposed by Caldwell et al. [10] and adapt k to k′ := k − |VR|, where
VR represents the set of removed vertices. We repeat that step recursively until there is no
vertex with a weight greater than Lk′ := (1 + ε)⌈ c(V \VR)

k′ ⌉. The input for each partitioner
is the subhypergraph HV \VR

of H for which we compute a k′-way partition with LLPT
k′ as

maximum allowed block weight. Note that since all evaluated partitioners internally employ
Lk′ as balance constraint, we initialize each partitioner with a modified imbalance factor ε̂

1 The benchmark sets and detailed statistics of their properties are publicly available from http://algo2.
iti.kit.edu/heuer/sea21/.

http://algo2.iti.kit.edu/heuer/sea21/
http://algo2.iti.kit.edu/heuer/sea21/

T. Heuer, N. Maas, and S. Schlag 8:11

Table 1 Percentage of imbalanced instances produced by each partitioner for each combination
of instance type and ε.

ISPD98 DAC ASM SNAP Artificial
ε 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

KaHyPar-BP-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KaHyPar-BP-R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

KaHyPar-K 6.3 5.6 0.8 9.5 7.9 6.3 4.1 4.1 2.0 0.9 0.9 0.0 27.1 22.9 11.4
KaHyPar-R 10.3 8.7 7.1 19.0 19.0 14.3 6.1 4.1 4.1 6.2 2.7 0.9 28.6 24.3 12.9
hMetis-K 43.7 22.2 9.5 33.3 22.2 11.1 67.3 32.7 4.1 33.9 20.5 3.6 51.4 38.6 24.3
hMetis-R 17.5 15.1 7.1 20.6 15.9 12.7 8.2 6.1 4.1 15.2 10.7 4.5 58.6 54.3 34.3
PaToH-Q 15.9 11.1 5.6 23.8 17.5 9.5 24.5 6.1 4.1 33.9 8.0 1.8 31.4 24.3 14.3
PaToH-D 9.5 7.9 3.2 20.6 17.5 9.5 28.6 6.1 4.1 22.3 11.6 2.7 20.0 15.7 8.6

instead of ε which is calculated as follows:

Lk′ = (1 + ε̂)
⌈

c(V \ VR)
k′

⌉
= (1 + ε)LPT(HV \VR

, k′) = LLPT
k′ ⇒ ε̂ = LLPT

k′

⌈ c(V \VR)
k′ ⌉

− 1.

We consider the resulting k′-way partition Πk′ to be imbalanced, if it is not ε̂-balanced.
Each partitioner optimizes the connectivity metric, which we also refer to as the quality of
a partition. Partition Πk′ can be extended to a k-way partition Πk by adding each of the
removed vertices v ∈ VR to Πk as a separate block. Note that adding the removed vertices
increases the connectivity metric of a k′-way partition only by a constant value α ≥ 0. Thus,
we report the quality of Πk′ , since (λ− 1)(Πk) will be always equal to (λ− 1)(Πk′) + α.

For each instance, we average quality and running times using the arithmetic mean (over
all seeds). To further average over multiple instances, we use the geometric mean for absolute
running times to give each instance a comparable influence. Runs with imbalanced partitions
are not excluded from averaged running times. If all ten runs of a partitioner produced
imbalanced partitions on an instance, we consider the instance as imbalanced and mark it
with ✗ in the plots.

To compare the solution quality of different algorithms, we use performance profiles [17].
Let A be the set of all algorithms we want to compare, I the set of instances, and qA(I) the
quality of algorithm A ∈ A on instance I ∈ I. For each algorithm A, we plot the fraction of
instances (y-axis) for which qA(I) ≤ τ ·minA′∈A qA′(I), where τ is on the x-axis. For τ = 1,
the y-value indicates the percentage of instances for which an algorithm A ∈ A performs
best. Note that these plots relate the quality of an algorithm to the best solution and thus
do not permit a full ranking of three or more algorithms.

Balanced Partitioning. In Table 1, we report the percentage of imbalanced instances
produced by each partitioner for each instance type and ε. Both KaHyPar-BP-K and
KaHyPar-BP-R compute balanced partitions for all tested benchmark sets and paramet-
ers. For the remaining partitioners, the number of imbalanced solutions increases as the
balance constraint becomes tighter. For the previous KaHyPar versions, the number of
imbalanced partitions is most pronounced on VLSI instances: For ε = 0.01, KaHyPar-K
and KaHyPar-R compute infeasible solutions for 6.3% (10.3%) of the ISPD98 and for 9.5%
(19.0%) of the DAC instances. Comparing the distribution of vertex weights reveals that
these instances tend to have a larger proportion of heavier vertices compared to the ASM
and SNAP instances (see Figure 2. The largest benefit of using our approach can be observed
on the artificially generated instances, where KaHyPar-K and KaHyPar-R only computed
balanced partitions for 72.9% (71.4%) of the instances (for ε = 0.01).

SEA 2021

8:12 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

Table 2 Percentage of imbalanced instances produced by each partitioner on our RealWorld
benchmark set for each combination of k and ε.

k ∈ {2, 4, 8} k ∈ {16, 32} k ∈ {64, 128} RealWorld
ε 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

KaHyPar-BP-K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KaHyPar-BP-R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

KaHyPar-K 0.7 0.0 0.0 5.0 6.0 2.0 11.1 9.1 4.0 4.9 4.3 1.7
KaHyPar-R 2.0 0.7 0.7 11.0 9.0 7.0 21.0 18.0 13.0 10.0 8.0 6.0
hMetis-K 12.0 2.0 0.0 53.0 21.0 11.0 76.0 57.0 14.0 42.0 23.1 7.1
hMetis-R 2.7 2.0 0.0 18.0 14.0 7.0 34.0 27.0 17.0 16.0 12.6 6.9
PaToH-Q 15.3 2.7 0.7 28.0 11.0 5.0 34.0 22.0 11.0 24.3 10.6 4.9
PaToH-D 9.3 2.7 0.7 18.0 11.0 4.0 32.0 22.0 10.0 18.3 10.6 4.3

Table 3 Occurrence of prepacked vertices (i.e., vertices that are fixed to a specific block during
partitioning) for each combination of k and ε when using KaHyPar-BP-R on RealWorld instances:
Minimum/average/maximum percentage of prepacked vertices (left), and percentage of instances for
which the prepacking is executed at least once (right).

ε = 0.01 ε = 0.03 ε = 0.1 Prepacking Triggered
k Min Avg Max Min Avg Max Min Avg Max ε = 0.01 ε = 0.03 ε = 0.1

2 - - - - - - - - - - - -
4 - - - - - - - - - - - -
8 ≤ 0.1 ≤ 0.1 0.2 ≤ 0.1 ≤ 0.1 ≤ 0.1 - - - 5.0 1.7 -

16 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 8.3 5.0 3.3
32 ≤ 0.1 8.1 59.0 ≤ 0.1 6.2 68.4 ≤ 0.1 1.9 14.7 20.0 18.3 10.0
64 ≤ 0.1 23.2 87.7 ≤ 0.1 17.3 90.9 ≤ 0.1 2.7 35.9 18.3 13.3 10.0

128 ≤ 0.1 67.9 100.0 ≤ 0.1 42.0 96.3 ≤ 0.1 15.4 97.0 26.7 20.0 15.0

With some notable exceptions, the number of imbalanced partitions of both variants of
PaToH and hMetis-R is comparable to that of KaHyPar-R: PaToH computes significantly fewer
feasible solutions on sparse matrix instances (ASM and SNAP) for ε = 0.01, while hMetis-R
performs considerably worse on the Artificial benchmark set. Out of all partitioners,
hMetis-K yields the most imbalanced instances across all benchmark sets. As can be seen
in Table 2, the number of imbalanced partitions produced by each competing partitioner
increases with deceasing ε and increasing k.

Table 3 shows (i) how often our prepacking algorithm is triggered at least once in
KaHyPar-BP-R (see Line 5 in Algorithm 1) and (ii) the percentage of vertices that are treated
as fixed vertices (see Table 4 in Appendix E for the results of KaHyPar-BP-K). Except for
k = 128, on average less than 25% of the vertices are treated as fixed vertices (even less than
10% for k < 64), which provides sufficient flexibility to optimize the connectivity objective
on the remaining ordinary vertices. However, in a few cases there are also runs where almost
all vertices are added to the prepacking. As expected, the triggering frequency and the
percentage of fixed vertices increases for larger values of k and smaller ε.

Quality and Running Times. Comparing the different KaHyPar configurations in Figure 3
(left), we can see that our new configurations provide the same solution quality as their non-
prepacking counterparts. Furthermore, we see that, in general, the direct k-way algorithm
still performs better than its RB counterpart [38]. Figure 3 (middle) therefore compares the

T. Heuer, N. Maas, and S. Schlag 8:13

0.01

0.20

0.40

0.60

0.80

1.00
Fr

ac
tio

n
of

in
st

an
ce

s
w

ith
Al

g.
≤

τ
·B

es
t

1 1.05 1.1 1.5 2
τ

10 100 7U 1 1.05 1.1 1.5 2
τ

10 100 7 1 1.05 1.1 1.5 2
τ

10 100 7

KaHyPar-BP-K
KaHyPar-BP-R

KaHyPar-K
KaHyPar-R

hMetis-R
hMetis-K

PaToH-Q
PaToH-D

Figure 3 Performance profiles comparing the solution quality of KaHyPar-BP-K and KaHyPar-BP-R
with KaHyPar-K (left), KaHyPar-R (left), PaToH (middle), and hMetis (middle) on our RealWorld
benchmark set, and with all systems on our Artificial benchmark set (right) (ε = 0.01).

strongest configuration KaHyPar-BP-K with PaToH and hMetis. We see that KaHyPar-BP-K
performs considerably better than the competitors. If we compare KaHyPar-BP-K with each
partitioner individually on the RealWorld benchmark set, KaHyPar-BP-K produces parti-
tions with higher quality than those of KaHyPar-K, KaHyPar-BP-R, KaHyPar-R, hMetis-R,
hMetis-K, PaToH-Q and PaToH-D on 48.9%, 70.2%, 73.2%, 76.4%, 84.3%, 92.9% and 97.9% of
the instances, respectively. KaHyPar-BP-K outperforms KaHyPar-BP-R on the RealWorld
benchmark set. On artificial instances, both algorithms produce partitions with comparable
quality for ε = {0.01, 0.03}, while the results are less clear for ε = 0.1 (see Figure 3 (right),
as well as Figures 4 in Appendix F).

The running time plots (see Figure 5 and 6 in Appendix G) show that our new approach
does not impose any additional overheads in KaHyPar. On average, KaHyPar-BP-K is slightly
faster than KaHyPar-K as our new algorithm has replaced the previous balancing strategy
in KaHyPar (restarting the bipartition with an tighter bound on the weight of the heaviest
block if the bipartition is imbalanced). The running time difference is less pronounced for
KaHyPar-BP-R and KaHyPar-R. This can be explained by the fact that, in KaHyPar-BP-R,
our prepacking algorithm is executed on the input hypergraph, whereas it is executed on the
coarsest hypergraph in KaHyPar-BP-K.

7 Conclusion and Future Work

In this work, we revisited the problem of computing balanced partitions for weighted
hypergraphs in the multilevel setting and showed that many state-of-the-art hypergraph
partitioners struggle to find balanced solutions on hypergraphs with weighted vertices –
especially for tight balance constraints. We therefore developed an algorithm that enables
partitioners based on the recursive bipartitioning scheme to reliably compute balanced
partitions. The method is based on the concept of deeply balanced bipartitions and is
implemented by pre-assigning a small subset of the heaviest vertices to the two blocks of
each bipartiton. For this pre-assignment, we established a property that can be verified
in polynomial time and, if fulfilled, leads to provable balance guarantees for the resulting
k-way partition. We integrated the approach into the recursive bipartitioning algorithm of
KaHyPar. Our new algorithms KaHyPar-BP-K and KaHyPar-BP-R are capable of computing
balanced solutions on all instances of a diverse benchmark set, without negatively affecting
the solution quality or running time of KaHyPar.

SEA 2021

8:14 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

Interesting opportunities for future research include replacing the LPT algorithm with an
algorithm that additionally optimizes the partitioning objective to construct sufficiently bal-
anced prepackings with improved solution quality [34], and integrating rebalancing strategies
similar to the techniques proposed for non-multilevel partitioners [9, 10, 18] into multilevel
refinement algorithms.

References
1 Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag. Engineering a Direct k-way Hyper-

graph Partitioning Algorithm. In 19th Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 28–42. SIAM, January 2017.

2 C. J. Alpert. The ISPD98 Circuit Benchmark Suite. In International Symposium on Physical
Design (ISPD), pages 80–85, April 1998.

3 C. J. Alpert and A. B. Kahng. Recent Directions in Netlist Partitioning: A Survey. Integration:
The VLSI Journal, 19(1-2):1–81, 1995.

4 C. Aykanat, B. B. Cambazoglu, and B. Uçar. Multi-Level Direct k-Way Hypergraph Parti-
tioning with Multiple Constraints and Fixed Vertices. Journal of Parallel and Distributed
Computing, 68(5):609–625, 2008.

5 D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. Graph Partitioning
and Graph Clustering, 10th DIMACS Implementation Challenge Workshop, volume 588 of
Contemporary Mathematics. American Mathematical Society, February 2013.

6 M. A. Bender and M. Farach-Colton. The LCA Problem Revisited. In Latin American
Symposium on Theoretical Informatics, pages 88–94. Springer, 2000.

7 R. H. Bisseling, B. O. Auer Fagginger, A. N. Yzelman, T. van Leeuwen, and Ü. V. Çata-
lyürek. Two-Dimensional Approaches to Sparse Matrix Partitioning. Combinatorial Scientific
Computing, pages 321–349, 2012.

8 T. N. Bui and C. Jones. Finding Good Approximate Vertex and Edge Partitions is NP-Hard.
Information Processing Letters, 42(3):153–159, May 1992.

9 A. E. Caldwell, A. B. Kahng, and I. L. Markov. Improved Algorithms for Hypergraph
Bipartitioning. In Asia South Pacific Design Automation Conference (ASP-DAC), pages
661–666, 2000.

10 A. E. Caldwell, A. B. Kahng, and I. L. Markov. Iterative Partitioning with Varying Node
Weights. VLSI Design, 11(3):249–258, 2000.

11 Ü. V Çatalyürek and C. Aykanat. Decomposing Irregularly Sparse Matrices for Parallel
Matrix-Vector Multiplication. In International Workshop on Parallel Algorithms for Irregularly
Structured Problems, pages 75–86. Springer, 1996.

12 Ü. V. Çatalyürek and C. Aykanat. PaToH: Partitioning Tool for Hypergraphs. https:
//www.cc.gatech.edu/~umit/PaToH/manual.pdf, 2011.

13 Ü. V. Çatalyürek and Cevdet Aykanat. Hypergraph-Partitioning-Based Decomposition for
Parallel Sparse-Matrix Vector Multiplication. IEEE Transactions on Parallel and Distributed
Systems, 10(7):673–693, 1999.

14 Ü. V. Çatalyürek, M. Deveci, K. Kaya, and B. Uçar. UMPa: A Multi-Objective, Multi-Level
Partitioner for Communication Minimization. In Graph Partitioning and Graph Clustering,
10th DIMACS Implementation Challenge Workshop, pages 53–66, February 2012.

15 T. Davis, I. S. Duff, and S. Nakov. Design and Implementation of a Parallel Markowitz
Threshold Algorithm. SIAM Journal on Matrix Analysis and Applications, 41(2):573–590,
April 2020.

16 K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and Ü. V. Çatalyürek. Parallel Hy-
pergraph Partitioning for Scientific Computing. In 20th International Parallel and Distributed
Processing Symposium (IPDPS), April 2006.

17 E. D. Dolan and J. J. Moré. Benchmarking Optimization Software with Performance Profiles.
Mathematical Programming, 91(2):201–213, 2002.

https://www.cc.gatech.edu/~umit/PaToH/manual.pdf
https://www.cc.gatech.edu/~umit/PaToH/manual.pdf

T. Heuer, N. Maas, and S. Schlag 8:15

18 S. Dutt and H. Theny. Partitioning Around Roadblocks: Tackling Constraints with Interme-
diate Relaxations. In International Conference on Computer-Aided Design (ICCAD), pages
350–355, November 1997.

19 C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Improving Network
Partitions. In 19th Conference on Design Automation (DAC), pages 175–181, 1982.

20 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness, volume 174. W.H. Freeman, San Francisco, 1979.

21 Lars Gottesbüren, Michael Hamann, Sebastian Schlag, and Dorothea Wagner. Advanced Flow-
Based Multilevel Hypergraph Partitioning. In 18th International Symposium on Experimental
Algorithms (SEA 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

22 R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, 1969.

23 R. L. Graham, E. L. Lawler, J. K. Lenstra, and R. Kan. Optimization and Approximation
in Deterministic Sequencing and Scheduling: A Survey. In Annals of Discrete Mathematics,
volume 5, pages 287–326. Elsevier, 1979.

24 S. A. Hauck. Multi-FPGA Systems. PhD thesis, University of Washington, 1995.
25 T. Heuer. Engineering Initial Partitioning Algorithms for direct k-way Hypergraph Partitioning.

Bachelor thesis, Karlsruhe Institute of Technology, August 2015.
26 T. Heuer, P. Sanders, and S. Schlag. Network Flow-Based Refinement for Multilevel Hypergraph

Partitioning. ACM Journal of Experimental Algorithmics (JEA), 24(1):2.3:1–2.3:36, September
2019.

27 T. Heuer and S. Schlag. Improving Coarsening Schemes for Hypergraph Partitioning by
Exploiting Community Structure. In 16th International Symposium on Experimental Algorithms
(SEA), Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–21:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, June 2017.

28 G. Karypis. A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes,
and Computing Fill-Reducing Orderings of Sparse Matrices, Version 5.1.0. Technical report,
University of Minnesota, 2013.

29 G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph Partitioning:
Application in VLSI Domain. In 34th Conference on Design Automation (DAC), pages 526–529,
June 1997.

30 G. Karypis and V. Kumar. Multilevel k-way Hypergraph Partitioning. VLSI Design, 11(3):285–
300, 2000.

31 B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. The
Bell System Technical Journal, 49(2):291–307, February 1970.

32 T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley & Sons,
Inc., 1990.

33 J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data, 2014.

34 N. Maas. Multilevel Hypergraph Partitioning with Vertex Weights Revisited. Bachelor thesis,
Karlsruhe Institute of Technology, May 2020.

35 D. A. Papa and I. L. Markov. Hypergraph Partitioning and Clustering. In Handbook of
Approximation Algorithms and Metaheuristics. Citeseer, 2007.

36 M. Pinedo. Scheduling, volume 29. Springer, 2012.
37 S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz. k-way Hypergraph

Partitioning via n-Level Recursive Bisection. In 18th Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 53–67. SIAM, January 2016.

38 Sebastian Schlag. High-Quality Hypergraph Partitioning. PhD thesis, Karlsruhe Institute of
Technology, 2020.

39 C. Schulz. High Quality Graph Partitioning. PhD thesis, Karlsruhe Institute of Technology,
2013.

SEA 2021

8:16 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

40 H. Shin and C. Kim. A Simple Yet Effective Technique for Partitioning. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 1(3):380–386, 1993.

41 B. Vastenhouw and R. H. Bisseling. A Two-Dimensional Data Distribution Method for Parallel
Sparse Matrix-Vector Multiplication. SIAM Review, 47(1):67–95, 2005.

42 N. Viswanathan, C. J. Alpert, C. C. N. Sze, Z. Li, and Y. Wei. The DAC 2012 Routability-
Driven Placement Contest and Benchmark Suite. In 49th Conference on Design Automation
(DAC), pages 774–782. ACM, June 2012.

A Proof of Lemma 3

▶ Lemma 3. (LPT Bound). Let H = (V, E, c, ω) be a weighted hypergraph, Ψk be a k-way
prepacking for a set of fixed vertices P ⊆ V , and let O := ⟨v1, . . . , vm | vi ∈ V \ P ⟩ be the
sequence of all ordinary vertices of V \ P sorted in decreasing order of weight. If we assign
the remaining vertices O to the blocks of Ψk by using the LPT algorithm, we can extend Ψk

to a k-way partition Πk of H such that the weight of the heaviest block is bound by:

max(Πk) ≤ max{1
k

c(P) + hk(O), max(Ψk)}, with hk(O) := max
i∈{1,...,m}

c(vi) + 1
k

i−1∑
j=1

c(vj).

Proof. We define Ψk := {P1, . . . , Pk} and Πk := {V1, . . . , Vk}. Let assume that the LPT al-
gorithm assigned the i-th vertex vi of O to block Vj ∈ Πk. We define V (i)

j as a subset of
block Vj that only contains vertices of ⟨v1, . . . , vi⟩ ⊆ O and P . Since the LPT algorithm
always assigns an vertex to a block with the smallest weight (see Section 3), the weight of
V (i−1)

j must be smaller or equal to 1
k (c(P) +

∑i−1
j=1 c(vj)) (average weight of all previously

assigned vertices), otherwise V (i−1)
j would be not the block with the smallest weight.

⇒ c(V (i)
j) = c(V (i−1)

j) + c(vi) ≤
1
k

(c(P) +
i−1∑
j=1

c(vj)) + c(vi) ≤
1
k

c(P) + hk(O)

We can establish an upper bound on the weight of all blocks to which the LPT algorithm
assigns an vertex to with 1

k c(P) + hk(O). If the LPT algorithm does not assign any vertex
to a block Vj ∈ Πk, its weight is equal to c(Pj) ≤ max(Ψk).

⇒ max(Πk) ≤ max{1
k

c(P) + hk(O), max(Ψk)} ◀

B Generalized Balance Property

▶ Definition 7. (Generalized Balance Property). Let H = (V, E, c, ω) be a hypergraph for
which we want to compute an ε-balanced k-way partition and Ψ := {P1, P2} be a prepacking
of H for a set of fixed vertices P ⊆ V . Furthermore, let Ot1 resp. Ot2 be the sequence of the t1
resp. t2 heaviest ordinary vertices of V \ P sorted in decreasing vertex weight order such that
t1 resp. t2 is the smallest number that satisfies c(P1) + c(Ot1) ≥ L2 resp. c(P2) + c(Ot2) ≥ L2
(see Line 2, Algorithm 1). We say that a prepacking Ψ satisfies the balance property with
respect to k if the following conditions hold:

(i) Ψ is deeply balanced
(ii) 1

k1
c(P1) + hk1(Ot1) ≤ Lk with k1 := ⌈k

2 ⌉
(iii) 1

k2
c(P2) + hk2(Ot2) ≤ Lk with k2 := ⌊k

2 ⌋

T. Heuer, N. Maas, and S. Schlag 8:17

The proof of Theorem 5 can be adapted such that we show that there exist a k1- resp. k2-
way partition Πk1 resp. Πk2 for V1 resp. V2 of any balanced bipartition Π2 := {V1, V2} that
respects the prepacking Ψ with max(Πk1) ≤ 1

k1
c(P1) + hk1(Ot1) ≤ Lk (Defintion (ii)) and

max(Πk2) ≤ 1
k2

c(P2) + hk2(Ot2) ≤ Lk (Defintion (iii)).

C Proof of Claim 6

▶ Lemma 8. Let L = ⟨a1, . . . , an⟩ be a sequence of elements sorted in decreasing weight
order with respect to a weight function c : L→ R≥0 (for a subsequence A := ⟨a1, . . . , al⟩ of
L, we define c(A) :=

∑l
i=1 c(ai)), L′ be an abitrary subsequence of L sorted in decreasing

weight order and Lm = ⟨a1, . . . , am⟩ the subsequence of the m ≤ n heaviest elements in L.
Then the following conditions hold:

(i) If c(L′) ≤ c(Lm), then hk(L′) ≤ hk(Lm)
(ii) If c(L′) > c(Lm), then hk(L′)− 1

k c(L′) ≤ hk(Lm)− 1
k c(Lm)

Proof. For convenience, we define L′ := ⟨b1, . . . , bl⟩. Note that ∀i ∈ {1, . . . , min(m, l)} :
c(ai) ≥ c(bi), since Lm contains the m heaviest elements in decreasing order. We define
i := arg maxi∈{1,...,l} c(bi) + 1

k

∑i−1
j=1 c(bj) (index that maximizes hk(L′)).

(i) + (ii): If i ≤ m, then

hk(L′) = c(bi) + 1
k

i−1∑
j=1

c(bj)
∀j∈[1,i]: c(bj)≤c(aj)

≤ c(ai) + 1
k

i−1∑
j=1

c(aj) ≤ hk(Lm)

(i): If m < i ≤ l, then

hk(L′) = c(bi) + 1
k

i−1∑
j=1

c(bj) = c(bi)−
1
k

n∑
j=i

c(bj) + 1
k

c(L′) ≤
(

1− 1
k

)
c(bi) + 1

k
c(L′)

c(bi)≤c(am)
c(L′)≤c(Lm)
≤

(
1− 1

k

)
c(am) + 1

k
c(Lm) = c(am) + 1

k

m−1∑
j=1

c(aj) ≤ hk(Lm)

(ii): If m < i ≤ l, then

hk(L′)− 1
k

c(L′) = c(bi) + 1
k

i−1∑
j=1

c(bj)− 1
k

c(L′) = c(bi)−
1
k

n∑
l=i

c(bl) ≤
(

1− 1
k

)
c(bi)

c(bi)≤c(am)
≤

(
1− 1

k

)
c(am) = c(am) + 1

k

m−1∑
j=1

c(aj)− 1
k

c(Lm) ≤ hk(Lm)− 1
k

c(Lm) ◀

▷ Claim 6. It holds that: 1
k′ c(P1) + hk′(O1) ≤ 1

k′ max(Ψ) + hk′(Ot).

Proof. Remember, Ψ = {P1, P2}, Π2 = {V1, V2} with P1 ⊆ V1 and P2 ⊆ V2, O1 is equal to
V1\P1 and Ot represents the t heaviest vertices of (V1∪V2)\(P1∪P2) with max(Ψ)+c(Ot) ≥ L2
as defined in Definition 4. The following proof distingush two cases based on Lemma 8.

If c(O1) ≤ c(Ot), then

1
k′ c(P1) + hk′(O1)

Lemma 8(i)
≤ 1

k′ c(P1) + hk′(Ot)
c(P1)≤max(Ψ)

≤ 1
k′ max(Ψ) + hk′(Ot)

SEA 2021

8:18 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

If c(O1) > c(Ot), then

1
k′ c(P1) + hk′(O1) = 1

k′ c(P1) + hk′(O1)− 1
k′ c(O1) + 1

k′ c(O1)
Lemma 8(ii)
≤ 1

k′ (c(P1) + c(O1)) + hk′(Ot)−
1
k′ c(Ot)

c(P1)+c(O1)=c(V1)= 1
k′ (c(V1)− c(Ot)) + hk′(Ot)

c(V1)≤L2
≤ 1

k′ (L2 − c(Ot)) + hk′(Ot)
max(Ψ)+c(Ot)≥L2

≤ 1
k′ max(Ψ) + hk′(Ot) ◁

D Configuration of Evaluated Partitioners

hMetis does not directly optimize the (λ − 1)-metric. Instead it optimizes the sum-of-
external-degrees (SOED), which is closely related to the connectivity metric: (λ− 1)(Π) =
SOED(Π) − cut(Π). We therefore configure hMetis to optimize SOED and calculate the
(λ− 1)-metric accordingly. The same approach is also used by the authors of hMetis [30].
Additionally, hMetis-R defines the maximum allowed imbalance of a partition differently [28].
For example, an imbalance value of 5 means that a block weight between 0.45 · c(V) and
0.55 · c(V) is allowed at each bisection step. We therefore translate the imbalance parameter
ε to a modified parameter ε′ such that the correct allowed block weight is matched after
log2(k) bisections:

ε′ := 100 ·

((1 + ε)
⌈ c(V)

k ⌉
c(V)

) 1
log2(k)

− 0.5

PaToH is evaluated with both the default (PaToH-D) and the quality preset (PaToH-Q).
However, there are also more fine-grained parameters available for PaToH as described in [12].
In our case, the balance parameter is of special interest as it might affect the ability of
PaToH to find a balanced partition. Therefore, we evaluated the performance of PaToH on
our benchmark set with each of the possible options Strict, Adaptive and Relaxed. The
configuration using the Strict option (which is also the default) consistently produced fewest
imbalanced partitions and had similar quality to the other configurations. Consequently, we
only report the results of this configuration.

T. Heuer, N. Maas, and S. Schlag 8:19

E Prepacking Algorithm Statistics for KaHyPar-BP-K

Table 4 Occurrence of prepacked vertices (i.e., vertices that are fixed to a specific block during
partitioning) for each combination of k and ε when using KaHyPar-BP-K on RealWorld instances:
Minimum/average/maximum percentage of prepacked vertices (left), and percentage of instances for
which the prepacking is executed at least once (right).

ε = 0.01 ε = 0.03 ε = 0.1 Prepacking Triggered [%]
k Min Avg Max Min Avg Max Min Avg Max ε = 0.01 ε = 0.03 ε = 0.1

2 - - - - - - - - - - - -
4 - - - - - - - - - - - -
8 6.7 17.1 41.6 0.4 0.5 0.6 2.3 2.3 2.3 5.0 3.3 1.7

16 3.1 15.6 34.0 0.2 2.0 7.2 1.9 2.1 2.3 8.3 6.7 3.3
32 0.3 29.9 56.0 0.1 11.7 42.3 0.2 3.4 26.3 13.3 15.0 6.7
64 0.2 54.4 94.3 0.3 23.0 69.3 0.4 6.6 94.7 21.7 10.0 8.3

128 0.5 76.5 100.0 0.4 42.4 91.0 0.3 15.7 59.8 28.3 21.7 11.7

F Quality Comparison for ε = 0.03 and ε = 0.1

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

tio
n

of
in

st
an

ce
s

w
ith

Al
g.

≤
τ
·B

es
t

1 1.05 1.1 1.5 2
τ

10 100 7U 1 1.05 1.1 1.5 2
τ

10 100 7U

KaHyPar-BP-K
KaHyPar-BP-R

KaHyPar-K
KaHyPar-R

hMetis-R
hMetis-K

PaToH-Q
PaToH-D

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

tio
n

of
in

st
an

ce
s

w
ith

Al
g.

≤
τ
·B

es
t

1 1.05 1.1 1.5 2
τ

10 100 7U 1 1.05 1.1 1.5 2
τ

10 100 7U

KaHyPar-BP-K
KaHyPar-BP-R

KaHyPar-K
KaHyPar-R

hMetis-R
hMetis-K

PaToH-Q
PaToH-D

Figure 4 Comparing the solution quality of each evaluated partitioner for ε = 0.03 (left) and
ε = 0.1 (right) on our RealWorld (top) and Artificial (bottom) benchmark set. Note, U marks
instances that exceeded the time limit.

SEA 2021

8:20 Multilevel Hypergraph Partitioning with Vertex Weights Revisited

G Absolute Running Times

42.9 29.6 46.9 30.1 62.1 54 18.7 0.9 51.7 32.6 56.7 33.2 63.7 55.5 18.3 0.9 75.3 45.4 77.2 46.2 60.3 56.5 19 0.9

ε = 0.01 ε = 0.03 ε = 0.1

KaHyPar-BP-K

KaHyPar-BP-R

KaHyPar-K

KaHyPar-R

hMetis-R

hMetis-K
PaToH-Q

PaToH-D

KaHyPar-BP-K

KaHyPar-BP-R

KaHyPar-K

KaHyPar-R

hMetis-R

hMetis-K
PaToH-Q

PaToH-D

KaHyPar-BP-K

KaHyPar-BP-R

KaHyPar-K

KaHyPar-R

hMetis-R

hMetis-K
PaToH-Q

PaToH-D

0
100
102
103

104

105
7
U

R
un

ni
ng

T
im

e
[s

]

Figure 5 Comparing the running time of each evaluated partitioner for different values of ε on
our RealWorld benchmark set. The number under each boxplot denotes the average running time
of the corresponding partitioner. Note, U marks instances that exceeded the time limit.

16.1 17 23.9 16.6 50.3 36.4 10.6 0.6 20 18.4 30.2 18.2 51.2 35.8 10.7 0.6 24.7 25.1 30.3 25.4 48.2 35.6 11 0.6

ε = 0.01 ε = 0.03 ε = 0.1

KaHyPar-BP-K

KaHyPar-BP-R

KaHyPar-K

KaHyPar-R

hMetis-R

hMetis-K
PaToH-Q

PaToH-D

KaHyPar-BP-K

KaHyPar-BP-R

KaHyPar-K

KaHyPar-R

hMetis-R

hMetis-K
PaToH-Q

PaToH-D

KaHyPar-BP-K

KaHyPar-BP-R

KaHyPar-K

KaHyPar-R

hMetis-R

hMetis-K
PaToH-Q

PaToH-D

0

100

102

103
7
U

R
un

ni
ng

T
im

e
[s

]

Figure 6 Comparing the running time of each evaluated partitioner for different values of ε on
our Artificial benchmark set. The number under each boxplot denotes the average running time
of the corresponding partitioner. Note, U marks instances that exceeded the time limit.

On Tamaki’s Algorithm to Compute Treewidths
Ernst Althaus !

Johannes Gutenberg-Universität Mainz, Germany

Daniela Schnurbusch !

Johannes Gutenberg-Universität Mainz, Germany

Julian Wüschner !

Johannes Gutenberg-Universität Mainz, Germany

Sarah Ziegler !

Johannes Gutenberg-Universität Mainz, Germany

Abstract
We revisit the exact algorithm to compute the treewidth of a graph of Tamaki and present it in a
way that facilitates improvements. The so-called I-blocks and O-blocks enumerated by the algorithm
are interpreted as subtrees of a tree-decomposition that is constructed. This simplifies the proof
of correctness and allows to discard subtrees from the enumeration by some simple observations.
In our experiments, we show that one of these modifications in particular reduces the number of
enumerated objects considerably.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Tree Decomposition, Exact Algorithm, Algorithms Engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.9

Supplementary Material Software: https://gitlab.rlp.net/daschnur/compute_treewidths
archived at swh:1:dir:083d68c2152e2521bcd065be491c7a6b35267cc5

1 Introduction

Tree decompositions are a major tool for obtaining parameterized algorithms for hard graph
problems as many problems allow parameterization with respect to the treewidth of the
graph (see, e.g., [11]). In order to use such algorithms, the first step is to compute a tree
decomposition with minimal width or an approximation thereof.

It is well known that computing an optimal tree decomposition is N P-hard [3]. Owing
to the early results of Robertson and Seymour, we know that an optimal tree decomposition
can be computed in O(n2) if the treewidth is bounded, but the proof is non-constructive. In
[5], Bodlaender presented a linear-time algorithm for this problem, effectively settling the
matter from a theoretical point of view. Since the description of the algorithm is hardly
accessible, we recently published a simpler description of it [1, 2].

The main problem of Bodlaender’s algorithm is its running-time dependency on the
treewidth. More precisely, for a graph with treewidth tw, the best running time estimate is
2O(tw3) · n, which makes the dependence on the treewidth in the computation of the tree
decomposition a major theoretical bottleneck of the computation. Notice that algorithms
using tree decompositions do not necessarily require the latter to be optimal for being a
parameterized algorithm, as long as their width is bounded in the optimal treewidth. For this
reason, efforts to compute approximately optimal tree decompositions gained considerable
attention in the recent past, leading, among other things, to the discovery of the first such
algorithm with linear time dependency on the size of the graph and a single exponential
dependency on the treewidth [6].

From an applied perspective, many heuristics were designed to compute tree decom-
positions, including the min-fill and min-degree heuristics, see, e.g., [15, 12]. Nevertheless,
there remains a large interest in practically feasible algorithms for the construction of

© Ernst Althaus, Daniela Schnurbusch, Julian Wüschner, and Sarah Ziegler;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 9; pp. 9:1–9:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ernst.althaus@uni-mainz.de
https://orcid.org/0000-0002-2122-9520
mailto:daschnur@uni-mainz.de
mailto:jpwueschner@gmail.com
mailto:sarah.ziegler@web.de
https://doi.org/10.4230/LIPIcs.SEA.2021.9
https://gitlab.rlp.net/daschnur/compute_treewidths
https://archive.softwareheritage.org/swh:1:dir:083d68c2152e2521bcd065be491c7a6b35267cc5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 On Tamaki’s Algorithm to Compute Treewidths

optimal tree decompositions, as evidenced, e.g., by recent iterations of the PACE com-
petition (https://pacechallenge.org). Currently, the algorithm of Tamaki [15, 14]
(https://github.com/TCS-Meiji/PACE2017-TrackA) seems to be one of the fastest al-
gorithms.

One key ingredient for practically efficient algorithms is a suitable preprocessing of the
(input) graph. Studies have shown that the notion of so-called safe separators is very beneficial
for tree decompositions[7]. Safe separators are subsets of the nodes whose removal separates
the graph into several parts. An optimal tree decomposition can then be found by considering
the components (for each component, including the separator) individually. Bodlaender et
al. [7] showed some sufficient conditions for separators to be safe. Furthermore, the authors
showed that separators that are an almost clique are safe and presented an algorithm find
them. Tamaki [14] gives a heuristic to compute safe separators. The author first computes
separators by using a simple heuristic algorithm to compute a tree decomposition and uses
the intersections of neighboring bags as candidate separators. For each candidate, he uses an
additional heuristic to test another sufficient condition for safe separators.

Computing lower bounds is a subroutine in many exact algorithms for N P-hard problems.
An overview of lower bounds for the treewidth is given in [9]. A simple lower bound is
obtained by heuristically computing a minor of the given graph and using the second smallest
degree as lower bound (if the smallest degree appears at least twice, this degree is to be
taken).

In this paper we describe the algorithm of Tamaki in a way that can be interpreted
more intuitively. In order to construct an optimal tree decomposition, we assume the tree
decomposition to be rooted at a defined vertex. Then we build the tree decomposition from
the leaves and call the constructed structures partial tree decompositions (a formal definition
is given in Section 3). The key insight of the algorithm of Tamaki is that there are only
a linear number of possible bags of the root of a partial tree decomposition, knowing the
partial tree decompositions for the children. The same holds for the leaves.

The interpretation of the enumerated partial tree decompositions allows to remove
some of them by simple observations that exclude partial tree decompositions from being
extended to an optimal tree decomposition or being replaced by partial tree decompositions
already enumerated. Some of these observations are automatically guaranteed in the original
description of the Tamaki’s algorithm. Furthermore, we improve the usage of safe separators
by testing the sufficient conditions on all separators constructed when enumerating partial
tree decompositions.

The paper is organized as follows: In Section 2, we introduce the terminology, basic
definitions, and known properties. The basic algorithm is stated in Section 3, followed by
a section on the methods to eliminate partial tree decompositions. Before we show some
experimental results in Section 6, we present some additional details on the algorithm in
Section 5. Finally, we give a short conclusion.

2 Definitions and Basic Properties

Unless stated otherwise, we assume all graphs to be undirected, finite, and without self-loops.
Let G be a graph. We denote its vertex and edge sets as V (G) and E(G), respectively.
Additionally, we define

NG(v) := {u ∈ V (G)|(u, v) ∈ E(G)}, the open neighborhood of a vertex v in G,
NG[v] := NG(v) ∪ {v}, the closed neighborhood of v in G,
deg(v) := |NG(v)|, the degree of v in G,
NG(U) :=

⋃
u∈U NG(u) \ U , the open neighborhood of the vertex set U ⊆ V (G),

NG[U] := NG(U) ∪ U , the closed neighborhood of U ⊆ V (G).

https://pacechallenge.org
https://github.com/TCS-Meiji/PACE2017-TrackA

E. Althaus, D. Schnurbusch, J. Wüschner, and S. Ziegler 9:3

1

2

3

4 5

6

7

8

9

10
11

(a) An example graph.

1, 3, 6, 10

1, 6, 8, 108, 9, 10

8, 10, 11 1, 6, 7, 8

1, 3, 4, 6

1, 2, 3, 4

3, 5, 6, 10

(b) Corresponding tree decomposition.

Figure 1 Example for a tree decomposition of width 3 from a given graph. In this case, the tree
decomposition is optimal and thus also has a treewidth of 3.

The subscript G can be omitted in cases where there is no ambiguity about the graph.
For U ⊆ V (G), G[U] denotes the subgraph of G induced by U , i.e., the graph with vertex

set V (G[U]) = U and edge set E(G[U]) = {(a, b) ∈ E(G)|a, b ∈ U}. G⟨U⟩ denotes the graph
obtained from G by completing U to a clique.

Let C, S ⊆ V (G) be two vertex sets. We define:
C is connected in G if there exists a path between all pairs of vertices u, v ∈ C,
C is a connected component of G if C is connected and inclusion-wise maximal with this
property.
C is a component associated with S if C is a connected component in G[V (G) \ S]
S is a separator of G if there exist at least two components associated with S.
S is a u, v-separator for vertices u, v ∈ V (G) if u and v lie in different components
associated with S.
C is a full component associated with S if N(C) = S.
S is a minimal separator if there exist at least two full components associated with S.

One can show that a minimal separator is minimal in the sense that, if we remove a
vertex from it, it no longer separates vertices that lie in different full components. It may,
however, still separate vertices in a previously non-full component from the rest of the graph.

▶ Definition 1 (Tree Decomposition, [13]). For a graph G, let T be a tree and (Xt)t∈V (T)
a family of vertex sets indexed by the nodes of T with Xt ⊆ V (G) for all t ∈ V (G).
T := (T, (Xt)t∈V (T)) is called a tree decomposition of G if
1.

⋃
t∈V (T) Xt = V ,

2. for each edge e = (u, v) ∈ E(G), there exists a node t ∈ V (T) with u, v ∈ Xt, and
3. for all t1, t2, t3 ∈ V (T), such that node t2 lies on the path between nodes t1 and t3,

Xt1 ∩ Xt3 ⊆ Xt2 .

We will refer to the third condition as the consistency property throughout this paper.
The vertex sets associated with nodes of a tree decomposition are called bags. We say that
two bags are adjacent if the corresponding nodes are adjacent. For an example, refer Figure 1.

▶ Definition 2. The width of a tree decomposition (T, (Xt)t∈V (T)) is maxt∈V (T)|Xt| − 1.

▶ Definition 3. The treewidth tw(G) of a graph G is the minimum width of all tree decom-
positions of G.

SEA 2021

9:4 On Tamaki’s Algorithm to Compute Treewidths

The treewidth of a graph G can alternatively be defined in terms of its triangulations.
A chord of a cycle C in G is an edge whose endpoints lie in the vertex set of C but that is
not in the edge set of C [16]. It is easy to see that all cycles of length 3 (i.e., triangles) have
no chords. G is chordal (or triangulated) if every cycle of length at least 4 has a chord. A
graph H = (V (G), E′) is a triangulation of G if H is chordal and G is a subgraph of H, i.e.,
E′ ⊇ E(G). A triangulation is minimal if the edge set is inclusion-wise minimal with respect
to these conditions. In [10], Bouchitté and Todinca show that there is a minimal triangulation
such that a tree decomposition of minimal width can be obtained by constructing a bag for
each maximal clique of the triangulation. These bags can be connected to a tree satisfying
consistency and the intersections between neighboring bags are minimal separators.
▶ Definition 4. A potential maximal clique (pmc) of a graph G is a vertex set that induces
a maximal clique in some minimal triangulation of G.

This definition, however, is difficult to work with algorithmically. In [10], Bouchitté and
Todinca show that potential maximal cliques can also be characterized by local features:
▶ Definition 5. A vertex set K ⊂ V (G) is cliquish if for every pair of distinct vertices
u, v ∈ K there exists a path from u to v that does not lead through other vertices of K.
▶ Lemma 6 ([10], Theorem 3.15). A vertex set K ⊂ V (G) is a potential maximal clique if
and only if K is cliquish and has no full components associated with it.
▶ Definition 7. A canonical tree decomposition of a graph G is a tree decomposition of G,
where each bag is a potential maximal clique of G and for every two adjacent bags X and Y ,
X ∩ Y is a minimal separator.

The follwoing two lemmas follow directly from the theory of Bouchitté and Todinca [10]
and are also used by Tamaki [14]. The first one summarizes the discussion above.
▶ Lemma 8. For each graph G there is a canonical tree decomposition of width tw(G).
▶ Lemma 9. Let T = (T, (Xi)i∈V (T)) be a canonical tree decomposition and let T ′ =
(T ′, (Yj)j∈V (T ′)) be any tree decomposition of a graph G, such that for every Yj there exists
Xi with Yj ⊆ Xi. Then for every Xi there exists Ys with Xi = Yj.

In other words, if all bags of a tree decomposition are subsets of bags of a canonical tree
decomposition, then all bags in the canonical tree decomposition are also part of the other
tree decomposition.

We informally argue that Lemma 9 holds as follows: Transforming each bag of a tree
decomposition into a clique will result in a triangulation. If the lemma would not be satisfied,
the triangulation of the tree decomposition T ′ is a strict subset of the triangulation of T .

3 The Algorithm

The algorithm presented by Tamaki [14] decides whether a graph G has a treewidth of at
most k, for k ranging from a lower bound on tw(G) to tw(G) (which is, of course, unknown
in advance). This is done by trying to construct a canonical tree decomposition of G with
width k. The construction is performed by determining all possible candidates for leaves of
such a tree decomposition and then iteratively forming larger tree structures by combining
two of them along with applying the canonization rules resulting from Lemma 15. This
procedure succeeds only in the case of k = tw(G), yielding a canonical tree decomposition of
G with optimal treewidth. In the following, it is easier to assume G to be connected, which
is guaranteed after the preprocessing techniques discussed in Section 5 (tree decompositions
can be computed for each connected component separately).

E. Althaus, D. Schnurbusch, J. Wüschner, and S. Ziegler 9:5

3.1 Theoretical Foundations of the Algorithm
▶ Definition 10. Let G be a graph and T = (T, (Xt)t∈V (T)) be a rooted canonical tree
decomposition of G. For a bag Yt with t ∈ V (T), let TYt be the subtree of T with root t and
all descendants. TY = (TY , (Xt)t∈V (TY)) is called the partial tree decomposition of T rooted
at Y .

We abbreviate the term partial tree decomposition to ptd. The algorithm will construct
subtrees of tree decompositions, but we will not show that these are necessarily canonical.

▶ Definition 11. For a ptd T = (T, (Xt)t∈V (T)) with root bag Xr we define
bag(T) = Xr,
V (T) =

⋃
t∈V (T) Xt,

outlet(T) := N(V (G) \ V (T)),
inlet(T) := V (T) \ outlet(T),
a child of T as the ptd induced by a child node of T and its descendants, and
children(T) as the set of all children of T .

Note that outlet(T) ⊆ bag(T). This is easy to see: the vertices in outlet(T) are exactly
those vertices having neighbors that do not lie in V (T). Hence, the edge between such a
vertex and its neighbor has to be covered by a bag outside of T . By the consistency property
of tree decompositions, however, all bags containing a given vertex have to be connected,
implying that all vertices in outlet(T) are also in bag(T).

The second type of structure created by the algorithm is called a partial tree decomposition
with unfinished root (or ptdur). Ptdurs generalize ptds and their role is to gather several ptds
under one root. We will later see how they can be extended into ptds using the canonization
rules obtained from Lemma 15.

▶ Definition 12. Let T1, ..., Tn be ptds. A partial tree decomposition with unfinished root is a
rooted tree with its root labeled

⋃
i∈I outlet(Ti) and the Ti as its children.

We extend the notation from Definition 11 to ptdurs. Note that we do not require the
root of a ptdur to be a potential maximal clique, so ptdurs are not necessarily pdts as well.
So far, ptdurs also do not necessarily satisfy the consistency property. We fix the latter by
immediately discarding any ptdur that is built by the algorithm if it is not possibly usable:

▶ Definition 13. A ptdur T is possibly usable if for every pair of distinct children Ti, Tj

inlet(Ti) ∩ inlet(Tj) = ∅, and
V (Ti) ∩ V (Tj) ⊆ outlet(Ti) ∩ outlet(Tj).

The following lemma gives all candidates for leaves in a canonical tree decomposition.

▶ Lemma 14. Let T = (T, (Xt)t∈V (T)) be a canonical tree decomposition of a graph G. Let
Xl be a bag associated with a leaf in T . Then Xl = N [v] for a vertex v ∈ V (G).

Proof. If T ’s only bag is Xl, then Xl is a clique in G. This is argued as follows: Suppose
Xl is not a clique, then there exist u, v ∈ Xl such that (u, v) is not an edge in G. In that
case the tree decomposition consisting of the bags Xl \ {v} and Xl \ {u} is another tree
decomposition of G whose bags are proper subsets of Xl. This contradicts Lemma 9.

Otherwise, T has at least two bags and thus a parent of the leaf associated with Xl exists.
Denote its bag by Xp. Since T is canonical and no bag is a subset of another bag, there
exists v ∈ Xl \ Xp. Because of the consistency property, v does not lie in any other bag

SEA 2021

9:6 On Tamaki’s Algorithm to Compute Treewidths

Xp

Xl
. . .

=⇒

Xp

Xl \ {v}

N [v]

. . .

Figure 2 We illustrate the proof of Lemma 14. Replacing the node with the bag Xl by two nodes
with the bags Xl \ {v} and N [v] in T yields an alternative tree decomposition of G, the existence of
which leads to a contradiction.

of T and has therefore no neighbors outside of Xl. Hence, N [v] ⊆ Xl. Now suppose that
N [v] ⊊ Xl, i.e., there is u ∈ Xl \ N [v]. Then, because v and u are not adjacent in G, G

has an alternative tree decomposition where the node associated with Xl is replaced by two
nodes with the bags N [v] and Xl \ {v}. Both of these bags, however, are subsets of Xl, so it
follows with Lemma 9 that one of them is actually equal to Xl. This is impossible because
N [v] does not contain u, whereas Xl \ {v} does not contain v. Thus, Xl = N [v]. ◀

A figure illustrating the proof is given in Figure 2. The following lemma generalizes this
result to all bags of a canonical tree decomposition.

▶ Lemma 15. Let T be a canonical tree decomposition of a graph G. Let T ′ be a ptd of T
and let O =

⋃
T ′

c ∈children(T ′) outlet(T ′
c) and W =

⋃
T ′

c ∈children(T ′) V (T ′
c) denote the union of

the outlets or vertices of its children, respectively. Then, for the root bag X of T ′, one of the
following conditions holds:
1. X = O,
2. X = N [v] for a vertex v ∈ V \ W , such that O ⊆ N [v], or
3. X = O ∪ (N(v) \ W) for a vertex v ∈ O.

Proof. Throughout this proof, we refer to the example in Figure 6 in the Appendix.
We established earlier in this section that outlet(T X

i) ⊆ bag(T X
i) for every i ∈ I because

all vertices in the outlet have to lie in at least one other bag of T outside of T X
i . Since by

the consistency property all bags containing a given vertex have to be connected and the
only other incident bag is X, that vertex must also be in X. By repeating this argument for
all vertices in O, we get O ⊆ X.

If O = X, case 1 applies (see Figure 6b).
Otherwise, O ⊊ X. We distinguish between two cases:

▶ Case 1. There exists a vertex v ∈ X \ (O ∪ outlet(T ′)).
The proof for this case is similar to the proof of Lemma 14 above. As v is neither

contained in the intersection of X with the bag of the parent of X, nor in the intersection
of X with any bag of one of its children, it follows that X is the only bag containing v by
the consistency property. Consequently, all edges incident to v have to be covered by X, i.e.,
N [v] ⊆ X. Now suppose that N [v] ⊊ X, i.e., there exists u ∈ X \ N [v] (see Figure 6c). Then
we can replace the node associated with X by two nodes associated with the bags X \ {v}
and N [v] to construct an alternative tree decomposition of G. The newly introduced bags are
subsets of X and by Lemma 9 one of them has to be equal to X. Because X \ {v} does not
contain v and N [v] does not contain u, however, we reach a contradiction. Hence, in this
case, X is of type 2 as claimed in the lemma.

E. Althaus, D. Schnurbusch, J. Wüschner, and S. Ziegler 9:7

▶ Case 2. The set X \ (O ∪ outlet(T ′)) is empty.
In this case it follows that every vertex in X \ O lies in outlet(T ′) and therefore also in

the bag associated with the parent of T ′. At least one vertex v ∈ O cannot lie in the parent’s
bag because otherwise X would be a subset of it. Hence, all of v’s neighbors have to be covered
somewhere within T ′. The vertices in N(v) that do not appear in W , therefore, have to be
covered by X. Thus, N(v) \ W ⊂ X.

It remains to show that there is only one such vertex v. Suppose this is false, i.e.,
there exist two vertices u, v ∈ O \ outlet(T ′) such that neither N(u) \ W ⊆ N(v) \ W nor
N(v) \ W ⊆ N(u) \ W (see Figure 6f). Then we can replace the node associated with X by
two nodes associated with the bags X \ {v} and Y := X \ ((N(u) \ I) \ (N(v) \ I)) to construct
an alternative tree decomposition of G. The newly introduced bags are once again subsets of
X, so by Lemma 9, one of them has to be equal to X. However, X \ {v} does not contain v

and u has a neighbor that is contained in X but not in Y . Therefore, only one such vertex v

can exist and X is of type 3 as claimed in the lemma. ◀

These two lemmas are the basis for the algorithm. By enumerating all possible ptdurs
and constructing all possible ptds with width at most tw(G), a tree decomposition of G is
constructed eventually.

3.2 The Basic Algorithm
Algorithm 1 is a pseudocode version of the basic algorithm. In it, P and U are sets containing
the ptds and ptdurs constructed by the algorithm, respectively. The foreach loops in lines
5 and 9 iterate over the mutated sets, i.e., also over elements that are added during the
execution of the loops.

The algorithm constructs all ptds as stated in Lemmas 14 and 15 (lines 17–27) and all
ptdurs by either setting the outlet of a ptd as the root bag and adding no further child (lines
6–7) or adding a new ptd as an additional child to a ptdur constructed before (lines 12–16).
Notice that lines 9–10 ensure that the ptdur without an additional child is considered when
constructing ptds from ptdurs in lines 17–27.

Intuitively, the algorithm constructs all ptds of height 0 by means of Lemma 14. Then we
construct further ptds by constructing ptdurs having subsets of ptds as children: For each
ptd T constructed, we construct a ptdur having T as its only child. Furthermore, we add T
as an additional child to each ptdur already constructed. We remove all ptdurs that are not
possibly usable anymore. Furthermore, we try to make a ptd out of each ptdur via Lemma
15. A formal proof of the correctness is as follows.

▶ Theorem 16. Given G and k, Algorithm 1 returns “YES” if and only if tw(G) ≤ k.

Proof. First, we notice that each element T added to P is a tree decomposition of the graph
induced by V (T) and with a width of at most k. Further, all vercies of V (T) adjacent to a
node in V (G) \ V (T) are in outlet(T). Hence, if the algorithm answers “YES”, it has found
a tree decomposition of G with a width of k.

It remains to show that we find a tree decomposition of width k if there exists one. Hence,
we need to show that, at line 28, P contains exactly those ptds of G that have a width
smaller or equal to k and that line 28 is indeed reached.

By Lemma 14, all candidates for leaves are added to P in lines 1–4. We now prove that,
by the time the algorithm reaches line 28, U contains all possibly usable ptdurs with a width
of at most k (and only those). Because lines 17–18, 19–22, and 23–27 correspond to step 2 in
Lemma 15, it then follows that P contains all ptds with width at most k when line 28 is
reached.

SEA 2021

9:8 On Tamaki’s Algorithm to Compute Treewidths

Algorithm 1 Treewidth.

Input : Graph G, positive integer k

Output : “YES” if tw(G) ≤ k, otherwise “NO”

1 foreach v ∈ V (G) do
2 if |N [v]| ≤ k + 1 and N [v] is pmc then
3 p0 := ptd with bag N [v] as only bag
4 add p0 to P

5 foreach T ∈ P do
6 T̃ := ptdur with outlet(T) as root bag and T as only child
7 add T̃ to U

8 foreach T ′ ∈ U do
9 if T̃ = T ′ then

10 T̂ := T ′

11 else
12 T̂ := ptdur obtained from T ′ by adding T as a child and adding outlet(T)

to the root bag
13 if T̂ is possibly usable and bag(T̂) is cliquish and |bag(T̂)| ≤ k + 1 then
14 add T̂ to U

15 else
16 continue

17 if bag(T̂) is pmc then
18 add T̂ to P

19 foreach v ∈ V (G) \ V (T̂) do
20 if bag(T̂) ⊆ N [v] and N [v] is pmc and |N [v]| ≤ k + 1 then
21 p2 := T̂ , where the root bag is replaced by N [v]
22 add p2 to P

23 foreach v ∈ bag(T̂) do
24 B := bag(T̂) ∪

(
N(v) \ inlet(T̂)

)
25 if B is pmc and |B| ≤ k + 1 then
26 p3 := T̂ , where B is added to the root bag
27 add p3 to P

28 if P contains a ptd that covers V (G) then
29 return “YES”
30 else
31 return “NO”

Denote by p1, p2, . . . the ptds constructed by the algorithm in the order that P is iterated
over.

▷ Claim 17. For each n, by the time the iteration over pn (line 5) finishes, U contains all
possibly usable ptdurs with a width of at most k, whose children are subsets of {p1, . . . , pn}.

E. Althaus, D. Schnurbusch, J. Wüschner, and S. Ziegler 9:9

Proof. We prove the claim by induction.
Base case n = 1:
The ptdur with the only child p1 has the same width as p1 and is added to U at line 7.
Inductive hypothesis:
Suppose the claim holds for all values of n up to some l, l > 1.
Inductive step:
Let n = l + 1. By the inductive hypothesis, U already contains all possibly usable ptdurs

with a width of at most k whose children are subsets of {p1, . . . , pn−1}. Notice that a ptdur
that is not possibly usable does not become possibly usable by adding another child to it.
Therefore, the only possibly usable ptdurs left to be constructed are of two types: (1) those
that are already in U but have pn as an additional child, and (2) the ptdur whose only child
is pn. The latter is added to U at line 7, the rest is added at line 14. ◁

It remains to show that the algorithm terminates. Since P and U are sets and therefore
do not contain duplicates, it is sufficient to argue that there exist only finitely many non
equivalent ptds and ptdurs of G. As ptds T and T ′ are equivalent if V (τ) = V (τ ′) there are
at most 2n ptds. Similarly, we have at most one ptdur with a certain vertex set as inlet and
a certain vertex set as root bag and hence at most 22n in total. ◀

4 Reducing the number of PTDs and PTDURs

In the following sections we describe techniques for reducing the number of ptds and ptdurs
considered. Some of these, namely those mentioned in Sections 4.1 to 4.4 and the technique
regarding ptdurs with root bags of size k + 1 in Section 4.5, are also used by Tamaki’s
implementation. We review them here for the sake of completeness and to show how they
can be utilized in the reinterpreted algorithm.

4.1 Rejecting PTDs with Non-Canonical Root Bags
If a vertex set is a potential maximal clique, it must be cliquish. Notice, however, that all of
its subsets are cliquish as well. By contraposition, adding more vertices to a non-cliquish
vertex set will not make it cliquish. We can use this fact to reject ptdurs whose roots are not
cliquish, because none of the ptd candidates built from them can be actual ptds. Hence, we
can reject those ptdurs immediately at line 12.

By Definition 7, the intersection between two adjacent bags in a ptd T is a minimal
separator. For T to be a child of another ptd T ′, it is necessary that the intersection between
bag(T) and bag(T ′), namely outlet(T), is a minimal separator. Consequently, all ptds whose
outlet is not a minimal separator can be rejected.

4.2 Equivalence of PTDs and PTDURs
Let T be a canonical tree decomposition of G. For two adjacent bags X and Y of T , denote
by T X,Y the tree that is obtained by splitting T at the edge between the nodes labeled X

and Y and discarding the part containing the node labeled with Y . Notice that the T X,Y

can be replaced in T by any other tree T ′ with V (T ′) = V (T X,Y). In this sense, T X,Y and
T ′ are equivalent. Consequently, we can adjust P to accept a new ptd only if no equivalent
ptd is already stored within.

To apply this principle also to ptdur’s, we need to consider the size of their root bags as
well. This is because a small root bag may be able to be extended to a pmc in more ways
than a large root bag, when only bags of size at most k + 1 are allowed. See Figure 3 for an

SEA 2021

9:10 On Tamaki’s Algorithm to Compute Treewidths

(a) (b) (c) (d) (e)

Figure 3 We illustrate the equivalence of ptds. In this figure, each unique vertex is represented
as a unique combination of a geometric shape and a color. Vertices in the outlet of a leaf are filled,
while vertices in the inlet of a leaf are not. The ptdurs (a) and (b) cover the same vertex set, but are
not equally useful. This becomes apparent when adding the ptd (c) as a child to them: the resulting
ptdurs (d) and (e) have different widths. If the root bag of (e) is a pmc, then (e) is a ptd of width 3.
Hence, during the iteration where k = 3, it would be wrongly skipped.

illustration of where this is relevant. Therefore, if we try to add a ptdur T with root bag
X to U , we first test whether an equivalent ptdur, whose root bag is a subset of X, exists
already in U . If so, T is discarded. Otherwise, if a ptdur, whose root bag is a superset of X,
exists in U , we replace that ptdur by T . If none of these cases apply, T is added to U as
usual.

4.3 Choosing a Unique Root

In order to define ptds in Section 3.1, we required the tree decomposition to be rooted. So
far, we allow any bag to be the root. This means that we construct each tree decomposition
not only once but once for every possible root (which can be any node). We overcome this
problem by directing the edges of tree decompositions away from the root and rejecting ptds
whose edges would not be consistent with that. We want to define a property called incoming
for ptds that satisfies the following conditions:
1. for every two adjacent bags X and Y in T , exactly one of T X,Y and T Y,X is incoming,
2. for every ptd with root bag X and its neighbors Y1, ..., Yk in T , at most one of the

T X,Yi , 1 ≤ i ≤ k is incoming, and
3. given a ptd, we can determine whether it is incoming using only information contained

within it.

Condition 1 guarantees that each edge has a unique direction. Because we want the
edges to be directed away from the root, every bag can have at most one incoming neighbor
(condition 2), which is its parent. Condition 3 allows us to use this property in the algorithm.
Only if a ptd is not incoming will we add it to P .

Assume that a total ordering < on the vertices of G is given. For a vertex set U ⊆ V (G),
we define min(U) as its smallest element under <. If U is empty, then we consider min(U) to
be smaller than any vertex. Then the following definition of incoming satisfies the conditions
given above.

▶ Definition 18. A ptd T is incoming if min(inlet(T)) < min(V \ V (T)).

E. Althaus, D. Schnurbusch, J. Wüschner, and S. Ziegler 9:11

1, 2, 3, 4

1, 3, 4, 6

1, 3, 6, 1

1, 6, 8, 10

8, 9, 10

8, 10, 11

1, 6, 7, 8

3, 5, 6, 10

(a) The tree decomposition from Figure 1b, where
all ptds are required to be not incoming, thereby
choosing N [2] = {1, 2, 3, 4} as the unique root.

1, 2, 3, 4

1, 3, 4, 6

1, 3, 6, 10

1, 6, 8, 10

8, 9, 10 8, 10, 11 1, 6, 7, 8

3, 5, 6, 10

(b) The same tree decomposition, where all ptds are
normalized. The bag {8, 10, 11} has been attached
to its former grandparent {1, 6, 8, 10} instead.

Figure 4 The tree decomposition shown in Figure 1b has leaves N [2], N [5], N [7], and N [11], so
its unique root is chosen to be N [2] (see Figure 4a). Notice, however, that N [9] = {8, 9, 10} is also a
candidate for a leaf, but is actually an inner node here. This means that it could have been chosen
as the root under another ordering of vertices. While this is not a conflict when choosing a unique
root, it illustrates another way in which some ptds are redundant. Consider the ptd consisting of
only the bag {8, 10, 11}. Its outlet is {8, 10}, which is contained in its grandparent {1, 6, 8, 10}. It is
therefore possible to attach the bag to its grandparent instead (see Figure 4b). We call a tree where
this is not the case for any bag normalized.

It is not hard to see that the three properties mentioned above hold:
1. As inlet(τX,Y) = V \ V (T Y,X) and vice versa.
2. The sets inlet(τX,Yi) are pairwise disjoint. Let v be the smallest vertex in the union of

these sets and ℓ∗ be such that v ∈ inlet(τX,Yℓ∗). For each ℓ ̸= ℓ∗, we have v ∈ V \V (T X,Yℓ)
and each node in inlet(τX,Yℓ) is larger than v. Hence T X,Yℓ is not incoming.

3. As the definition uses only inlet(τ) and V (τ).

Since T is equivalent to ptds with the same vertex set or, equivalently, the same inlet, we
also say that inlet(T) is incoming if a ptd T is incoming. For every tree decomposition, this
procedure will choose the leaf N [v] as the root, for which v is smallest out of all the leaves
contained in that tree decomposition.

An example is shown in Figure 4a.

4.4 Normalization of PTDs
Notice that if the outlet of a ptd T ′ used in the construction of the ptd T is contained in
several bags of T , we can attach T ′ to any one of those bags. To avoid enumerating all these
possibilities, we normalize the ptd T by enforcing that T ′ is attached as close to the root of
T as possible. This is captured in the following definition.

▶ Definition 19. Let p(t) denote the parent of a node t within a rooted tree.
A ptd T = (T, (Xt)t∈V (T)) is normalized if there is no t ∈ V (T) such that outlet(T +

t) ⊆
Xp(p(t)).

This means that we can discard a ptd T if outlet(TC) ⊆ outlet(T) for one of its children
TC .

SEA 2021

9:12 On Tamaki’s Algorithm to Compute Treewidths

4.5 Rejecting PTDURs Whose Root Cannot Be Extended To a
Potential Maximal Clique

The roots of some of the ptdurs created at line 12 are not pmcs. If no vertices can be added
to them so that they finally become pmcs either, they are useless and can be discarded.

First, we consider a ptdur whose root contains k + 1 vertices, i.e., we can add no more
vertices to it. If it is not a pmc, then the ptdur is useless. Next, we consider a ptdur whose
root X contains k vertices, i.e., we are allowed to add one more vertex to it. If X is a pmc,
we accept the ptdur as usual. If not, we can test if, for any candidate v ∈ V (G) \ V (T),
X ∪ {v} is a pmc. This test may take a lot of processing time, so we narrow down the list of
candidates by studying necessary conditions on candidates.

Let C be the component associated with X that contains a candidate v. We can assume
that X is cliquish because otherwise it will be rejected at line 13. In order for X ∪ {v} to
be cliquish as well, there has to exist a path between v and x for each x ∈ X that does not
lead through other vertices in X. This implies that C must be a full component because
otherwise there would exist x ∈ X such that x /∈ N(C) and hence, every path from v to x

would contain another vertex of X.
On the other hand, in order to be a pmc, X ∪ {v} can have no full components associated

with it, which leaves us with two possibilities: either v separates G[C] into at least two
components, neither of which is full in G with respect to X ∪ {v}. Or v does not separate
G[C], in which case there needs to exist x ∈ X such that x /∈ N(C \ {v}), i.e., v is the only
neighbor of x in C.

4.6 PTD Outlets With More Than 2 Associated Components
Let S be a minimal separator of G with associated components C1, C2, ..., Cℓ such that ℓ ≥ 3.
Without loss of generality, let C1 be the incoming component, let C2 be a full (non-incoming)
component, and let T2 be a ptd with inlet(T2) = C2. Because C2 is a full component
associated with S, we have outlet(T2) = S.

▶ Lemma 20. If T2 is contained in a tree decomposition of G with a width of at most k,
then there exist non-incoming ptds T3, ..., Tℓ, whose inlets are C3, ..., Cℓ, respectively, and
whose widths are at most k

Proof. Notice that any tree decomposition of G that contains the ptd T2 is also a tree
decomposition of the graph G⟨S⟩. Let T be such a tree decomposition and let C be any
component associated with S. From all bags of T , remove all vertices except those contained
in S ∪ C. The resulting tree decomposition is a tree decomposition of G⟨S⟩[S ∪ C] with a
width of at most k. By Lemma 8, that graph also has a canonical tree decomposition of
equal or smaller width. Interpreted as a ptd of G, it has inlet C as claimed. ◀

The contrapositive of this lemma states that T2 is only useful if we can also construct
T3, ..., Tℓ (or equivalent ptds). We can use this insight to delay the addition of T2 to P until
ptds covering all non-incoming components associated with S are constructed.

4.7 Using Upper and Lower Bounds
As another approach, we tried to heuristically complete ptds (who cover only part of the
graph) to a tree decomposition on the entire graph, using the min-degree and min-fill
heuristics. If a heuristic succeeds in finding a tree decomposition of the complete graph with
the given width, we can immediately stop the computation and return the result.

E. Althaus, D. Schnurbusch, J. Wüschner, and S. Ziegler 9:13

Furthermore, we can compute lower bounds for a tree decomposition that contains a
given ptd. We complete the bag of the root to a clique and compute a lower bound of the
resulting graph. If this lower bound is larger than the given treewidth, we can remove the
ptd of our list. To improve the time to compute the lower bound, we could only consider the
part of the graph that is not covered by the ptd. A very simple lower bound is the second
lowest degree. As in [9], we determine a lower bound by heuristically computing a minor of
G and subsequently trying to increase this very simple lower bound.

5 Further Details of the Algorithm

We implemented several preprocessing methods that reduce the size of the graph before
entering the main loop. More precisely, we implemented the simplicial vertex rule, almost
simplicial vertex rule, buddy rule, and cube rule, all of which can be found in [4]. All
these rules are based on criteria guaranteeing that the complete neighborhood of a vertex
is contained in single bag in any tree decomposition. Completing the neighborhood to a
clique and removing the vertex itself results in a graph with one vertex less such that any
tree decomposition still contains the neighborhood in a single bag. Hence, we can compute
the tree decomposition of the resulting graph and add a bag containing the vertex removed
together with its neighborhood to the tree decomposition and add it at the appropriate
position.

Furthermore, we implemented the heuristic to find safe separators of [14]. A separator
S for G is called safe if the treewidth of G is the maximum of the treewidth of the graphs
G[C ∪ S]⟨S⟩ for the components C of G[V (G) \ S]. Having computed a safe separator, we
can compute tree decompositions independently for each subgraph and connect the trees
at the bags containing the separator. Tamaki’s heuristic tries to construct separators and
use a sufficient criterion of a separator S to be safe proven by Bodlaender and Koster [8],
namely that for each component C of G[V (G) \ S] the graph G[V (G) \ C] has S as a labeled
minor. Furthermore, we implemented an algorithm to find separators that are cliques or
almost cliques as given in [8].

We extend the usage of safe separators as follows: whenever we construct a new ptd, we
test whether its outlet is a safe separator with Tamaki’s heuristic, unless the separator has
already been tested before.

Instead of testing at the end of each iteration whether we have built a ptd covering V (G),
we test this condition for every ptd as it is added to P . If so, we return “YES” immediately.

To avoid trying to add every ptd constructed to every ptdur, we implemented (a slight
variant of) the block sieve as presented in [14]. In this data structure, the ptdurs are sorted
by the size of their root bags. If the size of the outlet of the current ptd plus the size of the
root bag of a ptdur is larger than the current value of k, these sets have to coincide on a
number of vertices. For each size, the ptdurs are stored in tries, which allow to efficiently
iterate over the elements coinciding in a given number of vertices.

6 Experiments

We have compared the performance of our implementation against Tamaki’s on the PACE2017
public instances in the treewidth exact track. The experiments were conducted in the following
environment: Intel Core i5-6600K@3.5GHz CPU, 16GB DDR4 RAM, Windows 10 (64 bit),
Java version jre1.8.0_271, .NET version 4.8. The time measured is the CPU time, which
includes the time for garbage collection.

SEA 2021

9:14 On Tamaki’s Algorithm to Compute Treewidths

For the sake of a fair comparison, we initially enabled only those optimizations that
Tamaki also uses in his implementation, namely the following: (1) the rejection of ptdurs
with non-cliquish root bags, (2) the rejection of ptds whose outlet is not a minimal separator,
(3) the rejection of ptds and ptdurs for whom equivalent ptds or ptdurs have already been
built, (4) accepting only non-incoming ptds, (5) rejecting ptds that are not normalized, and
(6) rejecting ptdurs whose root bag contains k + 1 vertices but is not a pmc. Furthermore,
we used only the safe separators found by Tamaki’s heuristic for this experiment and no
further preprocessing.

We plot the results in Figure 5a. Every dot corresponds to one of the test instances
and its position corresponds to the running times of Tamaki’s and our implementation on
that instance. A point located above the diagonal line indicates that our implementation
is faster. In total, Tamaki’s implementation solves the instances in 46 minutes, 24 seconds,
whereas we solve the instances in 44 minutes, 7 seconds. Although the difference is small,
our implementation beats Tamaki’s on 86 instances. This is mainly due to two instances
that together make up more than half of the total running time of our implementation.
Conversely, the remaining instances are often solved rather quickly.

In Figure 5b, we plot the running time of Tamaki’s implementation against ours with the
additional techniques of Section 4 and the preprocessing discussed in Section 5 enabled. Our
implementation to compute lower bounds is not used as it is not efficient enough. Although
the number of ptds and ptdurs are reduced by 5% and 49%, respectively, the running time
increased by about 36%. The blue dots represent the running times, where all strategies
for ptd and ptdur reduction are enabled, along with the further strategies discussed in
Section 5. The strategy to reject ptdurs whose root bag contains k vertices and cannot be
extended to a ptd and the search for safe separators during the runtime of the algorithm
turned out to be slightly disadvantageous, but only by a small margin. We therefore also
plot in red the running time when they are disabled. The total running time with all and
only the best strategies enabled, respectively, are 14 minutes, 31 seconds and 13 minutes, 8
seconds, outperforming Tamaki’s implementation on 91 and 93 instances, respectively. On
larger instances than the ones tested here, however, the techniques excluded from best could
actually be beneficial.

We have also evaluated the impact of the strategies to reject ptdurs whose root bag has
k vertices and cannot be extended to a pmc and to delay the addition of ptds to P until
ptds covering all of its non-incoming components are found. We counted the numbers of
ptds and ptdurs enumerated1 either until we stop as soon as the first (optimal) solution is
found or until no further ptds and ptdurs with the current width could be found with various
strategies enabled. The later numbers can be interpreted as the size of the search space for
each graph. Since we implemented the algorithm such that it returns immediately when a
tree decomposition is found, the first give the numbers of the actually enumerated objects
which is often far less than that. Our machine ran out of memory while computing the size
of the search space for the instance ex003.gr, so it is not included in the results.

The results are summarized in Table 1. The percentages give the average relative reduction
of the ptds and ptdurs, respectively, compared to when only the other strategies discussed in
this paper are used. Only a small impact can be attributed to the strategy that delays the
addition of a ptd to P until ptds covering all its other non-incoming components are found
(abbreviated as >2 comp.). The strategy to reject ptdurs whose root bag contains k elements

1 Note that we split graphs at safe separators into smaller graphs, so the graphs we use to count them are
actually only subgraphs of the test instances.

E. Althaus, D. Schnurbusch, J. Wüschner, and S. Ziegler 9:15

0.1 1 10 100 1,000
0.1

1

10

100

1,000

our implementation

Ta
m

ak
i’s

im
pl

em
en

ta
tio

n

(a) A comparison, where both implementations use
the same preprocessing and strategies for reducing
combinatorial objects.

0.1 1 10 100 1,000
0.1

1

10

100

1,000

our implementation

Ta
m

ak
i’s

im
pl

em
en

ta
tio

n

(b) A comparison, where our implementation uses
all preprocessing discussed in Section 5 and all
(blue) and only the best (red) strategies for reducing
the amount of combinatorial objects.

Figure 5 A comparison of running times in seconds between Tamaki’s and our implementation.
Every dot represents one instance.

Table 1 The average relative reduction of ptd’s and ptdur’s when the newly developed strategies
for reducing their numbers are employed. A dash signals that that strategy is not able to reduce the
number of the respective objects by its conception.

until first solution found until all ptd(ur)s are enumerated
average relative reduction... pmc k >2 comp. all pmc k >2 comp. all
... of ptds – 4.61% 4.61% – 0.08% 0.08%
... of ptdurs 34.78% 2.52% 37.29% 44.74% 0.06% 44.78%

but cannot be extended to a pmc (abbreviated as pmc k), however, has a huge impact on
the number of ptdurs enumerated. Unfortunately, as mentioned above, determining if any
candidate vertices can extend such a bag to pmc takes a comparatively long time, which has
a slightly negative impact on the total running time over all instances.

Finally, we tried to solve all DIMACS graph coloring instances. For each instance we
set a time limit of 30min. Table 2 in the appendix gives a summary of our finding. For
our implementation and the one by Tamaki, we give the running time and the lower bound
obtained after the time limit.

7 Conclusion

We gave a description of Tamaki’s algorithm to compute the treewidth of a graph that
is considerably more accessible than the original formulation. This is archived by the
interpretation of the enumerated structures as partial tree decompositions and partial tree
decompositions with unfinished root. Furthermore, seeing this interpretation allows us to
remove some of the structures from the enumeration. This results in an algorithm that is
more efficient in practice.

In future work, we want to derive and implement further techniques to reduce the
number of enumerated partial tree decompositions, including better or faster lower bounds.
Furthermore, we plan to extend the usage of techniques known for preprocessing within the
construction phase.

SEA 2021

9:16 On Tamaki’s Algorithm to Compute Treewidths

References
1 Ernst Althaus and Sarah Ziegler. Optimal tree decompositions revisited: A simpler linear-time

FPT algorithm. CoRR, abs/1912.09144, 2019. arXiv:1912.09144.
2 Ernst Althaus and Sarah Ziegler. Optimal tree decompositions revisited: A simpler linear-time

fpt algorithm. In: Gentile, C., Stecca, G., Ventura, P. (eds) Graphs and Combinatorial
Optimization: from Theory to Applications (CTW2020 Proceedings), 2020. AIRO Springer
Series, vol 5. Springer, 2021.

3 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM JOURNAL OF DISCRETE MATHEMATICS, 8(2):277–284,
1987.

4 Hans Bodlaender, Arie Koster, Frank Eijkhof, and Linda C. Gaag. Pre-processing for triangu-
lation of probabilistic networks, April 2002.

5 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

6 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016. doi:10.1137/130947374.

7 Hans L. Bodlaender and Arie M. C. A. Koster. Safe separators for treewidth. Discret. Math.,
306(3):337–350, 2006. doi:10.1016/j.disc.2005.12.017.

8 Hans L. Bodlaender and Arie M. C. A. Koster. Safe separators for treewidth. Discrete Math.,
306(3):337–350, 2006.

9 Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations II. lower bounds. Inf.
Comput., 209(7):1103–1119, 2011. doi:10.1016/j.ic.2011.04.003.

10 Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput., 31:212–232, 2001.

11 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

12 Michael Hamann and Ben Strasser. Graph bisection with pareto optimization. ACM J. Exp.
Algorithmics, 23, 2018. doi:10.1145/3173045.

13 Neil Robertson and P.D Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal
of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

14 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. In Kirk Pruhs
and Christian Sohler, editors, 25th Annual European Symposium on Algorithms, ESA 2017,
September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 68:1–68:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.68.

15 Hisao Tamaki. A heuristic use of dynamic programming to upperbound treewidth. CoRR,
abs/1909.07647, 2019. arXiv:1909.07647.

16 Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, September 2000.

http://arxiv.org/abs/1912.09144
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/130947374
https://doi.org/10.1016/j.disc.2005.12.017
https://doi.org/10.1016/j.ic.2011.04.003
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3173045
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.4230/LIPIcs.ESA.2017.68
http://arxiv.org/abs/1909.07647

E. Althaus, D. Schnurbusch, J. Wüschner, and S. Ziegler 9:17

A Appendix

X

X

X X

(a) A part of T : the root node of T ′ with
the bag X, its children, and its parent.

(b) Case O = X of Lemma 15. Shown are vertices of G
and their membership of the bags depicted in Figure a.

v u

(c) Case 1 of Lemma 15. Assuming
that u does not lie in N [v], ...

v u

(d) ... one can replace the node
associated with X by nodes asso-
ciated with the bags depicted here
as dotted circles, ...

X

X \ {v}

N [v] X X

(e) ... thus, the part of T
shown in Figure (a) can be re-
placed by the one shown here.

v u

(f) Case 2 of Lemma 15. Assum-
ing that both u and v have different
neighbors that are not covered in T ′s
children, ...

v u

(g) ... one can replace the node as-
sociated with X by nodes associated
with the bags depicted here as dot-
ted circles, ...

X

X \ {v}

Y

X X

MMM

(h) ... thus the part of T
shown in Figure (a) can be
replaced by the one shown
here.

Figure 6 Illustration of the proof of Lemma 15. Figure 6a shows the part of T induced by X

and its adjacent bags, that is, its children (if any) and possibly a parent. The Figures 6b, 6c and 6f
show the vertices of G that are covered by the bags in Figure 6 in three different cases. Each bag of
the tree decomposition is represented by a circle of the corresponding color and contains all of the
vertices within it. Edges are only shown where they are necessary for the argument.

SEA 2021

9:18 On Tamaki’s Algorithm to Compute Treewidths

Table 2 The running time in seconds and the lower bound on the treewidth for our implementation
and the one of Tamaki with a time limit of 30min. It should be noted that a slower computer was
used for this comparison than for the calculations before.

Our impl. Tamaki
Name tw time tw time
anna 12 0,079 12 0,286
david 13 0,044 13 0,234
DSJC1000.1 >0 1800 >187 1800
DSJC1000.5 >0 1800 >739 1800
DSJC1000.9 >0 1800 >986 1800
DSJC125.1 >34 1800 >35 1800
DSJC125.5 >107 1800 108 829,5
DSJC125.9 119 2,137 119 0,069
DSJC250.1 >62 1800 >65 1800
DSJC250.5 >205 1800 >210 1800
DSJC250.9 243 30,26 243 0,993
DSJC500.1 >106 1800 >113 1800
DSJC500.5 >369 1800 >384 1800
DSJC500.9 492 718,7 492 27,05
DSJR500.1 >22 1800 >23 1800
DSJR500.1c 485 319,3 485 5,176
DSJR500.5 >225 1800 246 1187
flat1000_50 >0 1800 >733 1800
flat1000_60 >0 1800 >734 1800
flat1000_76 >0 1800 >735 1800
flat300_20 >228 1800 >244 1800
flat300_26 >230 1800 >246 1800
flat300_28 >230 1800 >246 1800
fpsol2.i.1 66 16,28 66 1256
fpsol2.i.2 31 32,51 >0 1800
fpsol2.i.3 31 31,68 >0 1800
games120 >27 1800 >28 1800
homer 30 1189 >27 1566
huck 10 0,002 10 0,027
inithx.i.1 56 65,80 >0 1800
inithx.i.2 >31 1800 >0 1800
inithx.i.3 31 1751 >0 1800
jean 9 0,002 9 0,008
le450_15a >73 1800 >45 1052
le450_15b >75 1800 >44 958,5
le450_15c >122 1800 >130 1800
le450_15d >121 1800 >129 1800
le450_25a >76 1800 >23 581,6
le450_25b >75 1800 >28 709,3
le450_25c >112 1800 >105 1800

Our implementation Tamaki
Name tw time tw time
le450_25d >112 1800 >109 1800
le450_5a >62 1800 >58 1800
le450_5b >63 1800 >59 1800
le450_5c >94 1800 >98 1800
le450_5d >93 1800 >97 1800
miles1000 49 1,274 49 0,496
miles1500 77 3,606 77 0,870
miles250 9 0,012 9 0,023
miles500 22 0,467 22 0,149
miles750 36 1,885 36 0,348
mulsol.i.1 50 0,531 50 159,8
mulsol.i.2 32 64,28 32 1424
mulsol.i.3 32 65,80 32 1480
mulsol.i.4 32 67,16 32 1494
mulsol.i.5 31 67,97 31 1572
myciel2 2 0,001 2 0,001
myciel3 5 0,002 5 0,002
myciel4 >0 1800 10 0,004
myciel5 19 23,71 19 0,621
myciel6 >25 1800 >34 1800
myciel7 >42 1616 >33 1213
queen10_10 >66 1800 >68 1800
queen11_11 >73 1800 >76 1800
queen12_12 >80 1800 >83 1800
queen13_13 >86 1800 >90 1800
queen14_14 >92 1800 >97 1800
queen15_15 >98 1800 >103 1800
queen16_16 >104 1800 >105 1800
queen5_5 18 0,054 18 0,007
queen6_6 25 0,103 25 0,024
queen7_7 35 1,550 35 0,484
queen8_12 >63 1800 65 1613
queen8_8 45 18,04 45 9,145
queen9_9 58 1369 58 651,2
school1 >123 1800 >122 1800
school1_nsh >112 1800 >108 1800
zeroin.i.1 50 8,668 50 39,48
zeroin.i.2 32 1,635 32 185,4
zeroin.i.3 32 1,634 32 186,9

Practical Implementation of Encoding Range
Top-2 Queries
Seungbum Jo !

Chungbuk National University, Cheongju, South Korea

Wooyoung Park !

Seoul National University, South Korea

Srinivasa Rao Satti !

Norwegian University of Science and Technology, Trondheim, Norway

Abstract
We design a practical variant of an encoding for range Top-2 queries (RT2Q), and evaluate its
performance. Given an array A[1, n] of n elements from a total order, the range Top-2 encoding
problem is to construct a data structure that can answer RT2Q queries, which return the positions of
the first and the second largest elements within a given query range of A, without accessing the array
A at query time. Davoodi et al. [Phil. Trans. Royal Soc. A, 2016] proposed a (3.272n + o(n))-bit
encoding, which answers RT2Q queries in O(1) time, while Gawrychowski and Nicholson [ICALP,
2015] gave an optimal (2.755n + (n))-bit encoding which doesn’t support efficient queries. In this
paper, we propose the first practical implementation of the encoding data structure for answering
RT2Q. Our implementation is based on an alternative representation of Davoodi et al.’s data
structure. The experimental results show that our implementation is efficient in practice, and gives
improved time-space trade-offs compared to the indexing data structures (which keep the original
array A as part of the data structure) for range maximum queries.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Range top-2 query, Range minimum query, Cartesian tree, Succinct encoding

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.10

Supplementary Material Software (Source Code): https://github.com/wyptcs/R2MQ
archived at swh:1:dir:684698b8ae0bcc6ada509f22f8ff743411de26d9

Funding Seungbum Jo was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2020R1G1A1101477).

1 Introduction

Given an array A[1, n] of n elements from a total order, the range maximum query on A[i, j]
(denoted by RMQ(i, j)) returns the position of the largest element in A[i, j]. We assume that
all elements in A are distinct (if there are equal elements, we can break the ties according to
their positions, i.e., the leftmost one is considered as the largest value among them). The
problem of constructing space and/or time-efficient data structures for answering RMQ is
one of the fundamental problems in data structures, and has been extensively studied both
theoretically and practically [2, 8, 9].

In general, the data structures for answering specific queries can be categorized into
two types: (i) indexing data structures, and (ii) encoding data structures. In indexing data
structures, one can access the input array A at query time, while it is not allowed in encoding
data structures. For many problems including RMQ problem, the minimum size for an
encoding data structure (referred to as effective entropy [17]) is much less than the input
size – for example, the effective entropy for answering RMQ on A is 2n − o(n) bits [9],
whereas storing A requires at least n log n bits1, if all the elements in A are distinct. Thus,

1 throughout the paper, we use log to denote the logarithm to the base 2

© Seungbum Jo, Wooyoung Park, and Srinivasa Rao Satti;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 10; pp. 10:1–10:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sbjo@chungbuk.ac.kr
mailto:wypark2510@gmail.com
mailto:srinivasa.r.satti@ntnu.no
https://doi.org/10.4230/LIPIcs.SEA.2021.10
https://github.com/wyptcs/R2MQ
https://archive.softwareheritage.org/swh:1:dir:684698b8ae0bcc6ada509f22f8ff743411de26d9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Practical Implementation of Encoding Range Top-2 Queries

encoding data structures can be highly space-efficient in some cases compared to their
indexing counterparts. Recent results [2, 8] show that encoding data structures for RMQ
perform well both in theory and in practice.

In this paper, we consider the problem of answering range Top-2 queries, which extends
the RMQ problem. The range Top-2 query on A[i, j] (denoted by RT2Q) returns the positions
of the largest and the second largest elements in A[i, j]. If k = RMQ(i, j), one can easily
observe that the position of the second largest element in A[i, j] is one of k1 = RMQ(i, k− 1)
or k2 = RMQ(k+1, j). Thus, any indexing data structure for answering RMQ also can answer
RT2Q by comparing A[k1] and A[k2]. Davoodi et al. [4] proposed the first encoding data
structure for answering RT2Q in O(1) time using 3.272n + o(n) bits, which is close to the
effective entropy of 2.755n−Θ(polylog(n)) bits [11] for RT2Q. However, their encoding is not
very practical since it represents the Cartesian tree [20] of A succinctly using the tree-covering
approach of Farzan and Munro [7], which is hard to implement (compared to other succinct
tree representations [1]). In this paper, we give the first practical implementation of an
encoding for RT2Q. Our implementation is based on the data structure of Davoodi et al. [4],
but instead of using the tree-covering approach, we use the DFUDS representation [3] of
2d-max heap [9] which is easier to implement, and works well in practice. Our implementation
supports RT2Q in log n · g(n) time, for any increasing function g(n) = ω(1), using at most
3.5n + o(n) bits. The experimental results show that our data structure gives a better
space-time trade-off, compared to the indexing data structures for RT2Q (that have access to
the input array A, along with an auxiliary data structure for answering the RMQ queries).2

2 Preliminaries

2.1 Range Maximum Queries and Cartesian Trees
Given an array A[1, n] of size n, the Cartesian tree [20] of A, denoted by C(A), is a binary
tree where (i) the root node of C(A) corresponds to A[i] where i = RMQ(1, n), and (ii) the
left and right subtrees of C(A) are the Cartesian trees of A[1, i−1] and A[i+1, n] respectively.
From the definition, the i-th node in the inorder traversal of C(A) corresponds to the i-th
position of A (see Figure 1 (a) for an example). In the rest of this paper, we refer to the
nodes in the Cartesian tree by their inorder numbers (i.e., their corresponding positions in
the array A). Also, one can convert the RMQ problem on A into the LCA (lowest common
ancestor) problem on C(A) [10]. More precisely, for any i, j ∈ [1, n], RMQ(i, j) is the same as
LCA(i, j), which is the LCA of the node i and j in C(A). This implies that one can support
RMQ on A by storing C(A) instead if A (thus this gives an encoding for answering RMQ on
A). All the existing encoding data structures for answering RMQ use a Cartesian tree or its
variants.

2.2 Davoodi et al.’s encoding data structure for RT2Q
We introduce the (3.272n + o(n))-bit data structure of Davoodi et al. [4], which answers
RT2Q in O(1) time on an array A[1, n] of size n. Their data structure answers the RT2Q(i, j)
query by performing the following three steps:
1. Compute and return the position k = RMQ(i, j).
2. Compute k1 = RMQ(i, k − 1) and k2 = RMQ(k + 1, j).
3. Compare A[k1] and A[k2], and return k1 if A[k1] > A[k2], or k2 otherwise.

2 our implementation is available at https://github.com/wyptcs/R2MQ.

https://github.com/wyptcs/R2MQ

S. Jo, W. Park, and S. R. Satti 10:3

A[1,12] = 2 10 3 0 11 1 8 6 7 9 4 5

A[5] = 11

A[1] = 2
A[3] = 3

A[2] = 10
A[10] = 9

A[9] = 7

A[7] = 8

A[6] = 1

A[8] = 6

A[4] = 0

A[11] = 4

A[12] = 5
A[1] = 2

A[2] = 10

A[5] = 11

A[3] = 3

A[10] = 9

A[9] = 7

A[7] = 8A[6] = 1

A[8] = 6
A[4] = 0

A[11] = 4 A[12] = 5

A[0] = ∞

S1, S3, S4, S6, S8, S9, S11, S12 = ϵS2 = 1 S5 = 0 1 1 0 1 S7 = 1 1 S10 = 0 0 1

S = 1 0 1 1 0 1 1 1 0 0 1

(a) C(A) (b) 2dmax(A)

D(2dmax(A)) = (((()) () ()) ((()) (())) (()))

Figure 1 Example of (a) C(A) and (b) 2dmax(A) of the array A[1, 12]. Red and blue colored
nodes are the nodes in linspine(5) and rinspine(5) of C(A) respectively.

For answering k = RMQ(i, j), they maintain the tree-covering [7] representation of C(A)
to support LCA queries in O(1) time, using 2n + o(n) bits. Next, to compare A[k1] and
A[k2] without storing A, they store the spine sequence S of A defined as follows. For
any node i which has left child il and right child ir, let left spine (resp., right spine)
of i, denoted by lspine(i) (resp., rspine(i)), be the path from the node i to the leftmost
(resp., rightmost) descendant of i. Also, let left inner spine (resp., right inner spine) of
i, denoted by linspine(i) (resp., rinspine(i)), be the rspine(il) (resp., lspine(ir)), and define
Li, Ri, li, and ri to be a number of nodes in lspine(i), rspine(i), linspine(i), and rinspine(i)
respectively. Then by the property of C(A), the nodes k1 and k2 in C(A) are always on
linspine(k) and rinspine(k), respectively. Now we define the array Sk[1, mk] to be a bit array
of size mk = max (lk + rk − 1, 0) where Sk[i] = 0 if the i-th largest element of A among
the positions corresponding to linspine(k) ∪ rinspine(k) is in linspine(k), and 1 otherwise.
Let depth(k) be the depth of the node k, and for any given pattern b and sequence S, let
rankb(S, i) be the number of occurrences of b in the first i positions of S, and selectb(S, i) be
the position of i-th occurrence of b in S. Then one can compare A[k1] and A[k2] by comparing
select0(Sk, depth(k1)− (depth(k) + 1) + 1) and select1(Sk, depth(k2)− (depth(k) + 1) + 1) (i.e.,
by checking which of the two bits corresponding to the nodes k1 and k2 come first in Sk).
The sequence S is simply defined by concatenating all Sk’s for all nodes k ∈ C(A) in the
increasing order of their inorder numbers. Finally, to locate the starting position of Sk in S

efficiently, they introduce the following lemma.

▶ Lemma 1 ([4]). For any u ∈ C(A),∑
j<u

mj = 2u− Lτ − lu + Ldepth(u)− Rdepth(u) + 1− (u− Lleaves(u))

In the above lemma, τ denotes the root of C(A). Also, for any node u ∈ C(A), Ldepth(u)
(resp., Rdepth(u)) denotes the number of nodes which have their left (resp., right) child, in
the path from τ to u. Finally, Lleaves(u) denotes the number of leaf nodes v ∈ C(A) which
satisfies v < u.

Davoodi et al. [4] showed that all the operations used in the lemma can be computed in
O(1) time using the tree covering representation of C(A) along with some auxiliary data
structures. Furthermore, they showed that the size of S is at most 1.5n, which implies that

SEA 2021

10:4 Practical Implementation of Encoding Range Top-2 Queries

there exists the data structure for answering RT2Q in O(1) time using at most 3.5n + o(n)
bits. With further optimization, they improved the space usage to 3.272n + o(n) bits while
still supporting RT2Q in O(1) time.

▶ Example 2. We show how to answer the RT2Q(3, 9) on the array A[1, 12] in Figure 1 using
C(A) with the spine sequence S of A. First, we compute and return RMQ(3, 9) = LCA(3, 9) =
5. Next, to compare A[3] and A[7] (note that RMQ(3, 4) = 3 and RMQ(6, 9) = 7), we first
locate the starting position of S5 in S by

∑
j<5 mj = 2 · 5− 3− 3 + 0− 0 + 1− (5− 2) = 2.

Since depth(5) = 0, depth(3) = depth(7) = 2 and select0(S5, 2) > select1(S5, 2), we return 7
as the position of the second largest element in A[3, 9].

3 A Practical Implementation

Davoodi et al.’s data structure [4] in the previous section uses the tree-covering method for
encoding C(A), which is not practical compared to other succinct tree representations such
as BP (balanced parenthesis) [13] and DFUDS (depth-first unary degree sequence) [3]. In
this section, we describe a practical implementation of Davoodi et al.’s data structure for
answering RT2Q on A[1, n], which uses the DFUDS representation of the 2d-max heap of
A [9]. We first describe the general definition of DFUDS and 2d-max heap, and show how to
convert Davoodi et al.’s data structure using these tools.

3.1 DFUDS and 2d-max heap
Given an ordinal tree T with n nodes, DFUDS of T (denoted by D(T)) is a balanced
parenthesis sequence of size 2n defined as follows. (i) if n = 1, D(T) is (). (ii) Otherwise,
if T has k subtrees T1, T2, . . . , Tk, D(T) is (k+1) followed by d(T1), d(T2), . . . , d(Tk), where
d(Ti) is D(Ti) with the first open parenthesis removed (see Figure 1 for an example). Since
D(T)[1, 2n] is a balanced parenthesis sequence, one can define two operations findopen(i) /
findclose(i) which find the matching open / closed parenthesis of the closed / open parenthesis
in D(T)[i]. It is known that by storing a o(n)-bit auxiliary structure along with D(T), one
can support rank, select, findopen and findclose operations in O(1) time. This in turn enables
us to represent T to support a comprehensive list of navigation queries on T in O(1) time
using 2n + o(n) bits [16] (see Table 2 in [1] for the list of operations).

One of the main reasons for using the tree-covering based approach for representing C(A)
in Davoodi’s et al.’s structure, is to find the i-th node in the inorder traversal of C(A) (let
this operation be inorder(i)). To our best knowledge, one cannot support this operation on
the BP or DFUDS of C(A) (note that LCA can be supported in O(1) time on both BP and
DFUDS [1]). Sadakane [19] showed that (i) if the difference between any two consecutive
values in A is ±1, then one can answer RMQ on A (we refer the such query as ±1RMQ) in
O(1) time using 2n + o(n) bits, and (ii) for general A, one can support both inorder and LCA
operations on D(C(A)) (thus, RMQ on A) in O(1) time using 4n + o(n) bits, by converting
C(A) into a ternary tree by adding a dummy leaf to each node in C(A).

Fischer and Heun [9] proposed the 2d-max heap to support RMQ without the need for
the inorder operation. The 2d-max heap on A (denoted by 2dmax(A)) is an alternative
representation of C(A), defined as follows. 2dmax(A) is an ordered tree with n + 1 nodes,
where for 1 ≤ i ≤ n,
1. The i-th node in the preorder traversal of 2dmax(A) corresponds to A[i− 1] (we assume

that A[0] =∞). In the rest of this paper, we refer to this node as node (i−1) ∈ 2dmax(A).
Therefore, the root of 2dmax(A) is 0.

2. For any non-root node i ∈ 2dmax(A), the parent of i is the node j where j is the rightmost
position in A[0, i− 1] such that A[i] < A[j].

S. Jo, W. Park, and S. R. Satti 10:5

The above definition implies that for 1 ≤ i ≤ n, the node i ∈ C(A) and the node i ∈ 2dmax(A)
both correspond to the position i in A. The example of Figure 1 (a) and (b) shows the C(A)
and 2dmax(A) of input array A respectively. Fischer and Heun also showed that RMQ(i, j)
operation can be supported in O(1) time by using D(2dmax(A)) along with o(n)-bit auxiliary
structures for supporting rank, select, findopen, and ±1RMQ queries on D(2dmax(A)) – using
2n + o(n) bits in total.

3.2 Practical implementation of encoding RT2Q
In this section, we propose an alternative implementation of the data structure of [4] on
A using D(2dmax(A)). Since one can support RMQ using D(2dmax(A)) [9], it is enough
to show how to find the position of the second largest element in A[i, j]. One can observe
that, for any node k in C(A), the nodes on the linspine(k) in C(A) are the same as the
nodes on the right spine of the previous sibling of k ∈ 2dmax(A). (The left/right spine
of a node i ∈ 2dmax(A) is defined as the path from node i to the leftmost/rightmost
descendant of i.) Also the nodes on rinspine(k) in C(A) are the same as the children of
k ∈ 2dmax(A). We define the spine sequence S of A, analogous to the same sequence in [4]
(that is, concatenating all the Sk’s for each non-root node k ∈ 2dmax(A) according to their
preorder value in 2dmax(A)). Then we can answer RT2Q(i, j) using the following procedure:
1. Compute and return the position k = RMQ(i, j).
2. Compute k1 = RMQ(i, k − 1) and k2 = RMQ(k + 1, j).
3. Compute two nodes kl = presibling(k) and kr = childrank(k2) in 2dmax(A) where

presibling(k) denotes the previous sibling of k, and childrank(k2) denotes the number
of left siblings of k2.

4. Locate the starting position of Sk in S, and return k1 if select0(Sk, depth(k1)−depth(kl)+
1) < select1(Sk, kr), or k2 otherwise.

Note that the operations used in the above procedure (RMQ, presibling, childrank, and depth)
can be supported in O(1) time using D(2dmax(A)) with o(n)-bit auxiliary structures [14].
Also, to locate the position of Sk in S, we need to compute

∑
1≤j<k mj (recall that mj = |Sj |).

The following lemma shows that we can compute each of the terms in Lemma 1 (therefore,∑
1≤j<k mj) using 2dmax(A).

▶ Lemma 3. Given an array A[1, n] of size n where all elements in A are distinct, the
following properties hold for any node k in the Cartesian tree, C(A), of A.
1. lk (number of nodes in linspine(k)) is equal to the number of nodes in rspine(kl) in

2dmax(A), where kl = presibling(k).
2. Ldepth(k) is equal to the number of right siblings of all the nodes on the path from node

k to the root in 2dmax(A).
3. Rdepth(k) = dk − 1, where dk is the depth of k ∈ 2dmax(A).
4. Lleaves(k) is equal the number of leftmost children u < k which are also leaves in

2dmax(A).

Proof.
1. Let i0 < k be the rightmost position of A which satisfies RMQ(i0, k) ̸= k. Then by the

definition of C(A), linspine(k) is composed of the nodes {i1, i2, . . . , ilk
} of C(A) where

ij = RMQ(ij−1+1, k−1). Thus, if lk > 0, the node k in 2dmax(A) always has the previous
sibling kl (otherwise, k has no left child in C(A), which implies lk = 0). Furthermore,
since k − 1 is the rightmost leaf of the subtree of 2dmax(A) rooted at kl, all the nodes
i1, i2, . . . , ilk

are on the rspine(kl) in 2dmax(A).

SEA 2021

10:6 Practical Implementation of Encoding Range Top-2 Queries

2. Let Lpath(k) be the set of nodes in C(A) which have their left child in the path from k to
the root (hence, |Lpath(k)|= Ldepth(k)). Now suppose Lpath(k) = {i1, i2, . . . , iLdepth(k)}
where i1 < i2 < · · · < iLdepth(k). Then for any j ∈ {1, 2, . . . , Ldepth(k)}, (i) ij > k, and
(ii) RMQ(k, ij) = ij . Therefore, for the node k ∈ 2dmax(A), Lpath(k) is the same as the
set of nodes in 2dmax(A) which are the right siblings of the nodes on the path from the
node k to the root.

3. Similar to the case of Ldepth(k), let Rpath(k) be the set of nodes in C(A) which have their
right child in the path from k to the root (hence, |Rpath(k)|= Rdepth(k)). Then Rpath(k)
consists all the nodes ij in C(A) which satisfy: (i) ij < k, and (ii) RMQ(ij , k) = ij . Thus
by the definition of 2dmax(A), Rpath(k) is the same as the set of proper ancestors of k

in 2dmax(A).
4. Note that a node in C(A) is a leaf if and only if its corresponding node in 2dmax(A) is a

leftmost child which is also a leaf. Thus, set of all leaf nodes in C(A) are the same as the
set of all leftmost children u < k which are also leaves in 2dmax(A). ◀

Now we describe how to compute each value in Lemma 1 using D(2dmax(A)) with
Lemma 3.
1. Lτ : The node τ = RMQ(1, n) is the rightmost child of the node 0 (the root of 2dmax(A)).

Also all the nodes of lspine(τ) in C(A) are on the left siblings of τ in 2dmax(A). Thus
this value can be computed in O(1) time by degree(0) (note that degree can be computed
in O(1) time using D(2dmax(A)) with o(n)-bit auxiliary structures [1]).

2. lk: By Lemma 3, linspine(k) of C(A) are the same as the rspine(kl) of 2dmax(A). Since
the rightmost leaf of kl is k − 1, This can be computed in O(1) time by depth(k − 1)−
depth(kl) + 1.

3. Ldepth(k): For k ∈ 2dmax(A), let L(k) be the number right siblings of the nodes on the
path from the node k to the root in 2dmax(A). Now we describe how to compute L(k)
using D(2dmax(A)). Let d be a depth of 2dmax(A), and suppose f(n) = log n · g(n)
where g(n) is any increasing function which satisfies g(n) = ω(1). Then we fix the value
0 ≤ i < f(n), and define the array E which stores all the values of L(k) for every node
k ∈ 2dmax(A) whose depth is i + j · f(n), for all 0 ≤ j ≤ ⌊(d− i)/f(n)⌋. The values
in E are stored according to the preorder number of corresponding nodes in 2dmax(A).
By a simple counting argument, we can choose i to satisfy |E|≤ n/f(n). Thus, at most
n/f(n) · log n = o(n) bits of space are necessary to store E. In addition to that, we
maintain the bit array B[1, n] of size n where for 1 ≤ i ≤ n, B[i] = 1 if and only if the
L(i) is stored in E. Using the data structure of Raman et al. [18], we can store B using
log

(
n

f(n)
)

+ o(n) = o(n) bits while supporting rank queries in O(1) time (we can also
access any position of B in O(1) time by two rank queries). To answer L(k), we initialize
the counter c = 0, and start the scanning nodes on Lpath(k) starting from the node k.
During this scan, when we are at node j, we first check B[j]. If B[j] = 0, we increase c to
be c + r where r = degree(parent(j))− childrank(j) (note that parent can be computed in
O(1) time using D(2dmax(A)) [1]), and move to the parent of j. If B[j] = 1, we return
L(k) = c + rank1(B, j). Thus, using D(2dmax(A)) with o(n)-bit auxiliary structures, we
can answer L(k) in O(f(n)) time.

4. Rdepth(k): By Lemma 3, this is the same as the number of proper ancestors of k in
2dmax(A), which can be computed O(1) time by depth(k)− 1.

5. Lleaves(k): By Lemma 3, this is the same as the number of leftmost children u < k which
are also leaves in 2dmax(A). This value can be computed by counting the number of
occurrences of the pattern ’())’ before the closing parenthesis corresponding to node k in
O(1) time using D(2dmax(A)) with o(n)-bit auxiliary data structures [15].

S. Jo, W. Park, and S. R. Satti 10:7

A[5] = 11

A[1] = 2
A[3] = 3

A[2] = 10
A[10] = 9

A[9] = 7

A[7] = 8

A[6] = 1

A[8] = 6

A[4] = 0
A[11] = 4

A[12] = 5

(a) C(A)
(b) r2dmax(A)

A[1] = 2

A[2] = 10

A[5] = 11

A[3] = 3

A[10] = 9

A[9] = 7A[7] = 8

A[6] = 1 A[8] = 6

A[4] = 0 A[11] = 4

A[12] = 5

A[0] = ∞

Figure 2 r2dmax(A) of the array in Figure 1. Red and Blue colored nodes correspond to the
nodes in C(A) in Figure 1 with the same colors.

▶ Example 4. We show how to locate the starting position of S5 in S using the 2dmax(A) in
Figure 1 (b). From node 5 ∈ 2dmax(A) in the figure, one can observe that 5l = 2, L(5) = 0,
and select)(D(2dmax(A)), 5) + 1 = 12. Also degree(0) = 3, depth(4) − depth(2) + 1 = 3,
depth(5)− 1 = 0, and rank())(D(2dmax(A)), 12) = 2. Thus, the starting position of S5 in S

is
∑

j<5 mj = 2 · 5− 3− 3 + 0− 0 + 1− (5− 2) = 2.

We summarize the result in the following theorem.

▶ Theorem 5. Given an array A[1, n] of size n, RT2Q on A can be computed in O(log n·g(n))
time, for any increasing function g(n) = ω(1). The data structure uses at most 1.5n + o(n)
additional bits, along with the DFUDS sequence of the 2d-max heap of A, D(2dmax(A)).

Alternative representation of 2dmax(A). In practice, the performance of the data
structure of Theorem 5 highly depends on the depth of 2dmax(A). To reduce the depth
of 2dmax(A), Ferrada and Navarro [8] considered rightmost-path 2dmax(A) (denoted as
r2dmax(A)), which can be obtained from C(A) by applying τ1 (first-child, next-sibling)
transformation [5]. Note that the original 2dmax(A) can be obtained from C(A) by applying
τ4 (previous-sibling, last-child) transformation [5]. One can observe that i-th position of A

corresponds to the node in r2dmax(A) whose postorder number is i. (See Figure 2 for an
example.) For example, if A is strictly decreasing array from 1 to n, the depths of 2dmax(A)
and r2dmax(A) are n and 1, respectively. Ferrada and Navarro [8] showed that one can
answer RMQ queries on A as using r2dmax(A) with o(n)-bit auxiliary structures, which are
different from the structures used for answering the same query using 2dmax(A). Baumstark
et al. [2] showed that r2dmax(A) is isomorphic to 2dmax(←−A), where ←−A is an array of size n

constructed by reversing the all elements of A. Thus, one can simulate the RMQ(i, j) on A

using r2dmax(A) by answering RMQ(n + 1− j, n + 1− i) on ←−A using 2dmax(←−A) (note that
in this case, one breaks the ties with rightmost policy when constructing 2dmax(←−A), i.e.,
among all the equal elements in a range, the rightmost element is considered as the largest).

To implement the data structure of Theorem 5, we first check the depth of 2dmax(A)
and 2dmax(←−A) at pre-processing step, and maintain the one with smaller depth (along with
the auxiliary structures).

SEA 2021

10:8 Practical Implementation of Encoding Range Top-2 Queries

0 10 20 30 40
Depth

0.0

0.2

0.4

0.6

0.8

1.0
Nu

m
be

r o
f n

od
es

(x
10

7)

(a)

0 10 20 30 40
Depth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f n
od

es
(x

10
7)

10
100
10000

(b)

Figure 3 (a) The distribution of the depth of nodes in 2dmax(A). (b) The distribution of the
depth of the nodes in 2dmax(A) which correspond to the RMQ of A.

4 Experimental results

Our data structure is implemented in C++ (compiled by g++ 9.3.0 with O3 optimization),
and all the experiments were done on the Desktop PC (Intel i7-9900KS CPU with 128GB of
RAM). We use the input array A[1, n] which stores 32-bit unsigned integers. We consider
three different types of input arrays: (a) random, (b) pseudo-increasing, and (c) pseudo-
decreasing, where each A[i] is randomly generated from the range (a) [1, n], (b) [i− δ, i + δ],
and (c) [n − i − δ, n − i + δ], respectively for given parameter δ > 0. We compare the
space usage (bits per element) and query time (µs) of our encoding structure (referred to as
R2MQ-ENCODING) with the following four indexing data structures for answering RT2Q: (i)
A + RMQ encoding of Fisher and Heun [9] (FH-DFUDS), (ii) A + RMQ encoding of Ferrada
and Navarro [8] (FN-BP), (iii) A + RMQ encoding of BaumStark et al. [8] (BGHL-BP), and
(iv) A + Fischer and Huen’s indexing data structure for RMQ queries [9] (FH-INDEXING).
Note that the encoding of (i) uses D(2dmax(A)), and both the encoding of (ii) and (iii) use
the BP of 2dmax(A). For (i) and (ii), we use the implementation of Ferrada and Navarro [8]3,
and for (iii), we use the implementation of BaumStark et al. [8]4. Finally for (iv), we use our
own implementation.

To support RMQ on A, and navigation queries on 2dmax(A) except depth, we use sdsl-
lite [12] to support rank, select, findopen, findclose (for presibling operation), and ±1RMQ
on D(2dmax(A)). Note that for findopen, findclose and ±1RMQ, we use a simplified RMM-
tree [16] which maintains only the min field for these queries. For computing depth(k) queries,
we use the same data structure for computing L(k). More precisely, if L(k) is stored in E,
we also store depth(k) in a separate array E′ at the same position (thus, the same bit array
B can be used for L(k) and depth(k)). For computing depth(k), we perform the parent query
iteratively until we find the node whose depth is stored in E′. Note that we do not keep any
additional data structures for both depth and L(K) queries if the depth of the tree is less
than ⌈log n⌉.

3 the codes are available https://github.com/hferrada/rmqFischerDFUDS and https://github.com/
hferrada/rmq.

4 the code is available at https://github.com/kittobi1992/rmq-experiments

https://github.com/hferrada/rmqFischerDFUDS
https://github.com/hferrada/rmq
https://github.com/hferrada/rmq
https://github.com/kittobi1992/rmq-experiments

S. Jo, W. Park, and S. R. Satti 10:9

0 0.2n 0.4n 0.6n 0.8n n
Maximum allowed size for E and E' (bits)

4

6

8

10

12

Qu
er

y
tim

e
(m

s)

GA 1, query range : 10
GA 1, query range : 102

GA 1, query range : 104

GA 1, query range : 106

GA 2, query range : 10
GA 2, query range : 102

GA 2, query range : 104

GA 2, query range : 106

Figure 4 Query time based on the allotted space for E and E′.

Since the overhead for depth and L(k) is the main drawback of our implementation, we
do an empirical evaluation to decide the sizes of E and E′. When A is a randomly generated
array of size 108, the depth of 2dmax(A) is less than 50 in most cases (in theory, the expected
depth of C(A) for a random array A is about Θ(log n), and the depth of 2dmax(A) is at
most the depth of C(A) [6]), and the depth of nodes has close to the normal distribution
(see Figure 3(a)). Next, we evaluate the distribution of the depth of the nodes 2dmax(A)
which correspond to the RMQ of A (note that we only need the value of depth(k) and L(k)
when k = RMQ(i, j) for some 1 ≤ i ≤ j ≤ n). As shown in Figure 3(b), when the query
range is 104, the depth of all the nodes corresponding to RMQ is less than half of the depth
of 2dmax(A). Furthermore, even for the small query ranges (10), still, the depth of 95.5% of
the nodes is less than half of the depth of 2dmax(A). From the distribution of the nodes
corresponding to RMQ of A, we consider two greedy algorithms for selecting the nodes to be
stored in E and E′. Suppose at most N nodes can be stored in E and E′, and let DN be the
smallest depth where the number of the nodes with depth DN is more than N (if there is
no such depth, DN is the depth of 2dmax(A)); and let d be the value min (⌊D/2⌋ , DN − 1),
where D is the depth of 2dmax(A). Then the greedy algorithm 1 (GA1) repeats the following
procedure from i = 0 to d:
1. Choose all the nodes with depth i, if the total number of chosen nodes is at most N .
2. Increase i by 1.

Similarly, the greedy algorithm 2 (GA2) repeats the first step of the above procedure by
decreasing the value i from d to 0.

We evaluate the time for answering RT2Q with different amounts of space allotted for E

and E′. As shown in Figure 4, increasing the allotted space does not significantly improve
the query time when the size of the query range is 106 since most of the nodes corresponding
to the answer of RMQ are close to the root node. The same tendency is shown for other sizes
of query ranges (10, 102, and 104) when allotting more than 0.4n bits for E and E′, since
both GA1 and GA2 cannot significantly increase the number of nodes to be stored (note
that the number of nodes increases roughly exponentially with the depth, from 1 to d). In
our implementation, we choose GA2 which shows better query time for small query ranges.
Also, the space allotted for storing E and E′ is determined based on the maximum values

SEA 2021

10:10 Practical Implementation of Encoding Range Top-2 Queries

6 7 8 9
Array size (10n)

2

4

6

8

10

12

14
Sp

ac
e

(b
pe

)
R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(a)

1 2 4 6 8
Query range (10n)

0

5

10

15

20

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(b)

Figure 5 (a) The space (without the input array) on random array, and (b) Query time on the
random array of size 109.

(either 8, 16 or 32-bit values) stored in those arrays, as follows. We allot n/⌊log log n⌋ bits
if the maximum values of E and E′ are both at most 28 (in this case, we use 8-bit integer
arrays for storing these). In general, if the maximum values of E and E′ are at most 28c and
28c′ , respectively, for some c, c′ ∈ {1, 2, 4}, then we allot (c+c′

2)n bits for storing these arrays.
For example, if 32 and 8-bit integer arrays are necessary to store E and E′ respectively for
an array A of size 108, we use (4+1

2) · n/
⌊
log log 108⌋

= 0.625n bits for storing E and E′.
Next, we evaluate the space usage on randomly generated arrays of size n = 107 to n = 109

(see Figure 5 (a)). Our structure uses up to 4.6 and 4.8 bpe (bits per element) for n = 107

and n = 109 respectively. This shows that our data structure’s average space is not much
changed by increasing the array size, like other indexing structures except FH-INDEXING.
For FH-INDEXING, each pre-computed value needs 32 bits even for an array of size 106

(note that
⌈
log 106⌉

is 19), which is wasteful in terms of space. Since the input array is
necessary to answer RT2Q queries using indexing data structures, our data structure takes
at least 7.1 times less space than the existing indexing data structures. Next, we fix the
size of the (randomly-generated) input array to be 109, and evaluate query time for various
query ranges (see Figure 5 (b)). Our data structure and FH-DFUDS are highly dependent
on the query range, compared to BP-based indexing structures. This is because, in the
implementation, the running time of findopen operation is an increasing function of the range
(note that findopen operation is used for computing RMQ, depth, and L(k) when 2d-max
heap is represented by DFUDS). Interestingly, when the query range is changed from 106 to
108, the query time of FH-DFUDS increases much rapidly than our data structures. This
shows that the overhead for answering RMQ on FH-DFUDS is more than computing L(k)
and depth(k) for the nodes with small depths. The query time on FH-INDEXING is also
rapidly increased by increasing the query range because the structure needs to access more
sub-structures when the query range increases. Compared to the fastest indexing solution
(BGHL-BP and FH-INDEXING), our data structure shows up to 10 and 4.1 times slower
query times when the query range is 10 and 108 respectively and shows better time-space
trade-off for most cases except the small query ranges up to 100.

Next, we evaluate the space and query time for pseudo-increasing and pseudo-decreasing
arrays of size n = 109 with various δ values (see Figure 6 and 7. the size of the query range
is fixed to

√
n.). Note that when A is pseudo-increasing (resp. pseudo-decreasing), ←−A is

pseudo-decreasing (resp. pseudo-increasing). Thus, our data structure and BGHL-BP show

S. Jo, W. Park, and S. R. Satti 10:11

1 2 4 6 8
 (10n)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ac

e
(b

pe
)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(a)

1 2 4 6 8
 (10n)

2

3

4

5

6

7

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(b)

Figure 6 The (a) space usage (without the input array) and (b) query time on the pseudo-
increasing array of size n = 109. The size of the query range is fixed to

⌈√
n
⌉

= 31623.

1 2 4 6 8
 (10n)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ac

e
(b

pe
)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(a)

1 2 4 6 8
 (10n)

1

2

3

4

5

6

7

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(b)

Figure 7 The (a) space usage (without the input array) and (b) query time on the pseudo-
decreasing array of size n = 109. The size of the query range is fixed to

⌈√
n
⌉

= 31623.

similar space usage and query time on both pseudo-increasing and pseudo-decreasing arrays
(note that for FH-DFUDS, the query time on pseudo-increasing arrays is up to 3 times
slower than the query time on pseudo-decreasing arrays because of the depth of 2dmax(A).
Note that the average distance between two matching parenthesis in DFUDS decreases
proportional to the depth of 2dmax(A)). The space usage of our data structure is not much
affected by δ (up to 4.03 bpe to 4.39 bpe) since we do not maintain the arrays E and E′ for
all the cases (the depth of 2dmax(A) is still less than log 109 ∼ 30 even for large δ = 108).
Also, the query time for our data structure increases with δ because the average depth of the
nodes corresponding to RMQ is increases with δ. Overall, our data structure shows better
time-space trade-off (takes up to 7.5 times less space while spending up to 4.2 times slower
the query time) than all other indexing data structures in the evaluation.

Finally, for δ = 103 and 106, we evaluate the query time for pseudo-increasing and
pseudo-decreasing arrays of size n = 109 for various query ranges (see Figure 8 and 9). Again,
DFUDS-based implementations (R2MQ-ENCODING and FH-DFUDS) highly depend on the
depth of 2dmax(A) and query ranges because of findopen operation, whereas the BP-based
implementations (FN-BP and BGHL-BP) have similar results compared to the random array

SEA 2021

10:12 Practical Implementation of Encoding Range Top-2 Queries

1 2 4 6 8
Query range (10n), = 103

0

2

4

6

8

10

12

14

16
tim

e
(

s)
R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(a)

1 2 4 6 8
Query range (10n), = 106

0

2

4

6

8

10

12

14

16

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(b)

Figure 8 Query time on the pseudo-increasing array with (a) δ = 103, and (b) delta = 106.

1 2 4 6 8
Query range (10n), = 103

0

2

4

6

8

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(a)

1 2 4 6 8
Query range (10n), = 106

0

2

4

6

8

10

12

14

16

tim
e

(
s)

R2MQ-ENCODING
FN-BP
FH-DFUDS
BGHL-BP
FH-INDEXING

(b)

Figure 9 (Query time on the pseudo-decreasing array with (a) δ = 103, and (b) delta = 106.

case. Especially compared to the random array case, our data structure supports much faster
(up to 2.2 times) queries on pseudo-increasing and decreasing arrays for most query ranges
since the extra overhead for accessing E and E′ does not occur for both cases.

5 Conclusion

In this paper, we propose a practical implementation of an encoding for answering RT2Q
queries. Our data structure takes much less space than the current indexing data structure
implementations, while still giving better time-space trade-off for most cases in practice. An
interesting open problem is to implement the data structure based on the BP of 2dmax(A) –
here, an efficient and practical implementation of degree and childrank queries would be a
challenging problem.

S. Jo, W. Park, and S. R. Satti 10:13

References
1 Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, and Kunihiko Sadakane. Succinct trees

in practice. In Proceedings of ALENEX 2010, pages 84–97, 2010.
2 Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit. Practical range minimum

queries revisited. In SEA 2017, pages 12:1–12:16, 2017.
3 David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman, and

S. Srinivasa Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292, 2005.
4 Pooya Davoodi, Gonzalo Navarro, Rajeev Raman, and S. Srinivasa Rao. Encoding range minima

and range top-2 queries. Philosophical Transactions of the Royal Society A, 372(2016):20130131,
2014.

5 Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. On succinct representations of binary
trees. Math. Comput. Sci., 11(2):177–189, 2017.

6 Luc Devroye. On random cartesian trees. Random Struct. Algorithms, 5(2):305–328, 1994.
7 A. Farzan and J. I. Munro. A uniform paradigm to succinctly encode various families of trees.

Algorithmica, 68(1):16–40, January 2014.
8 Héctor Ferrada and Gonzalo Navarro. Improved range minimum queries. J. Discrete Algorithms,

43:72–80, 2017.
9 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum

queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011.
10 Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and related techniques

for geometry problems. In Proceedings of STOC 1984, pages 135–143, 1984.
11 Pawel Gawrychowski and Patrick K. Nicholson. Optimal encodings for range top-k, selection,

and min-max. In ICALP 2015, Proceedings, Part I, pages 593–604, 2015.
12 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug

and play with succinct data structures. In 13th International Symposium on Experimental
Algorithms, (SEA 2014), pages 326–337, 2014. doi:10.1007/978-3-319-07959-2_28.

13 Guy Jacobson. Space-efficient static trees and graphs. In FOCS 1989, pages 549–554, 1989.
14 Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Ultra-succinct representation of

ordered trees with applications. J. Comput. Syst. Sci., 78(2):619–631, 2012.
15 J. Ian Munro, Venkatesh Raman, and S. Srinivasa Rao. Space efficient suffix trees. J.

Algorithms, 39(2):205–222, 2001.
16 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.

ACM Trans. Algorithms, 10(3):16:1–16:39, 2014.
17 Rajeev Raman. Encoding data structures. In WALCOM 2015, pages 1–7, 2015.
18 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries

with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43, 2007.

19 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007.

20 Jean Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239, 1980.

SEA 2021

https://doi.org/10.1007/978-3-319-07959-2_28

On Computing the Diameter of (Weighted) Link
Streams
Marco Calamai
University of Florence, Italy

Pierluigi Crescenzi !

Gran Sasso Science Institute, L’Aquila, Italy

Andrea Marino !

University of Florence, Italy

Abstract
A weighted link stream is a pair (V,E) comprising V , the set of nodes, and E, the list of temporal
edges (u, v, t, λ), where u, v are two nodes in V , t is the starting time of the temporal edge, and λ is
its travel time. By making use of this model, different notions of diameter can be defined, which
refer to the following distances: earliest arrival time, latest departure time, fastest time, and shortest
time. After proving that any of these diameters cannot be computed in time sub-quadratic with
respect to the number of temporal edges, we propose different algorithms (inspired by the approach
used for computing the diameter of graphs) which allow us to compute, in practice very efficiently,
the diameter of quite large real-world weighted link stream for several definitions of the diameter.
Indeed, all the proposed algorithms require very often a very low number of single source (or target)
best path computations. We verify the effectiveness of our approach by means of an extensive set of
experiments on real-world link streams. We also experimentally prove that the temporal version of
the well-known 2-sweep technique, for computing a lower bound on the diameter of a graph, is quite
effective in the case of weighted link stream, by returning very often tight bounds.

2012 ACM Subject Classification Theory of computation → Shortest paths

Keywords and phrases Temporal graph, shortest path, diameter

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.11

Supplementary Material Software (Source Code): https://github.com/marcocalamai/
Link-stream-diameter archived at swh:1:dir:b33c6ae74c0739836c1874ca3fc7ac30f3893be9

Funding Partially supported by MIUR under PRIN Project n. 20174LF3T8 AHeAD (Efficient
Algorithms for HArnessing Networked Data), and by the University of Florence under Project
GRANTED (GRaph Algorithms for Networked TEmporal Data).

Acknowledgements We thank Filippo Brunelli and Laurent Viennot for several discussions concerning
the complexity of computing single source (target) best paths in temporal graphs. We also thank
Roberto Grossi for kindly providing us the computing platform.

1 Introduction

Link stream, distance, eccentricity, and diameter. A time-dependent network is a graph
G = (V, E) in which each edge e ∈ E has associated an arrival function specifying, for
each starting time, the corresponding arrival time (see [4] for a classification of different
types of time-dependent networks). A weighted link stream [14] (also called temporal graph
in [22, 23] and point-availability time-dependent network in [4]) is a time-dependent network
in which the domain of the arrival functions is a finite set T of time instants (in this paper,
we will assume that T is a set of integer numbers). A weighted link stream is commonly
represented as a list E of temporal edges (u, v, t, λ), where u and v are two nodes in V , t ∈ T

is the starting time of the edge, and λ denotes the travel time of the edge: according to this
© Marco Calamai, Pierluigi Crescenzi, and Andrea Marino;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 11; pp. 11:1–11:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierluigi.crescenzi@gssi.it
mailto:andrea.marino@unifi.it
https://doi.org/10.4230/LIPIcs.SEA.2021.11
https://github.com/marcocalamai/Link-stream-diameter
https://github.com/marcocalamai/Link-stream-diameter
https://archive.softwareheritage.org/swh:1:dir:b33c6ae74c0739836c1874ca3fc7ac30f3893be9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 On Computing the Diameter of (Weighted) Link Streams

representation, the arrival time of the edge (u, v) at time t is equal to t + λ. In this paper,
we refer to this representation by assuming that the list is sorted either in non-decreasing
or in non-increasing order with respect to the edge starting times: in the former case we
will denote the list as −→E , while in the latter case we will denote the list as ←−E . We will also
assume that the travel time of any temporal edge is an integer positive value. Moreover,
we will assume that if the link stream is undirected, then a temporal edge (u, v, t, λ) ∈ E
implicitly implies that the temporal edge (v, u, t, λ) is also in the link stream. Finally, we will
say that the link stream is unweighted if the travel time of all temporal edges is equal to 1.

When dealing with weighted link streams, the definition of path asks to satisfy, besides
the typical constraints of a path in a graph, some natural time constraints. In particular, a
path from a node u to a node v is a sequence of temporal edges

(u = w1, w2, t1, λ1), (w2, w3, t2, λ2), . . . , (wk−1, wk, tk−1, λk−1), (wk, wk+1 = v, tk, λk)

such that, for each i with 1 < i ≤ k, ti ≥ ti−1 + λi−1. The departure time of the path is t1,
its arrival time is tk + λk, its duration is tk + λk − t1, and its travel time is

∑︀k
i=1 λi. In the

following, for any time interval [tα, tω], we will say that the path is [tα, tω]-compatible, if its
departure time is no earlier than tα and its arrival time is no later than tω.

By making use of the above four path cost functions, we can then define the following four
corresponding distances between two nodes u and v, in a specific time interval [tα, tω] (for all
distances, we assume that their value is ∞, if there is no [tα, tω]-compatible path) [24, 22, 23].

Earliest arrival time d
[tα,tω]
eat (u, v) is the minimum arrival time of any [tα, tω]-compatible path

from u to v minus tα.
Latest departure time d

[tα,tω]
ldt (u, v) is tω minus the maximum departure time of any [tα, tω]-

compatible path from u to v.
Fastest time d

[tα,tω]
ft (u, v) is the minimum duration time of any [tα, tω]-compatible path

from u to v.
Shortest time d

[tα,tω]
st (u, v) is the minimum travel time of any [tα, tω]-compatible path from

u to v.
In the following, for the sake of simplicity, we will almost always avoid to specify the time
interval in the superscript, and assume that it is the interval in which tα is the minimum
departure time of all temporal edges, and tω is the maximum arrival time.

Once a notion of distance is adopted, the corresponding notions of eccentricity and of
diameter can be introduced, analogously to the case of standard graphs. That is, for any
d ∈ {eat, ldt, ft, st}, the (forward) eccentricity eccfd(u) of a node u is its maximum finite
distance to any other node, and the diameter �d of a weighted link stream is the maximum
(defined) eccentricity of all its nodes.1 The goal of this paper is to analyse the problem of
computing the diameter of a weighted link stream, in the case of the four previously defined
distances. To this aim, let us first note that several algorithms have been proposed in the
literature in order to compute the distance of a source node s to all other nodes, for each of
the distance definitions considered in this paper. For any d ∈ {eat, ldt, ft, st}, let ssbpd
be an algorithm that, given in input −→E and a source node u, returns an array containing, for
each node v, the value dd(u, v), and let s-timed (respectively, s-spaced) be the worst-case
time (respectively, space) complexity of this algorithm, as a function of the number n of
nodes and of the number m of temporal edges in the weighted link stream. In this paper, we

1 In this paper, we use the symbol � since it is obtained by the command diameter in LATEX, and since
graphically it reminds the notion of a diameter.

M. Calamai, P. Crescenzi, and A. Marino 11:3

Table 1 The time and space complexity of the single source best path and the single target
best path algorithms with input −→E and ←−E , respectively (without considering the time and space
necessary for sorting the link stream).

d s-timed s-spaced Ref. t-timed t-spaced Ref.
eat O(m) O(n) [22, 23] O(m) O(m) [9, 10]
ldt O(m) O(m) [9, 10] O(m) O(n) [22, 23]
ft O(m) O(m) [9, 22, 23] O(m) O(m) [9, 22, 23] & Lemma 1
st O(m log m) O(m) [22, 23] O(m log m) O(m) [22, 23] & Lemma 1

mostly refer to the algorithms proposed in [9, 10, 22, 23]: as far as we know, they have the
best time and space complexity (see the second and third column of Table 1). Nevertheless,
our results can be easily adapted to other algorithms proposed in the literature, that usually
have the same time and space complexity. In the following, we will assume that both −→E
and ←−E are available: otherwise, all time complexities of Table 1 become O(m log m), and all
space complexities become O(m).

Computing the diameter. For any d ∈ {eat, ldt, ft, st}, in order to compute the corre-
sponding diameter of a weighted link stream, we can execute the algorithm ssbpd, for each
source node u (we will refer to such “text-book” approach as the algorithm tbd). However,
the time complexity of this approach is O(n · s-timed(n, m)): by looking at Table 1, we have
that this time complexity is not affordable whenever we have thousands or millions of nodes,
and millions or billions of temporal edges in the link stream. Unfortunately, our first result
consists in showing that it is very unlikely that there exists an algorithm computing any of the
four diameters in time sub-quadratic in the number of temporal edges. In other words, it is
reasonable to conjecture that the known algorithms for computing any of the four diameters
are, indeed, optimal.

In order to deal with this complexity conjecture, in this paper we propose to follow the
approach that has been adopted while computing the diameter in real-world large graphs
[7, 18, 8, 6, 19, 3] (and other distance-based measures like hyperbolicity [1]). This approach
consists in sorting the nodes of the graph in a “clever” way, in computing, for each node in the
given order, the eccentricity of the node, and in updating a lower bound on the value of the
diameter and an upper bound on the value of the eccentricities of the remaining nodes, until
the upper bound becomes less than or equal to the lower bound. The first main difficulty
of this approach is, hence, to determine which order should be used in order to stop the
process as soon as possible. For example, in the case of unweighted undirected connected
graphs, the iFUB algorithm [6] first performs a breadth-first search starting from a random
node x, and subsequently visits the nodes in the breadth-first search tree in a bottom-up
fashion (this approach can be generalised to strongly connected directed graphs by executing
both a forward and a backward breadth-first search starting from x, and by then combining
paths entering x with paths exiting x [8]). The second main difficulty of this approach is
finding a lower and an upper bound, which are easy to compute and to update, and that
also allows the algorithm to stop as soon as possible. In the case of the iFUB algorithm, for
instance, the lower bound is simply the maximum eccentricity computed so far, while the
upper bound is a simple value connected to the level of the breadth-first search tree at which
the algorithm is arrived.

In this paper, we show that this approach can also be applied to the computation of
the diameter of a weighted link stream, for any of the four previously defined distances. To
this aim, as in the case of directed graphs [8], we will make use of a “backward” variation

SEA 2021

11:4 On Computing the Diameter of (Weighted) Link Streams

of the single source best path algorithms. For any d ∈ {eat, ldt, ft, st}, let stbpd be an
algorithm that, given in input ←−E and a target node v, returns an array containing, for each
node u, the value dd(u, v), and let t-timed (respectively, t-spaced) be the worst-case time
(respectively, space) complexity of this algorithm, as a function of the number n of nodes
and of the number m of temporal edges in the weighted link stream. Once again, in this
paper we mostly refer to the algorithms proposed in [9, 10, 22, 23]: as far as we know, they
have the best time and space complexity (see the fifth and sixth column of Table 1). In the
following, we will denote with eccbd(u) the backward eccentricity of a node u, that is its
maximum finite distance from any other node: note that the diameter �d of a weighted link
stream can also be defined as the maximum (defined) backward eccentricity of all its nodes.

1.1 Our results
Computing �eat and �ldt. In the case of the earliest arrival time (respectively, latest
departure time) distance, we propose to sort the nodes according to the maximum arrival
(respectively, minimum departure) time of the edges entering (respectively, exiting) a node,
in a non-increasing (respectively, non-decreasing) order. This choice is mostly inspired by the
fact that, in the case of collaboration or citation link streams (such as the IMDB [11] and
the DBLP-Citation [16, 20] networks), the earliest arrival time (respectively, latest departure
time) diameter of the link stream coincides with the collaboration or citation of one of the last
(respectively, first) nodes which entered the time-dependent network. Surprisingly, we will
show that this intuition leads us, in practice, to a very efficient algorithm for computing the
earliest arrival time (respectively, latest departure time) diameter of weighted link streams of
different types (such as, public transport networks). For each analysed node, the algorithm
executes a single target (respectively, source) best path computation, and update, in an
appropriate way, both the lower and the upper bound: in particular, the lower bound is
always the maximum distance seen so far, while the upper bound becomes the maximum
arrival (respectively, minimum departure) time of the edges entering (respectively, exiting)
the next node. As a result, our algorithm is able to compute the eat and the ldt diameter
of large public transport networks using much lower visits with respect to the text book
algorithm. This performance improvement is particularly significant for the three biggest
public transport networks in our dataset, as the number of performed visits becomes smaller
than 0.5% of the number of nodes.

Computing �ft and �st. In the case of the fastest and the shortest time distance, the
situation is more complicated. Indeed, aiming at adopting the approach used for weighted
directed graphs by the iFUB-like algorithm, we need to guarantee that the paths leading
to a node x, whose forward and backward distances to and from all other nodes have
been computed, are temporally compatible with the paths exiting from x and, that they
can, hence, be “temporally” combined. Unfortunately, this is not always the case. This
situation is similar to the one that arises when the iFUB approach is applied to weakly
connected graphs: indeed, in this case either the diameter of the largest strongly connected
component only is computed, or the component graph is computed in order to choose a
pivot node for each strongly connected component, to bound the eccentricities of pivot nodes,
and to propagate these bounds within each strongly connected component. The definition
of (strongly) connected component in the case of link streams is somehow more involved
(see [14]) and, as far as we know, no efficient algorithm capable of computing the analogue
of the component graph has been proposed so far. For this reason, in this paper we have
chosen to adopt the first solution, that is, restricting ourselves to the computation of what

M. Calamai, P. Crescenzi, and A. Marino 11:5

we have called the pivot-diameter. In our case, a pivot is a node at a given time instant,
that is, a pair (u, t), where u ∈ V and t ∈ T . Given a set P of pivots, the pivot-diameter
of a weighted link stream with respect to P is the diameter restricted to the set R(P) of
pair of nodes in V such that, for any pair (u, v) ∈ R(P), there is a path from u to v which
passes through one the pivots in P (our notion of pivot-diameter is connected to the notion
of “pivotability” introduced in [5]). Note that, in some real-world weighted link streams, it
should be possible to find a small pivot set such that almost all pairs of nodes are included
in R(P). For example, in the case of public transport networks, such a pivot set could be
formed by the central station taken at different times of the day. In any case, once the set
of pivots are given, we propose an algorithm that is able to compute the pivot-diameter of
large link streams, improving very often the text-book algorithm of at least one order of
magnitude. The worst case running time can be quadratic, but this seems to be unavoidable,
as witnessed by the conditional lower bound we prove for this problem. It is also worth
noting that, in the case of public transport networks, the pivot-diameter is, in many cases,
very close to the diameter of the link stream, when the pivots are the top out-degree nodes,
taken at few time instants.

Computing lower bounds on the diameter. Thanks to the backward and the forward visits
discussed in Section 1.2 and whose complexities are summarized in Table 1, we are able to
extend a well-known method for computing lower bounds for the diameter of static graphs
to the case of temporal graphs. This method is called double-sweep and can be applied
both to directed and undirected graphs: it selects a random node r (sometimes chosen as a
high degree node [8]), it performs a forward visit from r obtaining the node a1 which is the
farthest from r, and set lb1 = maxb∈V d(b, a1). Then it performs a backward visit from r

obtaining the node a2 which is the farthest from r, and set lb2 = maxb∈V d(a2, b). Finally,
it returns the maximum between lb1 and lb2. This method naturally extends to the case
of weighted link streams, for all the distances eat, ldt, ft, st, by using for each distance
d the corresponding forward and backward best path search, i.e. using ssbpd and stbpd.
We analyse the performance of this revised temporal double sweep in our experiments for
all these distances, and we show that the computed lower bound is very often tight, when
performing O(log2 n) double sweeps. In the case of st, the lower bounds are often tight when
dealing with public transport networks, while they seem to be rarely tight in the case of
social networks. In any case, also in this latter case, double sweep significantly outperforms
random sampling approaches.

1.2 Two useful link stream transformations
In [9], the authors introduce a simple transformation from a weighted linked stream (V,E) to
an unweighted link stream (V ∪ I,F), where I is a set of at most |E| “intermediate” nodes.
Intuitively, this transformation changes the travel time of a temporal edge into a waiting
time in the intermediate nodes. More precisely, for each temporal edge e = (u, v, t, 1) ∈ E, e

is also included in F. For each temporal edge e = (u, v, t, λ) ∈ E with λ > 1, a new node ie

is inserted in I, and the two temporal edges (u, ie, t, 1) and (ie, v, t + λ− 1, 1) are included in
F. It is easy to verify that, for any two nodes u, v ∈ V , dd(u, v) in (V,E) is equal to dd(u, v)
in (V ∪ I,F), where d ∈ {eat, ldt, ft}. This implies that the diameter of (V,E) is equal to
the maximum (defined) eccentricity of the nodes in V computed in (V ∪ I,F).

The following lemma (whose proof is given in Appendix), instead, introduces another
transformation which will allow us to easily design a backward version of a best path search
and to relate the eat distance and the ldt distance.

SEA 2021

11:6 On Computing the Diameter of (Weighted) Link Streams

▶ Lemma 1. Given a weighted link stream (V,E), let (V,F) be the weighted link stream
obtained by substituting each temporal edge e = (u, v, t, λ) ∈ E with the temporal edge
ρ(e) = (v, u,−t− λ, λ). Then, for any two nodes u, v ∈ V , d

[tα,tω]
d (u, v) in (V,E) is equal to

d
[−tω,−tα]
d (v, u) in (V,F), where d ∈ {ft, st}. Moreover, d

[tα,tω]
eat (u, v) in (V,E) is equal to

d
[−tω,−tα]
ldt (v, u) in (V,F), and d

[tα,tω]
ldt (u, v) in (V,E) is equal to d

[−tω,−tα]
eat (v, u) in (V,F).

In the rest of the paper, we are going to use the above two transformations for the
following three purposes. First, we can ignore the ldt distance, since computing �ldt is
equivalent to computing �eat. Second, we can obtain an algorithm stbpft by applying
the transformation ρ of the lemma, by then applying the transformation in [9] to reduce
to unitary weights, and by finally applying the algorithm in [22]. Third, we can obtain an
algorithm stbpst by applying the transformation ρ of the lemma and by then using the
algorithm ssbpst described in [22].

2 Negative results

The Strong Exponential Time Hypothesis (in short, SETH) states that there is no algorithm
for solving the k-Sat problem in time O((2− ϵ)n), where ϵ > 0 does not depend on k [12].
This hypothesis has been repeatedly used in the last few years in order to prove the hardness
of polynomial-time solvable problem (see, for example, [21], which is one of the first papers
along this line of research, where the authors address the hardness of many problems, like
computing all pairs shortest paths and finding triangles in a graph). We will here use it
in order to prove that the diameter of an unweighted undirected link stream cannot be
computed in time sub-quadratic with respect to the number of temporal edges.

To this aim, we will refer to the k-Big Two Disjoint Set (in short, k-BTDS) problem,
which is defined as follows. Given a set X and a collection C of subsets of X such that
|X| ≤ logk(|C|), the solution is 1 if there are two disjoint sets c, c′ ∈ C, 0 otherwise. Clearly,
this problem can be solved in quadratic time. It is also known that, for any k, the k-BTDS
problem is not solvable in time Õ(|C|2−ϵ), unless the SETH is false [2] (where the Õ notation
ignores poly-logarithmic factors).

▶ Theorem 2. For any d ∈ {eat, ft, st}, computing the diameter �d of a linked stream
(V,E) cannot be done in time Õ(|E|2−ϵ) for any ϵ > 0, unless the SETH is false, even if the
link stream is unweighted and undirected.

Proof. We show that the k-BTDS problem is reducible (in quasi-linear time) to the link
stream diameter computation problem, even in the case in which the diameter is equal
either to 2 or to 3. Given an input (X = {x1, . . . , x|X|}, C = {c1, . . . , c|C|}) of k-BTDS with
|X| ≤ logk(|C|), we construct an unweighted undirected link stream (X ∪ C,E), where the
set E of temporal edges is defined as follows (see also Figure 3 in Appendix).

For each xi, xj ∈ X, E contains the two temporal edges (xi, xj , 1, 1) and (xi, xj , 2, 1).
For each cj and for each xi ∈ cj , E contains the three temporal edges (xi, cj , 1, 1),
(xi, cj , 2, 1), and (xi, cj , 3, 1).

For any d ∈ {eat, ft, st}, let us now compute the eccentricities of all nodes, by distin-
guishing between nodes in X and nodes in C.
Nodes in X For each xi, xj ∈ X, dd(xi, xj) = 1 (since we can use the temporal edge with

starting time equal to 1). For each xi ∈ X and cj ∈ C, dd(xi, cj) = 1 if xi ∈ cj (since we
can use the temporal edge with starting time equal to 1). Otherwise, dd(xi, cj) = 2 (since
we can first use the temporal edge from xi to xk with starting time equal to 1, for some
xk ∈ cj , and then use the temporal edge from xk to cj with starting time equal to 2).
Hence, for each xi ∈ X, we have that eccfd(xi) = 2.

M. Calamai, P. Crescenzi, and A. Marino 11:7

Nodes in C For each ci ∈ C and xj ∈ X, we have already shown that dd(ci, xj) ≤ 2. For each
other cj ∈ C, dd(ci, cj) = 2 if ci ∩ cj ̸= ∅ (since we can first use the temporal edge from ci

to xk with starting time equal to 1, for some xk ∈ ci ∩ cj , and then use the temporal edge
from xk to cj with starting time equal to 2). Otherwise (that is, if ci ∩ cj = ∅), we have
that dd(ci, cj) ≤ 3 (since we can first use the temporal edge from ci to xk with starting
time equal to 1, for some xk ∈ ci, then use the temporal edge from xk to xl with starting
time equal to 2, for some xl ∈ cj , and finally use the temporal edge from xl to cj with
starting time equal to 3). Note that, in this case, dd(ci, cj) = 3 since there is no way of
arriving in cj starting from ci before time 3, since no neighbor of ci is also a neighbor of
cj , and, hence, we are forced to pass through two nodes in X. Hence, for each ci ∈ C,
eccfd(ci) = 3 if there exists cj ∈ C such that ci ∩ cj = ∅, otherwise eccfd(ci) = 2.

We can the conclude that the diameter �d of the link stream is either 2 or 3: it is 3 if and
only if there exist two ci, cj ∈ C which are disjoint.

Since |X| ≤ logk(|C|), the reduction can be executed in Õ(|C|) time, and |E| = Õ(|C|).
Hence, if we can compute the diameter of the link stream in Õ(|E|2−ϵ) for some ϵ > 0, then
we could solve the k-BTDS in Õ(|C|2−ϵ) for some ϵ > 0. From the result of [2], it follows
that the SETH would be falsified, and the theorem is proved. ◀

Note that, from the above theorem and from Lemma 1, it follows that the same result
holds for the ldt distance. Moreover, the proof of the above theorem gives strong evidence
that a sub-quadratic (3/2− ϵ)-approximation algorithm for the diameter may be very hard
to find, even for undirected unweighted link streams.

3 Computing the EAT diameter

In this section we focus on the eat distance, and we propose a quite simple algorithm for
computing the diameter of a weighted link stream. As we already said in the introduction,
the algorithm follows the approach used in the case of graphs, which consists in sorting the
nodes of the link stream, in computing, for each node in the given order, the eccentricity of
the node, and in updating a lower bound on the value of the diameter and an upper bound
on the backward eccentricities of the remaining nodes, until the upper bound becomes less
than or equal to the lower bound. In the case of the eat distance, nodes are sorted with
respect to their last “entering” time, i.e. δ(v) = maxt,λ:∃(u,v,t,λ)∈E{t + λ} − tα, the lower
bound is the maximum backward eccentricity computed so far, and the upper bound is the
difference between the entering time of the next node that has been examined and tα. This
strategy is formalised in Algorithm 1.

▶ Lemma 3. Let v1, . . . , vn be the ordering of the nodes in V with respect to δ(·). For each
i ≥ 1, maxi

j=1 eccbeat(vj) ≤ �eat and maxn
j=i eccbeat(vj) ≤ δ(vi).

Proof. The first inequality is obvious, since �eat = maxn
i=1 eccbeat(vi). The second in-

equality follows from the fact that, for each vj ∈ V , we have eccbeat(vj) ≤ δ(vj), and
that, because of the ordering, for each j ≥ i, we have δ(vj) ≤ δ(vi), which implies
maxn

j=i eccbeat(vj) ≤ maxn
j=i δ(vj) ≤ δ(vi). ◀

▶ Theorem 4. Algorithm 1 correctly computes the eat diameter.

Proof. Because of the previous lemma, we have that, at the end of each iteration of the
while loop, the value of lb is a lower bound on �eat, while the value of ub is an upper
bound on the backward eccentricity of all the remaining nodes to be visited. Since �eat =

SEA 2021

11:8 On Computing the Diameter of (Weighted) Link Streams

maxn
i=1 eccbeat(vi), sooner or later the value of lb has to become equal to �eat, and the

value of ub has to become less than or equal to �eat. When this happens, the loop stops,
and the algorithm correctly returns the value of lb. ◀

Algorithm 1 eat diameter.

Input : Weighted link stream (V,
−→
E)

with n nodes
Output : Diameter �eat

1 foreach v ∈ V do
2 δ(v)←

maxt,λ:∃(u,v,t,λ)∈E{t + λ} − tα

3 sort nodes v1, . . . , vn in non-increasing
ordering with respect to δ(·)

4 lb← 0
5 i← 1
6 ub← δ(vi)
7 while ub > lb do
8 lb← max{lb, eccbeat(vi)}
9 i← i + 1 if i ≤ n then ub← δ(vi)

10 return lb

Algorithm 2 Pivot-diameter.
Input : Weighted link stream (V,E), set

P ⊆ V × T , distance
d ∈ {eat, ft, st}

Output : Pivot-diameter �P
d

1 lb← 0, ub←∞, ÂP ← ∅, B̂P ← ∅
2 while ub > lb do
3 m← arg maxp∈P ubd(p)
4 ub← ubd(m)
5 if ub = −∞ then return lb
6 (v, w)←

arg maxz∈AP \ÂP ,y∈BP \B̂P
ubd(m, z, y)

7 lb← max{lb, getLowerBound(v, w, ub)}
8 return lb

9 Function getLowerBound(v, w, ub)
10 y ← eccbP

d (w), Add w to B̂P

11 if y ≥ ub ∨ d = eat then return y

12 z ← eccfP
d (v), Add v to ÂP

13 return max{z, y}

Note that, by applying Lemma 1, Algorithm 1 can also be used to compute the ldt
diameter. It should be clear, that, in the worst case, Algorithm 1 has to execute a backward
best path search starting from each node of the link stream. That is, the worst-case time
complexity of the algorithm is O(n · t-timed(n, m)). However, we will experimentally show
that, in the case of real-world link streams, the number of searches that have to be performed
is much lower than the number of nodes, thus making the algorithm extremely efficient.

4 Pivot-diameter

Let (V,E) be a weighted link stream, and let T be the set of the starting times of all temporal
edges in E. Given a subset P of V × T , let R(P) ⊆ V × V be the set of pairs defined as
follows: R(P) = {(u, v) | ∃(x, t) ∈ P : d

[tα,t]
eat (u, x) <∞∧ d

[t,tω]
eat (x, v) <∞}. In other words,

P is a set of pivots, and R(P) contains only pairs of nodes (u, v) such that u can reach v

passing through the node x at time t, for some pivot (x, t) ∈ P . By restricting our attention
to the set R(P), we are sure that the pairs we are considering are connected by at least one
path (in particular, a path passing through a pivot). However, while analyzing the diameter
restricted to these pairs (u, v), we will consider all the possible paths and not only the ones
passing through the pivots. Formally, for any node u, let AP (u) = {v : (v, u) ∈ R(P)} and
BP (u) = {v : (u, v) ∈ R(P)}. Moreover, let AP = {u : BP (u) ̸= ∅} and BP = {u : AP (u) ̸=
∅}. For any d ∈ {eat, ldt, ft, st},

the forward pivot-eccentricity of a node u ∈ AP is eccfP
d (u) = maxv∈BP (u) dd(u, v), and

the backward pivot-eccentricity of a node u ∈ BP is eccbP
d (u) = maxv∈AP (u) dd(v, u).

The pivot-diameter is then defined as �P
d = max(u,v)∈R(P) dd(u, v) = maxu∈AP

eccfP
d (u) =

maxu∈BP
eccbP

d (u). In this section, we focus on the pivot-diameter computation problem,
that is, given a weighted link stream and a set P ⊆ V × T , compute the pivot-diameter with
respect to any d ∈ {eat, ldt, ft, st} (note that thanks to Lemma 1, we will neglect the ldt
distance, as this case can be reduced to the eat distance case after a suitable transformation
of the graph). Let us observe that the pivot-diameter computation problem is also hard

M. Calamai, P. Crescenzi, and A. Marino 11:9

to compute in time sub-quadratic to the number of temporal edges: indeed, the very same
reduction described in the proof of Theorem 2 can be used, by choosing P = X×{1, 2, 3}. In
the following, we will assume that T ⊆ N+, that is, all time instants are positive integers (in
order to deal with the negative time instants introduced by the transformation in Lemma 1,
it is sufficient to perform a “temporal shift” of the link stream).

A simple algorithm for computing the pivot-diameter (denoted as pivot-tbP
d) first

computes the sets AP and BP , by simply performing, for each pivot p = (x, t) ∈ P , a
backward best path search in the interval [tα, t] and a forward best path search in the interval
[t, tω], both starting from x. Once computed AP and BP , if |AP | ≤ |BP |, then the algorithm
computes, for each node u in AP , the value eccfP

d (u), and returns the maximum among all
such values. Otherwise (that is, |BP | < |AP |) the algorithm computes, for each node u in
BP , the value eccbP

d (u), and return the maximum among all such values.
We now propose another algorithm (called pivot-ifubd) which is, once again, inspired by

the approach used for computing the diameter of graphs (see Algorithm 2). This algorithm,
once computed the sets AP and BP , sorts the nodes of the link stream, computes, for
each node in the given order, the (forward or backward) pivot-eccentricity of the node,
and updates a lower bound on the value of the pivot-diameter and an upper bound on the
pivot-eccentricities of the remaining nodes, until the upper bound becomes less than or equal
to the lower bound. Once again, a key ingredient of the algorithm is the order of the nodes,
which must be able to guarantee an effective non-trivial upper bound. Moreover, this upper
bound should be easily obtainable in order to do not burden the computation. In the case of
pivot-ifubd, all these aspects are guided by the pivots. In particular, each pivot ensures
an upper bound on the distance between pairs of nodes it connects, and, for all pairs of
nodes (v, w) in R(P), we have at least one upper bound on their distance, which is given
by the temporal paths passing through a pivot. Hence, we first select the pivot m giving
the worst upper bound (this upper bound becomes the new upper bound of the algorithm),
and we then select the corresponding pair of nodes (v, w). We then compute the forward
pivot-eccentricity of v and the backward pivot-eccentricity w, eventually improving the lower
bound of the algorithm. It is worth noting that selecting the pivot m and the pair (v, w) can
be done in a fast way, as we can, during a preprocessing phase of the algorithm, compute the
distances from and to all the pivots in P and, for each pivot p ∈ P , we can sort the nodes
in A{p} and in B{p} in non-increasing order with respect to their distance from and to p,
respectively.

The above description clearly depends on the distance d. In the following, we first precisely
instantiate, for each distance, the above bounds, we then prove properties on the lower
bound and on the upper bound, in order to asses the correctness of the algorithm. Given a
pivot p = (x, t) ∈ P and two nodes u and v such that d

[tα,t]
eat (u, x) <∞ and d

[t,tω]
eat (x, v) <∞,

we define ubeat(p, u, v) = d
[t,tω]
eat (x, v), ubft(p, u, v) = d

[tα,t]
ldt (u, x) − tω + d

[t,tω]
eat (x, u), and

ubst(p, u, v) = d
[tα,t]
st (u, x) + d

[t,tω]
st (x, u). For any d ∈ {eat, ft, st}, dd(u, v) ≤ ubd(p, u, v).

Indeed, ubd(p, u, v) is the “cost” of a path going from u to x and then from x to v, where
the cost is computed accordingly to the distance d. This concatenation of paths is a valid
temporal path as the path arrives in x at most at time t and leaves from x at least at time t.
For completeness, if d

[tα,t]
eat (u, x) =∞ or d

[t,tω]
eat (x, v) =∞, we define ubd(p, u, v) = −∞ (this

maybe non-intuitive definition allows us to deal with the search of the maximum values in a
more compact way). In Algorithm 2, ÂP ⊆ AP and B̂P ⊆ BP are the set of nodes for which
a ssbpd and a stbpd, respectively, has been executed. Moreover, in the algorithm ubd(p)
denotes the value maxz∈AP \ÂP ,y∈BP \B̂P

ub(p, z, y).

▶ Lemma 5. At any iteration of the while loop of Algorithm 2, if d ∈ {ft, st}, then lb =
max{maxv∈B̂P

{eccbP
d (v)}, maxv∈ÂP

{eccfP
d (v)}}, otherwise lb = maxv∈B̂P

{eccbP
eat(v)}.

SEA 2021

11:10 On Computing the Diameter of (Weighted) Link Streams

Proof. It immediately follows from the definition of the getLowerBound function. ◀

▶ Lemma 6. Let d ∈ {ft, st, eat}. At any iteration of the while loop of Algorithm 2, for
any node u ∈ AP \ ÂP and v ∈ BP \ B̂P , dd(u, v) ≤ ub.

Proof. We have already observed that, for any pivot p ∈ P , dd(u, v) ≤ ubd(p, u, v). Hence,
dd(u, v) ≤ maxp∈P ub(p, u, v). Since u ∈ AP and v ∈ BP , then there is at least one pivot p =
(x, t) such that d

[tα,t]
eat (u, x) <∞ and d

[t,tω]
eat (x, v) <∞. This implies that maxp∈P ub(p, u, v) ̸=

−∞. Moreover, we have that

max
p∈P

ub(p, u, v) ≤ max
p∈P

max
z∈AP \ÂP ,y∈BP \B̂P

ub(p, z, y) = max
p∈P

ub(p) = ub,

where the inequality holds since u ∈ AP \ ÂP and v ∈ BP \ B̂P , while the remaining two
equalities follow from the definition of ub(p) and from the assignment at Line 4 of Algorithm 2.
The lemma thus follows. ◀

▶ Lemma 7. At any iteration of the while loop of Algorithm 2, if d ∈ {ft, st}, then, for any
node u ∈ BP \ B̂P (resp. AP \ ÂP), eccbP

d (u) (resp. eccfP
d (u)) is bounded by max{lb, ub}.

Otherwise, for any node u ∈ BP \ B̂P , eccbP
eat(u) is bounded by max{lb, ub}.

Proof. Let us suppose there is a node v ∈ BP \ B̂P such that eccbP
d (v) > ub, with

d ∈ {eat, ft, st}. Let u be the node in AP such that dd(u, v) = eccbP
d (v). Note that u

must exist and it is such that eccfP
d (u) ≥ eccbP

d (v). If u ∈ AP \ ÂP (this is the only
possible case when d = eat, since ÂP = ∅), then from Lemma 6 it follows that dd(u, v) ≤ ub,
which is a contradiction. Otherwise (that is, u ∈ ÂP), from Lemma 5 it follows that
lb ≥ eccfP

d (u) ≥ eccbP
d (v). For d ∈ {ft, st}, the proof for nodes in AP \ ÂP is similar.

The lemma is thus proved. ◀

▶ Theorem 8. Algorithm 2 correctly computes the pivot-diameter.

Proof. It immediately follows from Lemma 6 and Lemma 7. ◀

The proof of the next theorem is given in Appendix.

▶ Theorem 9. Algorithm 2 computes the pivot-diameter in O(|AP | · s-timed(n, m) + |BP | ·
t-timed(n, m) + |P | · (s-timed(n, m) + t-timed(n, m) + n log n)) time, using space O(|P | ·
n + s-spaced(n, m) + t-spaced(n, m)).

As we will see in the next section, an effective choice of the cardinality of P is logarithmic
in the number of nodes: hence, in the worst case, the time complexity of our algorithm is
the same as the one of the tbd algorithm (if poly-logarithmic factors are ignored). This time
is clearly bounded by O(n · (s-timed(n, m) + t-timed(n, m)) + n log2 n), and, looking at the
costs in Table 1, it does not contradict the computational lower bound.

5 Experimental Results

This section is devoted to show our experimental results for the different notions of distance
we have considered. After introducing our experimental testbed, we organize the results as
follows. We show the performance of the temporal double sweep described in the introduction.
We then show the performance of our algorithm for computing �eat and �ldt, which is
described in Section 3. We finally focus on the pivot-diameter, whose algorithm has been
described in Section 4.

M. Calamai, P. Crescenzi, and A. Marino 11:11

Table 2 Our dataset. The meaning of the columns is described in Section 5.

Network name n m tω-tα R �eat �ldt �ft �st Ref.
public transport networks

kuopio 549 30 574 73 920 216 630 60 120 73 260 53 940 36 240 [13]
rennes 1 407 107 713 73 320 1 641 208 63 660 70 980 42 540 8 760 [13]
grenoble 1 547 113 437 78 780 1 265 735 75 540 75 180 42 180 12 300 [13]
venice 1 874 113 933 89 160 2 354 707 79 080 85 020 67 020 8 040 [13]
belfast 1 917 121 195 67 920 3 040 354 66 360 66 900 61 560 9 360 [13]
canberra 2 764 122 690 65 760 5 754 287 62 280 65 700 43 320 8 700 [13]
turku 1 850 131 684 75 625 2 966 925 65 615 75 545 53 225 10 795 [13]
luxembourg 1 367 178 052 72 780 1 818 761 62 160 72 720 50 820 4 920 [13]
nantes 2 353 194 572 76 680 4 320 287 74 040 72 360 61 680 18 780 [13]
detroit 5 683 214 853 90 660 29 990 674 76 260 87 660 54 352 17 174 [13]
toulouse 3 329 222 749 73 920 9 525 234 72 300 73 200 53 940 12 900 [13]
palermo 2 176 224 260 76 200 4 734 976 27 505 35 659 9 669 7 139 [13]
bordeaux 3 435 236 489 78 365 9 933 813 76 025 76 020 56 520 9 620 [13]
winnipeg 5 079 332 522 77 808 25 519 193 67 488 75 977 56 545 6 594 [13]
brisbane 9 645 386 175 76 860 70 598 864 74 220 75 060 64 320 17 700 [13]
dublin 4 571 399 875 75 471 15 801 421 72 591 72 892 60 929 9 141 [13]
adelaide 7 548 402 933 76 200 50 007 666 73 745 76 200 54 498 14 810 [13]
lisbon 7 073 525 114 87 424 14 065 989 82 088 84 578 68 582 12 434 [13]
prague 5 147 621 545 90 660 19 181 301 90 660 90 660 84 900 17 280 [13]
helsinki 6 986 664 507 87 960 41 724 039 86 520 85 320 72 720 27 720 [13]
berlin 4 601 1 019 012 91 200 20 931 583 83 880 90 300 79 920 7 260 [13]
rome 7 869 1 049 202 90 382 56 395 585 80 648 89 677 72 017 11 470 [13]
melbourne 19 493 1 089 555 86 400 294 973 451 79 260 82 500 61 260 34 595 [13]
sydney 24 063 1 234 097 91 440 416 037 155 90 780 91 260 81 840 50 936 [13]
paris 11 950 1 807 200 81 660 90 427 303 80 340 79 620 71 460 19 560 [13]

social networks
topology 34 759 99 019 2 016 004 146 028 435 2 016 004 2 016 004 2 016 004 20 [17]
elec 7 119 103 675 119 088 241 5 736 331 119 084 221 119 088 241 119 038 621 10 [17]
facebook-wosn-wall 46 953 876 020 137 462 861 617 698 414 137 461 023 132 709 413 132 527 766 39 [17]
college 1 900 59 835 16 736 182 1 794 245 16 736 043 16 621 304 16 113 324 17 [15]
Sx-mathoverflow-a2q 88 577 107 581 203 068 634 47 765 186 203 068 634 203 068 634 202 876 639 18 [15]
Sx-mathoverflow-c2a 88 577 195 330 203 055 529 33 076 882 203 055 529 203 055 529 202 094 959 20 [15]
Sx-mathoverflow-c2q 88 581 203 639 202 990 935 24 548 566 202 983 123 202 778 885 201 772 254 17 [15]
Email-Eu-core 1 005 332 334 69 459 255 770 833 69 430 695 69 439 852 44 641 379 15 [15]
Sx-askubuntu-a2q 515 274 280 102 225 833 890 ⋆210 462 953 225 833 890 225 833 890 ≥208 943 421 ≥19 [15]
Sx-askubuntu-c2q 515 281 327 513 176 894 703 ⋆56 918 856 176 894 645 176 893 633 ≥176 893 575 ≥18 [15]
Sx-askubuntu-c2a 515 255 356 822 208 942 104 ⋆410 760 018 208 939 593 208 940 523 ≥208 401 245 ≥18 [15]
Sx-superuser-a2q 567 309 430 033 239 613 340 ⋆305 607 123 239 613 340 239 613 340 ≥237 851 331 ≥25 [15]
Sx-mathoverflow 88 581 506 550 203 069 368 ⋆191 433 809 203 068 737 202 999 190 ≥202 991 055 ≥20 [15]
Sx-superuser-c2q 567 316 479 067 239 293 899 ⋆83 514 878 239 293 899 239 293 899 ≥225 626 623 ≥22 [15]
Sx-superuser-c2a 567 301 534 239 236 358 777 ⋆967 867 967 236 354 503 236 358 777 ≥235 553 110 ≥20 [15]
Sx-askubuntu 515 281 964 437 225 834 463 ⋆4 098 469 692 225 834 443 223 600 507 ≥223 599 719 ≥23 [15]
Sx-superuser 567 316 1 443 339 239 614 929 ⋆7 720 583 649 239 614 929 239 614 929 ≥239 425 973 ≥25 [15]
Wiki-talk-temporal 1 140 149 7 833 140 200 483 883 ⋆80 939 303 499 200 483 883 196 754 851 ≥186 398 389 ≥24 [15]

Computing Platform and Source Code. Our computing platform is a machine with
Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40 GHz, 24 virtual cores, 128 GB RAM, and running
Ubuntu Linux version 4.4.0-22-generic (machine available at Dipartimento di Informatica,
Università di Pisa, Italy). The code has been written in Python 3 and it is available at
github.com/marcocalamai/Link-stream-diameter.

Dataset. Table 2 reports the set of link streams we have used for our experiments. The
upper part refers to public transport networks, while the lower part refers to social networks.
The former link streams are weighted while the latter are unweighted. We report the number
of nodes n, the number of temporal edges m, the spectrum tω − tα of times where edges
appear, and the diameter �d for d ∈ {eat, ldt, ft, st}. We also report R, which is the
number of pairs (u, v) such that dd(u, v) <∞, as this quantity, together with the diameter
values will be compared to our results concerning the pivot-diameter. The values of �d have
been computed by making use of tbd: whenever, in the table, we write �d ≥ y, it means
that we are reporting as y the best lower bound computed so far during our experiments.

For computing R, we have used tbeat, when possible. In the cases marked with ⋆, the
value of R has been estimated using the method in [9].

SEA 2021

github.com/marcocalamai/Link-stream-diameter

11:12 On Computing the Diameter of (Weighted) Link Streams

Table 3 Number of times the lower bound returned by 2swd(k) and rsd(k) is tight.

d
networks Number of times the returned lower bound is tight

(Number of Nets k = 4 k = 4 log2 n k = 8 log2 n k = 16 log2 n

whose �d is known) 2swd(k) rsd(k) 2swd(k) rsd(k) 2swd(k) rsd(k) 2swd(k) rsd(k)
eat public transport (25) 10 3 15 6 19 9 22 10
ldt public transport (25) 10 0 19 1 23 1 23 2

ft public transport (25) 4 0 18 0 19 1 21 2
social (8) 1 0 6 0 7 0 7 0

st public transport (25) 13 0 22 1 23 2 24 3
social (8) 0 0 1 1 1 1 1 1

As it can be seen and as already pointed out in the introduction, in the case of social
networks, �eat and �ldt are both very close to tω − tα. This is expected because of the
meaning of the link streams in the case of this kind of networks, whose behaviour is induced
by new users being added. This fact makes the computation of �eat and �ldt very easy: for
this reason, we decided to exclude social networks when reporting our experimental results
concerning �eat and �ldt.

Methods. In the following, we summarize our methods and competitors used in the
remainder of the section. The subscript d refers to distances in {eat, ldt ft, st}.
Lower bounds for the diameter The following methods compute lower bounds for �d.

2swd(k): select a set of k/4 nodes randomly chosen and return the best lower bound
found by a double sweep, which have been described in the introduction. As each
double sweep requires 4 visits, 2swd(k) performs exactly k visits in total.
rsd(k): select a set of k nodes randomly chosen v1, . . . , vk, and return maxi eccfd(vi).
Also this methods requires exactly k visits in total.

Computing exactly the diameter The following methods compute �eat and �ldt exactly.
eat-alg: apply Algorithm 1, described in Section 3.
ldt-alg: apply the transformation in Lemma 1 and then Algorithm 1.
tbd: for each node v ∈ V , compute eccfd(v) and return the maximum value found.

Computing exactly the pivot-diameter The following methods, given a set of pivots P ⊆
V × T , compute the pivot-diameter introduced in Section 4.

pivot-ifubd: apply Algorithm 2.
pivot-tbd: this algorithm has been described in Section 4.

In order to evaluate the considered methods independently from the used platform, their
performance have been expressed in terms of number of visits. For the sake of completeness,
however, a rough estimation of the running time in seconds (on our computing platform) can
be easily obtained using the running times of the visits reported in Table 8.

Computing lower bounds

This section is devoted to show the performance of 2swd(k) compared to the one of
rsd(k), for different values of k. We evaluate the performance of both methods for
k ∈ {4, 4 log2 n, 8 log2 n, 16 log2 n} and we summarize our results in Table 3 and in Ta-
ble 6 in Appendix. Table 3 reports the number of times the lower bound returned by each
method is tight, i.e. it is equal to �d. We were able to do this only for the link streams whose
diameter is known, i.e. the 25 public transport networks and 8 social networks. Looking
at Table 3, we can see that, as expected, the performance of both algorithms improves by
increasing k, i.e. the number of performed visits.

For eat and ldt we report the results only for the 25 public transport networks in our
dataset as we have seen that in the case of social networks the diameter is easy to find. For
the public transport networks, 2sweat(k) (resp. 2swldt(k)) is able to get very often tight

M. Calamai, P. Crescenzi, and A. Marino 11:13

lower bounds, especially with k = 16 log2 n. For this value of k, in only 3 cases (resp. 2 cases)
2sweat(k) (resp. 2swldt(k)) was not able to find a tight lower bound for �eat (resp. �ldt),
namely for kuopio, melbourne, and paris (resp. toulouse and sydney). Also in the
case of ft, we can clearly see a very good performance of 2swft(k). In the case k = 16 log2 n,
it is able to find 21 tight lower bounds over the 25 public transport networks, and 7 tight
lower bounds over the 8 social networks. The exceptional social network is Email-Eu-core,
in which 2swft(k) returns a lower bound 4% lower than the real value of the diameter.

In the case of 2swst(k) we confirm the good performance of the double sweep in the case
of public transport networks. However, we observe that its behaviour is worse in the case of
social networks, as in only one case over 8, it returns a tight lower bound. In any case, we
have verified that in the great majority of the cases, 2swst(k) returns a lower bound greater
than or equal to the one obtained by rsst(k). This can be seen in Table 6 in Appendix, where
we report such number of cases for each distance d. In this case, we were able to include
all our 18 social networks, as we do not need to known the exact value of the diameter to
perform the comparison. All in all, we can see that, fixing the number of visits, it is always
more convenient to run 2swst(k) instead of rsst(k).

Computing �eat and �ldt

In this section, we discuss the performance of eat-alg and ldt-alg, i.e. the algorithms
discussed in Section 3. These methods respectively compute �eat and �ldt, and have been
compared respectively to tbeat and tbldt. The comparison is done in terms of number of
visits performed: in particular, we report the ratio between the number of visits performed
by our methods and n, which is indeed the number of visits required by tbd. We report the
results only for public transport networks.

Our results are summarized in Figure 1a, and further detailed in Table 7 in Appendix.
In the case of eat-alg we can see that in 14 cases over 25 it performs less than 10% of the
visits performed by tbeat, while in 20 cases over 25 it performs less than 50% of the visits.
The cases where eat-alg had worst performance were kuopio, turku, luxembourg,
winnipeg, and palermo. On the other hand, the cases where eat-alg performs better
correspond to the three biggest link streams, namely melbourne, sydney, and paris, where
it performs less than 1% visits. These results are even better if we look at the performance of
ldt-alg in Figure 1b. In this case we perform less than 15% of the visits required by tbldt
for all the link streams except for palermo. In 16 cases over 25, we perform less than 3% of
the visits. The reason behind these performances are deeply related to how the eat-alg
and ldt-alg work. Starting from the nodes with biggest δ(v), they perform one visit after
the other, stopping when processing a node such that δ(w) = �eat (resp. δ(w) = �ldt). For
this reason, both the methods need to compute the eccentricity of all the nodes v having
δ(v) > �d. These nodes are relatively few in general, as shown in the case of rome in
Figures 4a and 4b in Appendix, respectively for eat and ldt. In particular, Figure 4a and
Figure 4b show for each δ the number of nodes in the link stream rome having such δ. The
values of δ are different for the plots, as the ones of Figure 4b refer to the values in the
graph transformed applying Lemma 1. In both the cases, starting from the right of each
plot, we need to perform the visit from all the nodes whose δ is at the right of the arrow
marked as “diameter”, whose number can be visually observed by the black mass at the right
of the arrow. In the case of palermo, we have verified that the diameter is very low and
all the nodes are at the right of the arrow both for eat and ldt (see Figures 4c and 4d in
Appendix).

SEA 2021

11:14 On Computing the Diameter of (Weighted) Link Streams

0 5000 10000 15000 20000 25000
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0
Nu

m
be

r o
f v

isi
ts

 /
Nu

m
be

r o
f n

od
es

(a) Visits performed by eat-alg wrt to n.

0 5000 10000 15000 20000 25000
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f v
isi

ts
 /

Nu
m

be
r o

f n
od

es

(b) Visits performed by ldt-alg wrt to n.

Figure 1 Ratio between the number of visits performed by eat-alg (resp. ldt-alg) and n,
where n is the number of visits required by tbeat (resp. tbldt), as a function of the number of nodes.

Computing the pivot-diameter

In the following, we focus on the computation of the pivot-diameter, using our algorithm
pivot-ifubd and the text-book algorithm pivot-tbd. For the sake of brevity, in the following
we discuss only the case where d ∈ {ft, st}. For public transport networks, we have also
computed the pivot-diameter for d ∈ {ldt, eat}: we just report the results in Table 4.

Choice of the pivots. We report our experiments in the case in which pivots are chosen as
follows (we have analysed the performance of pivot-ifubd with several choices of the pivots,
with similar performance results: the choice we show here is a choice leading a sufficiently
large coverage of the number of pairs analysed, corresponding to the case in which the
pivot-diameter is more likely to be harder to compute). The set P is defined as V ′ × T ′,
where V ′ are the top-log2 n vertices with respect to the out-degree, i.e. number of temporal
edges exiting from the vertex, and T ′ are 4 times equally spaced in the interval [tα, tω], i.e.
T ′ = {t : t = tα + i/5 · (tω− tα), i ∈ {1, 2, 3, 4}}. For each graph in our dataset, we report the
ratio |P (H)|/|R| in the second column of Table 4 and 5 (respectively, for public transport
networks and social networks), that is the ratio between the number of pairs considered by
the pivot-diameter and the number of pairs considered by diameter. As it can be seen, in
the case of public transport networks, this choice of the pivots lead to a coverage of the pairs
almost always very high, namely, for almost all the link streams, we cover more than 93% of
the pairs. The exceptions are toulouse, lisbon, and melbourne, which are for this reason
highlighted with a grey row. We have verified that this poor coverage is due to the fact that
in these networks the nodes with the highest number of exiting temporal edges have a small
out-degree in the underlying directed graph (see the concluding remarks). We also report the
values of |AP | and |BP |, which correspond to the number of vertices reaching (and reached
by) the pivots (see Section 4). These values are crucial as min{|AP |, |BP |} is the number of
visits needed by pivot-tbd (we report the ratio min{|AP |, |BP |}/n in Table 4 and 5). In the
cases in which min{|AP |, |BP |} is constant or relatively small in practice, when compared
to the number of nodes (like in the case of toulouse and melbourne), both pivot-tbd
and pivot-ifubd are effective, as they both spend linear time to find the pivot-diameter
(see Theorem 9). In the case of social networks, the ratio |R(B)|/|R| seems to be in general
smaller as also min{|AP |, |BP |}/n is very often below 10%. Even if one could be tempted to
run pivot-tbd, we will see that this choice is not convenient in any case, as pivot-ifubd
will perform much less visits to discover the pivot-diameter.

Pivot-diameter vs diameter. In the case in which pivots are chosen as above, the pivot-
diameter is often very close to the diameter of the link stream (when we could verify it).

M. Calamai, P. Crescenzi, and A. Marino 11:15

Table 4 Results for the pivot-diameter in the case of public transport networks (the choice of P

is explained in the text). Rows in shadow gray correspond to graphs where the selected pivots lead
to a small ratio |R(P)|/|R| (see also the concluding remarks).

public transport |R(P)|
|R| |AP | |BP | min{|AP |,|BP |}

n
�P

eat
�eat

Feat
�P

ldt
�ldt

Fldt
�P

ft
�ft

Fft
�P

st
�st

Fstnetworks
kuopio 98.12% 452 472 82.33% 1 1 0.93 0.16 1 0.23 0.093 0.9
rennes 98.51% 1298 1308 92.25% 1 0.23 0.94 0.07 0.91 0.12 0.97 0.09
grenoble 93.56% 1 194 1 232 77.18% 0.72 0.3 0.94 0.11 1 0.17 1 0.1
venice 95.30% 1 531 1 512 80.68% 1 0.1 0.97 0.06 1 0.07 0.84 0.13
belfast 98.27% 1 707 1 780 89.04% 0.99 0.05 0.96 0.08 1 0.06 0.89 0.4
canberra 98.59% 2 307 2 469 83.46% 0.99 0.05 0.98 0.04 1 0.3 1 0.3
turku 97.93% 1 722 1 690 91.35% 1 0.26 0.97 0.05 1 0.09 0.42 0.26
luxembourg 99.74% 1 336 1 358 97.73% 1 0.36 0.94 0.06 1 0.08 1 0.15
nantes 97.14% 2 170 2 201 92.22% 0.91 0.05 0.98 0.04 1 0.04 1 0.04
detroit 99.04% 5 527 5 434 95.62% 0.98 0.38 0.95 0.1 1 0.05 1 0.08
toulouse 0.00% 20 20 0.60% 0.41 1 0.07 1 0.03 1 0.13 1
palermo 100.00% 2 176 2 176 100% 1 1 1 1 1 1 1 0.05
bordeaux 98.50% 3 166 3 119 90.80% 0.9 0.44 0.89 0.86 1 0.07 0.97 0.45
winnipeg 97.81% 5 054 4 946 97.38% 1 0.4 1 0.02 1 0.07 1 0.11
brisbane 98.51% 8 228 8 657 85.31% 0.99 0.01 0.94 0.02 1 0.01 0.99 0.05
dublin 99.15% 4 007 3 918 85.71% 0.97 0.03 0.97 0.03 1 0.03 1 0.08
adelaide 98.82% 7 148 6 956 92.16% 0.9 0.47 0.93 0.06 1 0.06 0.90 0.05
lisbon 28.61% 2 052 2 059 29.01% 0.97 0.06 0.96 0.05 1 0.07 0.27 0.89
prague 98.27% 4 366 4 412 84.83% 0.99 0.02 0.99 0.02 1 0.04 0.96 0.08
helsinki 99.32% 6 375 6 552 91.25% 0.91 0.23 1 0.02 1 0.03 0.34 0.18
berlin 99.58% 4 573 4 561 99.13% 1 0.02 0.98 0.02 1 0.02 1 0.12
rome 99.86% 7 511 7 499 95.30% 1 0.03 0.95 0.01 1 0.03 1 0.09
melbourne 8.19% 17 545 1 459 7.48% 0.97 0.17 0.96 0.2 0.96 0.7 1 0.51
sydney 93.94% 19 933 21 269 82.84% 0.97 0 0.99 0 1 0.01 0.53 0.1
paris 99.60% 9 878 9 858 82.49% 0.95 0.03 0.97 0.02 1 0.01 1 0.03

This is particularly evident for ft, while there are more exceptions for st. To see this, for
the cases in which we have the diameter of the link stream, in Table 4 and 5 we report, for
each distance, the ratio between �P

d and �d, where the former is computed by using our
pivot-ifubd. In the case of public transport networks (Table 4), this can be easily explained
by the fact that, very often, there is a large ratio |R(P)|/|R|. In the case of social networks
(Table 5), even though the ratio |R(P)|/|R| is lower, the ratio between �P

d and �d is not
low, for ft and sometimes for st.

103 104 105 106

Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

F F
T

(a) Fft as a function of the number of nodes.

103 104 105 106

Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

F S
T

(b) Fst as a function of the number of nodes.

Figure 2 For each link stream of n nodes, where the percentage of performed visits of pivot-ifubd

is Fd, we draw a cross (black for public transport networks and red for social networks) in position
(n, Fd).

SEA 2021

11:16 On Computing the Diameter of (Weighted) Link Streams

Table 5 Results for the pivot-diameter in the case of public transport networks (the choice of P

is explained in the text). eat and ldt distances are here neglected.

social |R(P)|
|R| |AP | |BP | min{|AP |,|BP |}

n
�P

ft
�ft

Fft
�P

st
�st

Fstnetworks
topology 39.75% 14 402 4 316 12.42% 1 0.03 0.95 0.16
elec 63.86% 3 576 2 169 30.47% 1 0.05 0.9 0.11
facebook-wosn-wall 64.87% 13 720 32 591 29.22% 0.99 0.01 0.79 0.14
college 80.52% 1 268 1 354 66.74% 1 0.07 0.71 0.5
Sx-mathoverflow-a2q 85.42% 4 866 11 753 5.49% 1 0.03 0.89 0.21
Sx-mathoverflow-c2a 82.79% 7 993 5 082 5.74% 1 0.03 0.8 0.09
Sx-mathoverflow-c2q 86.40% 2 355 12 927 2.66% 1 0.06 0.88 0.24
Email-Eu-core 95.31% 818 924 81.39% 1 0.31 0.6 0.33
Sx-askubuntu-a2q 73.86% 6 572 52 406 1.27% 0.03 0.05
Sx-askubuntu-c2q 80.12% 1 671 52 590 0.32% 0.09 0.16
Sx-askubuntu-c2a 72.49% 27 345 20 994 4.07% 0.01 0.02
Sx-superuser-a2q 76.27% 8 669 54 668 1.53% 0.02 0.02
Sx-mathoverflow 87.79% 11 941 19 441 13.48% 0.01 0.03
Sx-superuser-c2q 89.36% 2 543 61 294 0.45% 0.06 0.07
Sx-superuser-c2a 78.00% 39 088 31 982 5.64% 0.004 0.04
Sx-askubuntu 75.10% 44 245 114 766 8.59% 0.003 0
Sx-superuser 80.35% 67 470 136 455 11.89% 0.002 0.01
Wiki-talk-temporal 54.93% 53 408 1 037 170 4.68% 0.003 0.04

Performance of the algorithms. In Figure 2, we report the ratio between the number of
visits performed by pivot-ifubd and min{|AP |, |BP |}, which are the visits required by tbd
(in the following, we denote this ratio as Fd). For each link stream of n nodes, we draw a cross
in position (n, Fd) (black for public transport networks and red for social networks). The plot
on the left refers to ft, while the plot on the right refers to st. For the sake of completeness,
the values of Fd are also reported in Table 4 and 5. As it can be seen, Fft and Fst indicates
that pivot-ifubd performs a number of visits which is very often much less than the ones
performed by tbd. In particular, for ft (Figure 2a), for public transport networks, Fft is
almost always less than 0.2 and for social networks it is less than 0.1. Exceptions correspond
to toulouse, melbourne and email-eu-core, and this is not surprising as we can observe
a relatively small min{|AP |, |BP |}, which means that both pivot-ifubd and tbd require
linear time. In the case of st (Figure 2b), the performance seems to be worse with respect
to ft, but there is not doubt that running pivot-ifubd is far more convenient than running
tbd. In the case of public transport networks Fst is always smaller than 0.52, except for
kuopio (the smallest graph), toulouse, and lisbon, where both pivot-ifubd and tbd
are effective because of the few pairs in R(P). In the case of social networks, Fst seems to
behave better, and, apart from college, Fst is always bounded by 0.34. In any case, the
advantage of pivot-ifubd, for both ft and st, is more evident when the number of nodes
increases. Indeed, with social networks with more than 500 thousands nodes, the ratio Fd is
always less than 0.07, apart from Sx-askubuntu-c2q (where Fd is bounded by 0.17).

6 Concluding remarks

In this paper, we have introduced the concept of pivot-diameter, we have given algorithms to
compute it efficiently in practice, and we have seen that our choice of the pivots, i.e. choosing
vertices with the maximum number of exiting temporal edges, leads very often to a large
coverage of pairs. For the networks in our dataset with low coverage, we have additionally

M. Calamai, P. Crescenzi, and A. Marino 11:17

verified that by simply choosing as pivots the top-degree vertices in the underlying directed
static graph the coverage becomes higher than 98%. Even if a discussion about the many
possible choices of pivots in order to maximize the coverage is outside the scope of this paper,
we think that this problem deserves further (both theoretical and experimental) investigations
to be addressed in a future work.

References
1 M. Borassi, D. Coudert, P. Crescenzi, and A. Marino. On computing the hyperbolicity of

real-world graphs. In Proc. 23rd Annual European Symposium on Algorithms, pages 215–226,
2015.

2 M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the complexity of some
quadratic-time solvable problems. Electron. Notes Theor. Comput. Sci., 322:51–67, 2016.

3 M. Borassi, P. Crescenzi, M. Habib, W. A. Kosters, A. Marino, and F. W. Takes. Fast
diameter and radius bfs-based computation in (weakly connected) real-world graphs: With an
application to the six degrees of separation games. Theor. Comput. Sci., 586:59–80, 2015.

4 F. Brunelli, P. Crescenzi, and L. Viennot. On computing pareto optimal paths in weighted
time-dependent networks. Inf. Proc. Let., 168:106086, 2021.

5 A. Casteigts, J. G. Peters, and J. Schoeters. Temporal cliques admit sparse spanners. In Proc.
46th ICALP, pages 134:1–134:14, 2019.

6 P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, and A. Marino. On computing the diameter of
real-world undirected graphs. Theor. Comput. Sci., 514:84–95, 2013.

7 P. Crescenzi, R. Grossi, C. Imbrenda, L. Lanzi, and A. Marino. Finding the diameter in
real-world graphs - experimentally turning a lower bound into an upper bound. In Proc. 18th
Annual European Symposium on Algorithms, pages 302–313, 2010.

8 P. Crescenzi, R. Grossi, L. Lanzi, and A. Marino. On computing the diameter of real-world
directed (weighted) graphs. In Proc. 11th International Symposium on Experimental Algorithms,
pages 99–110. Springer, 2012.

9 P. Crescenzi, C. Magnien, and A. Marino. Approximating the temporal neighbourhood function
of large temporal graphs. Algorithms, 12(10):211, 2019.

10 P. Crescenzi, C. Magnien, and A. Marino. Finding top-k nodes for temporal closeness in large
temporal graphs. Algorithms, 13(9):211, 2020.

11 IMDb. IMDb Datasets. http://www.imdb.com/interfaces.
12 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?

J. Comput. Syst. Sci., 63(4):512–530, 2001.
13 R. Kujala, C. Weckström, R. Darst, M. Madlenocić, and J. Saramäki. A collection of public

transport network data sets for 25 cities. Sci. Data, 5, 2018.
14 M. Latapy, T. Viard, and C. Magnien. Stream graphs and link streams for the modeling of

interactions over time. Soc. Netw. Anal. Min., 8(1):61:1–61:29, 2018.
15 J. Leskovec. Stanford Large Network Dataset Collection (SNAP). http://snap.stanford.

edu/data/index.html.
16 M. Ley. DBLP - some lessons learned. Proc. VLDB Endow., 2(2):1493–1500, 2009.
17 Institute of Web Science and Technologies. The Koblenz Network Collection. Available online:

http://konect.uni-koblenz.de.
18 F. W. Takes and W. A. Kosters. Determining the diameter of small world networks. In

Proceedings of the 20th ACM Conference on Information and Knowledge Management, pages
1191–1196, 2011.

19 F. W. Takes and W. A. Kosters. Computing the eccentricity distribution of large graphs.
Algorithms, 6(1):100–118, 2013.

20 Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction
and mining of academic social networks. In Proc. 14th KDD, pages 990–998, 2008.

21 V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix and
triangle problems. In 51th Annual IEEE FOCS, pages 645–654, 2010.

SEA 2021

http://www.imdb.com/interfaces
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
http://konect.uni-koblenz.de

11:18 On Computing the Diameter of (Weighted) Link Streams

22 H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path problems in temporal graphs.
Proc. of the VLDB Endowment, 7(9):721–732, 2014.

23 H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. Efficient algorithms for temporal
path computation. IEEE Trans. on Knowl. and Data Eng., 28(11):2927–2942, 2016.

24 B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in
dynamic networks. Int. J. of Found. of Comp. Sci., 14(02):267–285, 2003.

A Proofs

A.1 Proof of Lemma 1

In order to prove the first assertion, it suffices to show that there exists a [tα, tω]-compatible
path from u to v in (V,E) whose duration (respectively, travel time) is τ if and only if there
exists a [−tω,−tα]-compatible path from v to u in (V,F) whose duration (respectively, travel
time) is τ . Let P = e1e2 . . . ek be a [tα, tω]-compatible path from u to v in (V,E), where
ei = (ui, vi, ti, λi) for any i with 1 ≤ i ≤ k, u1 = u, vk = v, t1 ≥ tα, tk + λk ≤ tω, and,
for each i with 1 < i ≤ k, ui = vi−1 and ti ≥ ti−1 + λi−1. Since −tk − λk ≥ −tω and
−t1 − λ1 + λ1 ≤ −tα, and since ti ≥ ti−1 + λi−1 if and only if −ti−1 − λi−1 ≥ −ti − λi + λi,
we have that ρ(P) = ρ(ek)ρ(ek−1) . . . ρ(e1) is a [−tω,−tα]-compatible path from v to u in
(V,F). Since the travel times of the temporal edges have not been changed, we have that the
travel time of P is equal to the travel time of ρ(P). Moreover, the duration of P is equal to
tk + λk − t1: since tk + λk − t1 = −t1 − λ1 + λ1 − (−tk − λk), we have that P and ρ(P) have
also the same duration. The opposite direction can be proved similarly.

In order to prove the second assertion, it suffices to show that there exists a [tα, tω]-
compatible path from u to v in (V,E) whose arrival (respectively, latest departure) time is τ

if and only if there exists a [−tω,−tα]-compatible path from v to u in (V,F) whose departure
(respectively, arrival) time is −τ . As before, let P = e1e2 . . . ek be a [tα, tω]-compatible
path from u to v in (V,E), and let ρ(P) = ρ(ek)ρ(ek−1) . . . ρ(e1) be the corresponding
[−tω,−tα]-compatible path from v to u in (V,F). The arrival (respectively, departure) time
of P is tk + λk (respectively, t1), while the departure (respectively, arrival) time of P is
−tk − λk = −(tk + λk) (respectively, −t1 − λ1 + λ1 = −t1). The opposite direction can be
proved similarly, and this concludes the proof of the lemma.

A.2 Proof of Theorem 9

In the worst case, the number of iterations of the while loop is O(n). The computation of
the lower bound requires O(s-timed(n, m) + t-timed(n, m)) and it is the dominant part of
the while loop, if we can speed up the computation of m at Line 3. To this aim we can
perform the following precomputation. Let us define eat = ft = ldt, eat = ft = eat,
st = st = st. For d ∈ {eat, ft, st} and for each p = (x, t) ∈ P , we define πp as the sequence
of nodes v ∈ A{p} sorted in non-increasing order with respect to d

[tα,t]
d (v, x), and γP as the

sequence of nodes v ∈ B{p} sorted in non-decreasing order with respect to d
[ti,tω]
d (x, v). This

precomputation can be performed in O(|P | · (max{s-timed(n, m), t-timed(n, m)}+n log n)).
When Line 3 is performed, it is sufficient to consider, for each pivot p, the pair of nodes
(u, v), where u is the leftmost element of πp not in ÂP and v is the leftmost element of γp

not in B̂P . Hence, this line costs O(|P |) time. Once m has been selected, the other lines, i.e.
Line 4 and Line 6, cost O(1) time. As a result, we obtain the time and space bounds of the
theorem, where the space overhead O(|P | · n) is due to the space required for maintaining
the result of the preprocessing.

M. Calamai, P. Crescenzi, and A. Marino 11:19

B Tables and figures

{1, 2}

{1, 2}

{1, 2}

{1, 2}

{1, 2}

{1, 2}

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

x1

x2 x3

x4 c1

c2

c3

Figure 3 The reduction from disjoint sets to diameter computation. In this case, c1 = {x1, x3},
c2 = {x2, x4}, and c3 = {x3, x4}. All temporal edges have travel time equal to 1. For any distance,
the diameter is 3, and, indeed, c1 and c2 are disjoint.

Table 6 Number of times the lower bound returned by 2swd(k) is at least the one of rsd(k).

d
Number of times the lower bound returned

networks by 2swd(k) is ≥ than the one of rsd(k)
(Number of nets) k = 4 k = 4 log2 n k = 8 log2 n k = 16 log2 n

eat public transport (25) 23 25 25 25
ldt public transport (25) 23 25 25 25

ft public transport (25) 25 25 25 25
social (18) 15 16 18 18

st public transport (25) 22 25 25 25
social (18) 16 16 18 18

SEA 2021

11:20 On Computing the Diameter of (Weighted) Link Streams

(a) Distribution of δ values for eat in rome. (b) Distribution of δ values for ldt in rome.

(c) Distribution of δ values for eat in palermo. (d) Distribution of δ values for ldt in palermo.

Figure 4 Distribution of δ values for eat and ldt, for rome and palermo. For each x the
amount of vertices v having δ(v) = x.

Table 7 Number of visits performed by eat-alg and ldt-alg wrt to n, where n is the number
of visits required by tbeat and tbldt. These values are plot in Figure 1a and Figure 1b as a function
of n.

network visits/n

eat ldt
kuopio 74.50% 1.64%
rennes 36.67% 14.57%
grenoble 6.92% 8.66%
venice 15.80% 9.07%
belfast 9.02% 1.41%
canberra 2.17% 0.14%
turku 60.32% 0.22%
luxembourg 80.69% 0.15%
nantes 17.98% 12.11%
detroit 37.83% 13.67%
toulouse 1.14% 0.21%
palermo 100.00% 100.00%
bordeaux 4.10% 1.80%

network visits/n

eat ldt
winnipeg 62.20% 13.51%
brisbane 1.17% 0.36%
dublin 3.37% 0.88%
adelaide 0.62% 0.01%
lisbon 8.99% 3.62%
prague 0.02% 0.02%
helsinki 1.06% 1.55%
berlin 38.80% 11.56%
rome 26.93% 2.97%
melbourne 0.47% 0.10%
sydney 0.02% 0.02%
paris 0.27% 0.46%

M. Calamai, P. Crescenzi, and A. Marino 11:21

Table 8 Running time of our implementations of the visits reported in Table 1 for each of the
networks in our dataset (mean in seconds and variance, over a random sample of 100 visits).

ne
tw

or
k

si
ng

le
so

ur
ce

si
ng

le
ta

r g
et

ea
t

ld
t

ft
st

ea
t

ld
t

ft
st

m
ea

n(
s)

va
r

m
ea

n(
s)

va
r

m
ea

n(
s)

va
r

m
ea

n(
s)

va
r

m
ea

n(
s)

va
r

m
ea

n(
s)

va
r

m
ea

n(
s)

va
r

m
ea

n(
s)

va
r

ku
op

io
0.

23
7

0.
00

4
0.

21
3

0.
00

1
0.

17
7

0.
00

2
0.

19
8

0.
00

1
0.

23
2

0.
00

1
0.

09
8

0.
00

1
0.

21
0.

00
1

0.
20

2
0.

00
1

re
nn

es
0.

77
6

0.
03

9
0.

75
9

0.
00

4
0.

63
7

0.
01

6
0.

65
8

0.
00

5
0.

77
8

0.
00

3
0.

33
6

0.
00

1
0.

73
2

0.
01

0.
67

1
0.

00
6

gr
en

ob
le

0.
75

4
0.

08
5

0.
72

1
0.

00
2

0.
52

8
0.

01
6

0.
53

0.
00

9
0.

73
0.

00
2

0.
35

1
0.

00
1

0.
6

0.
01

4
0.

57
3

0.
00

8
ve

ni
ce

0.
69

8
0.

05
8

0.
78

5
0.

00
4

0.
67

5
0.

02
0.

69
1

0.
01

4
0.

80
4

0.
00

3
0.

36
6

0.
00

1
0.

66
8

0.
01

8
0.

68
0.

01
5

be
lf

as
t

0.
82

1
0.

05
8

0.
81

6
0.

00
3

0.
74

9
0.

02
1

0.
71

7
0.

01
6

0.
84

9
0.

00
3

0.
38

3
0.

00
1

0.
76

4
0.

01
8

0.
71

8
0.

01
1

ca
nb

er
ra

0.
62

9
0.

02
8

0.
83

8
0.

00
5

0.
79

3
0.

03
5

0.
79

7
0.

02
0.

89
3

0.
00

2
0.

38
1

0.
00

1
0.

84
7

0.
02

7
0.

76
9

0.
01

5
tu

rk
u

0.
79

8
0.

08
1

0.
99

1
0.

00
4

0.
97

9
0.

03
1

0.
99

1
0.

03
3

1.
00

6
0.

00
5

0.
41

2
0.

00
1

0.
96

4
0.

04
8

0.
95

7
0.

02
5

lu
xe

m
bo

ur
g

1.
21

6
0.

13
1.

34
7

0.
00

3
1.

44
5

0.
02

2
1.

24
3

0.
01

3
1.

41
9

0.
00

3
0.

57
8

0.
00

1
1.

43
8

0.
01

8
1.

27
9

0.
01

5
na

nt
es

1.
31

5
0.

13
6

1.
37

4
0.

00
8

1.
19

2
0.

05
3

1.
17

5
0.

02
8

1.
39

1
0.

00
6

0.
60

3
0.

00
1

1.
15

9
0.

04
5

1.
14

0.
02

3
de

tr
oi

t
1.

56
5

0.
14

2
1.

66
6

0.
00

7
1.

65
3

0.
02

6
1.

53
6

0.
01

9
1.

69
3

0.
01

2
0.

67
0.

00
1

1.
66

1
0.

06
6

1.
57

6
0.

03
4

to
ul

ou
se

1.
43

1
0.

15
8

1.
59

8
0.

01
2

1.
44

4
0.

08
2

1.
40

8
0.

05
6

1.
62

1
0.

01
1

0.
69

4
0.

00
1

1.
49

2
0.

02
1.

35
3

0.
02

3
pa

le
rm

o
1.

96
1

0.
08

9
1.

84
3

0.
00

7
1.

83
5

0.
01

1.
71

8
0.

01
7

1.
83

6
0.

01
2

0.
71

8
0.

00
1

1.
89

8
0.

02
1.

69
2

0.
01

4
bo

rd
ea

ux
1.

74
3

0.
16

1.
74

7
0.

00
9

1.
66

6
0.

09
5

1.
77

1
0.

08
7

1.
80

1
0.

01
5

0.
73

6
0.

00
1

1.
76

1
0.

05
5

1.
74

4
0.

11
1

w
in

ni
pe

g
2.

78
2

0.
20

6
2.

63
6

0.
02

8
2.

98
5

0.
08

3.
06

2
0.

16
9

2.
67

4
0.

01
7

1.
04

5
0.

00
1

2.
88

4
0.

21
3.

00
2

0.
20

7
br

is
ba

ne
1.

73
2

0.
26

1
2.

79
7

0.
05

2.
68

0.
47

2
2.

59
8

0.
36

6
2.

88
1

0.
03

1
1.

20
7

0.
00

1
2.

66
9

0.
34

2.
49

1
0.

22
2

du
bl

in
1.

56
6

0.
01

7
2.

99
2

0.
06

2
3.

24
1

0.
39

2
3.

11
8

0.
39

1
3.

09
7

0.
06

1.
28

1
0.

00
1

3.
00

2
0.

57
8

3.
17

4
0.

49
3

ad
el

ai
de

1.
59

8
0.

01
4

2.
97

5
0.

02
6

3.
38

7
0.

31
1

3.
67

5
0.

27
8

3.
26

8
0.

03
8

1.
26

1
0.

00
1

3.
29

7
0.

41
1

3.
59

2
0.

55
li

sb
on

1.
81

6
0.

02
3

3.
43

3
0.

05
4

2.
72

3
0.

40
8

2.
69

6
0.

22
6

3.
64

4
0.

04
7

1.
65

3
0.

00
1

2.
84

1
0.

47
2.

79
2

0.
44

1
pr

ag
ue

2.
50

4
0.

05
7

4.
59

5
0.

11
2

4.
46

1.
14

2
4.

03
8

0.
40

4
4.

89
1

0.
14

3
2.

09
7

0.
02

1
4.

67
1

1.
18

1
3.

98
7

0.
42

he
ls

in
ki

2.
8

0.
06

6
4.

88
9

0.
13

4
5.

24
8

0.
95

3
5.

02
6

0.
65

5.
25

6
0.

10
5

2.
13

9
0.

00
1

5.
32

8
0.

64
2

4.
93

3
0.

53
1

be
rl

in
4.

48
1

0.
03

9
7.

74
4

0.
10

1
8.

78
4

0.
35

7
7.

47
1

0.
41

6
8.

28
6

0.
19

1
3.

24
9

0.
00

4
8.

70
2

0.
87

3
7.

42
8

0.
73

9
ro

m
e

4.
45

1
0.

03
9

7.
95

4
0.

11
4

9.
86

1
1.

23
6

7.
23

5
0.

75
1

8.
65

4
0.

26
3.

29
2

0.
00

1
9.

59
1

2.
47

1
7.

52
8

0.
65

1
m

el
bo

ur
ne

4.
22

3
0.

12
7.

93
6

0.
22

2
8.

18
2

3.
52

2
9.

10
9

4.
07

2
8.

32
4

0.
24

5
3.

41
9

0.
00

1
8.

12
3

1.
79

8
7.

69
4

2.
43

5
sy

dn
ey

4.
73

9
0.

2
9.

16
4

0.
36

9
8.

64
1

4.
41

9.
52

9
3.

85
9

9.
40

2
0.

61
3.

96
3

0.
00

1
8.

74
9

3.
64

8.
85

2
3.

05
7

pa
ri

s
6.

69
1

0.
27

4
14

.8
91

0.
89

3
12

.1
54

6.
05

6
11

.7
98

7.
14

6
12

.4
2

0.
76

9
5.

69
4

0.
00

6
12

.1
67

6.
88

9
11

.7
52

5.
77

1
to

po
lo

gy
0.

18
5

0.
00

1
0.

37
1

0.
00

1
0.

25
8

0.
00

7
0.

29
1

0.
00

8
0.

31
2

0.
00

1
0.

19
0.

00
1

0.
26

3
0.

00
6

0.
31

3
0.

00
9

el
ec

0.
16

7
0.

00
1

0.
34

6
0.

00
1

0.
17

3
0.

00
1

0.
18

7
0.

00
1

0.
30

7
0.

00
1

0.
16

0.
00

1
0.

17
7

0.
00

1
0.

21
2

0.
00

1
fa

ce
bo

ok
-w

os
n-

w
al

l
1.

43
6

0.
00

8
3.

33
8

0.
06

1
1.

59
7

0.
11

7
1.

82
0.

19
7

2.
75

2
0.

03
1

1.
37

0.
00

1
1.

91
0.

14
2.

25
5

0.
23

5
co

ll
eg

e
0.

09
9

0.
00

1
0.

20
2

0.
00

1
0.

12
1

0.
00

1
0.

12
4

0.
00

1
0.

19
6

0.
00

1
0.

09
4

0.
00

1
0.

13
7

0.
00

1
0.

16
9

0.
00

1
sx

-m
at

ho
ve

rf
lo

w
-a

2q
0.

16
4

0.
00

1
0.

49
8

0.
00

1
0.

21
8

0.
00

1
0.

23
0.

00
1

0.
41

7
0.

00
1

0.
16

8
0.

00
1

0.
22

9
0.

00
1

0.
26

0.
00

1
sx

-m
at

ho
ve

rf
lo

w
-c

2a
0.

29
4

0.
00

1
0.

78
9

0.
00

1
0.

36
2

0.
00

1
0.

38
6

0.
00

2
0.

65
9

0.
00

1
0.

30
5

0.
00

1
0.

36
9

0.
00

2
0.

43
6

0.
00

3
sx

-m
at

ho
ve

rf
lo

w
-c

2q
0.

29
9

0.
00

1
0.

80
6

0.
00

1
0.

36
3

0.
00

2
0.

39
5

0.
00

1
0.

71
1

0.
00

3
0.

31
3

0.
00

1
0.

38
8

0.
00

2
0.

44
9

0.
00

2
em

ai
l-

E
u-

co
re

0.
54

1
0.

00
1

1.
07

8
0.

00
4

0.
74

6
0.

03
1

0.
84

3
0.

05
0.

96
0.

00
5

0.
50

9
0.

00
1

0.
87

6
0.

01
7

1.
03

4
0.

03
2

sx
-a

sk
ub

un
tu

-a
2q

0.
43

0.
00

1
1.

91
5

0.
00

6
0.

78
3

0.
00

1
0.

88
0.

00
3

1.
60

5
0.

00
5

0.
44

1
0.

00
1

0.
85

0.
00

8
0.

89
9

0.
00

5
sx

-a
sk

ub
un

tu
-c

2q
0.

5
0.

00
1

2.
01

0.
00

9
0.

84
7

0.
00

1
0.

94
8

0.
00

2
1.

72
7

0.
00

7
0.

51
4

0.
00

1
0.

92
0.

00
5

0.
99

5
0.

00
9

sx
-a

sk
ub

un
tu

-c
2a

0.
55

4
0.

00
1

2.
09

0.
00

8
0.

94
7

0.
00

4
1.

01
7

0.
00

6
1.

81
6

0.
00

3
0.

56
1

0.
00

1
0.

95
1

0.
00

6
1.

05
3

0.
00

9
sx

-s
up

er
us

er
-a

2q
0.

65
8

0.
00

1
2.

63
9

0.
01

1
1.

16
0.

00
4

1.
13

8
0.

00
3

2.
16

5
0.

00
5

0.
67

6
0.

00
1

1.
16

1
0.

00
8

1.
28

6
0.

01
6

sx
-m

at
ho

ve
rf

lo
w

0.
77

1
0.

00
1

1.
84

5
0.

00
8

0.
91

0.
02

5
0.

99
2

0.
03

2
1.

56
5

0.
00

9
0.

78
5

0.
00

1
0.

94
6

0.
03

2
1.

10
4

0.
03

9
sx

-s
up

er
us

er
-c

2q
0.

73
1

0.
00

1
2.

59
6

0.
01

6
1.

12
9

0.
00

2
1.

27
3

0.
00

6
2.

25
4

0.
01

4
0.

75
5

0.
00

1
1.

20
3

0.
00

6
1.

32
1

0.
01

1
sx

-s
up

er
us

er
-c

2a
0.

81
4

0.
00

1
2.

87
5

0.
01

2
1.

33
1

0.
01

7
1.

38
5

0.
00

8
2.

42
4

0.
01

1
0.

82
6

0.
00

1
1.

34
6

0.
01

6
1.

51
0.

02
4

sx
-a

sk
ub

un
tu

1.
48

1
0.

00
7

4.
21

2
0.

03
2

1.
98

9
0.

07
1

2.
10

8
0.

05
4

3.
58

7
0.

02
9

1.
52

2
0.

00
1

2.
05

8
0.

05
6

2.
45

8
0.

11
6

sx
-s

up
er

us
er

2.
28

8
0.

02
2

6.
01

3
0.

07
7

2.
80

1
0.

10
2

3.
12

6
0.

19
5.

10
2

0.
07

3
2.

26
2

0.
00

2
3.

03
5

0.
26

3.
46

6
0.

32
4

w
ik

i-t
al

k-
te

m
po

ra
l

12
.3

73
0.

39
1

29
.8

42
2.

12
9

14
.7

59
13

.0
15

15
.0

14
6.

03
2

24
.9

93
0.

97
3

12
.3

09
0.

00
9

17
.8

23
6.

57
4

20
.5

61
8.

10
3

SEA 2021

Document Retrieval Hacks
Simon J. Puglisi !

Department of Computer Science, University of Helsinki, Finland

Bella Zhukova !

Department of Computer Science, University of Helsinki, Finland

Abstract
Given a collection of strings, document listing refers to the problem of finding all the strings (or
documents) where a given query string (or pattern) appears. Index data structures that support
efficient document listing for string collections have been the focus of intense research in the last
decade, with dozens of papers published describing exotic and elegant compressed data structures.
The problem is now quite well understood in theory and many of the solutions have been implemented
and evaluated experimentally. A particular recent focus has been on highly repetitive document
collections, which have become prevalent in many areas (such as version control systems and genomics
– to name just two very different sources).

The aim of this paper is to describe simple and efficient document listing algorithms that
can be used in combination with more sophisticated techniques, or as baselines against which the
performance of new document listing indexes can be measured. Our approaches are based on
simple combinations of scanning and hashing, which we show to combine very well with dictionary
compression to achieve small space usage. Our experiments show these methods to be often much
faster and less space consuming than the best specialized indexes for the problem.

2012 ACM Subject Classification Information systems → Data compression

Keywords and phrases String Processing, Pattern matching, Document listing, Document retrieval,
Succinct data structures, Repetitive text collections

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.12

Funding This work was funded in part by the Academy of Finland via grant 319454.

Acknowledgements Our thanks go to Dustin Cobas for prompt help in getting his codebase to
compile on our system, and to Massimiliano Rossi for assistance with datasets.

1 Introduction

Given a collection of strings T0, T1, . . . , Td, called documents the document listing problem
is to preprocess the documents and build an index data structure so that later, given a
previously unseen string Q (the pattern or query), we can report all i ∈ 0..d for which Ti

contains Q as a substring.
The document listing problem was introduced, almost 20 years ago now, by Muthukrish-

nan [14] as a natural variant of the pattern matching problem. At the time, finding all
the occ occurrences of a pattern in a set of texts in time proportional to occ, was efficiently
solvable using suffix trees and arrays. The algorithmics attractiveness of the document listing
problem lay in cases where docc – the number of documents containing the pattern – was
very much smaller than occ, where the “brute force” solution of enumerating over the set of
all occ occurrences to find the distinct document ids seems wasteful. Muthukrishnan gave a
O(docc + |Q|) time solution, which is optimal.

A convenient way of thinking about Muthukrishnan’s approach is in terms of the suffix
array [13], SA, for the string T formed by concatenating the Ti strings of the collection into
one string T = T0$T1$. . . Td$ where $ is a ”separator” symbol guaranteed not to be part of
any query pattern. The suffix array, SA[0, n − 1], for a string T of length n is an array of
integers containing a permutation of (0 . . . n − 1), so that the suffixes of T starting at the

© Simon J. Puglisi and Bella Zhukova;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 12; pp. 12:1–12:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:puglisi@cs.helsinki.fi
mailto:bzhukova@cs.helsinki.fi
https://doi.org/10.4230/LIPIcs.SEA.2021.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Document Retrieval Hacks

consecutive positions indicated in SA are in lexicographical order: T[SA[i], n] < T[SA[i+1], n].
Because of the lexicographic ordering, all the suffixes starting with a given substring Q of
T form an interval SA[s, e], which can be determined by binary search in O(|Q| log n) time.
Muthukrishnan’s solution to document listing defines an array DA[0, n−1] in which DA[i] = x

if and only if suffix T[SA[i], n] has its starting position inside the area of T corresponding to
document Tx. We say that DA[i] contains the document id for the suffix starting at SA[i].

With DA in hand, document listing for pattern Q then becomes simply a matter of
enumerating the distinct elements in the interval DA[s, e]. Muthukrishnan shows this can
be done in optimal O(docc) time via a range minimum query data structure after finding
interval [s, e] in O(m) time using the suffix tree of T. The solution requires O(n log n) bits of
space, and subsequent work by several authors [2, 4, 5, 7, 8, 16, 22] has aimed to reduce space
in pursuit of practical solutions (we refer the reader to [15] for a survey of results prior to
2014, and [4] for more recent results). Almost all solutions make use of DA in some form.

A particular recent focus [2, 4, 5, 7, 16] has been on document retrieval indexes for highly
repetitive document collections, which have become prevalent in many areas, such as version
control systems and genomics – to name just two very different sources (see [17,18] for recent
surveys of results on highly repetitive data in general).

Our contribution. The main results of this paper are twofold:
1. We describe and implement a handful of algorithms for document listing that work

by gathering the distinct document ids in DA[s, e] while scanning that interval. These
algorithms are so simple as to be almost trivial, but nonetheless seem to have escaped
scrutiny to date. We show experimentally that these algorithms are very fast, and
represent a new baseline against which the speed of more complex document listing
indexes should be gauged.

2. We show that the DA for a highly-repetitive collection can be effectively compressed
via relative Lempel-Ziv (RLZ) parsing, a compression method that is known to support
fast extraction of arbitrary intervals from its underlying sequence. We show that RLZ-
compressed document arrays combine well with the aforementioned scan-based document
listing algorithms, leading to the smallest (or near smallest) indexes we know of for
that problem, which are often an order of magnitude or faster than the best competing
methods.

Roadmap. In the next section we describe our new scan-based method for document listing
and compare it experimentally to another, previously described, brute-force method for the
problem. Then, in Section 3 we describe how DA is amenable to RLZ compression and
combine this representation of DA with variants of our scan-based document listing algorithm.
We also show that for certain types of repetitive document collection, run-length encoding
can be an effective way to compress DA. Section 4 compares our new document listing
indexes to state-of-the-art methods, showing them to be significantly faster and often less
space consuming. We then conclude with some possible directions for future work.

2 Refined Brutes

We begin with a “brute-force” document listing method that scans, copies and sorts DA[s, e].
It is the only published method we know of that explicitly inspects every element of DA[s, e],
and is used in several papers [4, 5, 7] where it is reported to be faster than specialized
document listing methods when e − s + 1 = occ is small. We refer to this method as sort1.

1 The same method is referred to as Packed-sort in [4, 5] and SORT in [7].

S. J. Puglisi and B. Zhukova 12:3

The approach taken is to allocate a buffer of occ integers, copy the contents of DA[s, e]
into it, sort the buffer (bringing duplicate document ids together) and then scan the buffer
removing duplicates. The final contents of the buffer are the distinct elements in DA[s, e].

While sort certainly gets the job done, it also looks and sounds suspiciously like a straw
man: all that movement of data. The obvious alternative to sorting, of course, is something
akin to the counting part of counting sort: scan DA[s, e] and use an array B of d elements
(initially all 0) to simply record which document ids are present in the interval – indeed, d bits
will do. Whenever B[DA[i]] = 0 we add document DA[i] to the result set (again implemented
as a vector) and set B[DA[i]] to 1. If desirable, we can reuse B between queries by scanning
the result set at the end of the scan of DA[s, e] and resetting all the set bits to 0. We call
this document listing method bv (for bit vector).

A possible concern with bv is the d extra bits it uses. The minimum extra space (without
trying too hard) for document listing is the size of the result set itself docc log d bits. We
note, however, that d bits can easily be less than the O(occ log n) bits that sort uses when it
copies DA[s, e] to its buffer for sorting. In any case, we can reduce the working space in at
least two ways.

For cases when O(occ log n) extra space is preferable, hashing is a simple option. To this
end, we implemented a simple linear probing hash table that indicates on inserting DA[i]
whether that element is already present in the table. If not, it is inserted into the table and
added to the result set. The hash table allocates space for 2⌈log occ⌉ elements, ensuring a
low load factor (maximum 0.5) and therefore fast insert time. We call this variant hash and
implemented a second version of it, uset, that uses a C++ std::unordered_set as a sanity
check to our hand-rolled linear-probing hash table. Working space usage can be further
reduced to O(docc log n) by using a search tree to accumulate distinct elements instead of
a hash table. We implemented such a variant, which we denote tree, variant using a C++
std::set, which is backed by a red-black tree.

We measured the performance of the above scan-based document listing algorithms
(including the previously described sort-based method) on three document collections. These
data sets are described in Section 4 and Table 1. We tried all variants on two trivial encodings
of DA. The first, Plain stores DA as an array of 32-bit unsigned integers. The second, Packed,
packs elements of DA into ⌈log d⌉ bits each, with each element still being accessible in O(1)
time, albeit with a higher constant of proportionality than element access with the Plain
encoding.

Results for query patterns with 4-mers of high frequencies are shown in Figure 1. The
bitvector-based scanning approach (bv) is a clear winner on all data sets. It is on average
an order of magnitude faster than the sort-based baseline (sort) on the Page data set, and
two order of magnitude faster on Revision and Influenza. The linear probing hash-based
method (hash) is also significantly faster than sort on all data sets (1.32-2.27×). Somewhat
unsurprisingly, Plain document arrays always led to faster queries than did Packed document
arrays for all methods. We did not include Packed-tree and Packed-uset to save space in the
plots because they are dominated by other methods. Figure 1 also shows that the differences
between the two variants Plain-bv and Packed-bv are bigger than the differences for other
variants. Taking into account that the number of DA access must be the same in all scanning
algorithms, we do not yet have a good explanation for it, but it could be due to the overhead
of the function call required with Packed-bv that makes the loop more difficult to unroll for
the compiler.

SEA 2021

12:4 Document Retrieval Hacks

Page Revision Influenza

P
ac
k e
d
-b
v

P
ac
ke
d
-s
or
t

P
ac
k e
d
-h
as
h

P
la
in
-b
v

P
la
in
-s
or
t

P
la
in
-h
as
h

P
la
in
-t
re
e

P
la
in
-u
se
t

P
ac
k e
d
-b
v

P
ac
ke
d
-s
or
t

P
ac
ke
d
-h
as
h

P
la
in
-b
v

P
la
in
-s
or
t

P
la
in
-h
as
h

P
la
in
-t
re
e

P
la
in
-u
se
t

P
ac
k e
d
-b
v

P
ac
ke
d
-s
or
t

P
ac
ke
d
-h
as
h

P
la
in
-b
v

P
la
in
-s
or
t

P
la
in
-h
as
h

P
la
in
-t
re
e

P
la
in
-u
se
t

10

100

1k

10k

100k

1M

Q
u
er
y
ti
m
e
(n
s)

Figure 1 Boxplots showing time for Packed-sort versus our variants. These results are obtained
on query patterns with k-mers of length 4 with high frequencies (see Section 4 and Table 1 for
details of data sets and patterns). Note that the vertical axis is logarithmic.

3 Petite Brutes

On highly repetitive collections, the size of the compressed index used to find the interval of
DA containing the document occurrences for the query pattern is dwarfed by the space used
by DA. Even when DA is stored bit-packed in n⌈log d⌉ bits, it is still almost 70 times bigger
than the interval finding component on all our data sets. Reducing the space used by DA is
therefore important.

As several authors have now observed [4,19], repeated substrings in T give rise to repeated
intervals in DA. To see this, consider two lexicographically adjacent suffixes of T [SA[i], n]
and T [SA[i + 1], n]. If SA[i] and SA[i+1] are preceded by an identical symbol c ̸= $ (i.e.
BWT[i] = BWT[i + 1] = c ̸= $) then the lexicographical ordering of suffixes in SA dictates
that suffixes T [SA[i] − 1, n] and T [SA[i + 1] − 1, n] will be adjacent too, and so DA[i, i + 1]
will be repeated. More generally, a run of x suffixes SA[i, i + x] having identical preceding
symbols implies the sequence DA[i, i + x] is repeated in DA.

In [4], Cobas and Navarro employ grammar compression [1] to capture such repetitions
and so reduce the size of DA. They preprocess the resulting grammar so that the compressed
representation of DA supports the extraction of arbitrary intervals, and use this to implement
sort-based document listing: the relevant interval is extracted and copied to a buffer, which
is then sorted so that distinct elements can be reported.

In this section we explore compression of DA using relative Lempel-Ziv (RLZ) dictionary
compression, as an alternative to grammar compression of DA. Our rational for RLZ is
twofold. Firstly, it is known to support fast random-access decompression of arbitrary
substrings (in our context, intervals of DA), and, secondly, it has been recently shown to be
effective at compressing suffix arrays. Given the tight relationship between SA and DA, it is
reasonable to expect RLZ to compress DA well too.

S. J. Puglisi and B. Zhukova 12:5

3.1 RLZ-Compressed Document Array
RLZ parsing [9, 10] is a variant of the classic LZ77 parsing [24], in which a sequence X is
compressed relative to a second sequence R (the reference) by encoding X as a sequence of z

substrings, or phrases, that occur in R. In our context X = DA.
Intuitively, if the substrings of sequence R are “similar” to those in X, then the parsing

will produce a small number of phrases. There are a number of ways to determine a good R
for a given X. Random sampling substrings from X has been shown to give good results in
practice [9] and also in theory [6]. Several authors have advocated more judicious selection
of substrings [11] and reference pruning methods to eliminate sparsely used parts of the
reference [23]. We return to the problem of reference selection for DA below.

Data Structure. We now describe how, given an reference R, the resulting RLZ parsing of
DA is encoded to facilitate fast random access to arbitrary intervals of DA. The approach is
essentially the way in which random access is supported in RLZ-compressed text [10], but
we include the description here for completeness.

The RLZ parsing of DA is stored in two arrays, S and P , both of length z. S contains
the starting position in DA of each phrase in ascending order. Elements of S are kept in a
predecessor data structure. P contains either literal DA values or positions in R as output
by the parsing algorithm (the second components of each pair). The type of the ith (literal
or repeat) is determined from the phrase length, which is in turn computed from the phrase
starting positions: ℓi = S[i + 1] − S[i]. If ℓi = 1 then P [i] should be interpreted as containing
the value of a literal phrase, and otherwise P [i] is the position in R at which the ℓi symbols
constituting the ith phrase begin.

Scanning (i.e. decoding) an arbitrary interval DA[s, e] is performed as follows. An output
buffer B of size e − s + 1 will contain the decoded elements. At a high level, the phrases
covering DA[s, e] are decoded and copied to B (some parts of the first and last phrase may
not be) until B is full, at which point we are done. To this end, begin by finding the index
in S of the predecessor of s. Let x denote this index, and so S[x] ≤ s. If P [x] is a literal
phrase, copy its value to the output buffer. Otherwise, (P [x] is non-literal) find the position
where the interval in this phrase begins, which is s − S[x] elements from the start of the
phrase. The length of the phrase is ℓ = S[x + 1] − S[x]. So we need to decode from this phase
min (l − (s − S[x]), e − s + 1) elements. If S[x] = s, to decode phrase x we access R[P [x]],
copy R[P [x]] to the output buffer, continuing then to copy (R[P [x] + 1]) to B, and so on
until either the whole phrase has been decoded, or the output buffer is full. And if S[x] < s,
the copying starts from (R[P [x]] + (s − S[x])). After decoding phrase x, if the output buffer
is not full, then phrase x + 1 is decoded, and so on, until all e − s + 1 values have been
decoded.

The time to decode the desired interval from the RLZ-compressed DA is O(e−s+log log n),
where log log n is the time need for the initial predecessor query.

Reference Selection. In earlier work [20, 21] we explored compression of SA using a
combination of differential encoding and RLZ compression, with [20] using random sampling
of substrings, and [21] obtaining superior compression performance via a more sophisticated
algorithm (adapted from [11]), in which substrings are selected for inclusion in the reference
according to the abundance of smaller substrings of length k (k-mers) contained therein.

We adopt a similar approach to derive a good reference for DA, which we now describe.
DA is logically divided into n/s substrings of equal length s called segments (the last segment
may have length < s). The frequency of each distinct k-mer in DA is then computed. Each

SEA 2021

12:6 Document Retrieval Hacks

segment is assigned an initial score according to the k-mers it contains. In particular, let
f(x), for k-mer x be the frequency of x in DA. Let x ∈ Xi denote that k-mer x has at least
one occurrence in segment Xi. Then the initial score for segment Xi, i ∈ [0..n/s + 1] is the
ℓp norm of the vector of its constituent k-mers, calculated as:

score(Xi) = (Σx∈Xi
f(x)p)1/p.

The highest scoring Xi is then selected for inclusion in the reference, and frequencies f(.) are
then reduced for every k-mer x ∈ Xi, in particular f(x) is reduced by the frequency of k-mer
of x in Xi. This process of segment selection and subsequent score adjustment is repeated
until the sum of the lengths of the selected segments has reached the target reference length
(an input parameter).

Apart from the target reference length, there are three parameters to this process: s, the
segment size; k, the k-mer length; and p, which affects the way in which k-mer frequencies
affect segment scores (we set p = 0.5 in all experiments in this paper). Figure 2 shows the
effect of parameters s and k on the index size for the Influenza dataset for a fixed target
reference size. The figure shows that the choice of k and s can significantly influence the
size of the index and should be chosen with care. Having said this, the range illustrated
in the figure across all tested (k, s) settings is from just under 130MB to just over 270MB
for the 336,798,466-entry long DA sequence. This corresponds to a range of 3.2 to 6.7 bits
per symbol, which is significantly less than the log d = log(227, 356) = 18 bits per symbol
required to store DA uncompressed. Our point here is that while finding the minimum index
size may be difficult, finding a “good” one seems not to be.

We also found that not every position in our constructed references was actually covered
by any phrase, and removing the symbols at those positions led to around a small reduction
in reference length: 1.5% for Page, 9.35% for Revision, and 2.64% for Influenza.

s = 128

k = [4, 6,...,
32]

s = 256

k = [4, 8,...,
64]

s = 512

k = [4, 12,...,
124]

s = 768

k = [4, 16,...,
184]

s = 1024

k = [4, 20,...,
244]

s = 1536

k = [4, 28,...,
364]

s = 2048

k = [4, 36,...,
484]

s = 3072

k = [4, 52,...,
724]

s = 4096

k = [4, 68,...,
964]

s = 5120

k = [4, 84,...,
964]

s = 6144

k = [4, 100,...,
964]

s = 8192

k = [4, 132,...,
900]

0.0

0.5

1.0

1.5

2.0

2.5

To
ta

li
nd

ex
siz

e,
by

te
s

×108 Influenza, RLZD with byte-aligned components
ref
predecessor
phrases

Figure 2 Effect of segment size s and k-mer length on overall index size (reference and phrases),
in bytes. Target reference size requested for every case is the same, and is equal to 61.24MB. Actual
reference size (ref) in the index varies a little due to removal of symbols that were not referred to
during the RLZ compression (see text). Predecessor size (pred) grows with the number of phrases,
though it is difficult to see on this plot.

3.2 Run-Length Compressed Document Array
To our initial surprise, we found that DA for the Page collection (n = 1, 036, 000, 000)
consisted of just 17, 224, 529 runs of equal document ids. We believe this phenomenon can be
explained as follows. Recall that in Page all versions of a given Wikipedia entry are treated

S. J. Puglisi and B. Zhukova 12:7

as a single document, sharing the same document id. For a given entry with, say, document
id x, substrings corresponding to terminology (or, e.g., dates) specific to that entry are likely
to be shared across versions, and suffixes prefixed with such patterns will be concentrated
together in SA, with a corresponding concentration of id x in DA.

With this in mind, we implemented a run-length encoded version of DA that supports
random access to intervals via a predecessor data structure holding the starting positions of
runs in DA. We call this data structure RLED, and include it in experiments only for the
Page collection (Revision and Influenza both had average run length around 1 in their DAs –
far too low for RLED to acheive any compression).

3.3 Experiments Results

We implemented the RLZ- and RLE-based encodings of DA and combined them with the
scan-based “brute-force” methods for document listing described in Section 2. Results
of experiments on our three test collections are shown in Figure 3. Plain-bv, the fastest
uncompressed method from Section 2 is included as a reference point. On the Page dataset,
the methods using RLE are clearly fastest, with RLED-bv being the fastest overall. However
the RLZ-based methods also show good performance, with RLZD-bv being only marginally
slower than the uncompressed Plain-bv baseline (0.07 vs. 0.06 nanoseconds per query). On
the Revision and Influenza datasets, where the RLE method does not apply, we observe a
similar pattern in the RLZ-based methods as was observed in Section 2 for the uncompressed
methods: RLZD-bv is fastest, followed by RLZD-hash.

Page Revision Influenza

P
la
in
-b
v

R
L
E
D
-b
v

R
L
E
D
-s
or
t

R
L
E
D
-h
as
h

R
L
E
D
-t
re
e

R
L
E
D
-u
se
t

R
L
Z
D
-b
v

R
L
Z
D
-s
o r
t

R
L
Z
D
-h
as
h

R
L
Z
D
-t
re
e

R
L
Z
D
-u
se
t

P
la
in
-b
v

R
L
E
D
-b
v

R
L
E
D
-s
or
t

R
L
E
D
-h
as
h

R
L
E
D
-t
re
e

R
L
E
D
-u
se
t

R
L
Z
D
-b
v

R
L
Z
D
-s
o r
t

R
L
Z
D
-h
as
h

R
L
Z
D
-t
re
e

R
L
Z
D
-u
se
t

P
la
in
-b
v

R
L
E
D
-b
v

R
L
E
D
-s
o r
t

R
L
E
D
-h
as
h

R
L
E
D
-t
re
e

R
L
E
D
-u
se
t

R
L
Z
D
-b
v

R
L
Z
D
-s
o r
t

R
L
Z
D
-h
as
h

R
L
Z
D
-t
re
e

R
L
Z
D
-u
se
t

10

100

1k

10k

100k

1M

Q
u
er
y
ti
m
e
(n
s)

Figure 3 Boxplots showing query times for our RLZ- and RLE-compressed DA variants. We
include the fastest among uncompressed methods, Plain-bv, as a reference point. Note that the
vertical axis is logarithmic. These results were obtained on patterns with 4-mers of high frequency
(see Section 4 and Table 1 for details of data sets and patterns). The RLZD index was constructed
with the following parameters: for Page k = 312, s = 2048, reference size 7.95MB, for Revision k =
8, s = 1024, 36.38MB reference, and for Influenza k = 12, s = 256, 61.24MB reference. Reference
sizes were computed experimentally. For Revision and Influenza there is no data for RLED because
on these datasets it does not achieve any compression (see text, Section 3.2).

SEA 2021

12:8 Document Retrieval Hacks

Table 1 Statistics for document collections: Collection name; Size in megabytes; Docs, number of
documents; Doc size, average document length; k-mer, length of k-mers in the patterns; F requency,
frequency of k-mers chosen for patterns; number of P atterns; Occs, average number of occurrences;
Doc occ, average number of document occurrences; Occs/doc, average ratio of occurrences to
document occurrences.

Collection Size, MB Docs Doc size k-mer F requency P atterns Occs Doc occs Occs/doc

(n) (D) (n/D) (occ) (docc) (occ
docc

)
high 318 136.00 153.81 2 068.32
mid 11 994.35 34.23 350.434
low 500.50 4.80 104.16
high 87 081.25 55.31 1 574.51
mid 7 148.71 19.90 359.25

Page 1 037 280 38 883 145

8
low 500.50 6.54 76.56
high 317 512.93 31 850.79 9.97
mid 12 017.48 5 937.12 2.024
low 500.50 389.86 1.28
high 86 895.30 11 627.18 7.47
mid 7 147.44 3 814.97 1.87

Revision 1 035 65 565 16 552

8
low

1 000

500.50 390.65 1.28
high 1 819 407.80 224 449.40 8.11
mid

141
562 380.65 161 793.77 3.484

low 142 75.18 70.52 1.07
high 41 721.84 37 822.00 1.10
mid 9 784.96 9 665.94 1.01

Influenza 321 227 356 1 480

8
low

1 000
500.50 498.79 1.00

4 Performance Comparison

In this section we report on the practical performance of our document listing approaches to
other state-of-the art solutions.

4.1 Experimental Setup
Test Machine. All our experiments2 were conducted on a 2.10 GHz Intel Xeon E7-4830
v3 CPU equipped with 30 MiB L3 cache and 1.5 TiB of main memory. The machine
had no other significant CPU tasks running and only a single thread of execution was
used. The OS was Linux (Ubuntu 18.04.5 LTS) running kernel 5.4.0-58-generic. Programs
were compiled using g++ version 7.5.0. All given runtimes were recorded with the C++11
high_resolution_clock time measurement facility.

Datasets. Table 1 summarizes the collections and patterns used. Page and Revision are
repetitive collections generated from a Finnish-language Wikipedia archive with full version
history: 280 pages with a total of 65, 565 revisions. In Page, all the revisions of a page form
a single document. In the case of Revision, each page revision becomes a separate document.
Influenza is composed of 227, 356 sequences of the H. influenzae virus genomes3.

Query Patterns. To form the query patterns for each dataset (see statistics in Table 1) we
first computed the set of all distinct substrings of printable characters of lengths 4 and 8,
and their number of occurrences. Each such set of these substrings were then sorted based

2 Code is available at https://www2.helsinki.fi/en/researchgroups/algorithmic-bioinformatics/
compressed-data-structures.

3 All data sets are available at https://jltsiren.kapsi.fi/rlcsa.

https://www2.helsinki.fi/en/researchgroups/algorithmic-bioinformatics/compressed-data-structures
https://www2.helsinki.fi/en/researchgroups/algorithmic-bioinformatics/compressed-data-structures
https://jltsiren.kapsi.fi/rlcsa

S. J. Puglisi and B. Zhukova 12:9

on their occurrences, and divided into three equal subsets based on their frequencies: high,
middle, and low. In the subset if there were less than a 1000 patterns, then all the patterns
in this subset form a corresponding file with queries, and if there were more than 1000, we
choose a 1000 out of them that represent the subset: for high – 1000 most frequent, for mid –
1000 that are exactly at the middle of the list with the sorted frequencies, and for the low –
1000 least frequent. Patterns with high occ represent hard cases for our scan-based methods.

Indexes Measured. We used the recent study of Cobas and Navarro [4] as a guide for
selecting the best-performing document listing methods to include for each data set. In
particular, we measured the following indexes.

Brute Force. Apart from sort, the method from Section 2, which is referred to as Packed-
sort in [4], we also include Brute-C a variant from [4] that uses a grammar-compressed
DA, augmented with the length of the expansion of each nonterminal. If the resulting
grammar tree has height h the interval DA[s, e] can be extracted in time O(h + e − s).
Grammar-Compressed Document Array (GCDA), the proposal of Cobas and Navarro [4],
which precomputes answers to document listing queries and stores them grammar com-
pressed to reduce space. We set parameters b and β as described in [4].
Sadakane (Sada). Sada-D is the index of Sadakane [22] in which the query time was sped
up by explicitly storing DA, as first suggested in [5].
Interleaved Longest Common Prefix (ILCP). ILCP-D is a variant of the ILCP index of Gagie
et al. [5] that uses DA. ILCP-C uses, instead, Cobas and Navarro’s [4] grammar-compressed
DA, which can access any cell of DA in O(h) time.

All indexes tested (including our own) use the same RLCSA implementation [12] to
find the relevant interval [s, e] of DA for each query pattern. This RLCSA uses (r log σ +
2r log(n/r))(1 + o(1)) bits of space, where r is the number of runs in the BWT of T, and
finds the interval in O(m log r) time. RLCSA for Page and Revision required 0.13 bits per
symbol, and 0.26 bits per symbol for Influenza.

4.2 Results
Figure 4 shows the tradeoff between time and space for the indexes that were shown in [4] to
be among fastest and smallest, and the ones described in this paper: Packed-bv, which was
the second fastest among uncompressed versions (Figure 1) after Plain-bv (but uses much less
space); and the two fastest variants for RLZD and RLED: -bv and -hash (Figure 3). RLZD
on these datasets has shown the best compression on Page (0.341 for RLZD and 0.412 for
Brute-C, which is the closest) and second best after Brute-C on Revision (0.812 for RLZD and
0.595 for Brute-C) and Influenza (2.958 for RLZD and 2.541 for Brute-C). These space results
for RLZD were received with the following parameters to generate the reference: for Page k

= 312, s = 2048, ref = 1, 987, 456 integers requested, for Revision k = 8, s = 1024, ref =
9, 096, 048, and for Influenza k = 12, s = 256, ref = 15, 310, 000. Ref values were computed
experimentally. In terms of time RLZD-bv yields only to Packed-bv (and in half of the cases
outperforms it), but the time difference is marginal and Packed-bv requires 6-20× more space.

RLED dominates on Page (where there are few and large documents), especially on high
frequent patterns, where the closest competitor GCDA is 6 times slower. RLZD-bv in this
case is 41 times slower than RLED-bv, but requires 3 times less space; compared to GCDA,
RLZD-bv is almost 5 times slower, but needs almost half the space (GCDA takes 0.584 bits per
symbol, RLZD 0.341). On the moderately frequent pattern set the time difference between
RLZD-bv and GCDA becomes negligible, and RLZD-bv is starting to win on longer patterns.

SEA 2021

12:10 Document Retrieval Hacks

On low frequent queries RLZD-bv becomes 3 times faster than GCDA, only 1.6 times slower
than RLED-bv and is indeed only marginally slower than Packed-bv.

102

103

104

tim
e

(µ
s/

qu
er

y)

Page, high

101

102

Page, mid

101

Page, low

4-
m

er
s

0 5 10
101

102

103

tim
e

(µ
s/

qu
er

y)

0 5 10

101

102

0 5 10

101

8-
m

er
s

103

104

tim
e

(µ
s/

qu
er

y)

Revision, high

102

103

Revision, mid

101

Revision, low

4-
m

er
s

0 5 10 15 20

103

tim
e

(µ
s/

qu
er

y)

0 5 10 15 20

102

0 5 10 15 20

101

102

8-
m

er
s

104

105

tim
e

(µ
s/

qu
er

y)

Influenza, high

104

Influenza, mid

100

101

Influenza, low
4-

m
er

s

5 10 15 20
index size (bits/symbol)

103

tim
e

(µ
s/

qu
er

y)

5 10 15 20
index size (bits/symbol)

102

103

5 10 15 20
index size (bits/symbol)

101

102

8-
m

er
s

ILCP-D
ILCP-C
Sada-D
GCDA
Brute-C
Packed-sort
Packed-bv
RLZD-bv
RLZD-hash
RLED-bv
RLED-hash

Figure 4 Document listing indexes on real repetitive collections. The x axis shows the total size
of the index in bits per symbol. The y axis shows the average time per query in microseconds. Note
that the vertical axis is logarithmic.

In the case of Revision, where are more and smaller documents, RLZD-bv is about 1.4-1.5×
faster than Packed-bv on frequent patterns, showing almost the same time results on middle
and low frequent queries. ILCP-D is 2.5-3× slower on high frequent patterns (taking more
than 22 times more space, requiring 18.155 bit per symbol), slowing down to 4.5-5× on low
frequent. GCDA is 5.3-6.7× slower than RLZD-bv here. Brute-C with the index size of 1.36×
smaller than RLZD, takes 8.5 − 23.8× more time compared to RLZD-bv. Here RLZD-hash is
9.7-14× slower than RLZD-bv variant.

S. J. Puglisi and B. Zhukova 12:11

Influenza, with many small documents, is the worst case for many indexes. Here the
smallest index, Brute-C, takes 1.16× less space than the nearest competitor, RLZD, and from
10.3 (on 8-mers with low frequency) upto 27.6 (on 4-mers with high frequency) more time
than RLZD-bv. Packed-bv is 1.06 upto 1.42 times faster (271 microseconds for Packed-bv
versus 388 for RLZD-bv on 8-mers with high frequency) and requires 6.3× more space. The
other three nearest competitors: ILCP-D is 4-28× slower and as big as Packed-bv, GCDA is
8-13.6× slower, requiring 1.6 more space, and ILCP-C, which is third best space-wise, requires
1.14 more space (0.923 bits per symbol) and 4.7-10.2 more time.

In most cases the best previous indexes (from [4]) are either much slower, much larger, or
both, compared to the ones we describe.

5 Conclusions and Future Work

We have shown that very simple algorithms based on scanning intervals of the document
array lead to very fast document listing times on three highly repetitive data sets of versioned
documents and genome collections. We have further shown these approaches to work well with
new compressed representations of the document array based on relative Lempel-Ziv parsing
and run-length encoding. We speculate that there are many ways to further engineer and
improve the approaches we have described, however, our experiments here strongly indicate
that they already exhibit significant performance improvements over existing methods. Our
indexes are among the smallest document listing approaches known (at least on the data
sets tested) and are an order of magnitude or faster.

There are numerous avenues for future work. Firstly, the results of this paper should lead
directly to greatly improved performance for the metagenomics applications of document
listing investigated in [3]. Extending our results to more complex versions of the document
listing problem, such as document listing with frequencies and top-k document retrieval
should also be possible. It may also be fruitful to apply RLZ compression to improve other
document listing methods, as was done with grammar compression by Cobas and Navarro [4].

Finally, it would seem important to determine the interval size at which specialized
document listing methods begin to overhaul scanning-based methods. Such an investigation
would necessarily involve indexing large test collections, which bring their own different
challenges for the more intricate indexes, such as index construction. Our results here show
that scanning-methods still have the edge for interval sizes into the millions.

References
1 M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.

The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–2576, 2005.
2 F. Claude and I. Munro. Document listing on versioned documents. In Proc. SPIRE, LNCS

8214, pages 72–83, 2013.
3 D. Cobas, V. Mäkinen, and M. Rossi. Tailoring r-index for document listing towards metagen-

omics applications. In Proc. SPIRE, LNCS 12303, pages 291–306. Springer, 2020.
4 D. Cobas and G. Navarro. Fast, small, and simple document listing on repetitive text collections.

In Proc. SPIRE, LNCS 11811, pages 482–498, 2019.
5 T. Gagie, A. Hartikainen, K. Karhu, J. Kärkkäinen, G. Navarro, S. J. Puglisi, and J. Sirén.

Document retrieval on repetitive collections. Information Retrieval, 20:253–291, 2017.
6 T. Gagie, S. J. Puglisi, and D. Valenzuela. Analyzing relative Lempel-Ziv reference construction.

In Proc. SPIRE, LNCS 9954, pages 160–165, 2016.
7 S. Gog, R. Konow, and G. Navarro. Practical compact indexes for top-k document retrieval.

ACM Journal of Experimental Algorithmics, 22(1):article 1.2, 2017.

SEA 2021

12:12 Document Retrieval Hacks

8 W.-K. Hon, R. Shah, and J. Vitter. Space-efficient framework for top-k string retrieval
problems. In Proc. FOCS, pages 713–722. IEEE, 2009.

9 C. Hoobin, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv factorization for efficient storage
and retrieval of web collections. Proceedings of the VLDB Endowment, 5(3):265–273, 2011.

10 S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv compression of genomes for
large-scale storage and retrieval. In Proc. SPIRE, LNCS 6393, pages 201–206, 2010.

11 K. Liao, M. Petri, A. Moffat, and A. Wirth. Effective construction of relative lempel-ziv
dictionaries. In Proc. WWW, pages 807–816. ACM, 2016.

12 V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of highly repetitive
sequence collections. Journal of Computational Biology, 17(3):281–308, 2010.

13 U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, 1993.

14 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666, 2002.

15 G. Navarro. Spaces, trees and colors: The algorithmic landscape of document retrieval on
sequences. ACM Computing Surveys, 46(4):article 52, 2014.

16 G. Navarro. Document listing on repetitive collections with guaranteed performance. Theoretical
Computer Science, 777:58–72, 2019.

17 G. Navarro. Indexing highly repetitive string collections, part I: Repetitiveness measures.
ACM Computing Surveys, 2020. To appear.

18 G. Navarro. Indexing highly repetitive string collections, part II: Compressed indexes. ACM
Computing Surveys, 54(2):article 26, 2021.

19 G. Navarro, S. J. Puglisi, and D. Valenzuela. General document retrieval in compact space.
ACM Journal of Experimental Algorithmics, 19(2):article 3, 2014.

20 S. J. Puglisi and B. Zhukova. Relative Lempel-Ziv compression of suffix arrays. In Proc.
SPIRE, LNCS 12303, pages 89–96. Springer, 2020.

21 S. J. Puglisi and B. Zhukova. Smaller RLZ-compressed suffix arrays. In Proc. Data Compression
Conference, pages 213–222. IEEE Computer Society, 2021.

22 K. Sadakane. Succinct data structures for flexible text retrieval systems. Journal of Discrete
Algorithms, 5:12–22, 2007.

23 J. Tong, A. Wirth, and J. Zobel. Principled dictionary pruning for low-memory corpus
compression. In Proc. SIGIR, pages 283–292. ACM, 2014.

24 J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transac-
tions on Information Theory, 23(3):337–343, 1977.

O’Reach:
Even Faster Reachability in Large Graphs
Kathrin Hanauer !

University of Vienna, Faculty of Computer Science, Austria

Christian Schulz !

Heidelberg University, Germany

Jonathan Trummer !

University of Vienna, Faculty of Computer Science, Austria

Abstract
One of the most fundamental problems in computer science is the reachability problem: Given a
directed graph and two vertices s and t, can s reach t via a path? We revisit existing techniques and
combine them with new approaches to support a large portion of reachability queries in constant
time using a linear-sized reachability index. Our new algorithm O’Reach can be easily combined
with previously developed solutions for the problem or run standalone.

In a detailed experimental study, we compare a variety of algorithms with respect to their
index-building and query times as well as their memory footprint on a diverse set of instances.
Our experiments indicate that the query performance often depends strongly not only on the
type of graph, but also on the result, i.e., reachable or unreachable. Furthermore, we show that
previous algorithms are significantly sped up when combined with our new approach in almost all
scenarios. Surprisingly, due to cache effects, a higher investment in space doesn’t necessarily pay off:
Reachability queries can often be answered even faster than single memory accesses in a precomputed
full reachability matrix.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms

Keywords and phrases Reachability, Static Graphs, Graph Algorithms, Reachability Index, Algo-
rithm Engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.13

Related Version Full Version: https://arxiv.org/abs/2008.10932 [12]

Supplementary Material Software (Code Repository): https://github.com/o-reach/O-Reach
archived at swh:1:dir:55d23a5b940f1ead285729c8dbd82c71e28d504a

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement no. 340506.

1 Introduction

Graphs are used to model problem settings of various different disciplines. A natural question
that arises frequently is whether one vertex of the graph can reach another vertex via a
path of directed edges. Reachability finds application in a wide variety of fields, such as
program and dataflow analysis [24, 25], user-input dependence analysis [27], XML query
processing [34], and more [40]. Another prominent example is the Semantic Web which is
composed of RDF/OWL data. These are often very huge graphs with rich content. Here,
reachability queries are often necessary to deduce relationships among the objects.

There are two straightforward solutions to the reachability problem: The first is to answer
each query individually with a graph traversal algorithm, such as breadth-first search (BFS)
or depth-first search (DFS), in worst-case O(m + n) time and O(n) space. Secondly, we can

© Kathrin Hanauer, Christian Schulz, and Jonathan Trummer;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 13; pp. 13:1–13:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kathrin.hanauer@univie.ac.at
https://orcid.org/0000-0002-5945-837X
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
mailto:jonathan.trummer@univie.ac.at
https://orcid.org/0000-0002-1086-4756
https://doi.org/10.4230/LIPIcs.SEA.2021.13
https://arxiv.org/abs/2008.10932
https://github.com/o-reach/O-Reach
https://archive.softwareheritage.org/swh:1:dir:55d23a5b940f1ead285729c8dbd82c71e28d504a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 O’Reach: Even Faster Reachability in Large Graphs

precompute a full all-pairs reachability matrix in an initialization step and answer all ensuing
queries in worst-case constant time. In return, this approach suffers from a space complexity
of O(n2) and an initialization time of O(n · m) using the Floyd-Warshall algorithm [7, 35, 6]
or starting a graph traversal at each vertex in turn. Alternatively, the initialization step
can be performed in O(nω) via fast matrix multiplication, where O(nω) is the time required
to multiply two n × n matrices (2 ≤ ω < 2.38 [20]). With increasing graph size, however,
both the initialization time and space complexity of this approach become impractical. We
therefore strive for alternative algorithms which decrease these complexities whilst still
providing fast query lookups.

Contribution. In this paper, we study a variety of approaches that are able to support fast
reachability queries. All of these algorithms perform some kind of preprocessing on the graph
and then use the collected data to answer reachability queries in a timely manner. Based
on simple observations, we provide a new algorithm, O’Reach, that can improve the query
time for a wide range of cases over state-of-the-art reachability algorithms at the expense of
some additional precomputation time and space or be run standalone. Furthermore, we show
that previous algorithms are significantly sped up when combined with our new approach in
almost all scenarios. In addition, we show that the expected query performance of various
algorithms does not only depend on the type of graph, but also on the ratio of successful
queries, i.e., with result reachable. Surprisingly, through cache effects and a significantly
smaller memory footprint, especially unsuccessful reachability queries can be answered faster
than single memory accesses in a precomputed reachability matrix.

2 Preliminaries

Terms and Definitions. Let G = (V, E) be a simple directed graph with vertex set V and
edge set E ⊆ V × V . As usual, n = |V | and m = |E|. An edge (u, v) is said to be outgoing
at u and incoming at v, and u and v are called adjacent. The out-degree deg+(u) (in-degree
deg−(u)) of a vertex u is its number of outgoing (incoming) edges. A vertex without incoming
(outgoing) edges is called a source (sink). The out-neighborhood N+(v) (in-neighborhood
N−(v)) of a vertex u is the set of all vertices v such that (u, v) ∈ E ((v, u) ∈ E). The
reverse of an edge (u, v) is an edge (v, u) = (u, v)R. The reverse GR of a graph G is obtained
by keeping the vertices of G, but substituting each edge (u, v) ∈ E by its reverse, i.e.,
GR = (V, ER).

A sequence of vertices s = v0 → · · · → vk = t, k ≥ 0, such that for each pair of
consecutive vertices vi → vi+1, (vi, vi+1) ∈ E, is called an s-t path. If such a path exists, s is
said to reach t and we write s →∗ t for short, and s ̸→∗ t otherwise. The out-reachability
R+(u) = {v | u →∗ v} (in-reachability R−(u) = {v | v →∗ u}) of a vertex u ∈ V is the set of
all vertices that u can reach (that can reach u).

A weakly connected component (WCC) of G is a maximal set of vertices C ⊆ V such
that ∀u, v ∈ C : u →∗ v in G = (V, E ∪ ER), i.e., also using the reverse of edges. Note
that if two vertices u, v reside in different WCCs, then u ̸→∗ v and v ̸→∗ u. A strongly
connected component (SCC) of G denotes a maximal set of vertices S ⊆ V such that
∀u, v ∈ S : u →∗ v ∧ v →∗ u in G. Contracting each SCC S of G to a single vertex vS ,
called its representative, while preserving edges between different SCCs as edges between
their corresponding representatives, yields the condensation GC of G. We denote the SCC a
vertex v ∈ V belongs to by S(v). A directed graph G is strongly connected if it only has a
single SCC and acyclic if each SCC is a singleton, i.e., if G has n SCCs. Observe that G and

K. Hanauer, C. Schulz, and J. Trummer 13:3

GR have exactly the same WCCs and SCCs and that GC is a directed acyclic graph (DAG).
Weakly connected components of a graph can be computed in O(n + m) time, e.g., via a
breadth-first search that ignores edge directions. The strongly connected components of a
graph can be computed in linear time [29] as well.

A topological ordering τ : V → N0 of a DAG G is a total ordering of its vertices such that
∀(u, v) ∈ E : τ(u) < τ(v). Note that the topological ordering of G isn’t necessarily unique,
i.e., there can be multiple different topological orderings. For a vertex u ∈ V , the forward
topological level F(u) = minτ τ(u), i.e., the minimum value of τ(u) among all topological
orderings τ of G. Consequently, F(u) = 0 if and only if u is a source. The backward topological
level B(u) of u ∈ V is the topological level of u with respect to GR and B(u) = 0 if and only
if u is a sink. A topological ordering as well as the forward and backward topological levels
can be computed in linear time [19, 30, 6], see also Sect. 4.

A reachability query Query(s, t) for a pair of vertices s, t ∈ V is called positive and
answered with true if s →∗ t, and otherwise negative and answered with false. Trivially,
Query(v, v) is always true, which is why we only consider non-trivial queries between
distinct vertices s ̸= t ∈ V from here on. Let P (N) denote the set of all positive (negative)
non-trivial queries of G, i.e., the set of all (s, t) ∈ V × V , s ≠ t, such that Query(s, t)
is positive (negative). The reachability ρ in G is the ratio of positive queries among all
non-trivial queries, i.e., ρ = |P|

n(n−1) . Note, that due to the restriction to non-trivial queries1,
0 ≤ ρ ≤ 1. The Reachability problem, studied in this paper, consists in answering a sequence
of reachability queries for arbitrary pairs of vertices on a given input graph G.

Basic Observations. With respect to processing a reachability Query(s, t) in a graph G

for an arbitrary pair of vertices s ̸= t ∈ V , the following basic observations are immediate
and have partially also been noted elsewhere [22]:

(B1) If s is a sink or t is a source, then s ̸→∗ t.
(B2) If s and t belong to different WCCs of G, then s ̸→∗ t.
(B3) If s and t belong to the same SCC of G, then s →∗ t.
(B4) If τ(S(t)) < τ(S(s)) for any topological ordering τ of GC, then s ̸→∗ t.

As mentioned above, the precomputations necessary for Observations (B2) and (B3) can
be performed in O(n + m) time. Note, however, that Observations (B3) and (B4) together
are equivalent to asking whether s →∗ t: If s →∗ t and S(s) ̸= S(t), then for every
topological ordering τ , τ(S(s)) < τ(S(t)). Otherwise, if s ̸→∗ t, a topological ordering τ

with τ(S(t)) < τ(S(s)) can be computed by topologically sorting GC ∪ {(S(t), S(s))}. Hence,
the precomputations necessary for Observation (B4) would require solving the Reachability
problem for all pairs of vertices already. Furthermore, a DAG can have exponentially many
different topological orderings. In consequence, weaker forms are employed, such as the
following [38, 39, 22] (see also Sect. 4):

(B5) If F(S(t)) < F(S(s)) w. r. t. GC, then s ̸→∗ t.
(B6) If B(S(s) < B(S(t)) w. r. t. GC, then s ̸→∗ t.

Assumptions. Following the convention introduced in preceding work [38, 39, 3, 22]
(cf. Sect. 3), we only consider Reachability on DAGs from here on and implicitly assume
that the condensation, if necessary, has already been computed and Observation (B3) has
been applied. For better readability, we also drop the use of S(·).

1 Otherwise, 1
n ≤ ρ.

SEA 2021

13:4 O’Reach: Even Faster Reachability in Large Graphs

Table 1 Time and space complexity of reachability algorithms. Parameters: kIP: #permutations,
hIP: #vertices with precomputed R+(·), sBFL: size of Bloom filter (bits), ρ: reachability in G, d:
#topological orderings, k: #supportive vertices, p: #candidates per supportive vertex.

Algorithm Initialization Time Index Size (Byte) Queries: Time Space
BFS/DFS O(1) 0 O(n + m) O(n)
Full matrix O(n · (n + m)) n2/8 O(1) O(1)
PPL [37] O(n log n + m) O(n log n) O(log n) O(log n)
PReaCH [22] O(m + n log n) 56n O(1) / O(n + m) O(n)
IP(kIP, hIP) [36] O((kIP + hIP)(n + m)) O((kIP + hIP)n) O(kIP) / O(kIP · n · ρ2) O(n)
BFL(sBFL) [28] O(sBFL · (n + m)) 2⌈ sBFL

8 ⌉n O(sBFL) / O(sBFL · n + m) O(n)
O’Reach(d, k, p) (Sect. 4) O((d + kp)(n + m)) (12 + 12d + 2⌈ k

8 ⌉)n O(k + d + 1) / O(n + m) O(n)

3 Related Work

A large amount of research on reachability indices has been conducted. Existing approaches
can roughly be put into three categories: compression of transitive closure [14, 13, 2, 34, 15, 32],
hop-labeling-based algorithms [5, 4, 26, 37, 16], as well as pruned search [18, 31, 38, 39, 22,
33, 36, 28]. As Merz and Sanders [22] noted, the first category gives very good query times
for small networks, but doesn’t scale very well to large networks (which is the focus of this
work). Therefore, we do not consider approaches based on this technique more closely. Hop
labeling algorithms typically build paths from labels that are stored for each vertex. For
example in 2-hop labeling, each vertex stores two sets containing vertices it can reach in
the given graph as well as in the reverse graph. A query can then be reduced to the set
intersection problem. Pruned-search-based approaches precompute information to speed up
queries by pruning the search.

Due to its volume, it is impossible to compare against all previous work. We mostly
follow the methodology of Merz and Sanders [22] and focus on five recent techniques. The
two most recent hop-labeling-based approaches are TF [3] and PPL [37]. In the pruned search
category, the three most recent approaches are PReaCH [22], IP [36], and BFL [28]. We now
go into more detail:

TF. The work by Cheng et al. [3] uses a data structure called topological folding. On the
condensation DAG, the authors define a topological structure that is obtained by recursively
folding the structure in half each time. Using this topological structure, the authors create
labels that help to quickly answer reachability queries.

PPL. Yano et al. [37] use pruned landmark labeling and pruned path labeling as labels
for their reachability queries. In general, the method follows the 2-hop labeling technique
mentioned above, which stores sets of vertices for each vertex v and reduces queries to the
set intersection problem. Their techniques are able to reduce the size of the stored labels
and hence to improve query time and space consumption.

PReaCH. Merz and Sanders [22] apply the approach of contraction hierarchies (CHs) [9, 10]
known from shortest-path queries to the reachability problem. The method first tries to
answer queries by using pruning and precomputed information such as topological levels
(Observation (B5) and (B6)). It adopts and improves techniques from GRAIL [38, 39] for that
task, which is distinctly outperformed by PReaCH in the subsequent experiments. Should
these techniques not answer the query, PReaCH instead performs a bidirectional breadth-first
search (BFS) using the computed hierarchy, i.e., for a Query(s, t) the BFS only considers
neighboring vertices with larger topological level and along the CH. The overall approach is
simple and guarantees linear space and near linear preprocessing time.

K. Hanauer, C. Schulz, and J. Trummer 13:5

IP. Wei et al. [36] use a randomized labeling approach by applying independent permuta-
tions on the labels. Contrary to other labeling approaches, IP checks for set-containment
instead of set-intersection. Therefore, IP tries to answer negative queries by checking for at
least one vertex that it is contained in only one of the two sets, where each set can consist of
at most kIP vertices. If this test fails, IP checks another label, which contains precomputed
reachability information from the hIP vertices with largest out-degree, and otherwise falls
back to depth-first-search (DFS).

BFL. Su et al. [28] propose a labeling method which is based on IP, but additionally
uses Bloom filters for storing and comparing labels, which are then used to answer negative
queries. As parameters, BFL accepts sBFL and dBFL, where sBFL denotes the length of the
Bloom filters stored for each vertex and dBFL controls the false positive rate. By default,
dBFL = 10 · sBFL.

Table 1 subsumes the time and space complexities of the new algorithm O’Reach that we
introduce in Sect. 4 as well as all algorithms mentioned in this paper except for TF, where the
expressions describing the theoretical complexities are bulky and quite complex themselves.

4 O’Reach: Faster Reachability via Observations

In this section we propose our new algorithm O’Reach, which is based on a set of simple,
yet powerful observations that enable us to answer a large proportion of reachability queries
in constant time and brings together techniques from both hop labeling and pruned search.
Unlike regular hop-labeling-approaches, however, its initialization time is linear. As a further
plus, our algorithm is configurable via multiple parameters and extremely space-efficient
with an index of only 38n Byte in the most space-saving configuration that could handle all
instances used in Sect. 5 and uses all features.

Overview. The hop labeling technique used in our algorithm is inspired by a recent result
for experimentally faster reachability queries in a dynamic graph by Hanauer et al. [11]. The
idea here is to speed up reachability queries based on a selected set of so-called supportive
vertices, for which complete out- and in-reachability is maintained explicitly. This information
is used in three simple observations, which allow to answer matching queries in constant time.
In our algorithm, we transfer this idea to the static setting. We further increase the ratio of
queries answerable in constant time by a new perspective on topological orderings and their
conflation with depth-first search, which provides additional reachability information and
further increases the ratio of queries answerable in constant time. In case that we cannot
answer a query via an observation, we fall back to either a pruning bidirectional breadth-first
search or one of the existing algorithms.

In the following, we switch the order and first discuss topological orderings in depth,
followed by our adaptation of supportive vertices. For both parts, consider a reachability
Query(s, t) for two vertices s, t ∈ V with s ̸= t.

4.1 Extended Topological Orderings
Taking up on the observation that topological orderings can be used to answer a reachability
query decisively negative, we first investigate how Observation (B4) can be used most
effectively in practice. Before we dive deeper into this subject, let us briefly review some
facts concerning topological orderings and reachability in general.

SEA 2021

13:6 O’Reach: Even Faster Reachability in Large Graphs

▶ Theorem 1. Let N (τ) ⊆ N denote the set of negative queries a topological ordering τ can
answer, i.e., the set of all (s, t) ∈ N such that τ(t) < τ(s), and let ρ−(τ) = N (τ)/N be the
answerable negative query ratio.
(i) The reachability in any DAG is at most 50%. In this case, the topological ordering is

unique.
(ii) Any topological ordering τ witnesses the non-reachability between exactly 50% of all pairs

of distinct vertices. Therefore, ρ−(τ) ≥ 50%.
(iii) Every topological ordering of the same DAG can answer the same ratio of all negative

queries via Observation (B4), i.e., for two topological orderings τ , τ ′: ρ−(τ) = ρ−(τ ′).
(iv) For two different topological orderings τ ̸= τ ′ of a DAG, N (τ) ̸= N (τ ′).

Proof. Let G be a directed acyclic graph (DAG).
(i) As G is acyclic, there is at least one topological ordering τ of G. Then, for every edge

(u, v) of G, τ(u) < τ(v), which implies that each vertex u can reach at most all those
vertices w ̸= u with τ(u) < τ(w). Consequently, a vertex u with τ(u) = i can reach at
most n − i − 1 other vertices (note that i ≥ 0). Thus, the reachability in G is at most

1
n(n−1)

∑︀n−1
i=0 (n − i − 1) = 1

n(n−1)
∑︀n−1

j=0 j = n(n−1)
n(n−1)·2 = 1

2 . Conversely, assume that the
reachability in G is 1

2 . Then, each vertex u with τ(u) = i reaches exactly all n− i−1 other
vertices ordered after it, which implies that there exists no other topological ordering τ ′

with τ ′(u) > τ(u). By induction on i, the topological ordering of G is unique.
(ii) Let τ be an arbitrary topological ordering of G. Then, each vertex u with τ(u) = i can

certainly reach those vertices v with τ(v) < τ(u). Hence, τ witnesses the non-reachability
of exactly

∑︀n−1
i=1 i = n(n−1)

2 pairs of distinct vertices.
(iii) As Observation (B4) corresponds exactly to the non-reachability between those pairs of

vertices witnessed by the topological ordering, the claim follows directly from (ii).
(iv) As τ ̸= τ ′, there is at least one i ∈ N0 such that τ(u) = i = τ ′(v) and u ̸= v. Let j = τ(v).

If j > i, the number of non-reachabilities from v to another vertex witnessed by τ exceeds
the number of those witnessed by τ ′, and falls behind it otherwise. In both cases, the
difference in numbers immediately implies a difference in the set of vertex pairs, which
proves the claim. ◀

In consequence, it is pointless to look for one particularly good topological ordering. Instead,
to get the most out of Observation (B4), we need topological orderings whose sets of
answerable negative queries differ greatly, such that their union covers a large fraction of N .
Note that both forward and backward topological levels each represent the set of topological
orderings that can be obtained by ordering the vertices in blocks grouped by their level
and arbitrarily permuting the vertices in each block. Different algorithms [19, 29, 6] for
computing a topological ordering in linear time have been proposed over the years, with
Kahn’s algorithm [19] in combination with a queue being one that always yields a topological
ordering represented by forward topological levels. We therefore complement the forward
and backward topological levels by stack-based approaches, as in Kahn’s algorithm [19] in
combination with a stack or Tarjan’s DFS-based algorithm [29] for computing the SCCs of
a graph, which as a by-product also yields a topological ordering of the condensation. To
diversify the set of answerable negative queries further, we additionally randomize the order
in which vertices are processed in case of ties and also compute topological orderings on the
reverse graph, in analogy to backward topological levels.

We next show how, with a small extension, the stack-based topological orderings mentioned
above can be used to additionally answer positive queries. To keep the description concise,
we concentrate on Tarjan’s algorithm [29] in the following and reduce it to the part relevant
for obtaining a topological ordering of a DAG. In short, the algorithm starts a depth-first

K. Hanauer, C. Schulz, and J. Trummer 13:7

1: procedure ExtendedTopSort(G = (V,E), S)
2: for all v ∈ V do v.visited ← false
3: i← n− 1 ; initialize τ , τH , τX empty
4: for all s ∈ S in random order do Visit(s)
5: procedure Visit(v)
6: if v.visited then return
7: v.visited ← true; τH(v)← i; τX(v)← i
8: for u ∈ N+(v) in random order do
9: Visit(u); τX(v)← max(τX(v), τX(u))

10: τ(v)← i ; i← i− 1

11: return τ , τH , τX

5

4

3

2

1

0

0 1

0

(a) (b)

Figure 1 (a): Extended Topological Sorting. (b): Three extended topological orderings of two
graphs: The labels correspond to the order in the start set S. If the label is empty, the vertex need
not be in S or can have any larger number. The brackets to the left show the range [τ(v), τH(v)],
the braces to the right the range [τ(v), τX(v)].

search at an arbitrary vertex s ∈ S, where S ⊆ V is a given set of vertices to start from.
Whenever it visits a vertex v, it marks v as visited and recursively visits all unvisited vertices
in its out-neighborhood. On return, it prepends v to the topological ordering. A loop over
S = V ensures that all vertices are visited. Note that although the vertices are visited in
DFS order, the topological ordering is different from a DFS numbering as it is constructed
“from back to front” and corresponds to a reverse sorting according to what is also called
finishing time of each vertex.

To answer positive queries, we exploit the invariant that when visiting a vertex v, all yet
unvisited vertices reachable from v will be prepended to the topological ordering prior to v

being prepended. Consequently, v can certainly reach all vertices in the topological ordering
between v and, exclusively, the vertex w that was at the front of the topological ordering
when v was visited. Let x denote the vertex preceding w in the final topological ordering,
i.e., the vertex with the largest index that was reached recursively from v. For a topological
ordering τ constructed in this way, we call τ(x) the high index of v and denote it with τH(v).
Furthermore, v may be able to also reach w and vertices beyond, which occurs if v →∗ y for
some vertex y, but y had already been visited earlier. We therefore additionally track the max
index, the largest index of any vertex that v can reach, and denote it with τX(v). Figure 1a
shows how to compute an extended topological ordering with both high and max indices in
pseudo code and highlights our extensions. Compared to Tarjan’s original version [29], the
running time remains unaffected by our modifications and is still in O(n + m).

Note that neither max nor high indices yield an ordering of V : Every vertex that is
visited recursively starting from v and before vertex x with τ(x) = τH(v), inclusively, has
the same high index as v, and the high index of each vertex in a graph consisting of a single
path, e.g., would be n − 1. In particular, neither max nor high index form a DFS numbering
and also differ in definition and use from the DFS finishing times ϕ̂ used in PReaCH, where a
vertex v can certainly reach vertices with DFS number up to ϕ̂ and certainly none beyond.
Conversely, v may be able to also reach vertices with smaller DFS number than its own,
which cannot occur in a topological ordering.

If ExtendedTopSort is run on the reverse graph, it yields a topological ordering τ ′ and
high and max indices τ ′

H and τ ′
X , such that reversing τ ′ yields again a topological ordering τ

of the original graph. Furthermore, τL(v) := n − 1 − τ ′
H(v) is a low index for each vertex

v, which denotes the smallest index of a vertex in τ that can certainly reach v, i.e., the
out-reachability of v is replaced by in-reachability. Analogously, τN (v) := n − 1 − τ ′

X(v) is a
min index in τ and no vertex u with τ(u) < τN (v) can reach v.

SEA 2021

13:8 O’Reach: Even Faster Reachability in Large Graphs

The following observations show how such an extended topological ordering τ can be
used to answer both positive and negative reachability queries:

(T1) If τ(s) ≤ τ(t) ≤ τH(s), then s →∗ t.
(T2) If τ(t) > τX(s), then s ̸→∗ t.
(T3) If τ(t) = τX(s), then s →∗ t.

(T4) If τL(t) ≤ τ(s) ≤ τ(t), then s →∗ t.
(T5) If τ(s) < τN (t), then s ̸→∗ t.
(T6) If τ(s) = τN (t), then s →∗ t.

Recall that by definition, τ(s) ≤ τH(s) ≤ τX(s) and τN (t) ≤ τL(t) ≤ τ(t). Figure 1b depicts
three examples for extended topological orderings. In contrast to negative queries, not every
extended topological ordering is equally effective in answering positive queries, and it can
be arbitrarily bad, as shown in the extremes on the left (worst) and at the center (best) of
Figure 1b:

▶ Theorem 2. Let P(τ) ⊆ P be the set of positive queries an extended topological ordering
τ can answer and let ρ+(τ) = P(τ)/P be the answerable positive query ratio. Then, 0 ≤
ρ+(τ) ≤ 1.

Instead, the effectiveness of an extended topological ordering depends positively on the size of
the ranges [τ(v), τH(v)] and [τL(v), τ(v)], and negatively on [τH(v), τX(v)] and [τN (v), τL(v)]
which in turn depend on the recursion depths during construction and the order of recursive
calls. The former two can be maximized if the first, non-recursive call to Visit in line 4 in
ExtendedTopSort always has a source as its argument, i.e., if the algorithm’s parameter
S corresponds to the set of all sources. Clearly, this still guarantees that every vertex is
visited.

In addition to the forward and backward topological levels, O’Reach thus computes a set
of d extended topological orderings starting from sources, where d is a tuning parameter,
and d/2 of them are obtained via the reverse graph. It then applies Observation (B4) as well
as Observations (T1)–(T6) to all extended topological orderings.

4.2 Supportive Vertices
We now show how to apply and improve the idea of supportive vertices in the static setting.
A vertex v is supportive if the set of vertices that v can reach and that can reach v, R+(v)
and R−(v), respectively, have been precomputed and membership queries can be performed
in sublinear time. We can then answer reachability queries using the following simple
observations [11]:

(S1) If s ∈ R−(v) and t ∈ R+(v) for any v ∈ V , then s →∗ t.
(S2) If s ∈ R+(v) and t ̸∈ R+(v) for any v ∈ V , then s ̸→∗ t.
(S3) If s ̸∈ R−(v) and t ∈ R−(v) for any v ∈ V , then s ̸→∗ t.

To apply these observations, our algorithm selects a set of k supportive vertices during the
initialization phase. In contrast to the original use scenario in the dynamic setting, where the
graph changes over time and it is difficult to choose “good” supportive vertices that can help
to answer many queries, the static setting leaves room for further optimizations here: With
respect to Observation (S1), we consider a supportive vertex v “good” if |R+(v)| · |R−(v)|
is large as it maximizes the possibility that s ∈ R−(v) ∧ t ∈ R+(v). With respect to
Observation (S2) and (S3), we expect a “good” supportive vertex to have out- or in-reachability
sets, respectively, of size close to n

2 , i.e., when |R+(v)| · |V \ R+(v)| or |R−(v)| · |V \ R−(v)|,
respectively, are maximal. Furthermore, to increase total coverage and avoid redundancy,
the set of queries Query(s, t) covered by two different supportive vertices should ideally
overlap as little as possible.

O’Reach takes a parameter k specifying the number of supportive vertices to pick.
Intuitively speaking, we expect vertices in the topological “mid-levels” to be better candidates
than those at the ends, as their out- and in-reachabilities (or non-reachabilities) are likely

K. Hanauer, C. Schulz, and J. Trummer 13:9

to be more balanced. Furthermore, if all vertices on one forward (backward) level i were
supportive, then every Query(s, t) with F(s) < i < F(t) (B(t) < i < B(s)) could be
answered using only Observation (S1). As finding a “perfect” set of supportive vertices is
computationally expensive and we strive for linear preprocessing time, we experimentally
evaluated different strategies for the selection process. Due to page limits, we only describe
the most successful one: A forward (backward) level i is called central, if 1

5 Lmax ≤ i ≤ 4
5 Lmax,

where Lmax is the maximum topological level. A level i is called slim if there at most h

vertices having this level, where h is a parameter to O’Reach. We first compute a set of
candidates of size at most k · p that contains all vertices on slim forward or backward levels,
arbitrarily discarding vertices as soon as the threshold k · p is reached. p is another parameter
to O’Reach and together with k controls the size of the candidate set. If the threshold
is not reached, we fill up the set of candidates by picking the missing number of vertices
uniformly at random from all other vertices whose forward level is central. In the next
step, the out- and in-reachabilities of all candidates are obtained and the k vertices v with
largest |R+(v)| · |R−(v)| are chosen as supportive vertices. This strategy primarily optimizes
for Observation (S1), but worked better in experiments than strategies that additionally
tried to optimize for Observation (S2) and (S3). The time complexity of this process is in
O(kp(n + m) + kp log(kp)).

We remark that this is a general-purpose approach that has shown to work well across
different types of instance, albeit possibly at the expense of an increased initialization time.
It seems natural that more specialized routines for different graph classes can improve both
running time and coverage.

4.3 The Complete Algorithm
Given a graph G and a sequence of queries Q, we summarize in the following how O’Reach
proceeds. During initialization, it performs the following steps:

Step 1: Compute the WCCs
Step 2: Compute forward/backward topological levels
Step 3: Obtain d random extended topological orderings
Step 4: Pick k supportive vertices, compute R+(·) and R−(·)

Steps 1 and 2 run in linear time. As shown in Sect. 4.1 and Sect. 4.2, the same applies to
Steps 3 and 4, assuming that all parameters are constants. The required space is linear for
all steps. The reachability index consists of the following information for each vertex v: one
integer for the WCC, one integer each for F(v) and B(v), three integers for each of the d

extended topological orderings τ (τ(v), τH(v)/τL(v), τX(v)/τN (v)), two bits for each of the k

supportive vertices, indicating its reachability to/from v. For graphs with n ≤ 232, 4 Byte
per integer suffice. Furthermore, we group the bits encoding the reachabilities to and from
the supportive vertices, respectively, and represent them each by one suitably sized integer,
e.g., using uint8_t (8 bit), for k ≤ 8 supportive vertices. As the smallest integer has at least
8 bit on most architectures, we store 12 + 12d + 2 · ⌈ k

8 ⌉ Byte per vertex.
For each query Query(s, t), O’Reach tries to answer it using one of the observations

in the order given below, which on the one hand has been optimized by some preliminary
experiments on a small subset of benchmark instances (see Sect. 5 for details) and on the
other hand strives for a fair alternation between “positive” and “negative” observations to
avoid overfitting. Note that all observation-based tests run in constant time. As soon as
one of them can answer the query affirmatively, the result is returned immediately. A test
leading to a positive or negative answer is marked as or , respectively.

SEA 2021

13:10 O’Reach: Even Faster Reachability in Large Graphs

Test 1: s = t?
Test 2: topological levels (B5), (B6)
Test 3: k supportive vertices, positive (S1)
Test 4: first topological ordering (B4), (T1), (T2), (T3)
Test 5: k supportive vertices, negative (S2), (S3)
Test 6: remaining d − 1 topological orderings (B4), (T1)/(T4), (T2)/(T5),

(T3)/(T6)
Test 7: different WCCs (B2)

Observe that the tests for Observation (S1), (S2), and (S3) can each be implemented easily
using boolean logic, which allows for a concurrent test of all supports whose reachability
information is encoded in one accordingly-sized integer: For Observation (S1), it suffices
to test whether r−(s) ∧ r+(t) > 0, and r+(s) ∧ ¬r+(t) > 0 and ¬r−(s) ∧ r−(t) > 0 for
Observations (S2) and (S3), where r+ and r− hold the respective forward and backward
reachability information in the same order for all supports. Each test hence requires at
most one comparison of two integers plus at most two elementary bit operations. Also note
that Observation (B1) is implicitly tested by Observations (B5) and (B6). Using the data
structure described above, our algorithm requires at most one memory transfer for s and one
for t for each Query(s, t) that is answerable by one of the observations. Note that there are
more observations that allow to identify a negative query than a positive query, which is why
we expect a more pronounced speedup for the former. However, as stated in Theorem 1, the
reachability in DAGs is always less than 50 %, which justifies a bias towards an optimization
for negative queries.

If the query can not be answered using any of these tests, we instead fall back to either
another algorithm or a bidirectional BFS with pruning, which uses these tests for each newly
encountered vertex v in a subquery Query(v, t) (forward step) or Query(s, v) (backward
step). If a subquery can be answered decisively positive by a test, the bidirectional BFS can
immediately answer Query(s, t) positively. Otherwise, if a subquery is answered decisively
negative by a test, the encountered vertex v is no longer considered (pruning step). If the
subquery could not be answered by a test, the vertex v is added to the queue as in a regular
(bidirectional) BFS.

5 Experimental Evaluation

We evaluated our new algorithm O’Reach as a preprocessor to various recent state-of-the-art
algorithms listed below against running these algorithms on their own. Furthermore, we use as
an additional fallback solution the pruned bidirectional BFS (pBiBFS). Our experimental study
follows the methodology in [22] and comprises the algorithms PPL [37], TF [3], PReaCH [22],
IP [36], and BFL [28]. Moreover, our evaluation is the first that directly relates IP and BFL
to PReaCH and studies the performance of IP and BFL separately for successful (positive)
and unsuccessful (negative) reachability queries. For reasons of comparison, we also assess
the query performance of a full reachability matrix by computing the transitive closure of
the input graph entirely during initialization, storing it in a matrix using 1 bit per pair of
vertices, and answering each query by a single memory lookup. We refer to this algorithm
simply as Matrix. As the reachability in DAGs is small and cache locality can influence
lookup times, we also experimented with various hash set implementations. However, none
was faster or more memory-efficient than Matrix.

K. Hanauer, C. Schulz, and J. Trummer 13:11

Setup and Methodology. We implemented O’Reach in C++142 with pBiBFS as built-in
fallback strategy. For PPL3, TF3, PReaCH4, IP5, and BFL6 we used the original C++ implemen-
tation in each case. All source code was compiled with GCC 7.5.0 and full optimization (-O3).
The experiments were run on a Linux machine under Ubuntu 18.04 with kernel 4.15 on
four AMD Opteron 6174 CPUs clocked at 2.2 GHz with 512 kB and 6 MB L2 and L3 cache,
respectively and 12 cores per CPU. Overall, the machine has 48 cores and a total of 256 GB
of RAM. Unless indicated otherwise, each experiment was run sequentially and exclusively
on one processor and its local memory. As non-local memory accesses incur a much higher
cost, an exception to this rule was only made for Matrix, where we would otherwise have
been able to only run twelve instead of 29 instances. We also parallelized the initialization
phase for Matrix, where the transitive closure is computed, using 48 threads. However, all
queries were processed sequentially.

To counteract artifacts of measurement and accuracy, we ran each algorithm five times
on each instance and in general use the median for the evaluation. As O’Reach uses
randomization during initialization, we instead report the average running time over five
different seeds. For IP and BFL, which are randomized in the same way, but don’t accept a
seed, we just give the average over five repetitions. We note that also taking the median
instead or increasing the number of repetitions or seeds does not change the overall picture.

Instances. To facilitate comparability, we adopt the instances used in the papers introducing
PReaCH [22] and TF [3], which overlap with those used to evaluate IP [36] and BFL [28], and
which are available either from the GRAIL code repository7 or the Stanford Network Analysis
Platform SNAP [21]. Furthermore, we extended the set of benchmark graphs by further
instance sizes and Delaunay graphs. Table 2 provides a short overview on the left side, more
details are available in the full version [12]. As we only consider DAGs, all instances are
condensations of their respective originals, if they were not acyclic already. We also adopt the
grouping of the instances as in [39, 22] and provide only a short description of the different
sets in the following.

Kronecker: These instances were generated by the RMAT generator for the Graph500
benchmark [23] and oriented acyclically from smaller to larger node ID. The name encodes
the number of vertices 2i as kron_logni. Random: Graphs generated according to the
Erdős-Renyí model G(n, m) and oriented acyclically from smaller to larger node ID. The
name encodes n = 2i and m = 2j as randni-j. Delaunay: Delaunay graphs from the 10th
DIMACS Challenge [1, 8]. delaunay_ni is a Delaunay triangulation of 2i random points in
the unit square. Large real: Introduced in [39], these instances represent citation networks
(citeseer.scc, citeseerx, cit-Patents), a taxonomy graph (go-uniprot), as well as excerpts from
the RDF graph of a protein database (uniprotm22, uniprotm100, uniprotm150). Small
real dense: Among these instances, introduced in [17], are again citation networks (arXiv,
pubmed_sub, citeseer_sub), a taxonomy graph (go_sub), as well as one obtained from a
semantic knowledge database (yago_sub). Small real sparse: These instances were introduced
in [18] and represent XML documents (xmark, nasa), metabolic networks (amaze, kegg) or
originate from pathway and genome databases (all others). SNAP: The e-mail network graph

2 Source code and instances are available from https://oreach.taa.univie.ac.at.
3 Provided directly by the authors.
4 https://github.com/fiji-flo/preach2014/tree/master/original_code
5 https://github.com/datourat/IP-label-for-graph-reachability
6 https://github.com/BoleynSu/bfl
7 https://code.google.com/archive/p/grail/

SEA 2021

https://oreach.taa.univie.ac.at
https://github.com/fiji-flo/preach2014/tree/master/original_code
https://github.com/datourat/IP-label-for-graph-reachability
https://github.com/BoleynSu/bfl
https://code.google.com/archive/p/grail/

13:12 O’Reach: Even Faster Reachability in Large Graphs

Table 2 Left: Instance sizes (read /103: in thousands), density, and reachability. Right: Median
initialization time in ms over five repetitions. Highlighted results are the overall best.

Instance n/103 m/103 m
n

ρ% O’Reach PReaCH PPL TF IP(s) IP(d) BFL(s) BFL(d)

kron_logn12 4.1 117.0 28.55 27.4760 451.0 13.5 56.5 46 555.2 22.6 53.0 2.0 4.0
kron_logn16 65.5 2 456.1 37.48 21.2187 13 045.7 602.4 1 869.5 685.5 1 283.0 88.8 118.3
kron_logn17 131.1 5 114.0 39.02 19.4544 31 835.0 1 425.8 4 268.9 1 611.7 2 897.9 228.1 288.1
kron_logn20 1 048.6 44 619.4 42.55 5.8195 380 698.0 20 791.9 62 836.0 22 788.2 37 103.7 3 301.1 3 999.0
kron_logn21 2 097.2 91 040.9 43.41 1.2150 812 416.0 46 559.0 151 870.0 49 988.1 79 226.0 7 513.1 9 014.9

randn20-21 1 048.6 2 097.2 2.00 0.0012 4 272.7 2 878.3 11 579.3 11 615.8 2 434.7 2 635.1 626.1 677.2
randn20-22 1 048.6 4 194.3 4.00 0.0352 5 706.9 4 459.6 43 761.5 47 679.2 3 364.6 3 704.3 892.0 976.9
randn20-23 1 048.6 8 388.6 8.00 1.9067 13 724.7 7 128.3 9 348 510.0 4 830.2 5 311.5 1 287.7 1 449.3
randn23-24 8 388.6 16 777.2 2.00 0.0001 46 043.5 28 959.1 132 570.0 122 270.0 24 566.7 25 906.9 6 094.8 6 580.6
randn23-25 8 388.6 33 554.4 4.00 0.0044 61 206.2 45 573.7 413 684.0 465 300.0 34 145.7 36 815.0 8 964.7 9 715.1

delaunay_n15 32.8 98.3 3.00 0.4380 104.4 38.9 174.2 602.1 42.5 55.3 7.0 9.0
delaunay_n20 1 048.6 3 145.7 3.00 0.0093 2 816.5 1 788.4 9 350.5 24 563.9 2 339.1 2 785.1 299.8 351.5
delaunay_n22 4 194.3 12 582.9 3.00 0.0020 11 402.7 7 363.9 38 674.1 108 297.0 10 106.6 11 911.6 1 203.1 1 394.5

citeseer.scc 693.9 312.3 0.45 0.0002 865.9 503.4 1 185.3 1 579.7 602.5 613.4 107.0 122.5
citeseerx 6 540.4 15 011.3 2.30 0.1367 90 695.8 12 545.7 73 061.0 145 773.0 11 208.0 11 807.4 2 349.2 2 700.0
cit-Patents 3 774.8 16 518.9 4.38 0.0409 22 358.6 15 989.7 393 412.0 342 680.0 13 098.4 14 384.0 2 905.4 3 210.1
go_uniprot 6 968.0 34 769.3 4.99 0.0004 28 270.0 11 858.8 34 660.6 90 942.4 11 935.8 13 381.6 3 137.0 3 701.2
uniprotenc_22m 1 595.4 1 595.4 1.00 0.0001 2 802.5 714.8 2 762.0 3 446.0 1 322.6 1 313.7 147.8 189.3
uniprotenc_100m 16 087.3 16 087.3 1.00 0.0000 39 539.9 10 420.6 30 967.4 59 660.2 16 089.1 16 194.7 2 169.6 2 639.2
uniprotenc_150m 25 037.6 25 037.6 1.00 0.0000 65 983.9 17 612.9 50 254.7 86 052.0 26 453.4 26 730.9 3 830.4 4 548.6

go_sub 6.8 13.4 1.97 0.2258 10.4 4.0 16.6 37.6 5.0 6.2 1.0 1.0
pubmed_sub 9.0 40.0 4.45 0.6458 19.4 9.1 31.3 101.5 8.9 10.8 2.0 3.0
yago_sub 6.6 42.4 6.38 0.1506 12.5 6.0 18.9 61.5 7.5 10.4 1.1 2.0
citeseer_sub 10.7 44.3 4.13 0.3672 25.3 11.3 48.4 131.9 11.8 15.3 2.3 3.0
arXiv 6.0 66.7 11.12 15.4643 223.2 9.7 60.8 10 008.7 14.9 26.3 2.0 3.0

amaze 3.7 3.6 0.97 17.2337 12.0 1.2 5.3 25.9 2.2 2.4 0.0 0.4
kegg 3.6 4.4 1.22 20.1636 16.3 1.4 6.8 18.3 2.7 2.8 0.3 0.5
nasa 5.6 6.5 1.17 0.5284 7.0 2.4 11.6 27.3 3.3 3.8 1.0 1.0
xmark 6.1 7.1 1.16 1.4513 10.7 2.3 12.9 24.2 3.9 4.3 1.0 1.0
vchocyc 9.5 10.3 1.09 0.1517 12.0 2.9 13.4 53.7 5.4 5.9 1.0 1.0
mtbrv 9.6 10.4 1.09 0.1511 11.1 3.0 13.7 24.0 5.4 6.0 1.0 1.0
anthra 12.5 13.1 1.05 0.0951 15.4 3.8 18.3 62.5 7.1 7.8 1.0 1.0
ecoo 12.6 13.4 1.06 0.1088 15.9 3.9 18.8 41.4 7.4 8.0 1.0 1.0
agrocyc 12.7 13.4 1.06 0.1060 16.1 3.9 19.1 48.1 7.4 8.1 1.0 1.0
human 38.8 39.6 1.02 0.0231 49.1 13.5 56.5 104.1 23.7 25.8 3.0 4.0

p2p-Gnutella31 48.4 55.3 1.14 0.7725 120.6 28.4 89.2 52.3 43.8 44.5 5.0 7.0
email-EuAll 230.8 223.0 0.97 5.0732 945.2 115.3 340.5 241.3 170.1 171.4 24.8 32.0
web-Google 371.8 517.8 1.39 14.8090 5 783.6 369.3 928.1 918.4 452.6 472.0 73.8 88.0
soc-LiveJournal1 970.3 1 024.1 1.06 5.3781 3 663.5 739.6 2 086.3 1 827.9 1 160.5 1 181.4 142.3 173.0
wiki-Talk 2 281.9 2 311.6 1.01 0.8117 6 347.0 1 492.1 4 317.8 2 715.4 2 597.7 2 620.7 269.9 343.5

(email-EuAll), peer-to-peer network (p2p-Gnutella31), social network (soc-LiveJournal1),
web graph (web-Google), as well as the communication network (wiki-Talk) are part of SNAP
and were first used in [3].

Queries. Following the methodology of [22], we generated three sets of 100 000 queries each:
positive, negative, and random. Each set consists of random queries, which were generated
by picking two vertices uniformly at random and filtering out negative or positive queries for
the positive and negative query sets, respectively. The fourth query set, mixed, is a randomly
shuffled union of all queries from positive and negative and hence contains 200 000 pairs of
vertices. As the order of the queries within each set had an observable effect on the running
time due to caching effects and memory layout, we randomly shuffled every query set five
times and used a different permutation for each repetition of an experiment to ensure equal
conditions for all algorithms.

5.1 Experimental Results
We ran O’Reach with k = 16 supportive vertices, picked from 1 200 candidates (p = 75,
h = 8) and d = 4 extended topological orderings. We ran IP with the two configurations used
also by the authors [36] and refer to the resulting algorithms as IP(s) (sparse, hIP = kIP = 2)

K. Hanauer, C. Schulz, and J. Trummer 13:13

Table 3 Average query time per algorithm and query set.

O’R + O’R + O’R + O’R + O’R + O’R + O’R +
Query set pBiBFS PReaCH PReaCH PPL PPL IP(s) IP(s) IP(d) IP(d) BFL(s) BFL(s) BFL(d) BFL(d)

random 3.523 1.596 1.483 0.271 0.149 12.865 11.193 9.778 8.516 6.645 5.073 5.063 3.361
mixed 19.964 6.351 6.102 0.352 0.258 80.572 73.625 60.352 56.433 32.456 28.496 22.002 17.541
positive 37.554 11.508 11.069 0.399 0.345 156.016 145.532 118.835 109.014 62.338 54.329 42.632 33.699
negative 2.382 1.188 1.154 0.260 0.149 5.342 5.059 3.727 3.793 2.496 2.506 1.345 1.358

and IP(d) (dense, hIP = kIP = 5). Similarly, we evaluated BFL [28] with configuration sparse
as BFL(s) (sBFL = 64) and dense as BFL(d) (sBFL = 160), following the presets given by the
authors.

Average query times. Table A.6 lists the average time per query for the query sets negative
and positive. All missing values are due to a memory requirement of more than 32 GB (TF)
and Matrix (256 GB). For each instance and query set, the running time of the fastest
algorithm is printed in bold. If Matrix was fastest, also the running time of the second-best
algorithm is highlighted. Besides Matrix, the table shows the running times of PReaCH,
PPL, IP(d), and BFL(d) alone as well as multiple versions for O’Reach: one with a pruned
bidirectional BFS (O’R +pBiBFS) as fallback as well as one per competitor (O’R +. . .), where
O’Reach was run without fallback and the queries left unanswered were fed to the competitor.
Analogously, the running times for IP(s), BFL(s), and TF alone and as fallback for O’Reach
are given in Table A.9.

Our results by and large confirm the performance comparison of PReaCH, PPL, and TF
conducted by Merz and Sanders [22]. PReaCH was the fastest on three out of five Kronecker
graphs for the negative query set, once beaten by O’R +PReaCH and O’R +PPL each, whereas
PPL and O’R +PPL dominated all others on the positive query set in this class as well as
on three of the five random graphs, while O’R +TF was slightly faster on the other two.
PReaCH was also the dominating approach on the small real sparse and SNAP instances in
the aforementioned study [22]. By contrast, it was outperformed on these classes here by
O’Reach with almost any fallback on all instances for the positive query set, and by either
IP(d) or BFL(s) on almost all instances for the negative query set. On the Delaunay and
large real instances, BFL(s) often was the fastest algorithm on the set of negative queries.
The results also reveal that BFL and in particular IP have a weak spot in answering positive
queries. On average over all instances, O’R +PPL had the fastest average query time both for
negative and positive queries.

Notably, Matrix was outperformed quite often, especially for queries in the set negative,
which correlates with the fact that a large portion of these queries could be answered by
constant-time observations (see also the detailed analysis of observation effectiveness below)
and is due to its larger memory footprint. Across all instances and seeds, more than 95 % of
all queries in this set could be answered by O’Reach directly. On the set positive, the average
query time for Matrix was in almost all cases less than on the negative query set, which is
explained by the small reachability of the instances and a resulting higher spatial locality and
better cacheability of the few and naturally clustered one-entries in the matrix. Consequently,
this effect was distinctly reduced for the mixed query set, as shown in Table A.7.

There are some instances where O’Reach had a fallback rate of over 90 % for the positive
query set, e.g., on cit-Patents, which is clearly reflected in the running time. Except for PPL,
all algorithms had difficulties with positive queries on this instance. Conversely, the fallback
rate on all uniprotenc_∗ instances and citeseer.scc, e.g., was 0 %. On average across all
instances and seeds, O’Reach could answer over 70 % of all positive queries by constant-time
observations.

SEA 2021

13:14 O’Reach: Even Faster Reachability in Large Graphs

Table 4 Mean speedups with O’Reach plus fallback over pure fallback algorithm. Values greater
1.00 are highlighted.

negative positive random mixed
Instance PReaCH PPL IP(d) BFL(d) PReaCH PPL IP(d) BFL(d) PReaCH PPL IP(d) BFL(d) PReaCH PPL IP(d) BFL(d)

Geometric Mean 1.10 2.22 0.92 1.06 1.33 1.90 3.98 3.14 1.29 2.53 1.26 2.40 1.29 2.04 2.77 2.31
Ratio Runtime Avgs 1.03 1.75 0.98 0.99 1.04 1.16 1.09 1.27 1.08 1.82 1.15 1.51 1.04 1.36 1.07 1.25
Average 1.13 2.32 0.98 1.35 1.41 2.25 5.87 6.25 1.33 2.69 1.41 8.22 1.33 2.23 3.37 3.63

The results on the query sets random and mixed are similar and listed in Table A.7
and Table A.10. Once again, O’R +PPL showed the fastest query time on average across
all instances for both query sets. As the reachability in a DAG is low in general (see also
Theorem 1) and particularly in the benchmark instances, the average query times for random
resemble those for negative. On the other hand, the results for the mixed query set are more
similar to those for the positive query set, as the relative differences in performance among
the algorithms are more pronounced there. Table 3 compactly shows the average query time
over all instances for each query set. Only PPL and O’R +PPL achieved an average query time
of less than 1 µs (and even less than 0.35 µs).

Speedups by O’Reach. We next investigate the relative speedup of O’Reach with different
fallback solutions over running only the fallback algorithms. Table A.8 lists the ratios of the
average query time of each competitor algorithm run standalone divided by the average query
time of O’Reach plus that algorithm as fallback, for all four query sets. A compact version is
also given in Table 4. In the large majority of cases, using O’Reach as a preprocessor resulted
in a speedup, except in case of negative or random queries for BFL and partially IP on the
large real instances as well as for PReaCH and partially again IP on the small real sparse and
SNAP instances. The largest speedup of around 105 could be achieved for BFL on kegg for
random queries. The mean speedup (geometric) is at least 1.29 for all fallback algorithms on
the query sets positive, random, and mixed, where the maximum was reached for IP(s) on
positive queries with a factor of 4.21. Only for purely negative queries, IP(d) and BFL(s)
were a bit faster alone in the mean values. In summary, given that the algorithms are often
already faster than single memory lookups, the speedups achieved by O’Reach are quite high.

Initialization Times (Table 2, right). On all graphs, BFL(s) had the fastest initialization
time, followed by BFL(d) and PReaCH. For O’Reach, the overhead of computing the compara-
tively large out- and in-reachabilities of all 1 200 candidates for k = 16 supportive vertices is
clearly reflected in the running time on denser instances and can be reduced greatly if lower
parameters are chosen, albeit at the expense of a slightly reduced query performance, e.g.,
for k = 8. PPL often consumed a lot of time in this step, especially on denser instances, with
a maximum of 2.6 h on randn20-23.

Based on the average query time per instance, the minimum number of random queries
necessary to amortize the additional investment in initialization time if O’Reach is run
as preprocessor is between 9.6 thousand (O’R +BFL(d)) and 499 thousand (O’R +PReaCH).
Counting cases where O’Reach could not achieve a speedup in the average query time as
infinity, the median number of random queries required for amortization is between 2.5 million
(O’R +BFL(d)) and 101 million (O’R +IP(d)). For the on average fastest algorithm, O’R +PPL,
the initialization cost is recovered after 210 thousand (nasa) to 6.15 billion (kron_logn21)
random queries, which equals about 0.77 % (nasa) and 0.14 % (kron_logn21) of all vertex
pairs, respectively.

K. Hanauer, C. Schulz, and J. Trummer 13:15

Effectiveness of Observations. We collected a vast amount of statistical data to perform
an analysis of the effectiveness of the different observations used in O’Reach. To make the
analysis more robust, we increased the number of seeds to 25 here.

First, we look only at fast queries, i.e., those queries that could be answered without
a fallback. Across all query sets, the most effective observation was the negative basic
observation on topological orderings, (B4), which answered around 30 % of all fast queries.
As the average reachability in the random query set is very low, negative queries predominate
in the overall picture. It thus does not come as a surprise that the most effective observation
is a negative one. On the negative query set, (B4) could answer 45 % of all fast queries.
After lowering the number of topological orderings to d = 2, (B4) was still the most effective
and could answer 23 % of all fast queries and 33 % of those in the negative query set. The
negative observations second to (B4) in effectiveness were those looking at the forward and
backward topological levels, Observation (B5) and (B6), which could answer around 15 %
each on the negative query set and around 10 % of all fast queries. Note that we increased
the counter for all observations that could answer a query for this analysis, not just the
first in order, which is why there may be overlaps. The observations using the max and min
indices of extended topological orderings, (T2) and (T5), could answer 9 % and 6 % of the
fast queries in the negative query set, and the observations based on supportive vertices, (S2)
and (S3), around 3 % each. Reducing the number of topological orderings to d = 2 decreased
the effectiveness of (T2) and (T5) to around 5 %.

The most effective positive observation and the second-best among all query sets, was
the supportive-vertices-based Observation (S1), which could answer almost 16 % of all fast
queries and almost 55 % in the positive query set. Follow-up observations were the ones using
high and low indices, (T1) and (T4), with 18 % and 16 % effectiveness for the positive query
set. The remaining two, (T2) and (T5), could answer 6 % and 4 % in this set. Reducing the
number of topological orderings to d = 2 led to a slight deterioration in case of (T1) and
(T4) to 14 %, and to 5 % and 3 % in case of (T2) and (T5), each with respect to the positive
query set.

Among all fast queries that could be answered by only one observation, the most effective
observation was the positive supportive-vertices-based Observation (S1) with over 40 % for
all query sets and 68 % for the positive query set, followed by the negative basic observation
using topological orderings, (B4), with a bit over 20 % for all query sets and 52 % for the
negative query set.

Looking now at the entire query sets, our statistics show that 95 % of all queries could
be answered via an observation on the negative set. In 70 % of all cases, (B5) in the second
test, which uses topological forward levels, could already answer the query. In further 16 %
of all cases, the observation based on topological backward levels, (B6), was successful. On
the positive query set, the fallback rate was 28 % and hence higher than on the negative
query set. 52 % of all queries in this set could be answered by the supportive-vertices-based
observation (S1), and the high and low indices of extended topological orderings (T1) and
(T4) were responsible for another 7 % each. Observe that here, the first observation in the
order that can answer a query “wins the point”, i.e., there are no overlaps in the reported
effectiveness.

Memory Consumption. Table 5 lists the memory each algorithm used for their reachability
index. As O’Reach was configured with k = 16 and d = 4, its index size is 64n Byte.
Consequently, the reachability indices of O’Reach, PReaCH, PPL, IP, BFL, and, with one
exception for TF, fit in the L3 cache of 6 MB for all small real instances. For Matrix, this

SEA 2021

13:16 O’Reach: Even Faster Reachability in Large Graphs

Table 5 Real index size in memory (in MB).

Instance O’Reach PReaCH PPL TF IP(s) IP(d) BFL(s) BFL(d) Matrix

kron_logn12 0.3 0.2 0.1 19.2 0.1 0.2 0.1 0.2 2.0
kron_logn16 4.0 3.5 1.5 0.0 1.5 3.1 1.3 2.3 512.0
kron_logn17 8.0 7.0 3.0 0.0 2.9 6.1 2.5 4.6 2 047.9
kron_logn20 64.0 56.0 25.1 0.0 22.1 44.8 18.9 34.1 131 070
kron_logn21 128.0 112.0 50.4 0.0 43.5 87.3 37.1 66.4 0.0

randn20-21 64.0 56.0 24.2 64.8 18.0 31.5 20.6 38.7 131 070
randn20-22 64.0 56.0 136.8 482.3 19.0 37.6 22.3 43.3 131 070
randn20-23 64.0 56.0 4 380.3 0.0 19.5 40.8 23.1 45.6 131 070
randn23-24 512.0 448.0 193.7 518.2 144.3 252.3 164.5 309.4 0.0
randn23-25 512.0 448.0 1 073.3 3 844.1 152.0 300.7 178.0 346.0 0.0

delaunay_n15 2.0 1.7 0.8 4.7 0.6 1.2 0.7 1.4 128.0
delaunay_n20 64.0 56.0 33.0 126.7 19.1 38.1 22.5 43.9 131 070
delaunay_n22 256.0 224.0 135.0 497.9 76.6 152.5 90.0 175.8 0.0

citeseer.scc 42.4 37.1 7.1 28.3 9.4 11.3 9.2 13.7 57 406.5
citeseerx 399.2 349.3 120.9 1 773.0 111.8 151.0 107.6 185.1 0.0
cit-Patents 230.4 201.6 659.2 780.0 72.9 138.0 71.7 132.9 0.0
go_uniprot 425.3 372.1 261.0 680.2 106.4 184.7 113.1 193.1 0.0
uniprotenc_22m 97.4 85.2 18.5 67.2 24.5 24.7 26.1 44.8 0.0
uniprotenc_100m 981.9 859.2 197.2 690.4 251.2 269.1 270.8 471.9 0.0
uniprotenc_150m 1 528.2 1 337.1 318.5 1 087.0 395.0 439.6 428.5 753.8 0.0

go_sub 0.4 0.4 0.2 0.4 0.1 0.2 0.1 0.3 5.5
pubmed_sub 0.5 0.5 0.3 1.1 0.1 0.2 0.2 0.3 9.7
yago_sub 0.4 0.4 0.2 0.5 0.1 0.2 0.1 0.2 5.3
citeseer_sub 0.7 0.6 0.3 1.2 0.2 0.3 0.2 0.4 13.7
arXiv 0.4 0.7 0.3 14.9 0.1 0.3 0.1 0.2 4.3

amaze 0.2 0.2 0.0 0.2 0.1 0.1 0.1 0.1 1.6
kegg 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 1.6
nasa 0.3 0.3 0.1 0.3 0.1 0.2 0.1 0.2 3.7
xmark 0.4 0.3 0.2 0.4 0.1 0.2 0.1 0.2 4.4
vchocyc 0.6 0.5 0.2 0.7 0.2 0.3 0.2 0.3 10.7
mtbrv 0.6 0.5 0.2 0.4 0.2 0.3 0.2 0.3 11.0
anthra 0.8 0.7 0.2 0.8 0.2 0.4 0.2 0.4 18.6
ecoo 0.8 0.7 0.2 0.9 0.2 0.4 0.2 0.4 19.0
agrocyc 0.8 0.7 0.2 0.9 0.2 0.4 0.2 0.4 19.2
human 2.4 2.1 0.6 2.1 0.7 1.2 0.6 1.1 179.6

p2p-Gnutella31 3.0 2.6 0.7 2.1 0.9 1.5 0.8 1.4 279.7
email-EuAll 14.1 12.3 2.6 9.7 3.7 5.8 3.7 6.4 6 349.8
web-Google 22.7 19.9 5.4 16.7 7.0 11.2 6.5 11.5 16 475.5
soc-LiveJournal1 59.2 51.8 13.0 41.0 19.1 31.8 15.9 27.2 112 225
wiki-Talk 139.3 121.9 26.2 95.9 52.0 103.5 37.1 63.3 0.0

was only the case for the four smallest instances from the small real sparse set, three of
the small real dense ones, and the smallest Kronecker graph, which is clearly reflected in
its average query time for the negative, random, and, to a slightly lesser extent, mixed
query sets. Whereas for O’Reach, PReaCH, and Matrix, the index size depends solely on the
number of vertices, IP, BFL, PPL and TF consumed more memory the larger the density m

n .
IP(s) usually was the most space-efficient and never used more than 395 MB, followed by
BFL(s) (429 MB), IP(d) (440 MB), BFL(d) (754 MB), PReaCH (1.3 GB), O’Reach (1.5 GB),
and PPL (4.4 GB). All these algorithms are hence suitable to handle graphs with several
millions of vertices even on hardware with relatively little memory (with respect to current
standards). TF used up to 3.8 GB (randn23-25), but required even more than 64 GB at least
during initialization on all instances where the data is missing in the table.

6 Conclusion

In this paper, we revisited existing techniques for the static reachability problem and combined
them with new approaches to support a large portion of reachability queries in constant time
using a linear-sized reachability index. Our extensive experimental evaluation shows that

K. Hanauer, C. Schulz, and J. Trummer 13:17

in almost all scenarios, combining any of the existing algorithms with our new techniques
implemented in O’Reach can speed up the query time by several factors. In particular
supportive vertices have proven to be effective to answer positive queries quickly. As a further
plus, O’Reach is flexible: memory usage, initialization time, and expected query time can be
influenced directly by three parameters, which allow to trade space for time or initialization
time for query time. Moreover, our study demonstrates that, due to cache effects, a high
investment in space does not necessarily pay off: Reachability queries can often be answered
even significantly faster than single memory accesses in a precomputed full reachability
matrix.

The on average fastest algorithm across all instances and types of queries was a combination
of O’Reach and PPL with an average query time of less than 0.35 µs. As the initialization
time of PPL is relatively high, we also recommend O’Reach combined with PReaCH as a less
expensive alternative solution with respect to initialization time and partially also memory,
which still achieved an average query time of at most 11.1 µs on all query sets.

References
1 D. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and D. Wagner. Benchmarking

for Graph Clustering and Partitioning. In Encyclopedia of Social Network Analysis and Mining.
Springer, 2014.

2 Yangjun Chen and Yibin Chen. An efficient algorithm for answering graph reachability queries.
In Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen, editors, Proceedings of the 24th
International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico,
pages 893–902. IEEE Computer Society, 2008. doi:10.1109/ICDE.2008.4497498.

3 James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. TF-label: a topological-
folding labeling scheme for reachability querying in a large graph. In Kenneth A. Ross, Divesh
Srivastava, and Dimitris Papadias, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013,
pages 193–204. ACM, 2013. doi:10.1145/2463676.2465286.

4 Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and Philip S. Yu. Fast computation
of reachability labeling for large graphs. In Yannis E. Ioannidis, Marc H. Scholl, Joachim W.
Schmidt, Florian Matthes, Michael Hatzopoulos, Klemens Böhm, Alfons Kemper, Torsten
Grust, and Christian Böhm, editors, Advances in Database Technology - EDBT 2006, 10th
International Conference on Extending Database Technology, Munich, Germany, March 26-31,
2006, Proceedings, volume 3896 of Lecture Notes in Computer Science, pages 961–979. Springer,
2006. doi:10.1007/11687238_56.

5 Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries
via 2-hop labels. SIAM J. Comput., 32(5):1338–1355, 2003. doi:10.1137/S0097539702403098.

6 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms, 2009.
7 R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June 1962. doi:

10.1145/367766.368168.
8 Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Moritz von

Looz. Communication-free massively distributed graph generation. In 2018 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May
21 – May 25, 2018, 2018.

9 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction hierar-
chies: Faster and simpler hierarchical routing in road networks. In International Workshop on
Experimental and Efficient Algorithms, pages 319–333. Springer, 2008.

10 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 46(3):388–404,
2012.

SEA 2021

https://doi.org/10.1109/ICDE.2008.4497498
https://doi.org/10.1145/2463676.2465286
https://doi.org/10.1007/11687238_56
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168

13:18 O’Reach: Even Faster Reachability in Large Graphs

11 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Faster Fully Dynamic Transitive
Closure in Practice. In Simone Faro and Domenico Cantone, editors, 18th International
Symposium on Experimental Algorithms (SEA 2020), volume 160 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 14:1–14:14, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SEA.2020.14.

12 Kathrin Hanauer, Christian Schulz, and Jonathan Trummer. O’Reach: Even faster reachability
in static graphs. CoRR, abs/2008.10932, 2021. arXiv:2008.10932.

13 H. V. Jagadish. A compression technique to materialize transitive closure. ACM Trans.
Database Syst., 15(4):558–598, 1990. doi:10.1145/99935.99944.

14 Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Xu Yu. SCARAB: scaling reachability com-
putation on large graphs. In K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano,
and Ariel Fuxman, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 169–180.
ACM, 2012. doi:10.1145/2213836.2213856.

15 Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. Path-tree: An efficient reachability
indexing scheme for large directed graphs. ACM Trans. Database Syst., 36(1):7:1–7:44, 2011.
doi:10.1145/1929934.1929941.

16 Ruoming Jin and Guan Wang. Simple, fast, and scalable reachability oracle. Proc. VLDB
Endow., 6(14):1978–1989, 2013. doi:10.14778/2556549.2556578.

17 Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-hop: A high-compression indexing
scheme for reachability query. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’09, page 813–826, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1559845.1559930.

18 Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answering reachability
queries on very large directed graphs. In Jason Tsong-Li Wang, editor, Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver,
BC, Canada, June 10-12, 2008, pages 595–608. ACM, 2008. doi:10.1145/1376616.1376677.

19 A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, 1962.
doi:10.1145/368996.369025.

20 F. Le Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima, K. Nagasaka,
F. Winkler, and Á. Szántó, editors, International Symposium on Symbolic and Algebraic
Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 296–303. ACM, 2014. doi:
10.1145/2608628.2608664.

21 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

22 F. Merz and P. Sanders. Preach: A fast lightweight reachability index using pruning and
contraction hierarchies. In A. S. Schulz and D. Wagner, editors, European Symposium on
Algorithms, pages 701–712, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

23 Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang. Introducing the
graph 500. Cray Users Group (CUG), 19:45–74, 2010.

24 Thomas Reps. Program analysis via graph reachability. Information and software technology,
40(11-12):701–726, 1998.

25 Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 49–61, 1995.

26 Ralf Schenkel, Anja Theobald, and Gerhard Weikum. HOPI: an efficient connection index
for complex XML document collections. In Elisa Bertino, Stavros Christodoulakis, Dimitris
Plexousakis, Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, and Elena Ferrari,
editors, Advances in Database Technology - EDBT 2004, 9th International Conference on
Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004, Proceedings,
volume 2992 of Lecture Notes in Computer Science, pages 237–255. Springer, 2004. doi:
10.1007/978-3-540-24741-8_15.

https://doi.org/10.4230/LIPIcs.SEA.2020.14
http://arxiv.org/abs/2008.10932
https://doi.org/10.1145/99935.99944
https://doi.org/10.1145/2213836.2213856
https://doi.org/10.1145/1929934.1929941
https://doi.org/10.14778/2556549.2556578
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-540-24741-8_15
https://doi.org/10.1007/978-3-540-24741-8_15

K. Hanauer, C. Schulz, and J. Trummer 13:19

27 B. Scholz, C. Zhang, and C. Cifuentes. User-input dependence analysis via graph reachabil-
ity. In 2008 Eighth IEEE International Working Conference on Source Code Analysis and
Manipulation, pages 25–34, 2008.

28 Jiao Su, Qing Zhu, Hao Wei, and Jeffrey Xu Yu. Reachability querying: Can it be even faster?
IEEE Trans. Knowl. Data Eng., 29(3):683–697, 2017. doi:10.1109/TKDE.2016.2631160.

29 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

30 Robert Endre Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica,
6(2):171–185, 1976.

31 Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very large graphs. In
Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, Beijing, China, June 12-14, 2007, pages
845–856. ACM, 2007. doi:10.1145/1247480.1247573.

32 Sebastiaan J. van Schaik and Oege de Moor. A memory efficient reachability data structure
through bit vector compression. In Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis,
and Yannis Velegrakis, editors, Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 913–924.
ACM, 2011. doi:10.1145/1989323.1989419.

33 Renê Rodrigues Veloso, Loïc Cerf, Wagner Meira, and Mohammed J. Zaki. Reachability
queries in very large graphs: A fast refined online search approach. In EDBT, pages 511–522,
2014.

34 Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. Dual labeling: Answering
graph reachability queries in constant time. In Ling Liu, Andreas Reuter, Kyu-Young
Whang, and Jianjun Zhang, editors, Proceedings of the 22nd International Conference on
Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, page 75. IEEE Computer
Society, 2006. doi:10.1109/ICDE.2006.53.

35 S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, 1962. doi:10.1145/321105.
321107.

36 Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. Reachability querying: an independent per-
mutation labeling approach. VLDB J., 27(1):1–26, 2018. doi:10.1007/s00778-017-0468-3.

37 Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast and scalable reachability
queries on graphs by pruned labeling with landmarks and paths. In Qi He, Arun Iyengar,
Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi, editors, 22nd ACM International Conference
on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27
- November 1, 2013, pages 1601–1606. ACM, 2013. doi:10.1145/2505515.2505724.

38 Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. Grail: Scalable reachability index for
large graphs. Proc. VLDB Endow., 3(1–2):276–284, 2010. doi:10.14778/1920841.1920879.

39 Hilmi Yıldırım, Vineet Chaoji, and Mohammed J Zaki. GRAIL: a scalable index for reachability
queries in very large graphs. The VLDB Journal, 21(4):509–534, 2012.

40 Jeffrey Xu Yu and Jiefeng Cheng. Graph reachability queries: A survey. In Charu C. Aggarwal
and Haixun Wang, editors, Managing and Mining Graph Data, volume 40 of Advances in
Database Systems, pages 181–215. Springer, 2010. doi:10.1007/978-1-4419-6045-0_6.

A Appendix

SEA 2021

https://doi.org/10.1109/TKDE.2016.2631160
https://doi.org/10.1137/0201010
https://doi.org/10.1145/1247480.1247573
https://doi.org/10.1145/1989323.1989419
https://doi.org/10.1109/ICDE.2006.53
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107
https://doi.org/10.1007/s00778-017-0468-3
https://doi.org/10.1145/2505515.2505724
https://doi.org/10.14778/1920841.1920879
https://doi.org/10.1007/978-1-4419-6045-0_6

13:20 O’Reach: Even Faster Reachability in Large Graphs

Ta
bl

e
A

.6
Av

er
ag

e
qu

er
y

tim
es

in
µs

fo
r

10
00

00
ne

ga
tiv

e
(le

ft
)

an
d

po
sit

iv
e

qu
er

ie
s

(r
ig

ht
).

H
ig

hl
ig

ht
ed

re
su

lts
ar

e
th

e
ov

er
al

lb
es

t/
se

co
nd

-b
es

t
af

te
r

Ma
tr

ix
pe

r
qu

er
y

se
t

ov
er

al
lt

es
te

d
al

go
rit

hm
s.

←
ne

ga
ti

ve
po

si
ti

ve
→

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

In
st

an
ce

pB
iB
FS

PR
ea
CH

PR
ea
CH

PP
L

PP
L

IP
(d

)
IP
(d
)

BF
L(
d)

BF
L(
d)

Ma
tr
ix

pB
iB
FS

PR
ea

CH
PR
ea
CH

PP
L

PP
L

IP
(d
)

IP
(d
)

BF
L(
d)

BF
L(
d)

Ma
tr
ix

kr
on

_
lo

gn
12

0
.0
3
1

0
.0
2
0

0
.0
1
7

0
.0
3
0

0
.0
1
8

0
.0
2
8

0
.0
2
8

0
.0
9
7

0
.0
4
6

0
.0
1
7

0
.3
4
7

0
.3
6
1

0
.2
5
1

0
.0
3
5

0
.0
3
2

2
.2
1
3

0
.8
2
4

3
.2
7
8

0
.9
8
4

0
.0
1
4

kr
on

_
lo

gn
16

0
.0
9
4

0
.0
5
7

0
.0
6
9

0
.1
0
9

0
.0
7
5

0
.0
7
8

0
.1
1
3

0
.1
6
1

0
.1
5
3

0
.5
3
3

3
.2
4
6

3
.4
6
7

2
.6
3
7

0
.1
1
5

0
.1
0
6

2
5
.6
9
0

1
0
.5
3
0

2
5
.0
0
7

9
.7
2
5

0
.2
6
2

kr
on

_
lo

gn
17

0
.1
2
2

0
.0
7
2

0
.0
7
8

0
.1
3
5

0
.0
8
6

0
.0
9
5

0
.1
3
1

0
.1
1
7

0
.1
1
7

1
.1
1
1

2
.3
6
5

2
.5
3
7

0
.6
9
2

0
.1
5
2

0
.1
0
0

2
0
.5
4
8

4
.5
9
7

9
.9
2
9

1
.7
3
4

0
.8
8
1

kr
on

_
lo

gn
20

0
.1
8
4

0
.1
1
7

0
.1
2
8

0
.2
2
1

0
.1
1
9

0
.1
6
7

0
.2
0
1

0
.3
2
5

0
.3
5
3

2
.4
1
3

4
6
.1
8
6

2
5
.0
9
2

2
3
.3
3
1

0
.2
7
4

0
.2
6
5

3
4
2
.8
8
7

1
6
3
.9
0
2

3
7
3
.8
4
8
1
6
2
.4
0
5

1
.7
7
8

kr
on

_
lo

gn
21

0
.2
2
4

0
.1
4
6

0
.1
6
2

0
.2
5
0

0
.1
3
9

0
.2
0
7

0
.2
5
7

0
.2
3
7

0
.2
8
6

6
7
.1
8
4

1
5
.4
1
6

5
.9
9
8

0
.3
1
3

0
.3
5
5

3
0
6
.8
2
8

1
9
3
.2
1
2

2
0
3
.6
9
5
1
1
3
.5
0
2

ra
nd

n2
0-

21
0
.2
5
5

0
.3
4
2

0
.2
3
4

0
.2
7
8

0
.1
5
4

0
.2
1
8

0
.1
9
1

0
.0
5
6

0
.1
2
2

1
.6
9
2

1
.2
9
8

1
.0
4
4

0
.8
5
8

0
.4
8
2

0
.4
0
4

2
.5
1
3

1
.7
9
2

0
.8
5
6

0
.6
9
3

0
.8
4
4

ra
nd

n2
0-

22
3
.0
1
6

2
.4
7
3

2
.2
9
8

0
.4
2
4

0
.3
3
5

2
.5
6
9

2
.5
1
9

0
.3
5
7

0
.4
2
9

1
.0
5
6

3
5
.7
4
7

2
1
.8
7
3

2
1
.8
3
2

1
.1
5
3

1
.2
7
8

5
3
.5
9
1

5
3
.4
3
1

9
.3
6
9

9
.3
4
5

0
.3
6
1

ra
nd

n2
0-

23
8
2
.9
6
0

3
6
.1
9
3

3
6
.1
3
9

3
.0
9
2

2
.4
4
9

1
3
9
.5
4
4

1
4
2
.7
3
1

5
1
.1
2
5

5
1
.0
4
6

4
.9
9
3

8
7
0
.7
8
7

2
4
7
.7
0
0
2
4
6
.2
1
8

4
.6
2
5

4
.7
7
5

3
5
2
4
.7
3
4

3
4
6
2
.7
9
0

9
7
1
.8
0
7
9
4
4
.5
2
6

1
.8
2
2

ra
nd

n2
3-

24
0
.3
5
6

0
.4
9
4

0
.4
2
6

0
.4
0
2

0
.2
1
6

0
.3
1
0

0
.2
6
4

0
.0
5
5

0
.1
6
8

1
.7
4
7

1
.3
6
6

1
.1
6
9

0
.6
8
0

0
.5
5
7

3
.2
7
2

2
.3
4
5

1
.0
7
4

0
.8
9
2

ra
nd

n2
3-

25
4
.1
3
0

3
.2
4
4

3
.0
1
1

0
.5
4
6

0
.4
2
6

3
.2
3
7

3
.1
4
3

0
.4
0
9

0
.5
2
9

5
1
.7
1
3

2
9
.0
9
8

2
9
.1
0
8

1
.2
1
2

1
.3
7
9

7
0
.3
2
7

7
0
.4
2
5

1
1
.7
8
1

1
1
.8
2
5

de
la

un
ay

_
n1

5
0
.1
2
5

0
.1
7
2

0
.0
7
6

0
.1
1
8

0
.0
5
5

0
.1
8
9

0
.0
8
8

0
.0
5
3

0
.0
4
5

0
.0
6
3

1
.2
2
7

0
.1
5
0

0
.1
5
6

0
.1
0
2

0
.1
0
8

5
.2
0
7

2
.6
9
3

0
.7
6
2

0
.5
6
9

0
.0
5
0

de
la

un
ay

_
n2

0
0
.2
3
7

0
.3
5
0

0
.1
8
7

0
.2
8
8

0
.1
4
2

0
.3
5
5

0
.1
8
3

0
.0
5
5

0
.1
2
4

0
.9
2
4

2
.9
8
4

0
.3
3
4

0
.3
9
7

0
.4
1
7

0
.4
1
9

9
.1
8
0

6
.4
0
7

2
.1
7
3

1
.8
1
7

0
.5
0
5

de
la

un
ay

_
n2

2
0
.2
8
0

0
.4
1
8

0
.2
7
4

0
.3
6
3

0
.1
7
7

0
.4
1
5

0
.2
2
1

0
.0
5
4

0
.1
5
4

3
.3
5
4

0
.4
2
5

0
.5
9
0

0
.5
6
0

0
.5
6
1

9
.2
4
9

7
.2
1
9

2
.9
4
5

2
.5
3
2

ci
te

se
er

.s
cc

0
.0
5
6

0
.0
7
5

0
.0
5
6

0
.2
2
9

0
.0
5
6

0
.0
5
0

0
.0
5
6

0
.0
4
3

0
.0
5
6

1
.3
1
2

0
.1
1
3

0
.0
8
9

0
.1
1
2

0
.3
0
3

0
.1
1
2

0
.3
8
4

0
.1
1
2

0
.1
7
9

0
.1
1
2

0
.6
5
3

ci
te

se
er

x
0
.2
1
1

0
.2
1
2

0
.2
1
4

0
.3
5
8

0
.1
4
1

0
.1
6
0

0
.1
7
2

0
.0
5
8

0
.1
4
1

0
.5
4
4

0
.2
4
8

0
.2
2
2

0
.2
9
6

0
.0
8
5

2
.5
1
1

0
.4
2
6

1
.6
8
6

0
.2
9
1

ci
t-

P
at

en
ts

3
.9
6
5

2
.7
3
2

2
.5
6
2

0
.5
2
6

0
.3
2
9

3
.9
1
5

3
.7
9
7

0
.6
5
8

0
.7
3
7

2
3
8
.9
1
3

1
1
8
.4
2
7
1
1
7
.2
4
0

1
.9
6
1

2
.1
2
3

4
7
3
.0
8
3

4
8
2
.6
6
8

1
1
8
.0
9
7
1
1
6
.7
9
1

go
_

un
ip

ro
t

0
.0
9
8

0
.1
2
1

0
.0
9
9

0
.3
8
5

0
.0
9
8

0
.0
6
8

0
.0
9
8

0
.0
4
2

0
.0
9
8

2
0
8
.4
9
4

1
.0
2
6

0
.9
0
2

0
.5
3
4

0
.4
3
5

1
.0
5
4

0
.7
1
2

0
.6
8
8

0
.5
1
9

un
ip

ro
te

nc
_

22
m

0
.0
6
7

0
.0
6
8

0
.0
6
6

0
.2
5
4

0
.0
6
6

0
.0
4
5

0
.0
6
6

0
.0
4
3

0
.0
6
6

0
.0
7
2

0
.0
7
6

0
.0
7
2

0
.2
7
4

0
.0
7
2

0
.3
3
4

0
.0
7
2

0
.1
9
6

0
.0
7
2

un
ip

ro
te

nc
_

10
0m

0
.1
3
0

0
.1
6
3

0
.1
3
1

0
.4
1
0

0
.1
3
1

0
.0
9
8

0
.1
3
1

0
.0
4
3

0
.1
3
1

0
.1
1
8

0
.1
0
8

0
.1
1
8

0
.4
5
2

0
.1
1
8

0
.5
0
4

0
.1
1
8

0
.2
3
3

0
.1
1
8

un
ip

ro
te

nc
_

15
0m

0
.1
5
2

0
.2
0
6

0
.1
5
3

0
.4
4
4

0
.1
5
3

0
.1
1
6

0
.1
5
3

0
.0
4
4

0
.1
5
3

0
.1
3
9

0
.1
2
1

0
.1
3
9

0
.5
0
9

0
.1
3
9

0
.5
6
5

0
.1
3
9

0
.2
3
9

0
.1
3
9

go
_

su
b

0
.0
3
3

0
.0
4
6

0
.0
2
8

0
.0
5
8

0
.0
2
6

0
.0
5
0

0
.0
3
1

0
.0
5
7

0
.0
2
4

0
.0
2
5

0
.1
9
8

0
.1
3
9

0
.0
8
8

0
.0
9
2

0
.0
5
5

2
.4
4
7

0
.4
4
8

0
.3
5
5

0
.1
5
4

0
.0
1
2

pu
bm

ed
_

su
b

0
.0
7
8

0
.0
7
6

0
.0
6
6

0
.0
6
8

0
.0
4
4

0
.0
5
8

0
.0
5
7

0
.0
6
1

0
.0
3
9

0
.0
2
9

0
.5
4
6

0
.4
9
1

0
.3
4
0

0
.0
9
0

0
.0
7
3

1
.4
4
1

0
.5
7
7

0
.9
2
2

0
.3
9
9

0
.0
1
9

ya
go

_
su

b
0
.0
2
5

0
.0
3
0

0
.0
2
3

0
.0
5
8

0
.0
2
3

0
.0
2
2

0
.0
2
3

0
.0
4
8

0
.0
2
2

0
.0
2
6

0
.1
4
6

0
.0
9
7

0
.0
7
4

0
.0
8
6

0
.0
5
7

0
.3
4
2

0
.1
3
7

0
.2
2
5

0
.1
0
2

0
.0
2
0

ci
te

se
er

_
su

b
0
.0
8
3

0
.0
8
9

0
.0
5
9

0
.0
7
1

0
.0
3
8

0
.0
7
2

0
.0
5
4

0
.0
5
5

0
.0
2
9

0
.0
3
2

0
.5
8
0

0
.2
8
5

0
.2
2
3

0
.0
9
5

0
.0
8
7

1
.1
8
7

0
.6
4
2

0
.5
7
4

0
.3
1
8

0
.0
2
6

ar
X

iv
0
.2
4
7

0
.2
5
8

0
.2
2
3

0
.0
7
6

0
.0
4
7

0
.2
9
9

0
.2
4
2

0
.1
3
0

0
.0
9
1

0
.0
2
4

1
.2
0
9

1
.2
1
6

0
.6
3
7

0
.0
4
6

0
.0
4
7

6
.4
4
5

2
.7
9
0

3
.4
6
4

1
.6
5
7

0
.0
1
8

am
az

e
0
.0
1
2

0
.0
1
4

0
.0
1
3

0
.0
3
0

0
.0
1
3

0
.0
1
1

0
.0
1
3

0
.0
4
8

0
.0
1
3

0
.0
1
6

0
.0
1
0

0
.0
1
5

0
.0
0
9

0
.0
3
1

0
.0
0
9

0
.0
8
9

0
.0
0
9

0
.1
0
2

0
.0
0
9

0
.0
0
9

ke
gg

0
.0
1
4

0
.0
1
5

0
.0
1
5

0
.0
3
3

0
.0
1
5

0
.0
1
4

0
.0
1
5

0
.0
5
3

0
.0
1
5

0
.0
3
2

0
.0
1
0

0
.0
1
6

0
.0
0
9

0
.0
3
1

0
.0
0
9

0
.0
9
4

0
.0
0
9

0
.1
0
2

0
.0
0
9

0
.0
1
0

na
sa

0
.0
2
6

0
.0
3
1

0
.0
2
9

0
.0
4
8

0
.0
2
7

0
.0
3
2

0
.0
3
1

0
.0
5
4

0
.0
2
6

0
.0
2
2

0
.0
6
1

0
.0
5
8

0
.0
4
4

0
.0
4
4

0
.0
2
2

1
.6
2
7

0
.1
4
8

0
.3
5
1

0
.0
4
4

0
.0
0
8

xm
ar

k
0
.0
3
1

0
.0
3
2

0
.0
2
7

0
.0
5
2

0
.0
2
6

0
.0
4
2

0
.0
3
1

0
.0
5
5

0
.0
2
3

0
.0
2
4

0
.0
3
6

0
.0
4
9

0
.0
2
6

0
.0
3
2

0
.0
1
4

0
.4
3
2

0
.0
4
5

2
.1
6
3

0
.0
2
1

0
.0
0
8

vc
ho

cy
c

0
.0
1
6

0
.0
1
6

0
.0
1
7

0
.0
5
0

0
.0
1
7

0
.0
1
3

0
.0
1
7

0
.0
4
7

0
.0
1
7

0
.0
2
9

0
.0
1
5

0
.0
2
4

0
.0
1
4

0
.0
3
9

0
.0
1
4

0
.2
4
1

0
.0
1
5

0
.0
9
6

0
.0
1
5

0
.0
0
7

m
tb

rv
0
.0
1
7

0
.0
1
6

0
.0
1
8

0
.0
5
0

0
.0
1
8

0
.0
1
3

0
.0
1
8

0
.0
4
7

0
.0
1
8

0
.0
2
9

0
.0
1
7

0
.0
2
5

0
.0
1
7

0
.0
3
9

0
.0
1
6

0
.2
3
3

0
.0
1
9

0
.1
0
5

0
.0
1
7

0
.0
0
6

an
th

ra
0
.0
1
7

0
.0
1
8

0
.0
1
9

0
.0
5
4

0
.0
1
9

0
.0
1
3

0
.0
1
9

0
.0
4
7

0
.0
2
0

0
.0
3
3

0
.0
1
4

0
.0
2
5

0
.0
1
4

0
.0
4
3

0
.0
1
4

0
.2
8
3

0
.0
1
5

0
.0
8
7

0
.0
1
4

0
.0
0
5

ec
oo

0
.0
1
7

0
.0
1
7

0
.0
1
9

0
.0
5
3

0
.0
1
9

0
.0
1
3

0
.0
1
9

0
.0
4
7

0
.0
1
9

0
.0
5
5

0
.0
1
5

0
.0
2
7

0
.0
1
4

0
.0
4
0

0
.0
1
4

0
.2
6
6

0
.0
1
5

0
.1
1
1

0
.0
1
4

0
.0
0
6

ag
ro

cy
c

0
.0
1
8

0
.0
1
7

0
.0
2
1

0
.0
5
4

0
.0
2
1

0
.0
1
3

0
.0
2
1

0
.0
4
6

0
.0
2
1

0
.0
3
3

0
.0
1
4

0
.0
2
7

0
.0
1
4

0
.0
4
2

0
.0
1
4

0
.2
4
9

0
.0
1
5

0
.1
3
9

0
.0
1
5

0
.0
0
6

hu
m

an
0
.0
2
5

0
.0
2
5

0
.0
3
3

0
.0
9
7

0
.0
3
3

0
.0
1
5

0
.0
3
3

0
.0
4
5

0
.0
3
3

0
.0
7
2

0
.0
2
2

0
.0
3
6

0
.0
2
2

0
.0
8
3

0
.0
2
2

0
.2
8
1

0
.0
2
2

0
.1
1
8

0
.0
2
2

0
.0
0
6

p2
p-

G
nu

te
lla

31
0
.0
3
1

0
.0
3
0

0
.0
3
7

0
.1
1
1

0
.0
3
7

0
.0
1
7

0
.0
3
7

0
.0
4
6

0
.0
3
6

0
.1
0
0

0
.0
2
6

0
.0
3
7

0
.0
2
6

0
.0
7
0

0
.0
2
6

0
.1
9
1

0
.0
2
6

0
.2
7
4

0
.0
2
6

0
.0
2
3

em
ai

l-
E

uA
ll

0
.0
5
4

0
.0
6
2

0
.0
6
1

0
.1
6
1

0
.0
6
2

0
.0
5
5

0
.0
6
2

0
.0
4
5

0
.0
6
1

5
.2
6
7

0
.0
4
2

0
.0
5
8

0
.0
4
2

0
.2
0
4

0
.0
4
2

0
.3
4
2

0
.0
4
2

0
.1
9
7

0
.0
4
2

2
.8
5
8

w
eb

-G
oo

gl
e

0
.0
7
7

0
.0
7
9

0
.0
7
6

0
.1
7
5

0
.0
7
5

0
.0
8
1

0
.0
7
6

0
.0
5
2

0
.0
7
0

1
.4
0
0

0
.0
4
9

0
.0
6
8

0
.0
4
8

0
.1
9
0

0
.0
4
8

0
.4
5
8

0
.0
4
8

0
.2
3
7

0
.0
4
8

1
.4
0
5

so
c-

L
iv

eJ
ou

rn
al

1
0
.0
6
5

0
.0
6
2

0
.0
7
0

0
.1
9
2

0
.0
7
2

0
.0
5
7

0
.0
7
2

0
.0
4
6

0
.0
6
9

3
.7
8
5

0
.0
5
8

0
.0
7
7

0
.0
5
8

0
.2
4
0

0
.0
5
8

0
.4
4
6

0
.0
5
8

0
.2
0
1

0
.0
5
8

1
.8
0
6

w
ik

i-
T
al

k
0
.0
7
5

0
.0
7
3

0
.0
8
3

0
.2
6
9

0
.0
8
3

0
.0
4
9

0
.0
8
3

0
.0
4
4

0
.0
8
3

0
.0
5
8

0
.0
7
7

0
.0
5
7

0
.3
3
0

0
.0
5
7

0
.3
5
6

0
.0
5
7

0
.1
7
2

0
.0
5
7

M
in

0
.0
1
2

0
.0
1
4

0
.0
1
3

0
.0
3
0

0
.0
1
3

0
.0
1
1

0
.0
1
3

0
.0
4
2

0
.0
1
3

0
.0
1
0

0
.0
1
5

0
.0
0
9

0
.0
3
1

0
.0
0
9

0
.0
8
9

0
.0
0
9

0
.0
8
7

0
.0
0
9

A
v
er

ag
e

2
.3
8
2

1
.1
8
8

1
.1
5
4

0
.2
6
0

0
.1
4
9

3
.7
2
7

3
.7
9
3

1
.3
4
5

1
.3
5
8

3
7
.5
5
4

1
1
.5
0
8

1
1
.0
6
9

0
.3
9
9

0
.3
4
5

1
1
8
.8
3
5

1
0
9
.0
1
4

4
2
.6
3
2

3
3
.6
9
9

M
a
x

8
2
.9
6
0

3
6
.1
9
3

3
6
.1
3
9

3
.0
9
2

2
.4
4
9

1
3
9
.5
4
4

1
4
2
.7
3
1

5
1
.1
2
5

5
1
.0
4
6

8
7
0
.7
8
7

2
4
7
.7
0
0
2
4
6
.2
1
8

4
.6
2
5

4
.7
7
5

3
5
2
4
.7
3
4

3
4
6
2
.7
9
0

9
7
1
.8
0
7
9
4
4
.5
2
6

K. Hanauer, C. Schulz, and J. Trummer 13:21

Ta
bl

e
A

.7
Av

er
ag

e
qu

er
y

tim
es

in
µs

fo
r

10
00

00
ra

nd
om

(le
ft)

an
d

20
00

00
m

ix
ed

qu
er

ie
s

(r
ig

ht
).

H
ig

hl
ig

ht
ed

re
su

lts
ar

e
th

e
ov

er
al

lb
es

t/
se

co
nd

-b
es

t
af

te
r

Ma
tr

ix
pe

r
qu

er
y

se
t

ov
er

al
lt

es
te

d
al

go
rit

hm
s.

←
ra

nd
om

m
ix

ed
→

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

In
st

an
ce

pB
iB

FS
PR

ea
CH

PR
ea

CH
PP

L
PP

L
IP

(d
)

IP
(d

)
BF

L(
d)

BF
L(

d)
Ma

tr
ix

pB
iB

FS
PR

ea
CH

PR
ea

CH
PP

L
PP

L
IP

(d
)

IP
(d

)
BF

L(
d)

BF
L(

d)
Ma

tr
ix

kr
on

_
lo

gn
12

0
.1
2
0

0
.1
2
0

0
.0
8
4

0
.0
4
5

0
.0
2
8

0
.6
3
5

0
.2
5
1

3
.0
1
4

0
.3
0
0

0
.0
1
9

0
.1
9
4

0
.1
9
7

0
.1
3
9

0
.0
3
9

0
.0
2
9

1
.1
2
1

0
.4
3
3

1
.6
9
4

0
.5
1
6

0
.0
1
6

kr
on

_
lo

gn
16

0
.7
7
6

0
.8
2
1

0
.6
2
8

0
.1
5
5

0
.0
8
1

5
.4
6
3

2
.2
9
7

7
.1
9
4

2
.2
1
5

1
.0
0
6

1
.6
8
2

1
.7
8
8

1
.3
5
1

0
.1
4
3

0
.0
8
8

1
2
.9
4
3

5
.3
1
7

1
2
.6
1
4

4
.9
3
2

0
.1
1
0

kr
on

_
lo

gn
17

0
.6
0
6

0
.6
0
7

0
.2
3
7

0
.1
8
0

0
.0
9
2

4
.0
4
0

1
.0
0
1

3
.6
1
7

0
.4
8
2

1
.3
2
6

1
.2
5
8

1
.3
3
3

0
.3
8
9

0
.1
7
6

0
.0
9
7

1
0
.3
6
1

2
.3
6
2

5
.0
6
1

0
.9
3
2

0
.1
7
3

kr
on

_
lo

gn
20

7
.3
2
7

4
.2
7
3

3
.9
9
8

0
.2
7
6

0
.1
5
0

5
3
.8
5
3

2
6
.2
3
9

5
9
.3
1
9

2
6
.6
3
8

2
.4
3
0

2
3
.1
8
3

1
2
.6
5
1

1
1
.7
5
3

0
.2
8
5

0
.2
0
7

1
7
1
.5
8
4

8
2
.0
1
6

1
8
7
.0
3
6

8
1
.3
8
4

0
.3
9
3

kr
on

_
lo

gn
21

1
0
.3
6
4

2
.4
5
8

1
.0
6
4

0
.3
1
1

0
.1
7
9

4
4
.5
6
6

2
7
.5
9
2

3
3
.3
1
8

1
7
.0
8
9

3
3
.6
7
7

7
.8
0
6

3
.0
8
5

0
.3
2
3

0
.2
6
6

1
5
3
.7
9
8

9
7
.0
1
8

1
0
2
.0
1
3

5
6
.9
8
2

ra
nd

n2
0-

21
0
.2
6
0

0
.4
1
9

0
.3
0
6

0
.2
8
4

0
.1
5
2

0
.2
2
4

0
.1
8
9

0
.0
5
6

0
.1
1
6

1
.7
7
1

0
.7
9
5

0
.7
1
0

0
.5
6
0

0
.3
9
1

0
.2
9
1

1
.3
8
7

1
.0
0
5

0
.4
6
6

0
.4
2
0

0
.3
7
2

ra
nd

n2
0-

22
3
.0
0
7

2
.5
5
2

2
.3
6
3

0
.4
3
1

0
.3
3
9

2
.4
9
4

2
.4
4
5

0
.3
5
5

0
.4
2
0

1
.0
6
0

1
9
.3
5
6

1
2
.2
2
7

1
2
.0
9
0

0
.8
0
6

0
.8
2
4

2
8
.1
6
3

2
8
.0
4
6

4
.8
8
2

4
.9
0
4

0
.3
3
8

ra
nd

n2
0-

23
1
1
0
.8
6
7

4
2
.8
8
0

4
2
.5
2
0

2
.9
6
3

2
.4
0
5

2
7
8
.2
9
5
2
7
9
.2
6
6

8
9
.9
5
3

8
7
.1
7
8

5
.2
4
2

4
7
7
.0
0
9

1
4
1
.8
6
5
1
4
0
.7
0
5

3
.9
7
7

3
.7
1
5
1
7
9
4
.9
2
5
1
8
0
5
.9
2
2

5
1
1
.4
4
0
4
9
7
.8
7
0

0
.3
5
5

ra
nd

n2
3-

24
0
.3
5
5

1
.0
3
3

0
.7
8
4

0
.4
1
3

0
.2
2
4

0
.3
1
0

0
.2
6
6

0
.0
5
6

0
.1
7
1

1
.0
7
3

0
.9
2
8

0
.7
3
9

0
.5
5
3

0
.4
0
1

1
.8
1
9

1
.3
1
4

0
.5
8
0

0
.5
4
7

ra
nd

n2
3-

25
4
.1
6
0

3
.9
1
6

3
.6
7
1

0
.5
5
5

0
.4
3
3

3
.3
2
3

3
.2
3
0

0
.4
1
9

0
.5
4
0

2
7
.9
2
7

1
6
.2
1
2

1
6
.0
9
2

0
.9
0
1

0
.9
2
0

3
6
.9
1
6

3
6
.9
1
4

6
.1
3
0

6
.1
7
5

de
la

un
ay

_
n1

5
0
.1
3
3

0
.1
7
5

0
.0
7
7

0
.1
3
3

0
.0
5
4

0
.2
2
9

0
.1
0
2

0
.0
9
1

0
.0
4
5

0
.0
6
4

0
.6
8
5

0
.1
6
6

0
.1
2
0

0
.1
2
9

0
.0
8
0

2
.8
4
6

1
.4
0
6

0
.4
2
0

0
.3
0
7

0
.0
5
6

de
la

un
ay

_
n2

0
0
.2
3
6

0
.4
0
8

0
.2
2
6

0
.2
9
5

0
.1
3
9

0
.3
6
3

0
.1
7
6

0
.0
5
8

0
.1
1
8

0
.9
9
2

1
.6
3
9

0
.3
6
1

0
.3
0
1

0
.3
6
8

0
.2
9
2

4
.8
0
0

3
.3
1
8

1
.1
2
8

0
.9
8
2

0
.3
8
4

de
la

un
ay

_
n2

2
0
.2
8
0

0
.6
5
0

0
.3
1
5

0
.3
7
3

0
.1
8
1

0
.4
1
7

0
.2
2
0

0
.0
5
6

0
.1
5
4

1
.8
5
6

0
.4
3
0

0
.3
7
1

0
.4
7
8

0
.3
7
7

4
.9
0
0

3
.7
3
1

1
.5
0
2

1
.3
5
4

ci
te

se
er

.s
cc

0
.0
5
7

0
.0
7
7

0
.0
5
7

0
.2
3
5

0
.0
5
7

0
.0
5
0

0
.0
5
7

0
.0
4
3

0
.0
5
7

1
.3
2
3

0
.1
0
5

0
.0
9
5

0
.1
0
6

0
.2
9
4

0
.1
0
6

0
.2
4
3

0
.1
0
6

0
.1
2
4

0
.1
0
6

0
.3
8
5

ci
te

se
er

x
0
.2
0
8

0
.2
5
3

0
.2
3
8

0
.3
6
9

0
.1
3
8

0
.1
6
4

0
.1
6
3

0
.0
7
9

0
.1
3
4

0
.3
9
7

0
.2
0
4

0
.1
7
9

0
.3
8
6

0
.1
2
1

1
.4
0
7

0
.3
0
1

0
.8
9
0

0
.2
2
7

ci
t-

P
at

en
ts

4
.1
0
7

3
.0
2
9

2
.8
5
7

0
.5
3
2

0
.3
2
9

3
.9
9
8

3
.8
8
9

0
.6
8
0

0
.7
4
3

1
2
1
.4
4
4

6
0
.4
8
8

5
9
.9
7
5

1
.3
0
1

1
.2
5
5

2
3
6
.1
6
6

2
4
0
.4
6
6

5
9
.5
2
3

5
8
.8
1
0

go
_

un
ip

ro
t

0
.1
0
8

0
.1
2
3

0
.1
0
3

0
.3
9
4

0
.1
0
1

0
.0
6
9

0
.1
0
1

0
.0
4
2

0
.1
0
1

1
0
3
.6
3
3

0
.4
1
1

0
.3
4
8

0
.4
8
5

0
.2
8
8

0
.6
1
0

0
.4
3
5

0
.3
7
8

0
.3
3
7

un
ip

ro
te

nc
_

22
m

0
.0
6
7

0
.0
6
8

0
.0
6
8

0
.2
6
0

0
.0
6
8

0
.0
4
5

0
.0
6
8

0
.0
4
3

0
.0
6
8

0
.0
9
3

0
.0
9
9

0
.0
9
2

0
.2
7
7

0
.0
9
2

0
.2
1
3

0
.0
9
2

0
.1
3
0

0
.0
9
2

un
ip

ro
te

nc
_

10
0m

0
.1
3
2

0
.1
6
5

0
.1
3
4

0
.4
1
9

0
.1
3
4

0
.0
9
8

0
.1
3
4

0
.0
4
3

0
.1
3
4

0
.1
4
9

0
.1
5
2

0
.1
4
8

0
.4
5
0

0
.1
4
8

0
.3
4
2

0
.1
4
8

0
.1
4
9

0
.1
4
8

un
ip

ro
te

nc
_

15
0m

0
.1
5
4

0
.2
1
0

0
.1
5
6

0
.4
5
4

0
.1
5
6

0
.1
1
6

0
.1
5
6

0
.0
4
4

0
.1
5
6

0
.1
7
0

0
.1
7
2

0
.1
7
0

0
.4
9
9

0
.1
7
0

0
.3
8
3

0
.1
7
0

0
.1
5
2

0
.1
7
0

go
_

su
b

0
.0
3
4

0
.0
4
6

0
.0
2
5

0
.0
6
4

0
.0
2
3

0
.0
5
4

0
.0
3
0

0
.0
7
6

0
.0
2
2

0
.0
2
7

0
.1
2
2

0
.0
9
9

0
.0
6
0

0
.0
7
7

0
.0
4
1

1
.2
5
9

0
.2
4
7

0
.2
1
2

0
.0
9
1

0
.0
2
1

pu
bm

ed
_

su
b

0
.0
8
3

0
.0
8
3

0
.0
6
1

0
.0
7
7

0
.0
3
8

0
.0
7
0

0
.0
5
4

0
.1
1
8

0
.0
3
3

0
.0
3
0

0
.3
1
8

0
.2
9
6

0
.2
0
5

0
.0
8
9

0
.0
5
9

0
.7
4
0

0
.3
1
6

0
.4
9
7

0
.2
2
0

0
.0
2
6

ya
go

_
su

b
0
.0
2
5

0
.0
3
1

0
.0
1
8

0
.0
6
4

0
.0
1
8

0
.0
2
2

0
.0
1
8

0
.0
6
1

0
.0
1
6

0
.0
2
7

0
.0
9
2

0
.0
7
0

0
.0
5
1

0
.0
7
6

0
.0
4
1

0
.1
8
8

0
.0
8
1

0
.1
4
7

0
.0
6
4

0
.0
2
3

ci
te

se
er

_
su

b
0
.0
8
5

0
.0
9
2

0
.0
6
0

0
.0
8
3

0
.0
4
1

0
.0
7
6

0
.0
5
6

0
.0
8
8

0
.0
3
0

0
.0
3
3

0
.3
3
8

0
.1
9
6

0
.1
4
6

0
.0
9
5

0
.0
6
6

0
.6
3
4

0
.3
4
7

0
.3
2
0

0
.1
7
9

0
.0
2
9

ar
X

iv
0
.3
7
9

0
.3
7
7

0
.2
5
3

0
.0
8
5

0
.0
4
9

1
.2
1
5

0
.6
2
2

1
.7
7
4

0
.3
2
2

0
.0
2
6

0
.7
4
3

0
.7
5
2

0
.4
3
3

0
.0
6
8

0
.0
4
9

3
.4
2
4

1
.6
0
6

1
.7
9
5

0
.8
7
7

0
.0
2
3

am
az

e
0
.0
1
5

0
.0
1
7

0
.0
1
4

0
.0
4
1

0
.0
1
4

0
.0
3
0

0
.0
1
4

1
.2
6
2

0
.0
1
4

0
.0
1
9

0
.0
1
5

0
.0
2
0

0
.0
1
5

0
.0
3
9

0
.0
1
5

0
.0
5
7

0
.0
1
5

0
.0
8
6

0
.0
1
5

0
.0
1
5

ke
gg

0
.0
1
5

0
.0
1
7

0
.0
1
5

0
.0
4
3

0
.0
1
5

0
.0
3
5

0
.0
1
5

1
.5
4
2

0
.0
1
5

0
.0
1
8

0
.0
1
6

0
.0
2
0

0
.0
1
5

0
.0
3
9

0
.0
1
5

0
.0
6
0

0
.0
1
5

0
.0
8
6

0
.0
1
5

0
.0
1
5

na
sa

0
.0
2
6

0
.0
3
0

0
.0
2
3

0
.0
5
4

0
.0
2
1

0
.0
4
1

0
.0
2
4

0
.0
9
4

0
.0
1
9

0
.0
2
4

0
.0
4
8

0
.0
5
1

0
.0
3
7

0
.0
5
6

0
.0
2
5

0
.8
3
8

0
.0
8
8

0
.2
0
9

0
.0
3
6

0
.0
1
9

xm
ar

k
0
.0
2
9

0
.0
3
0

0
.0
2
3

0
.0
5
9

0
.0
2
3

0
.0
4
9

0
.0
2
9

0
.1
8
8

0
.0
2
0

0
.0
2
5

0
.0
3
7

0
.0
4
6

0
.0
2
9

0
.0
5
3

0
.0
2
2

0
.2
3
9

0
.0
4
0

1
.1
1
8

0
.0
2
4

0
.0
2
0

vc
ho

cy
c

0
.0
1
7

0
.0
1
6

0
.0
1
7

0
.0
5
8

0
.0
1
6

0
.0
1
4

0
.0
1
6

0
.0
5
9

0
.0
1
6

0
.0
3
1

0
.0
2
0

0
.0
2
5

0
.0
1
9

0
.0
5
6

0
.0
1
9

0
.1
3
6

0
.0
1
9

0
.0
8
0

0
.0
2
0

0
.0
2
3

m
tb

rv
0
.0
1
6

0
.0
1
6

0
.0
1
7

0
.0
5
8

0
.0
1
6

0
.0
1
3

0
.0
1
6

0
.0
6
0

0
.0
1
6

0
.0
3
1

0
.0
2
1

0
.0
2
6

0
.0
2
0

0
.0
5
6

0
.0
2
0

0
.1
3
2

0
.0
2
1

0
.0
8
5

0
.0
2
0

0
.0
2
4

an
th

ra
0
.0
1
7

0
.0
1
9

0
.0
1
7

0
.0
6
4

0
.0
1
7

0
.0
1
3

0
.0
1
7

0
.0
5
4

0
.0
1
7

0
.0
3
5

0
.0
2
0

0
.0
2
7

0
.0
1
9

0
.0
6
1

0
.0
2
0

0
.1
6
1

0
.0
2
0

0
.0
7
5

0
.0
2
0

0
.0
2
5

ec
oo

0
.0
1
7

0
.0
1
8

0
.0
1
7

0
.0
6
4

0
.0
1
7

0
.0
1
3

0
.0
1
7

0
.0
5
6

0
.0
1
7

0
.0
3
5

0
.0
2
0

0
.0
2
7

0
.0
2
0

0
.0
6
0

0
.0
2
0

0
.1
4
8

0
.0
2
0

0
.0
8
8

0
.0
2
0

0
.0
2
6

ag
ro

cy
c

0
.0
1
7

0
.0
1
8

0
.0
1
8

0
.0
6
4

0
.0
1
8

0
.0
1
4

0
.0
1
7

0
.0
5
5

0
.0
1
7

0
.0
3
6

0
.0
2
0

0
.0
2
7

0
.0
2
0

0
.0
6
1

0
.0
2
0

0
.1
4
3

0
.0
2
0

0
.1
0
0

0
.0
2
0

0
.0
2
6

hu
m

an
0
.0
2
4

0
.0
2
6

0
.0
2
6

0
.1
0
9

0
.0
2
6

0
.0
1
5

0
.0
2
6

0
.0
4
8

0
.0
2
6

0
.0
7
4

0
.0
2
8

0
.0
3
3

0
.0
2
7

0
.1
0
8

0
.0
2
7

0
.1
5
9

0
.0
2
7

0
.0
9
1

0
.0
2
7

0
.0
4
6

p2
p-

G
nu

te
lla

31
0
.0
3
0

0
.0
3
4

0
.0
3
1

0
.1
2
3

0
.0
3
0

0
.0
1
9

0
.0
3
0

0
.1
0
4

0
.0
3
0

0
.1
0
2

0
.0
3
3

0
.0
3
7

0
.0
3
2

0
.1
2
6

0
.0
3
2

0
.1
1
6

0
.0
3
3

0
.1
7
3

0
.0
3
2

0
.0
7
2

em
ai

l-
E

uA
ll

0
.0
5
8

0
.0
6
9

0
.0
5
6

0
.1
7
5

0
.0
5
7

0
.0
7
5

0
.0
5
7

0
.4
5
1

0
.0
5
6

5
.4
9
7

0
.0
6
2

0
.0
7
2

0
.0
6
0

0
.2
0
0

0
.0
6
0

0
.2
1
8

0
.0
6
1

0
.1
3
4

0
.0
6
0

0
.3
1
8

w
eb

-G
oo

gl
e

0
.0
8
1

0
.0
9
4

0
.0
7
9

0
.2
0
4

0
.0
7
9

0
.1
4
7

0
.0
7
9

1
.1
8
7

0
.0
7
4

1
.4
6
1

0
.0
7
5

0
.0
8
4

0
.0
7
1

0
.2
2
4

0
.0
7
2

0
.2
9
2

0
.0
7
3

0
.1
5
7

0
.0
7
0

0
.2
6
2

so
c-

L
iv

eJ
ou

rn
al

1
0
.0
7
5

0
.0
7
7

0
.0
7
4

0
.2
3
9

0
.0
7
6

0
.1
5
2

0
.0
7
5

1
.6
6
8

0
.0
7
3

3
.0
7
4

0
.0
8
0

0
.0
8
9

0
.0
7
7

0
.2
6
0

0
.0
7
8

0
.2
7
4

0
.0
7
8

0
.1
3
5

0
.0
7
7

0
.3
9
0

w
ik

i-
T
al

k
0
.0
7
6

0
.0
7
5

0
.0
7
6

0
.2
7
8

0
.0
7
6

0
.0
5
4

0
.0
7
6

0
.1
0
5

0
.0
7
6

0
.0
8
7

0
.0
9
5

0
.0
8
8

0
.3
1
9

0
.0
8
8

0
.2
2
8

0
.0
8
8

0
.1
2
3

0
.0
8
8

M
in

0
.0
1
5

0
.0
1
6

0
.0
1
4

0
.0
4
1

0
.0
1
4

0
.0
1
3

0
.0
1
4

0
.0
4
2

0
.0
1
4

0
.0
1
5

0
.0
2
0

0
.0
1
5

0
.0
3
9

0
.0
1
5

0
.0
5
7

0
.0
1
5

0
.0
7
5

0
.0
1
5

A
v
er

ag
e

3
.5
2
3

1
.5
9
6

1
.4
8
3

0
.2
7
1

0
.1
4
9

9
.7
7
8

8
.5
1
6

5
.0
6
3

3
.3
6
1

1
9
.9
6
4

6
.3
5
1

6
.1
0
2

0
.3
5
2

0
.2
5
8

6
0
.3
5
2

5
6
.4
3
3

2
2
.0
0
2

1
7
.5
4
1

M
a
x

1
1
0
.8
6
7

4
2
.8
8
0

4
2
.5
2
0

2
.9
6
3

2
.4
0
5

2
7
8
.2
9
5
2
7
9
.2
6
6

8
9
.9
5
3

8
7
.1
7
8

4
7
7
.0
0
9

1
4
1
.8
6
5
1
4
0
.7
0
5

3
.9
7
7

3
.7
1
5
1
7
9
4
.9
2
5
1
8
0
5
.9
2
2

5
1
1
.4
4
0
4
9
7
.8
7
0

SEA 2021

13:22 O’Reach: Even Faster Reachability in Large Graphs

Ta
bl

e
A

.8
Sp

ee
du

ps
w

ith
O’

Re
ac

h
pl

us
fa

llb
ac

k
ov

er
pu

re
fa

llb
ac

k
al

go
rit

hm
.

Va
lu

es
gr

ea
te

r
1.

00
ar

e
hi

gh
lig

ht
ed

.

ne
ga

ti
ve

po
si

ti
ve

ra
nd

om
m

ix
ed

In
st

an
ce

PR
ea

CH
PP

L
TF

IP
(s

)
IP

(d
)

BF
L(

s)
BF

L(
d)

PR
ea

CH
PP

L
TF

IP
(s

)
IP

(d
)

BF
L(

s)
BF

L(
d)

PR
ea

CH
PP

L
TF

IP
(s

)
IP

(d
)

BF
L(

s)
BF

L(
d)

PR
ea

CH
PP

L
TF

IP
(s

)
IP

(d
)

BF
L(

s)
BF

L(
d)

kr
on

_
lo

gn
12

1
.1
6

1
.6
5

2
.9
9

0
.9
7

1
.0
0

1
.8
7

2
.1
1

1
.4
3

1
.1
1

2
.3
0

2
.4
5

2
.6
9

3
.1
3

3
.3
3

1
.4
3

1
.5
8

2
.5
8

2
.3
4

2
.5
3

9
.8
6

1
0
.0
6

1
.4
2

1
.3
2

2
.3
9

2
.4
1

2
.5
9

3
.0
6

3
.2
8

kr
on

_
lo

gn
16

0
.8
3

1
.4
5

0
.6
8

0
.6
9

0
.9
9

1
.0
5

1
.3
1

1
.0
8

2
.2
9

2
.4
4

2
.4
2

2
.5
7

1
.3
1

1
.9
0

2
.2
7

2
.3
8

3
.1
6

3
.2
5

1
.3
2

1
.6
1

2
.2
8

2
.4
3

2
.4
1

2
.5
6

kr
on

_
lo

gn
17

0
.9
2

1
.5
7

0
.7
3

0
.7
3

0
.9
3

0
.9
9

3
.6
7

1
.5
2

4
.3
4

4
.4
7

5
.1
4

5
.7
2

2
.5
7

1
.9
4

3
.9
8

4
.0
4

6
.9
2

7
.5
0

3
.4
2

1
.8
2

4
.2
7

4
.3
9

4
.8
8

5
.4
3

kr
on

_
lo

gn
20

0
.9
2

1
.8
5

0
.8
4

0
.8
3

0
.9
0

0
.9
2

1
.0
8

1
.0
3

2
.0
7

2
.0
9

2
.2
1

2
.3
0

1
.0
7

1
.8
4

2
.0
2

2
.0
5

2
.1
6

2
.2
3

1
.0
8

1
.3
8

2
.0
7

2
.0
9

2
.2
1

2
.3
0

kr
on

_
lo

gn
21

0
.9
0

1
.8
0

0
.8
2

0
.8
0

0
.8
0

0
.8
3

2
.5
7

0
.8
8

1
.6
5

1
.5
9

1
.7
5

1
.7
9

2
.3
1

1
.7
4

1
.6
7

1
.6
2

1
.9
0

1
.9
5

2
.5
3

1
.2
2

1
.6
5

1
.5
9

1
.7
5

1
.7
9

ra
nd

n2
0-

21
1
.4
6

1
.8
1

1
.9
2

1
.4
3

1
.1
4

0
.3
6

0
.4
6

1
.2
2

1
.1
9

1
.3
8

1
.5
6

1
.4
0

1
.2
2

1
.2
3

1
.3
7

1
.8
7

2
.0
0

1
.4
4

1
.1
9

0
.3
9

0
.4
9

1
.2
7

1
.3
4

1
.5
3

1
.3
7

1
.3
8

1
.0
8

1
.1
1

ra
nd

n2
0-

22
1
.0
8

1
.2
7

1
.5
0

1
.0
3

1
.0
2

0
.9
4

0
.8
3

1
.0
0

0
.9
0

1
.1
5

1
.0
1

1
.0
0

1
.0
1

1
.0
0

1
.0
8

1
.2
7

1
.5
2

1
.0
5

1
.0
2

0
.9
4

0
.8
5

1
.0
1

0
.9
8

1
.2
3

1
.0
2

1
.0
0

1
.0
0

1
.0
0

ra
nd

n2
0-

23
1
.0
0

1
.2
6

1
.0
5

0
.9
8

1
.0
1

1
.0
0

1
.0
1

0
.9
7

1
.0
1

1
.0
2

1
.0
2

1
.0
3

1
.0
1

1
.2
3

1
.0
3

1
.0
0

1
.0
2

1
.0
3

1
.0
1

1
.0
7

1
.0
4

0
.9
9

1
.0
1

1
.0
3

ra
nd

n2
3-

24
1
.1
6

1
.8
7

2
.0
8

1
.3
8

1
.1
7

0
.2
7

0
.3
3

1
.1
7

1
.2
2

1
.4
3

1
.4
4

1
.4
0

1
.1
9

1
.2
0

1
.3
2

1
.8
4

2
.0
6

1
.4
7

1
.1
7

0
.2
6

0
.3
3

1
.2
6

1
.3
8

1
.6
2

1
.4
1

1
.3
8

1
.0
3

1
.0
6

ra
nd

n2
3-

25
1
.0
8

1
.2
8

1
.5
3

1
.0
4

1
.0
3

0
.8
9

0
.7
7

1
.0
0

0
.8
8

1
.1
3

1
.0
1

1
.0
0

1
.0
0

1
.0
0

1
.0
7

1
.2
8

1
.5
3

1
.2
8

1
.0
3

0
.9
0

0
.7
8

1
.0
1

0
.9
8

1
.2
3

1
.0
0

1
.0
0

0
.9
9

0
.9
9

de
la

un
ay

_
n1

5
2
.2
4

2
.1
6

2
.7
1

2
.8
0

2
.1
4

0
.8
8

1
.1
9

0
.9
6

0
.9
4

1
.3
4

2
.1
4

1
.9
3

1
.3
4

1
.3
4

2
.2
6

2
.4
6

3
.0
2

2
.7
5

2
.2
4

1
.7
3

2
.0
2

1
.3
9

1
.6
2

1
.8
3

2
.1
2

2
.0
2

1
.3
3

1
.3
7

de
la

un
ay

_
n2

0
1
.8
7

2
.0
3

2
.5
9

2
.6
3

1
.9
4

0
.3
1

0
.4
4

0
.8
4

1
.0
0

1
.3
4

1
.4
6

1
.4
3

1
.2
0

1
.2
0

1
.8
1

2
.1
3

2
.7
0

2
.7
8

2
.0
6

0
.3
5

0
.4
9

1
.2
0

1
.2
6

1
.6
2

1
.5
2

1
.4
5

1
.1
4

1
.1
5

de
la

un
ay

_
n2

2
1
.5
2

2
.0
5

2
.6
8

2
.5
1

1
.8
8

0
.2
5

0
.3
5

0
.7
2

1
.0
0

1
.2
9

1
.2
9

1
.2
8

1
.1
7

1
.1
6

2
.0
6

2
.0
6

2
.6
6

2
.5
3

1
.8
9

0
.2
6

0
.3
6

1
.1
6

1
.2
7

1
.6
1

1
.4
5

1
.3
1

1
.1
1

1
.1
1

ci
te

se
er

.s
cc

1
.3
5

4
.1
1

0
.4
2

0
.9
3

0
.8
9

0
.6
2

0
.7
8

0
.7
9

2
.7
0

2
.6
8

2
.8
5

3
.4
3

1
.3
7

1
.6
0

1
.3
5

4
.1
1

0
.5
1

0
.9
0

0
.8
7

0
.6
0

0
.7
5

0
.8
9

2
.7
7

2
.0
2

2
.0
0

2
.2
9

0
.9
8

1
.1
6

ci
te

se
er

x
0
.9
9

2
.5
5

2
.9
7

1
.0
0

0
.9
3

0
.4
1

0
.4
1

1
.1
2

3
.4
7

1
6
.9
9

4
.1
2

5
.8
9

4
.1
7

5
.7
9

1
.0
7

2
.6
7

3
.0
1

1
.0
6

1
.0
1

0
.5
4

0
.5
9

1
.1
4

3
.2
0

9
.6
6

3
.5
1

4
.6
7

3
.1
8

3
.9
3

ci
t-

P
at

en
ts

1
.0
7

1
.6
0

2
.0
2

1
.0
3

1
.0
3

0
.9
7

0
.8
9

1
.0
1

0
.9
2

1
.1
6

0
.9
9

0
.9
8

1
.0
0

1
.0
1

1
.0
6

1
.6
2

2
.0
3

1
.0
6

1
.0
3

0
.9
8

0
.9
2

1
.0
1

1
.0
4

1
.2
6

1
.0
3

0
.9
8

1
.0
0

1
.0
1

go
_

un
ip

ro
t

1
.2
2

3
.9
2

1
.0
8

0
.7
0

0
.7
0

0
.3
4

0
.4
3

1
.1
4

1
.2
3

1
.3
8

1
.4
5

1
.4
8

1
.2
6

1
.3
3

1
.2
0

3
.8
9

1
.0
7

0
.6
8

0
.6
8

0
.3
3

0
.4
2

1
.1
8

1
.6
8

1
.3
9

1
.3
6

1
.4
0

1
.0
6

1
.1
2

un
ip

ro
te

nc
_

22
m

1
.0
2

3
.8
2

1
.2
0

0
.6
8

0
.6
8

0
.5
0

0
.6
5

1
.0
5

3
.8
0

2
.4
9

4
.6
0

4
.6
3

2
.4
1

2
.7
2

1
.0
0

3
.8
3

1
.2
0

0
.6
7

0
.6
7

0
.4
9

0
.6
3

1
.0
8

3
.0
2

1
.7
8

2
.3
3

2
.3
3

1
.1
4

1
.4
2

un
ip

ro
te

nc
_

10
0m

1
.2
5

3
.1
4

1
.4
3

0
.7
6

0
.7
5

0
.2
5

0
.3
3

0
.9
2

3
.8
3

2
.9
5

4
.2
1

4
.2
7

1
.7
0

1
.9
7

1
.2
4

3
.1
4

1
.4
3

0
.7
4

0
.7
3

0
.2
5

0
.3
2

1
.0
3

3
.0
3

2
.1
0

2
.2
7

2
.3
1

0
.8
4

1
.0
1

un
ip

ro
te

nc
_

15
0m

1
.3
5

2
.9
1

1
.5
0

0
.7
7

0
.7
6

0
.2
2

0
.2
9

0
.8
7

3
.6
7

2
.9
7

3
.9
7

4
.0
7

1
.5
0

1
.7
2

1
.3
5

2
.9
2

1
.5
1

0
.7
6

0
.7
5

0
.2
2

0
.2
8

1
.0
1

2
.9
3

2
.1
4

2
.2
5

2
.2
5

0
.7
4

0
.8
9

go
_

su
b

1
.6
5

2
.2
5

1
.6
3

2
.2
8

1
.6
0

1
.7
7

2
.3
3

1
.5
8

1
.6
7

4
.4
6

6
.2
8

5
.4
7

2
.4
4

2
.3
1

1
.8
2

2
.7
6

2
.0
4

2
.3
4

1
.8
3

2
.8
4

3
.4
4

1
.6
6

1
.8
8

3
.7
9

6
.1
7

5
.1
0

2
.3
4

2
.3
3

pu
bm

ed
_

su
b

1
.1
4

1
.5
3

1
.4
6

1
.0
6

1
.0
2

1
.2
4

1
.5
8

1
.4
4

1
.2
2

1
.4
3

2
.0
8

2
.5
0

2
.3
6

2
.3
1

1
.3
5

2
.0
5

1
.9
2

1
.3
4

1
.2
9

2
.9
1

3
.6
1

1
.4
5

1
.5
1

1
.5
3

1
.9
8

2
.3
4

2
.3
0

2
.2
6

ya
go

_
su

b
1
.2
8

2
.5
4

1
.0
3

1
.0
5

0
.9
3

1
.7
4

2
.2
2

1
.3
1

1
.5
1

1
.4
0

2
.2
2

2
.5
0

1
.9
6

2
.1
9

1
.7
1

3
.6
5

1
.6
4

1
.4
3

1
.2
5

3
.1
0

3
.7
9

1
.3
7

1
.8
6

1
.4
4

2
.0
7

2
.3
1

1
.9
5

2
.2
9

ci
te

se
er

_
su

b
1
.5
0

1
.8
9

1
.7
1

1
.5
1

1
.3
3

1
.5
1

1
.8
7

1
.2
8

1
.1
0

1
.2
8

1
.8
7

1
.8
5

1
.8
9

1
.8
1

1
.5
3

2
.0
3

1
.9
1

1
.5
5

1
.3
6

2
.4
9

2
.9
0

1
.3
4

1
.4
4

1
.4
4

1
.9
0

1
.8
2

1
.8
5

1
.7
9

ar
X

iv
1
.1
6

1
.6
1

2
.6
7

1
.2
5

1
.2
4

1
.2
8

1
.4
2

1
.9
1

0
.9
8

1
.6
1

2
.1
2

2
.3
1

2
.1
2

2
.0
9

1
.4
9

1
.7
5

2
.4
2

1
.9
2

1
.9
5

4
.7
2

5
.5
2

1
.7
4

1
.3
8

2
.0
4

1
.9
5

2
.1
3

2
.0
7

2
.0
5

am
az

e
1
.0
5

2
.3
1

0
.8
4

0
.8
5

0
.8
3

2
.9
8

3
.7
2

1
.6
8

3
.4
0

2
.3
8

9
.1
1

9
.8
0

7
.7
6

1
1
.2
1

1
.1
7

2
.9
1

1
.3
5

1
.9
4

2
.1
0

8
7
.9
2

9
0
.0
1

1
.3
4

2
.6
2

1
.6
2

3
.5
9

3
.8
6

4
.1
5

5
.8
5

ke
gg

0
.9
7

2
.1
4

0
.8
5

1
.0
1

0
.9
4

2
.7
2

3
.5
4

1
.6
6

3
.3
4

2
.2
8

9
.1
7

1
0
.0
3

7
.2
9

1
0
.8
8

1
.1
7

2
.8
7

1
.3
6

2
.2
4

2
.3
3

1
0
5
.2
9

1
0
5
.0
7

1
.3
1

2
.6
2

1
.6
1

3
.7
3

3
.9
6

4
.0
1

5
.7
9

na
sa

1
.0
5

1
.7
7

1
.5
0

1
.3
4

1
.0
4

1
.6
3

2
.0
9

1
.3
3

1
.9
9

5
.1
7

1
3
.3
7

1
1
.0
2

6
.3
8

7
.8
9

1
.3
5

2
.6
1

2
.2
3

2
.0
6

1
.7
1

4
.3
6

4
.9
1

1
.3
7

2
.2
6

3
.5
5

1
1
.4
9

9
.5
5

4
.8
7

5
.8
8

xm
ar

k
1
.1
8

2
.0
1

1
.5
7

1
.4
1

1
.3
6

1
.8
5

2
.3
6

1
.8
7

2
.1
9

3
.9
9

9
.4
8

9
.6
8

9
7
.9
0

1
0
3
.1
7

1
.3
1

2
.5
3

1
.9
7

1
.8
1

1
.7
1

8
.7
7

9
.4
0

1
.6
0

2
.3
7

2
.6
9

6
.1
3

5
.9
9

4
4
.7
6

4
5
.8
3

vc
ho

cy
c

0
.9
3

2
.9
5

1
.8
4

0
.8
7

0
.7
5

2
.2
1

2
.8
1

1
.7
2

2
.8
6

5
.5
7

3
8
.8
0

1
6
.4
0

5
.3
4

6
.4
3

0
.9
7

3
.5
9

2
.3
1

0
.9
7

0
.8
5

3
.0
3

3
.6
8

1
.3
2

2
.9
4

3
.3
1

1
5
.1
0

6
.9
9

3
.2
5

4
.1
0

m
tb

rv
0
.8
7

2
.7
5

1
.4
6

0
.8
3

0
.6
9

2
.0
5

2
.6
2

1
.4
9

2
.3
6

4
.3
1

3
0
.5
0

1
2
.2
6

4
.6
1

6
.2
5

0
.9
8

3
.5
9

1
.9
5

0
.9
9

0
.8
2

3
.1
2

3
.7
6

1
.2
7

2
.8
1

2
.8
8

1
4
.4
1

6
.1
8

3
.0
9

4
.2
0

an
th

ra
0
.9
6

2
.8
5

1
.7
8

0
.7
2

0
.7
1

1
.9
1

2
.4
2

1
.8
4

3
.1
9

2
2
.6
5

2
5
.9
0

1
8
.6
4

4
.8
7

6
.3
7

1
.1
0

3
.7
2

2
.4
2

0
.7
9

0
.7
8

2
.6
3

3
.1
8

1
.3
6

3
.1
2

9
.4
1

1
0
.8
1

7
.9
3

2
.8
1

3
.7
4

ec
oo

0
.9
0

2
.8
8

1
.8
5

0
.8
0

0
.6
9

2
.0
5

2
.5
2

1
.9
5

2
.8
8

7
.0
9

2
0
.2
6

1
7
.7
4

5
.8
2

7
.7
7

1
.0
3

3
.7
3

2
.4
8

0
.8
7

0
.7
8

2
.6
5

3
.3
0

1
.3
9

3
.0
8

4
.0
3

8
.1
1

7
.3
0

3
.2
8

4
.4
4

ag
ro

cy
c

0
.8
2

2
.5
8

1
.6
7

0
.7
1

0
.6
2

1
.7
7

2
.2
1

1
.9
1

3
.0
4

2
9
.0
5

3
7
.5
8

1
6
.4
8

8
.1
9

9
.2
8

0
.9
9

3
.6
5

2
.4
5

1
.0
0

0
.7
9

2
.6
3

3
.1
5

1
.3
8

3
.1
3

1
1
.8
7

1
4
.2
2

7
.0
7

4
.1
2

5
.0
7

hu
m

an
0
.7
8

2
.9
7

1
.2
3

0
.4
6

0
.4
5

1
.0
7

1
.4
0

1
.6
5

3
.8
6

2
3
.0
0

1
4
.9
4

1
2
.7
4

4
.4
2

5
.4
7

1
.0
1

4
.2
6

1
.9
9

0
.5
9

0
.5
7

1
.4
6

1
.8
6

1
.2
0

3
.9
9

1
0
.7
0

6
.7
5

5
.8
1

2
.5
9

3
.3
4

p2
p-

G
nu

te
lla

31
0
.8
1

3
.0
1

1
.2
8

0
.4
6

0
.4
6

0
.9
7

1
.2
5

1
.4
3

2
.7
0

4
.4
7

6
.6
6

7
.3
6

8
.3
1

1
0
.5
7

1
.1
0

4
.0
9

1
.9
4

0
.6
3

0
.6
4

3
.1
3

3
.5
1

1
.1
6

3
.9
2

3
.1
5

3
.2
5

3
.5
6

4
.2
7

5
.3
8

em
ai

l-
E

uA
ll

1
.0
2

2
.6
2

0
.5
9

0
.9
1

0
.8
9

0
.5
7

0
.7
3

1
.4
0

4
.9
2

4
.0
5

8
.0
4

8
.2
4

3
.8
6

4
.7
5

1
.2
3

3
.0
7

1
.0
4

1
.3
0

1
.3
1

8
.0
6

8
.0
4

1
.2
0

3
.3
2

2
.4
8

3
.5
0

3
.5
8

1
.7
2

2
.2
3

w
eb

-G
oo

gl
e

1
.0
4

2
.3
2

1
.8
1

1
.1
1

1
.0
7

0
.5
6

0
.7
4

1
.4
0

3
.9
2

5
.0
8

9
.1
2

9
.4
4

4
.1
8

4
.9
0

1
.1
9

2
.5
8

2
.2
4

1
.8
4

1
.8
6

1
6
.6
2

1
6
.0
3

1
.1
8

3
.1
3

3
.2
0

3
.8
8

4
.0
0

1
.8
2

2
.2
4

so
c-

L
iv

eJ
ou

rn
al

1
0
.8
9

2
.6
9

1
.4
0

0
.8
0

0
.8
0

0
.4
9

0
.6
6

1
.3
2

4
.1
1

5
.0
9

7
.3
9

7
.6
3

2
.9
0

3
.4
4

1
.0
4

3
.1
5

2
.2
9

1
.9
6

2
.0
1

2
3
.8
4

2
2
.7
5

1
.1
5

3
.3
5

3
.1
7

3
.4
0

3
.5
0

1
.3
6

1
.7
5

w
ik

i-
T
al

k
0
.8
9

3
.2
4

1
.1
5

0
.6
0

0
.5
9

0
.4
0

0
.5
3

1
.3
5

5
.7
6

5
.1
7

6
.0
1

6
.2
1

2
.2
2

3
.0
0

0
.9
8

3
.6
5

1
.3
4

0
.7
0

0
.7
1

1
.2
2

1
.3
8

1
.0
9

3
.6
3

2
.8
8

2
.5
2

2
.6
0

1
.0
5

1
.4
0

G
eo

m
et

r
ic

M
ea

n
1
.1
0

2
.2
2

1
.0
0

0
.9
2

0
.8
8

1
.0
6

1
.3
3

1
.9
0

4
.2
1

3
.9
8

2
.7
9

3
.1
4

1
.2
9

2
.5
3

1
.3
5

1
.2
6

2
.1
2

2
.4
0

1
.2
9

2
.0
4

2
.9
4

2
.7
7

2
.0
2

2
.3
1

R
at

io
R

u
n
ti

m
e

A
vg

s
1
.0
3

1
.7
5

1
.0
6

0
.9
8

1
.0
0

0
.9
9

1
.0
4

1
.1
6

1
.0
7

1
.0
9

1
.1
5

1
.2
7

1
.0
8

1
.8
2

1
.1
5

1
.1
5

1
.3
1

1
.5
1

1
.0
4

1
.3
6

1
.0
9

1
.0
7

1
.1
4

1
.2
5

A
v
er

ag
e

1
.1
3

2
.3
2

1
.0
9

0
.9
8

1
.1
1

1
.3
5

1
.4
1

2
.2
5

7
.5
9

5
.8
7

5
.4
8

6
.2
5

1
.3
3

2
.6
9

1
.5
2

1
.4
1

7
.9
6

8
.2
2

1
.3
3

2
.2
3

4
.0
5

3
.3
7

3
.2
1

3
.6
3

K. Hanauer, C. Schulz, and J. Trummer 13:23

Table A.9 Average query times in µs for 100 000 negative (left) and positive queries (right).
Highlighted results are the overall best/second-best after Matrix per query set over all tested
algorithms.

← negative positive→
O’R + O’R + O’R + O’R + O’R + O’R +

Instance TF TF IP(s) IP(s) BFL(s) BFL(s) TF TF IP(s) IP(s) BFL(s) BFL(s)

kron_logn12 0.448 0.150 0.025 0.025 0.074 0.039 2.222 0.966 2.214 0.903 3.100 0.992
kron_logn16 0.072 0.106 0.177 0.179 29.244 12.765 23.413 9.661
kron_logn17 0.091 0.124 0.111 0.119 27.734 6.396 9.437 1.835
kron_logn20 0.164 0.195 0.351 0.388 345.677 167.109 341.645 154.522
kron_logn21 0.204 0.249 0.225 0.281 316.522 191.688 184.889 105.423

randn20-21 0.287 0.150 0.319 0.223 0.044 0.123 0.501 0.364 2.832 1.815 0.837 0.687
randn20-22 0.449 0.299 4.248 4.126 0.840 0.898 1.337 1.160 84.935 83.959 18.779 18.685
randn20-23 198.518 188.459 96.362 95.814 4 720.272 4 656.298 1 683.9891 656.785
randn23-24 0.438 0.211 0.453 0.328 0.046 0.171 0.732 0.513 3.785 2.635 1.045 0.880
randn23-25 0.607 0.396 5.394 5.178 0.950 1.064 1.589 1.404 113.423 112.633 23.804 23.875

delaunay_n15 0.150 0.055 0.336 0.120 0.040 0.045 0.243 0.181 5.105 2.385 0.655 0.490
delaunay_n20 0.367 0.141 0.588 0.223 0.038 0.124 0.664 0.495 8.549 5.864 2.085 1.739
delaunay_n22 0.475 0.177 0.667 0.266 0.039 0.154 0.818 0.635 8.575 6.658 2.818 2.403

citeseer.scc 0.023 0.056 0.052 0.056 0.034 0.056 0.301 0.112 0.320 0.112 0.154 0.112
citeseerx 0.450 0.152 0.183 0.183 0.063 0.154 2.615 0.154 2.792 0.678 2.007 0.482
cit-Patents 1.078 0.533 6.259 6.049 1.845 1.904 10.640 9.168 701.034 708.037 245.211 244.524
go_uniprot 0.115 0.107 0.069 0.098 0.033 0.098 44.738 32.490 0.924 0.637 0.613 0.488
uniprotenc_22m 0.080 0.066 0.045 0.066 0.033 0.066 0.180 0.072 0.332 0.072 0.174 0.072
uniprotenc_100m 0.187 0.131 0.099 0.131 0.033 0.131 0.348 0.118 0.497 0.118 0.201 0.118
uniprotenc_150m 0.229 0.153 0.117 0.153 0.034 0.153 0.411 0.139 0.551 0.139 0.208 0.139

go_sub 0.042 0.026 0.089 0.039 0.044 0.025 0.338 0.076 4.302 0.685 0.385 0.158
pubmed_sub 0.069 0.047 0.070 0.066 0.055 0.044 0.228 0.160 1.482 0.714 1.260 0.535
yago_sub 0.024 0.023 0.026 0.024 0.037 0.021 0.085 0.060 0.250 0.113 0.178 0.091
citeseer_sub 0.066 0.038 0.100 0.066 0.046 0.030 0.155 0.121 1.247 0.666 0.600 0.317
arXiv 0.681 0.255 0.354 0.283 0.173 0.136 1.470 0.915 6.698 3.161 4.315 2.034

amaze 0.011 0.013 0.011 0.013 0.039 0.013 0.022 0.009 0.083 0.009 0.071 0.009
kegg 0.013 0.015 0.015 0.015 0.041 0.015 0.021 0.009 0.086 0.009 0.068 0.009
nasa 0.039 0.026 0.046 0.034 0.042 0.026 0.130 0.025 2.216 0.166 0.307 0.048
xmark 0.040 0.025 0.047 0.033 0.043 0.023 0.081 0.020 0.461 0.049 2.160 0.022
vchocyc 0.031 0.017 0.015 0.017 0.037 0.017 0.076 0.014 0.571 0.015 0.080 0.015
mtbrv 0.026 0.018 0.015 0.018 0.037 0.018 0.071 0.016 0.569 0.019 0.078 0.017
anthra 0.033 0.019 0.014 0.019 0.037 0.019 0.307 0.014 0.385 0.015 0.067 0.014
ecoo 0.034 0.019 0.015 0.019 0.038 0.019 0.100 0.014 0.308 0.015 0.084 0.014
agrocyc 0.035 0.021 0.015 0.021 0.037 0.021 0.402 0.014 0.559 0.015 0.118 0.014
human 0.040 0.033 0.015 0.033 0.035 0.033 0.496 0.022 0.328 0.022 0.096 0.022

p2p-Gnutella31 0.047 0.037 0.017 0.037 0.035 0.036 0.115 0.026 0.173 0.026 0.215 0.026
email-EuAll 0.036 0.061 0.056 0.062 0.035 0.061 0.168 0.042 0.334 0.042 0.160 0.042
web-Google 0.135 0.074 0.086 0.077 0.039 0.070 0.246 0.048 0.442 0.048 0.202 0.048
soc-LiveJournal1 0.099 0.071 0.057 0.072 0.034 0.069 0.298 0.058 0.432 0.058 0.170 0.058
wiki-Talk 0.095 0.083 0.050 0.083 0.033 0.083 0.297 0.057 0.344 0.057 0.127 0.057

Min 0.011 0.013 0.033 0.013 0.083 0.009 0.067 0.009
Average 5.342 5.059 2.496 2.506 156.016 145.532 62.338 54.329
Max 198.518 188.459 96.362 95.814 4 720.272 4 656.298 1 683.9891 656.785

SEA 2021

13:24 O’Reach: Even Faster Reachability in Large Graphs

Table A.10 Average query times in µs for 100 000 random (left) and 200 000 mixed queries
(right). Highlighted results are the overall best/second-best after Matrix per query set over all
tested algorithms.

← random mixed→
O’R + O’R + O’R + O’R + O’R + O’R +

Instance TF TF IP(s) IP(s) BFL(s) BFL(s) TF TF IP(s) IP(s) BFL(s) BFL(s)

kron_logn12 0.995 0.385 0.631 0.269 2.933 0.297 1.349 0.564 1.128 0.469 1.594 0.520
kron_logn16 6.212 2.731 6.794 2.148 14.705 6.440 11.845 4.923
kron_logn17 5.507 1.385 3.515 0.508 13.973 3.269 4.795 0.983
kron_logn20 54.122 26.731 54.180 25.126 173.231 83.873 170.936 77.473
kron_logn21 45.584 27.339 30.225 15.939 158.059 95.937 92.489 52.906

randn20-21 0.293 0.147 0.329 0.228 0.047 0.118 0.413 0.269 1.593 1.160 0.450 0.417
randn20-22 0.452 0.297 4.161 3.978 0.840 0.895 0.921 0.747 44.638 43.895 9.833 9.813
randn20-23 393.758 382.669 161.427 157.768 2 454.174 2 367.299 891.487 879.033
randn23-24 0.449 0.218 0.450 0.306 0.044 0.173 0.610 0.377 2.139 1.513 0.556 0.542
randn23-25 0.619 0.405 5.551 4.324 0.993 1.106 1.131 0.919 59.395 59.119 12.398 12.506

delaunay_n15 0.168 0.055 0.371 0.135 0.077 0.045 0.212 0.116 2.742 1.292 0.359 0.271
delaunay_n20 0.372 0.138 0.604 0.217 0.041 0.118 0.533 0.330 4.657 3.064 1.075 0.946
delaunay_n22 0.479 0.180 0.671 0.265 0.040 0.154 0.669 0.415 4.744 3.268 1.429 1.290

citeseer.scc 0.029 0.057 0.052 0.057 0.035 0.057 0.215 0.106 0.213 0.106 0.104 0.106
citeseerx 0.448 0.149 0.184 0.174 0.078 0.143 1.587 0.164 1.543 0.440 1.048 0.329
cit-Patents 1.064 0.525 6.626 6.270 1.869 1.911 5.937 4.717 353.571 343.027 123.587 123.261
go_uniprot 0.109 0.101 0.069 0.101 0.033 0.101 22.618 16.328 0.540 0.397 0.342 0.322
uniprotenc_22m 0.081 0.068 0.046 0.068 0.033 0.068 0.163 0.092 0.213 0.092 0.104 0.092
uniprotenc_100m 0.191 0.134 0.098 0.134 0.033 0.134 0.311 0.148 0.337 0.148 0.124 0.148
uniprotenc_150m 0.236 0.156 0.118 0.156 0.034 0.156 0.365 0.170 0.382 0.170 0.126 0.170

go_sub 0.047 0.023 0.091 0.039 0.063 0.022 0.196 0.052 2.166 0.351 0.220 0.094
pubmed_sub 0.080 0.042 0.084 0.062 0.115 0.039 0.158 0.103 0.787 0.398 0.667 0.290
yago_sub 0.030 0.018 0.027 0.019 0.050 0.016 0.062 0.043 0.145 0.070 0.115 0.059
citeseer_sub 0.077 0.040 0.106 0.068 0.078 0.031 0.119 0.083 0.693 0.364 0.330 0.179
arXiv 0.751 0.311 1.291 0.674 1.929 0.408 1.112 0.545 3.571 1.832 2.253 1.088

amaze 0.019 0.014 0.028 0.014 1.232 0.014 0.024 0.015 0.053 0.015 0.061 0.015
kegg 0.020 0.015 0.034 0.015 1.545 0.015 0.024 0.015 0.056 0.015 0.060 0.015
nasa 0.044 0.020 0.055 0.027 0.083 0.019 0.092 0.026 1.150 0.100 0.181 0.037
xmark 0.044 0.022 0.053 0.029 0.174 0.020 0.067 0.025 0.261 0.043 1.106 0.025
vchocyc 0.037 0.016 0.016 0.016 0.049 0.016 0.063 0.019 0.294 0.019 0.064 0.020
mtbrv 0.031 0.016 0.016 0.016 0.050 0.016 0.058 0.020 0.307 0.021 0.063 0.020
anthra 0.041 0.017 0.014 0.017 0.045 0.017 0.183 0.019 0.219 0.020 0.056 0.020
ecoo 0.043 0.017 0.015 0.017 0.045 0.017 0.079 0.020 0.165 0.020 0.065 0.020
agrocyc 0.043 0.017 0.018 0.018 0.046 0.017 0.232 0.020 0.287 0.020 0.082 0.020
human 0.051 0.026 0.015 0.026 0.037 0.026 0.290 0.027 0.184 0.027 0.070 0.027

p2p-Gnutella31 0.058 0.030 0.019 0.030 0.093 0.030 0.102 0.032 0.106 0.033 0.138 0.032
email-EuAll 0.059 0.057 0.074 0.057 0.452 0.056 0.150 0.060 0.213 0.061 0.103 0.060
web-Google 0.175 0.078 0.147 0.080 1.231 0.074 0.229 0.072 0.285 0.073 0.127 0.070
soc-LiveJournal1 0.172 0.075 0.148 0.075 1.748 0.073 0.246 0.078 0.266 0.078 0.105 0.077
wiki-Talk 0.102 0.076 0.054 0.076 0.093 0.076 0.253 0.088 0.221 0.088 0.093 0.088

Min 0.014 0.014 0.033 0.014 0.053 0.015 0.056 0.015
Average 12.865 11.193 6.645 5.073 80.572 73.625 32.456 28.496
Max 393.758 382.669 161.427 157.768 2 454.174 2 367.299 891.487 879.033

Approximation Algorithms for 1-Wasserstein
Distance Between Persistence Diagrams
Samantha Chen !

University of California at San Diego, La Jolla, CA, USA

Yusu Wang !

University of California at San Diego, La Jolla, CA, USA

Abstract
Recent years have witnessed a tremendous growth using topological summaries, especially the
persistence diagrams (encoding the so-called persistent homology) for analyzing complex shapes.
Intuitively, persistent homology maps a potentially complex input object (be it a graph, an image,
or a point set and so on) to a unified type of feature summary, called the persistence diagrams. One
can then carry out downstream data analysis tasks using such persistence diagram representations.
A key problem is to compute the distance between two persistence diagrams efficiently. In particular,
a persistence diagram is essentially a multiset of points in the plane, and one popular distance is
the so-called 1-Wasserstein distance between persistence diagrams. In this paper, we present two
algorithms to approximate the 1-Wasserstein distance for persistence diagrams in near-linear time.
These algorithms primarily follow the same ideas as two existing algorithms to approximate optimal
transport between two finite point-sets in Euclidean spaces via randomly shifted quadtrees. We
show how these algorithms can be effectively adapted for the case of persistence diagrams. Our
algorithms are much more efficient than previous exact and approximate algorithms, both in theory
and in practice, and we demonstrate its efficiency via extensive experiments. They are conceptually
simple and easy to implement, and the code is publicly available in github.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases persistence diagrams, approximation algorithms, Wasserstein distance,
optimal transport

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.14

Supplementary Material Software (Source Code): https://github.com/chens5/w1estimators.git
archived at swh:1:dir:03da011d5be7f5de530383a67da81499fb8b195c

Funding This work is partially supported by National Science Foundation (NSF) via grants OAC-
2039794 and IIS- 2050360.

Acknowledgements We want to thank Chen Cai for providing the reddit-binary and ModelNet10
datasets used in the experiments.

1 Introduction

Recent years have witnessed a tremendous growth using topological summaries, especially
the persistence diagrams (encoding the so-called persistent homology) for analyzing complex
shapes. Indeed, persistent homology is one of the most important development in the field
of topological data analysis in the past two decades [11, 10]. Given an object, e.g, a mesh,
an image, a point cloud, or a graph, by taking a specific view of how the object evolves
(more formally, a filtration of it), persistent homology maps the input, a potentially complex
object, to a topological summary, called the persistence diagram, which captures multiscale
features of this objects w.r.t. this view. Persistent homology thus provides a unifying way of
mapping complex objects to a common feature space: the space of persistence diagrams. One

© Samantha Chen and Yusu Wang;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sac003@ucsd.edu
mailto:yusuwang@ucsd.edu
https://doi.org/10.4230/LIPIcs.SEA.2021.14
https://github.com/chens5/w1estimators.git
https://archive.softwareheritage.org/swh:1:dir:03da011d5be7f5de530383a67da81499fb8b195c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Approx. Algorithms for W1 Distance

can then carry out data analysis tasks of the original objects, e.g, clustering or classifying a
collection of graphs, in this feature space. Indeed, in the past decade, persistence diagram
summaries have been used for a range of applications in various domains, e.g, in material
science [5, 14, 23], neuroanatomy [17, 24], graphics [8, 29], medicine /biology [13, 27], etc.

A key component involved in such a persistent-homology based data analysis framework
is to put a suitable metric on the space of persistence diagrams, and compute such distances
efficiently. One classic distance measure developed for persistence diagrams is the p-th
Wasserstein distance, and in practice, a popular choice for p is p = 1, i.e, the 1-Wasserstein
distance. This paper focuses on developing efficient, practical and light-weight algorithms to
approximate the 1-Wasserstein distance for persistence diagrams.

In particular, a persistence diagram consists of a multiset of points in the plane, where
each point (b, d) corresponds to the creation and death of some topological feature w.r.t.
some specific filtration (view) of the input object. Given two persistence diagrams P and Q,
the 1-Wasserstein distance between them, denoted by dper

W,1(P, Q), is similar to the standard 1-
Wasserstein distance (also known as the earth-mover distance) between these two multisets of
planar points, but with an important distinction where points are also allowed to be matched
to points in the diagonal L (the line defined by equation y = x) in the plane. Intuitively, the
topological features associated to points matched to the diagonal are considered as noise.

The 1-Wasserstein distance for persistence diagrams can be computed using the Hungarian
algorithm [20] in O(n3) time where n is the total number of points in the two persistence
diagrams. This algorithm is implemented in the widely used Dionysus package [26]. In
[18], Kerber et al. develops a more efficient algorithm to approximate the 1-Wasserstein
distance between finite persistence diagrams within constant factors. Their algorithm is
based on the auction algorithm of Bertsekas [4], but with a geometric twist: given that
points in the persistence diagrams are all in the plane, they use the weighted kd-tree to
provide more efficient search inside the auction algorithm. In [4], the time complexity of
the auction algorithm is stated to be O(A · n1/2 log (nC)) where, in the case of persistence
diagrams, A is the number of possible pairings of points between persistence diagrams
(A = Θ(n2) in the worst case) and C is max{||x − y||q} over all possible pairings between
persistence diagrams. While Kerber et al. did not provide an asymptotic time complexity for
their approximation algorithm, they provided an empirical estimation of O(n1.6) (not true
asymptotic time complexity) by using linear regression on the observed running time versus
the size of problems. They further show via extensive experiments that their approximation
algorithm has a speed-up factor of 50 for small instances to a speed-up factor of 400 for
larger instances in comparison to the Hungarian algorithm based implementation.

Related work in optimal transport for Euclidean point sets. As we will formally introduce
in Section 2), 1-Wasserstein distance for persistence diagrams can be viewed as the standard
1-Wasserstein distance for discrete planar point sets with special inclusion of points in the
diagonal. In what follows, to avoid confusion, we refer to the standard 1-Wasserstein distance
between point sets as the optimal transport (OT) distance. Starting from [2] and [3], there
has been a long line of work to approximate the OT-distance for Euclidean point sets using
randomly shifted quadtrees (e.g, [7, 19, 15, 22, 28, 1]). In particular, we consider two such
approaches, the L1-embedding approach by [15], and the flowtree approach by [1]. The
former maps an input point set P to a certain count-vector V P with the help of a randomly
shifted quadtree, and uses the L1 distance ∥V P − V Q∥1 between two such count-vectors to
approximate the OT-distance between P and Q. The latter also uses a randomly shifted
quadtree and embeds input points to quadtree cells. It then shows that a certain distance

S. Chen and Y. Wang 14:3

computed from an optimal OT-flow induced by the tree metric (which can be computed by a
greedy algorithm in linear time) can approximate the OT-distance between the original point
sets. Let ∆ denote the spread of the union of two input point sets. Both approaches give an
O(log ∆)-approximation of the OT-distance between original point sets, in time O(n log ∆).

Recently, the idea of using metric trees to approximate OT-distance has also been
extended to a more general unbalanced optimal transport problem (where |P | ̸= |Q|) in
[28]. In [28], Sato et al. develops an O(n log2 n) time algorithm to approximate unbalanced
optimal transport on tree metrics using dynamic programming.

New work. In practice, for applications such as nearest neighbor search, clustering and
classification on large data sets, huge numbers of distance computations will be needed.
The time complexity of the aforementioned algorithms for persistence diagrams using the
Hungarian algorithm or the geometric variant of the Auction algorithm still causes a significant
computational burden. In this paper, we aim to develop near-linear time approximation
algorithms for the 1-Wasserstein distance between persistence diagrams. Specifically:

In Section 3, we show how to modify the algorithms of [15] and [1] to approximate the
1-Wasserstein distances between persistence diagrams within the same approximation
factor (Theorems 7 and 10). Note that in the literature (e.g, [18]), it is known that
dper

W,1(P, Q) between two persistence diagrams can be computed by (i) first augmenting P
and Q to be P̂ = P ∪ π(Q) and Q̂ = Q ∪ π(P), respectively, where π(x) projects a point x

to its nearest neighbor in the diagonal L; and then (ii) compute the OT-distance between
P̂ and Q̂, although it is important to note that the cost of matching two diagonal points
needs to be set to be 0, instead of the standard Euclidean distance. However, this requires
the modification of the cost for diagonal points; in addition, this also needs to modify a
diagram P depending on which other diagram Q it is to be compared with. We instead
develop a modification where such projection is not needed.
Our modified approaches maintain the simplicity of the original approximation algorithms
and are easy to implement. In comparison to approximation for unbalanced optimal
transport presented in [28], our modified approaches are specific to persistence diagrams
and the data structures needed for both of our approaches are much simpler than those
of [28]. Our code is publicly available in github. In Section 4, we present various
experimental results of our new algorithms. We show that both are orders of magnitude
faster than previous approaches, although at the price of worsened approximation error.
However, note that in practice, the approximate factors are rather small, not as large as
the worst case approximation factor. We also note that the modified flowtree algorithm
achieves a more accurate approximation of the 1-Wasserstein distance for persistence
diagrams than the modified L1-embedding approach empirically, although the latter is
significantly faster than the former. However, the L1-embedding approach is easier to
combine with proximity search data structures e.g, locality sensitive hashing (LSH), given
that each input persistence diagram is mapped to a vector and the distance computation
is the L1-distance between two such vectors.

2 Preliminaries

In this section, we first introduce the persistence diagrams and the 1-Wassertein distance
between them, which is related to the optimal transport distance (standard 1-Wasserstein
distance) for Euclidean point sets. We next describe two existing approximation algorithms
for optimal transport distance [1, 15] based on the use of randomly shifted quadtrees. Our
new algorithms (in section 3) will be based on these two approximation algorithms.

SEA 2021

14:4 Approx. Algorithms for W1 Distance

2.1 Persistence Diagrams and 1-Wasserstein distance
We first give a brief introduction of persistent homology and its associated persistence
diagram summary. See [10] for a more detailed treatment of these topics. Suppose we are
given a topological space X. A filtration of X is a growing sequence of sub-spaces

F : ∅ = X0 ⊆ X1 ⊆ X2 ⊆ · · · Xm = X

which can be viewed as a specific way to inspect X. For example, a popular way to generate
a filtration of X is by taking some meaningful descriptor function f : X → R on X, and
take the growing sequence of sub-level sets Xa := f−1(−∞, a] = {x ∈ X | f(x) ≤ a} as a

increases to be the filtration. Now given a filtration F, through its course, new topological
features (e.g, components, independent loops and voids, which are captured by the so-called
homology classes) will sometimes appear and sometimes disappear. The persistent homology
encodes the birth and death of such features in the persistence diagram dgmF. In particular,
dgmF consists of a multiset of points in the plane, that is, a set of points with multiplicities,
where each point (b, d) with multiplicity m intuitively means that m independent topological
features (homology classes) are created in Xb and killed in Xd. Thus, we also refer to b and
d as the birth-time and death-time. The persistence of this feature is |d − b| which is the
lifetime of this feature. We refer to points in the persistence diagram as persistent-points.

Note that, in general, persistent-points lie above the diagonal L = {(x, x) | x ∈ R} in the
plane. Points closer to the diagonal L have lower lifetime (persistence) and thus are less
important, with a point (x, x) ∈ L intuitively meaning a feature with persistence 0.

To compare two persistence diagrams P and Q, intuitively, we wish to find a one-to-
one correspondence between their multiset of points (and thus between the features they
capture). However, the two sets may be of different cardinality, and we also wish to allow a
persistent-point from one diagram to be “noise” and not present in the other diagram, which
can be captured by allowing this point p = (p.x, p.y) to be matched to its nearest neighbor
projection π(p) in L. Let π : R2 → L be this projection, where π(p) := (p.x+p.y

2 , p.x+p.y
2).

The following p-th Wasserstein distance essentially captures this intuition [10].

▶ Definition 1 (p-Wasserstein distance for persistence diagrams). Given a persistence diagram
P, its augmentation aug(P) consists of P together with all points in L each with infinite
multiplicity. Given two persistence diagrams P and Q, with their augmentations aug(P) and
aug(Q), respectively, the p-Wassertein distance between them is

dper
W,p(P, Q) := inf

µ:aug(P)→aug(Q)

(∑
p∈aug(P)

∥p − µ(p)∥p
q

)1/p

, (1)

where µ : aug(P) → aug(Q) ranges over all possible bijections among the two sets.

Note that q is used to denote the inner Lp-norm. If p = ∞, the ∞-Wasserstein distance is
the classic bottleneck distance between persistence diagrams [9][18]. In this paper, we are
interested in the case when p = 1. It turns out that an equivalent definition (which we will
use in this paper) is as follows:

▶ Definition 2 (1-Wasserstein distance for persistence diagrams, version 2). Given two point
sets A and B in R2, an augmented (perfect) matching for them is a subset Γ ⊂

(
A ∪ π(B)

)
×(

B ∪ π(A)
)

such that (i) each a ∈ A or b ∈ B appears in exactly one pair in Γ, and (ii) each
(a, b) ∈ Γ is of the following three forms: (1) a ∈ A, b ∈ B, (2) a ∈ A, b = π(a) ∈ π(A), or
(3) a = π(b) ∈ π(B), b ∈ B.

S. Chen and Y. Wang 14:5

Given two persistence diagrams P and Q, the 1-Wasserstein distance between them is:

dper
W,1(P, Q) := min

Γ

∑
(p,q)∈Γ

∥p − q∥p, (2)

where Γ ranges over all possible augmented matchings for P and Q.

2.2 Relation to optimal transport

Readers may have already noticed the similarity between Definition 1 with the standard p-th
Wasserstein distance between two probability measures. To avoid confusion, from now on
we refer to 1-Wassertein distance as optimal transport so as to differentiate from the use of
1-Wasserstein distance of persistence diagrams.

▶ Definition 3 (Optimal transport). Given a finite metric space (X, dX) and two measures
µ, ν ∈ X → R, the optimal transport between them is

dOT(µ, ν) := min
τ :X×X→R

∑
x,y∈X

τ(x, y) · dX(x, y), (3)

where τ , called a transport plan or a flow, is a measure on X × X whose marginals equal to
µ and ν, respectively; that is, τ(·, Y) = µ(·) and τ(X, ·) = ν(·).

Given a multiset of points A in the plane, note that we can view this as a discrete measure
supported on points in A, such that for each subset S of A, µA(S) =

∑
a∈S caδa where ca

is the multiplicity of a in A, while δa is the Dirac measure supported at a. Hence in what
follows, we sometimes abuse the notations and equate a multiset of points with the discrete
measure induced by it, and talk about optimal transport between two multisets of points.

As shown in [18], one can consider P̂ := P ∪ π(Q) and Q̂ := Q ∪ π(P) and modify the
Euclidean distance so that d(x, y) = 0 for x, y ∈ π(P) ∪ π(Q) to obtain a modified pseudo-
metric space (R2, d). In this case, dper

W,1(P, Q) becomes the optimal transport between the
discrete measures induced by P̂ and Q̂ under this modified pseudo-metric.

We can also relate dper
W,1(P, Q) to the optimal transport between the discrete measures

induced by P̂ and Q̂ with the following observation (simple proof is in Appendix A):

▶ Observation 4. Let µP̂ be the discrete measure induced by P̂ and νQ̂ be the discrete measure
induced by Q̂. Then dOT(µP̂, νQ̂) ≤ 2 · dper

W,1(P, Q).

Given two discrete measures µ, ν ∈ X × R on a finite metric space (X, dX), computing the
optimal transport distance can be reduced to finding the optimal min-cost flow on a complete
bipartite graph using combinatorial flow algorithms as described in [20]. In our setting later,
µ and ν will both be induced by point sets in R2, and dX is the standard Euclidean distance.

2.3 Quadtree-based approximation algorithms for optimal transport

In this section, we briefly review two algorithms to approximate the optimal transport for
two discrete measures µ and ν. Both of these algorithms use a randomly shifted quadtree,
which we introduce first.

SEA 2021

14:6 Approx. Algorithms for W1 Distance

Randomly-shifted quadtree. Let X ⊆ Rd be a finite set of points (for our setting, d = 2
for persistence diagrams). To simplify the description, we will assume that the minimum
pairwise distance between any two points in X is 1 and that X is contained in [0, ∆]d (where
∆, the ratio of the diameter of X over the minimum pairwise distance, is also called the
spread of X). First, let H0 = [−∆, ∆]d be the hypercube with side length 2∆ which is
centered at the origin. Now shift H0 by a random vector whose coordinates are from [0, ∆]
to obtain H. Note that H still encloses X as H has side length 2∆.

Construct a tree of hypercubes by letting H be associated to the root and halving H

along each dimension. Recurse on the resulting sub-hypercubes that contain at least one
point from X, and stop when a hypercube contains exactly one point from X. Each leaf
node of resulting quadtree TX contains exactly one point in X, and there are exactly |X|
leaves. The resulting quadtree TX has at most O(log(d∆)) levels. To see that TX has at
most O(log(d∆)) levels, consider the depth i of some internal node. We know that the
hypercube associated with the node has a side length of ∆

2i and the distance between any
two points in the hypercube, c, is less than or equal to ∆

√
d

2i . Then i ≤ log(d∆) so there are
at most O(log(d∆)) levels in TX . Additionally, the size of TX is O(|X| log(d∆)). It can be
constructed in Õ(|X| log(d∆)) time where Õ includes term polynomial in log |X|. We set the
root level as level log ∆ + 1 and subsequent levels are labeled as log ∆, log ∆ − 1, The
weight of each tree edge between level ℓ + 1 and level ℓ is 2ℓ. Note that the quadtree cell has
side length 2ℓ at level ℓ.

Approximation algorithm 1: L1-embedding via TX . Given two discrete measures µ and
ν, let X be the union of their support 1. Construct the randomly shifted quadtree TX as
described above; X is sometimes omitted from the subscript when its choice is clear from the
context. Given a tree node v ∈ TX , its level is denoted by ℓ(v). We will abuse the notation
slightly and use v also to denote the quadtree cell (which is a hypercube of size length 2ℓ(v)).
Given a discrete µ, then µ(v) denotes the total measure of points from µ contained within
this quadtree cell, namely, the total size of points with multiplicity counted from µ within
this quadtree cell. We can now map µ to a vector Vµ where each index corresponds to
a tree node v ∈ TX , and Vµ[v] has coordinates 2ℓ(v)µ(v). Similarly, map ν to vector Vν .
Then Indyk and Thaper [15] showed that ∥Vµ − Vν∥1 =

∑
v∈T 2ℓ(v)|µ(u) − ν(v)| gives an

approximation to the optimal transport dOT(µ, ν) in expectation.

▶ Theorem 5 ([15]). Given two discrete measures µ, ν such that supp(µ) ∪ supp(ν) ⊆ R2 and
s = |supp(µ) ∪ supp(ν)|, using a randomly shifted quadtree, ∥Vµ − Vν∥1 can be calculated in
time O(s log ∆) and there are constants C1, C2 such that C1 · dOT(µ, ν) ≤ E[∥Vµ − Vν∥1] ≤
C2 · log ∆dOT(µ, ν). Here, E[·] stands for the expectation.

We note that it also turns out that ∥Vµ − Vν∥1 gives exactly the optimal transport
between µ and ν along the tree metric induced by TX . Specifically, for each v ∈ TX , set its
weight to be w(v) = 2ℓ(v). Then for any x, x′ ∈ X, define dT (x, x′) to be the total weight of
the unique tree path connecting the quadtree leaf vx (containing x) and leaf vx′ (containing
x′). Then the optimal transport between µ and ν w.r.t. metric dT , denoted by dOT,dT(µ, ν),
satisfies that dOT,dT(µ, ν) = ∥Vµ − Vν∥1.

1 Note that in general, X can be a superset of the support of µ and ν. Indeed, if there are a set of m
measures and we perform kNN queries for a query measure, it is more convenient to set X as the union
of support of all these measures and build only a single quadtree TX .

S. Chen and Y. Wang 14:7

Furthermore, we can consider that this optimal transport dOT,dT is generated by a
following greedy-flow f∗

G : X × X → R: Starting from leaf-nodes, we will match up as many
unmatched points µ ∩ v to ν ∩ v as we can within each node v, and pass the remaining
unmatched portion to its parent. In general, each tree node v ∈ T will have a µ-demand
µ̂(v) and ν̂(v), which collect all unmatched measure from its 2d child nodes. µ-demand (resp.
ν-demand) at a leaf node v is initialized to be µ(v) (resp. ν(v)). We then match these
demand as much as we can and pass on |µ̂(v) − ν̂(v)| to its parent as unmatched µ-measure,
or unmatched ν-measure, whichever is left. Note that a greedy-flow fG is not unique, but it
tuns out that any such greedy-flow (greedy transport plan) gives rise to the optimal transport
distance between µ and ν w.r.t. the tree metric dT (See [16] for more detail): i.e,

(∥Vµ − Vν∥1 =) dOT,dT(µ, ν) =
∑

x,x′∈X

f∗
G(x, x′)dT (x, x′). (4)

Approximation algorithm 2: Flowtree. The flowtree algorithm by [1] is based on the
previous approach. The only modification is that, consider a greedy-flow f∗

G as described
above. Instead of using the tree metric dT to compute the optimal transport distance, the
flowtree estimate computes the cost of this flow using the standard Euclidean distance:

dflow
OT (µ, ν) =

∑
x,x′∈X

f∗
G(x, x′)∥x − x′∥. (5)

Comparing Equation (4) to the above equation, the difference is minor (dT (x, x′) versus
∥x − x′∥). However, in practice, dflow

OT appears to provide a much more accurate estimate to
the optimal transport distance dOT(µ, ν) w.r.t. the Euclidean distance. Unfortunately, unlike
dOT,dT , which can be computed as a L1-distance between two specific vectors, to compute
dflow

OT , we now have to compute a greedy-flow f∗
G explicitly (which can be done linear in the

size of quadtree; however conceptually, this is not as simple as L1-distance). Overall, we
have the following result:

▶ Theorem 6 ([1]). Given two discrete measures µ, ν such that supp(µ) ∪ supp(ν) ⊆ R2 and
s = |supp(µ) ∪ supp(ν)|, using a randomly shifted quadtree, dflow

OT (µ, ν) can be computed in
time O(s log ∆) and there are constants C1, C2 such that C1 · dOT(µ, ν) ≤ E[dflow

OT (µ, ν)] ≤
C2 · log ∆ · dOT(µ, ν). Here, E[·] stands for the expectation.

3 Approximating 1-Wasserstein distances for persistence diagrams

We now present two algorithms to approximate the 1-Wasserstein distance for persistence
diagrams, based on the approximation schemes of optimal transport in Section 2.3. Note
that the results here are developed for the L2 norm and through the equivalence of norms,
can be generalized to any Lp norm and only changes the constant factor in the distortion
induced by each approximation.

3.1 Approximation algorithms via L1 embedding

3.1.1 Description of the new quadtree-based L1-embedding
Let P and Q be two persistence diagrams and let X = P ⊎ Q, the disjoint union of P and
Q. In what follows, for simplicity of presentation, we assume that the minimum distance
between any two distinct points in X, as well as between any point in X with a point in the

SEA 2021

14:8 Approx. Algorithms for W1 Distance

diagonal L, is 1. The latter constraint can be removed with some extra care on handling leaf
nodes in the quadtree. Assume w.l.o.g that ∆ is a power of 2.

Partition the (randomly shifted) hypercube H described in section 2.3 into grids where
the cells have side length ∆, ∆/2, . . . , 2i, . . . , 2, 1, 1

2 . Note that each cell at the lowest level
can contain at most one point, and if a leaf contains a point then it cannot intersect the
diagonal L. Let TX be the resulting quadtree, where leaves are all cells that contain exactly
one point from X. We further use Gi to denote the set of quadtree cells with side-length 2i

(i.e, those in level-i); we refer to Gi as the level-i grid. Note that the size of the quadtree
is O(|X| log ∆). Additionally, we call a cell a terminal cell if it intersects the diagonal L;
otherwise, it is non-terminal.

Now for each grid Gi, construct a vector VP
i with one coordinate per cell, where each

coordinate counts the number of points in the corresponding cell. The vector representation
VP for P is then the concatenation of all these vectors 2iVP

i where 2i is the cell side length
for grid Gi:

VP = [12VP
−1, VP

0 , 2VP
1 , . . . , 2iVP

i , . . . ,]

Construct the vector VQ similarly. We use pk to denote the value of coordinate k in VP
i and

qk to denote the value of coordinate k in VQ
i . Now, we will describe a modified-L1 distance

|VP − VQ|T for these vectors, which is similar to the L1 norm. To compute |VP
i − VQ

i |T , we
will define |pk − qk|T . There are two cases for the |pk − qk|T to consider:
Case 1: if coordinate k is not associated with a terminal cell, then use |pk − qk| for |pk − qk|T .
Case 2: if coordinate k is associated with a terminal cell, then set |pk − qk|T = 0.
Then we have |VP

i − VQ
i |T =

∑|Gi|
k=1 |pk − qk|T , and

d̂L1(P, Q) := |VP − VQ|T =
log2 ∆∑
i=−1

2i|VP
i − VQ

i |T . (6)

An equivalent L1-distance formulation. We introduce the above vector representation
and the modified L1-distance as it is more convenient for later theoretical analysis. However,
algorithmically, we wish to have a true L1-embedding. It turns out that an equivalent
formulation is as follows: Let Ĝi denote the level-i quadtree cells that do not intersect the
diagonal L. We then compute a vector representation V̂P (resp. V̂Q) restricted only to cells in⋃

Ĝi. In other words, all entries corresponding to cells intersecting the diagonal are ignored
in constructing V̂P and V̂Q. We then have that

∥V̂P − V̂Q∥1 = |VP − VQ|T = d̂L1(P, Q). (7)

That is, our quadtree-induced distance d̂L1(P, Q) is a L1-distance for suitably constructed
vectors. Nevertheless, we use the definition as in Equation (6) to simplify proofs later.

It is easy to see that the construction takes the same time as the L1-embedding approach
described in Section 2.3. We now show that the L1-distance d̂L1(P, Q) approximates the
1-Wasserstein distance dper

W,1(P, Q) for the persistence diagrams. The main results for this
L1-embedding approach are summarized as follows, and we prove the approximation bound
in Section 3.1.2.

▶ Theorem 7. Given persistence diagrams P and Q such that s = |P| + |Q|, we can compute
d̂L1(P, Q) = |VP −VQ|T in time O(s log ∆) using the randomly shifted quadtree. Furthermore,
the expected value of d̂L1(P, Q) is an O(log ∆)-approximation of the 1-Wasserstein distance
dper

W,1(P, Q); i.e, there are constants c1 and c2 such that c1 · dper
W,1(P, Q) ≤ E[|VP − VQ|T] ≤

c2 log ∆ · dper
W,1(P, Q).

S. Chen and Y. Wang 14:9

Figure 1 A simple example of the vector and quadtree representations of the persistence diagrams
P = {p1, p2} and Q = {q1, q2}.

3.1.2 Approximation guarantees
Our approximation bound in Theorem 7 follows from Lemmas 8 and 9 below. To prove these
lemmas, we will first introduce a greedy augmented matching.

Greedy augmented matching Γ̂. We construct the following augmented matching (recall
Definition 2) Γ̂ ⊆ (P ∪ π(Q)) × (Q ∪ π(P)

)
in a bottom-up greedy manner : Starting from

the level i = −1, we will aim to match points in P ⊎ Q as much as we can within each
level Gi. Those remaining unmatched points will then be considered at the next level Gi+1:
in particular, within each non-terminal cell in Gi+1, we will match the maximal possible
unmatched points in P to unmatched points in Q so far, and pass the remainder unmatched
points (which can now only come from either P or Q, but not both) to its parents. Within
a terminal cell v in Gi+1, we match every unmatched point p from P ∩ v and from Q ∩ v

to its closest point π(p) ∈ L in the diagonal. Finally, at the root cell (in level log ∆), any
unpaired points from either P or Q will be paired to the diagonal, as the root is a terminal
cell. Note that by construction, at any level i, |VP

i − VQ
i |T is exactly the number of points

from P ⊎ Q that could not be matched at level i or below under such a greedy augmented
matching and will subsequently need to be matched in grid Gj , j ≥ i + 1. See Figure 1 for a
simple illustration.

▶ Lemma 8. There is a constant C such that dper
W,1(P, Q) ≤ C · |VP − VQ|T .

Proof. Consider the greedy augmented matching Γ̂ we described above, induced by pairing
points or pairing points with their diagonal projection greedily within the same cells of the
grids G−1, G0, G1, . . . in a bottom-up manner. First, given (p, q) ∈ Γ̂, we say that (p, q) is
paired in level-i, if the lowest level any quadtree cell containing both p, q is level-i; intuitively,
(p, q) are paired greedily in this cell in level-i. We now use Γ̂i ⊆ Γ̂ to denote the set of pairs
from level-i. For each level i, let cost(i) =

∑
(p,q)∈Γ̂i

∥p − q∥2 be the total cost incurred by
all those pairs from Γ̂i, and obviously,∑

i

cost(i) =
∑

(p,q)∈Γ̂

∥p − q∥2 ≥ dper
W,1(P, Q), (8)

where the right inequality holds as dper
W,1(P, Q) is the smallest total cost of any augmented

matching and the greedy augmented matching Γ̂ is an augmented matching.

SEA 2021

14:10 Approx. Algorithms for W1 Distance

There are no pairings induced in the grid G−1 (of size 1/2) since the minimum inter-point
distance is 1 and the minimum distance between a point and its diagonal is 1 as well. Hence
we have that |VP

−1 − VQ
−1|T = |P| + |Q|. Since all points from P and Q will remain unpaired

in level −1 (i.e, within cells of grid G−1), we then have that there are exactly

|P| + |Q| − |VP
0 − VQ

0 |T = |VP
−1 − VQ

−1|T − |VP
0 − VQ

0 |T

total number of points from P ⊎ Q that can either be paired to each other or matched to
the diagonal in grid cells G0. As the maximal distance between any pair of matched points
is 2i

√
2 within a cell in Gi, the maximum cost incurred by all matched points in G0 is

cost(0) ≤
√

2(|VP
−1 − VQ

−1|T − |VP
0 − VQ

0 |T). In general, the maximum cost of the matched
points in Gi is

cost(i) ≤ 2i ·
√

2(|VP
i−1 − VQ

i−1|T − |VP
i − VQ

i |T).

Hence combining Equation (8), the total cost (i.e,
∑

(p,q)∈Γ̂ ||p−q||2) of the greedy augmented
matching Γ̂, is bounded from above by:

∑
(p,q)∈Γ̂

||p − q||2 ≤
log2 ∆+1∑

i=0
2i ·

√
2(|VP

i−1 − VQ
i−1|T − |VP

i − VQ
i |T) ≤ 2

√
2|VP − VQ|T .

By the right inequality of Equation (8), the claim then follows. ◀

▶ Lemma 9. There is a constant C ′ such that the expected value of d̂L1(P, Q) is bounded by
E[d̂L1(P, Q)] = E[|VP − VQ|T] ≤ C ′ · log ∆ · dper

W,1(P, Q).

Proof. Set P̂ = P ∪ π(Q) and Q̂ = Q ∪ π(P) as before. For a given grid Gi and some
coordinate k in VP

i and VQ
i , let pk be the value of coordinate k in VP

i and qk be the value of
coordinate k in VQ

i . Analogously, let VP̂ and VQ̂ be the vector representations w.r.t multisets
P̂ and Q̂, respectively, and let p̂k (resp. q̂k) be the value of coordinate k in VP̂

i (resp. VQ̂
i).

Note that p̂k ≥ pk and q̂k ≥ qk.
(i) Now if p̂k > pk or q̂k > qk, then there exists at least one point x ∈ π(P) ∪ π(Q) in the

cell v associated with coordinate k. In other words, this cell v must be a terminal cell, and
|pk − qk|T = |p̂k − q̂k|T = 0.

(ii) Otherwise if the conditions in (i) do not hold, it must be that p̂k = pk and q̂k = qk,
in which case we also have that |pk − qk|T = |p̂k − q̂k|T .

Combining (i) and (ii) we then have that |VP − VQ|T ≤ |VP̂ − VQ̂|T .
On the other hand, by the definition of metric | · |T , we know that |p̂k − q̂k|T ≤ |p̂k − q̂k|,

implying that |VP̂ − VQ̂|T ≤ ∥VP̂ − VQ̂∥1. Let µP̂ and νQ̂ be the discrete measures induced by

P̂ and Q̂ respectively. By Theorem 5, there is some constant C such that E[∥VP̂ − VQ̂∥1] ≤
C · log ∆ · dOT(µP̂, νQ̂). From Observation 4, dOT(µP̂, νQ̂) ≤ 2 · dper

W,1(P, Q). Therefore,

E[|VP − VQ|T] ≤ E[|VP̂ − VQ̂|T] ≤ E[∥VP̂ − VQ̂∥1] ≤ 2 · C · log ∆dper
W,1(P, Q).

The lemma then follows. ◀

3.2 Approximation algorithm via flowtree
We now propose an alternative approximation algorithm for dper

W,1(P, Q). The high level idea
is the same as the flowtree algorithm described in Section 2.3: in particular, we first compute
the optimal flow for points in P and Q along the randomly shifted quadtree T as constructed

S. Chen and Y. Wang 14:11

earlier, but now with the modification that a point can be paired to diagonal. It turns out
that this leads to the same greedy augmented matching Γ̂ we described at the beginning of
Section 3.1.2. Then, similar to flowtree, under this greedy augmented matching Γ̂, we use the
Euclidean distance between a pair of matched points (instead of using the tree-distance as
for d̂L1(P, Q)) to measure the cost of each pair of matched points. This leads to the following
modified flowtree estimate:

dper
W,1F

(P, Q) =
∑

(p,q)∈Γ̂

||p − q||2, (9)

and in our second algorithm, we will use dper
W,1F

(P, Q) as an approximation of the true
1-Wasserstein distance dper

W,1(P, Q).
From an implementation point of view, unlike d̂L1(P, Q), which can be computed as the

L1-distance between two vectors, we now must explicitly compute the greedy augmented
matching, Γ̂ between P and Q. (Note that this greedy augmented matching was only used in
proving the approximation guarantee for d̂L1(P, Q), and not needed for its computation.)
Computing this greedy augmented matching (and calculating its cost) takes the same time
as computing the greedy flow in the original flowtree algorithm 2.3. Furthermore, it is easy
to see that in the proof of Lemma 8, we in fact showed that dper

W,1(P, Q) ≤ dper
W,1F

(P, Q) ≤
C · |VP − VQ|T (see Eqn (8)). Combining this with Theorem 5, we thus obtain the following
approximation result for this modified flowtree estimate.

▶ Theorem 10. Given two persistence diagrams P and Q where s = max(|P |, |Q|) and ∆
is the spread of point set P ∪ Q, we can compute dper

W,1F
(P, Q) in time O(s log ∆) using a

randomly shifted quadtree. Additionally, the expected value of dper
W,1F

(P, Q) is an O(log ∆)-
approximation of the 1-Wasserstein distance dper

W,1(P, Q); i.e. there are constants C1 and C2
such that C1 · dper

W,1(P, Q) ≤ E[dper
W,1F

(P, Q)] ≤ C2 · log ∆ · dper
W,1(P, Q).

Remark. We remark that while these two approximation schemes, d̂L1(P, Q) and
dper

W,1F
(P, Q), have similar approximation guarantees for dper

W,1(P, Q), in practice, the modified
flowtree based approach has much higher accuracy. This is consistent with the performance
of flowtree algorithm versus the L1-embedding approach for general optimal distance [1]. In
contrast, the benefit of the L1 embedding approach is that it is easy to compute d̂L1(P, Q).
Also, each persistence diagram is now mapped to a vector representation, and the distance
is L1-distance among these vector representations. One could combine this with methods
such as locality-sensitive-hashing for more efficient approximate k-nearest neighbor queries.
In general, such a L1-norm also makes d̂L1(·, ·) potentially more suitable for downstream
machine learning pipelines.

4 Experimental results

We evaluate both the runtime and accuracy of the modified flowtree and L1-embedding
against the Hera method of [18]. We use the implementation of Hera provided in the GUDHI
library [25] for testing. We run the experiments using an Intel Core i7-1065G7 CPU @ 1.30
GHz and 12.0GB RAM. Additionally, the implementations for both the modified flowtree
and L1-embedding were done in C++ (wrapped in python for evaluation) and are based on
the code provided in [1].

SEA 2021

14:12 Approx. Algorithms for W1 Distance

Datasets. For our experiments, we use both synthetic persistence diagrams, as well as
persistence diagrams generated from real data. For synthetic data, we generate two sets
of persistence diagrams: called “synthetic-uniform” and “synthetic-Gaussian”, which are
generated by a uniform sample and a sample w.r.t. a Gaussian distribution on the birth-death
plane to obtain the persistence diagrams, respectively. For real datasets, we use persistence
diagrams generated from the so-called Reddit data sets (which is a collection of graphs) [6],
and from the ModelNet10 [30] dataset of shapes. Details of these datasets are in Appendix
B.

Speed comparison. We compare the running time of our new approximation algorithms
with that of Hera [18] – note that we do not directly compare with the exact algorithm by
Dionysus, because as reported by [18], Hera is 50 times to 400 times faster than Dionysus.
Note that Hera is also an approximation algorithm, and there is a parameter ε to adjust
its approximation factor (1 + ε). By setting this parameter to be very small (ε = 0.01), we
use the distance computed by Hera as ground truth later when we measure approximation
accuracy; see Table 1.

The comparison of the running times of our approaches with that of Hera (for a range of
different approximation factors) can be found in Figure 2, which summarizes the runtime
for each method on a log-scale using both randomly generated diagrams as well as the
reddit-binary dataset (real persistence diagrams from graphs). We compare the speed of
our modified flowtree and L1 embedding against Hera where the parameter ε for Hera is
set to be 300000. However, note that as one relaxes the approximation parameter ε, the
speed of Hera in fact does not improve much (as shown in Figure 2). Thus our speed gains
remain no matter which choice of ε we use for Hera. Additionally, the true approximation
error for Hera also does not decrease much; see Table 1. To get the approximation error for
Hera, we find the true Wasserstein distance by using the wasserstein_distance function
from the GUDHI library which uses the Python Optimal Transport library [12] and is based
on ideas from [21]. The results in Figure 2 indicate that the modified flowtree approach is
between 50 and 1000 times faster than Hera and the difference increases as the size of the
diagrams increases. Similarly, the L1 embedding approach is between 150 and 4900 times
faster than Hera. Both are order of magnitudes faster than Hera; but the price to pay is
that the approximation factor is worse for our approach as shown in Appendix C Figure 3.

Approximation accuracy comparison. To measure the accuracy of the approximation of
both the modified flowtree and L1 embedding approach, we first measure the average relative
error and standard deviation of both methods on all datasets using L1, L2, and L∞ as the
ground metrics. In particular, given a ground truth distance d and an approximate distance
d̃, the relative error is ρ(d) = |d−d̃|

d . As mentioned earlier, we use the output of Hera for
ε = 0.01 as ground truth, and compare our approximated distance with that. The results
are summarized in Figure 3 and a detailed table of the average relative error and standard
deviation is in Table 2. Overall, while our modified flowtree is slower than the L1-embedding
approach, it achieves much better approximation error. For our experiments, we generate a
quadtree only once for all persistence diagrams in a given dataset and calculate error for the
approximated distances for the single quadtree. However, note that by constructing several
quadtrees and averaging the distance estimates or taking the smallest estimated, we could
potentially reduce the approximation error.

In addition to the average error of our approximate distances, we can also consider the
efficacy of both methods in terms of nearest neighbor search and ranking accuracy. To
evaluate nearest neighbor search, we first split the set of persistence diagrams into query

S. Chen and Y. Wang 14:13

diagrams and candidate diagrams. Then, we measure recall@m accuracy where recall@m

is defined as the fraction of queries that have the true nearest neighbor within the top
m-ranked candidates returned by the evaluated method. The results are reported in Figure
4. For ranking accuracy, the detailed results are in Appendix C. To summarize, the modified
flowtree approach is more accurate than the L1 embedding approach both in terms of nearest
neighbor search and closeness to the true ranking of candidate diagrams for a fixed query
diagram. Both approaches appear to have a lower degree of accuracy on diagrams where
there a higher proportion of points near the diagonal. This may be due to the increased
possibility of erroneously matching points to the diagonal.

In summary, we note that both our new approximation algorithms significantly improve
the speed previously best-known Hera algorithm by orders of magnitudes, but with worse
approximation factors. Empirically, the approximation factors remain constant despite
our theoretical results suggestion an O(log ∆)-approximation. In particular, the relative
approximation error of flowtree is often smaller than 0.50 for L2 ground metric (see Appendix
C Table 2).

Table 1 Comparison of the maximum allowed relative error with the average experimental
relative error for Hera on the reddit-binary dataset. The relative error was calculated using the
GUDHI library’s wasserstein_distance function which uses the Python Optimal Transport library
to compute exact 1-Wasserstein distance.

Maximum allowed relative error Average relative error
0.1 0.00043768
1.0 0.003331

100000 0.0076055
200000 0.0076055

Table 2 Average error and standard deviation for all datasets. We abbreviate the L1 embedding
approach to embd and the flowtree approach to ft.

L1 L2 L∞

embd ft embd ft embd ft

synthetic-uniform Avg. Error 2.058 0.2846 3.161 0.2664 4.536 0.2595
Std. Dev. 1.034 0.3891 1.189 0.3488 1.164 0.3176

synthetic-Gaussian Avg. Error 1.341 0.3358 2.136 0.2860 3.035 0.2251
Std. Dev. 0.3647 0.1809 0.4139 0.1519 0.3669 0.1178

reddit-binary Avg. Error 2.112 0.2899 3.089 0.3080 3.921 0.2854
Std. Dev. 1.275 0.3859 2.100 0.5126 2.427 0.4801

ModelNet10 Avg. Error 2.189 0.7331 2.438 0.4929 3.061 0.9399
Std. Dev. 0.9543 0.4132 0.8136 0.3171 1.051 0.4448

5 Concluding remarks

In this paper, we presented two algorithms for fast approximation of the 1-Wasserstein
distance between persistence diagrams based on L1 embedding. While the relative error
incurred by both algorithms is higher than that of Hera, the runtime is significantly faster.
We also observe that approximation methods introduced are more accurate on persistence
diagrams with a lower proportion of points near the diagonal.

SEA 2021

14:14 Approx. Algorithms for W1 Distance

(a) synthetic-uniform. (b) reddit-binary.

Figure 2 Comparison of the runtimes of HERA, flowtree, and L1 embedding using both generated
and real data with L2 as the ground metric.

(a) reddit-binary. (b) ModelNet10.

(c) synthetic-uniform. (d) synthetic-Gaussian.

Figure 3 Relative error for flowtree and quadtree approximations over L1, L2, and L∞ ground
metrics for all datasets.

S. Chen and Y. Wang 14:15

(a) Recall@m accuracy on reddit-binary dataset
with L2 ground metric.

(b) Recall@m accuracy ModelNet10 dataset with
L2 ground metric.

(c) Recall@m accuracy on synthetic-uniform data-
set with L2 ground metric.

(d) Recall@m accuracy on synthetic-Gaussian data-
set with L2 ground metric.

Figure 4 Recall@m accuracy on reddit-binary and ModelNet10 datasets with L2 ground metric.

In the future, we are interested in using the L1 embedding described with locality sensitive
hashing for sub-linear nearest neighbor search. Additionally, it maybe be possible to use the
ideas to compare persistence diagrams under some transformations: e.g, parallel shifting
along the diagonal directions (which corresponding to that the input functions generating
the persistence diagram is added by a constant term). It will also be interesting to expand
this work to perform statistics on the space of persistence diagrams (e.g, computing 1-mean
of persistence diagrams under our approximation distances).

References

1 Arturs Backurs, Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Scalable nearest
neighbor search for optimal transport. arXiv preprint arXiv:1910.04126, 2019.

2 Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
Proceedings of 37th Conference on Foundations of Computer Science, pages 184–193. IEEE,
1996.

3 Yair Bartal. On approximating arbitrary metrices by tree metrics. STOC, 98:161–168, 1998.
4 Dimitri Bertsekas. The auction algorithm: A distributed relaxation method for the assignment

problem. Annals of Operations Research, 14(1):105–123, 1988.

SEA 2021

14:16 Approx. Algorithms for W1 Distance

5 Mickaël Buchet, Yasuaki Hiraoka, and Ippei Obayashi. Persistence homology and material
and informatics. In Isao Tanaka, editor, Nanoinformatics, pages 75–95. Spring Singapore,
Singapore, 2018. doi:10.1007/978-981-10-7617-6_5.

6 Chen Cai and Yusu Wang. Understanding the power of persistence pairing via permutation
test. arXiv preprint arXiv:2001.06058, 2020.

7 Moses Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the thirty-fourth annual ACM symposium on theory of computing, pages 2292–2300. ACM,
2002.

8 Frédéric Chazal, David Cohen-Steiner, Leonidas J. Guibas, Facundo Mémoli, and Steve Y.
Oudot. Gromov-hausdorff stable signatures for shapes using persistence. Computer Graphics
Forum, 28(5):1393–1403, 2009.

9 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete Comput. Geom., 37(1):103–120, 2007.

10 Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Society, 2010.

11 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete Comput. Gemo., 28:511–533, 2002.

12 Rémi Flamary and Nicolas Courty. Pot: Python optimal transport library, 2017. URL:
https://pythonot.github.io/.

13 Jennifer Gamble and Giseon Ho. Exploring uses of persistence homology for statistical analysis
of landmark-based shape data. Journal of Multivariate Analysis, 101(9):2184–2199, 2010.

14 Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Matsue,
and Yasumasa Nishiura. Hierarchical structures of amorphous solids characterized by persistent
homology. Proceedings of the National Academy of Sciences, 113(26):7035–7040, 2016. doi:
10.1073/pnas.1520877113.

15 Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In 3rd international
workshop on statistical and computational theories of vision, volume 2, page 5, 2003.

16 Bahman Kalantari and Iraj Kalantari. A linear-time algorithm for minimum cost flow on
undirected one-trees. Combinatorics Advances, pages 217–223, 1995.

17 Lida Kanari, Paweł Dłotko, Martina Scolamiero, Ran Levi, Julian Shillcock, Kathryn Hess,
and Henry Markram. A topological representation of branching neuronal morphologies.
Neuroinformatics, 16(1):3–13, 2018. doi:10.1007/s12021-017-9341-1.

18 Michael Kerber, Dimitriy Morozov, and Arnur Nigmetov. Geometry helps to compare
persistence diagrams. Journal of Experimental Algorithmics(JEA), 22:1–20, 2017.

19 Jon Kleinberg and Eva Tardos. Approximation algorithms for classification problems with
pairwise relationships: Metric labeling and markov random fields. Journal of the ACM (JACM),
49(5):616–639, 2002.

20 Harold Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

21 Théo Lacombe, Marco Cuturi, and Steve Oudot. Large scale computation of means and
clusters for persistence diagrams using optimal transport, 2018. arXiv:1805.08331.

22 Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco Cuturi. Tree-sliced approximation of
wasserstein distances. arXiv preprint arXiv:1902.00342, 2019.

23 Yongjin Lee, Senja D. Barthel, Paweł Dłotko, S. Mohamad Moosavi, Kathryn Hess, and
Berend Smit. Quantifying similarity of pore-geometry in nanoporous materials. Nat Commun.,
8:15396, 2017. doi:10.1038/ncomms15396.

24 Yanjie Li, Dingkang Wang, Giorgio Ascoli, Partha Mitra, and Yusu Wang. Metrics for
comparing neuronal tree shapes based on persistent homology. PLOS One, 12(8):1–24, 2017.
doi:10.1371/journal.pone.0182184.

25 Clément Maria, Jean-Daniel Boissonat, Marc Glisse, and Mariette Yvinec. The gudhi library:
simplicial complexes and persistent homology, 2014. URL: http://gudhi.gforge.inria.fr/
python/latest/index.html.

https://doi.org/10.1007/978-981-10-7617-6_5
https://pythonot.github.io/
https://doi.org/10.1073/pnas.1520877113
https://doi.org/10.1073/pnas.1520877113
https://doi.org/10.1007/s12021-017-9341-1
http://arxiv.org/abs/1805.08331
https://doi.org/10.1038/ncomms15396
https://doi.org/10.1371/journal.pone.0182184
http://gudhi.gforge.inria.fr/python/latest/index.html
http://gudhi.gforge.inria.fr/python/latest/index.html

S. Chen and Y. Wang 14:17

26 Dimitriy Morozov. Dionysus, 2010. URL: mrzv.org/software/dionysus.
27 Ahmet Sacan, Ozgur Ozturk, Hakan Ferhatosmanoglu, and Yusu Wang. Lfm-pro: a tool for

detecting significant local structural sites in proteins. Bioinformatics, 23(6):709–716, 2007.
28 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Fast unbalanced optimal transport on

tree. arXiv preprint arXiv:2006.02703, 2020.
29 Primoz Skraba, Maks Ovsjanikov, Frédéric Chazal, and Leonidas Guibas. Persistence-based

segmentation of deformable shapes. In 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition - Workshops, pages 45–52, 2010. doi:10.1109/CVPRW.2010.
5543285.

30 Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumentric shapes. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015.

A Additional Proofs

Proof of observation 4. By the optimality of dOT(µP̂, νQ̂), we know that

dOT(µP̂, νQ̂) ≤ dper
W,1(P, Q) +

∑
(a,b)∈Γ1

||π(a) − π(b)||q

where Γ1 is the set of (a, b) ∈ Γ that have first form given in definition 2. We know
that ||π(a) − π(b)||q ≤ ||a − b||q so dOT(µP̂, νQ̂) ≤ dper

W,1(P, Q) +
∑

(a,b)∈Γ1
||π(a) − π(b)||q ≤

2 · dper
W,1(P, Q). ◀

B Datasets

We use datasets of synthetic persistence diagrams as well as persistence diagrams generated
from real data. For persistence diagrams from real data, we use both graph and shape
datasets.

Synthetic data: We generated two sets of persistence diagrams. For the first set of
synthetic persistence diagrams, we find a random persistence of size at most s where
s = 10x for x ∈ {1, . . . , 100} by generating points p1, . . . , ps. To find each points pi, we
sample pi.x from a uniform distribution from 0 to 200. We then sample pi.y from a
uniform distribution between x and 300. We will refer to this set of synthetic persistence
diagrams as synthetic-uniform. For the second set of synthetic persistence diagrams, we
again generate a point pi by sampling pi.x from a uniform distribution from 0 to 200. We
then sample pi.y from a Gaussian distribution centered about x with standard deviation
1.0. We will refer to the second set of synthetic diagrams as synthetic-Gaussian.
Graphs: For persistence diagrams generated from graphs, we use the reddit-binary graph
dataset, which consists of graphs corresponding to online discussion on Reddit. In each
graph, nodes correspond to users and there is an edge between two nodes if at least one
of the corresponding users has responded to the other’s comments. The data is taken
from four popular subreddits: IAmA, AskReddit, TrollXChromosomes, and atheism.
Additionally, the persistence diagrams are generated using node degree as the filtration
function [6].
Shapes: We use the ModelNet10 [30] dataset to generate persistence diagrams from
shapes. ModelNet10 is comprised of 4899 CAD models from 10 object categories. The
persistence diagrams are generated using closeness centrality as the filtration function [6].

SEA 2021

mrzv.org/software/dionysus
https://doi.org/10.1109/CVPRW.2010.5543285
https://doi.org/10.1109/CVPRW.2010.5543285

14:18 Approx. Algorithms for W1 Distance

The statistics of the ModelNet10 and reddit-binary datasets are summarized in Table 3.
Note that a persistence point is considered close to the diagonal if its lifetime is less than
one-tenth of the lifetime of the point with the largest lifetime.

Table 3 Diagram statistics for reddit-binary and ModelNet10 datasets.

Average # of PD points Average # of points near diagonal
reddit-binary 278.155 20.245
ModelNet10 40.52 34.345

C Results

To measure the accuracy of the rankings produced by the modified L1 embedding and flowtree
methods, we plot the true ranking of each candidate against the rank of the candidate in the
rankings produced by the evaluated method. Note that we will do this using the L2 norm as
the ground metric. The ranking accuracies for the evaluated methods for the reddit-binary
dataset and ModelNet10 are summarized in Figures 5, 6, 8, 7. The average number of ranks
away from the true rank is less than 10 for both reddit-binary and synthetic-uniform whereas
the same metric for synthetic-uniform and ModelNet10 is above ten for both datasets.

Both the modified flowtree and the L1 embedding approximations seem to be less effective
for estimating nearest neighbor for persistence diagrams where there is a high proportion
of points near the diagonal. This may be because a higher proportion of points near the
diagonal increases the possibility of erroneously matching points to the diagonal.

(a) Flowtree rankings. (b) L1 embedding rankings.

Figure 5 Comparison of rankings generated by the flowtree and L1 embedding approximations
with the true rankings of the candidate diagrams using the reddit-binary datset.

S. Chen and Y. Wang 14:19

(a) Flowtree rankings. (b) L1 embedding rankings.

Figure 6 Comparison of rankings generated by the flowtree and L1 embedding approximations
with the true rankings of the candidate diagrams using the ModelNet10.

(a) Modified flowtree rankings. (b) L1 embedding rankings.

Figure 7 Comparison of rankings generated by the modified flowtree and L1 embedding approx-
imations with the true rankings of the candidate diagrams using synthetic-uniform dataset.

(a) Modified flowtree rankings. (b) L1 embedding rankings.

Figure 8 Comparison of rankings generated by the modified flowtree and L1 embedding approx-
imations with the true rankings of the candidate diagrams using synthetic-Gaussian.

SEA 2021

Fréchet Mean and p-Mean on the Unit Circle:
Decidability, Algorithm, and Applications to
Clustering on the Flat Torus
Frédéric Cazals !

Université Côte d’Azur, France
Inria, Sophia Antipolis, France

Bernard Delmas !

INRAe, Jouy-en-Josas, France

Timothee O’Donnell !

Université Côte d’Azur, France
Inria, Sophia Antipolis, France

Abstract
The center of mass of a point set lying on a manifold generalizes the celebrated Euclidean centroid,
and is ubiquitous in statistical analysis in non Euclidean spaces. In this work, we give a com-
plete characterization of the weighted p-mean of a finite set of angular values on S1, based on a
decomposition of S1 such that the functional of interest has at most one local minimum per cell.
This characterization is used to show that the problem is decidable for rational angular values
–a consequence of Lindemann’s theorem on the transcendence of π, and to develop an effective
algorithm parameterized by exact predicates. A robust implementation of this algorithm based on
multi-precision interval arithmetic is also presented, and is shown to be effective for large values of n

and p. We use it as building block to implement the k-means and k-means++ clustering algorithms
on the flat torus, with applications to clustering protein molecular conformations. These algorithms
are available in the Structural Bioinformatics Library (http://sbl.inria.fr).

Our derivations are of interest in two respects. First, efficient p-mean calculations are relevant
to develop principal components analysis on the flat torus encoding angular spaces–a particularly
important case to describe molecular conformations. Second, our two-stage strategy stresses the
interest of combinatorial methods for p-means, also emphasizing the role of numerical issues.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Frechét mean, p-mean, circular statistics, decidability, robustness, multi-
precision, angular spaces, flat torus, clustering, molecular conformations

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.15

Supplementary Material Software: https://sbl.inria.fr/
Text (Documentation): https://sbl.inria.fr/doc/Frechet_mean_S1-user-manual.html

Acknowledgements Chee Yap and Sylvain Pion are acknowledged for discussions on irrational
number theory and number types, respectively.

1 Introduction

1.1 Statistics on manifolds and p-means on S1

Fréchet mean and generalizations. The celebrated center of mass of a point set P in a
Euclidean space is the (a) point minimizing the sum of squared Euclidean distances to points
in P . The center of mass plays a key role in data analysis at large, and in particular in
principal components analysis since the data are centered prior to computing the covariance
matrix and the principal directions. Generalizing these notions to non Euclidean spaces
is an active area of research. Motivated by applications in structural biology (molecular
conformations), robotics (robot conformations), and medicine (shape and relative positions

© Frédéric Cazals, Bernard Delmas, and Timothee O’Donnell;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Frederic.Cazals@inria.fr
mailto:bernard.delmas@jouy.inra.fr
mailto:timothee.o-donnell@inria.fr
http://sbl.inria.fr
https://doi.org/10.4230/LIPIcs.SEA.2021.15
https://sbl.inria.fr/
https://sbl.inria.fr/doc/Frechet_mean_S1-user-manual.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Fréchet Mean

of organs), early work focused on direct generalizations of Euclidean notions. Analysis
tailored to the unit circle and sphere were developed under the umbrella of directional
statistics [2, 19, 20]. In a more abstract setting, generalizations of the center of mass in
general metric spaces were first worked out – the so-called Fréchet mean [11], followed by a
generalization to distributions on such spaces – the so-called Karcher mean [12, 3, 23].

In fact, previous works span two complementary directions. On the one hand, efforts
have focused on mathematical properties of spaces generalizing affine spaces, so as to provide
statistical summaries of ensembles in terms of geometric objects of small dimension. On
the other hand, algorithmic developments have been performed proposed to compute such
objects. The case of the unit circle S1 provides the simplest compact non Euclidean manifold
to be analyzed. Despite its simplicity, this case turns out to be of high interest since S1

encodes angles, a particularly important case e.g. to describe molecular conformations. In
the following, we focus on p-means defined on the unit circle S1, for p > 1. (The case p = 1
requires trivial adaptations.)

Consider n angles Θ0 = {θi}i=1,...,n. Practically, since real data are known with finite
precision, we treat angles as rational numbers. Consider the embedding of an angle onto
the unit circle, that is X(θ) = (cos θ, sin θ)T. The geodesic distance between two points X(θ)
and X(θi) on S1, denoted d(·, ·), satisfies

d(X(θ), X(θi)) = min(| θ − θi |, 2π− | θ − θi |) = 2 arcsin ∥X(θ) − X(θi)∥
2 . (1)

Consider a set of positive weights {wi}i=1,...,n. For an integer p ≥ 1, consider the function
involving the weighted distances to all points, i.e.

Fp(θ) =
∑

i=1,...,n

wifi(θ), with fi(θ) = dp(X(θ), X(θi)). (2)

We denote its minimum

θ∗ = arg min
θ∈[0,2π)

Fp(θ). (3)

For units weights and p = 2, the value obtained is the Fréchet mean. In that case, the
candidate minimizers (local minima of Eq. 2) form the vertices of a regular polygon [13]. The
previous expression can also be seen as a distance to a point mass probability distribution
on S1. For a general probability distribution on S1, necessary and sufficient conditions for
the existence of a Fréchet mean have been worked out [9]. In the same paper, the authors
propose a quadratic algorithm–regardless of numerical issues–to compute the Fréchet mean
for the particular case of a point mass probability distribution. In a more general setting,
a stochastic algorithm finding p-means wrt a general measure on the circle has also been
proposed [4].
▶ Remark 1. In the subsequent sections, the weights in Eq. 2 are omitted – rational weights
do not change our analysis. Our implementation, however, does use them.

Robustness and numerical issues. From a mathematical standpoint, computing the p-mean
is a non-convex optimization problem, and one may assume that calculations are carried
out in the standard real RAM computer model, which assumes that exact operations on
real numbers are available at constant time per operation [24]. From a practical standpoint
though, numbers in real computers are represented with finite precision [21]. The ensuing
rounding errors are such that algorithms written in the real RAM model may loop, crash, or
terminate with an erroneous answer, even for the simplest 2D geometric calculations [16].

F. Cazals, B. Delmas, and T. O’Donnell 15:3

Robust geometric algorithms, which deliver what they are designed for, can be developed
using the Exact Geometric Computation (EGC) paradigm [27], which is central in the
Computational Geometry Algorithms Library (CGAL) [1]. The EGC relies on so-called exact
predicates and constructions. A predicate is a function whose output belongs to a finite set,
while a construction exhibits a new geometric object from the input data. For example, the
predicate Sign(x) returns the sign {negative, null, positive} of the arithmetic expression x.
As we shall see, designing robust predicates for p-means on S1 is connected to transcendental
number theory since expressions involving π are dealt with. In particular, one needs to
evaluate the sign of such expressions, which raises decidability issues [8].

Combinatorial complexity issues. The computation of the p-means also raises a combinat-
orial complexity issue. Function Fp being a sum over n terms, k function evaluations yield a
complexity O(kn), which is quadratic if there is a linear number of local minima. Therefore,
the fact that using candidate minimizers form a regular polygon [13] does not directly yield a
linear time algorithm even if the angles are sorted. As we shall see, the piecewise maintenance
of the expression of the function does so, though. For the sake of conciseness, combinatorial
complexity is plainly referred to as complexity in the sequel.

Figure 1 Fréchet mean of four points on S1. (Functions) blue: function F2; green: derivative
F

′
2 ; orange: second derivative F

′′
2 (Points) red bullets: data points; black bullets: antipodal points;

blue bullets: local minima of the function; large blue bullet: Fréchet mean θ∗; green bullet: circular
mean Eq. 14.

1.2 Contributions
This paper makes three contributions regarding p-means of a finite point set. First, we
show that the function Fp is determined by a very simple combinatorial structure, namely a
partition of S1 into circle arcs. Second, we give an explicit expression for Fp, deduce that
the problem is decidable, and present an algorithm computing p-means. Third, we present
an effective and robust implementation, based on multi-precision interval arithmetic.

2 p-mean of a finite point set on S1: characterization

2.1 Notations
In the following, angles are in [0, 2π). We first define:

SEA 2021

15:4 Fréchet Mean

▶ Definition 2. For each angle θi ∈ [0, π), we define θ+
i = θi + π. The set of all such angles

is denoted Θ+ = {θ+
i }. For each angle θi ∈ [π, 2π), we define θ−

i = θi −π. The set of all such
angles is denoted Θ− = {θ−

i }. The antipodal set of Θ0 is the set of angles Θ± = Θ+ ∪ Θ−.

Altogether, these angles yield the larger set

Θ = Θ0 ∪ Θ±. (4)

The 2n angles in Θ are generically denoted αi or αj . Note however that when referring to
an angle in the continuous interval [0, 2π), θ is used.

To each angle θi, we associate three so-called elementary intervals (Fig. 2):
θi ∈ [0, π) : Ii,1 = (0, θi), Ii,2 = (θi, θ+

i), Ii,3 = (θ+
i , 2π).

θi ∈ [π, 2π) : Ii,1 = (0, θ−
i), Ii,2 = (θ−

i , θi), Ii,3 = (θi, 2π).

θi

θ+i = θi + π

θi

θ−i = θi − πIi,1
Ii,2

Ii,3

Ii,1

Ii,2

Ii,3

0 0ππ

θi ∈ [0, π) θi ∈ [π, 2π)

fi(θ) = (θi − θ)p

fi(θ) = (θ − θi)p
fi(θ) = (2π + θi − θ)p

fi(θ) = (θi − θ)p

fi(θ) = (θ − θi)p

fi(θ) =

(2π + θ − θi)p

Figure 2 The partition of S1 into circle arcs, and the piecewise functions defining Fp.
The three elementary intervals defined by angles in [0, π) and [π, 2π) respectively. Bold circle arcs
indicate that fi has a transcendental expression i.e. involves π.

2.2 Partition of S1

We also consider the partition of [0, 2π) induced by the intersection of the 3n intervals
{Ii,1, Ii,2, Ii,3} (Fig. 2). More specifically, we choose one interval (out of three) for each
function fi, and intersect them all:

▶ Definition 3. The elementary intervals Ii,j define a partition of S1 based on the following
intervals:

I = {
⋂

i=1,...,n

(Ii,1 ∨ Ii,2 ∨ Ii,3) with
⋂

i=1,...,n

Ii,· ̸= ∅}. (5)

In the following, open intervals from I are denoted (αj , αj+1).

▶ Remark 4. From the previous definition, it appears that the intervals in I may be ascribed
to nine types since the left endpoint is an angle θi or an antipodal angle θ+

i or θ−
i , and

likewise for the right endpoint.

F. Cazals, B. Delmas, and T. O’Donnell 15:5

2.3 Piecewise expression for Fp

We use the previous intervals to describe the piecewise structure of Fp. We define the
following piecewise functions (Fig 2):

θi ∈ [0, π) : fi(θ) =

(θi − θ)p, for θ ∈ Ii,1,

(θ − θi)p, for θ ∈ Ii,2,

(2π + θi − θ)p, for θ ∈ Ii,3.

(6)

θi ∈ [π, 2π) : fi(θ) =

(2π + θ − θi)p, for θ ∈ Ii,1,

(θi − θ)p, for θ ∈ Ii,2,

(θ − θi)p, for θ ∈ Ii,3.

(7)

The previous equations give the piecewise expression of Fp(θ) (Eq. 2), from which one
derives the following, which characterizes the derivative at points in αj ∈ Θ:

∆f ′
i|θ = lim

θ↘αj

f ′
i(θ) − lim

θ↗αj

f ′
i(θ) (8)

▶ Remark 5. Let θmax be the antipodal value of the largest θi ∈ Θ0 larger than π, and θmin
the antipode of the smallest θi ∈ Θ0 smaller than π. The function Fp is transcendental in
[0, θmax) and (θmin, 2π] – its expression involves π. Also, the function Fp is algebraic on
(θmax, θmin). See Fig. 2.

Using Eq. 8, the following is immediate:

▶ Lemma 6. For p > 1, the function fi and its derivatives satisfy:
The function fi is continuous on S1.
The derivative f ′

i is continuous on S1 except at the antipodal value of θi, where
∆f ′

i|antipode(θi) = −2p πp−1.
The second order derivative f ′′

i is non negative on S1.

The previous lemma tells us that F
′

p incurs drops at antipodal points, and then keeps
increasing again on the interval starting at that point. Finding local minima of Fp therefore
requires finding those intervals from I where F

′

p vanishes, which happens at most once:

▶ Lemma 7. For p > 1, the function Fp has at most one local min. on each interval in I.

3 Algorithm

The observations above are not sufficient to obtain an efficient algorithm: since there are 2n

intervals and since the function has linear complexity on each of them, a linear number of
function evaluations has quadratic complexity. We get around this difficulty by maintaining
the expression of the function at angles in Θ.

3.1 Analytical expressions and nullity of F
′

p

The function Fp and its derivative. We first derive a compact, analytical expression of Fp

and F
′

p. Following Eqs. 6 and 7, the expressions of fi(θ) and f ′
i(θ) can be written as

f ′
i(θ) = ki×(ai+εiθ)p−1, with ki ∈ {−p, p}, ai ∈ {−θi, 2π−θi, θi, 2π+θi}, εi ∈ {−1, +1}. (9)

SEA 2021

15:6 Fréchet Mean

On open intervals (αj , αj+1), the function reads as the following polynomial

Fp(θ) =
n∑

i=1
(ai + εiθ)p =

p∑
j=0

bjθj , with bj =
n∑

i=1

(
p

j

)
ap−j

i εj
i . (10)

Similarly, the derivative F
′

p(θ) reads as a degree p − 1 polynomial:

F
′

p(θ) =
n∑

i=1
ki(ai + εiθ)p−1 =

p−1∑
j=0

cjθj , with cj =
n∑

i=1
ki

(
p − 1

j

)
ap−1−j

i εj
i . (11)

In the following, we assume that the coefficients of Fp and F
′

p are stored in two vectors B

and C of size p + 1 and p respectively, so that evaluating the function or its derivative at a
given θ has cost O(p).

Nullity of F
′

p: algebraic versus transcendental expressions. The previous equations call
for two important comments. First, from the combinatorial complexity standpoint, if the
coefficients of the polynomials are known, evaluating Fp and F

′

p has cost O(p). Second,
from the numerical standpoint, locating local minima of Fp requires finding intervals from I
on which F

′

p vanishes. Identifying such intervals is key to the robustness of our algorithm.
Practically, since an interval is defined by two consecutive values in the set Θ, we need to
check that the sign of F

′

p differs at these endpoints. The cornerstone is therefore to decide
the sign of F

′

p at angles in Θ (input angles or their antipodes), and the following is a simple
consequence of Lindemann’s theorem on the transcendence of π:

▶ Lemma 8. If the angular values θi ∈ Θ0 are rational numbers, checking whether F
′

p(αi) ≠ 0
for any αi ∈ Θ is decidable. Moreover, when F

′

p has a transcendental expression and αi is
rational, F

′

p ̸= 0.

Proof. We first consider the case αi ∈ Θ0, and distinguish the two types of intervals – see
Remark 5. First, consider an interval where Fp has an algebraic expression. We face a purely
algebraic problem, and deciding whether F

′

p(αi) ̸= 0 can be done using classical bounds,
e.g. Mahler bounds [18, 28]. Second, consider an interval where Fp has a transcendental
expression. Then, F

′

p(αi) can be rewritten as a polynomial of degree p − 1 in π. Lindemann’s
theorem on the transcendence of π implies that F

′

p(αi) ̸= 0.
Consider now the case where αi ∈ Θ±, that is αi = αj ± π. Each individual term

fi
′(αi) also has the form (ciπ + qi)p−1, with ci ∈ N and qi ∈ Q, so that the latter case also

applies. ◀

3.2 Algorithm
Upon creating and sorting the set Θ, which has complexity O(n log n), the algorithm involves
four steps for each interval in I.

Identify the intervals where F
′

p vanishes. By lemmas 6 and 7, there is at most one local
minimum per interval, which requires checking the signs of F

′

p to the right and left bounds
of an interval (αj , αj+1). Using the functional forms encoded in vector C, computing these
derivatives has the same complexity as the previous step. However, this step calls for two
important comments:

F. Cazals, B. Delmas, and T. O’Donnell 15:7

For αi ∈ Θ, checking whether F
′

p(αi) ̸= 0 is decidable – Lemma 8. However, the
arithmetic nature of the number αi must be taken into account, as rational numbers
(input angles) and transcendental numbers (antipodal points) must be dealt with using
different arithmetic techniques. See below.
Not all intervals (αj , αj+1) can provide a root. Indeed, once F

′

p(αi) > 0, since the
individual second order derivatives are positive, F

′

p cannot vanish until one crosses one
αj ∈ Θ±. As we shall see, this observation is easily accommodated in Algorithm 1.

In the following, we denote SD(p − 1) the cost of deciding the sign (negative, zero, positive)
of F

′

p(θ), for θ ∈ Θ.

Compute the unique root of F
′

p. Since F
′

p is piecewise polynomial, finding its real root
has constant time complexity for p ≤ 5. Otherwise, a numerical method can be used [17].
In the following, we denote RF(p − 1) the cost of isolating the real root of a degree p − 1
polynomial.

Evaluate Fp at a local minimum. Once the angle θm corresponding to a local minimum
has been computed, we evaluate Fp(θm) using Eq. 10. This evaluation has O(p) complexity
since the coefficients of the polynomial are known.

Maintain the polynomials Fp and F
′

p. Following Eqs. 10 and 11, the function and its
derivative only change when crossing an angle from Θ. At such an angle, updating the
vectors B and C has complexity O(p). Overall, this step therefore has complexity O(np).

We summarize with the following output-sensitive complexity:

▶ Theorem 9. Algorithm 1 computes the p-mean with O(n log n+np+nSD(p−1)+kRF(p−
1) + kp) complexity, with k the number of local minima of Fp.

3.3 Generic implementation
In the following, we present an implementation of our algorithm based on predicates, i.e.
functions deciding branching points.

Pseudo-code, predicates and constructions. Our algorithm (Algo. 1) takes as input a
list of angular values (in degrees or radians) and the value of p. Following Remark 1, an
optional file containing the weights may be passed. If p > 5, we take for granted an algorithm
computing the root of F

′

p on an interval. As a default, we resort to a bisection method
which divides the interval into two, checks which side contains the unique root of F

′

p, and
iterates until the width of the interval is less than some user specified value τ (supporting
information (SI) Algo. 3). The interval returned is called the root isolation interval. Our
algorithm was implemented in generic C++ in the Structural Bioinformatics Library [6], as a
template class whose main parameter is a geometric kernel providing the required predicates
and constructions. We now discuss these–see Sec. 3.4 for their robust implementation.

Predicates. The algorithm involves two predicates:
Sign(F ′

p(θ)). Predicate used to determine the sign of the F
′

p(θ) with θ ∈ [0, 2π) (SI Algo.
3).
Interval_too_wide(θl, θr). Predicate used to determine whether the root isolation
interval has width less than τ (SI Algo. 3). It is true if θr − θl > τ , and false otherwise.

SEA 2021

15:8 Fréchet Mean

Constructions.
Updating representations.. Updating the coefficients in B and C is necessary at each
αi ∈ Θ: for Fp(θ) (resp. F

′

p(θ)), we subtract the contribution of fi(θ) (resp. f
′

i (θ)) before
αi, and add that of fi(θ) (resp. f

′

i (θ)) after αi.
Find_root. To computing the root of F

′

p on an interval (αj , αj+1), we resort to a
bisection method p > 3 (SI Algo. 3), with radical based formulae otherwise.

▶ Remark 10. A kernel based on floating point number types, the double type in our case,
is easily assembled, see SBL::GT::Inexact_predicates_kernel_for_frechet_mean in SI
Sec. 3.5. As noticed earlier, it comes with no guarantee. In particular, the algorithm may
terminate with an erroneous result if selected predicates are falsely evaluated.

3.4 Robust implementation based on exact predicates
Number types for lazy evaluations. Following the Exact Geometric Computation exact
predicates are gathered in a kernel. We circumvent rounding errors using interval number
types which are certified to contain the exact value of interest. That is, an expression x

is represented by the interval [x, x] ∋ x. The bounds of these intervals may have a fixed
precision, which corresponds to the CGAL::Interval_nt number type [1]. Or the bounds may
be multiprecision, e.g. Gmpfr from Mpfr [10], which corresponds to the CGAL::Gmpfi type
[1]. We now explain how these types are used to code exact predicates.

The Sign predicate. We distinguish the algebraic and transcendental cases, performing
multiprecision calculations only if needed (Fig. 3).

Algebraic Transcendental

F ′
p(θ) involves π

Initial evaluation
using

CGAL::Interval nt

Initial evaluation
using

CGAL::Interval nt

[l, l] does not
contain 0:

sign known

[l, l] does not
contain 0:

sign known

CORE::ExprT and
(Mahler) bounds are

used to decide if
F ′
p = 0 and determine

its sign.

CGAL::Gmpfi is used
and [l, l] is refined un-
til it does not con-
tain 0

F ′
p(θ) does not involve π

casecase

Figure 3 Number types used in the Sign predicate. Note that CGAL::Interval_nt is used in
the algebraic and transcendental cases, while the remaining number types are only used if required.

• Transcendental case: multiprecision interval arithmetic. When Fp is transcendental
and αi rational, F

′

p(αi) is positive or negative (lemma 8). Another case where F
′

p(αi) ̸= 0 is
when αi ∈ Θ±. In our implementation this situation is faced in two cases. First, in the main
algorithm (Algo. 1), Sign(l) or Sign(r): l and r are transcendental if αi ∈ Θ±. Second, in
the root finding algorithm(SI Algo. 3), Sign(F ′

p(c)): c is transcendental if αi−1 or αi ∈ Θ±.
In both cases, we proceed in a lazy way: first, we try to conclude using CGAL::Interval_nt;
if this interval contains zero, we switch to CGAL::Gmpfi (Fig. 3), refine the interval bounds,
and conclude. Refining the interval consists of iteratively doubling the number of bits used
to describe all numbers–including π, until a conclusion can be reached.

F. Cazals, B. Delmas, and T. O’Donnell 15:9

Algorithm 1 p-mean calculation: generic algorithm for p > 1 in the real RAM model.
1: Θ: vector[1, 2n] containing all the angles
2: B: vector[1, p + 1] to store the coefficients of the polynomial Fp(θ) Eq. 10
3: C: vector[1, p] to store the coefficients of the polynomial F

′
p(θ) Eq. 11

4: θ∗ // Angle corresponding to the global minimum of Fp

5: Root_remains = true // flag indicating whether a root must be sought on (αj , αj+1)
6:
7: // Initialization
8: Compute Θ± and form sorted Θ
9: α0: first angle in Θ

10: Store the coefficients of Fp into the vector B for the interval (0, α0)
11: Store the coefficients of F

′
p into vector C for the interval (0, α0)

12: Compute l← F
′
p(θ) for θ → 0+ using Eq. 11 and vector C

13: Update_root(Sign(l))//Updates Root_remains see SI Algo. 2
14: if Sign(l) is null then
15: Compute Fp(0) using vector B and Eq. 10, and possibly update θ∗.
16:
17: // For each angle, handle {interval ending, coefficients in B and C, interval starting}
18: for all αi in Θ do
19: if Root_remains then
20: Compute r ← F

′
p(θ) for θ → α−

i using Eq. 11 and vector C

21: Update_root(Sign(r))//Updates Root_remains see Algo. SI 2
22: if Sign(r) is positive then
23: θc ← Find_root(αi−1, αi)
24: Compute Fp(θc) using vector B and Eq. 10, and possibly update θ∗.
25: else if Sign(r) is null then
26: Compute Fp(αi) using vector B and Eq. 10, and possibly update θ∗.
27: Update the coefficients of Fp stored in vector B upon crossing αi

28: Update the coefficients of F
′
p stored in vector C upon crossing αi

29: if αi ∈ Θ± then
30: Compute l← F

′
p(θ) for θ → α+

i using Eq. 11 and vector C

31: Update_root(Sign(l))//Updates Root_remains see SI Algo. 2
32: if Sign(l) is null then
33: Compute Fp(αi) using vector B and Eq. 10, and possibly update θ∗.
34:
35: // Process the interval ending at 2π

36: Compute r ← F
′
p(θ) for θ → 2π− using Eq. 11 and vector C

37: if Root_remains then
38: if Sign(r) is positive then
39: θc ← Find_root(θ2n, 2π)
40: Compute Fp(θc) using vector B and Eq. 10, and possibly update θ∗

41: else if Sign(r) is null then
42: Compute Fp(2π) using vector B and Eq. 10, and possibly update θ∗.

SEA 2021

15:10 Fréchet Mean

• Algebraic case: zero separation bounds. When Fp has a rational expression and αi

is rational, Sign(F ′

p(αi)) may be zero (SI Fig. 7). In this case, an input angle may also
correspond to a local minimum of Fp. To decide whether F

′

p(αi) = 0, we resort to zero
separation bounds and multiprecision interval arithmetic.

Let us consider F
′

p(αi) as an arithmetic expression E, using a number of authorized
operations(±, ×, / in our case). A separation bound is a function sep such that the value ξ

of expression E is lower bounded by sep(E) in the following manner:

If ξ ̸= 0 then sep(E) ≤ |ξ| (12)

Considering ξ̃ an approximation of ξ and ∆ an upper bounded error |ξ̃ − ξ|.

If |ξ̃| + ∆ < sep(E) then ξ = 0. (13)

Practically, we proceed in a lazy way, in two steps (Fig. 3). First, using CGAL::Interval_nt
with double precision, we check whether we can conclude on F

′

p(αi) ≠ 0. If not–the interval
contains zero, we use CORE::ExprT[15] to determine the zero separation bound and decide
if F

′

p(αi) = 0. If not, we finally determine the sign.

Predicate Interval_too_wide(θl, θr). Returns true when θr − θl > τ , false if θr − θl ≤ τ .
Similarly to the sign predicate, we distinguish the transcendental and algebraic cases to check
whether θl − θr − τ = 0. Supposing τ and Θ0 are rational θl − θr − τ is transcendental if
the initial αi−1 or αi ∈ Θ±. If transcendental the interval is refined in the same way as the
transcendental case of the Sign predicate. Otherwise the expression is algebraic and the
precision is raised until an exact computation can be performed.

3.5 Software availability
The source code is available in the package Frechet mean for S1 of the Structural Bioinform-
atics Library (SBL), a library proposing state-of-the art methods in computational struc-
tural biology [6], see https://sbl.inria.fr/doc/Frechet_mean_S1-user-manual.html
and https://sbl.inria.fr/.

For end-users, the package provides executables corresponding to the robust and non-
robust implementations. Given a list of angles and the value of p, the program returns sorted
list of pairs (angular value of local minimum, function value) by increasing value of Fp. A
Jupyter notebook Frechet_mean_S1.ipynb using SAGE (https://www.sagemath.org/) is
also provided.

For developers, The C++ code of our algorithm is provided in the class
SBL::GT::Frechet_mean_S1, which is templated by the kernel. Two kernels are provided,
namely (i) Non-robust kernel: SBL::GT::Inexact_predicates_kernel_for_frechet_mean.
A plain floating point(double) number type is used, and (ii) Robust kernel:
SBL::GT::Lazy_exact_predicates_kernel _for_frechet_mean. See Sec. 3.4.

4 Experiments

4.1 Overview
Our experiments target three aspects, namely (i) robustness, (ii), comparison of the Fréchet
mean against the classical circular mean, and (iii) computational complexity. Practically,
three sets of angles are used. (Dataset 1) Randomly generated angles. (Dataset 2) So-called

https://sbl.inria.fr/doc/Frechet_mean_S1-user-manual.html
https://sbl.inria.fr/
https://www.sagemath.org/

F. Cazals, B. Delmas, and T. O’Donnell 15:11

Figure 4 Fraction of program runs for which at least one predicate execution triggers
refinement, as a function of n and p. The number of repeats for each value of n is 1000.

dihedral angles χi in proteins, defined by 4 consecutive atoms on the side chains of amino
acids. (Recall that a protein is a polymer of amino acids, and that the 20 natural a.a. differ
by their so-called side chains. See Fig. 6 for an example.) These angles are known to
be dependent, and correlations between them are key to reduce the dimensionality of the
conformation space of proteins [26]. Using the Protein Data Bank, we retained 27093 PDB
files with a resolution of 3 angstroms or better. For all polypeptide chains in these files, we
computed all dihedral angles of all standard (20) amino-acids. This results in 240 classes of
dihedral angles, containing from 50,227 to 439,793 observations. (Dataset 3) Also protein
dihedral angles, but from a so-called rotamer library [25]. Rotamers (rotational isomers) are
preferred conformations adopted by side chains, used to characterize protein conformations.

Note that in all cases, angles being given with finite precision (they are derived from
experimentally determined atomic coordinates), they are treated as rational numbers.

4.2 Robustness

Using our robust interval-based implementation, we count the fraction of cases for which at
least one predicate triggers refinement during an execution. We use sets of n ∈ [10, 1000]
angles generated uniformly at random in [0, 2π), and perform 1000 repeats for each value
of n (SI Fig. 4). For large values of p, whenever n > 1000, all executions require interval
refinement. Even for p = 2 and n = 105, refinement is triggered in 1.3% of the cases. In all
the cases where refinement was triggered, doubling the precision was sufficient to solve the
predicate.

4.3 Fréchet mean

Fréchet mean versus circular mean. A classical way to estimate the circular mean of a set
of angles is the resultant or circular mean, defined as follows [20]:

θ = atan2(
∑

i

sin θi/n,
∑

i

cos θi/n). (14)

SEA 2021

15:12 Fréchet Mean

The circular mean does not minimize Fp, but minimizes instead [14, Section 1.3]:

θ = arg min
∑

i=1,...,n

d(θi, θ), with d(α, β) = 1 − cos(α − β). (15)

Given a set of angles, we compare the variance of these angles with respect to the Fréchet
mean θ∗ and the circular mean θ, respectively. Two datasets were used for such experiments:
first, randomly generated sets of n = 30 angles uniformly at random in [0, 2π), with 1000
repeats; second, the aforementioned dihedral angles in protein structures.

For both types of data, the variance obtained for θ is significantly larger than that
obtained for θ∗, typically up to 25% (Fig. 5). This shows the interest of using θ∗ in data
analysis in general, and to center angles prior to principal components analysis in particular.

Simulated data Torsion angles from protein structural data

Figure 5 Variance of angles with respect to the Fréchet mean θ∗ and the circular
average θ. (Left) Comparison using a simulated set with n = 30 angles at random in [0, 2π), with
1000 repeats. (Right) Comparison for the 243 classes dihedral angles in protein structures–see text.
(Both panels) In red y = x and y = 5/4x.

4.4 Computation time and complexity
The complexity of Algorithm 1 (Theorem. 9) has three main components: the sorting step,
the updates of vectors B and C, and the numerics. We wish in particular to determine
whether the n log n sorting term dominates.

For p ∈ {2, 5, 10, 15}, we use sets of n ∈ [103, 105] angles generated uniformly at random
in [0, 2π), and perform 5 repeats for each value of n. For p = 2, the number of angles is
pushed up to n = 107, with the same number of repeats. In any case, a linear complexity
is practically observed (SI Fig. 8) showing that for the values of n used, the constants
associated with the linear time update of the data structures and the numerics take over the
n log n term of the sorting step.

4.5 Application to clustering on the flat torus
Rotamers characterize the geometry of protein side chains (Sec. 4.1). State of the art
rotameric libraries treat the dihedral angles independently [25]. For the a.a. lysine (LYS),
(Fig. 6(Inset)), four angles and 3 canonical values for each yield 34 = 81 rotamers.

We undertake the problem of clustering side chains conformations using k-means++
[5]. While k-means is a classical clustering method, the problem solved is non convex and
inferring the right number of clusters is always problematic [7]. One way to mitigate this

F. Cazals, B. Delmas, and T. O’Donnell 15:13

difficulty consists of tracking an elbow in the plot of the k-means functional [22]. Using the
lysine (LYS) a.a. as example, we work directly on the 4D flat torus (S1)4, and center the
data within a cluster using our Fréchet algorithm. Varying the value of k shows a sharp
decline of the k-means++ criterion circa k = 40, and then a gradual straightening of the
average squared distance (Fig. 6). Working directly on the flat torus therefore makes it
possible to capture correlations between individual dihedral angles. The application to a
significant reduction (factor of two or so) of rotamers will be reported elsewhere.

χ1

χ2

χ3

χ4

LY S

Side chain and the four
dihedral angles χi

Figure 6 k-means++ using Fréchet mean as center performed on 4-dimensional flat
torus coding the conformational space of the side chain of the Lysine amino acid. x-axis:
number of clusters k. y-axis: average squared distance to the closest cluster center.

5 Outlook

The Fréchet mean and the p-mean are of central importance as zero dimensional statistical
summaries of data which do not live in Euclidean spaces. For the particular case of S1, this
paper develops the first robust algorithm computing the p-mean. Our algorithm is effective
for large number of angular values and large values of p as well, yet, robustness requires
predicates and constructions using interval multiprecision arithmetic. For the particular
case of the Fréchet mean (p = 2), we show that the circular mean should not be used for a
substitute to the circular center of mass, as it results in a significantly larger variance.

We foresee two main developments. Application-wise, our results on protein side chain
conformations hint at a significant reduction (factor of two or so) of rotamers, which should
prove instrumental to foster the diversity of conformational explorations. Also, our centering
procedure will help generalizing principal components analysis (PCA) on the flat torus. In
theoretical realm, our strategy may be used both to study the intrinsic difficulty of computing
p-means (in terms of lower bounds), and to design effective algorithms. Indeed, as evidenced
by the S1 case, the combinatorial structure defined by the cut-loci of the points determines
all key properties. A first case would be that of p-means on the unit sphere, for which there
exist efficient algorithms to maintain arrangements of circles.

SEA 2021

15:14 Fréchet Mean

References
1 Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
2 F. Allen and O. Johnson. Automated conformational analysis from crystallographic data. 4.

statistical descriptors for a distribution of torsion angles. Acta Crystallographica Section B:
Structural Science, 47(1):62–67, 1991.

3 M. Arnaudon and L. Miclo. Means in complete manifolds: uniqueness and approximation.
ESAIM: Probability and Statistics, 18:185–206, 2014.

4 M. Arnaudon and L. Miclo. A stochastic algorithm finding p-means on the circle. Bernoulli,
22(4):2237–2300, 2016.

5 D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In ACM-SODA,
page 1035. Society for Industrial and Applied Mathematics, 2007.

6 F. Cazals and T. Dreyfus. The Structural Bioinformatics Library: modeling in biomolecular
science and beyond. Bioinformatics, 7(33):1–8, 2017. doi:10.1093/bioinformatics/btw752.

7 F. Cazals, D. Mazauric, R. Tetley, and R. Watrigant. Comparing two clusterings using
matchings between clusters of clusters. ACM J. of Experimental Algorithms, 24(1):1–42, 2019.
doi:10.1145/3345951.

8 E-C. Chang, S.W. Choi, D.Y. Kwon, H. Park, and C. Yap. Shortest path amidst disc
obstacles is computable. International Journal of Computational Geometry Applications,
16(05n06):567–590, 2006.

9 B. Charlier. Necessary and sufficient condition for the existence of a Fréchet mean on the
circle. ESAIM: Probability and Statistics, 17:635–649, 2013.

10 L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision
binary floating-point library with correct rounding. ACM Transactions on Mathematical
Software (TOMS), 33(2):13, 2007.

11 M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. Annales
de l’institut Henri Poincaré, 10(4):215–310, 1948.

12 K. Grove and H. Karcher. How to conjugatec 1-close group actions. Mathematische Zeitschrift,
132(1):11–20, 1973.

13 T. Hotz and s. Huckemann. Intrinsic means on the circle: Uniqueness, locus and asymptotics.
Annals of the Institute of Statistical Mathematics, 67(1):177–193, 2015.

14 S.R. Jammalamadaka and A. SenGupta. Topics in Circular Statistics. World Scientific, 2001.
15 V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A core library for robust numeric and

geometric computation. In Proceedings of the fifteenth annual symposium on Computational
geometry, pages 351–359. ACM, 1999.

16 L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap. Classroom examples of robustness
problems in geometric computations. Computational Geometry, 40(1):61–78, 2008.

17 A. Kobel, F. Rouillier, and M. Sagraloff. Computing real roots of real polynomials... and now
for real! In Proceedings of the ACM on International Symposium on Symbolic and Algebraic
Computation, pages 303–310. ACM, 2016.

18 C. Li, S. Pion, and C. Yap. Recent progress in exact geometric computation. The Journal of
Logic and Algebraic Programming, 64(1):85–111, 2005.

19 M. MacArthur and J. Thornton. Conformational analysis of protein structures derived from
nmr data. Proteins: Structure, Function, and Bioinformatics, 17(3):232–251, 1993.

20 K. Mardia and P. Jupp. Directional statistics, volume 494. John Wiley and Sons, 2009.
21 J.-M. Muller, N. Brunie, F. de Dinechin, C. Jeannerod, M. Joldes, V. Lefèvre, G. Melquiond,

N. Revol, and S. Torres. Handbook of floating-point arithmetic. Springer, 2018.
22 A. Ng. Clustering with the k-means algorithm. Machine Learning, 2012.
23 X. Pennec. Barycentric subspace analysis on manifolds. The Annals of Statistics, 46(6A):2711–

2746, 2018.
24 F. Preparata and M. Shamos. Computational geometry: an introduction. Springer Science

and Business Media, 1985.

https://doi.org/10.1093/bioinformatics/btw752
https://doi.org/10.1145/3345951

F. Cazals, B. Delmas, and T. O’Donnell 15:15

25 Maxim V Shapovalov and Roland L Dunbrack Jr. A smoothed backbone-dependent rotamer
library for proteins derived from adaptive kernel density estimates and regressions. Structure,
19(6):844–858, 2011.

26 D. Ting, G. Wang, M. Shapovalov, R. Mitra, M.I. Jordan, and R. Dunbrack. Neighbor-
dependent ramachandran probability distributions of amino acids developed from a hierarchical
dirichlet process model. PLoS Comput Biol, 6(4):e1000763, 2010.

27 C. Yap and T. Dubé. The exact computation paradigm. In Computing in Euclidean Geometry,
pages 452–492. World Scientific, 1995.

28 J. Yu, C. Yap, Z. Du, S. Pion, and Hervé H. Brönnimann. The design of core 2: A library
for exact numeric computation in geometry and algebra. In International Congress on
Mathematical Software, pages 121–141. Springer, 2010.

A Supporting information

A.1 Algorithm

n = 3, p = 2 n = 3, p = 2

Figure 7 An interval where Fp has an algebraic expression and F
′
p(θ) = 0. Illustration of

Fp, F
′
p, F

′′
p for p = 2 and three angles Θ0 = {θ1 = 1, θ2 = 2, θ3 = 3}. Color conventions as in Fig. 1.

In this case, F ′
2(θ2) = 0, which must be numerically ascertained to ensure the correctness of the

algorithm.

Algorithm 2 Update_root(Sign): Updates the Root_remains buffer in main al-
gorithm(Algo. 1).
1: Sign ∈{positive,negative,null} // Sign of the derivative used to update the presence of roots on

(αj , αj+1)
2: Root_remains ← true // flag indicating whether a root must be sought on (αj , αj+1)
3: if Sign is negative then
4: Root_remains ← true
5: else if Sign is positive then
6: Root_remains ← false
7: else if Sign is null then
8: Root_remains ← false

SEA 2021

15:16 Fréchet Mean

Algorithm 3 Find_root(αi−1, αi): generic algorithm for p > 5.
1: αi−1, αi: the left and right endpoints of the initial interval
2: τ : Threshold to stop binary search if interval is small enough
3: c: Center of interval g

4: θl ← αi−1, θr ← αi // Interval being bisected
5: while Interval_too_wide(θl, θr) do
6: c← θl + (θr − θl)/2
7: S ← Sign(F

′
p(c))

8: if S is positive then
9: θr ← c

10: else if S is negative then
11: θl ← c

12: else if S is null then
13: θr ← c

14: θl ← c

15: θc ← θl + (θr − θl)/2

A.2 Results

p = 2, nmax = 10e7 p ∈ {2, 5, 10, 15}, nmax = 10e5

Figure 8 Fréchet mean: computation time depending as a function of n and p. The
samples of size n are generated at random angles at random in [0, 2π). (Left) The red line joins 0, 0
to the average time of the largest point sets(nmax = 10e7). (Right) Each color corresponds to a
value of p ∈ {2, 5, 10, 15}.

Multi-Level Weighted Additive Spanners
Reyan Ahmed !

University of Arizona, Tucson, AZ, USA

Greg Bodwin !

University of Michigan, Ann Arbor, MI, USA

Faryad Darabi Sahneh !

University of Arizona, Tucson, AZ, USA

Keaton Hamm !

University of Texas at Arlington, TX, USA

Stephen Kobourov !

University of Arizona, Tucson, AZ, USA

Richard Spence !

University of Arizona, Tucson, AZ, USA

Abstract
Given a graph G = (V, E), a subgraph H is an additive +β spanner if distH(u, v) ≤ distG(u, v) + β

for all u, v ∈ V . A pairwise spanner is a spanner for which the above inequality is only required to
hold for specific pairs P ⊆ V × V given on input; when the pairs have the structure P = S × S for
some S ⊆ V , it is called a subsetwise spanner. Additive spanners in unweighted graphs have been
studied extensively in the literature, but have only recently been generalized to weighted graphs.

In this paper, we consider a multi-level version of the subsetwise additive spanner in weighted
graphs motivated by multi-level network design and visualization, where the vertices in S possess
varying level, priority, or quality of service (QoS) requirements. The goal is to compute a nested
sequence of spanners with the minimum total number of edges. We first generalize the +2 subsetwise
spanner of [Pettie 2008, Cygan et al., 2013] to the weighted setting. We experimentally measure the
performance of this and several existing algorithms by [Ahmed et al., 2020] for weighted additive
spanners, both in terms of runtime and sparsity of the output spanner, when applied as a subroutine
to multi-level problem.

We provide an experimental evaluation on graphs using several different random graph generators
and show that these spanner algorithms typically achieve much better guarantees in terms of sparsity
and additive error compared with the theoretical maximum. By analyzing our experimental results,
we additionally developed a new technique of changing a certain initialization parameter which
provides better spanners in practice at the expense of a small increase in running time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases multi-level, graph spanner, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.16

Related Version Full Version: https://arxiv.org/abs/2102.05831

Supplementary Material All algorithms, implementations, the ILP solver, experimental data and
analysis are available on Github:
Software: https://github.com/abureyanahmed/multi_level_weighted_additive_spanners

archived at swh:1:dir:95e49892297d01930d1de3c40e2bb2c39ccdd658

Funding The research for this paper was partially supported by NSF grants CCF-1740858,
CCF1712119, and DMS-1839274.

Acknowledgements The authors wish to thank the anonymous reviewers for their comments.

© Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and
Richard Spence;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 16; pp. 16:1–16:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abureyanahmed@email.arizona.edu
mailto:bodwin@umich.edu
mailto:faryad@email.arizona.edu
mailto:keaton.hamm@uta.edu
mailto:kobourov@cs.arizona.edu
mailto:rcspence@email.arizona.edu
https://doi.org/10.4230/LIPIcs.SEA.2021.16
https://arxiv.org/abs/2102.05831
https://github.com/abureyanahmed/multi_level_weighted_additive_spanners
https://archive.softwareheritage.org/swh:1:dir:95e49892297d01930d1de3c40e2bb2c39ccdd658
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Multi-Level Weighted Additive Spanners

1 Introduction

Given an undirected graph, a spanner is a sparse subgraph with approximately the same
distance metric as the original graph. Spanners are used as a primitive for many algorithmic
tasks involving the analysis of distances or shortest paths in enormous input graphs; it is
often advantageous to first replace the graph with a spanner, which can be analyzed much
more quickly and stored in much smaller space, at the price of a small amount of error. See
the recent survey [5] for more details on these applications.

Spanners were first studied with multiplicative error, where for an input graph G and
an error (“stretch”) parameter k, the spanner H must satisfy distH(s, t) ≤ k · distG(s, t) for
all vertices s, t, where distG(s, t) denotes the distance in G between s and t. This setting
was quickly resolved in a seminal paper by Althöfer, Das, Dobkin, Joseph, and Soares [9],
where the authors proved that for all positive integers k, all n-vertex graphs have spanners
on O(n1+1/k) edges with stretch 2k − 1, and that this tradeoff is the best possible. Thus, as
expected, one can trade off error for spanner sparsity, increasing the stretch k to pay more
and more error for sparser and sparser spanners.

For very large graphs, additive error is arguably a much more appealing paradigm. Given
β > 0, a +β spanner of an n-vertex graph G is a subgraph H such that distH(s, t) ≤
distG(s, t) + β for all vertices s, t. Thus, for additive error the excess distance in H is
independent of the graph size and of distG(s, t), which can be large when n is large. Additive
spanners were introduced by Liestman and Shermer [29], and followed by three landmark
theoretical results on the sparsity of additive spanners in unweighted graphs: Aingworth,
Chekuri, Indyk, and Motwani [8] showed that all graphs have +2 spanners on O(n3/2) edges,
Chechik [14,18] showed that all graphs have +4 spanners on O(n7/5) edges, and Baswana,
Kavitha, Mehlhorn, and Pettie [12] showed that all graphs have +6 spanners on O(n4/3)
edges.

Despite the inherent appeal of additive error, spanners with multiplicative error remain
much more commonly used in practice. There are two reasons for this.
1. First, while the multiplicative spanner of Althöfer et al [9] works without issue for weighted

graphs, the previous additive spanner constructions hold only for unweighted graphs,
whereas the metrics that arise in applications often require edge weights. Addressing this,
recent work of the authors [3] and in two papers of Elkin, Gitlitz, and Neiman [23,24]
gave natural extensions of the classic additive spanner constructions to weighted graphs.
For example, the +2 spanner bound becomes the following statement: for all n-vertex
weighted graphs G, there is a subgraph H satisfying distH(s, t) ≤ distG(s, t) + 2W (s, t),
where W (s, t) denotes the maximum edge weight along an arbitrary s⇝ t shortest path
in G. The +4 spanner generalizes similarly, and the +6 spanner does as well with the
small exception that the error increases to +(6 + ε)W (s, t), for arbitrarily small ε > 0
which trades off with the implicit constant in the spanner size.

2. Second, poly(n) factors in spanner size can be quite serious in large graphs, and so
applications often require spanners of near-linear size, say O(n1.01) edges for an n-vertex
input graph. The worst case spanner sizes of O(n4/3) or greater for additive spanner
constructions are thus undesirable, and unfortunately, there is a theoretical barrier to
improving them: Abboud and Bodwin [1] proved that one cannot generally trade off more
additive error for sparser spanners, as one can in the multiplicative setting. Specifically,
for any constant c > 0, there is no general construction of +c spanners for n-vertex
input graphs on O(n4/3−0.001) edges. However, the lower bound construction is rather
pathological, and it is not likely to arise in practice. It is known that for many practical

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:3

graph classes, e.g., those with good expansion, near-linear additive spanners always
exist [12]. Thus, towards applications of additive error, it is currently an important open
question whether modern additive spanner constructions on practical graphs of interest
tend to exhibit performance closer to the worst-case bounds from [1], or bounds closer to
the best ones available for the given input graphs We remark here that there are strong
computational barriers to designing algorithms that achieve the sparsest possible +c

spanners directly, or which even closely approximate this quantity in general [19].

The goal of this work is to address the second point, by measuring the experimental
performance of the state-of-the-art constructions for weighted additive spanners on graphs
generated from various popular random models and measuring their performance. We
consider both +cW spanners (where W = maxuv∈E w(uv) is the maximum edge weight)
and +cW (·, ·) spanners, whose additive error is +cW (s, t) for each pair s, t ∈ V . We are
interested both in runtime and in the ratio of output spanner size to the size of the sparsest
possible spanner (which we obtain using an ILP, discussed in Section 4). We specifically
consider generalizations of the three staple constructions for weighted additive spanners
mentioned above, in which the spanner distance constraint only needs to be satisfied for
given pairs of vertices.

In particular, the following extensions are considered. A pairwise spanner is a subgraph
that must satisfy the spanner error inequality for a given set of vertex pairs P taken on input,
and a subsetwise spanner is a pairwise spanner with the additional structure P = S × S for
some vertex subset S. See e.g., [13, 15,16,21,22,27,28,32] for recent prior work on pairwise
and subsetwise spanners, or the survey [5]. We then discuss a multi-level version of the
subsetwise additive spanner where we have an edge-weighted graph G = (V, E), a nested
sequence of terminals Sℓ ⊆ Sℓ−1 ⊆ · · · ⊆ S1 ⊆ V and a real number c ≥ 0 as input. We
want to compute a nested sequence of subgraphs Hℓ ⊆ Hℓ−1 ⊆ · · · ⊆ H1 such that Hi is
a +cW subsetwise spanner of G over Si. The objective is to minimize the total number of
edges in all subgraphs. Similar generalizations have been studied for the Steiner tree problem
under various names including Multi-level Network Design [10], Quality of Service Multicast
Tree (QoSMT) [17, 26], Priority Steiner Tree [20], Multi-Tier Tree [30], and Multi-level
Steiner Tree [2, 7]. However, multi-level or QoS generalizations of spanner problems appear
to have been much less studied in literature. These types of problems have applications in
multi-level graph visualization and other network design problems where vertices may require
different level or QoS requirements. Section 2 generalizes the clustering-based +2 subsetwise
spanner [22] to weighted graphs, and Section 3 generalizes to the multi-level setting. Section 5
contains an experimental comparison between several different spanner algorithms given here
and in [3] to infer that many of these spanner constructions typically achieve better error or
sparsity bounds than the theoretical worst-case bounds. This comparison also suggests that
spanners constructed by a certain light initialization technique given in [3] (Section 5.2.9)
tend to outperform spanners constructed by clustering and path buying in terms of the
sparsity; further, by varying an initialization parameter and selecting the sparsest spanner,
we can compute much sparser additive spanners in random graphs at the expense of a
logarithmic factor in running time.

2 Subsetwise spanners

All unweighted graphs have polynomially constructible +2 subsetwise spanners over S ⊆ V

on O(n
√

|S|) edges [22, 32]. For weighted graphs, Ahmed et al. [3] recently give a +4W

subsetwise spanner construction, also using O(n
√

|S|) edges. In this section we show how

SEA 2021

16:4 Multi-Level Weighted Additive Spanners

to generalize the +2 subsetwise construction [22, 32] to the weighted setting by giving a
construction which produces a subsetwise +2W spanner of a weighted graph (with integer
edge weights in [1, W]) on O(nW

√
|S|) edges.

A clustering C = {C1, C2, . . . , Cq} is a set of disjoint subsets of vertices. Initially, every
vertex is unclustered. The subsetwise +2W construction has two steps: the clustering phase
and the path buying phase. The clustering phase is exactly the same as that of [22,32] in
which we construct a cluster subgraph GC as follows: set β = logn

√
|S|W , and while there

is a vertex v with at least ⌈nβ⌉ unclustered neighbors, we add a cluster C to C containing
exactly ⌈nβ⌉ unclustered neighbors of v (note that v ̸∈ C). We add to GC all edges vx

(x ∈ C) and xy (x, y ∈ C). When there are no more vertices with at least ⌈nβ⌉ unclustered
neighbors, we add all the unclustered vertices and their incident edges to GC .

In the second (path-buying) phase, we start with a clustering C and a cluster subgraph
G0 := GC . There are z :=

(|S|
2

)
unordered pairs of vertices in S; let π1, π2, . . . , πz denote

the shortest paths between these vertex pairs where πi = π(ui, vi) has endpoints {ui, vi}. As
in [22], we iterate from i = 1 to i = z and determine whether to add path πi to the spanner.
Define the cost and value of a path πi as follows:

cost(πi) := # edges of πi which are absent in Gi−1

value(πi) := # pairs (x, C) where x ∈ {ui, vi}, C ∈ C,

C contains at least one vertex in πi,
and distπi

(x, C) < distGi−1(x, C)

If cost(πi) ≤ (2W + 1)value(πi), then we add (“buy”) πi to the spanner by letting Gi =
Gi−1 ∪ πi. Otherwise, we do not add πi, and let Gi = Gi−1. The final spanner returned is
H = Gz.

The unweighted +2 subsetwise spanner [22] and corresponding cluster subgraph GC rely
on the following properties:

Missing-edge property: if an edge uv ∈ E is absent in GC , then u and v belong to two
different clusters
Cluster-diameter property: the distance in GC between two vertices in the same cluster is
at most 2 (2W for weighted graphs)

Using these properties, a lemma in [22] states that if a shortest u-v path π(u, v) contains
t ≥ 1 edges which are absent in GC , then there are at least t/2 clusters in C which contain
at least one vertex on π(u, v). This lemma does not quite hold in weighted graphs since a
shortest path can pass through the same cluster many times; we instead prove the following
generalization:

▶ Lemma 1. Let G be a weighted graph with edge weights in [1, W] and let π(u, v) be a
shortest path which contains t edges which are absent from GC. Then there are at least
t/(W + 1) clusters of C which contain at least one vertex on π(u, v).

Proof. Consider pairs (x, e) where e is an edge of π(u, v) absent in GC and x is one of the
endpoints of e. There are t missing edges, so there are 2t such pairs. A cluster C ∈ C is said
to own the pair (x, e) if x ∈ C. By the missing-edge property, every missing edge is incident
to two different clusters, so each pair (x, e) is owned by some cluster.

Consider some cluster C ∈ C such that π(u, v) passes through some vertex in C. By the
cluster-diameter property and using the fact that all edges have weight at least 1, π(u, v)
cannot pass through more than 2W vertices in C. Using this we can show that C owns
at most 2W + 2 pairs (x, e). Since there are exactly 2t vertex-edge pairs and each cluster
passing through some point in π(u, v) owns at most 2W + 2 pairs, we conclude that there
are at least 2t

2W +2 = t
W +1 clusters which contain at least one vertex in π(u, v). ◀

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:5

▶ Lemma 2. For any ui, vi ∈ S, we have distH(ui, vi) ≤ distG(ui, vi) + 2W .

▶ Lemma 3. For β = logn

√
|S|W , the +2W subsetwise spanner H has O(nW

√
|S|) edges.

The proofs of these lemmas are largely the same as in [22] except we incur an additional W

in the size bound due to the cost vs. value when considering when to buy the path πi to the
spanner.

▶ Corollary 4. Let G be a weighted graph with integer edge weights in [1, W]. Then G has a
+6W pairwise spanner on O(Wn|P |1/4) edges.

This follows from applying the +8W construction of Ahmed et al. [3] (Appendix A, Al-
gorithm 3), except we use the above +2W subsetwise spanner instead of the +4W subsetwise
spanner construction given in [3] as a subroutine.

3 Multi-level spanners

Here we study a multi-level variant of graph spanners. We first define the problem:

▶ Definition 5 (Multi-level weighted additive spanner). Given a weighted graph G(V, E) with
maximum weight W , a nested sequence of subsets of vertices Sℓ ⊆ Sℓ−1 ⊆ . . . ⊆ S1 ⊆ V ,
and c ≥ 0, a multi-level +cW spanner is a nested sequence of subgraphs Hℓ ⊆ Hℓ−1 ⊆ . . . ⊆
H1 ⊆ G, where Hi is a subsetwise +cW spanner over Si.

Observe that Definition 5 generalizes the subsetwise spanner, which is a special case where
ℓ = 1. We define the sparsity of a multi-level spanner by sparsity({Hi}ℓ

i=1) :=
∑ℓ

i=1 |E(Hi)|,
where lower sparsity is more desirable. In the following sections, we also measure the quality
of a multi-level spanner in terms of the ratio of its sparsity to the minimum possible sparsity
over all candidate multi-level spanners (denoted by OPT).

The multi-level spanner can equivalently be phrased in terms of priorities and rates: each
vertex v ∈ S1 has a priority P (v) between 1 and ℓ (namely, P (v) = max{i : v ∈ Si}), and
we wish to compute a single subgraph containing edges of different rates such that for all
u, v ∈ S1, there is a +cW spanner path consisting of edges of rate at least min{P (u), P (v)}.
With this, we will typically refer to the priority of v to denote the highest i such that v ∈ Si,
or 0 if v ̸∈ S1. In this section, we show that the multi-level version is not significantly harder
than the ordinary “single-level” version: a subroutine which can compute an additive spanner
can be used to compute a multi-level spanner whose sparsity is comparably good.

We first describe a simple rounding-up approach based on an algorithm by Charikar et
al. [17] for the QoSMT problem, a similar generalization of the Steiner tree problem. For this
approach, assume we have a subroutine which computes an exact or approximate single-level
subsetwise spanner. Given v ∈ S1, let P (v) ∈ [1, ℓ] denote the priority of v. The rounding-up
approach is as follows: for each v, round P (v) up to the nearest power of 2. This effectively
constructs a “rounded-up” instance where all vertices in S1 have priority 1, 2, 4, . . . , or
2⌈log2 ℓ⌉. The sparsity of the optimum solution in the rounded-up instance is at most 2 OPT;
given the optimum solution to the original instance with sparsity OPT, a feasible solution to
the rounded-up instance with sparsity at most 2 OPT can be obtained by rounding up the
rate of each edge to the nearest power of 2.

For each i ∈ {1, 2, 4, . . . , 2⌈log2 ℓ⌉}, use the subroutine to compute a level-i subsetwise
spanner over all vertices whose rounded-up priority is at least i. The final multi-level additive
spanner is obtained by taking the union of these computed spanners, by keeping an edge at
the highest level it appears in. This requires O(log ℓ) calls to the single-level subroutine.

SEA 2021

16:6 Multi-Level Weighted Additive Spanners

(a) (b)

Figure 1 (a) The rounding-up approach computes an optimal spanner at each level (assuming an
exact subroutine), so the sizes of the spanners on each level are at most that of the optimal solution
(9 + 40 edges vs. 12 + 40). (b) However, when an edge is present in a top-level solution, it must be
present in lower-level solutions. The rounding-up approach takes the union of the spanners in the
bottom level; in this case, the sparsity of the rounded-up solution (9 + 48 vs. 12 + 40) is greater
than that of the optimum.

▶ Theorem 6. Assuming an exact subsetwise spanner subroutine, the solution computed by
the rounding-up approach has sparsity at most 4 · OPT.

This is proved using the same ideas as the 4ρ-approximation for QoSMT [17]. As
mentioned earlier, in practice we use an approximation algorithm to compute the subsetwise
spanner instead of computing the minimum spanner.

▶ Theorem 7. There exists a Õ(n/
√

|S1|)-approximation algorithm to compute multi-level
+2W spanners when W = O(log n).

This follows from using the +2W subsetwise construction in Section 2. The approximation
ratio of this subsetwise spanner algorithm is O(nW/

√
|S|) as the construction produces

a spanner of size O(nW
√

|S|), while the sparsest additive spanner trivially has at least
|S| − 1 = Ω(|S|) edges.

We also show that, under certain conditions, if we have a subroutine which computes a
subsetwise spanner of G, S of size O(na|S|b) where a and b are absolute constants, a very
naïve algorithm can be used to obtain a multi-level spanner also with sparsity O(na|S1|b).

▶ Theorem 8. Suppose there is an absolute constant 0 < α < 1 such that |Si| ≤ α|Si−1| for
all i ∈ {1, . . . , ℓ}. Then we can compute a multi-level spanner with sparsity O(na|S1|b).

Proof. Consider the following simple construction: for each i ∈ {1, 2, 3, . . . , ℓ}, compute
a level-i subsetwise spanner of size O(na|Si|b). Consider the union of these spanners, by
keeping each edge at the highest level it appears. The sparsity of the returned multi-level
spanner is at most

sparsity({Hi}) = O(na|S1|b + 2na|S2|b + 3na|S3|b + . . . + ℓna|Sℓ|b)

≤ O(na|S1|b(1 + 2αb + 3α2b + . . . + ℓα(ℓ−1)b))
= O(na|S1|b)

where we used the arithmetico-geometric series 1 + 2(αb) + 3(αb)2 + . . . = 1
(1−αb)2 which is

constant for fixed α, b. Note that 0 < α < 1 and b > 0, which implies 0 < αb < 1. ◀

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:7

The assumption that |Si| ≤ α|Si−1| for some constant α is fairly natural, as many realistic
networks tend to have significantly fewer hubs than non-hubs.

▶ Corollary 9. Under the assumption |Si| ≤ α|Si−1| for all i ∈ {2, . . . , ℓ}, there exists a
poly-time algorithm which computes a multi-level +2 spanner of sparsity O(n

√
|S1|).

Proof. This follows by using the +2 construction by Cygan et al. [22] on O(n
√

|S|) edges as
the subroutine. ◀

4 Integer programming formulation

To compute a minimum size +cW spanner over vertex pairs P , we utilize a slight modification
of the ILP in [5, Section 9], wherein we choose the specific distortion function f(t) = t + cW

and minimize the sparsity rather than total weight of the spanner. For completeness, we
present the full ILP for computing a single-level additive subsetwise spanner below along
with a brief description of the multi-level extension. Here E′ represents the bidirected edge
set, obtained by adding directed edges (u, v) and (v, u) for each edge uv ∈ E. The binary
variable xuv

(i,j) is 1 if edge (i, j) is included on the selected u-v path and 0 otherwise, and w(e)
is the weight of edge e.

Minimize
∑
e∈E

xe subject to (1)∑
(i,j)∈E′

xuv
(i,j)w(e) ≤ distG(u, v) + cW ∀(u, v) ∈ P ; e = ij (2)

∑
(i,j)∈Out(i)

xuv
(i,j) −

∑
(j,i)∈In(i)

xuv
(j,i) =

1 i = u

−1 i = v

0 else
∀(u, v) ∈ P ; ∀i ∈ V (3)

∑
(i,j)∈Out(i)

xuv
(i,j) ≤ 1 ∀(u, v) ∈ P ; ∀i ∈ V (4)

xuv
(i,j) + xuv

(j,i) ≤ xe ∀(u, v) ∈ P ; ∀e = ij ∈ E (5)

xe, xuv
(i,j) ∈ {0, 1} (6)

Inequalities (3)–(4) enforce that for each (u, v) ∈ P , the selected edges corresponding to u,
v form a path; inequality (2) enforces that the length of this path is at most distG(u, v) + cW

(note that W may be replaced with W (u, v)). Inequality (5) ensures that if xuv
(i,j) = 1 or

xuv
(i,j) = 1, then edge ij is taken.

To generalize the ILP formulation to the multi-level problem, we take a similar set of
variables for every level. The rest of the constraints are similar, except we define xk

e = 1 if
edge e is present on level k and the variables xuv

(i,j) are also indexed by level. We add the
constraint xk

e ≤ xk−1
e for all k ∈ {2, . . . , ℓ} which enforces that if edge e is present on level

k, it is also present on all lower levels. Finally, the objective is to minimize the sparsity∑ℓ
k=1

∑
e∈E xk

e .

5 Experiments

In this section, we provide experimental results involving the rounding-up framework described
in Section 3. This framework needs a single level subroutine; we use the +2W subsetwise
construction in Section 2 and the three pairwise +2W (·, ·), +4W (·, ·), +6W constructions

SEA 2021

16:8 Multi-Level Weighted Additive Spanners

provided in [3]1 (see Appendix A). We generate multi-level instances and solve the instances
using the ILP and the four approximation algorithms. We consider natural questions about
how the number of levels ℓ, number of vertices n, and decay rate of terminals with respect
to levels affect the running times and (experimental) approximation ratios, defined as the
sparsity of the returned multi-level spanner divided by OPT.

We used CPLEX 12.6.2 as an ILP solver in a high-performance computer for all exper-
iments (Lenovo NeXtScale nx360 M5 system with 400 nodes). Each node has 192 GB of
memory. We have used Python for implementing the algorithms and spanner constructions.
Since we have run the experiment on several thousand instances, we run the solver for four
hours per instance.

5.1 Experiment parameters
We run experiments first to test experimental approximation ratio vs. the parameters, and
then to test running time vs. parameters. Each set of experiments has several parameters:
the graph generator, the number of levels ℓ, the number of vertices n, and how the size of
the terminal sets Si (vertices requiring level or priority at least i) decrease as i decreases.

In what follows, we use the Erdős–Rényi (ER) [25], Watts–Strogatz (WS) [33], Barabási–
Albert (BA) [11], and random geometric (GE) [31] models. Let p be the edge selection
probability. If we set p = (1 + ε) ln n

n , then the generated Erdős–Rényi graph is connected
with high probability for ε > 0 [25]. For our experiments we use ε = 1. In the Watts-Strogatz
model, we initially create a ring lattice of constant degree K. For our experiments we
use K = 6 and p = 0.2. In the Barabási–Albert model, a new vertex is connected to m

existing vertices. For our experiments we use m = 5. In the random geometric graph model,
two vertices are connected to each other if their Euclidean distance is not larger than a
threshold rc. For rc =

√
(1+ϵ) ln n

πn with ϵ > 0, the synthesized graph is connected with a high
probability [31]. We generate a set of small graphs (10 ≤ n ≤ 40) and a set of large graphs
(50 ≤ n ≤ 500). We only compute the exact solutions for the small graphs since the ILP has
an exponential running time. In this paper, we provide the results of Erdős–Rényi graphs
since it is the most popular model. However, the radius2 of Erdős–Rényi graphs is relatively
small; in our dataset, the range of the radius is 2-4. Hence, we also provide the results of
random geometric graphs which have larger radius (4-12). The remaining results and the
radius distribution of different generators are available at the supplement Github link. We
consider number of levels ℓ ∈ {1, 2, 3} for small graphs, ℓ ∈ {1, . . . , 10} for large graphs, and
adopt two methods for selecting terminal sets: linear and exponential. A terminal set S1
with lowest priority of size n(1 − 1

ℓ+1) in the linear case and n
2 in the exponential case is

chosen uniformly at random. For each subsequent level, 1
ℓ+1 vertices are deleted at random

in the linear case, whereas half the remaining vertices are deleted in the exponential case.
Levels/priorities and terminal sets are related via Si = {v ∈ S1 : P (v) ≥ i}. We choose edge
weights w(e) independently uniformly at random from {1, 2, 3 . . . , 10}.

An experimental instance of the multi-level problem here is thus characterized by four
parameters: graph generator, number of vertices n, number of levels ℓ, and terminal selection
method TSM ∈ {Linear,Exponential}. As there is randomness involved, we generated
five instances for every choice of parameters (e.g., ER, n = 30, ℓ = 2, Linear). For each

1 Note that, one can show that the +2W , +4W , +8W spanners in [3] are actually +2W (., .), +4W (., .)
and +6W spanners respectively by using a tighter analysis [4].

2 The minimum over all v ∈ V of maxw∈V dG(v, w) where dG(v, w) is the graph distance (by number of
edges, not total weight) between v and w

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:9

instance of the small graphs, we compute the approximate solution using either the +2W ,
+2W (·, ·), +4W , or +6W spanner subroutine, and the exact solution using the ILP described
in Section 4. We compute the experimental approximation ratio (“Ratio”) by dividing the
sparsity of the approximate solution by the sparsity of the optimum solution (OPT). For
large graphs, we only compute the approximate solution.

5.2 Results
We consider different spanner constructions as the single level subroutine in the rounding-
up approach described in Section 3. We first consider the +2W subsetwise construction
(Section 2).

5.2.1 Multi-level +2W spanner
We first describe the experimental results on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal
selection method in Figure 2. The average experimental ratio increases as n increases
approximately linearly in n, which is expected since the theoretical approximation ratio of
Õ(n/

√
|S1|) is proportional to n. The average and minimum experimental ratio does not

change significantly as the number of levels increases; however, the maximum ratio increases.
The experimental ratio of the linear terminal selection method is slightly better compared to
that of the exponential method.

Figure 2 Performance of the algorithm that uses +2W subsetwise spanner as the single level
subroutine on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

5.2.2 Multi-level +2W (·, ·) spanner
We now consider the +2W (·, ·) pairwise construction [3] (Algorithm 1, Appendix A) as a
subroutine, with P = S × S. We first describe the experimental results on Erdős–Rényi
graphs w.r.t. n, ℓ, and terminal selection method in Figure 3. The average experimental
ratio increases as n increases. This is again expected since the theoretical approximation
ratio is proportional to n. The average and minimum experimental ratio do not change
that much as the number of levels increases, however, the maximum ratio increases. The
experimental ratio of the linear terminal selection method is also slightly better compared to
that of the exponential method.

5.2.3 Comparison between global and local spanners
One major difference between the subsetwise and pairwise construction is the subsetwise
construction considers the (global) maximum edge weight W of the graph in the error. On the
other hand, the +cW (·, ·) spanners consider the (local) maximum edge weight in a shortest
path for each pair of vertices s, t. We provide a comparison between the global and local
settings.

SEA 2021

16:10 Multi-Level Weighted Additive Spanners

Figure 3 Performance of the algorithm that uses +2W (·, ·) pairwise spanner as the single level
subroutine on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

We describe the experimental results on Erdős–Rényi graphs w.r.t. n, ℓ, and the terminal
selection method in Figure 4. The average experimental ratio increases as n increases for
both global and local settings. However, the ratio of the local setting is smaller compared to
that of the global setting. One reason for this difference is the solution to the global exact
algorithm is relatively smaller since the global setting considers larger errors. The ratio of
the global setting increases as the number of levels increases and for the exponential terminal
selection method. For the local setting, the ratio does not change significantly.

Figure 4 Performance of the global (subsetwise +2W) and local (pairwise +2W (·, ·)) construction-
based algorithms on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

5.2.4 Multi-level +4W (·, ·) spanner
We now consider the +4W (·, ·) pairwise construction [3] (Algorithm 2, Appendix A) as a
single level subroutine. We first describe the experimental results on Erdős–Rényi graphs w.r.t.
n, ℓ, and terminal selection method in Figure 5. The average experimental ratio increases as
n increases. This is expected since the theoretical approximation ratio is proportional to n.
The average experimental ratio does not change significantly as the number of levels increases;
however, the maximum ratio increases. The experimental ratio of the linear terminal selection
method is also slightly better compared to that of the exponential method.

5.2.5 Comparison between +2W (·, ·) and +4W (·, ·) spanners
We now provide a comparison between the pairwise +2W (·, ·) and +4W (·, ·) construction-
based approximation algorithms. We first describe the experimental results on Erdős–Rényi
graphs w.r.t. n, ℓ, and the terminal selection method in Figure 6. The average experimental
ratio increases as n increases for both +2W (·, ·) and +4W (·, ·) settings. The +4W (·, ·)
construction-based algorithm slightly outperforms the +2W (·, ·) algorithm for ℓ = 3 and
exponential selection method.

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:11

Figure 5 Performance of the algorithm that uses +4W (·, ·) pairwise spanner as the single level
subroutine on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

Figure 6 Performance of the pairwise +2W (·, ·) and +4W (·, ·) construction-based algorithms on
Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

5.2.6 Multi-level +6W spanner
We now consider the +6W pairwise construction [3] (Algorithm 3, Appendix A) as a single
level subroutine. We first describe the experimental results on Erdős–Rényi graphs w.r.t.
n, ℓ, and terminal selection method in Figure 7. The average experimental ratio increases
as n increases. This is expected since the theoretical approximation ratio is proportional
to n. The average experimental ratio does not change significantly as the number of levels
increases; however, the maximum ratio increases. The maximum and average experimental
ratios of the linear terminal selection method are slightly better compared to that of the
exponential method.

Figure 7 Performance of the algorithm that uses +6W pairwise spanner as the single level
subroutine on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method.

5.2.7 Comparison between +2W and +6W spanners
We now provide a comparison between the pairwise +2W and +6W construction-based
approximation algorithms. We first describe the experimental results on Erdős–Rényi graphs
w.r.t. n, ℓ, and the terminal selection method in Figure 8. The average experimental

SEA 2021

16:12 Multi-Level Weighted Additive Spanners

ratio increases as n increases for both +2W and +6W settings. As the number of vertices
increases, the ratio of the +6W construction-based algorithm gets smaller. This is expected
since a larger error makes the problem easier to solve. Similarly, as ℓ increases, the +6W

construction-based algorithm outperforms the +2W algorithm. The average experimental
ratio of the +6W construction based algorithm is smaller both in the linear and exponential
terminal selection methods.

Figure 8 Performance of the pairwise +2W and +6W construction-based algorithms on Erdős–
Rényi graphs w.r.t. n, ℓ, and terminal selection method.

5.2.8 Experiment on large graphs

We generate some large instances on up to 500 vertices and run different multi-level spanner
algorithms on them. We use n = {50, 100, 150, . . . , 500} and ℓ = {1, 2, 3, . . . , 10}. We describe
the experimental results on Erdős–Rényi graphs w.r.t. n, ℓ, and the terminal selection method
in Figure 9. We are comparing four multi-level algorithms, namely those using the +2W

subsetwise and +2W (·, ·), +4W (·, ·), +6W pairwise constructions [3] as subroutines with
P = S × S. Since computing the optimal solution exactly via ILP is computationally
expensive on large instances, we report the ratio in terms of relative sparsity, defined as
the sparsity of the multi-level spanner returned by one algorithm divided by the minimum
sparsity over the spanners returned by all four. The ratio of the +6W construction based
algorithm is lowest and the +2W construction based algorithm is highest. This is expected
since a higher additive error generally reduces the number of edges needed. Overall the ratio
decreases as n increases. This is because the significance of small additive error reduces as
the graph size and distances get larger. The relative ratio for the +2W construction increases
as ℓ increases, and for the exponential terminal selection method.

Figure 9 Performance of different approximation algorithms on large Erdős–Rényi graphs w.r.t.
n, ℓ, and terminal selection method.

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:13

5.2.9 Impact of the initialization parameters
It is worth mentioning that the +2 subsetwise spanner [22] and +2W subsetwise spanner
(Section 2) begin with a clustering phase, while the algorithms described in Appendix A begin
with a d-light initialization. In d-light initialization, we add the d lightest edges incident to
each vertex, where d ≥ 1 is a parameter specific to the algorithm; these edges tend to be on
shortest paths. In practice, there may be relatively few edges which appear on shortest paths
and some of these edges might be redundant. Hence, we compute +2W (·, ·) spanners with
different values of d. We describe the experimental results on Erdős–Rényi graphs w.r.t. n,
ℓ, and the terminal selection method in Figure 10. We have computed the ratio as described
in Section 5.2.8. From the figures, we see that as we reduce the value of d exponentially,
the ratio decreases: in particular, the optimal choice of parameter d in practice might be
significantly smaller than the optimal value of d in theory. Generally, it could make sense
in practical implementations of spanner algorithms to try all values {d, d/2, d/4, d/8, . . . },
computing ≈ log2 d different spanners, and then use only the sparsest one. This costs only a
O(log d) factor in the running time of the algorithm, which is typically reasonable.

Figure 10 Impact of different values of d on large Erdős–Rényi graphs w.r.t. n, ℓ, and terminal
selection method.

5.3 Running time
We now provide the running times of the different algorithms. We show the running time of
the ILP on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal selection method in Figure 11. The
running time of the ILP increases exponentially as n increases, as expected. The execution
time of a single level instance with 45 vertices is more than 64 hours using a 28 core processor.
Hence, we kept the number of vertices less than or equal to 40 for our small graphs. The
experimental running time should increase as ℓ increases, but we do not see that pattern in
these plots because some of the instances were not able to finish in four hours.

Figure 11 Running time of all exact algorithms on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal
selection method.

SEA 2021

16:14 Multi-Level Weighted Additive Spanners

We provide the experimental running time of the approximation algorithm on Erdős–
Rényi graphs in Figure 12. The running time of the +2W construction-based algorithm is
the largest. Overall, the running time increases as n increases. There is no straightforward
relation between the running time and ℓ. Although the number of calls to the single level
subroutine increases as ℓ increases, it also depends on the size of the subset in a single level.
Hence, if the subset sizes are larger, then it may take longer for small ℓ. The running time of
the linear method is larger.

Figure 12 Running time of all approximation algorithms on large Erdős–Rényi graphs w.r.t. n, ℓ,
and terminal selection method.

The running times appear reasonable in other settings too; see the supplemental Github
repository and the arXiv version [6] of this paper for details and experimental results.

5.4 Experimental additive error
Different spanner constructions provide theoretical guarantees on the maximum amount of
additive error. For example, a +2W subsetwise spanner over G, S ensures that any pair of
vertices in S does not have an error of more than +2W . Similarly, the +2W (·, ·), +4W (·, ·),
and +6W pairwise construction ensures that the error in the shortest path distance in the
spanner is no more than +2W (·, ·), +4W (·, ·), and +6W respectively. These are theoretical
upper bounds that directly appear from the construction. However, in our experiment, we
have found that the theoretical upper bound is never achieved, and most vertex pairs contain
a less additive error. We define the error ratio of an additive spanner H to be the sum of
additive errors in H (over all vertex pairs) divided by the maximum possible sum of errors.
For example, if H is a +2W (·, ·) spanner over vertex pairs P ⊆ V × V , then

error ratio :=
∑

(u,v)∈P (dH(u, v) − dG(u, v))∑
(u,v)∈P 2W (u, v) .

For a multi-level spanner, we define the error ratio similarly, except we additionally sum
the numerator (and denominator) over all subgraphs Hi from i = 1 to ℓ. We consider the
+2W (·, ·) pairwise construction [3] (Algorithm 1) as a single level subroutine and compute
the error ratios using Erdős–Rényi graphs w.r.t. n, ℓ, and the terminal selection method in
Figure 13. Figure 13 suggests that the average error ratio is typically less than 0.05; in other
words, the +2W (·, ·) spanner algorithm outputs a spanner whose average additive error is
around 5% of the maximum allowable error. We provide the comparison among all algorithms
on Erdős–Rényi graphs w.r.t. n, ℓ, and the terminal selection method in Figure 14.

5.5 Relative sparsity
In most of the previous figures, we provide the sparsity (number of edges) of the spanner,
relative to the optimum spanner. Here we provide a comparison of the spanner sparsities of
the four spanner algorithms (+2W subsetwise, +2W (·, ·), +4W (·, ·), and +6W) relative to

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:15

Figure 13 Average error ratios of the spanners computed using the algorithm that uses +2W (·, ·)
pairwise spanner as the single level subroutine on Erdős–Rényi graphs w.r.t. n, ℓ, and terminal
selection method.

Figure 14 Average error ratios of the spanners computed using all algorithms on Erdős–Rényi
graphs w.r.t. n, ℓ, and terminal selection method.

each other in Figure 15. According to Figure 15, the +6W construction-based approximation
algorithm uses the fewest number of edges, and the +2W subsetwise spanner typically
outputs a spanner with 50% to 75% more edges than the +6W spanner; this is expected as
more additive error generally leads to sparser spanners in practice.

Figure 15 Sparsity ratio of the spanners computed using all algorithms on Erdős–Rényi graphs
w.r.t. n, ℓ, and terminal selection method.

5.6 Amount of reduction
One of the major goals of graph spanners is to sparsify the input graph without losing
significant information on distances in the original graph. A straightforward way to compute
the amount of reduction is to take the ratio of the number of edges removed from the input
graph in the spanner to the number of edges in the input graph. Since we are computing
multi-level spanners, we define the reduction ratio as the number of edges removed from
the input divided by |E|ℓ (in other words, (|E|ℓ − sparsity({Hi}))/(|E|ℓ)). We describe
these reduction ratios on Erdős–Rényi graphs w.r.t. n, ℓ, and the terminal selection method
in Figure 16. The global +2W construction-based approximation algorithm provides the
smallest reduction ratio which is also consistent with the idea that sparser spanners generally

SEA 2021

16:16 Multi-Level Weighted Additive Spanners

take on more additive error. Remember that the +2W construction uses clustering and
other construction uses d-initialization. This result again indicates that the clustering-based
approach performs worse compared to the initialization-based approach.

Figure 16 Reduction ratio of the spanners computed using all algorithms on Erdős–Rényi graphs
w.r.t. n, ℓ, and terminal selection method.

6 Conclusion

We have provided a framework where we can use different spanner subroutines to compute
multi-level spanners of varying additive error. We additionally introduced a generalization of
the +2 subsetwise spanner [22] to integer edge weights, and illustrate that this can reduce the
+8W error in [3] to +6W . A natural question is to provide an approximation algorithm that
can handle different additive error for different levels. We also provided an ILP to compute
the optimum spanner; computing this optimally is very slow, so natural directions include
using techniques such as graph reduction to sparsify the input graph before computing
a spanner. The experimental results in Section 5 suggest that the +2W clustering-based
approach is slower and returns worse spanners than the initialization based approaches. We
provided a method of changing the initialization parameter d which reduces the sparsity in
practice.

References

1 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. Journal of the
ACM (JACM), 64(4):1–20, 2017.

2 Abu Reyan Ahmed, Patrizio Angelini, Faryad Darabi Sahneh, Alon Efrat, David Glickenstein,
Martin Gronemann, Niklas Heinsohn, Stephen Kobourov, Richard Spence, Joseph Watkins, and
Alexander Wolff. Multi-level Steiner trees. In 17th International Symposium on Experimental
Algorithms, (SEA), pages 15:1–15:14, 2018. doi:10.4230/LIPIcs.SEA.2018.15.

3 Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Stephen Kobourov, and Richard Spence.
Weighted additive spanners. In Isolde Adler and Haiko Müller, editors, Graph-Theoretic
Concepts in Computer Science, pages 401–413. Springer, 2020.

4 Reyan Ahmed, Greg Bodwin, Keaton Hamm, Stephen Kobourov, and Richard Spence.
Weighted sparse and lightweight spanners with local additive error. arXiv preprint
arXiv:2103.09731, 2021.

5 Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad Javad Latifi
Jebelli, Stephen Kobourov, and Richard Spence. Graph spanners: A tutorial review. Computer
Science Review, 37:100253, 2020.

6 Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and
Richard Spence. Multi-level weighted additive spanners. arXiv preprint arXiv:2102.05831,
2021.

https://doi.org/10.4230/LIPIcs.SEA.2018.15

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:17

7 Reyan Ahmed, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and Richard Spence.
Kruskal-based approximation algorithm for the multi-level Steiner tree problem. In Fabrizio
Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium
on Algorithms (ESA 2020), volume 173 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 4:1–4:21, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ESA.2020.4.

8 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of
diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing,
28:1167–1181, 1999.

9 Ingo Althöfer, Gautam Das, David Dobkin, and Deborah Joseph. Generating sparse spanners
for weighted graphs. In Scandinavian Workshop on Algorithm Theory (SWAT), pages 26–37,
Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

10 Anantaram Balakrishnan, Thomas L. Magnanti, and Prakash Mirchandani. Modeling and
heuristic worst-case performance analysis of the two-level network design problem. Management
Sci., 40(7):846–867, 1994. doi:10.1287/mnsc.40.7.846.

11 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

12 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners
and (α, β)-spanners. ACM Transactions on Algorithms (TALG), 7(1):5, 2010.

13 Greg Bodwin. Linear size distance preservers. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 600–615. Society for Industrial
and Applied Mathematics, 2017.

14 Greg Bodwin. A note on distance-preserving graph sparsification. arXiv preprint
arXiv:2001.07741, 2020.

15 Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive
spanners. In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 855–872. Society for Industrial and Applied Mathematics, 2016.
URL: http://dl.acm.org/citation.cfm?id=2884435.2884496.

16 Hsien-Chih Chang, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Near-Optimal
Distance Emulator for Planar Graphs. In Proceedings of 26th Annual European Symposium on
Algorithms (ESA 2018), volume 112, pages 16:1–16:17, 2018.

17 M. Charikar, J. Naor, and B. Schieber. Resource optimization in QoS multicast routing of
real-time multimedia. IEEE/ACM Transactions on Networking, 12(2):340–348, April 2004.
doi:10.1109/TNET.2004.826288.

18 Shiri Chechik. New additive spanners. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 498–512. Society for Industrial and
Applied Mathematics, 2013.

19 Eden Chlamtáč, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. Approximating
spanners and directed Steiner forest: Upper and lower bounds. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 534–553. SIAM,
2017.

20 Julia Chuzhoy, Anupam Gupta, Joseph (Seffi) Naor, and Amitabh Sinha. On the approx-
imability of some network design problems. ACM Trans. Algorithms, 4(2):23:1–23:17, 2008.
doi:10.1145/1361192.1361200.

21 Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers.
SIAM Journal on Discrete Mathematics, 20(2):463–501, 2006.

22 Marek Cygan, Fabrizio Grandoni, and Telikepalli Kavitha. On pairwise spanners. In Proceedings
of 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013),
volume 20, pages 209–220, 2013.

23 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths and PRAM distance
oracles in weighted graphs. arXiv preprint arXiv:1907.11422, 2019.

SEA 2021

https://doi.org/10.4230/LIPIcs.ESA.2020.4
https://doi.org/10.1287/mnsc.40.7.846
http://dl.acm.org/citation.cfm?id=2884435.2884496
https://doi.org/10.1109/TNET.2004.826288
https://doi.org/10.1145/1361192.1361200

16:18 Multi-Level Weighted Additive Spanners

24 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Improved weighted additive spanners. arXiv
preprint arXiv:2008.09877, 2020.

25 Paul Erdős and Alfréd Rényi. On random graphs, i. Publicationes Mathematicae (Debrecen),
6:290–297, 1959.

26 Marek Karpinski, Ion I. Mandoiu, Alexander Olshevsky, and Alexander Zelikovsky. Improved
approximation algorithms for the quality of service multicast tree problem. Algorithmica,
42(2):109–120, 2005. doi:10.1007/s00453-004-1133-y.

27 Telikepalli Kavitha. New pairwise spanners. Theory of Computing Systems, 61(4):1011–1036,
2017.

28 Telikepalli Kavitha and Nithin M. Varma. Small stretch pairwise spanners and approximate
d-preservers. SIAM Journal on Discrete Mathematics, 29(4):2239–2254, 2015.

29 Arthur Liestman and Thomas Shermer. Additive graph spanners. Networks, 23:343–363, July
1993. doi:10.1002/net.3230230417.

30 Prakash Mirchandani. The multi-tier tree problem. INFORMS J. Comput., 8(3):202–218,
1996.

31 Mathew Penrose. Random geometric graphs. Number 5. Oxford University Press, 2003.
32 Seth Pettie. Low distortion spanners. ACM Transactions on Algorithms (TALG), 6(1):7, 2009.
33 Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks. Nature,

393(6684):440, 1998.

A Pairwise spanner constructions [3]

Here, we provide pseudocode (Algorithms 1–3) describing the +2W , +4W , and +8W pairwise
spanner constructions3 by Ahmed et al. [3]. These spanner constructions have a similar
theme: first, construct a d-light initialization, which is a subgraph H obtained by adding the
d lightest edges incident to each vertex (or all edges if the degree is at most d). Then for
each pair (s, t) ∈ P , consider the number of edges in π(s, t) which are absent in the current
subgraph H. Add π(s, t) to H if the number of missing edges is at most some threshold ℓ,
or otherwise randomly sample vertices and either add a shortest path tree rooted at these
vertices, or construct a subsetwise spanner among them.

Algorithm 1 +2W pairwise spanner [3].

1: d = |P |1/3, ℓ = n/|P |2/3

2: H = d-light initialization
3: let m′ be the number of missing edges needed for a valid construction
4: while m′ > nd do
5: for (s, t) ∈ P do
6: x = |E(π(s, t)) \ E(H)|
7: if x ≤ ℓ then
8: add π(s, t) to H

9: R = random sample of vertices, each with probability 1/(ℓd)
10: for r ∈ R do
11: add a shortest path tree rooted at r to each vertex
12: add the m′ missing edges
13: return H

3 Using a tighter analysis or the above +2W subsetwise construction in place of the +4W construction in
Algorithm 3, the additive error can be improved to +2W (·, ·), +4W (·, ·), and +6W for integer edge
weights.

https://doi.org/10.1007/s00453-004-1133-y
https://doi.org/10.1002/net.3230230417

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:19

Algorithm 2 +4W pairwise spanner [3].

1: d = |P |2/7, ℓ = n/|P |5/7

2: H = d-light initialization
3: let m′ be the number of missing edges needed for a valid construction
4: while m′ > nd do
5: for (s, t) ∈ P do
6: x = |E(π(s, t)) \ E(H)|
7: if x ≤ ℓ then
8: add π(s, t) to H

9: else if x ≥ n/d2 then
10: R1 = random sample of vertices, each w.p. d2/n

11: add a shortest path tree rooted at each r ∈ R1
12: else
13: add first ℓ and last ℓ missing edges of π(s, t) to H

14: R2 = i.i.d. sample of vertices, w.p. 1/(ℓd)
15: for each r, r′ ∈ R2 do
16: if exists r → r′ path missing ≤ n/d2 edges then
17: add to H a shortest r → r′ path among paths missing ≤ n/d2 edges
18: add the m′ missing edges
19: return H

Algorithm 3 +8W pairwise spanner [3].

1: d = |P |1/4, ℓ = n/|P |3/4

2: H = d-light initialization
3: let m′ be the number of missing edges needed for a valid construction
4: while m′ > nd do
5: for (s, t) ∈ P do
6: x = |E(π(s, t)) \ E(H)|
7: if x ≤ ℓ then
8: add π(s, t) to H

9: else
10: add first ℓ and last ℓ missing edges of π(s, t) to H

11: R = random sample of vertices, each w.p. 1/(ℓd)
12: H ′ = +4W subsetwise (R × R)-spanner [3]
13: add H ′ to H

14: add the m′ missing edges
15: return H

B Experiments

In the main paper, we mostly discussed the experimental results of Erdős–Rényi graphs. In
this section, we provide the results of random geometric graphs. The plots of Watts–Strogatz
and Barabási–Albert graphs are available in the Github repository.

SEA 2021

16:20 Multi-Level Weighted Additive Spanners

B.1 Multi-level +2W spanner
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and terminal
selection methods in Figure 17. In both cases the average ratio increases as n and ℓ increases.
The average ratio is relatively lower for the linear terminal selection method.

Figure 17 Performance of the algorithm that uses +2W subsetwise spanner as the single level
subroutine on random geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.2 Multi-level +2W (·, ·) spanner
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and terminal
selection method in Figure 18. The average experimental ratio increases as n increases. The
maximum ratio increases as ℓ increases. Again, the experimental ratio of the linear terminal
selection method is relatively smaller compared to the exponential method.

Figure 18 Performance of the algorithm that uses +2W (·, ·) pairwise spanner as the single level
subroutine on random geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.3 Comparison between global and local error
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and the
terminal selection method in Figure 19. The ratio of the local setting is smaller compared to
the global setting.

Figure 19 Performance of the global and local construction-based algorithms on random geometric
graphs w.r.t. n, ℓ, and terminal selection method.

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:21

B.4 Multi-level +4W (·, ·) spanner

We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and terminal
selection method in Figure 20. The experimental ratio increases as the number of vertices
increases. The maximum ratio increases as the number of levels increases. Again, the
experimental ratio of the linear terminal selection method is relatively smaller compared to
the exponential method.

Figure 20 Performance of the algorithm that uses +4W (·, ·) pairwise spanner as the single level
subroutine on random geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.5 Comparison between +2W (·, ·) and +4W (·, ·) setups

We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and the
terminal selection method in Figure 21. As n increases the average ratio of +4W (·, ·)-based
approximation algorithm becomes smaller compared to the +2W (·, ·)-based algorithm. The
average ratio of +4W (·, ·) is relatively smaller for the exponential terminal selection method.

Figure 21 Performance of the pairwise +2W (·, ·) and +4W (·, ·) construction-based algorithms
on random geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.6 Multi-level +6W spanner

We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and terminal
selection method in Figure 22. The experimental ratio increases as the number of vertices
increases. The maximum ratio increases as the number of levels increases. Again, the
experimental ratio of the linear terminal selection method is relatively smaller compared to
the exponential method.

SEA 2021

16:22 Multi-Level Weighted Additive Spanners

Figure 22 Performance of the algorithm that uses +6W (·, ·) pairwise spanner as the single level
subroutine on random geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.7 Comparison between +2W and +6W setups
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and the
terminal selection method in Figure 23. We can see that as n gets larger the ratio of +6W

gets smaller. The situation is similar when ℓ increases.

Figure 23 Performance of the pairwise +2W and +6W construction-based algorithms on random
geometric graphs w.r.t. n, ℓ, and terminal selection method.

B.8 Experiment on large graphs
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and the
terminal selection method in Figure 24.

Figure 24 Performance of different approximation algorithms on large random geometric graphs
w.r.t. n, ℓ, and terminal selection method.

B.9 Impact of the initialization parameters
We describe the experimental results on random geometric graphs w.r.t. n, ℓ, and the terminal
selection method in Figure 25. Again, the experiment suggests that we can exponentially
reduce the value of d and take the solution that has a minimum number of edges, with an
additional cost of O(log d) running time.

R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 16:23

Figure 25 Impact of different values of d on large random geometric graphs w.r.t. n, ℓ, and
terminal selection method.

SEA 2021

Targeted Branching for the Maximum Independent
Set Problem
Demian Hespe !

Karlsruhe Institute of Technology, Institute for Theoretical Informatics, Germany

Sebastian Lamm !

Karlsruhe Institute of Technology, Institute for Theoretical Informatics, Germany

Christian Schorr !

Karlsruhe Institute of Technology, Institute for Theoretical Informatics, Germany

Abstract
Finding a maximum independent set is a fundamental NP-hard problem that is used in many
real-world applications. Given an unweighted graph, this problem asks for a maximum cardinality set
of pairwise non-adjacent vertices. In recent years, some of the most successful algorithms for solving
this problem are based on the branch-and-bound or branch-and-reduce paradigms. In particular,
branch-and-reduce algorithms, which combine branch-and-bound with reduction rules, have been
able to achieve substantial results, solving many previously infeasible real-world instances. These
results were to a large part achieved by developing new, more practical reduction rules. However,
other components that have been shown to have a significant impact on the performance of these
algorithms have not received as much attention. One of these is the branching strategy, which
determines what vertex is included or excluded in a potential solution. Even now, the most commonly
used strategy selects vertices solely based on their degree and does not take into account other
factors that contribute to the performance of the algorithm.

In this work, we develop and evaluate several novel branching strategies for both branch-and-
bound and branch-and-reduce algorithms. Our strategies are based on one of two approaches which
are motivated by existing research. They either (1) aim to decompose the graph into two or more
connected components which can then be solved independently, or (2) try to remove vertices that
hinder the application of a reduction rule which can lead to smaller graphs. Our experimental
evaluation on a large set of real-world instances indicates that our strategies are able to improve the
performance of the state-of-the-art branch-and-reduce algorithm by Akiba and Iwata. To be more
specific, our reduction-based packing branching rule is able to outperform the default branching
strategy of selecting a vertex of highest degree on 65% of all instances tested. Furthermore, our
decomposition-based strategy based on edge cuts is able to achieve a speedup of 2.29 on sparse
networks (1.22 on all instances).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Branch-and-bound; Mathematics of computing → Combinatorial optimization

Keywords and phrases Graphs, Combinatorial Optimization, Independent Set, Vertex Cover, Clique,
Branch-and-Reduce, Branch-and-Bound, Data Reduction

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.17

Related Version Full Version: https://arxiv.org/abs/2102.01540

Supplementary Material Software (Source Code): https://github.com/Hespian/CutBranching
archived at swh:1:dir:ba9fbe7f94ffb2b8563f5057a97481404d236781

1 Introduction

An independent set of a graph G = (V, E) is a set of vertices I ⊆ V of G such that no two
vertices in this set are adjacent. The problem of finding such an independent set of maximum
cardinality, the maximum independent set problem, is a fundamental NP-hard problem [15].

© Demian Hespe, Sebastian Lamm, and Christian Schorr;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 17; pp. 17:1–17:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hespe@kit.edu
https://orcid.org/0000-0001-6232-2951
mailto:lamm@kit.edu
https://orcid.org/0000-0001-7828-921X
mailto:christian.schorr@student.kit.edu
https://doi.org/10.4230/LIPIcs.SEA.2021.17
https://arxiv.org/abs/2102.01540
https://github.com/Hespian/CutBranching
https://archive.softwareheritage.org/swh:1:dir:ba9fbe7f94ffb2b8563f5057a97481404d236781
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Targeted Branching for the MIS Problem

Its applications cover a wide variety of fields including computer graphics [33], network
analysis [31], route planning [24] and computational biology [4, 8]. In computer graphics for
instance, large independent sets can be used to optimize the traversal of mesh edges in a
triangle mesh. Further applications stem from its complementary problems minimum vertex
cover and maximum clique.

One of the best known techniques for finding maximum independent sets, both in
theory [39, 7] and practice [1], are data reduction algorithms. These algorithms apply a set of
reduction rules to decrease the size of an instance while maintaining the ability to compute
an optimal solution afterwards. A recently successful type of data reduction algorithm is
so-called branch-and-reduce algorithms [1, 19], which exhaustively apply a set of reduction
rules to compute an irreducible graph. If no further rule can be applied, the algorithm
branches into (at least) two smaller subproblems, which are then solved recursively. To make
them more efficient in practice, these algorithms also make use of problem-specific upper
and lower bounds to quickly prune the search space.

Due to the practical impact of data reduction, most of the research aimed at improving the
performance of branch-and-reduce algorithms so far has been focused on either proposing more
practically efficient special cases of already existing rules [6, 9], or maintaining dependencies
between reduction rules to reduce unnecessary checks [2, 20]. However, improving other
aspects of branch-and-reduce has been shown to benefit its performance [30]. The branching
strategy in particular has been shown to have a significant impact on the running time [1].
Up to now, the most frequently used branching strategy employed in many state-of-the-art
solvers selects branching vertices solely based on their degree. Other factors, such as the
actual reduction rules used during the algorithm are rarely taken into account. However,
recently there have been some attempts to incorporate such branching strategies for other
problems such as finding a maximum k-plex [14].

1.1 Contribution

In this paper, we propose and examine several novel strategies for selecting branching vertices.
These strategies follow two main approaches that are motivated by existing research: (1)
Branching on vertices that decompose the graph into several connected components that can
be solved independently. Solving components individually has been shown to significantly
improve the performance of branch-and-reduce in practice, especially when the size of the
largest component is small [2]. (2) Branching on vertices whose removal leads to reduction
rules becoming applicable again. In turn, this leads to a smaller reduced graph and thus
improved performance. For each approach we present several concrete strategies that vary
in their complexity. Finally, we evaluate their performance by comparing them to the
aforementioned default strategy used in the state-of-the-art solver by Akiba and Iwata [1].
For this purpose we make use of a wide spectrum of instances from different graph classes and
applications. Our experiments indicate that our strategies are able to find an optimal solution
faster than the default strategy on a large set of instances. In particular, our reduction-based
packing rule is able to outperform the default strategy on 65% of all instances. Furthermore,
our decomposition-based strategies achieve a speedup of 1.22 (over the default strategy) over
all instances. A more detailed explanation of a previous version of this work can be found in
Schorr’s Bachelor’s thesis [35].

D. Hespe, S. Lamm, and C. Schorr 17:3

2 Preliminaries

Let G = (V, E) be an undirected graph, where V = {0, . . . , n − 1} is a set of n vertices
and E ⊆ {{u, v} | u, v ∈ V } is a set of m edges. We assume that G is simple, i. e., it has
no self loops or multi-edges. The (open) neighborhood of a vertex v ∈ V is denoted by
N(v) = {u | {v, u} ∈ E}. Furthermore, we denote the closed neighborhood of a vertex by
N [v] = N(v) ∪ {v}. We define the open and closed neighborhood of a set of vertices U ⊆ V

as N(U) = ∪u∈U N(u) \U and N [U] = N(U)∪U , respectively. The degree of a vertex v ∈ V

is the size of its neighborhood d(v) = |N(v)| and ∆ = maxv∈V {d(v)}. For a vertex v ∈ V ,
we further define N2(v) = N(N(v)).

For a subset of vertices VS ⊆ V , the (vertex-)induced subgraph G[VS] = (VS , ES) is given by
restricting the edges of G to vertices of VS , i. e., ES = {{u, v} ∈ E | u, v ∈ VS}. Likewise, for
a subset of edges ES ⊆ E, the edge-induced subgraph G[ES] = (VS , ES) is given by restricting
the vertices of G to the endpoints of edges in ES , i. e., VS = {u, v ∈ V | {u, v} ∈ ES}. For a
subset of vertices U ⊂ V , we further define G− U as the induced subgraph G[V \ U].

A path P = (v1, . . . , vk) of length k is a sequence of k distinct vertices in G such that
{vi, vi+1} ∈ E for all i ∈ {1, . . . , k − 1}. A subgraph of G induced by a maximal subset of
vertices that are connected by a path is called a connected component. Furthermore, a graph
that only contains one connected component is called connected. Likewise, a graph with more
than one connected component is called disconnected. A subset S ⊂ V of a connected graph
G is called a vertex separator if the removal of S from G makes the graph disconnected.

An independent set of a graph is a subset of vertices I ⊆ V such that no two vertices
of I are adjacent. A maximum independent set (MIS) is an independent set of maximum
cardinality. Closely related to independent set are vertex covers and cliques. A vertex cover
is a set of vertices C ⊆ V such that for each edge {u, v} ∈ E either u or v is contained in
C. The complement of a (maximum) independent set of a graph G is a (minimum) vertex
cover (MVC) of G. A clique is a subset of vertices K ⊆ V such that all vertices of K are
adjacent to each other, i. e., ∀u, v ∈ K : {u, v} ∈ E. Finally, a (maximum) independent
set of a graph G is a (maximum) clique (MC) in the complement graph G = (V, E), where
E = {{u, v} | {u, v} ̸∈ E}.

3 Related Work

The most commonly used branching strategy for MIS and MVC is to select a vertex of
maximum degree. Fomin et al. [13] show that using a vertex of maximum degree that
also minimizes the number of edges between its neighbors is optimal with respect to their
complexity measure. The algorithm by Akiba and Iwata [1] (which we augment with our
new branching rules) also uses this strategy. Akiba and Iwata also compare this strategy to
branching on a vertex of minimum degree and a random vertex. They show that both of
these perform significantly worse than branching on a maximum degree vertex.

Xiao and Nagamochi [39] also use this strategy in most cases. For dense subgraphs,
however, they use an edge branching strategy: They branch on an edge {u, v} where
|N(u) ∩ N(v)| is sufficiently large (depending on the maximum degree of the graph) by
excluding both u and v in one branch and applying the alternative reduction (see Section 5.2)
to {u} and {v} in the other branch.

Bourgeois et al. [3] use maximum degree branching as long as there are vertices of degree
at least five. Otherwise, they utilize specialized algorithms to solve subinstances with an
average degree of three or four. Those algorithms perform a rather complex case analysis

SEA 2021

17:4 Targeted Branching for the MIS Problem

to find a suitable branching vertex. The analysis is based on exploiting structures that
contain 3- or 4-cycles. Branching on specific vertices in such structures often enables further
reduction rules to be applied.

Chen et al. [7] use a notion of good pairs that are advantageous for branching. They chose
these good pairs by a set of rules which are omitted here. They combine these with so-called
tuples of a set of vertices and the number of vertices from this set that have to be included
in an MIS. This information can be used when branching on a vertex contained in that set
to remove further vertices from the graph. Akiba and Iwata [1] use the same concept in
their packing rule. Chen et al. combine good pairs, tuples and high degree vertices for their
branching strategy.

Most algorithms for MC (e.g. [36, 37]) compute a greedy coloring and branch on vertices
with a high coloring number. More sophisticated MC algorithms use MaxSAT encodings to
prune the set of branching vertices [26, 27, 29]. Li et al. [28] combine greedy coloring and
MaxSAT reasoning the further reduce the number of branching vertices.

Another approach used for MC is using the degeneracy order v1 < v2 < · · · < vn where
vi is a vertex of smallest degree in G− {v1, . . . vi−1}. Carraghan and Pardalos [5] present
an algorithm that branches in descending degeneracy order. Li et al. [26] introduce another
vertex ordering using iterative maximum independent set computations (which might be
easier than MC on some graphs) and breaking ties according to the degeneracy order.

The algorithm by Akiba and Iwata [1] is a so-called branch-and-reduce algorithm: It
repeatedly reduces the instance size by a set of polynomial-time reduction rules and then
branches on a vertex once no more reduction rules can be applied. Since branching removes
at least one vertex from the graph, more reduction rules might be applicable afterwards.
The set of reductions used in their algorithm is relatively large and not covered completely
here. However, some reduction rules are explained in Section 5 where we show how to
target particular reduction rules when branching. Akiba and Iwata apply the reduction
rules in a predefined order. For each rule, their algorithm iterates over all vertices in the
graph and checks whether the rule can be applied. If a rule is applied successfully, this
process is restarted from the first reduction rule. In order to prune the search space, bounds
on the largest possible independent set of a branch are computed. They implement three
different methods for determining upper bounds: clique cover, LP relaxation and cycle cover.
Additionally, they employ special reduction rules that can be applied during branching.
Another optimization done by their algorithm is to solve connected components separately.
We utilize this in Section 4 where we introduce branching rules that decompose the graph
into connected components. We use this algorithm as the base implementation to test our
new branching strategies.

4 Decomposition Branching

Our first approach to improve the default branching strategy found in many state-of-the-art
algorithms (including that of Akiba and Iwata [1]) is to decompose the graph into several
connected components. Subsequently, processing these components individually has been
shown to improve the performance of branch-and-reduce in practice [2]. To this end, we now
present three concrete strategies with varying computational complexity: articulation points,
edge cuts and nested dissections.

D. Hespe, S. Lamm, and C. Schorr 17:5

branch

Figure 1 Branching on an articulation point (circled vertex) decomposes the graph into two
connected components (gray boxes) that can be solved independently. The graphic shows the branch
in which the vertex is excluded from the independent set.

4.1 Articulation Points
First, we are concerned with finding single vertices that are able to decompose a graph into at
least two separated components. Such points are called articulation points (or cut vertices).
Articulation points can be computed in linear time O(n+m) using a simple depth-first search
(DFS) algorithm (see Hopcroft and Tarjan [21] for a detailed description). In particular, a
vertex v is an articulation point if it is either the root of the DFS tree and has at least two
children or any non-root vertex that has a child u, such that no vertex in the subtree rooted
at u has a back edge to one of the ancestors of v.

For our first branching strategy we maintain a set of articulation points A ⊆ V . When
selecting a branching vertex, we first discard all invalid vertices from A, i. e., vertices that
were removed from the graph by a preceding data reduction step. If this results in A becoming
empty, a new set of articulation points is computed on the current graph in linear time.
However, if no articulation points exist, we select a vertex based on the default branching
strategy. Otherwise, if A contains at least one vertex, an arbitrary one from A is selected as
the branching vertex. Figure 1 illustrates branching on an articulation point.

Even though this strategy introduces only a small (linear) overhead, finding articulation
points can be rare depending on the type of graph. This results in the default branching
strategy being selected rather frequently. Furthermore, our preliminary experiments indicate
that articulation points are rarely found at higher depth. However, due to their low overhead,
we can justify searching for them whenever A becomes empty.

4.2 Edge Cuts
To alleviate the restrictive nature of finding articulation points, we now propose a more
flexible branching strategy based on (minimal) edge cuts. In general, we aim to find small
vertex separators, i. e., a set of vertices whose removal disconnects the graph. We do so by
making use of minimum edge cuts.

A cut (S, T) is a partitioning of V into two sets S and T = V \ S. Furthermore, a cut
is called minimum if its cut set C = {{u, v} ∈ E | u ∈ S, v ∈ T} has minimal cardinality.
However, in practice, finding minimum cuts often yields trivial cuts with either S or T

only consisting of a single vertex with minimum degree. Thus, we are interested in finding
s-t-cuts, i. e., cuts where S and T contain specific vertices s, t ∈ V . Finding these cuts can
be done efficiently in practice, e. g., using a preflow push algorithm [17]. However, selecting
the vertices s and t to ensure reasonably balanced cuts can be tricky. Natural choices include
random vertices, as well as vertices that are far apart in terms of their shortest path distance.
However, our preliminary experiments indicate that selecting random vertices of maximum
degree for s and t seems to produce the best results. Finally, to derive a vertex separator

SEA 2021

17:6 Targeted Branching for the MIS Problem

from a cut, one can compute an MVC on the bipartite graph induced by the cut set, e. g.,
using the Hopcroft-Karp algorithm [22]. This separator can then be used to select branching
vertices. In particular, we continuously branch on vertices from the separator.

Overall, our second strategy works similar to the first one: We maintain a set of possible
branching vertices that were selected by computing a minimum s-t-cut and turning it into
a vertex separator. Vertices that were removed by data reduction are discarded from this
set and once it is empty a new cut computation is started. However, in contrast to the first
strategy, finding a set of suitable branching vertices is much more likely. In order to avoid
separators that contain too many vertices, and thus would require too many branching steps
to disconnect the graph, we only keep those that do not exceed a certain size and balance
threshold. The specific values for these threshold are presented in Section 6.2. Finally, if no
suitable separator is found, we use the default branching strategy. Furthermore, in this case
we do not try to find a new separator for a fixed number of branching steps as finding one is
both unlikely and costly.

4.3 Nested Dissection
Both of our previous strategies dynamically maintain a set of branching vertices. Even though
this comes at the advantage that most of the computed vertices remain viable candidates for
some branching steps, it introduces a noticeable overhead. To alleviate this, our last strategy
uses a static ordering of possible branching vertices that is computed once at the beginning
of the algorithm. For this purpose we make use of a nested dissection ordering [16].

A nested dissection ordering of the vertices of a graph G is obtained by recursively
computing balanced bipartitions (A, B) and a vertex separator S, that separates A and B.
The actual ordering is then given by concatenating the orderings of A and B followed by
the vertices of S. Thus, if we select branching vertices based on the reverse of a nested
dissection ordering, we continuously branch on vertices that disconnect the graph into
balanced partitions. We compute such an ordering once, after finishing the initial data
reduction phase.

There are two main optimizations that we use when considering the nested dissection or-
dering. First, we limit the number of recursive calls during the nested dissection computation,
because we noticed that vertices at the end of the ordering seldom lead to a decomposition
of the graph. This is due to the graph structure being changed by data reduction which can
lead to separators becoming invalid. Furthermore, similar to the edge-cut-based strategy,
we limit the size of separators considered during branching using a threshold. Again, this is
done to ensure that we do not require too many branching steps to decompose the graph.
The specific value for this size threshold is given in Section 6.2. If any separator in the nested
dissection exceeds this threshold, we use the default branching strategy.

5 Reduction Branching

Our second approach to selecting good branching vertices is to choose a vertex whose removal
will enable the application of new reduction rules. During every reduction step we find a list
of candidate vertices to branch on. The following sections will demonstrate how we identify
such branching candidate vertices with little computational overhead in practice. To be self
contained we will also repeat the reduction rules used here but omit any proofs that can be
found in the original publications. Out of the candidates found we then select a vertex of
maximum degree. If the degree of all candidate vertices lies below a threshold (defined in
Section 6.2) or no candidate vertices were found, we fall back to branching on a vertex of

D. Hespe, S. Lamm, and C. Schorr 17:7

branch twin
a b a b

Figure 2 Vertices a and b are almost twins. After branching on the circled vertex they become
twins (in the excluding branch) and can be reduced.

maximum degree. The rational here is that a vertex of large degree changes the structure of
the graph more than a vertex of small degree even if that vertex is guaranteed to enable the
application of a reduction rule. Also, our current strategies (except the packing-based rule in
Section 5.4) only enable the application of the targeted reduction rule in the branch that
excludes the vertex from the independent set, the excluding branch. However, in the case
that includes it into the independent set (including branch) all neighbors are removed from
the graph as well because they already have an adjacent vertex in the solution. Thus, in
both branches multiple vertices are removed.

We also performed some preliminary experiments with storing the candidate vertices in a
priority queue without resetting after every branch. However, changes were too frequent for
this approach to be faster because of the high amount of priority queue operations.

5.1 Almost Twins

The first reduction we target is the twin reduction by Xiao and Nagamochi [38]:

▶ Definition 1. (Twins [38]) In a graph G = (V, E) two vertices u and v are called twins if
N(u) = N(v) and d(u) = d(v) = 3.

▶ Theorem 2. (Twin Reduction [38]) In a graph G = (V, E) let vertices u and v be twins. If
there is an edge among N(u), then there is always an MIS that includes {u, v} and therefore
excludes N(u). Otherwise, let G′ = (V ′, E′) be the graph with V ′ = (V \N [{u, v}]) ∪ {w}
where w /∈ V and E′ = (E ∩

(
V ′

2
)
)∪{{w, x} | x ∈ N2(u)}} and let I ′ be an MIS in G′. Then,

I =
{

I ′ ∪ {u, v} , if w /∈ I ′

(I ′ \ {w}) ∪N(u) , else
is an MIS in G.

We now define almost twins as follows:

▶ Definition 3. (Almost Twins) In a graph G = (V, E) two non adjacent vertices u and v

are called almost twins if d(u) = 4, d(v) = 3 and N(v) ⊆ N(u) (i. e., N(u) = N(v) ∪ {w}).

Clearly, after removing w, u and v are twins so we can apply the twin reduction. Finding
almost twins can be done while searching for twins: The original algorithm checks for each
vertex v of degree-3 whether there is a vertex u ∈ N2(v) with d(u) = 3 and N(u) = N(v).
We augment this algorithm by simultaneously also searching for u ∈ N2(v) with d(u) = 4
and N(v) ⊂ N(u). This induces about the same computational cost for degree-4 vertices
in N2(v) as for degree 3 vertices. While there might be instances where this causes high
overhead, we expect the practical slowdown to be small. Figure 2 illustrates branching for
almost twins.

SEA 2021

17:8 Targeted Branching for the MIS Problem

5.2 Almost Funnels
Next, we consider the funnel reduction which is a special case of the alternative reduction by
Xiao and Nagamochi [38]:

▶ Definition 4. (Alternative Sets [38]) In a graph G = (V, E) two non empty, disjoint subsets
A, B ⊆ V are called alternatives if |A| = |B| and there is an MIS I in G such that I ∩ (A∪B)
is either A or B.

▶ Theorem 5. (Alternative Reduction [38]) In a graph G = (V, E) let A and B be alternative
sets. Let G′ = (V ′, E′) the graph with V ′ = V \ (A∪B ∪ (N(A)∩N(B))) and E′ = {{u, v} ∈
E | u, v ∈ V ′} ∪ {{u, v} | u ∈ N(A) \N [B], v ∈ N(B) \N [A]} and let I ′ be an MIS in G′.

Then, I =
{

I ′ ∪A , if (N(A) \N [B]) ∩ I ′ = ∅
I ′ ∪B , else

is an MIS in G.

Note that the alternative reduction adds new edges between existing vertices of the graph
which might not be beneficial in every case. To counteract this, the algorithm by Akiba and
Iwata [1] only uses special cases, one of which is the funnel reduction:

▶ Definition 6. (Funnel [38]) In a graph G = (V, E) two adjacent vertices u and v are called
funnels if GN(v)\{u} is a complete graph, i.e, if N(v) \ {u} is a clique.

▶ Theorem 7. (Funnel Reduction [38]) In a graph G = (V, E) let u and v be funnels. Then,
{u} and {v} are alternative sets.

Again, we define a structure that is covered by the funnel reduction after removal of a
single vertex:

▶ Definition 8. (Almost Funnel) In a graph G = (V, E) two adjacent vertices u and v are
called almost funnels if u and v are not funnels and there is a vertex w such that N(v)\{u, w}
induces a clique.

By removing w, u and v become funnels. The original funnel algorithm checks whether u

and v are funnels by iterating over the vertices in N(v) \ {u} and checking whether they are
adjacent to all previous vertices. Once a vertex is found that is not adjacent to all previous
vertices, the algorithm concludes that u and v are not funnels and terminates. We augment
this algorithm by not immediately terminating in this case. Instead, we consider the following
two cases: Either the current vertex w is not adjacent to at least two of the previous vertices.
In this case, we can check whether N(v) \ {u, w} induces a clique. In the second case, w is
adjacent to all but one previous vertex w′. In this case, both w and w′ might be candidate
branching vertices. Thus, we check whether N(v) \ {u, w} or N(v) \ {u, w′} induce a clique.
This adds up to two additional clique checks (of slightly smaller size) to the one clique check
in the original algorithm.

5.3 Almost Unconfined
The core idea of the unconfined reduction by Xiao and Nagamochi [38] is to detect vertices
not required for an MIS that can therefore be removed from the graph by algorithmically
contradicting the assumption that every MIS contains the vertex.

▶ Definition 9. (Child, Parent [38]) In a graph G = (V, E) with an independent set I, a
vertex v is called a child of I if |N(v)∩ I| = 1 and the unique neighbor of v in I is called the
parent of v.

D. Hespe, S. Lamm, and C. Schorr 17:9

Algorithm 1 Unconfined – Xiao and Nagamochi [38].

Input: A graph G, a vertex v

1 Unconfined(G, v) begin
2 S ← {v}
3 while S has child u with |N(u) \N [S]| ≤ 1 do
4 if |N(u) \N [S]| = 0 then
5 return true
6 else
7 {w} ← N(u) \N [v] // by assumption w also has to
8 S ← S ∪ {w} // be contained in every MIS

9 return false
Output: true if v is unconfined, false otherwise

Algorithm 1 shows the algorithm used by Akiba and Iwata [1] to detect so called unconfined
vertices.

▶ Theorem 10. (Unconfined Reduction [38]) In a graph G = (V, E), if Algorithm 1 returns
true for an unconfined vertex v, then there is always an MIS that does not contain v.

Again, we define a vertex to be almost unconfined:

▶ Definition 11. (Almost Unconfined) In a graph G = (V, E) a vertex v is called almost
unconfined if v is not unconfined but there is a vertex w such that v is unconfined in G−{w}.

Here, we only present an augmentation that detects some almost unconfined vertices. In
particular, if at any point during the algorithm there is only one extending child, i.e. a child
u of S with N(u) \N [S] = {w}, then removal of w makes v unconfined. During Algorithm 1
we collect all these vertices w and add them to the set of candidate branching vertices if the
algorithm cannot already remove v. This only adds the overhead of temporarily storing the
potential candidates and adding them to the actual candidate list if v is not removed.

5.4 Almost Packing
The core idea behind the packing rule by Akiba and Iwata [1] is that when the exluding
branch of a vertex v is selected, one can assume that no maximum independent set contains
v. Otherwise, if there is a maximum independent set that contains v, the algorithm finds it
in the including branch of v. Based on the assumption that no maximum independent set
includes a vertex v, constraints for the remaining vertices can be derived. For example, a
maximum independent set that does not contain v has to include at least two neighbors of v.
The corresponding constraint is

∑
u∈N(v) xu ≥ 2, where xu is a binary variable that indicates

whether a vertex is included in the current solution. Otherwise, we will find a solution of the
same size in the branch including v. The algorithm creates such constraints when branching
or reducing, and updates them accordingly during the data reductions and branching steps.
When a vertex v is eliminated from the graph, xv gets removed from all constraints. If v is
included into the current solution, the corresponding right sides are also decreased by one.

A constraint
∑

v∈S⊂V xv ≥ k can be utilized in two reductions. Firstly, if k is equal to
the number of variables |S|, all vertices from S have to be included into the current solution.
If there are edges between vertices from S, then no valid solution can include all vertices from
S, so the branch is pruned. Secondly, if there is a vertex v such that |S| − |N(v) ∩ S| < k,
then v has to be excluded from the current solution. If k > |S|, the constraint can not be
fulfilled and the current branch is pruned.

SEA 2021

17:10 Targeted Branching for the MIS Problem

In our branching strategy we target both reductions. If there is a constraint
∑

v∈S⊂V xv ≥
k, where |S| = k + 1, excluding any vertex of S from the solution or including a vertex of S

that has one neighbor in S enables the first reduction. Thus, we consider all vertices in S for
branching. Note that including a vertex from S that has more than one neighbor in S makes
the constraint unfulfillable and the branch is pruned.

If there is a constraint
∑

v∈S⊂V xv ≥ k and a vertex v, such that k = |S| − |N(v) ∩ S|,
excluding any vertex of S \N(v) from the solution or including a vertex of S \N(v) that
has at least one neighbor in S \N(v) enables the second reduction. Thus, we consider all
vertices in S \N(v) for branching.

Note that in contrast to our previous reduction-based branching rules, packing reductions
can also be applied in the including branch in many cases.

Detecting these branching candidates can be done with small constant overhead whilst
performing the packing reduction.

6 Experimental Evaluation

In this section, we present the results of our experimental evaluation. Tables and figures here
show aggregated results. For detailed results for all of our algorithms across all instances,
see Appendix A.

6.1 Experimental Environment
We augment a C++-adaptation of the algorithm by Akiba and Iwata [1] with our branching
strategies and compile it with g++ 9.3.0 using full optimizations (-O3). Our code is publicly
available on GitHub1. We execute all our experiments on a machine with 4 8-core Intel Xeon
E5-4640 CPUs (2.4 GHz) and 512 GiB DDR3-PC1600 RAM running Ubuntu 20.04.1 with
Linux Kernel 5.4.0-64. To speed up our experiments we use two identical machines and run
at most 8 instances at once on the same machine (using the same machine for all algorithms
on a specific instance). All numbers reported are arithmetic means of three runs with a
timeout of ten hours.

6.2 Algorithm Configuration
We use a C++ adaptation of the implementation by Akiba and Iwata [1] in its default
configuration as a basis for our algorithm. During preliminary experiments we found suitable
values for the parameters of our techniques. These experiments were run on a subset of our
total instance set. We use the geometric mean over all instances of the speedup over the
default branching strategy as a basis for the following decisions: for the technique based on
edge cuts, we only use cuts that contain at most 25 vertices and where the smaller side of the
cut contains at least ten percent of the remaining vertices. If no suitable separator is found,
we skip ten branching steps. For computing nested dissections, we use InertialFlowCutter [18]
with the KaFFPa [34] backend. The KaFFPa partitioner is configured to use the strong
preset with a fixed seed of 42. For branching, we use three levels of nested dissections with
a minimum balance of at least 40% of the vertices in the smaller part of each dissection.
Furthermore, we only use the nested dissection if separators contain at most 50 vertices. For
the reduction-based branching rules, we fall back to the default branching strategy if all

1 https://github.com/Hespian/CutBranching

https://github.com/Hespian/CutBranching

D. Hespe, S. Lamm, and C. Schorr 17:11

candidates have a degree of less than ∆− k. In the case of twin-, funnel- and unconfined-
reduction-based branching strategies we choose k as 2. For the packing-reduction-based
branching rule, k is set to 5 and for the combined branching rule, k is set to 4.

6.3 Instances
We use instances from several sources: The “easy” instances used for the PACE 2019
Challenge on Minimum Vertex Cover [12]. Complements of Maximum Clique instances from
the second DIMACS Implementation Challenge [23] and sparse instances from the Stanford
Network Analysis Project (SNAP) [25], the 9th DIMACS Implementation Challenge on
Shortest Paths [10] and the Network Data Repository [32]. Detailed instance information can
be found in Table 1. Directed instances were converted into undirected graphs by ignoring
the direction of edges and removing duplicates. Our original set of instances contained the
first 80 PACE instances, 53 DIMACS instances and 34 sparse networks. From these instances,
we excluded all instances that (1) required no branches, (2) on which all techniques had
a running time of less than 0.1 seconds, or (3) on which no technique was able to find a
solution within 10 hours. The remaining set of instances is composed of 48 PACE instances,
37 DIMACS instances and 16 sparse networks.

Table 1 Number of vertices |V | and edges |E| for each graph.

PACE [12] instances:
Graph |V | |E|
05 200 798
06 200 733
10 199 758
16 153 802
19 200 862
31 200 813
33 4,410 6,885
35 200 864
36 26,300 41,500
37 198 808
38 786 14,024
39 6,795 10,620
40 210 625
41 200 1,023
42 200 952
43 200 841
44 200 1,147
45 200 1,020
46 200 812
47 200 1,093
48 200 1,025
49 200 933
50 200 1,025
51 200 1,098
52 200 992
53 200 1,026
54 200 961
55 200 938
56 200 1,089
57 200 1,160
58 200 1,171
59 200 961
60 200 1,118
61 200 931
62 199 1,128
63 200 1,011
64 200 1,042
65 200 1,011
66 200 866
67 200 1,174
68 200 961
69 200 1,083
70 200 860
71 200 952
72 200 1,167
73 200 1,078
74 200 805
77 200 961

DIMACS [23] instances:
Graph |V | |E|
C125.9 125 787
MANN_a27 378 702
MANN_a45 1,035 1,980
brock200_1 200 5,066
brock200_2 200 10,024
brock200_3 200 7,852
brock200_4 200 6,811
gen200_p0.9_44 200 1,990
gen200_p0.9_55 200 1,990
hamming8-4 256 11,776
johnson16-2-4 120 1,680
keller4 171 5,100
p_hat1000-1 1,000 377,247
p_hat1000-2 1,000 254,701
p_hat1500-1 1,500 839,327
p_hat300-1 300 33,917
p_hat300-2 300 22,922
p_hat300-3 300 11,460
p_hat500-1 500 93,181
p_hat500-2 500 61,804
p_hat500-3 500 30,950
p_hat700-1 700 183,651
p_hat700-2 700 122,922
san1000 1,000 249,000
san200_0.7_1 200 5,970
san200_0.7_2 200 5,970
san200_0.9_1 200 1,990
san200_0.9_2 200 1,990
san200_0.9_3 200 1,990
san400_0.5_1 400 39,900
san400_0.7_1 400 23,940
san400_0.7_2 400 23,940
san400_0.7_3 400 23,940
sanr200_0.7 200 6,032
sanr200_0.9 200 2,037
sanr400_0.5 400 39,816
sanr400_0.7 400 23,931

Sparse networks:
Graph |V | |E| source
as-skitter 1,696,415 11,095,298 [25]
baidu-relatedpages 415,641 2,374,044 [32]
bay 321,270 397,415 [10]
col 435,666 521,200 [10]
fla 1,070,376 1,343,951 [10]
hudong-internallink 1,984,484 14,428,382 [32]
in-2004 1,382,870 13,591,473 [32]
libimseti 220,970 17,233,144 [32]
musae-twitch_DE 9,498 153,138 [25]
musae-twitch_FR 6,549 112,666 [25]
petster-fs-dog 426,820 8,543,549 [32]
soc-LiveJournal1 4,847,571 42,851,237 [25]
web-BerkStan 685,230 6,649,470 [25]
web-Google 875,713 4,322,051 [25]
web-NotreDame 325,730 1,090,108 [25]
web-Stanford 281,903 1,992,636 [25]

SEA 2021

17:12 Targeted Branching for the MIS Problem

all instances - running time

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

tio
n

of
in

st
an

ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101 103 U
τ

all instances - number of branches

0.75

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
in

st
an

ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101 102 U
τ

maximum degree
articulation points

edge cuts
nested dissection

Figure 3 Performance plots for decomposition-based branching strategies.

Table 2 Speedup of our decomposition-based techniques over maximum degree branching.

PACE DIMACS Sparse net. All Instances
articulation points 0.99 0.99 2.17 1.20
edge cuts 1.00 0.99 2.29 1.22
nested dissections 1.00 0.99 2.15 1.21

6.4 Decomposition Branching
Figure 3 shows performance profiles [11] of the running time and number of branches of our
decomposition-based branching strategies: Let T be the set of all techniques we want to
compare, I the set of instances, and tT (I) the running time/number of branches of technique
T ∈ T on instance I ∈ I. The y-axis shows for each technique T the fraction of instances
for which tT (I) ≤ τ ·minT ′∈T tT ′(I), where τ is shown on the x-axis. For τ = 1, the y-axis
shows the fraction of instances on which a technique performs best. Note that these plots

D. Hespe, S. Lamm, and C. Schorr 17:13

compare the performance of a technique relative to the best performing technique and do
not show a ranking of all techniques. Instances that were not finished by a technique within
the time limit are marked with U.

The running time plot in Figure 3 shows that for most instances, the default strategy of
branching on a vertex of maximum degree outperforms our decomposition-based approaches.
However, for instances that have suitable candidates for decomposition, such as sparse
networks, significant speedups compared to the default strategy can be seen. To be more
specific, assigning a time of ten hours (our timeout threshold) for unfinished instances, we
achieve a total speedup2 of 2.15 to 2.29 over maximum degree branching for our decomposition-
based techniques on sparse networks (see Table 2). In particular, there is one instance (web-
stanford) that causes a timeout with the default strategy but can be solved in 8 (articulation
points) to 43 (nested dissections) seconds using a decomposition-based approach. Table 2
shows that overall, our technique using edge cuts seems to be the most beneficial, achieving
an overall speedup of 22% over maximum degree. Finally, Figure 3 shows that most running
times are only slightly slower than the default strategy with a few instances showing a
speedup. This is mainly because the number of branches required to solve the instances does
not change in most cases and most of the running time difference is caused by the overhead
from searching for branching vertices.

6.5 Reduction Branching

Figure 4 shows the performance profiles (see Section 6.4) for our reduction-based branching
strategies. Here we see that targeting the packing reduction results in the fastest time for
the most number of instances. In fact, targeting the packing reduction performs better
than maximum degree branching on all but 3 PACE instances, achieving a speedup of 34%
(Table 3) on these instances. On the DIMACS instances, performance is closer to that
of maximum degree with an overall speedup of 4%. On sparse networks, packing is only
faster than maximum degree branching on 6 out of 16 instances but still achieves an overall
speedup of 31% due to being considerably faster on some of the longer running instances. The
performance of our packing-based technique might be explained by it’s property of enabling
a reduction in both the including and the excluding branch, while our other reduction-based
techniques only enable a reduction in the excluding branch. Our funnel-based technique is
faster than maximum degree branching for all but 4 of the PACE instances, resulting in a
speedup of 14% on these instances but only a 2% speedup over all instances due to slightly
slower running times on the other instance classes. We also show results for a strategy
that targets all reduction rules described in Section 5 (called combined). Even though this
approach leads to the second lowest number of branches for most instances, the time required
to identify candidate vertices for all reduction rules causes too big of an overhead to be
competitive. In fact, preliminary experiments showed that the number of branches is still
small for a technique that only combines twin-, funnel- and unconfined-based branching.
Optimizing the algorithms to identify candidate vertices could lead to making this combined
strategy competitive.

2 calculated by dividing the running times to solve all instances for two algorithms, excluding instances
unsolved by both algorithms

SEA 2021

17:14 Targeted Branching for the MIS Problem

all instances - running time

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

tio
n

of
in

st
an

ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101 102 U
τ

all instances - number of branches

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

tio
n

of
in

st
an

ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101102 U
τ

maximum degree
combined

twin
funnel

unconfined
packing

Figure 4 Performance plots for reduction-based branching strategies.

Table 3 Speedup of our reduction-based techniques over maximum degree branching.

PACE DIMACS Sparse net. All Instances
Twin 1.00 1.00 0.97 0.99
Funnel 1.14 0.99 0.98 1.02
Unconfined 0.79 1.00 0.86 0.92
Packing 1.34 1.04 1.31 1.16
Combined 1.14 1.03 1.30 1.12

7 Conclusion and Future Work

In this work we presented several novel branching strategies for the maximum independent set
problem. Our strategies either follow a decomposition-based or reduction-rule-based approach.
The decomposition-based strategies make use of increasingly sophisticated methods of finding
vertices that are likely to decompose the graph into two or more connected components.

D. Hespe, S. Lamm, and C. Schorr 17:15

Even though these strategies often come with a non negligible overhead, they work well for
graphs that have a suitable structure, such as social networks. For instances that still favor
the default branching strategy of branching on the vertex of highest degree, our reduction-
rule-based strategies provide a smaller but more consistent speedup. These rules aim to
facilitate the application of reduction rules which leads to smaller graphs that can be solved
more quickly.

Overall, using one of our proposed strategies allows us to find the optimal solution the
fastest for most instances tested. However, deciding which particular strategy to use for
a given instance still remains an open problem. Finding suitable graph characteristics to
do so provides an interesting opportunity for future work. Furthermore, our experimental
evaluation on a combined approach that tries to use all reduction-rule-based strategies at
the same time achieves a smaller number of branches than the default strategy for a large
set of instances. However, the running time of this approach still suffers from frequent
checks whether a particular vertex is a potential branching vertex. A more sophisticated
and incremental way of tracking when a vertex becomes a branching vertex might provide
significant performance benefits. In turn, this might lead to a branching strategy that
consistently outperforms branching on the vertex of highest degree independent of the
instance type.

References

1 Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/FPT algorithms in practice:
A case study of vertex cover. Theoretical Computer Science, 609:211–225, 2016. doi:10.1016/
j.tcs.2015.09.023.

2 Maram Alsahafy and Lijun Chang. Computing maximum independent sets over large sparse
graphs. In International Conference on Web Information Systems Engineering, pages 711–727.
Springer, 2020.

3 Nicolas Bourgeois, Bruno Escoffier, Vangelis Th. Paschos, and Johan M. M. van Rooij. Fast
algorithms for max independent set. Algorithmica, 62(1-2):382–415, 2012. doi:10.1007/
s00453-010-9460-7.

4 Sergiy Butenko and Wilbert E Wilhelm. Clique-detection models in computational biochemistry
and genomics. European Journal of Operational Research, 173(1):1–17, 2006.

5 Randy Carraghan and Panos M. Pardalos. An exact algorithm for the maximum clique problem.
Operations Research Letters, 9(6):375–382, 1990. doi:10.1016/0167-6377(90)90057-C.

6 Lijun Chang, Wei Li, and Wenjie Zhang. Computing A near-maximum independent set in
linear time by reducing-peeling. In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 1181–1196. ACM, 2017. doi:10.1145/3035918.3035939.

7 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.026.

8 Tammy M. K. Cheng, Yu-En Lu, Michele Vendruscolo, Pietro Liò, and Tom L. Blundell.
Prediction by graph theoretic measures of structural effects in proteins arising from non-
synonymous single nucleotide polymorphisms. PLoS Computational Biology, 4(7), 2008.
doi:10.1371/journal.pcbi.1000135.

9 Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F
Werneck. Accelerating local search for the maximum independent set problem. In International
symposium on experimental algorithms, pages 118–133. Springer, 2016.

10 Camil Demetrescu, Andrew V Goldberg, and David S Johnson. The Shortest Path Problem:
Ninth DIMACS Implementation Challenge, volume 74. American Mathematical Soc., 2009.

11 Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201–213, 2002.

SEA 2021

https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1007/s00453-010-9460-7
https://doi.org/10.1007/s00453-010-9460-7
https://doi.org/10.1016/0167-6377(90)90057-C
https://doi.org/10.1145/3035918.3035939
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1371/journal.pcbi.1000135

17:16 Targeted Branching for the MIS Problem

12 M. Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher. The PACE 2019 Parameterized
Algorithms and Computational Experiments Challenge: The Fourth Iteration. In 14th
International Symposium on Parameterized and Exact Computation (IPEC 2019), volume 148,
pages 25:1–25:23, 2019. doi:10.4230/LIPIcs.IPEC.2019.25.

13 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for the
analysis of exact algorithms. J. ACM, 56(5):25:1–25:32, 2009. doi:10.1145/1552285.1552286.

14 Jian Gao, Jiejiang Chen, Minghao Yin, Rong Chen, and Yiyuan Wang. An exact algorithm
for maximum k-plexes in massive graphs. In IJCAI, pages 1449–1455, 2018.

15 M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some Simplified NP-Complete Problems. In
Proceedings of the 6th ACM Symposium on Theory of Computing, STOC ’74, pages 47–63.
ACM, 1974.

16 Alan George. Nested dissection of a regular finite element mesh. SIAM Journal on Numerical
Analysis, 10(2):345–363, 1973.

17 Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM (JACM), 35(4):921–940, 1988.

18 Lars Gottesbüren, Michael Hamann, Tim Niklas Uhl, and Dorothea Wagner. Faster and better
nested dissection orders for customizable contraction hierarchies. Algorithms, 12(9):196, 2019.

19 Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. Wegotyoucovered:
The winning solver from the PACE 2019 challenge, vertex cover track. In Proceedings
of the SIAM Workshop on Combinatorial Scientific Computing, pages 1–11. SIAM, 2020.
doi:10.1137/1.9781611976229.1.

20 Demian Hespe, Christian Schulz, and Darren Strash. Scalable kernelization for maximum
independent sets. Journal of Experimental Algorithmics (JEA), 24(1):1–22, 2019.

21 John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph manipulation.
Communications of the ACM, 16(6):372–378, 1973.

22 John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

23 David S Johnson. Cliques, coloring, and satisfiability: second dimacs implementation challenge.
DIMACS series in discrete mathematics and theoretical computer science, 26:11–13, 1993.

24 Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Distributed time-dependent
contraction hierarchies. In Experimental Algorithms, 9th International Symposium, volume
6049, pages 83–93. Springer, 2010. doi:10.1007/978-3-642-13193-6_8.

25 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

26 Chu-Min Li, Zhiwen Fang, and Ke Xu. Combining maxsat reasoning and incremental upper
bound for the maximum clique problem. In 25th IEEE International Conference on Tools with
Artificial Intelligence, pages 939–946. IEEE Computer Society, 2013. doi:10.1109/ICTAI.
2013.143.

27 Chu-Min Li, Hua Jiang, and Felip Manyà. On minimization of the number of branches in
branch-and-bound algorithms for the maximum clique problem. Computers & Operations
Research, 84:1–15, 2017. doi:10.1016/j.cor.2017.02.017.

28 Chu-Min Li, Hua Jiang, and Ruchu Xu. Incremental maxsat reasoning to reduce branches
in a branch-and-bound algorithm for maxclique. In Learning and Intelligent Optimization
- 9th International Conference, volume 8994, pages 268–274. Springer, 2015. doi:10.1007/
978-3-319-19084-6_26.

29 Chu Min Li and Zhe Quan. An efficient branch-and-bound algorithm based on maxsat for the
maximum clique problem. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence. AAAI Press, 2010. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI10/
paper/view/1611.

30 Rick Plachetta and Alexander van der Grinten. Sat-and-reduce for vertex cover: Accelerat-
ing branch-and-reduce by sat solving. In 2021 Proceedings of the Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 169–180. SIAM, 2021.

https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1137/1.9781611976229.1
https://doi.org/10.1007/978-3-642-13193-6_8
http://snap.stanford.edu/data
https://doi.org/10.1109/ICTAI.2013.143
https://doi.org/10.1109/ICTAI.2013.143
https://doi.org/10.1016/j.cor.2017.02.017
https://doi.org/10.1007/978-3-319-19084-6_26
https://doi.org/10.1007/978-3-319-19084-6_26
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1611
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1611

D. Hespe, S. Lamm, and C. Schorr 17:17

31 Deepak Puthal, Surya Nepal, Cécile Paris, Rajiv Ranjan, and Jinjun Chen. Efficient algorithms
for social network coverage and reach. In IEEE International Congress on Big Data, pages
467–474. IEEE Computer Society, 2015. doi:10.1109/BigDataCongress.2015.75.

32 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In AAAI, 2015. URL: http://networkrepository.com.

33 Pedro V. Sander, Diego Nehab, Eden Chlamtac, and Hugues Hoppe. Efficient traversal of
mesh edges using adjacency primitives. ACM Trans. Graph., 27(5):144, 2008. doi:10.1145/
1409060.1409097.

34 Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced graph
partitioning. In Experimental Algorithms, 12th International Symposium, SEA 2013, Rome,
Italy, June 5-7, 2013. Proceedings, volume 7933, pages 164–175. Springer, 2013.

35 Christian Schorr. Improved branching strategies for maximum independent sets. Master’s
thesis, Karlsruhe Institute of Technology, 2020.

36 Pablo San Segundo and Cristóbal Tapia. Relaxed approximate coloring in exact maximum
clique search. Computers & Operations Research, 44:185–192, 2014. doi:10.1016/j.cor.2013.
10.018.

37 Etsuji Tomita, Yoichi Sutani, Takanori Higashi, and Mitsuo Wakatsuki. A simple and faster
branch-and-bound algorithm for finding a maximum clique with computational experiments.
IEICE Trans. Inf. Syst., 96-D(6):1286–1298, 2013. doi:10.1587/transinf.E96.D.1286.

38 Mingyu Xiao and Hiroshi Nagamochi. Confining sets and avoiding bottleneck cases: A simple
maximum independent set algorithm in degree-3 graphs. Theoretical Computer Science,
469:92–104, 2013. doi:10.1016/j.tcs.2012.09.022.

39 Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. Inf.
Comput., 255:126–146, 2017. doi:10.1016/j.ic.2017.06.001.

A Detailed Experimental Results

We now present detailed results of our experimental evaluation. Detailed tables show running
times t (in seconds) and speedup s. Speedups are computed by dividing the running time
of maximum degree branching by the running time of the respective technique. Timeouts
are assigned a running time of ten hours. Note, that this is the same as our time limit. We
also present the aggregated speedup stotal computed by dividing the running time of both
algorithms over all instances (omitting instances were both algorithms do not finish within
our time limit). A value is highlighted in bold if it is the best one within a row.

SEA 2021

https://doi.org/10.1109/BigDataCongress.2015.75
http://networkrepository.com
https://doi.org/10.1145/1409060.1409097
https://doi.org/10.1145/1409060.1409097
https://doi.org/10.1016/j.cor.2013.10.018
https://doi.org/10.1016/j.cor.2013.10.018
https://doi.org/10.1587/transinf.E96.D.1286
https://doi.org/10.1016/j.tcs.2012.09.022
https://doi.org/10.1016/j.ic.2017.06.001

17:18 Targeted Branching for the MIS Problem

Table 4 Detailed results for our decomposition-based strategies on the PACE instances.

Graph max. deg. articulation edge cuts nested dis.
PACE t t (s) t (s) t (s)
05 1.97 2.00 (0.98) 2.00 (0.99) 2.44 (0.81)
06 0.85 0.87 (0.98) 0.87 (0.98) 1.33 (0.64)
10 2.24 2.27 (0.99) 2.26 (0.99) 2.66 (0.84)
16 25,836.77 26,175.23 (0.99) 25,763.30 (1.00) 25,865.40 (1.00)
19 3.17 3.22 (0.98) 3.18 (0.99) 3.63 (0.87)
31 74.37 76.03 (0.98) 75.45 (0.99) 74.82 (0.99)
33 1.01 1.03 (0.98) 1.02 (0.99) 40.09 (0.03)
35 7.64 7.84 (0.97) 7.77 (0.98) 8.13 (0.94)
36 1.84 1.87 (0.98) 1.85 (0.99) 3.93 (0.47)
37 10.27 10.48 (0.98) 10.47 (0.98) 10.75 (0.96)
38 12.33 11.24 (1.10) 3.25 (3.79) 15.35 (0.80)
39 93.79 96.82 (0.97) 95.96 (0.98) 95.21 (0.99)
40 4,690.64 4,794.37 (0.98) 4,758.15 (0.99) 4,712.57 (1.00)
41 48.56 49.84 (0.97) 49.39 (0.98) 49.35 (0.98)
42 37.32 38.11 (0.98) 37.91 (0.98) 37.87 (0.99)
43 175.11 178.81 (0.98) 177.26 (0.99) 175.24 (1.00)
44 92.90 95.13 (0.98) 94.28 (0.99) 93.40 (0.99)
45 25.41 26.01 (0.98) 25.73 (0.99) 25.90 (0.98)
46 109.55 111.95 (0.98) 111.00 (0.99) 110.22 (0.99)
47 58.47 59.70 (0.98) 59.38 (0.98) 59.22 (0.99)
48 25.28 25.80 (0.98) 25.60 (0.99) 25.80 (0.98)
49 17.80 18.19 (0.98) 18.10 (0.98) 18.30 (0.97)
50 48.87 50.01 (0.98) 49.56 (0.99) 49.40 (0.99)
51 56.70 58.00 (0.98) 57.63 (0.98) 57.52 (0.99)
52 22.16 22.68 (0.98) 22.53 (0.98) 22.69 (0.98)
53 59.88 61.42 (0.97) 60.77 (0.99) 60.42 (0.99)
54 32.08 32.89 (0.98) 32.73 (0.98) 32.67 (0.98)
55 6.83 6.97 (0.98) 6.92 (0.99) 7.32 (0.93)
56 97.00 99.09 (0.98) 98.31 (0.99) 97.80 (0.99)
57 66.01 67.76 (0.97) 67.18 (0.98) 66.83 (0.99)
58 48.12 48.83 (0.99) 48.72 (0.99) 48.63 (0.99)
59 13.30 13.60 (0.98) 13.54 (0.98) 13.80 (0.96)
60 79.56 81.58 (0.98) 80.94 (0.98) 80.23 (0.99)
61 21.91 22.31 (0.98) 22.26 (0.98) 22.36 (0.98)
62 66.22 68.48 (0.97) 67.40 (0.98) 66.80 (0.99)
63 69.06 70.55 (0.98) 69.91 (0.99) 69.35 (1.00)
64 29.58 30.07 (0.98) 29.99 (0.99) 30.09 (0.98)
65 36.84 37.53 (0.98) 37.28 (0.99) 37.29 (0.99)
66 8.06 8.28 (0.97) 8.23 (0.98) 8.63 (0.93)
67 122.74 124.79 (0.98) 124.25 (0.99) 123.38 (0.99)
68 8.79 8.92 (0.99) 8.86 (0.99) 9.24 (0.95)
69 43.11 44.13 (0.98) 43.85 (0.98) 43.63 (0.99)
70 11.79 12.00 (0.98) 11.97 (0.99) 12.25 (0.96)
71 36.20 36.83 (0.98) 36.66 (0.99) 36.64 (0.99)
72 46.44 47.47 (0.98) 46.91 (0.99) 46.86 (0.99)
73 43.02 44.07 (0.98) 43.77 (0.98) 43.65 (0.99)
74 7.06 7.24 (0.97) 7.14 (0.99) 7.49 (0.94)
77 13.30 13.65 (0.97) 13.51 (0.98) 13.79 (0.96)
stotal 1.00 0.99 1.00 1.00

D. Hespe, S. Lamm, and C. Schorr 17:19

Table 5 Detailed results for our decomposition-based strategies on the DIMACS instances.

Graph max. deg. articulation edge cuts nested dis.
DIMACS t t (s) t (s) t (s)
C125.9 0.98 1.01 (0.97) 1.00 (0.98) 1.43 (0.69)
MANN_a27 0.48 0.49 (0.98) 0.49 (0.98) 0.98 (0.49)
MANN_a45 73.80 75.24 (0.98) 74.93 (0.98) 74.70 (0.99)
brock200_1 137.34 140.20 (0.98) 137.56 (1.00) 140.01 (0.98)
brock200_2 4.59 4.69 (0.98) 4.70 (0.98) 10.07 (0.46)
brock200_3 22.06 22.33 (0.99) 21.92 (1.01) 26.39 (0.84)
brock200_4 28.34 28.72 (0.99) 28.35 (1.00) 32.48 (0.87)
gen200_p0.9_44 152.61 156.30 (0.98) 154.50 (0.99) 153.49 (0.99)
gen200_p0.9_55 131.24 134.64 (0.97) 133.04 (0.99) 132.58 (0.99)
hamming8-4 19.29 19.65 (0.98) 19.49 (0.99) 25.38 (0.76)
johnson16-2-4 39.87 41.17 (0.97) 40.21 (0.99) 40.33 (0.99)
keller4 2.62 2.68 (0.98) 2.65 (0.99) 4.37 (0.60)
p_hat1000-1 860.24 868.71 (0.99) 870.04 (0.99) 906.24 (0.95)
p_hat1000-2 33,035.45 33,656.50 (0.98) 33,508.10 (0.99) 33,247.45 (0.99)
p_hat1500-1 8,935.77 9,015.15 (0.99) 9,015.74 (0.99) 8,994.28 (0.99)
p_hat300-1 3.70 3.79 (0.98) 3.82 (0.97) 23.94 (0.15)
p_hat300-2 5.53 5.66 (0.98) 5.63 (0.98) 21.76 (0.25)
p_hat300-3 189.58 191.06 (0.99) 188.96 (1.00) 196.89 (0.96)
p_hat500-1 38.63 39.26 (0.98) 39.41 (0.98) 59.29 (0.65)
p_hat500-2 96.36 97.82 (0.99) 97.58 (0.99) 107.29 (0.90)
p_hat500-3 14,860.70 14,895.15 (1.00) 14,979.65 (0.99) 14,909.35 (1.00)
p_hat700-1 163.30 162.84 (1.00) 163.17 (1.00) 177.34 (0.92)
p_hat700-2 906.32 917.87 (0.99) 914.96 (0.99) 917.50 (0.99)
san1000 895.34 902.64 (0.99) 903.38 (0.99) 920.28 (0.97)
san200_0.7_1 10.85 11.01 (0.98) 10.90 (1.00) 14.45 (0.75)
san200_0.7_2 0.33 0.34 (0.95) 0.32 (1.01) 2.34 (0.14)
san200_0.9_1 13.93 14.37 (0.97) 14.08 (0.99) 14.94 (0.93)
san200_0.9_2 34.15 34.77 (0.98) 34.35 (0.99) 34.90 (0.98)
san200_0.9_3 1,069.00 1,094.54 (0.98) 1,078.09 (0.99) 1,071.31 (1.00)
san400_0.5_1 9.21 9.35 (0.98) 9.36 (0.98) 16.76 (0.55)
san400_0.7_1 1,125.52 1,139.20 (0.99) 1,131.38 (0.99) 1,130.07 (1.00)
san400_0.7_2 3,062.38 3,053.97 (1.00) 3,083.59 (0.99) 3,073.66 (1.00)
san400_0.7_3 4,411.82 4,464.53 (0.99) 4,447.19 (0.99) 4,423.16 (1.00)
sanr200_0.7 48.35 49.51 (0.98) 48.71 (0.99) 52.13 (0.93)
sanr200_0.9 679.25 696.41 (0.98) 688.51 (0.99) 680.29 (1.00)
sanr400_0.5 373.40 374.20 (1.00) 374.26 (1.00) 380.08 (0.98)
sanr400_0.7 29,766.80 30,390.80 (0.98) 30,270.10 (0.98) 30,001.55 (0.99)
stotal 1.00 0.99 0.99 0.99

Table 6 Detailed results for our decomposition-based strategies on sparse networks.

Graph max. deg. articulation edge cuts nested dis.
Sparse net. t t (s) t (s) t (s)
as-skitter 2,058.32 2,100.57 (0.98) 2,071.06 (0.99) 2,068.46 (1.00)
baidu-relatedpages 0.82 0.88 (0.94) 0.86 (0.96) 7.22 (0.11)
bay 1.68 1.87 (0.90) 1.31 (1.28) 23.43 (0.07)
col 5,019.93 4,737.48 (1.06) 3,872.65 (1.30) 5,101.46 (0.98)
fla 25.33 23.47 (1.08) 24.58 (1.03) 329.42 (0.08)
hudong-internallink 0.99 1.55 (0.64) 1.46 (0.68) 1.99 (0.50)
in-2004 5.22 5.46 (0.96) 5.37 (0.97) 16.18 (0.32)
libimseti 1,497.59 1,507.54 (0.99) 1,503.49 (1.00) 1,704.53 (0.88)
musae-twitch_DE 20,906.93 21,470.00 (0.97) 20,987.30 (1.00) 20,949.83 (1.00)
musae-twitch_FR 37.13 37.81 (0.98) 37.32 (1.00) 41.55 (0.89)
petster-fs-dog 6.82 10.21 (0.67) 8.67 (0.79) 12.47 (0.55)
soc-LiveJournal1 9.87 11.50 (0.86) 11.06 (0.89) 23.91 (0.41)
web-BerkStan 134.22 360.88 (0.37) 138.84 (0.97) 207.92 (0.65)
web-Google 0.61 0.85 (0.71) 0.68 (0.89) 1.46 (0.41)
web-NotreDame 12.10 9.07 (1.33) 12.11 (1.00) 48.83 (0.25)
web-Stanford >36,000 8.38 (>4,294.84) 27.41 (>1,313.18) 42.80 (>841.16)
stotal 1.00 2.17 2.29 2.15

SEA 2021

17:20 Targeted Branching for the MIS Problem

Table 7 Detailed results for our reduction-based strategies on the PACE instances.

Graph max. deg. Twin Funnel Unconfined Packing Combined
PACE t t (s) t (s) t (s) t (s) t (s)
05 1.97 1.96 (1.01) 1.99 (0.99) 2.04 (0.97) 1.66 (1.19) 2.11 (0.93)
06 0.85 0.85 (1.00) 0.74 (1.15) 0.92 (0.92) 0.67 (1.27) 0.81 (1.05)
10 2.24 2.23 (1.01) 2.23 (1.00) 2.32 (0.97) 1.88 (1.19) 2.06 (1.09)
16 25,836.77 25,856.57 (1.00) 22,446.13 (1.15) 34,642.13 (0.75) 18,511.88 (1.40) 22,590.78 (1.14)
19 3.17 3.14 (1.01) 2.90 (1.09) 3.25 (0.98) 2.60 (1.22) 3.04 (1.04)
31 74.37 74.31 (1.00) 58.14 (1.28) 73.23 (1.02) 55.99 (1.33) 54.11 (1.37)
33 1.01 1.01 (1.00) 1.15 (0.88) 1.14 (0.89) 1.02 (0.99) 1.29 (0.79)
35 7.64 7.63 (1.00) 7.37 (1.04) 7.90 (0.97) 6.54 (1.17) 7.75 (0.99)
36 1.84 1.86 (0.99) 11.44 (0.16) 162.22 (0.01) 1.90 (0.97) 75.52 (0.02)
37 10.27 10.31 (1.00) 10.27 (1.00) 10.63 (0.97) 8.21 (1.25) 10.90 (0.94)
38 12.33 12.36 (1.00) 11.08 (1.11) 11.40 (1.08) 11.44 (1.08) 10.05 (1.23)
39 93.79 93.99 (1.00) 32.43 (2.89) 127.32 (0.74) 93.99 (1.00) 98.25 (0.95)
40 4,690.64 4,689.28 (1.00) 4,285.37 (1.09) 4,530.07 (1.04) 4,176.59 (1.12) 4,131.79 (1.14)
41 48.56 48.42 (1.00) 42.00 (1.16) 48.66 (1.00) 36.87 (1.32) 38.74 (1.25)
42 37.32 37.19 (1.00) 35.69 (1.05) 37.60 (0.99) 28.55 (1.31) 36.07 (1.03)
43 175.11 174.63 (1.00) 158.08 (1.11) 172.91 (1.01) 130.75 (1.34) 154.96 (1.13)
44 92.90 92.97 (1.00) 82.64 (1.12) 94.37 (0.98) 69.68 (1.33) 90.20 (1.03)
45 25.41 25.37 (1.00) 25.29 (1.01) 26.20 (0.97) 19.83 (1.28) 26.38 (0.96)
46 109.55 109.47 (1.00) 92.61 (1.18) 108.01 (1.01) 79.76 (1.37) 82.72 (1.32)
47 58.47 58.18 (1.00) 53.01 (1.10) 59.16 (0.99) 42.32 (1.38) 52.28 (1.12)
48 25.28 25.21 (1.00) 22.65 (1.12) 25.72 (0.98) 18.56 (1.36) 22.93 (1.10)
49 17.80 17.76 (1.00) 16.43 (1.08) 19.02 (0.94) 12.97 (1.37) 16.18 (1.10)
50 48.87 48.90 (1.00) 46.07 (1.06) 49.75 (0.98) 37.70 (1.30) 47.09 (1.04)
51 56.70 56.58 (1.00) 51.45 (1.10) 57.63 (0.98) 43.45 (1.31) 50.32 (1.13)
52 22.16 22.12 (1.00) 20.56 (1.08) 22.99 (0.96) 15.78 (1.40) 20.82 (1.06)
53 59.88 59.88 (1.00) 54.78 (1.09) 60.43 (0.99) 46.87 (1.28) 55.74 (1.07)
54 32.08 32.02 (1.00) 29.29 (1.10) 32.89 (0.98) 26.55 (1.21) 27.76 (1.16)
55 6.83 6.80 (1.00) 6.50 (1.05) 6.99 (0.98) 5.23 (1.31) 6.35 (1.08)
56 97.00 96.45 (1.01) 88.78 (1.09) 98.09 (0.99) 70.18 (1.38) 81.46 (1.19)
57 66.01 65.97 (1.00) 57.60 (1.15) 65.90 (1.00) 49.95 (1.32) 52.45 (1.26)
58 48.12 47.74 (1.01) 45.82 (1.05) 48.56 (0.99) 35.94 (1.34) 46.62 (1.03)
59 13.30 13.30 (1.00) 12.73 (1.04) 13.72 (0.97) 10.61 (1.25) 12.30 (1.08)
60 79.56 79.36 (1.00) 71.73 (1.11) 80.70 (0.99) 59.65 (1.33) 71.85 (1.11)
61 21.91 21.91 (1.00) 20.47 (1.07) 22.28 (0.98) 17.50 (1.25) 21.06 (1.04)
62 66.22 66.18 (1.00) 59.16 (1.12) 67.83 (0.98) 49.87 (1.33) 59.64 (1.11)
63 69.06 68.81 (1.00) 61.23 (1.13) 70.81 (0.98) 53.40 (1.29) 58.65 (1.18)
64 29.58 29.38 (1.01) 26.96 (1.10) 29.46 (1.00) 22.35 (1.32) 26.78 (1.10)
65 36.84 36.72 (1.00) 33.42 (1.10) 37.93 (0.97) 28.23 (1.30) 31.17 (1.18)
66 8.06 8.06 (1.00) 7.47 (1.08) 8.21 (0.98) 6.21 (1.30) 7.97 (1.01)
67 122.74 122.34 (1.00) 113.33 (1.08) 123.58 (0.99) 95.55 (1.28) 112.43 (1.09)
68 8.79 8.75 (1.00) 8.92 (0.99) 8.94 (0.98) 6.69 (1.31) 8.57 (1.03)
69 43.11 43.11 (1.00) 38.46 (1.12) 44.18 (0.98) 33.88 (1.27) 39.86 (1.08)
70 11.79 11.73 (1.00) 10.09 (1.17) 12.22 (0.96) 9.71 (1.21) 9.76 (1.21)
71 36.20 35.91 (1.01) 32.22 (1.12) 35.37 (1.02) 27.23 (1.33) 33.39 (1.08)
72 46.44 46.18 (1.01) 41.66 (1.11) 46.68 (0.99) 36.28 (1.28) 41.86 (1.11)
73 43.02 43.00 (1.00) 40.38 (1.07) 43.77 (0.98) 31.91 (1.35) 43.51 (0.99)
74 7.06 7.06 (1.00) 6.67 (1.06) 7.86 (0.90) 5.48 (1.29) 6.96 (1.01)
77 13.30 13.25 (1.00) 12.74 (1.04) 13.80 (0.96) 10.61 (1.25) 12.31 (1.08)
stotal 1.00 1.00 1.14 0.79 1.34 1.14

D. Hespe, S. Lamm, and C. Schorr 17:21

Table 8 Detailed results for our reduction-based strategies on the DIMACS instances.

Graph max. deg. Twin Funnel Unconfined Packing Combined
DIMACS t t (s) t (s) t (s) t (s) t (s)
C125.9 0.98 0.98 (1.00) 0.92 (1.07) 0.98 (1.00) 0.85 (1.15) 0.91 (1.08)
MANN_a27 0.48 0.48 (1.00) 0.57 (0.85) 0.52 (0.92) 0.48 (1.01) 0.59 (0.82)
MANN_a45 73.80 73.76 (1.00) 83.81 (0.88) 78.58 (0.94) 71.86 (1.03) 85.47 (0.86)
brock200_1 137.34 136.98 (1.00) 140.15 (0.98) 137.32 (1.00) 135.14 (1.02) 138.64 (0.99)
brock200_2 4.59 4.60 (1.00) 4.71 (0.98) 4.59 (1.00) 4.58 (1.00) 4.70 (0.98)
brock200_3 22.06 21.78 (1.01) 22.38 (0.99) 21.85 (1.01) 21.76 (1.01) 22.46 (0.98)
brock200_4 28.34 28.15 (1.01) 29.09 (0.97) 28.16 (1.01) 28.25 (1.00) 29.24 (0.97)
gen200_p0.9_44 152.61 152.40 (1.00) 136.94 (1.11) 169.47 (0.90) 132.81 (1.15) 149.63 (1.02)
gen200_p0.9_55 131.24 131.20 (1.00) 125.61 (1.04) 127.51 (1.03) 102.10 (1.29) 50.64 (2.59)
hamming8-4 19.29 19.30 (1.00) 19.78 (0.98) 19.12 (1.01) 19.35 (1.00) 19.67 (0.98)
johnson16-2-4 39.87 39.79 (1.00) 41.63 (0.96) 41.40 (0.96) 38.70 (1.03) 43.09 (0.93)
keller4 2.62 2.62 (1.00) 2.68 (0.98) 2.63 (1.00) 2.58 (1.02) 2.65 (0.99)
p_hat1000-1 860.24 859.74 (1.00) 870.92 (0.99) 873.91 (0.98) 862.77 (1.00) 871.60 (0.99)
p_hat1000-2 33,035.45 33,314.15 (0.99) 32,999.15 (1.00) 32,812.80 (1.01) 30,913.22 (1.07) 31,202.52 (1.06)
p_hat1500-1 8,935.77 8,935.50 (1.00) 9,009.69 (0.99) 8,954.18 (1.00) 8,958.19 (1.00) 9,046.97 (0.99)
p_hat300-1 3.70 3.69 (1.00) 3.78 (0.98) 3.69 (1.00) 3.68 (1.00) 3.78 (0.98)
p_hat300-2 5.53 5.53 (1.00) 5.68 (0.97) 5.54 (1.00) 5.48 (1.01) 5.63 (0.98)
p_hat300-3 189.58 187.77 (1.01) 189.16 (1.00) 185.68 (1.02) 175.01 (1.08) 179.53 (1.06)
p_hat500-1 38.63 38.70 (1.00) 39.36 (0.98) 39.03 (0.99) 38.61 (1.00) 39.34 (0.98)
p_hat500-2 96.36 96.39 (1.00) 97.87 (0.98) 96.21 (1.00) 95.08 (1.01) 96.96 (0.99)
p_hat500-3 14,860.70 14,887.15 (1.00) 14,624.90 (1.02) 14,765.90 (1.01) 13,429.92 (1.11) 13,712.38 (1.08)
p_hat700-1 163.30 160.75 (1.02) 163.63 (1.00) 160.81 (1.02) 163.24 (1.00) 163.31 (1.00)
p_hat700-2 906.32 908.46 (1.00) 914.56 (0.99) 906.78 (1.00) 866.08 (1.05) 879.99 (1.03)
san1000 895.34 898.16 (1.00) 906.21 (0.99) 901.40 (0.99) 913.29 (0.98) 932.29 (0.96)
san200_0.7_1 10.85 10.78 (1.01) 11.01 (0.99) 10.91 (0.99) 10.93 (0.99) 11.06 (0.98)
san200_0.7_2 0.33 0.32 (1.04) 0.33 (0.98) 0.31 (1.07) 0.32 (1.01) 0.33 (0.99)
san200_0.9_1 13.93 13.90 (1.00) 13.35 (1.04) 4.94 (2.82) 12.03 (1.16) 12.13 (1.15)
san200_0.9_2 34.15 33.87 (1.01) 21.46 (1.59) 12.32 (2.77) 15.80 (2.16) 10.01 (3.41)
san200_0.9_3 1,069.00 1,068.17 (1.00) 1,016.33 (1.05) 639.01 (1.67) 843.40 (1.27) 600.71 (1.78)
san400_0.5_1 9.21 9.21 (1.00) 9.37 (0.98) 9.13 (1.01) 9.24 (1.00) 9.37 (0.98)
san400_0.7_1 1,125.52 1,121.99 (1.00) 1,146.32 (0.98) 1,125.12 (1.00) 1,132.10 (0.99) 1,151.14 (0.98)
san400_0.7_2 3,062.38 3,063.23 (1.00) 3,066.62 (1.00) 3,463.29 (0.88) 3,048.94 (1.00) 3,489.72 (0.88)
san400_0.7_3 4,411.82 4,405.26 (1.00) 4,487.18 (0.98) 4,398.18 (1.00) 4,497.81 (0.98) 4,521.80 (0.98)
sanr200_0.7 48.35 48.34 (1.00) 50.09 (0.97) 48.41 (1.00) 48.49 (1.00) 50.25 (0.96)
sanr200_0.9 679.25 679.65 (1.00) 633.59 (1.07) 664.95 (1.02) 531.48 (1.28) 567.49 (1.20)
sanr400_0.5 373.40 370.59 (1.01) 376.93 (0.99) 377.71 (0.99) 370.72 (1.01) 376.10 (0.99)
sanr400_0.7 29,766.80 29,838.40 (1.00) 30,466.35 (0.98) 29,844.65 (1.00) 29,473.60 (1.01) 30,242.80 (0.98)
stotal 1.00 1.00 0.99 1.00 1.04 1.03

Table 9 Detailed results for our reduction-based strategies on sparse networks.

Graph max. deg. Twin Funnel Unconfined Packing Combined
Sparse net. t t (s) t (s) t (s) t (s) t (s)
as-skitter 2,058.32 2,054.41 (1.00) 1,849.79 (1.11) 1,977.94 (1.04) 1,681.87 (1.22) 1,704.73 (1.21)
baidu-relatedpages 0.82 0.80 (1.02) 0.84 (0.97) 0.85 (0.97) 0.83 (0.98) 0.93 (0.88)
bay 1.68 1.68 (1.00) 8.22 (0.20) 4.71 (0.36) 1.89 (0.89) 8.38 (0.20)
col 5,019.93 5,752.08 (0.87) 5,416.72 (0.93) 8,187.80 (0.61) 9,370.05 (0.54) 5,924.10 (0.85)
fla 25.33 25.41 (1.00) 45.62 (0.56) 76.60 (0.33) 34.78 (0.73) 42.75 (0.59)
hudong-internallink 0.99 1.31 (0.76) 1.27 (0.78) 1.21 (0.82) 1.55 (0.64) 1.12 (0.88)
in-2004 5.22 4.88 (1.07) 5.25 (0.99) 10.85 (0.48) 5.50 (0.95) 10.73 (0.49)
libimseti 1,497.59 1,452.17 (1.03) 1,620.09 (0.92) 1,440.71 (1.04) 1,476.25 (1.01) 1,706.07 (0.88)
musae-twitch_DE 20,906.93 20,996.87 (1.00) 21,190.67 (0.99) 22,650.53 (0.92) 19,345.03 (1.08) 23,006.50 (0.91)
musae-twitch_FR 37.13 37.04 (1.00) 38.58 (0.96) 41.15 (0.90) 35.60 (1.04) 42.46 (0.87)
petster-fs-dog 6.82 6.62 (1.03) 8.16 (0.84) 8.66 (0.79) 9.68 (0.70) 9.20 (0.74)
soc-LiveJournal1 9.87 6.64 (1.49) 9.57 (1.03) 9.49 (1.04) 11.33 (0.87) 10.69 (0.92)
web-BerkStan 134.22 135.47 (0.99) 122.30 (1.10) 146.94 (0.91) 123.60 (1.09) 174.07 (0.77)
web-Google 0.61 0.53 (1.15) 0.69 (0.87) 0.68 (0.89) 0.78 (0.78) 0.68 (0.89)
web-NotreDame 12.10 12.63 (0.96) 15.23 (0.79) 12.38 (0.98) 14.09 (0.86) 17.52 (0.69)
web-Stanford >36,000 >36,000 >36,000 >36,000 17,886.35 (>2.01) 17,989.97 (>2.00)
stotal 1.00 0.97 0.98 0.86 1.31 1.30

SEA 2021

Nearest-Neighbor Queries in Customizable
Contraction Hierarchies and Applications
Valentin Buchhold ! Ï

Karlsruhe Institute of Technology, Germany

Dorothea Wagner ! Ï

Karlsruhe Institute of Technology, Germany

Abstract
Customizable contraction hierarchies are one of the most popular route planning frameworks in
practice, due to their simplicity and versatility. In this work, we present a novel algorithm for
finding k-nearest neighbors in customizable contraction hierarchies by systematically exploring
the associated separator decomposition tree. Compared to previous bucket-based approaches, our
algorithm requires much less target-dependent preprocessing effort. Moreover, we use our novel
approach in two concrete applications. The first application are online k-closest point-of-interest
queries, where the points of interest are only revealed at query time. We achieve query times of about
25 milliseconds on a continental road network, which is fast enough for interactive systems. The
second application is travel demand generation. We show how to accelerate a recently introduced
travel demand generator by a factor of more than 50 using our novel nearest-neighbor algorithm.

2012 ACM Subject Classification Theory of computation → Shortest paths; Theory of computation
→ Nearest neighbor algorithms; Applied computing → Transportation

Keywords and phrases Nearest neighbors, points of interest, travel demand generation, radiation
model, customizable contraction hierarchies

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.18

Supplementary Material Software: https://github.com/vbuchhold/routing-framework
archived at swh:1:dir:10f1a2a6b742bea7b45d72d563cf0de934e9648b

1 Introduction

Motivated by route planning in road networks, the last two decades have seen intense
research on speedup techniques [4] for Dijkstra’s shortest-path algorithm [17], which rely
on a slow preprocessing phase to enable fast queries. Particularly relevant to real-world
production systems are customizable speedup techniques, which split preprocessing into
a metric-independent part, taking only the network structure into account, and a metric-
dependent part (the customization), incorporating edge weights (the metric). A fast and
lightweight customization is a key requirement for important features such as real-time
traffic updates and personalized metrics. The most prominent customizable techniques are
customizable route planning (CRP) [12] and customizable contraction hierarchies (CCHs) [16].
Both achieve similar performance but with different trade-offs, and both are in use in industry.

Modern map-based services must support not only point-to-point queries but also many
other types of queries. Over the years, both CRP and CCHs have been extended to numerous
types of queries and problems. Efentakis and Pfoser [18] propose one-to-all and one-to-many
algorithms within the CRP framework, and Efentakis et al. [19] extend CRP to nearest-
neighbor queries. Delling and Werneck [14] present alternative CRP-based algorithms for
the one-to-many and nearest-neighbor problem. Baum et al. [6] extend CRP so that it can
find energy-optimal paths for electric vehicles, and Kobitzsch et al. [30] so that it can find
multiple alternate routes from the source to the target.

© Valentin Buchhold and Dorothea Wagner;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:buchhold@kit.edu
https://i11www.iti.kit.edu/en/members/valentin_buchhold/index
mailto:dorothea.wagner@kit.edu
https://i11www.iti.kit.edu/en/members/dorothea_wagner/index
https://doi.org/10.4230/LIPIcs.SEA.2021.18
https://github.com/vbuchhold/routing-framework
https://archive.softwareheritage.org/swh:1:dir:10f1a2a6b742bea7b45d72d563cf0de934e9648b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Nearest-Neighbor Queries in CCHs and Applications

Customizable contraction hierarchies and in particular contraction hierarchies (CHs) [23],
the predecessors of CCHs, have also received considerable attention; see [4] for a recent
overview. Since each CCH is a CH, all algorithms operating on CHs carry over to CCHs.
Delling et al. [11] introduce PHAST, a one-to-all algorithm on CHs. RPHAST [13] is an
extension to the one-to-many problem. Alternatively, one-to-many queries on CHs can be
solved using the bucket-based approach by Knopp et al. [29]. Geisberger [22] extends the
bucket-based approach to the nearest-neighbor problem.

In this work, we introduce a novel algorithm for finding k-nearest neighbors in CCHs.
The k-nearest neighbor problem takes as input a graph G = (V, E), a source s ∈ V , a
nonempty set T ⊆ V of targets, and an integer k with 1 ≤ k ≤ |V |. The goal is to find
the k targets ti ∈ T closest to s, i.e., those that minimize dist(s, ti), where dist(v, w) is the
shortest-path distance from v to w. Modern nearest-neighbor algorithms tailored to road
networks work in up to four phases [14, 13, 2]. Preprocessing takes as input only the network
structure, customization incorporates the metric into the preprocessed data, selection (or
target indexing) incorporates the set of targets into the data, and queries take a source and
find the k targets closest to the source. Our algorithm follows this standard four-phase setup.

Note that there is already a nearest-neighbor algorithm by Geisberger [22] which operates
on CHs. However, its relatively heavy selection phase makes it only suitable for offline
queries, where the set of targets is known in advance. This is the case for simple store locators
of franchises. However, more common in interactive map-based services are online queries,
where the set of targets is only revealed at query time. An example is the computation of
the closest businesses whose name contains a user-defined keyword. We are not aware of any
CH-based algorithm that can solve such queries.

There is indeed an algorithm [14] for online nearest-neighbor queries within the CRP
framework. As already mentioned, however, CRP and CCHs are on a par with each other
and both used in industry with good reasons. For a production system based on the CCH
framework, it is usually not desirable to simultaneously maintain a CRP setup to support
nearest-neighbor queries. All types of queries should be solvable within the CCH framework.

Related Work. We start by briefly reviewing the CH- and CRP-based nearest-neighbor
algorithms mentioned above. Contraction hierarchies (CHs) [23] are a point-to-point route
planning technique that is much faster than Dijkstra’s algorithm (four orders of magnitude
on continental networks). CHs replace systematic exploration of all vertices in the network
with two much smaller search spaces (forward and reverse) in directed acyclic graphs, in
which each edge leads to a “more important” vertex.

The basic idea behind the bucket-based nearest-neighbor algorithm [22] is to precompute
and store the reverse CH search spaces of the targets during the selection phase. More
precisely, if v appears in the reverse search space from a target t with distance y, then (t, y)
is stored in a bucket B(v) associated with v. The bucket entries are sorted by nondecreasing
distance. The query phase of the bucket-based nearest-neighbor algorithm computes the
forward CH search space from the source s. For each vertex v in the search space from s

with distance x, we scan the bucket B(v). For each entry (t, y) ∈ B(v), we obtain an s–t

path of length x + y. The algorithm maintains the k closest targets seen so far and stops
bucket scans when x + y reaches the distance to the k-th closest target found so far.

Customizable route planning (CRP) [12] is a point-to-point route planning technique that
splits preprocessing into a metric-independent part and a metric-dependent customization.
Metric-independent preprocessing partitions the network into roughly balanced cells and
creates shortcuts between each pair of boundary vertices in the same cell. Customization

V. Buchhold and D. Wagner 18:3

assigns costs to the shortcuts by computing shortest paths within each cell. Queries run a
modification of bidirectional search that uses the shortcuts to skip over cells that contain
neither the source nor the target. For better performance, we use multiple levels of overlays.

The CRP-based nearest-neighbor algorithm [14] marks all cells that contain one or more
targets during the selection phase. Queries run a modification of Dijkstra’s algorithm that
skips over unmarked cells and descends into marked cells. Since the search discovers targets
in increasing order of distance, we can stop when the k-th target is reached.

Of course, there are also nearest-neighbor algorithms tailored to road networks that
are based on neither CRP nor CHs. Arguably the simplest one is incremental network
expansion (INE) [33], which runs Dijkstra’s algorithm until the k-th target is reached.
Another straightforward approach is incremental Euclidean restriction (IER) [33]. The basic
idea behind IER is to repeatedly retrieve the next closest target based on the straight-line
distance (e.g., using an R-tree [26]) and compute the actual distance to it using any shortest-
path algorithm as a black box. IER stops when the geometric distance to the next closest
target exceeds the shortest-path distance to the k-th closest target so far encountered.

Since IER had only been evaluated using Dijkstra’s algorithm, its performance was
generally regarded as uncompetitive in practice. In particular, IER combined with Dijkstra
cannot possibly be faster than INE. More recently, IER was combined with pruned highway
labeling [3], yielding one of the fastest nearest-neighbor algorithms in many cases [2, 1].

More sophisticated nearest-neighbor algorithms are SILC [34, 35], ROAD [32, 31], and
G-tree [40, 39]. Since previously published results had disagreed on the relative performance
of these algorithms, Abeywickrama et al. [2] carefully reimplemented and reevaluated them
once more. While G-tree was faster than SILC and ROAD in most cases, the differences
were relatively small. Delling and Werneck [14] compare the CRP-based nearest-neighbor
algorithm to G-tree, claiming that CRP outperforms G-tree. To sum up, all algorithms have
comparable performance, with selection and query times of the same order of magnitude.
However, a big advantage of CRP (and also of our algorithm) compared to the other
approaches is a fast and lightweight customization phase, enabling important features such
as real-time traffic updates and personalized metrics.

Our Contribution. We introduce a novel algorithm for finding k-nearest neighbors that
operates on CCHs. Our algorithm systematically explores the associated separator decompo-
sition tree in a way similar to nearest-neighbor queries [21] in kd-trees [7]. Its selection phase
is orders of magnitude faster than the one of previous bucket-based approaches, which makes
it a natural fit for online k-closest point-of-interest (POI) queries. On the road network
of Western Europe, we achieve selection times of about 20 milliseconds and query times
of a few milliseconds or less. This enables interactive online queries, which need to run
both the selection and query phase for each client’s request. We are not aware of any other
nearest-neighbor algorithm operating on CCHs that enables interactive online queries.

In addition to closest-POI queries, we also look at a second concrete application. We
show how a slightly modified version of our nearest-neighbor algorithm can be used for
travel demand generation (or mobility flow prediction). Here, the problem we consider is
computing the number Tvw of trips between each pair (v, w) of vertices v, w in a road network.
Depending on the expected length of the generated trips, we accelerate a recently introduced
demand generator [8] by a factor of more than 50.

Outline. Section 2 reviews the CCH framework. Section 3 describes our novel nearest-
neighbor algorithm in detail. Section 4 continues with two concrete applications in which our
algorithm can be used. Section 5 presents an extensive experimental evaluation of various
closest-POI algorithms and travel demand generators. Section 6 concludes with final remarks.

SEA 2021

18:4 Nearest-Neighbor Queries in CCHs and Applications

2 Preliminaries

We treat a road network as a bidirected graph G = (V, E) where vertices represent intersec-
tions and edges represent road segments. Each edge (v, w) has a nonnegative length ℓ(v, w)
that represents the travel time from v to w. A one-way road segment from v to w can be
modeled by setting ℓ(w, v) =∞. The shortest-path distance (i.e., travel time) from v to w

in G is denoted by dist(v, w). For simplicity, we assume that G is strongly connected.

Separator Decompositions. A separator decomposition [5] of a strongly connected n-vertex
bidirected graph G = (V, E) is a rooted tree T = (X , E) whose nodes X ∈ X are disjoint
subsets of V and that is recursively defined as follows. If n = 1, then T consists of a single
node X = V . If n > 1, then T consists of a root X ⊆ V that separates G into multiple
strongly connected subgraphs G0, . . . , Gd−1. The children of X are the roots of separator
decompositions of G0, . . . , Gd−1. For clarity, an element v ∈ V is always called vertex and an
element X ∈ X is always called node. We denote by TX the subtree of T rooted at X and
we denote by GX the subgraph of G induced by the vertices contained in TX . The vertex set
of GX is represented by V (GX), and the edge set by E(GX).

In general, a separator X ∈ X should be small, and the resulting subgraphs G0, . . . , Gd

should be balanced. Therefore, separator decompositions are typically obtained by recursive
dissection (e.g., using Inertial Flow [36], FlowCutter [27], or InertialFlowCutter [25]).

Nested Dissection Orders. A separator decomposition T of G induces a (not necessarily
unique) nested dissection order π on the vertices in G [24]. To obtain one, we number the
vertices in the order in which they are visited by a postorder tree walk of T , where the vertices
in each node are visited in any order. Note that the resulting order π = ⟨π0, . . . , πd−1, πd⟩ is
split into d+1 contiguous subsequences πi, where d is the number of children Yj of the root X

of T . The subsequences π0, . . . , πd−1 are nested dissection orders on V (GY0), . . . , V (GYd−1),
and πd is an arbitrary order on X. (In the presence of turn costs, picking πd carefully
improves performance [10].) We denote by π−1(v) the rank of v in π.

Customizable Contraction Hierarchies. Customizable contraction hierarchies (CCH) [16]
are a three-phase speedup technique to accelerate point-to-point shortest-path computations.
The preprocessing phase computes a separator decomposition of G, determines an associated
nested dissection order on the vertices in G, and contracts them in this order. To contract a
vertex v, it is temporarily removed, and shortcut edges are added between its neighbors. The
output of preprocessing is the input graph plus the shortcuts added during contraction. We
call this graph H. We denote by N↑

H(v) the set of neighbors of v in H ranked higher than v.
The customization phase computes the lengths of the edges in H by processing them

in bottom-up fashion. To process an edge (u, w), it enumerates all triangles {v, u, w} in H

where v has lower rank than u and w, and checks whether the path ⟨u, v, w⟩ improves the
length of (u, w). Alternatively, Buchhold et al. [9] enumerate all triangles {u, w, v′} in H

where v′ has higher rank than u and w, and check whether the path ⟨v′, u, w⟩ improves the
length of (v′, w), which accelerates customization by a factor of 2.

There are two query algorithms. First, one can run a bidirectional Dijkstra search on H

that only relaxes edges leading to vertices of higher ranks. Let a forward CCH search be a
Dijkstra search that relaxes only outgoing upward edges, and a reverse CCH search one that
relaxes only incoming downward edges. A CCH query runs a forward CCH search from the
source and a reverse CCH search from the target until the search frontiers meet.

V. Buchhold and D. Wagner 18:5

Algorithm 1 Recursive formulation of our nearest-neighbor algorithm. At the first call,
the parameter X is the root of the separator decomposition tree.

1 Function searchSepDecomp(X)
2 if the recursion threshold is deceeded then
3 examine all targets t ∈ T ∩ V (GX) in the subgraph GX

4 return
5 examine all targets t ∈ T ∩X in the separator X

6 C ← ∅
7 foreach child Y of X do
8 if T ∩ V (GY) ̸= ∅ then
9 if s ∈ V (GY) then

10 C ← C ∪ {(Y, 0)}
11 else
12 compute the distance dist(s, Y) from s to a closest vertex in GY

13 C ← C ∪ {(Y, dist(s, Y))}

14 foreach (Y, dist(s, Y)) ∈ C in ascending order of dist(s, Y) do
15 if dist(s, Y) is less than the distance to the k-th closest target seen so far then
16 searchSepDecomp(Y)

In addition, there is a query algorithm based on the elimination tree of H. The parent
of a vertex v in the elimination tree is the lowest-ranked vertex in N↑

H(v). Bauer et al. [5]
prove that the ancestors of a vertex v in the elimination tree are exactly the set of vertices
scanned by a Dijkstra-based CCH search from v. An elimination tree search from v therefore
scans all vertices in the CCH search space of v in order of increasing rank by traversing the
path in the elimination tree from v to the root. Since elimination tree queries use no priority
queues, they are usually faster than Dijkstra-based CCH queries.

3 Our Nearest-Neighbor Algorithm

Our algorithm for finding nearest neighbors in CCHs is inspired by the algorithm of Friedman
et al. [21] for finding nearest neighbors in kd-trees [7]. (However, our description requires
no knowledge of that algorithm.) During the search, we maintain the k closest targets seen
so far in a max-heap T̂ using their distances from the source as keys. Initially, T̂ = {⊥}
with key(⊥) = ∞. The basic idea is as follows: We systematically explore the separator
decomposition tree, but visit only nodes X whose corresponding subgraph GX contains
vertices that are closer to the source than the k-th closest target found so far. For each
visited node X, we compute the shortest-path distance from the source to each target in the
separator X (if any), and update T̂ accordingly.

The precise algorithm is most easily formulated as a recursive procedure (see Algorithm 1).
It takes a node X in the separator decomposition tree as parameter. At the first call, X is
the root of the separator decomposition. The first step of the procedure is to examine all
targets t ∈ T ∩X in the separator X. To examine a target t, we compute the shortest-path
distance dist(s, t) from s to t with a standard elimination tree search. If dist(s, t) is less than
the maximum key in T̂ , we insert t into the heap. If T̂ now contains k + 1 elements, we
delete the maximum element from the heap and discard it.

SEA 2021

18:6 Nearest-Neighbor Queries in CCHs and Applications

Next, we loop over all children Y of X in the separator decomposition tree. If the
subgraph GY induced by the vertices in TY contains any targets, we add a pair (Y, dist(s, Y))
to a set C. We denote by dist(s, Y) the shortest-path distance from s to a closest vertex in
GY , i.e., dist(s, Y) = minv∈V (GY) dist(s, v). If GY contains the source, this distance is zero.
Otherwise, we have to compute it, which we will discuss in the next sections.

Finally, we loop over all pairs (Y, dist(s, Y)) ∈ C in ascending order of distance from the
source. If dist(s, Y) is less than the distance to the k-th closest target seen so far, we recurse
on Y . Otherwise, TY cannot contain better solutions than those already known.

Note that when GX is large but contains only a few targets, it is less costly to loop
over all these targets than to explore TX until the leaves are reached. Therefore, when the
number of targets in GX drops below a certain threshold, we stop the recursion and examine
all targets t ∈ T ∩ V (GX) in GX (we use a recursion threshold of 8 in our experiments,
determined experimentally). The following sections work out the remaining details.

Accessing Vertices and Targets in Subgraphs. Given a node X in the separator decompo-
sition tree, our algorithm requires easy access to the set of vertices and the set of targets in
the subgraph GX and in the separator X. Accessing the set of vertices in GX and in X is
particularly easy. To improve cache efficiency, the vertices in a CCH are reordered according
to the order of contraction. That is, the vertices are numbered in the order in which they are
visited by a postorder tree walk of T , where the vertices in each node are visited in any order.
Hence, for each X ∈ X , the vertices in GX are numbered contiguously, with the vertices in
GX \X appearing before the vertices in X. To support easy access to the vertices in GX and
in X, we only need to store three indices with each X: the vertex in GX with the smallest
index, the vertex in GX with the largest index, and the vertex in X with the smallest index.

The set T of targets is represented by a sorted array. To make the targets in subgraphs
(or separators) easily accessible, we use an auxiliary array A of size |V |+ 1. The element A[i],
0 ≤ i ≤ |V |, stores the number of targets among the first i vertices. Note that A can be filled
by a single sweep through T and A. To access the targets in GX (or X), we first retrieve
the index l of the first vertex and the index r of the last vertex in GX (or X), as discussed
above. The number of targets in GX (or X) is then A[r + 1]−A[l], and the actual targets
are stored contiguously in T [A[l]], . . . , T [A[r + 1]− 1].

Computing Shortest Paths to Subgraphs. The most straightforward approach to compute
the distance dist(s, X) from s to a closest vertex in GX is a standard Dijkstra-based CCH
query, where the reverse search is initialized with all vertices in GX . Let dr and Qr be the
distance labels and the queue of the reverse search, respectively. To initialize the reverse
search, we set dr[v] = 0 for each vertex v ∈ V (GX), dr[w] =∞ for each vertex w ∈ V \V (GX),
and Qr = V (GX). This yields a correct but inefficient algorithm. However, we can do better.

We define the boundary B(X) of GX as the set of vertices in V \V (GX) that are adjacent
to a vertex in GX , i.e., B(X) = {w ∈ V \ V (GX) : (v, w) ∈ E, v ∈ V (GX)}. Note that the
boundary of any GX is easily accessible without any additional preprocessing.

▶ Lemma 1. Let u be any vertex in GX . Then, π−1(b) > π−1(u) for each b ∈ B(X).

Proof. Consider any vertex b ∈ B(X). Let b be contained in the node Y /∈ V (TX). We claim
that Y lies on the path in T from X to the root R. Assume otherwise, i.e., Y does not lie
on the X–R path. Let Z be the lowest common ancestor of X and Y . Since Z separates GX

and GY in GZ , there is no edge in G that connects GX and GY . This contradicts that b is
adjacent to a vertex in GX . Thus, Y lies on the X–R path. Since the vertices are numbered
in the order in which they are visited by a postorder tree walk of T , the vertices in Y are
assigned higher ranks than the ones in X. In particular, we have π−1(b) > π−1(u). ◀

V. Buchhold and D. Wagner 18:7

▶ Theorem 2. Let u be the highest-ranked vertex in GX . Then, B(X) = N↑
H(u).

Proof. Let b be a vertex in B(X). We claim that b ∈ N↑
H(u). Since GX is by definition

connected, there is a path ⟨u, v0, . . . , vk, b⟩ in G with vi ∈ GX . Since π−1(vi) < π−1(u) by
definition and π−1(u) < π−1(b) by Lemma 1, all vi are contracted before u and b. Therefore,
CCH preprocessing adds a shortcut (u, b), and thus b ∈ N↑

H(u).
Conversely, let w be a vertex in N↑

H(u), i.e., there is an edge (u, w) in H. Since u is the
highest-ranked vertex in GX and π−1(u) < π−1(w), we have w ∈ V (G) \ V (GX). We claim
that w ∈ B(X). Assume otherwise, i.e., w ∈ V \ (V (GX) ∪B(X)). Since B(X) separates u

and w in G, the shortcut (u, w) corresponds to a path ⟨u, . . . , b, . . . , w⟩ in G with b ∈ B(X).
By construction, b is contracted before u and w. This contradicts Lemma 1. ◀

If s ∈ V (GX), then dist(s, X) = 0. So, assume s /∈ V (GX). Since B(X) separates s

and GX , and all edge lengths are nonnegative, there is a closest vertex v∗ in GX such that
there is a shortest s–v∗ path ⟨s, . . . , b, v∗⟩, b ∈ B(X). Note that (b, v∗) is a shortest edge
among all edges (b, v) ∈ E, v ∈ V (GX); otherwise, v∗ would not be a closest vertex in
GX . Therefore, dist(s, X) = minb∈B(X)(dist(s, b) + min{(b,v)∈E:v∈V (GX)} ℓ(b, v)). That is,
it suffices to initialize the reverse search of the query with all boundary vertices. More
precisely, we set dr[b] = min{(b,v)∈E:v∈V (GX)} ℓ(b, v) for each vertex b ∈ B(X), dr[w] =∞ for
each vertex w ∈ V \ B(X), and Qr = B(X). This yields a reasonable algorithm, but we
can do even better by exploiting elimination tree queries, which are usually faster than the
Dijkstra-based CCH queries we have used so far.

Recall that the CCH search space S(b) of a vertex b corresponds to the path in the
elimination tree from b to the root r. An elimination tree search from b therefore scans all
vertices in S(b) in order of increasing rank by traversing the b–r path in the elimination tree.
Given a set B of vertices, it is not clear how to enumerate all vertices in the union of the
search spaces, since the union generally corresponds to a subtree rather than a path in the
elimination tree. However, we can exploit the fact that in our case B is the boundary of GX .

▶ Theorem 3. Let l be the lowest-ranked vertex in B(X). Then, S(l) =
⋃

b∈B(X) S(b).

Proof. Since l ∈ B(X), we trivially have S(l) ⊆
⋃

b∈B(X) S(b), so let b ̸= l be a vertex
in B(X). We claim that S(b) ⊆ S(l). By Theorem 2, the highest-ranked vertex u in GX

is adjacent to both l and b. Since π−1(u) < π−1(l) < π−1(b), CCH preprocessing adds a
shortcut (l, b) when u is contracted. Therefore, we have b ∈ S(l) and thus S(b) ⊆ S(l). ◀

By Theorem 3, we can compute dist(s, X) with a standard elimination tree query from s

to the lowest-ranked vertex in B(X), where we initially set dr[b] = min{(b,v)∈E:v∈V (GX)} ℓ(b, v)
for each vertex b ∈ B(X). Since a lower bound on dist(s, X) suffices to preserve the correctness
of our nearest-neighbor algorithm, we can also initialize the distance labels to zero. The
resulting lower bound is only slightly worse than the exact distance, but initialization is
somewhat faster. We observed the lowest running times when using lower bounds.

Accelerating Shortest-Path Searches. Note that the forward searches of all elimination
tree queries done during the same nearest-neighbor query start at the same source. Unless
we use special pruning criteria [9], the forward searches compute identical distance labels.
To further accelerate our nearest-neighbor algorithm, we run the forward search once before
the systematic exploration of the separator decomposition tree. Whenever we compute
the distance to a target or subgraph, we run only the reverse search, which accesses the
precomputed distance labels of the forward search.

SEA 2021

18:8 Nearest-Neighbor Queries in CCHs and Applications

After scanning a vertex v, a standard elimination tree search immediately initializes the
distance label of v to ∞, since it is not accessed anymore afterwards. We maintain this
initialization approach for the reverse searches. The forward search, of course, must not
immediately initialize the distance labels. Instead, after the exploration of the separator
decomposition tree, we traverse the path in the elimination tree from the source to the root
once again, and initialize the forward distance label of each visited vertex.

4 Applications

We continue with two substantially different applications in which our nearest-neighbor
algorithm can be used. An obvious application are k-closest POI queries in map-based
services. We can use our nearest-neighbor algorithm as is for this application, without further
modifications. Afterwards, we look at a more abstract application (travel demand generation)
where we make slight modifications to our algorithm.

4.1 Online Closest-POI Queries

Recall that modern closest-POI algorithms [14, 13, 2] work in up to four phases: preprocessing,
customization, selection, and queries. We now divide the work our nearest-neighbor algorithm
does into these standard phases. Note that our nearest-neighbor algorithm does nothing
else but the standard CCH preprocessing and customization during the first two phases.
To support easy access to the set of vertices in a subgraph or separator, we indeed need
to associate three indices with each node X ∈ X but an efficient representation of the
separator decomposition already stores this information. Therefore, we reuse the standard
CCH preprocessing and customization, without further modifications.

The selection phase runs POI-dependent preprocessing. The only preprocessed data that
depends on the set P of POIs is the auxiliary array A, which makes the POIs in a subgraph
or separator easily accessible. As already mentioned, A can be filled by a single sweep
through P and A. Finally, the query phase runs the systematic exploration of the separator
decomposition tree (including the forward search immediately before the exploration and the
initialization of the forward distance labels immediately after the exploration).

Note that our selection phase is lightweight and (as our experiments will show) orders
of magnitude faster than the one of previous bucket-based approaches. This makes our
nearest-neighbor algorithm a natural fit for online k-closest POI queries, where the POIs are
only revealed at query time. In this case, we need to run both the selection and query phase
for each client’s request. Except for simple store locators of franchises, online queries are
more common than offline queries in interactive map-based services. For example, whenever
the set of POIs is obtained from user-defined keywords, we face online queries.

4.2 Travel Demand Generation

A substantially different application in which our nearest-neighbor algorithm can be used is
travel demand generation. Here, the problem we consider is computing the number Tvw of
trips between each pair (v, w) of vertices v, w ∈ V . This problem arises when we want to
generate large-scale benchmark data for evaluating transportation algorithms, or when we
want to predict mobility flows. This section shows how our nearest-neighbor algorithm can
be used to accelerate a recently introduced travel demand generator [8].

V. Buchhold and D. Wagner 18:9

Radiation Model. The foundation for the aforementioned demand generator is the radiation
model [37]. This model assumes that each vertex v ∈ V has a nonnegative number mv

of inhabitants and a nonnegative amount nv of opportunities. We denote by M the total
population in G and by N the total number of opportunities in G. The mobility flow out of
each vertex is proportional to its population. Destination selection is based on the following
main idea: Each traveler assigns to all opportunities a fitness or attractiveness value, drawn
independently from a common distribution. Then, the traveler selects the closest opportunity
with a fitness higher than the traveler’s fitness threshold, drawn from the same distribution.
The radiation model with selection [38] decreases the probability of selecting an opportunity
by a factor of 1 − λ. Intuitively, increasing λ increases the expected trip length. In the
simplest version, the number of opportunities is approximated by the population, i.e., there
are M opportunities in a graph with a population of M .

Previous Implementations. There are two practical implementations [8] of the radiation
model. DRAD obtains high-quality solutions based on shortest-path distances and TRAD
obtains high performance but uses geometric distances. Both implementations generate one
trip after another. First, they draw the origin O from a discrete distribution determined
by the probability function Pr[O = v] = mv/M . Second, they choose the number Ofit of
opportunities with a fitness higher than the traveler’s fitness threshold uniformly at random
in 0..N . Third, they draw the number Osel of selectable opportunities from a binomial
distribution with Ofit trials and success probability 1− λ. It remains to find the selectable
opportunity closest to O, given the total number Osel of selectable opportunities in G. This
is realized differently by the two implementations.

DRAD draws the number Oint of opportunities that are closer to O than any selectable
opportunity from a negative hypergeometric distribution determined by Osel and N , and
runs Dijkstra’s algorithm from O, stopping as soon as Oint + 1 opportunities are visited. The
last vertex scanned by the search is the destination of the current trip.

The basic idea of TRAD is to find the selectable opportunity closest to O using a nearest-
neighbor query [21] in a kd-tree [7]. Each node in a kd-tree corresponds to a region of the
plane. The region of the root is the whole plane and the leaves correspond to small disjoint
blocks partitioning the plane. The query algorithm traverses the kd-tree, starting at the root,
and maintaining the number Osel(v) of selectable opportunities in the region corresponding
to the current node v. Let Otot(v) be the total number of opportunities in the region of v.

When the traversal reaches an interior node v in the kd-tree, the algorithm draws the
number Osel(l) of selectable opportunities in the region of the left child l from a hypergeometric
distribution with Osel(v) draws without replacement from a population of size Otot(v)
containing Otot(l) successes. The number Osel(r) of selectable opportunities in the region
corresponding to the right child r is set to Osel(v) − Osel(l). The algorithm then recurses
on the child whose region is closer to O, and when control returns, it recurses on the other
child. The search is pruned at any vertex v with Osel(v) = 0, and at any vertex whose region
is farther from O than the closest selectable opportunity seen so far.

When the traversal reaches a leaf node v, the algorithm samples Osel(v) selectable
opportunities in the region corresponding to v. For each of these opportunities, the algorithm
checks whether it improves the closest selectable opportunity seen so far.

Our Implementation. We introduce a new implementation of the radiation model, which
we call CRAD. Our implementation follows TRAD but uses nearest-neighbor queries in a
customizable contraction hierarchy rather than in a kd-tree. In this way, we combine the
efficient tree-based sampling approach from TRAD with shortest-path distances. As a result,
our implementation obtains high-quality solutions like DRAD, but at much lower cost.

SEA 2021

18:10 Nearest-Neighbor Queries in CCHs and Applications

Algorithm 2 Recursive procedure for finding the closest selectable opportunity in the
subgraph GX , given the number Osel(GX) of selectable opportunities in GX .

1 Function findClosestSelectableOpportunity(X, Osel(GX))
2 if the recursion threshold is deceeded then
3 sample Osel(GX) selectable opportunities in the subgraph GX

4 return
5 ⟨Osel(GY0), . . . , Osel(GYd−1), Osel(X)⟩ ←

multiHypergeomVariate(Osel(GX), ⟨Otot(GY0), . . . , Otot(GYd−1), Otot(X)⟩)
6 sample Osel(X) selectable opportunities in the separator X

7 C ← ∅
8 foreach child Y of X do
9 if Osel(GY) > 0 then

10 if O ∈ V (GY) then
11 C ← C ∪ {(Y, 0)}
12 else
13 compute the distance dist(O, Y) from O to a closest vertex in GY

14 C ← C ∪ {(Y, dist(O, Y))}

15 foreach (Y, dist(O, Y)) ∈ C in ascending order of dist(O, Y) do
16 if dist(O, Y) is less than distance to currently closest select. opportunity then
17 findClosestSelectableOpportunity(Y, Osel(GY))

To use our nearest-neighbor algorithm in CRAD, we only need to make slight modifications
to the procedure presented in Section 3 (see Algorithm 2 for the modified procedure). In
addition to a node X in the separator decomposition tree, it now takes the number Osel(GX)
of selectable opportunities in GX as second parameter. At the first call, X is the root of
the separator decomposition and Osel(GX) is the number Osel of selectable opportunities
in G, obtained as before in DRAD and TRAD. Let Y0, . . . , Yd−1 be the children of X.
As the first step, the procedure now distributes the Osel selectable opportunities in GX

over the subgraphs GY0 , . . . , GYd−1 and the separator X. In contrast to TRAD where the
opportunities are distributed among exactly two regions (left and right child), we now have
d + 1 regions (d children and the separator). Therefore, Osel(GY0), . . . , Osel(GYd−1), Osel(X)
obey a multivariate hypergeometric distribution.

We can think of this distribution as drawing Osel(GX) balls without replacement from an
urn containing Otot(GYi

) balls of type i for i = 0, . . . , d− 1 and Otot(X) balls of type d. We
obtain Osel(GYi) balls of type i for i = 0, . . . , d− 1 and Osel(X) balls of type d.

After obtaining Osel(GY0), . . . , Osel(GYd−1), Osel(X), we sample Osel(X) selectable oppor-
tunities in the separator X, and check whether any of them improves the closest selectable
opportunity seen so far. Next, we loop over all children Y of X in the separator de-
composition tree. If the subgraph GY contains any selectable opportunities, we add a
pair (Y, dist(O, Y)) to a set C (recall that O is the origin vertex of the current trip). The
shortest-path distance dist(O, Y) is computed as discussed in Section 3. Finally, we loop
over all pairs (Y, dist(O, Y)) ∈ C in ascending order of distance from the origin. If dist(O, Y)
is less than the distance to the closest selectable opportunity seen so far, we recurse on Y .

V. Buchhold and D. Wagner 18:11

5 Experiments

This section presents a thorough experimental evaluation of both applications. First, we
describe our experimental setup, including our benchmark machine, the inputs, and imple-
mentation details. Next, we evaluate various closest-POI algorithms, with a focus on their
selection and query phases. Finally, we compare CRAD to DRAD and TRAD.

5.1 Experimental Setup
Our publicly available code1 is written in C++17 and compiled with the GNU compiler 9.3
using optimization level 3. We use 4-heaps [28] as priority queues. To ensure a correct
implementation, we make extensive use of assertions (disabled during measurements). Our
benchmark machine runs openSUSE Leap 15.2 (kernel 5.3.18), and has 192 GiB of DDR4-2666
RAM and two Intel Xeon Gold 6144 CPUs, each with eight cores clocked at 3.50 GHz and
8× 64 KiB of L1, 8× 1 MiB of L2, and 24.75 MiB of shared L3 cache.

Inputs. Our benchmark instance is the road network of Western Europe. The network has
a total of 18 017 748 vertices and 42 560 275 edges and was made available by PTV AG for
the 9th DIMACS Implementation Challenge [15]. For the evaluation of the travel demand
generators, we use the population grid2 made available by Eurostat, the statistical office of
the European Union. The grid has a resolution of one kilometer and covers all EU and EFTA
member states, as well as the United Kingdom. We follow the approach in [8] to assign
the grid to the graph. For each inhabitant, we pick a vertex lying in their cell uniformly at
random and assign the inhabitant to it. If there is no such vertex, we discard the inhabitant.

Implementation Details. We use the network dissection algorithm Inertial Flow [36] to
compute separator decompositions and associated nested dissection orders, with the balance
parameter b set to 3/10. CCH customization uses perfect witness searches [16].

For comparison, we carefully reimplemented the bucket-based nearest-neighbor algorithm
by Geisberger [22], which we call BCH. CH preprocessing is taken from the open-source
library RoutingKit3. Both the forward and reverse CH searches use stall-on-demand [23].

The bucket-based nearest-neighbor algorithm can be used as is on CCHs, without further
modifications. For better performance, however, we use a tailored version where we replace
the Dijkstra-based CH searches used during selection and queries by elimination tree searches.
Note that in contrast to CH searches, CCH searches are faster without the stall-on-demand
technique. On the other hand, stall-on-demand decreases the bucket sizes. Therefore, we use
stall-on-demand only for the reverse searches. We call this version BCCH.

To keep implementation complexity of the demand generators low, we use existing imple-
mentations of random variate generation algorithms. The Standard Template Library (STL)
offers the three distribution classes uniform_int_distribution, binomial_distribution,
and geometric_distribution. The STL provides neither a hypergeometric nor a negative
hypergeometric distribution. To generate hypergeometric variates, we use the stocc library4.
Following [8], we approximate negative hypergeometric variates by geometric variates.

1 https://github.com/vbuchhold/routing-framework
2 https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/

population-distribution-demography/geostat
3 https://github.com/RoutingKit/RoutingKit
4 https://www.agner.org/random/

SEA 2021

https://github.com/vbuchhold/routing-framework
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://github.com/RoutingKit/RoutingKit
https://www.agner.org/random/

18:12 Nearest-Neighbor Queries in CCHs and Applications

Table 1 Performance of different closest-POI algorithms for various POI distributions. For each
distribution, we report the time to index a set of POIs (selection time), the space consumed by the
index (selection space), and the time to find the k = 1, 4, 8 closest POIs (query time). For CRP, we
take the figures for the online version from the original publication [14].

|P | = 212, |B| = 220 |P | = 214, |B| = |V |

selection query time [µs] selection query time [µs]
space time POIs to be reported space time POIs to be reported

algo [MiB] [ms] k = 1 k = 4 k = 8 [MiB] [ms] k = 1 k = 4 k = 8
Dij – – 846 210 855 438 873 716 – – 113.4 439.3 883.7
BCH 72.4 134 20 20 21 83.6 481 5.0 8.5 10.7
BCCH 85.5 453 51 52 53 134.9 1 753 6.0 8.8 11.1
CCH 68.7 21 2 353 3 501 4 629 68.7 23 306.7 494.8 702.0
CRP – – – – – 0.0 8 – 640.0 –

5.2 Online Closest-POI Queries
We start by comparing our nearest-neighbor algorithm (simply called CCH in this section)
to Dijkstra’s algorithm, BCH, BCCH, and CRP. Note that the performance of closest-POI
algorithms is affected not only by the number of POIs but also by their distribution. For
example, the set of all restaurants may be distributed evenly over the whole network, whereas
a certain franchise may operate in a local region. To model this, we follow the methodology
used by Delling et al. [13] to evaluate one-to-many algorithms.

To obtain our problem instances, we first pick a center c uniformly at random. We then
use Dijkstra to grow a ball B of size |B| centered at c. Finally, we pick a POI set P of
size |P | from B. By varying the parameters |B| and |P |, we can model the aforementioned
situations. For each combination, we generate 100 POI sets. Each POI set is evaluated with
100 sources picked at random. That is, each data point is an average over 10 000 queries.

Main Results. Table 1 shows the performance of different closest-POI algorithms for two
POI distributions. We observe that Dijkstra’s algorithm has reasonable performance when
the POIs are evenly distributed over the whole graph (|B| = |V |). In this case, any potential
source is relatively close to some POI, and thus the Dijkstra search can always stop early.
However, Dijkstra’s algorithm is not robust to the POI distribution. When |B| = 220, many
potential sources are relatively far from any POI, and the average running times are around
one second, too slow for interactive map-based services.

BCH achieves the best (offline) query times for both POI distributions. Note, however, that
BCH is no competitor to BCCH, CCH, and CRP, since it operates on standard contraction
hierarchies, which cannot handle frequent metric updates. We only include BCH in our
experiments for comparison with BCCH, since the bucket-based nearest-neighbor algorithm
has not been tested on customizable contraction hierarchies so far.

Although we tailored the bucket-based algorithm to CCHs, BCCH is still somewhat
slower than BCH. This is expected, since CCHs contain more shortcuts and are thus denser
than CHs. The slowdown is a factor of about 3.5 for selection. When |B| = |V |, BCCH has
only slightly higher (offline) query times than BCH, since the queries relax only a few edges.
However, BCCH queries are roughly 2.5 times slower than BCH queries when |B| = 220.

V. Buchhold and D. Wagner 18:13

0.
01

0.
1

1
10

10
0

10
00

10
00

0

214 215 216 217 218 219 220 221 222 223 224

ball size

ru
nn

in
g

tim
e

[m
s]

BCH query
BCH select

BCCH query
BCCH select

CCH query
CCH select

Dijkstra

Figure 1 Selection and query times of various closest-POI algorithms with |P | = 214 POIs picked
at random from a ball of varying size |B|. Queries find the k = 4 closest POIs.

We observe that our nearest-neighbor algorithm (simply called CCH in this section) has
considerably higher offline query times than BCCH. On the other hand, CCH achieves much
faster selection times. For example, when |P | = 214, offline CCH queries are slower by a
factor of 51–63 but CCH selection is faster by a factor of 77. Note that although CCH queries
are significantly slower than BCCH queries, they are still slightly faster than CRP queries.

Online queries need to run both the selection and query phase for each client’s request.
Therefore, the time taken by an online query is the sum of the selection and query time. We
observe that BCCH is not suitable for online queries. When |P | = 212, BCCH takes half a
second to answer an online query, and it takes even 1.8 seconds when |P | = 214. In contrast,
CCH takes only about 25 milliseconds for an online query.

Table 1 includes various alternative closest-POI algorithms. In addition, it seems natural
to adapt existing one-to-many algorithms to the closest-POI problem. Promising candidates
that are not based on buckets are CTD [20, 13] and RPHAST [13]. However, since CTD
and RPHAST selection take more than 100 milliseconds when |B| = |V |, online closest-POI
queries based on CTD or RPHAST would be at least four times slower than ours.

Impact of the POI Distribution. Our next experiment considers the impact of the ball
size on the performance of the different closest-POI algorithms. Figure 1 plots selection and
(offline) query times for various ball sizes. We omit online query times for clarity. Since the
online query times are dominated by the selection times, online query times would closely
follow the selection curves. Except for Dijkstra’s algorithm, all selection and query times are
very robust to the ball size. While all query algorithms benefit from an even distribution of
the POIs (for the aforementioned reasons), this effect is most pronounced for Dijkstra.

Impact of the Number of POIs. Next, we evaluate the impact of the number of POIs on
the performance of Dijkstra’s algorithm, BCH, BCCH, and CCH. Figure 2 plots selection
and (offline) query times for various numbers of POIs. As before, online query times would

SEA 2021

18:14 Nearest-Neighbor Queries in CCHs and Applications

0.
01

0.
1

1
10

10
0

10
00

10
00

0

22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

number of POIs

ru
nn

in
g

tim
e

[m
s]

BCH query
BCH select

BCCH query
BCCH select

CCH query
CCH select

Dijkstra

Figure 2 Selection and query times of various closest-POI algorithms with a varying number |P |
of POIs picked at random from a ball of size |B| = |V |. Queries find the k = 4 closest POIs.

closely follow the selection curves. We observe that the CCH selection time is independent of
the number of POIs, whereas the BCCH selection time grows linearly. For |P | = 214, CCH
selection is 76 times faster than BCCH selection. The speedup increases to more than three
orders of magnitude for |P | = 218, the largest number of POIs tested in our experiment.

Once again, queries tend to become faster as |P | gets larger, since they can stop (in the
case of Dijkstra-based searches) or prune (in the case of elimination tree searches) earlier.
The exception are CCH queries, which become slower initially. The reason is that for very
small values of |P |, we do not explore the separator decomposition tree but trigger the base
case at the root (which simply finds |P | point-to-point shortest paths by running standard
elimination tree queries from the source to each POI).

5.3 Travel Demand Generation
Next, we evaluate CRAD, including a comparison to DRAD and TRAD. Since CRAD uses
shortest-path distances rather than geometric distances, it obtains high-quality solutions
like DRAD. We verified this experimentally by rerunning the experiments in the original
publication [8] for CRAD, using the same instances and methodology. We refer to the original
paper for a comparison of the solution quality with shortest-path and geometric distances.

In this work, we focus on the performance of the three implementations. Since DRAD
is at its heart a Dijkstra search from the trip’s origin to its destination, the performance
depends heavily on the expected length of the generated trip (which is controlled by the
parameter λ; see Section 4.2). In contrast, TRAD and CRAD are robust to the trip length.

Figure 3 plots the time to generate a single trip for various values of λ. Note that a value
of λ = 1− 10−4/1 = 0.9999 leads on our instance to an average trip length of 9 minutes, and
a value of λ = 1− 10−4/100 = 0.999999 to an average trip length of 72 minutes. Between
two data points, the average trip length increases by about 7 minutes. All data points are
averages over 100 000 trip generation executions.

V. Buchhold and D. Wagner 18:15

0.
01

0.
1

1
10

1 4 9 16 25 36 49 64 81 100
1/(1− λ) [10−4]

ru
nn

in
g

tim
e

[m
s]

DRAD
CRAD
TRAD

Figure 3 Time to generate a single trip with different demand generators for various values of λ.

We observe that CRAD outperforms DRAD for each value of λ tested. Since TRAD
resorts to geometric distances, it still is faster than CRAD by a factor of 28–74. As it obtains
worse solutions, however, TRAD is no competitor to CRAD. For an average trip length of
about 23 minutes, CRAD gains an order of magnitude over DRAD, and for the largest value
of λ tested in our experiment, we see a speedup of 59. Note that this increase in speed is
quite useful in practice. While travel demand generation does not need to run in real time,
its performance should remain reasonable. However, DRAD takes about 7 hours to generate
one million one-hour trips. In contrast, CRAD takes less than 10 minutes.

6 Conclusion

We presented a novel k-nearest neighbor algorithm that operates on CCHs. With selection
times of about 20 milliseconds and query times of a few milliseconds or less, it is the first
nearest-neighbor algorithm operating on CCHs that is fast enough for interactive online
queries. Interestingly, our algorithm achieves similar performance as the online nearest-
neighbor queries by Delling and Werneck [14] within the CRP framework. This confirms
that CCHs and CRP are on an equal level and solve many types of problems equally well.

Moreover, we used our nearest-neighbor algorithm to significantly accelerate a recent
travel demand generator. We proposed CRAD, a new implementation of the radiation
model that combines the advantages of the two previous implementations DRAD and TRAD.
CRAD obtains high-quality (shortest-path based) solutions like DRAD, but follows a more
efficient tree-based sampling approach like TRAD.

Future work includes accelerating our nearest-neighbor algorithm even further. Note that
we compute distances to subgraphs corresponding to the topmost nodes in the separator
decomposition more often than distances to subgraphs corresponding to leaves. It would be
interesting to see if it pays to precompute the reverse search spaces of the topmost subgraphs.
Another possible approach would be to keep frequently used reverse search spaces in an LRU
cache. Another interesting project is a parallel version of our algorithm that uses for example
task-based parallelism to explore the separator decomposition tree. Finally, it would be
interesting to port other point-of-interest algorithms to CCHs, for example best-via queries.

SEA 2021

18:16 Nearest-Neighbor Queries in CCHs and Applications

References
1 Tenindra Abeywickrama and Muhammad Aamir Cheema. Efficient landmark-based candidate

generation for kNN queries on road networks. In K. Selçuk Candan, Lei Chen, Torben Bach
Pedersen, Lijun Chang, and Wen Hua, editors, Proceedings of the 22nd International Conference
on Database Systems for Advanced Applications (DASFAA’17), volume 10178 of Lecture Notes
in Computer Science, pages 425–440. Springer, 2017. doi:10.1007/978-3-319-55699-4_26.

2 Tenindra Abeywickrama, Muhammad Aamir Cheema, and David Taniar. K-nearest neighbors
on road networks: A journey in experimentation and in-memory implementation. Proceedings
of the VLDB Endowment, 9(6):492–503, 2016. doi:10.14778/2904121.2904125.

3 Takuya Akiba, Yoichi Iwata, Ken ichi Kawarabayashi, and Yuki Kawata. Fast shortest-path
distance queries on road networks by pruned highway labeling. In Proceedings of the 16th
Meeting on Algorithm Engineering and Experiments (ALENEX’14), pages 147–154. SIAM,
2014. doi:10.1137/1.9781611973198.14.

4 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in trans-
portation networks. In Lasse Kliemann and Peter Sanders, editors, Algorithm Engineering:
Selected Results and Surveys, volume 9220 of Lecture Notes in Computer Science, pages 19–80.
Springer, 2016. doi:10.1007/978-3-319-49487-6_2.

5 Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space
size in contraction hierarchies. Theoretical Computer Science, 645:112–127, 2016. doi:
10.1016/j.tcs.2016.07.003.

6 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-optimal routes
for electric vehicles. In Craig A. Knoblock, Peer Kröger, John Krumm, Markus Schneider, and
Peter Widmayer, editors, Proceedings of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (SIGSPATIAL’13), pages 54–63. ACM Press,
2013. doi:10.1145/2525314.2525361.

7 Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975. doi:10.1145/361002.361007.

8 Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Efficient calculation of microscopic
travel demand data with low calibration effort. In Farnoush Banaei-Kashani, Goce Trajcevski,
Ralf Hartmut Güting, Lars Kulik, and Shawn D. Newsam, editors, Proceedings of the 27th
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
(SIGSPATIAL’19), pages 379–388. ACM Press, 2019. doi:10.1145/3347146.3359361.

9 Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Real-time traffic assignment using
engineered customizable contraction hierarchies. ACM Journal of Experimental Algorithmics,
24(2):2.4:1–2.4:28, 2019. doi:10.1145/3362693.

10 Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zündorf. Customizable con-
traction hierarchies with turn costs. In Dennis Huisman and Christos D. Zaroliagis, editors,
Proceedings of the 20th Symposium on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS’20), volume 85 of OpenAccess Series in Informatics
(OASIcs), pages 9:1–9:15. Schloss Dagstuhl, 2020. doi:10.4230/OASIcs.ATMOS.2020.9.

11 Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck. PHAST:
Hardware-accelerated shortest path trees. Journal of Parallel and Distributed Computing,
73(7):940–952, 2013. doi:10.1016/j.jpdc.2012.02.007.

12 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
route planning in road networks. Transportation Science, 51(2):566–591, 2017. doi:10.1287/
trsc.2014.0579.

13 Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Faster batched shortest paths
in road networks. In Alberto Caprara and Spyros C. Kontogiannis, editors, Proceedings of the
11th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS’11), volume 20 of OpenAccess Series in Informatics (OASIcs), pages 52–63.
Schloss Dagstuhl, 2011. doi:10.4230/OASIcs.ATMOS.2011.52.

https://doi.org/10.1007/978-3-319-55699-4_26
https://doi.org/10.14778/2904121.2904125
https://doi.org/10.1137/1.9781611973198.14
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.1145/2525314.2525361
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/3347146.3359361
https://doi.org/10.1145/3362693
https://doi.org/10.4230/OASIcs.ATMOS.2020.9
https://doi.org/10.1016/j.jpdc.2012.02.007
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.4230/OASIcs.ATMOS.2011.52

V. Buchhold and D. Wagner 18:17

14 Daniel Delling and Renato F. Werneck. Customizable point-of-interest queries in road networks.
IEEE Transactions on Knowledge and Data Engineering, 27(3):686–698, 2015. doi:10.1109/
TKDE.2014.2345386.

15 Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, volume 74 of DIMACS Book. American
Mathematical Society, 2009.

16 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
ACM Journal of Experimental Algorithmics, 21(1):1.5:1–1.5:49, 2016. doi:10.1145/2886843.

17 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

18 Alexandros Efentakis and Dieter Pfoser. GRASP. Extending graph separators for the single-
source shortest-path problem. In Andreas S. Schulz and Dorothea Wagner, editors, Proceedings
of the 22th Annual European Symposium on Algorithms (ESA’14), volume 8737 of Lecture Notes
in Computer Science, pages 358–370. Springer, 2014. doi:10.1007/978-3-662-44777-2_30.

19 Alexandros Efentakis, Dieter Pfoser, and Yannis Vassiliou. SALT. A unified framework for
all shortest-path query variants on road networks. In Proceedings of the 14th International
Symposium on Experimental Algorithms (SEA’15), volume 9125 of Lecture Notes in Computer
Science, pages 298–311. Springer, 2015. doi:10.1007/978-3-319-20086-6_23.

20 Jochen Eisner, Stefan Funke, Andre Herbst, Andreas Spillner, and Sabine Storandt. Algorithms
for matching and predicting trajectories. In Matthias Müller-Hannemann and Renato F.
Werneck, editors, Proceedings of the 13th Workshop on Algorithm Engineering and Experiments
(ALENEX’11), pages 84–95. SIAM, 2011. doi:10.1137/1.9781611972917.9.

21 Jerome H. Friedman, Jon Louis Bentley, and Raphael A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on Mathematical Software,
3(3):209–226, 1977. doi:10.1145/355744.355745.

22 Robert Geisberger. Advanced Route Planning in Transportation Networks. PhD thesis,
Karlsruhe Institute of Technology, 2011. doi:10.5445/IR/1000021997.

23 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 46(3):388–404,
2012. doi:10.1287/trsc.1110.0401.

24 Alan George. Nested dissection of a regular finite element mesh. SIAM Journal on Numerical
Analysis, 10(2):345–363, 1973. doi:10.1137/0710032.

25 Lars Gottesbüren, Michael Hamann, Tim Niklas Uhl, and Dorothea Wagner. Faster and better
nested dissection orders for customizable contraction hierarchies. Algorithms, 12(9):1–20, 2019.
doi:10.3390/a12090196.

26 Antonin Guttman. R-trees: A dynamic index structure for spatial searching. ACM SIGMOD
Record, 14(2):47–57, 1984. doi:10.1145/602259.602266.

27 Michael Hamann and Ben Strasser. Graph bisection with pareto optimization. ACM Journal
of Experimental Algorithmics, 23(1):1.2:1–1.2:34, 2018. doi:10.1145/3173045.

28 Donald B. Johnson. Priority queues with update and finding minimum spanning trees.
Information Processing Letters, 4(3):53–57, 1975. doi:10.1016/0020-0190(75)90001-0.

29 Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.
Computing many-to-many shortest paths using highway hierarchies. In Proceedings of the
9th Workshop on Algorithm Engineering and Experiments (ALENEX’07), pages 36–45. SIAM,
2007. doi:10.1137/1.9781611972870.4.

30 Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker. Evolution and evaluation
of the penalty method for alternative graphs. In Daniele Frigioni and Sebastian Stiller, editors,
Proceedings of the 13th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’13), volume 33 of OpenAccess Series in Informatics
(OASIcs), pages 94–107. Schloss Dagstuhl, 2013. doi:10.4230/OASIcs.ATMOS.2013.94.

31 Ken C. K. Lee, Wang-Chien Lee, and Baihua Zheng. Fast object search on road networks.
In Martin L. Kersten, Boris Novikov, Jens Teubner, Vladimir Polutin, and Stefan Manegold,

SEA 2021

https://doi.org/10.1109/TKDE.2014.2345386
https://doi.org/10.1109/TKDE.2014.2345386
https://doi.org/10.1145/2886843
https://doi.org/10.1007/978-3-662-44777-2_30
https://doi.org/10.1007/978-3-319-20086-6_23
https://doi.org/10.1137/1.9781611972917.9
https://doi.org/10.1145/355744.355745
https://doi.org/10.5445/IR/1000021997
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1137/0710032
https://doi.org/10.3390/a12090196
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/3173045
https://doi.org/10.1016/0020-0190(75)90001-0
https://doi.org/10.1137/1.9781611972870.4
https://doi.org/10.4230/OASIcs.ATMOS.2013.94

18:18 Nearest-Neighbor Queries in CCHs and Applications

editors, Proceedings of the 12th International Conference on Extending Database Technology
(EDBT’09), pages 1018–1029. ACM Press, 2009. doi:10.1145/1516360.1516476.

32 Ken C. K. Lee, Wang-Chien Lee, Baihua Zheng, and Yuan Tian. ROAD: A new spatial object
search framework for road networks. IEEE Transactions on Knowledge and Data Engineering,
24(3):547–560, 2012. doi:10.1109/TKDE.2010.243.

33 Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query processing in spatial
network databases. In Johann-Christoph Freytag, Peter C. Lockemann, Serge Abiteboul,
Michael J. Carey, Patricia G. Selinger, and Andreas Heuer, editors, Proceedings of the 29th
International Conference on Very Large Data Bases (VLDB’03), pages 802–813. Morgan
Kaufmann, 2003.

34 Hanan Samet, Jagan Sankaranarayanan, and Houman Alborzi. Scalable network distance
browsing in spatial databases. In Jason Tsong-Li Wang, editor, Proceedings of the 27th ACM
SIGMOD International Conference on Management of Data (SIGMOD’08), pages 43–54. ACM
Press, 2008. doi:10.1145/1376616.1376623.

35 Jagan Sankaranarayanan, Houman Alborzi, and Hanan Samet. Efficient query processing on
spatial networks. In Cyrus Shahabi and Omar Boucelma, editors, Proceedings of the 13th
ACM International Workshop on Geographic Information Systems (GIS’05), pages 200–209.
ACM Press, 2005. doi:10.1145/1097064.1097093.

36 Aaron Schild and Christian Sommer. On balanced separators in road networks. In Evripidis
Bampis, editor, Proceedings of the 14th International Symposium on Experimental Algorithms
(SEA’15), volume 9125 of Lecture Notes in Computer Science, pages 286–297. Springer, 2015.
doi:10.1007/978-3-319-20086-6_22.

37 Filippo Simini, Marta C. González, Amos Maritan, and Albert-László Barabási. A universal
model for mobility and migration patterns. Nature, 484(7392):96–100, 2012. doi:10.1038/
nature10856.

38 Filippo Simini, Amos Maritan, and Zoltán Néda. Human mobility in a continuum approach.
PLOS ONE, 8(3):1–8, 2013. doi:10.1371/journal.pone.0060069.

39 Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, and Lizhu Zhou. G-tree: An efficient index
for KNN search on road networks. In Qi He, Arun Iyengar, Wolfgang Nejdl, Jian Pei,
and Rajeev Rastogi, editors, Proceedings of the 22nd ACM International Conference on
Information and Knowledge Management (CIKM’13), pages 39–48. ACM Press, 2013. doi:
10.1145/2505515.2505749.

40 Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, Lizhu Zhou, and Zhiguo Gong. G-tree: An
efficient and scalable index for spatial search on road networks. IEEE Transactions on
Knowledge and Data Engineering, 27(8):2175–2189, 2015. doi:10.1109/TKDE.2015.2399306.

https://doi.org/10.1145/1516360.1516476
https://doi.org/10.1109/TKDE.2010.243
https://doi.org/10.1145/1376616.1376623
https://doi.org/10.1145/1097064.1097093
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1038/nature10856
https://doi.org/10.1038/nature10856
https://doi.org/10.1371/journal.pone.0060069
https://doi.org/10.1145/2505515.2505749
https://doi.org/10.1145/2505515.2505749
https://doi.org/10.1109/TKDE.2015.2399306

A Graph-Based Similarity Approach to Classify
Recurrent Complex Motifs from Their Context in
RNA Structures
Coline Gianfrotta !

Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, DAVID lab, France
Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400,
Orsay, France

Vladimir Reinharz !

Department of Computer Science, Université du Québec à Montréal, Québec, Canada

Dominique Barth !

Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, DAVID lab, France

Alain Denise !

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400,
Orsay, France
Université Paris-Saclay, CNRS, I2BC, 91400, Orsay, France

Abstract
This article proposes to use an RNA graph similarity metric, based on the MCES resolution problem,
to compare the occurrences of specific complex motifs in RNA graphs, according to their context
represented as subgraph. We rely on a new modeling by graphs of these contexts, at two different
levels of granularity, and obtain a classification of these graphs, which is consistent with the RNA
3D structure.

RNA many non-translational functions, as a ribozyme, riboswitch, or ribosome, require complex
structures. Those are composed of a rigid skeleton, a set of canonical interactions called the secondary
structure. Decades of experimental and theoretical work have produced precise thermodynamic
parameters and efficient algorithms to predict, from sequence, the secondary structure of RNA
molecules. On top of the skeleton, the nucleotides form an intricate network of interactions that
are not captured by present thermodynamic models. This network has been shown to be composed
of modular motifs, that are linked to function, and have been leveraged for better prediction and
design. A peculiar subclass of complex structural motifs are those connecting RNA regions far away
in the secondary structure. They are crucial to predict since they determine the global shape of the
molecule, therefore important for the function.

In this paper, we show by using our graph approach that the context is important for the
formation of conserved complex structural motifs. We furthermore show that a natural classification
of structural variants of the motifs emerges from their context. We explore the cases of three known
motif families and we exhibit their experimentally emerging classification.

2012 ACM Subject Classification Applied computing → Molecular structural biology

Keywords and phrases Graph similarity, clustering, RNA 3D folding, RNA motif

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.19

1 Introduction

RNA molecules are some of the major actors of the cell: many families of so-called non-
coding RNAs intervene, along with proteins, in all major cellular processes. An RNA
molecule is composed of a sequence of nucleotides (A, C, G, U) which folds in space into
a three-dimensional structure. The function of an RNA molecule is strongly related to its
three-dimensional structure. This is why many works since the 1970s have been dedicated

© Coline Gianfrotta, Vladimir Reinharz, Dominique Barth, and Alain Denise;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:coline.gianfrotta@ens.uvsq.fr
https://orcid.org/0000-0001-5792-4966
mailto:reinharz.vladimir@uqam.ca
https://orcid.org/0000-0001-8481-1094
mailto:dominique.barth@uvsq.fr
mailto:alain.denise@universite-paris-saclay.fr
https://orcid.org/0000-0003-4484-4996
https://doi.org/10.4230/LIPIcs.SEA.2021.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

to predict the structure of any RNA molecule from its sequence. The folding depends
on interactions between the nucleotides. Strong interactions, called canonical interactions,
first form what is called helices, stacks of canonical base pairs. They connect loops, and
form the skeleton of the structure. Those loops are composed of weaker interactions, called
non-canonical interactions and give the molecule its final structure [14].

It has been observed that specific loop geometries are conserved and found through various
RNAs with different functions, with varying sequence [12, 17]. This conservation has been
leveraged by graph and other geometric methods to predict structure from sequence [18, 25].
Yet all those methods only focus on interactions networks within one loop, which have been
extensively studied [21, 5]. While specific complex joining loops together are well known,
as the A-minor [13], only recent algorithmic progress, using a graph representation of the
RNA, have allowed to extend this automatic classification to combinations of loops connected
between themselves through additional non-canonical interactions [23]. A major challenge
in the field is the prediction of the location of those interconnected pairs of loops, a crucial
determinant for the structure, and therefore the function of the RNA.

To tackle this challenge, we propose that the structural context of a motif [10] such as a
A-minor in a molecule can be used as a discriminant for peculiar complex geometries, as those
joining pairs of loops. It is a matter of determining whether two structurally similar contexts
induce identical geometry and function. Considering a modeling of molecules by graphs [8]
or hypergraphs, several definitions and similarity approaches between molecules have already
been studied [22], mainly due to the principle stating that structurally similar molecules are
expected to display similar properties [26, 9, 16, 24]. To measure the similarity of structures of
molecules, one main approach considers the resolution of the problem of finding a Maximum
Common Edge Subgraph [22] (MCES) between two graphs. This NP-complete problem is
initially seen as a generalization of graph isomorphism, with different metrics evaluating the
size of this subgraph compared to those of the two graphs to be compared, in particular
some specific to a molecular context [26, 6, 1, 2].

When consider solving the MCES problem to measure the structural similarity of molecular
graphs, two limitations could occur. First, the required computation time is exponential
with respect to the number of vertices of the two graphs, which is a major limitation when
considering comparing one molecule with all molecules in a database. Second, considering
molecular graphs could provide a similarity measure not sufficiently focused on structural
similarity, especially if two molecular structures are similar, but the associated graphs differ
slightly in number and nature of vertices and links. This is why we introduce here a new
graph representation of the molecular structures of RNA at a level of granularity lower
than that of the nucleotides, allowing in particular a reduction in the size of the graphs to
be processed. We then solve MCES problem on these graphs, based on specific subgraph
isomorphism definition, to study the targeted structural similarity.

We show that the similarity in our new graph representation correlates with the geometric
distance between the 3D models, while reducing by 75% the computation time. We validate
our approach by applying it to three specific known and complex RNA structural motifs. We
observe that the clustering induced by the similarity measure segregates well the different
structural contexts. This study shows that the structural context matters for those complex
motifs and could be leveraged for the prediction of their location.

C. Gianfrotta, V. Reinharz, D. Barth, and A. Denise 19:3

2 Representation of the Context of RNA Structural Motifs

2.1 Prior Definitions

Our study will focus on a peculiar kind of interactions between nucleotides that contribute
to the 3D shape of an RNA molecule: the canonical and non canonical interactions. These
interactions belong to 12 pairing families, according to their geometry, defined in the
Leontis–Westhof nomenclature [11]. Three faces on each nucleotide can interact with another
nucleotide. The pairing family depends on the face of the two interacting nucleotides
(Watson-Crick (W), Hoogsteen (H), or Sugar (S)) and on the orientation of the interaction
(cis (C) or trans (T)). In the Leontis–Westhof nomenclature, these families are represented
by a three-letter code indicating the orientation of the interaction and the faces of the two
nucleotides (for example, CSS for cis Sugar-Sugar), or by a symbol (see examples in Figure
1 and all the symbols in appendix A.1 Table 3). The canonical interactions belong to the
CWW family.

We will now give some prior definitions, useful for the construction of our representation.
After defining an RNA graph, we will describe particular RNA graphs that we will focus on
in this work. We will then define what an occurrence of one of this particular RNA graphs is.
To finish, we will define a particular subgraph of RNA graph we will use in Section 2.2 to
represent structural contexts.

▶ Definition 1. RNA graph
An RNA graph is a connected mixed graph G = (V, A, E), with A a set of directed
edges, also called arcs, and E a set of undirected edges. This graph represents all or
part of an RNA tertiary structure. Vertices of V correspond to nucleotides, edges of A

to the bonds of the primary sequence, and edges of E to canonical and non-canonical
interactions between nucleotides.

The set A of directed edges constitutes one or several path(s) forming the primary
sequence of molecules, oriented from the 5’ end to the 3’ end.
For each edge [x, y] ∈ E, we define a type t([x, y]). This type corresponds
to the pairing family to which the undirected edge belongs, according to the
Leontis-Westhof nomenclature [11]. In particular, undirected edges corresponding
to canonical bonds are annotated as such (CAN). Not all non canonical bonds are
symmetrical, which is why t([x, y]) can be different from t([y, x]).
For each vertex x ∈ V , we also define a type τ(x) according to its direct neighbor-
hood. This type will be taken into account in the search for graph isomorphisms
(see Section 3.1).

τ(x) = 0 if x has no incident edge (belonging to E)
τ(x) = C if x has just one incident edge [x, y] ∈ E and if t([x, y]) = CAN .
τ(x) = N if x has at least one incident edge [x, y

′] ∈ E such as t([x, y
′]) ≠ CAN

and no incident edge [x, y] ∈ E such as t[x, y] = CAN .
τ(x) = M if x has an incident edge [x, y] ∈ E such as t([x, y]) = CAN and at
least another incident edge [x, y

′] ∈ E such as t([x, y
′]) ≠ CAN .

For each vertex x ∈ V such as τ(x) = C, we define the canonical neighbor of x

as the neighbor y ∈ V of x such as [x, y] ∈ E and t([x, y]) = CAN . By definition
of vertex types τ , this neighbor exists and it is unique because a nucleotide cannot
form more than one canonical bond.

SEA 2021

19:4 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

G

N
N

C

C
C

N

C C

M C

M M

M C

C

0

0

0

C

C C

C C

0

C

0

0
N

0
0

A-minor motif

1
N

2
M

3
N

4
M

5
M

Non canonical edges

CSS
TSS
TWW
CHS

Figure 1 Two examples of RNA graphs : a typical graph G and the A-minor motif. The arcs
are in green, the undirected edges of the canonical type are in blue and the undirected edges of
the other types are in black, annotated by the Leontis–Westhof nomenclature [11]. Each vertex is
annotated by its type.

Examples of RNA graphs are presented in Figure 1.
Note that, since we focus on the structural context only in this study, we do not consider

the sequence (i.e. the types of nucleotides) in the RNA graph.
This work is focusing on particular RNA graphs, we called motifs, that represent

substructures frequently found in RNA tertiary structures as explained in the introduction
(see Figure 1 for the example of A-minor motif).

▶ Definition 2. Motif occurrence
Given an RNA graph G, a motif occurrence is a partial subgraph of G, denoted as
O = (V O

, E
O

, A
O), which is isomorphic to a motif M = (VM , AM , EM), with respect

to the types of edges and vertices.

A motif occurrence is then a subgraph induced by the arcs and the edges of the motif
M . The vertices of V

O will be noted like the vertices of VM in M , for ease of writing. For
example, for an A-minor motif, vertices of V

O will be noted 1,2,3,4,5 (Figure 1). In the
motif occurrence O, the types of the vertices of V

O become specific to each vertex (for each
x ∈ V

O
, τ(x) = x). An example of A-minor occurrence in an RNA graph G is shown in

Figure 2a.

▶ Definition 3. Specific subgraph of an RNA graph and a motif occurrence
Given an RNA graph G and a motif occurrence O, the graph GO,A−

= (V, A \ AO)
is the spanning subgraph of G having no edge of E and having all the arcs of A except
those of the motif occurrence O.

The graph G
O,A− is composed of chains, each of which containing at least one vertex of

the motif occurrence O. There is an example of a graph G
O,A− in Figure 2b. This subgraph

will help us to define the structural context of a motif occurrence (see Section 2.2).

2.2 Definition of a k-extension
As seen in introduction, we are interested in comparing the structural contexts of motif
occurrences in RNA graphs. This context consists in a special subgraph which contains
and surrounds the motif. As the bounds in the primary sequence play an important role in

C. Gianfrotta, V. Reinharz, D. Barth, and A. Denise 19:5

G

1
N

C

C
C

3

C C

4 C

2 5

M C

C

0

0

0

C

C C

C C

0

C

0

0
N

0
0

(a)

GO,A−

1
N

C

C
C

3

C C

4 C

2 5

M C

C

0

0

0

C

C C

C C

0

C

0

0
N

0
0

(b)

Figure 2 In (a), the RNA graph G with an A-minor occurrence in red, and in (b), the subgraph
G

O,A− of G. Every vertex is annotated by its type.

the tertiary structure, the graph G
O,A

−

, which contains only this kind of bounds, plays a
fundamental role in the definition of the context of a motif. We give below the definition of
the structural context, that we call k-extension of a motif occurrence.

▶ Definition 4. k-extension of a motif occurrence O

Given a motif occurrence O, a subset S of its vertices and an integer k, the k-
extension of a motif occurrence O according to S is the subgraph
GO = (VO, AO, EO) of an RNA graph G, induced by three sets of vertices (which
may be non-disjoint):

the set V
O of the vertices of the occurrence O (see definition 2)

the set of vertices V
O

k being at a distance strictly lower than k in the graph G
O,A

−

(see definition 3), from one of the vertices of S.
the set of vertices V

O+
k neighbors by an edge of a vertex of V

O
k in G.

The set S is the subset of vertices of the motif occurrence, from which we want to extend
it. This choice will be explained in Section 5. For example, in the A-minor motif, we consider
the first four vertices, i.e. the subset {1, 2, 3, 4} (see the black arrows in Figure 3a).

In the example of RNA graph in Figure 3, the set of vertices V
O is represented in blue,

the set V
O

k in orange and the set V
O+

k in green (Figure 3b).
The vertices of VO are grouped into several subsets (not necessarily disjoint). In G

O,A−,
we consider each path having for extremity one of the vertices of the motif occurrence O.
The vertices of V

O
k belonging to each of these paths constitute a subset of vertices. The

vertices of V
O+

k belong to the same subset(s) as their neighbor(s) in V
O

k . When we extend
around an A-minor motif, we have in general four subsets of vertices, as shown in Figure 3b
(framed in purple).

2.3 Definition of a Contracted k-extension
RNA structures are subject to modifications, due to evolution. Slight local changes in
structures, like adding or deleting one nucleotide in a loop or an helix, may not change
noticeably the 3D structure of the molecule, and thus may not change its function. This
is why we present below a contracted representation of the context, allowing to represent
similar but different contexts in an almost identical way. As will be seen in the Results
section (Section 5), this new representation not only allows to better take the evolution
into account, but also significantly decreases the computation time when comparing motif
contexts.

SEA 2021

19:6 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

GO,A−

1
N

C

C
C

3

C C

4 C

2 5

M C

C

0

0

0

C

C C

C C

0

C

0

0
N

0
0

V O

V O
k

(a) Graph G
O,A− in which the vertices of V

O

are annotated in blue and the vertices of V
O

k

are annotated in orange for k = 4.

G

1
N

C

C
C

3

C C

4 C

2 5

M C

C

0

0

0

C

C C

C C

0

C

0

0
N

0
0

V O

V O
k

V O+
k

V4V3

V1

V2

(b) RNA Graph G in which the vertices of V
O

are annotated in blue, the vertices of V
O

k in
orange and the vertices of V

O+
k in green for

k = 4.

Figure 3 Construction of a k-extension for k=4. The vertices belonging to the k-extension are
colored in blue, orange and green in both graphs G

O,A (a) and G (b). In (b) the four subsets of
vertices (V1, V2, V3 and V4) are framed in purple.

We define a second graph G̃O, derived from GO, in which some edges and some vertices
are contracted.

To do so, we have to define first the notion of contractable path, that will determine the
vertices and the edges to contract. We define it in the graph G

O,A−
O which is the spanning

subgraph of the k-extension GO that contains no edge of GO and all the arcs of GO except
those of the motif occurrence O (see definition 3).

▶ Definition 5. Contractable paths in G
O,A−
O

A contractable path is a maximal path, in the graph G
O,A−
O in which:

the vertices are all of type C or all of type 0 and all belong to the same subset
V

O
k or all to the same subset V

O+
k

and if the vertices are all of type C, the canonical neighbors of these vertices (see
definition 1) also induce a contractable path in G

O,A−
O .

These paths connect vertices that are not involve in any edges (type 0) or vertices that
are only involve in canonical edges (type C). It allows us to represent secondary structure
elements, such as helices and loops, as blocs. Examples are presented in Figure 4.

▶ Definition 6. Contracted k-extension of a motif occurrence O

A contracted k-extension, denoted as G̃O, is a graph derived from a k-extension
GO, in which the vertices of each contractable path in G

O,A−
O are contracted in one

single vertex. If these vertices are of type C, their canonical neighbors also induce a
contractable path in G

O,A−
O (according to the definition 5), and will thus be contracted.

In this case, an edge of canonical type connects the two contracted vertices.

Each contracted vertex in G̃O is of the same type τ as the vertices from which it is derived
in GO. The number of vertices of GO grouped in G̃O in one single vertex x ∈ VO is noted
p(x). An example of graph G̃O is presented in Figure 4.

C. Gianfrotta, V. Reinharz, D. Barth, and A. Denise 19:7

GO

1
N

C

C
C

3

C

u

C
v

4 C

2 5

M C

C

0

C

C C

C C

C

N

0
0

V O

V O
k

V O+
k

w

z

G̃O

1
N

C

C
C

3

None C

4 None

2 5

M None

None

0

C

C None

None

None

0p = 2

p = 2

p = 2

Figure 4 On the left, the graph GO with 3 contractable paths circled in red. The path between
the vertices u and v is not a contractable path because the vertex u belongs to the subset V

k
O and

the vertex v does not. In the same way, there is no contractable path between w and z because they
are not of the same type (M for w and C for z). Because of that, their canonical neighbors do not
induce a contractable path either. On the right, the graph G̃O obtained by contraction, with the
contracted vertices, framed in red and annotated by their weight p. The types of the vertices of
V

O+
k become None.

As defined in definition 5, the contractable paths are maximal paths, i.e. a set of
contractable vertices cannot belong to a larger set of contractable vertices. Thus, the
resulting graph G̃O is unique. Moreover, the same vertex cannot belong to two different
contractable paths. Consequently, the graph G̃O does not depend on the order of treatment
of the contractable paths.

In this model, the vertices of V
O+

k in G̃O take the type None to differentiate them from
the vertices of V

O
k .

The notations we defined in this section are summarized in the Table 1.

Table 1 Summary of the graphs we define.

G RNA graph
O motif occurrence in G (subgraph of G, isomorphic to a motif)
G

O,A− spanning subgraph of G containing no edge of G and all the arcs of G

(except those belonging to the motif occurrence O)
GO k-extension of a motif occurrence O in G (subgraph of G)
G

O,A−
O spanning subgraph of GO containing no edge of GO and all the arcs of GO

(except those belonging to the motif occurrence O)
G̃O contracted k-extension of a motif occurrence O in G

(obtained from the contraction of vertices, arcs and edges in GO)

3 Similarity between Contracted k-extensions

We aim to compare the structural contexts of motif occurrences in RNA structures. For this
purpose, we compare the contracted k-extensions of motif occurrences (noted G̃O in Section
2.3), in order to obtain, for each pair of contracted k-extensions, a common subgraph that
maximizes a similarity metric we will define below in Section 3.2.

SEA 2021

19:8 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

3.1 Maximum Common Subgraph : Variant of the MCES Problem
We will start by defining the maximum common subgraph on which we will calculate a
similarity metric. To do so, we rely on the MCES problem.

The MCES problem aims to find a subgraph, common to any two graphs G and H,
maximizing the number of edges.

In our study, we search for a common subgraph as such, with supplementary constraints
on the vertices and the edges, that we detail in the next paragraph.

Let G̃O1 = (ṼO1 , ẼO1 , ÃO1) and G̃O2 = (ṼO2 , ẼO2 , ÃO2) be two graphs of contracted
k-extensions obtained from two motif occurrences O1 and O2 (Section 2.3).

We define G̃′
O1 = (Ṽ ′

O1 , Ẽ ′
O1 , Ã′

O1) a subgraph of G̃O1 such that G̃′
O1 contains the

vertices of the motif occurrence O1, and G̃′
O2 = (Ṽ ′

O2 , Ẽ ′
O2 , Ã′

O2) a subgraph of G̃O2 such
that G̃′

O2 contains the vertices of the motif occurrence O2.
We seek to find a subgraph G̃′

O1 , isomorphic to G̃′
O2 , and such that :

each vertex u ∈ Ṽ ′
O1 is mapped to a vertex v ∈ Ṽ ′

O2 of the same type and belonging to
a same subset of vertices (see 2.2),
and such that each edge [u1, u2] ∈ Ẽ ′

O1 is mapped to an edge [v1, v2] ∈ Ẽ ′
O2 of the

same type

Moreover, the subgraph G̃′
O1 is not necessarily connected, but for all pairs of vertices

{u, v} ∈ Ṽ ′2
O1 in G̃′

O1 , if there is a path containing only arcs in G̃O1 between u and v, there
has to be a path containing only arcs in G̃O2 between the vertex mapped with u in G̃′

O1 and
the vertex mapped with v in G̃′

O2 . It means that the subgraph G̃′
O1 must take into account

the order of the vertices in these paths in the contracted k-extensions G̃O1 and G̃O2 .
The subgraph G̃′

O1 is thus a common subgraph to G̃O1 and G̃O2 .
It has been shown that the decision problem associated with the calculation of a MCES

between any two graphs is NP-complete [7]. Algorithms have been developed, able to solve
the MCES problem for small instances, in particular for graphs representing molecules, such
as the RASCAL algorithm [22]. This algorithm is an exact resolution of the problem. To
find the MCES between two graphs G and H, it constructs the modular graph product P
between the line graphs of G and H, and searches for a maximum clique in this graph P with
a branch and bound method. We relied on this method to obtain the maximum common
subgraph between our contracted k-extensions. We also developed a heuristic that builds the
best common subgraph step by step, starting with the vertices with the highest degree.

3.2 Definition of the Similarity Metric to Maximize : the Contextual
Graph Similarity

We will now explain how to evaluate the common subgraph we found, by defining a similarity
measure, we call contextual graph similarity.

Although we have based ourselves on the RASCAL algorithm, the metric we want to
maximize is slightly different. In the RASCAL algorithm, the similarity measure computes
the number of edges and vertices in the common subgraph relative to the number of edges
and vertices in the two initial graphs. Our contextual graph similarity takes into account
only the number of edges, and not the number of vertices, in a common subgraph between
two contracted k-extensions, because the interactions within an RNA molecule contribute
the most to its tertiary structure. We do not consider arcs either, because we want to focus
on the importance of canonical and non canonical interactions in RNA 3D structures.

C. Gianfrotta, V. Reinharz, D. Barth, and A. Denise 19:9

▶ Definition 7. Contextual graph similarity
The contextual graph similarity between the two contracted k-extensions G̃O1

and G̃O2 is calculated as follows :

sim(G̃′
O1 , G̃O1 , G̃O2) =

∑
[u,v]∈Ẽ ′

O1\EO1

min(p(u), p(u′))

max(∑
[u,v]∈ẼO1\EO1

p(u), ∑
[u,v]∈ẼO2\EO2

p(u))

with u
′
∈ Ṽ ′

O2 the vertex in G̃′
O2 (subgraph of G̃O2 isomorphic to G̃′

O1 , see Section
3.1), that is mapped with u ∈ Ṽ ′

O1 in G̃′
O1

We count the proportion of edges in the common subgraph G̃′
O1 compared to the maximum

number of edges between G̃O1 and G̃O2 . We do not take into account the edges of E
O1 ,

i.e. the edges of the occurrence O1 of the motif (or O2 as the occurrences are isomorphic).
Indeed, by definition, these edges are present in all contracted k-extensions.

The vertices incident to the same edge have necessarily the same weight, noted p (see
Section 2.3). Each edge in G̃′

O1 is weighted by the minimum weight of its incident vertices
in G̃′

O1 and their mapped vertices in G̃′
O2 . Each edge in G̃O1 or G̃O2 is weighted by the

weight of its incident vertices. This number corresponds to the number of nucleotides that
the vertex represents (see Section 2.3). In this definition of the metric,the weights of the
vertices are thus taken into account, which means that small differences in the structure will
be counted. However, thanks to the contracted graphs, it is possible to parameterize the
metric to take into account the weights of the vertices in a less restrictive way.

To illustrate the behaviour of our metric, examples of common subgraphs with high and
low contextual similarities are shown in Figure 5.

We can note that we are interested in the maximum contextual graph similarity value
between two contracted k-extensions, that can be obtained from several different common
subgraphs.

4 Classification of k-extensions and Search for a Maximum Common
Graph to a Class

We seek to establish a classification of contracted k-extensions of motif occurrences (noted
G̃O in Section 2.3).

For this purpose, we define a graph Gs = (Vs, Es, ω), called similarity graph, in which
each vertex represents a contracted k-extension of motif occurrence and there is an edge
between all pairs of vertices, weighted by the contextual similarity value. This weighting is
noted by the function ω ∶ Es → [0, 1]. In this similarity graph, we remove the edges weighted
by a value inferior to a threshold s. This threshold s is set so that contracted k-extensions
with contextual similarity less than s are considered as not similar.

Then we define a classification as a set of subsets of vertices W = {Vs1, Vs2, ..., Vsn},
such that Vs = ⋃n

i=1 Vsi. The subsets of vertices in W are not necessarily two by two disjoint,
which means that a vertex can belong to two different classes. Our classification is therefore
a coverage of Gs and not a partition. It allows us to take into account the case where one
contracted k-extension is close to two other contracted k-extensions, which are, for their part,
very different.

SEA 2021

19:10 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

0,2

C,1

3,1

1,1

C,3

None, 1

None, 1

None, 3

N,1

C,2

4,1

2,1

C,1

0,2

None, 1

None, 1

5,1

None, 1

None, 2

(a)
0,2

C,1

3,1

1,1

C,3

None, 1

None, 1

None, 3

N,1

C,2

4,1

2,1

C,1

N,1

0,1

None, 1

None, 1

None, 1

5,1

None, 1

None, 2

(b)

C,1

0,2

3,1

1,1

C,3

None, 1

None, 3

C,3

4,1

2,1

C,3

None, 1

5,1

None, 3

None, 3

(c) C,2

N,1

3,1

1,1

N,1

0,1

N,1

None, 1

None, 2

None, 1

None, 1

0,2

N,1

4,1

2,1

C,2

0,1

None, 1

None, 1

5,1

None, 2

(d)

sim = 0.93

sim = 0.20

sim = 0.64
sim = 0.20

sim = 0.20

sim = 0.64

Figure 5 Contextual graph similarities between four contracted 4-extensions. As seen before, arcs
are represented in green, canonical edges in blue and non canonical edges in black, with the symbols
of the Leontis–Westhof nomenclature. Each node is annotated by a doublet (type, weight). The
3D structure alignment of the 4-extensions (a) and (b) (resp. (b) and (c)) is presented at the top
(resp. on the right). In the 3D structures, each type of nucleotides (A,C,G,U) is colored with the
same colour. The two contracted 4-extensions above are the most similar (similarity of 0.93), and
their corresponding 3D structures are very close too, as shown in the alignment. The 4-extension
(c) has the smallest number of edges. However, it is still relatively similar to the 4-extensions (a)
and (b) (similarity of 0.64). On the contrary, the 4-extension (d) is very different from the three
others (similarity of 0.20), because it has many non canonical edges (represented in black) that do
not appear in the other 4-extensions. The 3D alignment between (b) and (d) also highlights the
differences.

We evaluate our classification according to cluster density and average similarity within
clusters. Those two criteria allow us to obtain classes of similar contracted k-extensions, and
so where the motif occurrences corresponding share close structural contexts. We thus apply
a clustering method, developed in [20], that seeks to maximize those two criteria and also,
that authorizes to obtain a coverage of the similarity graph and not a partition.

C. Gianfrotta, V. Reinharz, D. Barth, and A. Denise 19:11

1

N
2

M

3

N
4

M

5

M

(a) A-minor motif.

1

N
2

N
3

N

(b) Trans WC/Hoogsteen motif (from
[23]).

1

N/M

2

N/M

3

M
4

N/M

5

N/M

(c) G motif (from [23]).

Figure 6 The three motifs we studied. The pink nodes constitute the subset of nodes from which
we extend the motif to obtain the k-extensions (see Section 2.2).

We then characterize each of our classes by a representative. To do that, for each class of
size n, we consider a maximum common subgraph to every contracted k-extensions of the
class, defined in the same way as the maximum common subgraph for two graphs (Section
3.1), but for n graphs. The quality of a class is notably linked to the size of this maximum
common subgraph. The larger the size of the common subgraph, the more similar the
contracted k-extensions of the class will be.

In Results section, we will analyze this classification in order to evaluate its relevance in
a biological point of view.

5 Experimental Results

This section illustrates the relevance of our approach on three complex RNA motifs (Figure
6) : The A-minor motif, the Trans WC/Hoogsteen motif and a third motif which we call the
G motif. These motifs are among those connecting RNA regions far away in the secondary
structure. The A-minor motif frequently occurs in the RNA 3D structures, and has been
proved to be involved in crucial cellular mechanisms [13]. The other two motifs come from
the database of recurrent 3D motifs CaRNAval [23].

These three motifs are not predictable by current computational methods, to the best
of our knowledge. That is why we choose to apply our method on those motifs. The
fundamental question is: in terms of graphs, can the context of a motif help us to predict
its presence in the molecule? The experiments shown in this section are intended to make
progress towards answering this question. We first show that there is a clear correlation
between our graph similarity and the geometrical similarity in 3D structures. Then we show
that the automatic classification of RNA motif occurrences, based on our graph similarity, is
consistent with RNA 3D structures. And finally, we show some advantages of the contracted
graph representation, notably in terms of running time.

We applied our method on a dataset of non-redundant occurrences of those motifs from
the PDB: 89 occurrences of the Trans WC/H motif, 391 of the A-minor motif, and 159
of the G motif. To choose the vertices from which we extend the motif (the subset S in
Definition 4), we considered vertices that are involved in non canonical edges and only one
of the two incident vertices to a canonical edge (see the pink vertices in Figure 6).

We chose an extension size k of 4 because this size gives us the most discriminating
results.

5.1 Correlation between Graph Similarity and 3D Similarity
Firstly, we compare our contextual similarity measure to a measure of similarity on the
3D structures. To do so, we consider, for each contracted k-extension in our dataset, the
3D structure of the RNA graph induced by the contracted k-extension. We then use the

SEA 2021

19:12 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

0.0 0.2 0.4 0.6 0.8 1.0
Contextual similarity

2

0

2

4

6

8

10

12
RM

SD
 (Å

)

R²:0.74

(a) Distribution of the RMSD values according to the
contextual graph similarity values. The linear regression
line of the distribution is presented in red, and the
correlation coefficient R

2 is indicated. The histograms
in the margin of the diagram show the distribution of
values of contextual similarity (above) and RMSD (on
the right).

(b) Distribution of the inter-cluster and intra-
cluster RMSD values, with a clustering ob-
tained with a contextual similarity threshold
of 0.46 (black line in (a)).

Figure 7 Two representations of the distribution of RMSD values in relation to the contextual
graph similarity values, for the Trans WC/H motif occurrences.

RMSD (Root Mean Square Deviation) [3] as a quantitative measure of similarity between
3D structures. We align each pair of 3D structures nucleotide by nucleotide and calculate
the RMSD by considering each nucleotide by its carbon 3’, as it is usually done ([15], [4]).
Then we compare the RMSD values to our contextual graph similarity values. The lower the
RMSD, the more similar the two considered structures are. On the contrary, a contextual
graph similarity value near to 0 (resp. 1) indicates that the k-extensions are very different
(resp. very similar).

We present the distribution of the RMSD values according to the contextual graph
similarity values, for the occurrences of the Trans WC/H motif (Figure 7a). The correlation
coefficient R

2 associated with this distribution is very high (0.74). This is confirmed by the
diagram where two main sets of dots can be observed, corresponding to the occurrences with
a very high RMSD (superior to 7.5Å) and a very low contextual similarity (inferior to 0.25),
and to the occurrences with a low RMSD (inferior to 4Å) and with a contextual similarity
superior to 0.3.

For the other two motifs (results shown in appendix A.2.1, Figure 9), the correlation
coefficient is equal to 0.33 for the A-minor motif and to 0.56 for the G motif. Those two
motifs have thus a correlation coefficient, not as high as the Trans WC/H motif. They seem
to be less dependent on their local environment.

5.2 Motif Classification

We also classified the contracted k-extensions, according to the contextual graph similarity.
We aim to determine whether grouping motif occurrences by similar environment leads to
different classes, and whether these classes are consistent with the RMSD. To do so, we used
the clustering method detailed in Section 4. This method requires to choose a similarity
threshold, below which the contracted k-extensions cannot be placed in the same cluster.

C. Gianfrotta, V. Reinharz, D. Barth, and A. Denise 19:13

(a)

(b)

Figure 8 Clustering and 3D alignments. In the middle, the similarity graph of the Trans WC/H
motif occurrences. A node corresponds to an occurrence and there is an edge between two nodes
if the contextual graph similarity between the contracted k-extensions is greater than 0.46. The
clustering is indicated in red circles. On both sides, the 3D alignment of the contracted k-extensions
of the two clusters. There is one color for each type of nucleotide. In (a), is presented the alignment
of the 3D structures corresponding to a subset of contracted k-extensions of the largest cluster, and
in (b), the alignment of the 3D structures corresponding to all of the contracted k-extensions of the
smaller cluster.

We chose this threshold in an effort to have the better consistency between the contextual
similarity values and the RMSD values. It means that the pairs of contracted k-extensions
that have a contextual similarity value above (resp. below) the threshold must have similar
(resp. not similar) 3D structures according to the RMSD. For the Trans WC/H motif, we
choose a threshold of 0.46 because all the pairs of contracted k-extensions with a contextual
similarity value above this threshold, correspond to 3D structures with a RMSD inferior to
5Å (Figure 7a). On the other hand, with this threshold, we lose some pairs with an RMSD
value inferior to 3Å.

However, the Figure 7b shows a very clear consistency between the contextual similarity
values and the RMSD values. Indeed, the RMSD of pairs of contracted k-extensions within
a cluster does not generally exceed a value of 4.5Å and the RMSD of pairs of contracted
k-extensions of two different clusters is generally superior to 4.5Å. This result thus also shows
the relevance of our contextual graph similarity measure in relation to the RMSD.

Similar results hold for the two other motifs (see appendix A.2.1 Figure 10). The
thresholds we have to choose to have a better consistency with RMSD values are higher
(0.75 for the A-minor motif, and 0.65 for the G motif), and the maximum RMSD within
clusters is higher for these two motifs, in particular for the A-minor motif where the RMSD
values within clusters can reach 7Å for a few pairs of contracted k-extensions (appendix A.2.1
Figure 10).

We are now interested in the relevance of the classification itself. The classification we
obtained for the Trans WC/H motif is composed of a large cluster of more than 60 occurrences,
and four smaller clusters of respectively, 9, 3, 2 and 2 occurrences. The similarity graph (see
Section 4) associated with this threshold is presented in Figure 8. It is a sufficiently dense
graph for the classification to make sense, and to justify the use of a clustering method.

The cluster with 9 occurrences is composed of occurrences (and their contexts) sharing
very close 3D structures (Figure 8, alignment (b)), and the maximum common subgraph
(defined in Section 5.2) of the contracted k-extensions of this cluster is quite large. It is
indeed composed of 6 edges (including 4 non canonical edges) which corresponds to one third

SEA 2021

19:14 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

of the number of edges in the smallest contracted k-extension of the cluster. These motif
occurrences are found in RNA molecules of the same family, which explains their high 3D
similarity. The largest cluster is composed of occurrences (and their contexts) sharing less
close 3D structure. Indeed, the 3D alignment for a subset of occurrences of this cluster in
Figure 8 (alignment (a)) is quite good for the right parts of the structure, but differences
appear for the top left part. These motif occurrences are found in RNA molecules of different
but close families. The classification obtained with the two other motifs, available in appendix
A.2.2 Figure 11, also groups together motif occurrences sharing close 3D structures. These
results show that the classification based on the contextual graph similarity measure, is able
to group together motif occurrences in relevant clusters that share very similar environments
in 3D.

5.3 Advantage of the Contracted Representation
The contracted graph representation presents two main advantages. The first one is the
running time: the time needed to execute the search for a maximum common subgraph
is largely reduced for the contracted k-extensions, even though it stays exponential with
the exact method. The results obtained with the exact method, on the three motifs, are
presented in Table 2. For the A-minor motif occurrences, for example, which corresponds
to our larger dataset (391 occurrences), the contracted representation makes it possible to
divide the execution time by 4.

Perhaps more importantly, contrarily to other approaches based also on graph isomorphism
(e.g. [19, 23]), our metrics allows us to consider slight changes in the number of vertices and
edges in the graphs as identical (see Section 2.3). This allows to group together contexts
which are different at the graph level, but very similar in terms of 3D structure.

6 Conclusion and Perspectives

In this study, we wanted to determine if the structural context of complex motifs in RNA
structures can give useful information about the 3D structure of this context and thus help
to predict the presence and the position of the motif in RNA 3D structures.

To find out, we represented the structural contexts of motif occurrences by specific graphs,
at two granularity levels, and developed a method, based on solving a MCES problem, to
compare them using a dedicated similarity metric. The MCES problem is used in many
approaches looking for similarities between molecules [26, 6, 1, 2], but here we have some
additional constraints on the graphs and a different metric. The granularity of the graphs we
defined allows us to consider two structural contexts as similar even if slight differences occur

Table 2 Execution time of the search for maximum common subgraph for each pair of k-extensions
(contracted or non contracted) for the three datasets, on a PC Intel Core i5-7440HQ 4x2.80GHzCPU.

Motif Execution time (in hours) for Execution time (in hours) for
contracted k-extensions non contracted k-extensions

A-minor motif 4 16
(391 occurrences)

G motif 0,8 2,2
(159 occurrences)
Trans W/H motif 0,22 0,45
(89 occurrences)

C. Gianfrotta, V. Reinharz, D. Barth, and A. Denise 19:15

in terms of nucleotides and bonds, since they have little impact in the 3D configurations.
Our results show that there is a clear correlation between our contextual graph similarity

measure and the RMSD, which is a measure of similarity on the 3D structures (Section 5.1).
Moreover, the reduced size of our graphs compared to graphs representing each nucleotide
and each interaction separately, allows a considerable saving in computing time, especially
when searching in databases. We also established an automatic and exhaustive classification
of the three motifs we studied (Section 5.2). This classification is consistent with the 3D
structures, which means that it groups together motif occurrences that share both close
structural contexts and close local 3D structures.

Regarding perspectives, we now have to study further the motif classifications. Notably,
it will be worth considering the A-minor motif, which is ubiquitous in RNA structures and
for which there is no available prediction method. We believe that a method which combines
both our graph approach and sequence considerations could lead to useful results. Many
other motifs have also to be studied, notably from the CaRNAval database [23].

From a more theoretical point of view, we plan to refine our similarity measure by devising
weights for different classes of modifications in the RNA graphs. For example, nucleotide
insertions and deletions could give different costs according to these parameters. Then,
computing parameter values would need a thorough study of motifs in databases.

References
1 Faisal N. Abu-Khzam, Nagiza F. Samatova, Mohamad A. Rizk, and Michael A. Langston.

The maximum common subgraph problem: Faster solutions via vertex cover. In IEEE/ACS
International Conference on Computer Systems and Applications, pages 367–373, 2007. doi:
10.1109/AICCSA.2007.370907.

2 Tatsuya Akutsu and Hiroshi Nagamochi. Comparison and enumeration of chemical graphs.
Computational and Structural Biotechnology Journal, 5, 2013. doi:10.5936/csbj.201302004.

3 Rafael Brüschweiler. Efficient RMSD measures for the comparison of two molecular ensembles.
Root-mean-square deviation. Proteins, 50(1):26–34, 2003. doi:10.1002/prot.10250.

4 Emidio Capriotti and Marc A. Marti-Renom. RNA structure alignment by a unit-vector
approach. Bioinformatics, 24(16):i112–i118, 2008. doi:10.1093/bioinformatics/btn288.

5 Grzegorz Chojnowski, Tomasz Waleń, and Janusz M. Bujnicki. RNA Bricks—a database of
RNA 3D motifs and their interactions. Nucleic acids research, 42(D1):D123–D131, 2014.

6 Hanna Eckert and Jürgen Bajorath. Molecular similarity analysis in virtual screening:
foundations, limitations and novel approaches. Drug Discovery Today, 12(5):225–233, 2007.
doi:10.1016/j.drudis.2007.01.011.

7 Michael R. Garey and David S. Johnson. Computers and intractability, volume 29. WH
Freeman New York, 2002.

8 Johann Gasteiger. Handbook of Chemoinformatics: From Data to Knowledge. Wiley, 1 edition,
2003. doi:10.1002/9783527618279.

9 Mark A. Johnson and Gerald M. Maggiora. Concepts and applications of molecular similarity.
The American Chemical Society, 1988.

10 Neocles B. Leontis, Aurélie Lescoute, and Eric Westhof. The building blocks and motifs
of RNA architecture. Current Opinion in Structural Biology, 16(3):279–287, 2006. doi:
10.1016/j.sbi.2006.05.009.

11 Neocles B. Leontis and Eric Westhof. Geometric nomenclature and classification of RNA base
pairs. RNA, 7(4):499–512, April 2001.

12 Neocles B. Leontis and Eric Westhof. Analysis of RNA motifs. Current opinion in structural
biology, 13(3):300–308, 2003.

13 Aurélie Lescoute and Eric Westhof. The A-minor motifs in the decoding recognition process.
Biochimie, 88(8):993–999, 2006. doi:10.1016/j.biochi.2006.05.018.

SEA 2021

https://doi.org/10.1109/AICCSA.2007.370907
https://doi.org/10.1109/AICCSA.2007.370907
https://doi.org/10.5936/csbj.201302004
https://doi.org/10.1002/prot.10250
https://doi.org/10.1093/bioinformatics/btn288
https://doi.org/10.1016/j.drudis.2007.01.011
https://doi.org/10.1002/9783527618279
https://doi.org/10.1016/j.sbi.2006.05.009
https://doi.org/10.1016/j.sbi.2006.05.009
https://doi.org/10.1016/j.biochi.2006.05.018

19:16 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

14 Aurélie Lescoute and Eric Westhof. The interaction networks of structured RNAs. Nucleic
acids research, 34(22):6587–6604, 2006.

15 Marcin Magnus, Kalli Kappel, Rhiju Das, and Janusz M. Bujnicki. RNA 3D structure
prediction guided by independent folding of homologous sequences. BMC Bioinformatics,
20(1):512, 2019. doi:10.1186/s12859-0193120-y.

16 Stefi Nouleho Ilemo, Dominique Barth, Oliver David, Franck Quessette, Marc-Antoine Weisser,
and Dimitri Watel. Improving graphs of cycles approach to structural similarity of molecules.
PLOS ONE, 14(12):1–25, 2019. doi:10.1371/journal.pone.0226680.

17 Carlos Oliver, Vincent Mallet, Roman Sarrazin-Gendron, Vladimir Reinharz, William L.
Hamilton, Nicolas Moitessier, and Jérôme Waldispühl. Augmented base pairing networks
encode RNA-small molecule binding preferences. Nucleic acids research, 48(14):7690–7699,
2020.

18 Marc Parisien and François Major. The MC-Fold and MC-Sym pipeline infers RNA structure
from sequence data. Nature, 452:51–5, 2008. doi:10.1038/nature06684.

19 Samuela Pasquali, Hin H. Gan, and Tamar Schlick. Modular RNA architecture revealed by
computational analysis of existing pseudoknots and ribosomal RNAs. Nucleic Acids Research,
33(4):1384–1398, 2005. doi:10.1093/nar/gki267.

20 Airel Pérez-Suàrez, José F. Martínez-Trinidad, Jésus A. Carrasco-Ochoa, and José E. Medina-
Pagola. An algorithm based on density and compactness for dynamic overlapping clustering.
Pattern Recognition, 46(11):3040–3055, 2013. doi:10.1016/j.patcog.2013.03.022.

21 Anton I. Petrov, Craig L. Zirbel, and Neocles B. Leontis. Automated classification of RNA
3D motifs and the RNA 3D Motif Atlas. Rna, 19(10):1327–1340, 2013.

22 John Raymond, Eleanor Gardiner, and Peter Willett. RASCAL: Calculation of Graph
Similarity using Maximum Common Edge Subgraphs. Computer Journal, 45:631–644, April
2002.

23 Vladimir Reinharz, Antoine Soulé, Eric Westhof, Jérôme Waldispühl, and Alain Denise.
Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in
network families. Nucleic Acids Research, 46(8):3841–3851, 2018. doi:10.1093/nar/gky197.

24 Roger Sayle, John May, Noel O’Boyle, J. Andrew Grant, Stefan Senger, and Darren V.S.
Green. Chemical similarity based on graph edit distance:efficient implementation and the
challenges of evaluation. In 7th Joint Sheffield Conference on Chemoinformatics, 2015.

25 Jason Yao, Vladimir Reinharz, François Major, and Jérôme Waldispühl. RNA-MoIP: prediction
of RNA secondary structure and local 3D motifs from sequence data. Nucleic acids research,
45(W1):W440–W444, 2017.

26 Laura A. Zager and George C. Verghese. Graph similarity scoring and matching. Applied
Mathematics Letters, 21(45):86–94, 2008. doi:10.1016/j.aml.2007.01.006.

https://doi.org/10.1186/s12859-0193120-y
https://doi.org/10.1371/journal.pone.0226680
https://doi.org/10.1038/nature06684
https://doi.org/10.1093/nar/gki267
https://doi.org/10.1016/j.patcog.2013.03.022
https://doi.org/10.1093/nar/gky197
https://doi.org/10.1016/j.aml.2007.01.006

C. Gianfrotta, V. Reinharz, D. Barth, and A. Denise 19:17

A Appendix

A.1 Representation of the Context

Table 3 Symbols of the Leontis–Westhof nomenclature for the non canonical interactions.

Orientation Interacting Edges Symbol
Cis Watson–Crick / Watson–Crick (cWW) -●-

Trans Watson–Crick / Watson–Crick (tWW) -○-
Cis Watson–Crick / Hoogsteen (cWH) ●-■

Trans Watson–Crick / Hoogsteen (tWH) ○-□
Cis Watson–Crick / Sugar Edge (cWS) ●- ▶

Trans Watson–Crick / Sugar Edge (tWS) ○-▷
Cis Hoogsteen / Hoogsteen (cHH) -■-

Trans Hoogsteen / Hoogsteen (tHH) -□-
Cis Hoogsteen / Sugar Edge (cHS) ■- ▶

Trans Hoogsteen / Sugar Edge (tHS) □- ▷
Cis Sugar Edge / Sugar Edge (cSS) -▶-

Trans Sugar Edge / Sugar Edge (tSS) -▷-

A.2 Experimental Results
A.2.1 Correlation between Graph Similarity and 3D Similarity

(a) A-minor motif.

0.0 0.2 0.4 0.6 0.8 1.0
Contextual similarity

0

2

4

6

8

10

12

14

16

RM
SD

 (Å
)

R²:0.56

(b) G motif.

Figure 9 Distribution of the RMSD values according to the contextual graph similarity values
for the A-minor and the G motif. The linear regression line of the distribution is in red, and the
correlation coefficient R

2 is indicated. The univariate distributions of RMSD and contextual graph
similarity are presented in the margin of the diagram (above for the contextual graph similarity and
on the right for the RMSD). The chosen contextual similarity threshold for the clustering for each
motif is in black.

SEA 2021

19:18 A Graph-Based Approach to Classify Recurrent Complex Motifs in RNA Structures

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
RMSD (Å)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pa

ir
de

ns
ity

inter-cluster
intra-cluster

(a) A-minor motif
(contextual similarity threshold = 0.75).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
RMSD (Å)

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ir

de
ns

ity

inter-cluster
intra-cluster

(b) G motif
(contextual similarity threshold = 0.65).

Figure 10 Distribution of the RMSD values intercluster and intracluster, for the two other motifs,
with a clustering obtained with the contextual graph similarity thresholds indicated for each case.

A.2.2 Motif Classification

(a) A-minor motif
(contextual similarity threshold = 0.75).

(b) G motif
(contextual similarity threshold = 0.65).

Figure 11 Similarity graphs for the two other motifs, with the similarity threshold indicated in
each case. A node corresponds to a motif occurrence, and there is an edge between two nodes if the
contextual graph similarity is greater than the indicated threshold. Examples of clusters are circled
in red in both graphs. Nodes of the same color correspond to motif occurrences found in the same
RNA family.

Computing Vertex-Edge Cut-Pairs and 2-Edge
Cuts in Practice
Loukas Georgiadis !

Department of Computer Science & Engineering, University of Ioannina, Greece

Konstantinos Giannis !

Gran Sasso Science Institute, L’Aquila, Italy

Giuseppe F. Italiano !

LUISS University, Rome, Italy

Evangelos Kosinas !

Department of Computer Science & Engineering, University of Ioannina, Greece

Abstract
We consider two problems regarding the computation of connectivity cuts in undirected graphs,
namely identifying vertex-edge cut-pairs and identifying 2-edge cuts, and present an experimental
study of efficient algorithms for their computation. In the first problem, we are given a biconnected
graph G and our goal is to find all vertices v such that G \ v is not 2-edge-connected, while in the
second problem, we are given a 2-edge-connected graph G and our goal is to find all edges e such
that G \ e is not 2-edge-connected. These problems are motivated by the notion of twinless strong
connectivity in directed graphs but are also of independent interest. Moreover, the computation of
2-edge cuts is a main step in algorithms that compute the 3-edge-connected components of a graph.
In this paper, we present streamlined versions of two recent linear-time algorithms of Georgiadis and
Kosinas that compute all vertex-edge cut-pairs and all 2-edge cuts, respectively. We compare the
empirical performance of our vertex-edge cut-pairs algorithm with an alternative linear-time method
that exploits the structure of the triconnected components of G. Also, we compare the empirical
performance of our 2-edge cuts algorithm with the algorithm of Tsin, which was reported to be the
fastest one among the previously existing for this problem. To that end, we conduct a thorough
experimental study to highlight the merits and weaknesses of each technique.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases 2-Connectivity, Graph Algorithms, Split Components

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.20

Supplementary Material The source code, together with some sample input instances is available at
Software (Source Code): https://github.com/KoGi89/VECuts

archived at swh:1:snp:1f050f2c505784ef144a790438e918ddb790fb41

Funding Research at the University of Ioannina supported by the Hellenic Foundation for Research
and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty
members and Researchers and the procurement of high-cost research equipment grant”, Project
FANTA (eFficient Algorithms for NeTwork Analysis), number HFRI-FM17-431. G. F. Italiano is
partially supported by MIUR, the Italian Ministry for Education, University and Research, under
PRIN Project AHeAD (Efficient Algorithms for HArnessing Networked Data)

1 Introduction

Let G = (V, E) be a connected undirected graph with m edges and n vertices. An edge
e ∈ E is a bridge of G if G \ e is not connected. Similarly, a vertex v ∈ V is an articulation
point of G if G \ v is not connected. Graph G is biconnected (resp., 2-edge-connected) if
it has no articulation points (resp., no bridges). Note that if a graph is biconnected then

© Loukas Georgiadis, Konstantinos Giannis, Giuseppe F. Italiano, and Evangelos Kosinas;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:loukas@cs.uoi.gr
https://orcid.org/0000-0002-9706-7409
mailto:konstantinos.giannis@gssi.it
mailto:gitaliano@luiss.it
https://orcid.org/0000-0002-9492-9894
mailto:ekosinas@cs.uoi.gr
https://doi.org/10.4230/LIPIcs.SEA.2021.20
https://github.com/KoGi89/VECuts
https://archive.softwareheritage.org/swh:1:snp:1f050f2c505784ef144a790438e918ddb790fb41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice

it is necessarily 2-edge-connected. A 2-edge cut of G is a pair of edges e and f such that
G \ {e, f} is not connected. A 3-edge-connected component of G is a maximal set C ⊂ V

such that there is no 2-edge cut in G that disconnects any two vertices u, v ∈ C (i.e., u and v

are in the same connected component of G \ {e, f} for any 2-edge cut {e, f}). A separation
pair of G is a 2-vertex cut of G, i.e., a pair of vertices u and v such that G \ {u, v} is not
connected. The triconnected components of a biconnected graph G = (V, E) is a collection
of smaller graphs that describe all the separation pairs in G, as well as the partition of the
vertex set V induced by each separation pair [8].

Here we consider two problems regarding the computation of connectivity cuts in undirec-
ted graphs, namely identifying vertex-edge cut-pairs and identifying 2-edge cuts, and present
an experimental study of efficient algorithms for their computation. In the first problem,
we are given a biconnected graph G and our goal is to find all vertices v such G \ v is not
2-edge-connected, while in the second problem, we are given a 2-edge-connected graph G

and our goal is to find all edges e such that G \ e is not 2-edge-connected. These problems
are motivated by the notion of twinless strong connectivity in directed graphs [6, 9, 14] but
are also of independent interest. Moreover, the computation of 2-edge cuts is a main step in
algorithms that compute the 3-edge-connected components of a graph [5, 12, 13, 17]. In this
paper, we present streamlined versions of two recent linear-time algorithms of Georgiadis
and Kosinas [6] that compute all vertex-edge cut-pairs and all 2-edge cuts, respectively. We
note that both algorithms of [6] are based on a common framework applied on a depth-first
search (DFS) tree structure T of G that yields algorithms that are conceptually simple,
asymptotically optimal, and fast in practice. Furthermore, we believe that it may prove useful
in solving efficiently other connectivity problems. We compare the empirical performance
of our vertex-edge cut-pairs algorithm with an alternative linear-time method that exploits
the structure of the triconnected components of G, that can be represented efficiently by
an SPQR tree [1, 2]. Since SPQR trees can be constructed in linear time [7], this approach
implies an alternative linear-time algorithm for computing the vertex-edge cut-pairs of G. In
order to construct an SPQR tree, however, we need to know the triconnected components of
the graph [7], and efficient algorithms that compute triconnected components are considered
conceptually complicated, and thus difficult to implement (see, e.g., [4, 7, 8]). Also, we
compare the empirical performance of our 2-edge cuts algorithm with the algorithm of
Tsin [17], which was previously reported to be the fastest one among the previously existing
for this problem. To that end, we conduct a thorough experimental study to highlight the
merits and weaknesses of each technique.

2 Preliminaries

Recall that a graph is 2-edge-connected if it contains no bridges. For such a graph G, we
say that an edge e is a cut-edge if it forms a 2-edge cut together with some other edge. The
framework of Georgiadis and Kosinas [6] relies on a classification of the elements we want
to compute (e.g. cut-edges or vertices which belong to a vertex-edge cut), applied on a
depth-first search (DFS) tree structure T of G. We let T (v) denote the subtree of T rooted at
vertex v. This classification is based on the distribution of the back-edges of T , represented
by the sets B(v) of the back-edges that start from T (v) and end in an ancestor of v. To
see why these sets are useful in determining connectivity relations of G, observe that if we
remove a vertex v (which is not a leaf or the root) or the tree-edge (v, p(v)), that connects v

to its parent p(v) in T , from G, then T (v) remains connected with the rest of the graph only
through the back-edges in B(v). Now, we can capture the connectivity information we want

L. Georgiadis, K. Giannis, G. F. Italiano, and E. Kosinas 20:3

from the sets B(v) by considering the higher ends and the lower ends of all back-edges in
B(v). Thus we define the nearest common ancestor of the higher ends of all back-edges in
B(v), denoted by M(v), and the maximum and minimum lower ends of all back-edges in
B(v), denoted by high(v) and low(v), respectively. Using those (and similar) concepts, we
can classify the elements we want to compute in such a way that we can provide necessary
and sufficient conditions that characterize them and allow us to compute them efficiently.

Concepts defined on a DFS-tree

We consider a DFS traversal of G, starting from an arbitrarily selected vertex r, and let T

be the resulting DFS tree [16]. A vertex u is an ancestor of a vertex v (v is a descendant
of u) if the tree path from r to v contains u. Thus we consider a vertex to be an ancestor
(and, also, a descendant) of itself. We let p(v) denote the parent of a vertex v in T . If u is a
descendant of v in T , we denote the set of vertices of the simple tree path from u to v as
T [u, v]. The expressions T [u, v) and T (u, v] have the obvious meaning (i.e., the vertex on
the side of the parenthesis is excluded from the tree path). Recall that T (v) denotes the
subtree of T rooted at vertex v. We identify vertices in G by their DFS number, i.e., the
order in which they were discovered by the search. Hence, u ≤ v means that vertex u was
discovered before v. The edges of T are called tree-edges, and the edges of G that are not
tree-edges are called back-edges, as their endpoints are related as ancestor and descendant
on T . We denote the collection of all back-edges as B. When we write (u, v) to denote a
back-edge, we always mean that v ≤ u, i.e., u is an descendant of v in T . The framework of
Georgiadis and Kosinas [6], referred to as GK hereafter, uses the following key concepts that
are defined on T :

B(v) := {(x, y) ∈ B | x ∈ T (v) and y < v}, the set of all back-edges that start from T (v)
and end in a proper ancestor of v.
Bp(v) := {(x, y) ∈ B | x ∈ T (v) and y < p(v)}, the set of all back-edges that start from
T (v) and end in a proper ancestor of p(v).
l(v) := min{{v} ∪ {y | (v, y) ∈ B(v)}}, the lowest vertex that is connected with a
back-edge with v (or v if there is no back-edge (v, y)).
low(v) := min{y | (x, y) ∈ B(v)}, the lowest lower end of all back-edges in B(v).
high(v) := max{y | (x, y) ∈ B(v)}, the highest lower end of all back-edges in B(v).
highp(v) := max{y | (x, y) ∈ Bp(v)}, the highest lower end of all back-edges in Bp(v).
M(v) := nca{x | (x, y) ∈ B(v)}, the nearest common ancestor of the higher ends of all
back-edges in B(v).
Mp(v) := nca{x | (x, y) ∈ Bp(v)}, the nearest common ancestor of the higher ends of all
back-edges in Bp(v).
b_count(v) := #B(v), the number of elements of B(v).
bp_count(v) := #Bp(v), the number of elements of Bp(v).
up(v) := #{(x, p(v)) | x ∈ T (v)}, the number of back-edges that start from T (v) and end
in the parent of v.

B(v), l(v), low(v), high(v), M(v), b_count(v), and up(v) are defined for all vertices v ̸= r;
similarly, Bp(v), highp(v), Mp(v), and bp_count(v) are defined for all vertices v /∈ {r, rc},
where rc is the unique child of r, if G is biconnected. Except for B(v) and Bp(v), all these
parameters can be computed in total linear-time, for all the vertices on which they are
defined (see [6], and also Algorithms 1 and 3 in Appendix A).

SEA 2021

20:4 Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice

3 Computing vertex-edge cut-pairs in linear time

Here we present an overview of linear-time algorithms for computing the vertex-edge cut-pairs
of a biconnected graph G = (V, E). All algorithms compute, for each vertex v ∈ V , the
number of edges e ∈ E such that G \ {v, e} is not connected. The corresponding values are
stored in variables count(v). We first describe the algorithm of Georgiadis and Kosinas [6],
which operates on a DFS tree of T . Next, we provide a streamlined version that enhances
its performance in practice. Finally, we describe how to compute the count(v) values using
a SPQR tree of G, and describe a simplification of this approach that only computes the
relevant nodes of the SPQR tree.

3.1 Computing vertex-edge cut-pairs via the GK framework
We give an overview of the algorithm in [6] for computing all vertices that belong to a
vertex-edge cut in a biconnected graph G. This algorithm computes, for every vertex v,
the number of edges e such that G \ {v, e} is not connected. It works by classifying the
vertex-edge cuts on the DFS tree in such a way that we can provide an efficient method to
count the number of vertex-edge cuts of each type.

Let T be a DFS-tree of G rooted at r, and let {v, e} be a vertex-edge cut-pair. We
distinguish three cases, depending on the location of e relative to v on T : e can either be a
back-edge, or a tree-edge of the form (u, p(u)), with u a proper ancestor of v, or a tree-edge
of the form (u, p(u)), with u a proper descendant of a child of v.

If e is a back-edge, then there exists a child c of v, such that e connects T (c) with
T (v, r] and is the only back-edge with this property. Thus, for every vertex v, the number of
cut-pairs of the form {v, e}, where e is a back-edge, cannot be greater than the number of
children of v, and we can find all these cut-pairs explicitly: We only have to count, for every
vertex v, the number of its children c that have bp_count(c) = 1. All bp_count(c), for every
vertex c, can be computed during the depth-first search (see Algorithm 1 in Appendix A). If
for a vertex c we have bp_count(c) = 1, then {p(c), (Mp(c), low(c))} is a cut-pair.

Now, if e is a tree-edge of the form (u, p(u)), with u a proper ancestor of v, then every
back-edge that starts from T (u) and ends in a proper ancestor of u must start from a
descendant of v. This means that M(u) is a descendant of v, and we further distinguish two
cases, depending on whether M(u) = v or M(u) is a proper descendant of v. In the first case,
u has the property that, for every child c of v, either u ≤ low(c) or u > highp(c); in other
words, u does not belong to any set of the form T [highp(c), low(c)), for any child c of v. (And
conversely: if u has this property, and M(u) = v, then {v, (u, p(u))} is a cut-pair.) Thus, we
can find all vertex-edge cut-pairs of this type explicitly: we only have to find, for every vertex
v, all elements in M−1(v) that do not belong to any set of the form T [highp(c), low(c)), for
any child c of v. Now, if M(u) is a proper descendant of v, it is a descendant of a child c of v.
In this case, we have Mp(c) = M(u), and every back-edge that starts from T (c) and ends in
a proper ancestor of v = p(c) must end in a proper ancestor of u, and therefore highp(c) < u.
(The converse is also true: if u is a proper ancestor of p(c) such that Mp(c) = M(u) and
highp(c) < u, then {p(c), (u, p(u))} is a cut-pair.) Thus, to count all vertex-edge cut-pairs
of this type, it is sufficient to focus our attention on the lists M−1

p (m) and M−1(m), for
every vertex m, and count all pairs (c, u) ∈ M−1

p (m) ×M−1(m), such that u is a proper
ancestor of p(c) with highp(c) < u. To do this efficiently, we exploit the following fact: If
c is in M−1

p (m), and U(c) is the set of all vertices u in M−1(m) such that u is a proper
ancestor of p(c) with highp(c) < u, then, if c′ is also in M−1

p (m) and c′ ∈ T [c, highp(c)), we
have U(c′) = U(c) ∩ T (c′, highp(c)). (For details, see Algorithm “M(u) > v” in [6].)

L. Georgiadis, K. Giannis, G. F. Italiano, and E. Kosinas 20:5

Finally, if e is a tree-edge of the form (u, p(u)), with u a proper descendant of a child of v,
then every back-edge that starts from T (u) and ends in a proper ancestor of u must end in
an ancestor of v. This means that high(u) is an ancestor of v, and we further distinguish two
cases, depending on whether high(u) = v or high(u) is a proper ancestor of v. In the first case,
we can find all cut-pairs explicitly: we only have to find, for every vertex v, all u in high−1 (v)
that are not children of v and are such that either low(u) = v or low(u) < v and Mp(c) is
in T (u), where c is the child of v which is an ancestor of u (see Algorithm “high(u) = v”
in [6]). If high(u) is a proper ancestor of v, then M(u) = Mp(c), where c is the child of v

which is an ancestor of u. (Conversely: if u and c are such that u is a proper descendant
of c with M(u) = Mp(c) and high(u) < p(c), then {p(c), (u, p(u))} is a cut-pair.) Thus, to
count all vertex-edge cut-pairs of this type, it is sufficient to focus our attention on the lists
M−1

p (m) and M−1(m), for every vertex m, and count all pairs (c, u) ∈M−1
p (m)×M−1(m),

such that u is a proper descendant of c with high(u) < p(c). To do this efficiently, we exploit
the following fact: If c is in M−1

p (m) and U(c) is the set of all vertices u in M−1(m) such
that u is a proper descendant of c with high(u) < p(c), then all u in U(c) have the same
high point, call it h, and, if c′ is also in M−1

p (m) and such that c ≥ c′ and h < p(c′), then
U(c′) = U(c) ∪ (T [c, c′) ∩M−1(u)).

We refer to the algorithm of [6] as GK-VE.

Streamlined version

Now we describe our improvements that both simplify the algorithm of [6] and also make
it faster in practice. First, in order to compute all bp_count(v), [6] suggests a recursive
algorithm, which depends upon a specific sorting of the list of back-edges. Here, we observe
that we can compute these values directly during the DFS of G, together with all up(v), as
shown in Algorithm 1 (see Appendix A). This works as follows. By definition, bp_count(v)
is the number of back-edges of the form (x, y), where x is a descendant of v and y is a proper
ancestor of p(v). Therefore, bp_count(v) = bp_count(c1) + . . . + bp_count(ck) + #{(v, y) ∈
B(v)} −#{(x, p(v)) | x ∈ T (v)}, where c1, . . . , ck are the children of v (if it has any). Thus,
when we process a vertex v and u is in the adjacency list of v, we set bp_count(v) ←
bp_count(v) + bp_count(u) if u is a child of v, or bp_count(v) ← bp_count(v) + 1 if u is
an ancestor of v but not its parent. Now, to compute all up(v) := #{(x, p(v)) | x ∈ T (v)},
we keep a variable tempChild(v), for every vertex v, which is set to be the child of v in
which we have currently descended during the DFS. Then, when we process a vertex x and
v is in the adjacency list of x, and also v is an ancestor of x but not its parent, we set
up(tempChild(v))← up(tempChild(v)) + 1.

A second important improvement comes from the fact that [6] uses both the high(v) and
the highp(v) values, while we can observe that it suffices to use only the latter. Indeed, if
{v, (u, p(u))} is a vertex-edge cut-pair such that u is a descendant of v, then u is a proper
descendant of a child c of v and high(u) ≤ v = p(c); thus we have high(u) = highp(u),
since high(u) < c ≤ p(u). Then, we only have to make sure that every time we discover a
vertex-edge cut {v, (u, p(u))} of this type, we have high(u) = highp(u). This is the case if
and only if there is no back-edge (x, p(u)) with x ∈ T (u), which can be checked simply by
testing whether up(u) = 0.

We refer to the above version as GK-VE-S.

SEA 2021

20:6 Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice

3.2 Computing vertex-edge cut-pairs via SPQR trees
Here we describe how to compute the number of vertex-edge cut-pairs in linear time via
SPQR trees [1, 2]. An SPQR tree T for a biconnected graph G represents the triconnected
components of G. Each node α ∈ T is associated with an undirected graph or multigraph Gα.
Each vertex of Gα corresponds to a vertex of the original graph G. An edge of Gα is either
a virtual edge that corresponds to a separation pair of G, or a real edge that corresponds to
an edge of the original graph G. The node α, and the graph Gα associated with it, has one
of the following types:

If α is an S-node, then Gα is a cycle graph with three or more vertices and edges.
If α is a P -node, then Gα is a multigraph with two vertices and at least 3 parallel edges.
If α is a Q-node, then Gα is a single real edge.
If α is an R-node, then Gα is a simple triconnected graph.

Each edge {α, β} between two nodes of the SPQR tree is associated with two virtual edges,
where one is an edge in Gα and the other is an edge in Gβ . If {u, v} is a separation pair in
G, then one of the following cases applies (see, e.g., [18]):
(a) u and v are the endpoints of a virtual edge in the graph Gα associated with an R-node

α of T .
(b) u and v are vertices in the graph Gα associated with a P -node α of T .
(c) u and v are vertices in the graph Gα associated with an S-node α of T , such that either

u and v are not adjacent, or the edge {u, v} is virtual.

In case (c), if {u, v} is a virtual edge, then u and v also belong to a P -node or an R-node.
If u and v are not adjacent then G \ {u, v} consists of two components that are represented
by two paths of the cycle graph Gα associated with the S-node α and with the SPQR tree
nodes attached to those two paths. Let e = {x, y} be an edge of G such that {v, e} is a
vertex-edge cut-pair of G. Then, T must contain an S-node α such that v, x and y are
vertices of Gα and {x, y} is not a virtual edge.

The above observation implies that we can use T to identify (and count) all vertex-edge
cut-pairs of G. We do that as follows. We initialize count(v)← 0 for all v ∈ V , and process the
S-nodes of T individually. For each S-node α we count the number mα of the real edges of Gα.
Then, for each vertex v ∈ V (Gα), we set count(v) equal to mα−|{e ∈ E : e is adjacent to v}|.

Gutwenger and P. Mutzel [7] showed that an SPQR tree can be constructed in linear time,
by extending the triconnected components algorithm of Hopcroft and Tarjan. Moreover,
given T it is straightforward to compute count(v) in O(n) time, for all vertices v. We refer
to this algorithm as SPQR-VE.

We also considered a variant that avoids the computation of a complete SPQR tree. Since
we only care about S-nodes, it suffices to compute only these nodes from the partition of
the graph into split components. These components are formed during the execution of the
Hopcroft-Tarjan algorithm as follows. When the algorithm finds a pair of separating vertices
u and v, it splits the graph at these two vertices into two smaller graphs, and adds the virtual
edge {u, v} in both graphs. The split components of G are the graphs that are formed when
we repeat this process until no more separating pairs exist. (Note that this partition is not
uniquely defined.) A split component can be of three types: a P -component that consist
of two vertices joined with multiple edges, an S-component that forms a triangle, or an
R-component that is any other split component. Then, the S-nodes of the SPQR tree are
formed by merging S-components that share a virtual edge. After we have computed just
the S-nodes of the SPQR tree, we can identify the vertex-edge cut-pairs of G as above. We
refer to this algorithm as Split-VE.

L. Georgiadis, K. Giannis, G. F. Italiano, and E. Kosinas 20:7

4 Finding all cut-edges and computing the number of 2-cuts

Here we present an overview of linear-time algorithms for computing the 2-edge cuts of a
2-edge-connected graph G = (V, E). These algorithms compute the cut-edges of G (i.e., the
edges that form a 2-edge cut together with some other edge). First, we describe the algorithm
of [6], and our streamlined version of it. Then, we give an overview of the algorithm of
Tsin [17], which was previously reported to be the fastest one among the previously existing
for this problem.

4.1 Computing 2-edge cuts via the GK framework
The algorithm in [6] works on a DFS tree T of G rooted at r. It distinguishes two types
of cut-pairs: those consisting of a back-edge and a tree-edge, and those consisting of two
tree-edges. The first case is very easy to handle, since we only have to find the vertices v ̸= r

that have b_count(v) = 1, and mark the edges (v, p(v)) and (M(v), low(v)) as cut-edges. In
the case where (u, p(u)), (v, p(v)) are two tree-edges, [6] proved the following condition: (1)
{(u, p(u)), (v, p(v))} is a cut-pair if and only if M(u) = M(v) and high(u) = high(v). Now,
let m be a vertex and u1, . . . , uk all the vertices in M−1(m) ordered decreasingly. Then
we have high(u1) ≥ . . . ≥ high(uk). Thus, by (1), it is sufficient it is sufficient to traverse
the decreasingly sorted list M−1(m) from the greatest to the lowest element, and mark the
edges (u, p(u)) and (v, p(v)) that satisfy the following condition: (2) u and v are consecutive
vertices in M−1(m) such that high(u) = high(v).

We refer to this algorithm of [6] as GK-2E. We also note that a simple extension of this
algorithm computes the 3-edge-connected components of G as in [17].

Streamlined version

Algorithm GK-2E depends on the computation of the high points of all vertices v ≠ r, so that
it can check condition (2). Here, however, we observe that we can skip this computation
thanks to the following Lemma.

▶ Lemma 1. Let u, v be two vertices (̸= r) with M(u) = M(v). Then high(u) = high(v) if
and only if b_count(u) = b_count(v).

Proof. (⇒) Let (x, y) be a back-edge such that x is a descendant of u and y is a proper
ancestor of u. Since M(u) = M(v), we have that x is a descendant of v. Furthermore,
since y ≤ high(u) = high(v) < v, we have that y is a proper ancestor of v. This shows that
B(u) ⊆ B(v), and so we have b_count(u) ≤ b_count(v). Now, with a reversal of the roles of
u and v, we also get b_count(v) ≤ b_count(u). We conclude that b_count(u) = b_count(v).

(⇐) Since u and v have a common descendant, we can assume, without loss of generality,
that u is a descendant of v. Let (x, y) be a back-edge such that x is a descendant of v

and y is a proper ancestor of v. Since M(u) = M(v), we have that x is a descendant of u.
Furthermore, since v is an ancestor of u, we have that y is a proper ancestor of u. This shows
that B(v) ⊆ B(u). Since b_count(u) = b_count(v), it must be the case that B(v) = B(u).
Thus we have high(u) = high(v). ◀

Thus we can test condition (2) by checking whether b_count(u) = b_count(v), instead
of high(u) = high(v). In this way, we can avoid the computation of all high points (during
which we have to process all the back-edges), and so we get an algorithm which is about
twice as fast as the original.

SEA 2021

20:8 Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice

Now, in order to compute the number of 2-edge cuts, we first observe that those consisting
of a back-edge and a tree-edge can be found explicitly, since their number can be at most
n− 1 (as they correspond to the vertices v ̸= r that have b_count(v) = 1). Now, let (v, p(v))
be a tree-edge and (u1, p(u1)), . . . , (uk, p(uk)) all the tree-edges which form a cut-pair with
(v, p(v)). Then (1) implies that every (ui, p(ui)), for i ∈ {1, . . . , k}, forms a cut-pair with
(uj , p(uj)), for every j ∈ {1, . . . , k} \ {i}. Furthermore, these are all the tree-edges (plus
(v, p(v))) with which (ui, p(ui)) forms a cut-pair. Thus, to count the number of those cut-pairs
efficiently, we can work as follows. We traverse the decreasingly sorted list M−1(m), for
every vertex m, until we reach a vertex v such that (v, p(v)) and (u1, p(u1)) is a cut-pair,
where u1 is the successor of v in M−1(m). Then we keep traversing the list M−1(m), until
we reach the lowest vertex uk such that (uk, p(uk)) forms a cut-pair with (v, p(v)) (i.e. that
satisfies b_count(uk) = b_count(v)). Then we add the quantity k(k + 1)/2 to the number
of 2-edge cuts, and we repeat the same process until we reach the end of M−1(m).

The entire algorithm which computes the cut-edges and the number of 2-edge cuts is
shown in Algorithm 2 (see Appendix A). Variable nextM (v) denotes the successor of v in
the decreasingly sorted list M−1(M(v)) (or the end-of-list symbol ∅). It can be computed
during the calculation of all M(v), as shown in Algorithm 3 (see Appendix A).

We refer to the above version as GK-2E-S.

4.2 Tsin’s algorithm

Tsin’s algorithm [17] finds the 3-edge-connected components of a 2-edge-connected graph G.
The algorithm consists of two parts, and the first one determines the set Ecut that contains
all the edges belonging to a cut-pair. In the second part, it processes the edge set Ecut in
order to form the 3-edge-connected components of G.

Here we describe the first part of the algorithm that is relevant to our problem. The
algorithm performs a depth-first traversal in G, and it creates a DFS tree T while separating
the edges of G into two sets, the tree-edges belonging in T and the set of back-edges which
contains all other edges. Tsin provides the following key definition. A generator is a cut-edge
e = (x, y), where e is either a back-edge or a tree-edge, and there is no other tree edge in
T (y) or back-edge having an end-vertex in T (y) that forms a cut-pair with e. It is shown
that every edge in Ecut belongs to a cut-pair containing a generator and therefore it suffices
to determine the subset of cut-pairs that contain a generator. Moreover, [17] shows that
the cut-pairs have a nesting structure, which allows the algorithm to use stacks in order to
determine the cut-pairs. Specifically, each vertex v is associated with a stack stack(v) that
stores entries of the form [(x, y), T [q, p]], where the edge (x, y) is a generator or a potential
generator and T [q, p] is a path with edges that may form cut-pairs with (x, y).

The algorithm distinguishes two cases depending on whether the current vertex v that we
traverse is a leaf of T or not. In the former case (where v is a leaf), we determine if v is an
ending point of an edge that is a generator, and we push a corresponding entry to stack(v) if
needed. Otherwise, if v is not a leaf, when the traversal returns from a child w of v, we check
the top of stack(w) to determine if we have found a new cut-pair and update stack(w). When
we finish this check for all the children of v, we update stack(v) and backtrack. Finally, when
the traversal returns to the root of T , all edges belonging in a cut-pair form the set Ecut.

We refer to this algorithm as Tsin-2E.

L. Georgiadis, K. Giannis, G. F. Italiano, and E. Kosinas 20:9

5 Empirical Analysis

We wrote our implementations in C++, using Visual Studio Compiler x64 with maximum
optimization to favor speed (flag /O2) to compile the code. For computing the SPQR tree in
algorithm SPQR-VE, we use the linear-time implementation of Gutwenger and Mutzel [7],
which is available within the Open Graph Drawing Framework (OGDF) [3]. Similarly, for
computing the split components in algorithm Split-VE, we use the implementation of the
Hopcroft-Tarjan algorithm [8] provided in OGDF. In order to make a fair comparison among
algorithms GK-VE-S, SPQR-VE and Split-VE, we also provide an OGDF-based implement-
ation of GK-VE-S that we refer to as GK-VE-SF. Specifically, GK-VE-SF uses the OGDF
representation of graphs, as well basic data structures such as arrays, lists and stacks.

Our main experiments were performed using the following setting: (I) A Dell Precision
Tower 7820 CTO Base machine running Red Hat Enterprise 6, equipped with an Intel
Xeon E5-2430 2.5GHz processor with 15MB L3 cache and 96GB DDR4 RAM at 2666 MHz.
For the OGDF-based implementations we used a less powerful setting: (II) A Dell G5 15
Laptop running Windows 10 (Home 64 bit), equipped with an 8th Generation Intel Core
i5 8300H 4GHz processor with 8 MB L3 cache and 8GB DDR4 RAM at 2,666 MHz. We
used setting (II) because we did not have physical access to the server of (I) in order to
install OGDF. OGDF also requires CMake (version 3.1+) a C++11 compliant compiler and
GNU Make. We observed that the OGDF library was not able to compute the SPQR
trees of graphs with more than ∼ 45000 vertices. (This problem was also reported in [10].)
This is due to the use of recursion in three routines (DFS, pathFind, and pathSearch) in
the implementation of the Hopcroft-Tarjan triconnected components algorithm (which is
contained in file “Triconnectivity.cpp”). To fix this, we replaced the recursion with stacks.
After this modification, we were able to handle graphs with millions of vertices and edges.

We did not use any parallelization in either setting, and each algorithm ran on a single
core. We report CPU times measured with the std::chrono::steady_clock::now function.

Real-world graphs

Table 1 shows some statistics of the graphs used in our experimental evaluation. We include
both undirected and directed graphs, since one of our motivating applications (twinless strong
connectivity) deals with directed graphs. We convert these directed graphs to undirected
by ignoring edge directions. Furthermore, we augment these graphs so that they become
biconnected, by applying the following procedure. Let G be the input graph. Firstly, we
compute the connected components C1, . . . , Ck of G, and we join them in a path, by adding
an edge connecting a vertex in Ci to a vertex in Ci+1, for every i ∈ {1, . . . , k− 1}. Let G′ be
the resulting graph. Then, we compute the leaves B1, . . . , Bl of the tree representation of
the biconnected components of G′, and we connect them in a path. To that end, for every
i ∈ {1, . . . , l − 1}, we add an edge connecting a vertex xi ∈ Bi to a vertex xi+1 ∈ Bi+1, such
that neither xi nor xi+1 is an articulation point.

The corresponding experimental results for setting (I) are given in Table 2 and plotted in
Figure 1, while Table 3 shows the results using setting (II). (The memory consumption of the
algorithms tested in setting (I) is reported in Table 7 in Appendix B.) First, we make some
remarks about the performance of our improved versions of the algorithms of [6]. In Table 2
we observe that our streamlined version GK-VE-S is consistently faster than GK-VE, and
improves its running time by 16% up to 44%. The improvement obtained by our streamlined
version is even more prominent in the case of 2-edge cuts. Specifically, GK-2E-S is consistently
faster than GK-2E by 33% up to 47%.

SEA 2021

20:10 Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice

Table 1 Graph instances used in the experiments. The original graphs are taken from [11] and [15],
and were converted to biconnected graphs by adding me extra edges. The graph categories are: web
graph (WG), network with ground truth communities (NGT), dynamic network (DN), collaboration
network (CLN), heterogeneous network (HN), recommendation network (RN), dimacs10 (D10),
interaction network (IN) and brain network (BN) Undirected graphs are indicated by U and directed
graphs are indicated by D. The number of vertices n and edges m refer to the produced instances;
nc is the number of vertices that form a vertex-edge cut pair with at least one edge.

Graph Details
Graph Type n m me nc Reference

Amazon0302 WG (D) 262111 906735 6946 12438 SNAP [11]
com-amazon NGT (U) 548551 1168192 242323 267685 SNAP [11]
com-dblp NGT (U) 425957 1219125 169262 166497 SNAP [11]
web-NotreDame WG (D) 325729 1252708 162601 16475 SNAP [11]
web-Stanford WG (D) 281903 2008593 15960 25658 SNAP [11]
Amazon0601 WG (D) 403394 2455710 12305 27772 SNAP [11]
ia-yahoo-messages DN (U) 3157315 3745264 3157299 3073682 NR [15]
web-Google WG (D) 916428 4523768 201720 127081 SNAP [11]
ca-cit-HepTh CLN (D) 2673133 5117848 2673049 2665102 NR [15]
cit-HepTh CLN (U) 2673133 5117859 2673060 2665080 NR [15]
visualise-us HN (U) 3247673 6495338 3247664 2669435 NR [15]
web-BerkStan WG (D) 685230 6693612 44143 50673 SNAP [11]
ca-IMDB CLN (U) 3782456 7564896 3782448 2902605 NR [15]
ca-cit-HepPh CLN (D) 4596803 7745139 4596691 4584870 NR [15]
cit-HepPh CLN (U) 4596803 7745148 4596700 4584710 NR [15]
amazon-ratings RN (U) 5838027 11581127 5837994 3708476 NR [15]
hugetrace-00000 D10 (U) 6879133 13758157 6879023 2307134 NR [15]
rgg-n-2-20-s0 D10 (U) 6891620 13783038 6891417 5859427 NR [15]
wiki-user-edits-page IN (U) 8998641 14571201 8998616 6930358 NR [15]
hugetric-00010 D10 (U) 9885854 19771559 9885704 3309476 NR [15]
delaunay-n22 D10 (U) 12582869 25165521 12582651 8404913 NR [15]
co-papers-dblp D10 (U) 15245729 30491160 15245430 14721451 NR [15]
co-papers-citeseer D10 (U) 16036720 32073082 16036361 15618987 NR [15]
packing-b050 D10 (U) 17488243 34975965 17487763 26 NR [15]
human-Jung2015 BN (U) 1827166 52455284 1827112 1463704 NR [15]
rgg-n-2-23-s0 D10 (U) 8388608 71889991 8388597 2 NR [15]

Next, we compare GK-2E-S to Tsin-2E. Here, we observe that the two algorithm have
similar performance, with GK-2E-S being 4% up to 24% faster than Tsin-2E on all but two
instances. Moreover, in all instances GK-2E-S uses less memory than Tsin-2E. (See Table 7 in
Appendix B.)

Now we turn to the OGDF-based implementations evaluated in setting (II). In Table 3 we
report the running times and memory consumption of the corresponding algorithms. Notice
that since setting (II) had limited RAM memory (8GB), we only included instances such that
the memory consumption of all algorithms did not exceed the available capacity. First, we
compare the performance of SPQR-VE and Split-VE. Here we notice that the computation of
the full SPQR tree incurs a small overhead over the computation of just the split components
(followed by merging S-components that share a virtual edge to form the S-nodes). Indeed,
Split-VE is about 17% faster than SPQR-VE and consumes about 14% less memory on average.
On the other hand, it is evident that both SPQR-VE and Split-VE are not competitive against
GK-VE-SF. Indeed, GK-VE-SF is faster than Split-VE (resp., SPQR-VE) by a factor larger
than 4 (resp., 4.5) and requires 1.9 (resp., 2.26) times less memory on average.

L. Georgiadis, K. Giannis, G. F. Italiano, and E. Kosinas 20:11

Finally, by comparing Table 3 to Table 7 (given in Appendix B), it is worth noticing that
GK-VE-SF requires 6 times more memory space than GK-VE-S on average. This is because
GK-VE-SF is implemented using the dynamic data structures of OGDF, in order to make
a fair comparison with SPQR-VE and Split-VE. On the other hand, our implementation of
GK-VE-S (as well as of all other algorithms tested in setting (I)), uses a much more compact
representation of the input graph with just 2 static arrays. We remark that it is not possible
to employ this compact representation in SPQR-VE and Split-VE, since for the computation
of the split components we need to manipulate the adjacency lists and insert virtual edges.

Table 2 Running times in seconds for the graphs of Table 1 in experimental setting (I). The best
results in each row are marked in bold.

2-edge cuts vertex-edge cuts
Graph GK-2E GK-2E-S Tsin-2E GK-VE GK-VE-S

Amazon0302 0.16 0.10 0.13 0.33 0.25
com-amazon 0.33 0.20 0.23 0.66 0.55
com-dblp 0.26 0.16 0.18 0.54 0.42
web-NotreDame 0.14 0.08 0.09 0.29 0.19
web-Stanford 0.25 0.13 0.16 0.51 0.34
Amazon0601 0.37 0.21 0.25 0.77 0.54
ia-yahoo-messages 1.22 0.82 0.88 2.57 2.15
web-Google 0.95 0.52 0.60 1.92 1.37
ca-cit-HepTh 1.08 0.70 0.81 2.35 1.80
cit-HepTh 1.08 0.70 0.82 2.34 1.78
visualise-us 1.60 0.99 1.14 3.29 2.54
web-BerkStan 0.52 0.28 0.30 1.12 0.64
ca-IMDB 2.15 1.33 1.44 4.41 3.43
ca-cit-HepPh 1.78 1.16 1.36 3.87 3.01
cit-HepPh 1.78 1.16 1.33 3.84 2.98
amazon-ratings 4.03 2.46 2.65 8.32 6.43
hugetrace-00000 5.74 3.52 3.67 12.66 9.35
rgg-n-2-20-s0 3.57 2.22 2.55 7.34 5.64
wiki-user-edits-page 4.42 2.79 3.24 9.37 7.36
hugetric-00010 8.75 5.37 5.33 21.19 14.39
delaunay-n22 8.55 5.34 6.41 19.49 14.12
co-papers-dblp 6.32 4.08 4.53 13.58 10.32
co-papers-citeseer 6.51 4.18 4.73 14.15 10.75
packing-b050 8.87 5.66 6.42 7.86 5.21
human-Jung2015 4.98 2.65 3.53 11.08 6.16
rgg-n-2-23-s0 19.03 11.34 10.56 42.12 29.98

Artificial graphs

In order to test the robustness of our algorithms and to obtain a better view of their relative
performance, we also conducted experiments with artificial graphs that we produced in the
following manner. We construct a biconnected graph by connecting cyclic and complete
graphs in a tree-like structure. This allows us to control the number of vertex-edge and
2-edge cuts, as well as the density of the graph. Our generator receives as inputs the number
of cyclic and complete graphs, denoted by C and K respectively, and the number of vertices

SEA 2021

20:12 Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice

Table 3 Running times in seconds and memory usage of the OGDF-based implementations for
the graphs of Table 1 in experimental setting (II). The best results in each row are marked in bold.

Graphs Running Times RAM memory consuption
GK-VE-SF SPQR-VE Split-VE GK-VE-SF SPQR-VE Split-VE

Amazon0302 1.04 3.18 2.63 294 MB 756 MB 589 MB
com-amazon 1.76 4.94 4.05 586 MB 1.1 GB 946 MB
com-dblp 1.53 4.92 3.93 494 MB 1.2 GB 887 MB
web-NotreDame 0.82 4.08 3.32 438 MB 1.1 GB 855 MB
web-Stanford 1.81 7.76 6.45 581 MB 1.6 GB 1.2 GB
Amazon0601 2.66 9.21 7.71 693 MB 2 GB 1.5 GB
ia-yahoo-messages 6.68 19.62 17.90 2.3 GB 3.8 GB 3.7 GB
web-Google 5.74 19.69 16.48 1.3 GB 3.9 GB 3 GB
ca-cit-HepTh 1.09 7.81 6.53 2.5 GB 4.7 GB 4.4 GB
cit-hepTh 1.11 8.00 6.50 2.5 GB 4.7 GB 4.4 GB
visualise-us 9.94 34.12 28.88 2.9 GB 5.8 GB 5.4 GB
web-BerkStan 4.37 27.86 20.87 1.7 GB 5.2 GB 4 GB
ca-IMDB 7.74 22.31 18.32 3.2 GB 6.8 GB 6.1 GB
ca-cit-HepPh 1.45 10.54 8.69 4.4 GB 7.3 GB 7.1 GB
cit-hepPh 1.42 10.50 8.68 4.4 GB 7.3 GB 7.1 GB

in every cyclic and complete graph, nC and nK respectively. Then it processes these graphs
in random order, and it connects every one of them to a graph that was already processed,
by inserting two edges that stem from two different vertices and end in two different vertices
(thus ensuring biconnectivity). By carefully selecting the number and the sizes of the cyclic
and complete graphs, we can determine the density of the resulting graph (since the number
of edges of such a graph is given by Cnc + KnK(nK − 1)/2 + 2(C + K − 1)). In particular,
we note that the graphs produced by our generator may contain a lot of cut-pairs (depending
on C, nC and K), even if they are very dense.

Table 4 Running times in seconds for artificial graphs in experimental setting (I). Parameters C

and K correspond to the number of cyclic and complete graphs, respectively, where each such graph
has nC = nK = 200 vertices. The number of vertices n and edges m refer to the produced instances.
The best results in each row are marked in bold.

Graph details 2-edge cuts vertex-edge cuts
C K n m GK-2E GK-2E-S Tsin-2E GK-VE GK-VE-S

5000 0 1000000 1009998 0.68 0.44 0.45 1.38 1.12
4500 500 1000000 10859998 1.30 0.74 0.82 2.66 1.76
4000 1000 1000000 20709998 1.92 1.02 1.16 3.99 2.39
3500 1500 1000000 30559998 2.52 1.30 1.51 5.23 2.97
3000 2000 1000000 40409998 3.11 1.60 1.85 6.50 3.57
2500 2500 1000000 50259998 3.71 1.86 2.20 7.76 4.18
2000 3000 1000000 60109998 4.32 2.13 2.54 8.99 4.76
1500 3500 1000000 69959998 4.88 2.41 2.88 10.27 5.36
1000 4000 1000000 79809998 5.48 2.68 3.21 11.45 6.05
500 4500 1000000 89659998 6.05 2.94 3.53 12.74 6.51

0 5000 1000000 99509998 6.63 3.19 3.88 13.99 7.09

L. Georgiadis, K. Giannis, G. F. Italiano, and E. Kosinas 20:13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

Number of edges ×107

R
u
n
n
in
g
ti
m
es

(s
ec
o
n
d
s) GK-2E

GK-2E-S
Tsin-2E
GK-VE
GK-VE-S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

Number of edges ×108

R
u
n
n
in
g
ti
m
es

(s
ec
on

d
s) GK-2E

GK-2E-S
Tsin-2E
GK-VE
GK-VE-S

Figure 1 Running times for the graphs of Table 1 in experimental setting (I). The top plot shows
the running times for graphs with less than 10M edges, while the bottom plot shows the running
times for graphs with more than 10M edges.

Table 5 Running times in seconds for artificial graphs in experimental setting (I). Parameters
C and K correspond to the number of cyclic and complete graphs, respectively, where each such
graph has nC = nK = 1000 vertices. The number of vertices n and edges m refer to the produced
instances. The best results in each row are marked in bold.

Graph details 2-edge cuts vertex-edge cuts
C K n m GK-2E GK-2E-S Tsin-2E GK-VE GK-VE-S

1000 0 1000000 1001998 0.68 0.44 0.47 1.31 1.10
900 100 1000000 50851998 4.12 2.04 2.32 8.41 4.80
800 200 1000000 100701998 7.52 3.63 4.33 15.39 8.38
700 300 1000000 150551998 10.92 5.18 6.25 22.84 12.04
600 400 1000000 200401998 14.35 6.74 8.09 30.84 15.53
500 500 1000000 250251998 17.61 8.29 10.04 38.71 19.04
400 600 1000000 300101998 21.10 9.84 11.88 44.27 22.70
300 700 1000000 349951998 24.49 11.40 13.96 54.70 26.02
200 800 1000000 399801998 27.77 12.94 15.67 63.00 29.89
100 900 1000000 449651998 31.14 14.53 17.67 72.01 33.72

0 1000 1000000 499501998 34.47 16.15 19.37 80.53 37.00

SEA 2021

20:14 Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice

Table 6 Running times in seconds for artificial graphs in experimental setting (I). Parameters
C and K correspond to the number of cyclic and complete graphs, respectively, where each such
graph has nC = nK = 2000 vertices. The number of vertices n and edges m refer to the produced
instances. The best results in each row are marked in bold.

Graph details 2-edge cuts vertex-edge cuts
C K n m GK-2E GK-2E-S Tsin-2E GK-VE GK-VE-S

500 0 1000000 1000998 0.68 0.45 0.48 2.03 1.77
450 50 1000000 100850998 8.34 4.03 4.89 19.81 10.49
400 100 1000000 200700998 16.44 8.08 9.08 37.39 18.07
350 150 1000000 300550998 24.04 11.62 14.01 51.45 25.74
300 200 1000000 400400998 31.60 15.25 18.18 70.57 33.94
250 250 1000000 500250998 40.41 18.65 21.90 78.38 42.14
200 300 1000000 600100998 46.78 22.43 26.39 93.28 50.10
150 350 1000000 699950998 59.55 25.83 30.79 120.87 58.52
100 400 1000000 799800998 61.69 28.93 33.78 124.60 67.29
50 450 1000000 899650998 69.94 32.49 38.68 139.34 75.50
0 500 1000000 999500998 79.28 38.21 42.14 155.44 83.13

The corresponding experimental results are given in Tables 4, 5 and 6, and plotted in
Figure 2. We choose the values of parameters C, K, nC and nK so that all produced instances
have n = 1000000 vertices, and vary their density and structure. Also, for simplicity, we
choose nC = nK in all instances. Then, it is easy to observe that as we decrease the value of
C (and correspondingly increase K so that we maintain the total number of vertices fixed),
the number of vertex-edge cut-pairs as well as the number of 2-edge-cuts decrease, while the
graph gets more dense. From the experimental results, however, we observe that the number
of cuts does not affect the performance of the algorithms. Indeed, similarly to our previous
experiments, GK-2E-S is consistently faster than GK-2E by more than 50% on average. Also,
with respect to Tsin-2E, GK-2E-S is faster on all instances by 15% on average.

Regarding the performance of the algorithms for computing vertex-edge cut-pairs, we
note that in this experiment, our streamlined version GK-VE-S achieves higher speed-ups
with respect to GK-VE. Specifically, GK-VE-S is faster than GK-VE by 16% up to 54% (more
than 45% on average).

6 Concluding remarks

We presented streamlined versions of two linear-time algorithms of [6] that compute the
vertex-edge cut-pairs of a biconnected graph G and the 2-edge cuts of a 2-edge-connected
graph, respectively. Although we can compute these cuts in linear time using previously
known techniques, the new algorithms have a major advantage: Both algorithms are based on
a common framework, which results in conceptually simple and easy to implement algorithms,
especially for computing vertex-edge cut-pairs, where the alternative linear-time algorithms
exploit the structure of the triconnected components of G. Furthermore, our experimental
results showed that our new algorithms perform significantly better in practice both in terms
of running time and of space requirements.

L. Georgiadis, K. Giannis, G. F. Italiano, and E. Kosinas 20:15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Number of edges ×108

R
u
n
n
in
g
ti
m
es

(s
ec
o
n
d
s) GK-2E

GK-2E-S
Tsin-2E
GK-VE
GK-VE-S

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

Number of edges ×108

R
u
n
n
in
g
ti
m
es

(s
ec
on

d
s) GK-2E

GK-2E-S
Tsin-2E
GK-VE
GK-VE-S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

Number of edges ×109

R
u
n
n
in
g
ti
m
es

(s
ec
on

d
s) GK-2E

GK-2E-S
Tsin-2E
GK-VE
GK-VE-S

Figure 2 Running times for artificial graphs in experimental setting (I). The plots, from top to
bottom, show the running times for the graphs of Tables 4, 5, and 6, respectively.

References
1 G. Di Battista and R. Tamassia. On-line maintenance of triconnected components with

SPQR-trees. Algorithmica, 15(4):302–318, April 1996.
2 G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on Computing,

25(5):956–997, 1996.
3 M. Chimani, C. Gutwenger, M. Junger, G. W. Klau, K. Klein, and P. Mutzel. The open graph

drawing framework. In Handbook of Graph Drawing and Visualization, pages 543–570. CRC
Press, 2013.

SEA 2021

20:16 Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice

4 D. Fussell, V. Ramachandran, and R. Thurimella. Finding triconnected components by local
replacement. SIAM J. Comput., 22(3):587–616, June 1993. doi:10.1137/0222040.

5 Z. Galil and G. F. Italiano. Reducing edge connectivity to vertex connectivity. SIGACT News,
22(1):57–61, 1991. doi:10.1145/122413.122416.

6 L. Georgiadis and E. Kosinas. Linear-Time Algorithms for Computing Twinless Strong
Articulation Points and Related Problems. In Yixin Cao, Siu-Wing Cheng, and Minming
Li, editors, 31st International Symposium on Algorithms and Computation (ISAAC 2020),
volume 181 of Leibniz International Proceedings in Informatics (LIPIcs), pages 38:1–38:16,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.ISAAC.2020.38.

7 C. Gutwenger and P. Mutzel. A linear time implementation of spqr-trees. In Joe Marks, editor,
Graph Drawing, pages 77–90, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

8 J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
Journal on Computing, 2(3):135–158, 1973.

9 R. Jaberi. Twinless articulation points and some related problems, 2019. arXiv:1912.11799.
10 Z. Jiang. An empirical study of 3-vertex connectivity algorithms. Master’s thesis, University

of Windsor, 2013. Electronic Theses and Dissertations, paper 4980.
11 J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http:

//snap.stanford.edu/data, June 2014.
12 K. Mehlhorn, A. Neumann, and J. M. Schmidt. Certifying 3-edge-connectivity. Algorithmica,

77(2):309–335, February 2017. doi:10.1007/s00453-015-0075-x.
13 H. Nagamochi and T. Ibaraki. A linear time algorithm for computing 3-edge-connected

components in a multigraph. Japan J. Indust. Appl. Math, 9(163), 1992. doi:10.1007/
BF03167564.

14 S. Raghavan. Twinless strongly connected components. In F. B. Alt, M. C. Fu, and B. L. Golden,
editors, Perspectives in Operations Research: Papers in Honor of Saul Gass’ 80th Birthday,
pages 285–304. Springer US, Boston, MA, 2006. doi:10.1007/978-0-387-39934-8_17.

15 R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015. URL: http://networkrepository.com.

16 R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

17 Y. H. Tsin. Yet another optimal algorithm for 3-edge-connectivity. Journal of Discrete
Algorithms, 7(1):130–146, 2009. Selected papers from the 1st International Workshop on
Similarity Search and Applications (SISAP). doi:10.1016/j.jda.2008.04.003.

18 Wikipedia contributors. SPQR tree — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=SPQR_tree&oldid=951256273, 2020.

https://doi.org/10.1137/0222040
https://doi.org/10.1145/122413.122416
https://doi.org/10.4230/LIPIcs.ISAAC.2020.38
https://doi.org/10.4230/LIPIcs.ISAAC.2020.38
http://arxiv.org/abs/1912.11799
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1007/s00453-015-0075-x
https://doi.org/10.1007/BF03167564
https://doi.org/10.1007/BF03167564
https://doi.org/10.1007/978-0-387-39934-8_17
http://networkrepository.com
https://doi.org/10.1016/j.jda.2008.04.003
https://en.wikipedia.org/w/index.php?title=SPQR_tree&oldid=951256273
https://en.wikipedia.org/w/index.php?title=SPQR_tree&oldid=951256273

L. Georgiadis, K. Giannis, G. F. Italiano, and E. Kosinas 20:17

A Omitted algorithms

Algorithm 1 compute all bp_count(v) and up(v) while performing a DFS.
1 initialize all dfs labels to ∅
2 dfs ← 1
3 initialize an array p(v) with size n

4 initialize an array tempChild(v) with size n

5 initialize all bp_count(v) to 0
6 initialize all up(u) to 0 /* this is also used in the modified algorithms

“high(u) = v” and “high(u) < v”, in order to test if high(u) = highp(u) */
7 DFS(r)
8 Function DFS(vertex v)
9 begin

10 dfs(v)← dfs
11 dfs ← dfs + 1
12 foreach vertex u adjacent to v do
13 if dfs(u) = ∅ then
14 p(u)← v

15 tempChild(v)← u

16 DFS(u)
17 end
18 if dfs(u) < dfs(v) and u ̸= p(v) then
19 bp_count(v)← bp_count(v) + 1
20 up(tempChild(u))← up(tempChild(u)) + 1
21 end
22 else if v = p(u) then
23 bp_count(v)← bp_count(v) + bp_count(u)
24 end
25 end
26 bp_count(v)← bp_count(v)− up(v)
27 end

SEA 2021

20:18 Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice

Algorithm 2 Compute the cut-edges and the number of 2-cuts.
1 perform a DFS, and compute all low(v), b_count(v), M(v) and nextM (v), for all vertices

v ̸= r

2 n2cuts ← 0
// case back-edge - tree-edge

3 foreach v ̸= r do
4 if b_count(v) = 1 then
5 mark the edges (v, p(v)) and (M(v), low(v))
6 n2cuts ← n2cuts + 1
7 end
8 end

// case tree-edge - tree-edge
9 foreach v ̸= r that has M(v) = v do

10 while v ̸= ∅ do
11 u← nextM (v)
12 nCutEdges ← 0
13 while u ̸= ∅ and b_count(u) = b_count(v) do
14 mark the edges (v, p(v)) and (u, p(u))
15 nCutEdges ← nCutEdges + 1
16 u← nextM (u)
17 end
18 n2cuts ← n2cuts + nCutEdges(nCutEdges + 1)/2
19 v ← u

20 end
21 end

Algorithm 3 Compute all M(v) and nextM (v).
1 foreach v ̸= r do
2 L(v)← first child of v

3 R(v)← last child of v

4 nextM (v)← ∅
5 end
6 foreach v ̸= r, in a bottom-up fashion do
7 c← v

8 m← v

9 while true do
10 if l(m) < v then M(v)← m break
11 while low(L(m)) ≥ v do L(m)← next child of m

12 while low(R(m)) ≥ v do R(m)← previous child of m

13 if L(m) ̸= R(m) then M(v)← m break
14 c← L(m)
15 m←M(c)
16 end
17 if c ̸= v then
18 nextM (c) = v

19 end
20 end

L. Georgiadis, K. Giannis, G. F. Italiano, and E. Kosinas 20:19

B Omitted experimental results

Table 7 Memory consumption for the graphs of Table 1 in experimental setting (I). The best
results in each row are marked in bold.

2-edge cuts vertex-edge cuts
Graph GK-2E GK-2E-S Tsin-2E GK-VE GK-VE-S

Amazon0302 46 MB 42 MB 58 MB 61 MB 51 MB
com-amazon 81 MB 72 MB 90 MB 110 MB 90 MB
com-dblp 69 MB 62 MB 83 MB 94 MB 77 MB
web-NotreDame 61 MB 55 MB 77 MB 65 MB 53 MB
web-Stanford 74 MB 69 MB 106 MB 111 MB 79 MB
Amazon0601 95 MB 89 MB 133 MB 140 MB 103 MB
ia-yahoo-messages 394 MB 346 MB 390 MB 518 MB 449 MB
web-Google 192 MB 178 MB 258 MB 282 MB 209 MB
ca-cit-HepTh 378 MB 338 MB 412 MB 513 MB 424 MB
cit-HepTh 373 MB 338 MB 412 MB 513 MB 424 MB
visualise-us 460 MB 410 MB 513 MB 634 MB 522 MB
web-BerkStan 209 MB 209 MB 332 MB 314 MB 233 MB
ca-IMDB 542 MB 485 MB 597 MB 738 MB 608 MB
ca-cit-HepPh 626 MB 556 MB 665 MB 841 MB 705 MB
cit-HepPh 618 MB 556 MB 665 MB 841 MB 705 MB
amazon-ratings 835 MB 746 MB 917 MB 1.1 GB 936 MB
hugetrace-00000 986 MB 868 MB 1.1 GB 1.3 GB 1.1 GB
rgg-n-2-20-s0 988 MB 883 MB 1.1 GB 1.3 GB 1.1 GB
wiki-user-edits-page 1.2 GB 1 GB 1.2 GB 1.6 GB 1.3 GB
hugetric-00010 1.4 GB 1.2 GB 1.5 GB 1.9 GB 1.6 GB
delaunay-n22 1.8 GB 1.6 GB 1.9 GB 2.4 GB 2 GB
co-papers-dblp 2.1 GB 1.9 GB 2.3 GB 2.9 GB 2.4 GB
co-papers-citeseer 2.2 GB 2 GB 2.5 GB 3.1 GB 2.5 GB
packing-b050 2.4 GB 2.2 GB 2.7 GB 3.3 GB 2.7 GB
human-Jung2015 1.3 GB 1.3 GB 2.3 GB 2.2 GB 1.4 GB
rgg-n-2-23-s0 2.3 GB 2.4 GB 3.6 GB 3.7 GB 2.5 GB

SEA 2021

How to Find the Exit from a 3-Dimensional Maze∗

Miki Hermann ! Ï

LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

Abstract
We present several experimental algorithms for fast computation of variadic polynomials over
non-negative integers.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases Young tableaux, randomized algorithm, probabilistic algorithm

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.21

Supplementary Material Software (Source Code & Data): https://github.com/miki-hermann/gyt
archived at swh:1:dir:aa547a4af49a9563138a13168af0160d9e709954

1 Introduction and Motivation

Imagine a three-dimensional cubic maze structure called the Cube. Each side of the Cube
spans 26 rooms and there are 26× 26× 26 = 17576 rooms in total. Except for the rooms
on the edges or faces of the Cube, each room has 6 neighbors: up, down, left, right, front,
and back. Each room is identified by its coordinates x, y, and z, ranging from 0 to 25.
Moreover, each room has a label written on its floor, determined by an unknown ternary
function f : N×N×N→ N over natural numbers. The parameters of the function f are the
coordinates of the room. The only information you have about the function f is that it is
increasing in each coordinate, i.e., that the following relations hold

f(x, y, z) < f(x + 1, y, z), f(x, y, z) < f(x, y + 1, z), f(x, y, z) < f(x, y, z + 1)

for each coordinate (x, y, z). You do not know the labels of the rooms upfront, but discover
them by visiting the rooms on your path to the exit. Labels are not unique: two different
rooms can have the same label. You can pass from one room to another if there exists a door
between them. Each pair of neighboring rooms share a door, which means that there is a
door between any two rooms sharing a face. Except for the rooms on the edges and outer
faces of the Cube, from a given room you can pass to a neighbor room up, down, left, right,
front, or back. Formally speaking, from a room with coordinates (x, y, z) you can pass to
one of the rooms with coordinates

(x + 1, y, z), (x, y + 1, z), (x, y, z + 1), (x− 1, y, z), (x, y − 1, z), (x, y, z − 1),

when 0 < x, y, z < 25. Contrary to the movie, there are no deadly traps in the rooms.
Nevertheless, you are not allowed to pass between rooms freely. You cannot return back to
a previously visited room unless you have flagged it. If you are not sure which choice to
make, you can flag the current room, so that you can return to it later. If you decide in a
certain moment that you arrived at a dead-end, you can ask to be teleported back to the
last flagged room. You can return to each flagged room only once, i.e., you have two choices
to move from a flagged room to another room, allowing you a limited backtrack, contrary to
unflagged rooms where you have only one choice. You have 29 flags available, i.e., you have

∗ Inspired by the Horror Movie Cube.

© Miki Hermann;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 21; pp. 21:1–21:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hermann@lix.polytechnique.fr
http://lix.polytechnique.fr/~hermann
https://orcid.org/0000-0003-2517-2127
https://doi.org/10.4230/LIPIcs.SEA.2021.21
https://github.com/miki-hermann/gyt
https://archive.softwareheritage.org/swh:1:dir:aa547a4af49a9563138a13168af0160d9e709954
https://en.wikipedia.org/wiki/Cube_(Film)
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 How to Find the Exit from a 3-Dimensional Maze

the possibility to return to 29 branchings. Once a room is flagged, you cannot remove it any
more. The coordinates of the flagged rooms are maintained in a stack. You can return only to
the room whose flag is on top of the stack. Once you return to a flagged room, its coordinates
are popped from the stack. The exit room is labeled by 131350013988347832235. Your
starting position is the room with coordinates (0, 0, 25) labeled by 162981450557708740234375.
Are you able to find the exit? What is the minimal number of rooms you must pass through
from your starting position to the exit?1

2 Analysis

Before passing to the three- and more-dimensional case, let us analyze the problem in lower
dimensions.

2.1 Linear Board
In one dimension, the analysis is quite easy. We have a linear board of length n with
coordinates 0, . . . , n− 1, an unknown unary function f : N→ N, a starting position s, and an
exit label B. For two different positions a, b ∈ {0, . . . , n− 1} on board we know that a < b

implies f(a) < f(b). Hence the exit label B can occur only once on a linear board. The
starting point s is one of the extremities of the board: either s = 0 or s = n− 1.

The search algorithm proceeds as follows. First, we set x← s and compute the value f(x).
If f(x) = B holds, then we are already at the exit room. If f(x) > B we must decrease x,
else if f(x) < B we must increase x. Set x← x− 1 or x← x + 1, respectively, and repeat
the loop. No flags are necessary to reach the exit, since there is no necessity to make choices.

In the worst case, the starting point is at one extremity of the board (say 0), and the
exit at the other (n − 1). Hence the path to the exit must contain n rooms in the worst
case. On average, each position from 0, . . . , n− 1 is equally likely to contain the exit. The
probability pi that a position i contains the exit is p = 1/n. We denote by X the random
variable equal to the length of the path from 0 to the exit and set Pr [X = i] = pi−1 = 1/n.
If the starting point is one of the extremities (s = 0 or s = n− 1, but these two cases are
mirror images of each other), the expected length of the path to the exit is

E[X|s = 0] = E[X|s = n− 1] =
n∑

i=1
i · Pr [X = i] =

n∑
i=1

(
i · 1

n

)
= (n + 1)/2.

Not really a surprise, this position is near the middle of the linear board.

2.2 Matrix Board
A m×n matrix A, whose elements A[x, y] are equal to a binary function f(x, y) : N×N→ N,
satisfying the relationsf(x, y) < f(x + 1, y) and f(x, y) < f(x, y + 1), is a full Young tableau
over natural numbers [2, Problem 6-3, page 143]. The starting position s is usually (0, 0),
but for simplification reasons we will consider the coordinate (0, n− 1) as the starting point.
Just consider the matrix horizontally flipped. For two different positions a = (a1, a2) and
b = (b1, b2) there exist two positions c = (c1, c2) and d = (d1, d2), such that ci = min{ai, bi}

1 Just for your information, the exit is located in the room with coordinates (14, 15, 16) and the minimal
number of visited rooms is therefore 39, including the starting room and the exit.

M. Hermann 21:3

Algorithm 1 Search in a 2D Maze.

Input: Function f : N × N → N satisfying f(x, y) < f(x + 1, y) and f(x, y) < f(x, y + 1),
and a value B ∈ N.

Output: Coordinates (x, y) for which f(x, y) = B or ⊥ if such coordinates do not exist.
1: function 2D_search(f, B)
2: x← 0
3: y ← n− 1
4: while x ≤ m− 1 & y ≥ 0 do
5: if f(x, y) = B then
6: return (x, y)
7: else if f(x, y) < B then
8: x← x + 1
9: else if f(x, y) > B then

10: y ← y − 1
11: end if
12: end while
13: return ⊥
14: end function

and di = max{ai, bi}, satisfying the relations

f(c1, c2) ≤ f(a1, a2), f(c1, c2) ≤ f(b1, b2), f(a1, a2) ≤ f(d1, d2), and f(b1, b2) ≤ f(d1, d2).

All four relations are strict if the positions a and b do not share the same row or column.
Hence, the exit label B can occur only once in each row and only once in each column.

Algorithm 1 proceeds as follows. The starting position is the room s with coordinates
(0, n − 1), therefore we set x ← 0 and y ← n − 1. While f(x, y) > B holds, decrease the
second coordinate: y ← y − 1. When we arrive at a position where f(x, y) < B, we increase
the first coordinate: x← x + 1. We repeat this loop until we find a room labeled by B. No
flags are necessary to reach the exit, since there is no necessity to make choices.

The correctness of Algorithm 1 is easily proved. If f(x, y) > B holds, then we have
f(x′, y) > B for each x′ > x. Hence the exit room labeled by B cannot be located at any
position (x′, y′) for x′ ≥ x and y′ ≥ y. Therefore there is no need to increase the first
coordinate if the f(x, y) > B holds. Only the second coordinate can be decreased to move
towards the exit room. If f(x, y) < B holds, then we have f(x, y′) < B for each position
y′ < y. Hence the exit room labeled by B cannot be located at any position (x′, y′) for
x′ ≤ x and y′ ≤ y. Therefore there is no need to decrease the second coordinate. Only the
first coordinate can be increased to move towards the exit room.

In the worst case, the starting point is at the south-east extremity (0, n − 1) of the
maze and the exit at the north-western extremity (m − 1, 0). Algorithm 1 proceeds by a
zig-zag, which never returns back. Neither the coordinate y (columns) is increased, nor
the coordinate x (rows) is decreased. There are m rooms in each row and n rooms in each
column. Therefore the path to the exit must contain m + n rooms in the worst case. This is
a considerable improvement against a brute force algorithm going through all m · n rooms.

3 The Cube and Beyond

Let us extend the previous ideas to a cubic maze. We have ℓ×m×n cube A, whose elements
A[x, y, z] are equal to a ternary function f(x, y, z) : N×N×N→ N, satisfying the inequalities

SEA 2021

21:4 How to Find the Exit from a 3-Dimensional Maze

f(x, y, z) < f(x + 1, y, z), f(x, y, z) < f(x, y + 1, z), and f(x, y, z) < f(x, y, z + 1). The
starting position is, once again, (0, 0, n− 1). If you wish to start at the origin (0, 0, 0), you
can just flip the cube and arrange the subsequent computation according to this flip.

The basic idea of the algorithm remains the same. We set x← 0, y ← 0, and z ← n−1 at
the beginning. While f(x, y, z) > B holds, we decrease the last coordinate: z ← z − 1. This
is correct, because we have f(x′, y′, z) > B for any x′ ≥ x and y′ ≥ y when f(x, y, z) > B

holds. This implies that the value B cannot be in the cube slice with the fixed z. When
we reach a coordinate z with f(x, y, z) < B, then we have f(x′, y′, z′) < B for any position
with x′ ≤ x, y′ ≤ y, and z′ ≤ z. However, we now have the choice to increase either x or y,
contrary to the two-dimensional case, where we were forced to increase only one variable.
Here, we have the choice to continue either to the room (x + 1, y, z) or (x, y + 1, z). This is
the point where the flags must be applied, i.e., where we must apply some limited backtrack.
The other strategy is to proceed in a chosen direction without a possibility to return to the
choice position.

Let us analyze four possible strategies. We will do it for the general case with k coordinates,
where k ≥ 3. We will place the continuations onto a stack or into a queue, then proceed
further. Those strategies, with the possibility to return to a remembered room, face another
problem. In the two-dimensional case, the path from the starting point to the exit was
exactly determined and there were no two or more paths possible to any room in the maze.
However, with the possibility to return to a choice room, we have the possibility to reach
another choice room by two or more different paths. Therefore we must memorize the choice
rooms in which we have been before. This does not count for teleportation returns, but
simple arrivals by a path from another room. If we arrive in a choice room r the second
time by a different path, we can stop the search and ask to be teleported back to a previous
choice room r′, since all possible path from the room r must have been already explored, i.e.,
all choices for a continuation from the room r have been already placed on the stack or into
the queue. When we are in dimension k for k ≥ 3, there are k − 1 possible continuations
from a choice room. Therefore we must allow to return by teleportation to a choice room
(k − 2)-times. This is compatible with the situation in Section 1, where we allow only one
teleportation return to a choice room.

A k-dimensional maze has the shape of a n1 × · · · × nk hypercube A, whose elements
A[x1, . . . , xk] are equal to the values of a function f : Nk → N„ satisfying the inequality
f(x1, . . . , xi−1, xi, xi+1, . . . , xk) < f(x1, . . . , xi−1, xi + 1, xi+1, . . . , xk) for each i = 1, . . . , k.
The starting point will be (0, . . . , 0, nk − 1).

The first strategy will be completely sequential, presented in Algorithm 2. In each
choice room r with coordinates (x1, . . . , xk) it will put on stack all possible continuations
(x1, . . . , xi−1, . . . , xi + 1, xi+1 . . . , xk) from i = 1 to i = k − 1. This implies, that the
continuation (x1, . . . , xk−2, xk−1 + 1, xk) will be popped first. However, only the continuation
rooms will be put on stack, which have not been visited yet. Of course, if k = 2 then only one
continuation room will be put on stack, but it will be popped and considered immediately
during the next turn of the outer while-loop on Line 6. Hence, Algorithm 2 is compatible with
Algorithm 1. Moreover, the use of visited rooms is superfluous for k = 2, but introducing
another if-statement would just unnecessarily complicate the algorithm. A successful path
to the exit contains in the worst case at most N =

∑k
i=1 ni rooms, without counting the

possible backtracks.
This version of our algorithm does not use the concept of flags, or allows to use an

unbounded number of flags. The version using flags would require Algorithm 2 to be called
with the parameters (f, B, F) on Line 1, where F is the number of allowed flags, followed by

M. Hermann 21:5

Algorithm 2 Sequential Search in a k-Dimensional Maze.

Input: Function f : Nk → N satisfying f(. . . , xi, . . .) < f(. . . , xi + 1, . . .) for each i =
1, . . . , k, and a value B ∈ N.

Output: Coordinates (x1, . . . , xk) for which f(x1, . . . , xk) = B or ⊥ if such coordinates do
not exist.

1: function seq_kD_search(f, B)
2: s← ∅ ▷ Initialize stack s

3: m← ∅ ▷ Initialize memory m of visited rooms
4: r ← (0, . . . , 0, nk − 1) ▷ Initialize room r

5: s.push(r) ▷ Put room r on stack s

6: while s ̸= ∅ do ▷ While stack s is nonempty
7: r ← top(s) ▷ Get room from top of stack s

8: pop(s) ▷ Pop stack s

9: while r[j] < nj for j = 1, . . . , k − 1 & r[k] ≥ 0 do
10: if f(r) = B then
11: return r

12: else if f(r) > B then
13: r[k]← r[k]− 1
14: else if f(r) < B then
15: for i← 1 to k − 1 do ▷ For each potential continuation coordinate
16: r′ ← r ▷ Copy room coordinates
17: r′[i]← r′[i] + 1 ▷ Go to a neighboring room
18: if r′[i] < ni & r′ /∈ m then ▷ If room within limits and not visited
19: s.push(r′) ▷ Put continuation room r′ on stack s

20: m.insert(r′) ▷ Label room r′ as visited
21: end if
22: end for
23: end if
24: end while
25: end while
26: return ⊥
27: end function

an extension of the condition on Line 18 to “r′[i] < ni & r′ /∈ m & F > 0”, an introduction
of the statement “F ← F − 1” between Lines 18 and 19, plus inserting a test “else if F = 0”
with a subsequent failure command after Line 20.

The second strategy is based on a greedy heuristic to always choose first the continuation
room nearest to the exit. For this, a priority queue is maintained to include the coordinates
of the continuation room together with their “distance” to the exit. Since we do not know
the coordinates of an exit room – which we are supposed to find – we use the difference
between the label f(x1, . . . , xk) of a continuation room r and the label B of an exit room
as the priority key. This priority strategy is presented in Algorithm 3. We assume that the
priority queue is implemented by a heap, therefore no code concerning an implementation of
the priority queue is presented. An interested reader can find more information on priority
queues and their implementation by a heap for instance in [6].

This version of our algorithm is similar to Dijkstra’s shortest path algorithm [6, Section 4.4]
in a graph. Dijkstra’s algorithm applied directly on regular multidimensional Cartesian

SEA 2021

21:6 How to Find the Exit from a 3-Dimensional Maze

Algorithm 3 Priority Search in a k-Dimensional Maze.

Input: Function f : Nk → N satisfying f(. . . , xi, . . .) < f(. . . , xi + 1, . . .) for each i =
1, . . . , k, and a value B ∈ N.

Output: Coordinates (x1, . . . , xk) for which f(x1, . . . , xk) = B or ⊥ if such coordinates do
not exist.

1: function priority_kD_search(f, B)
2: q ← ∅ ▷ Initialize priority queue q

3: m← ∅ ▷ Initialize memory m of visited rooms
4: r ← (0, . . . , 0, nk − 1) ▷ Initialize room r

5: s.insert((r, 0)) ▷ Insert room r into queue q with dummy key 0
6: while q ̸= ∅ do ▷ While queue q is nonempty
7: r ← front(q).first ▷ Get room coordinates from front of queue q

8: pop(q) ▷ Pop queue q

9: while r[j] < nj for j = 1, . . . , k − 1 & r[k] ≥ 0 do
10: if f(r) = B then
11: return r

12: else if f(r) > B then
13: r[k]← r[k]− 1
14: else if f(r) < B then
15: for i← 1 to k − 1 do ▷ For each potential continuation coordinate
16: r′ ← r ▷ Copy room coordinates
17: r′[i]← r′[i] + 1 ▷ Go to a neighboring room
18: if r′[i] < ni & r′ /∈ m then ▷ If room within limits and not visited
19: c← |f(r′)−B| ▷ Compute key c

20: q.insert((r′, c)) ▷ Insert room r′ with key c into queue q

21: m.insert(r′) ▷ Label room r′ as visited
22: end if
23: end for
24: end if
25: end while
26: end while
27: return ⊥
28: end function

grids, where each cell represents a node and each pair of neighboring cells is connected by an
edge of length 1, would potentially place each cell into the priority queue of explored nodes.
Algorithm 3 places a room into the priority queue only if it matters, namely when it is a
split room from where we have more than one possibility to continue. All other rooms r

where f(r) > B do not need to be inserted into the priority queue for the same reason as it
was already mentioned in an aforementioned discussion on Algorithm 2. Moreover, we know
the goal node in Dijkstra’s algorithm, whereas in Algorithm 3 the exit room is unknown and
must be discovered. Hence, we cannot minimize the path leading to the exit room. Therefore
the distance |f(r′)−B| from a continuation room r′ to the exit is the only value which we
can minimize. This is the reason for which Algorithm 3 does not preclude backtracks, even if
they are reduced to the minimum. Although in principle it is only a pseudo-problem, the use
of a priority queue implies uncontrolled jumps around a maze.

The third strategy is similar to the first strategy, but instead of pushing the continuations

M. Hermann 21:7

on stack in a fixed predefined way, it randomly permutes the sequence of continuations
before placing them on stack. For this reason we call this strategy randomized. The strategy
is implemented by a Las Vegas algorithm, therefore it always produces a correct answer.
However, produced results may vary, provided that there is more than one solution, depending
on the random permutation of the continuation sequence. Nevertheless, even if there is only
one solution, depending on different random permutations of the continuation sequences
subsequently pushed on the stack, the algorithm can follow different paths, potentially with
some backtracks, to find the exit.

Algorithm 4 Randomized Search in a k-Dimensional Maze.

Input: Function f : Nk → N satisfying f(. . . , xi, . . .) < f(. . . , xi + 1, . . .) for each i =
1, . . . , k, and a value B ∈ N.

Output: Coordinates (x1, . . . , xk) for which f(x1, . . . , xk) = B or ⊥ if such coordinates do
not exist.

1: function rand_kD_search(f, B)
2: s← ∅ ▷ Initialize stack s

3: m← ∅ ▷ Initialize memory m of visited rooms
4: r ← (0, . . . , 0, nk − 1) ▷ Initialize room r

5: s.push(r) ▷ Put room r on stack s

6: while s ̸= ∅ do ▷ While stack s is nonempty
7: r ← top(s) ▷ Get room from top of stack s

8: pop(s) ▷ Pop stack s

9: while r[j] < nj for j = 1, . . . , k − 1 & r[k] ≥ 0 do
10: if f(r) = B then
11: return r

12: else if f(r) > B then
13: r[k]← r[k]− 1
14: else if f(r) < B then
15: v ← ∅ ▷ Initialize auxiliary vector v

16: for i← 1 to k − 1 do ▷ For each potential continuation coordinate
17: r′ ← r ▷ Copy room coordinates
18: r′[i]← r′[i] + 1 ▷ Go to a neighboring room
19: if r′[i] < ni & r′ /∈ m then ▷ If room within limits and not visited
20: v.push(r′) ▷ Put continuation room r′ in vector v

21: m.insert(r′) ▷ Label room r′ as visited
22: end if
23: end for
24: permute(v) ▷ Permute vector v uniformly at random
25: for all r′ ∈ v do ▷ For the permuted sequence of continuation rooms
26: s.push(r′) ▷ Put each continuation room r′ in v on stack s

27: end for
28: end if
29: end while
30: end while
31: return ⊥
32: end function

The fourth and last strategy is purely probabilistic. It does not store the potential

SEA 2021

21:8 How to Find the Exit from a 3-Dimensional Maze

continuation rooms in a structure – a stack, a queue, or others – but it makes a probabilistic
choice among possible continuations to advance, without the possibility to return back when a
dead end is subsequently discovered. For this reason, this strategy is a Monte Carlo algorithm,
which can produce a failure answer ⊥ even if there exists a solution. The probability p to
find an exit is equal to E/(k − 1)S , where S is the number of splits and E the number of
exits in the maze. Potentially any room on the path from the start s to the exit can be a
splitting room, therefore the (very coarse) lower bound to find an exit is equal to E/(k− 1)N ,
where N =

∑k
k=1 ni is the sum of all bounds. Recall that in the two-dimensional case (k = 2)

there is only one exit (E = 1) and no splits (S = 0), therefore the probabilistic algorithm
applied to the two-dimensional case becomes totally deterministic with the probability p = 1
to find the exit. This probabilistic strategy is presented in Algorithm 5.

Algorithm 5 Probabilistic Search in a k-Dimensional Maze.

Input: Function f : Nk → N satisfying f(. . . , xi, . . .) < f(. . . , xi + 1, . . .) for each i =
1, . . . , k, and a value B ∈ N.

Output: Coordinates (x1, . . . , xk) for which f(x1, . . . , xk) = B or ⊥ if such coordinates do
not exist.

1: function proba_kD_search(f, B)
2: r ← (0, . . . , 0, nk − 1) ▷ Initialize room r

3: while r[j] < nj for j = 1, . . . , k − 1 & r[k] ≥ 0 do
4: if f(r) = B then
5: return r

6: else if f(r) > B then
7: r[k]← r[k]− 1
8: else if f(r) < B then
9: i← choose(1, . . . , k − 1) ▷ Choose a coordinate uniformly at random

10: r[i]← r[i] + 1 ▷ Go to a neighboring room
11: end if
12: end while
13: return ⊥
14: end function

4 Applications

A well-suited possibility to implement the function f : Nk → N is to use variadic polynomials
over natural numbers. A variadic polynomial p(x1, . . . , xk) ∈ N[x1, . . . , xk] ensures the
inequality

p(x1, . . . , xi, . . . , xk) < p(x1, . . . , xi + 1, . . . , xk) for each i = 1, . . . , k,

since all coefficients of p are natural numbers. The bound will be bi = ⌈ di
√

B/ai⌉ for each
variable xi, where di is the minimum exponent of xi and ai is the coefficient of the monomial
where the variable xi occurs with this exponent in the polynomial p. The bounds bi can be
further reduced along the edges of the hypercube. More precisely, for each i = 1, . . . , k, the
bound bi can be still reduced if p(0, . . . , 0, bi, 0, . . . , 0) > B holds.

For the two-dimensional case, we can for instance use the polynomial f(x, y) = x3 + y3.
In fact, this polynomial is the basis for Taxicab numbers [10] Ta(t) for t = 1, 2, 3, . . . If we
set the value B to one of Taxicab numbers Ta(t), the bounds to m = n = ⌈ 3

√
B⌉, and the

M. Hermann 21:9

starting point to (0, ⌈ 3
√

B⌉), Algorithm 1 finds a pair of values x and y whose sum of cubes
is equal to Ta(t). An easy modification of Algorithm 1 produces all solutions for a Taxicab
number Ta(t): extend the while-loop condition on Line 4 to “x ≤ m− 1 & y ≥ 0 & x ≤ y”,
replace Line 6 by “print (x, y)”, add the instruction “y ← y− 1” between Lines 6 and 7, and
finally delete Line 13. In the same way, we can solve other problems mentioned by Silverman
in [10], like the problem x4 + y4 = 635318657 solved by Euler.

For the three-dimensional case, we can use for instance the polynomial x3 + y3 + z3 = B

with the bound ⌈ 3
√

B⌉ for each variable. This problem was considered by Heath-Brown in [3],
not only over natural numbers N, but over integers Z.

Another interesting case comes from Gauss’ theorem, showing that any natural number
can be written as a sum of three triangle numbers, which is equivalent to the statement that
any natural number of the form 8n + 3 can be written as a sum of squares of three odd
natural numbers. This is expressed formally by x2 + y2 + z2 = 8n + 3 for any n ∈ N, where
the bound for each variable is ⌈

√
8n + 3⌉. Hirschhorn and Sellers studied in [5] the number

of all solutions for this problem.
An excellent example for an application is the famous Lagrange’s theorem [7], showing

that any natural number can be written as a sum of four squares. Formally, this can
be expressed as x2 + y2 + z2 + w2 = B for each B ∈ N, with the bound ⌈

√
B⌉ for each

variable. We should mention here, that our method of generalized Young tableaux is not the
best algorithm to compute the four squares in Lagrange’s sum. More efficient algorithms
exist, namely three randomized algorithms of Rabin and Shallit [9] the fastest of which has
the running time O(log2 B) provided that the Extended Riemann Hypothesis holds, their
modification by Pollack and Treviño [8] with running time O(log2 B/ log log B), or that of
Bumby [1]. It is just an interesting application for a more general setting. We can also play
with Hilbert–Waring theorem [4], which says that for each natural number d there exists
an associated natural number q(d) such that every natural number B can be expressed as a
sum of at most q(d) natural numbers raised to the power d.

The coordinates of the exit in the puzzle from Section 1 are the solution of the equation
3x14 + 5y15 + 7z16 = 131350013988347832235. There is only one solution to this equation.

5 Implementation and Benchmarks

All five Generalized Young Tableaux algorithms (respective seven if we count the modifications
producing all solutions) have been implemented in C++. All implementations have a variant
with the GNU Multiple Precision Arithmetic Library (GMP) which allows to treat numbers B

of any precision. These implementations, together with data files, can be found at the github
repository github.com/miki-hermann/gyt. This directory contains the individual C++
sources, as well as the data, and a Makefile. There are two directories. The first one, entitled
src, contains the C++ sources and a Makefile which allows to compile the sources without
typing the whole compiler command. The correspondence between the algorithms presented
in this paper and their implementations is described in Table 1. The second directory, entitled
data, contains the data files for the implemented algorithms. All implemented algorithms
expect the input from STDIN, either typed from the keyboard after being prompted, or being
piped from a file, for instance by a command like “gyt < ../data/lagrange01.data”.

The C++ sources have been compiled by the g++, version 10.2.1, with the optimization
option “-O4”. The software has been run with the benchmarks on a Dell computer with
an Intel® Core™ i7-9700 CPU @ 3.00GHz × 8 processor, with 16GB RAM, running under
Fedora 33. The performance of the software is quite surprizing. For instance, gyt-2d-gmp

SEA 2021

http://gmplib.org/
http://gmplib.org/
https://github.com/miki-hermann/gyt
github.com/miki-hermann/gyt

21:10 How to Find the Exit from a 3-Dimensional Maze

Table 1 Corresondence between algorithms and C++ implementation sources.

Algorithm 1 (2-dimensional) gyt-2d.cpp gyt-2d-gmp.cpp
Algorithm 1 all solutions gyt-2d-all.cpp gyt-2d-all-gmp.cpp
Algorithm 2 (sequential) gyt.cpp gyt-gmp.cpp
Algorithm 2 all solutions gyt-all.cpp gyt-all-gmp.cpp
Algorithm 3 (priority) gyt-pq.cpp gyt-pq-gmp.cpp
Algorithm 4 (randomized) gyt-rand.cpp gyt-rand-gmp.cpp
Algorithm 5 (probabilistic) gyt-proba.cpp gyt-proba-gmp.cpp

computing the first solution of the 7th taxicab number (data file taxi7.data) takes only
31.83 seconds and gyt-2d-all-gmp computing all solutions of the same takes only 1607.15
seconds, i.e., not even 27 minutes.

The performance of the individual algorithms is measured in terms of a maximal stack or
queue size, number of splits or choices, number of backtracks, and number of continuation
rooms double reached. For the randomized and probabilistic versions, the most advantageous
outcome out of 20 runs is presented. Table 2 summarizes the performance of the most
interesting data sets. Measuring the execution time would not give a clear picture in this case,
since all of them except lagrange07.data execute very fast. For instance, the sequential
algorithm needs only 4.91 seconds on ex01.data, which is quite an involved data set, whereas
the priority algorithm needs only 0.57 seconds to execute it, and the randomized algorithm
squeezes it down even to 0.25 seconds in the best case.

6 Concluding Remarks

When we look at Table 2, we cannot decide which of the four algorithms is the clear winner.
As a rule of thumb, the priority algorithm almost always outperforms the sequential algorithm.
Notable exceptions are the data sets ex01.txt and ex04.txt, where the sequential algorithm
pushes only 10628 or 329 rooms on stack, whereas the priority driven algorithm inserts 72910
or 213064 rooms into the queue, which indicates that the algorithm “dances” around the
search space. Of course, the sequential algorithm makes in the first case more splits and
backtracks, as well as it encounters more doubles. However, except for the backtracks, the
priority algorithm looses in any category against the sequential version in the second case.

The priority algorithm is a clear winner for lagrange07.data. Both the sequential and
randomized algorithms terminate with a timeout due to memory exhaustion. The priority
algorithm found a solutions without backtracks and only with 16214 splits, beating even
the probabilistic algorithm which does not memorize continuation rooms, but needed an
incredible number of 19636633 choices. The search space must be densely populated by
exits in this case, since the probabilistic algorithm almost always returns a positive anser for
this data set. However, the priority algorithm looses against everybody, even against the
sequential algorithm, for ex04.data.

The randomized and probabilistic algorithms should in principle make the same number of
splits, respective choices. This is true many times, but there are cases like lagrange09.data,
where the search space is small and populated with many solutions (there are actually
1260), but the probabilistic algorithm was not able to reach the minimum achieved by the
randomized version. Note, that the priority algorithm beats everybody in this case. Neither
doubles are encountered, nor backtracks are triggered.

If we do not count the probabilistic algorithm, when we wish always to receive a correct

M. Hermann 21:11

Table 2 Performance of algorithms on chosen data sets.

Algorithm
Data set measure 2:seq 3:priority 4:random 5:proba
gauss-triangle4.data max stack/queue 49465 1858 1555 —
x2 + y2 + z2 = splits/choices 51118 1857 1554 1554

2446610011 backtracks 1659 0 0 —
doubles 2180 95152 0 —

gauss-triangle6.data max stack/queue 264651 48777 16661 —
x2 + y2 + z2 = splits/choices 269208 49399 16660 13024

70039266307 backtracks 4563 623 0 —
doubles 6462 1521415 0 —

lagrange02.data max stack/queue 22256 315 173 —
x2 + y2 + z2 + w2 = splits/choices 11143 218 86 86

123456789 backtracks 32 0 0 —
doubles 0 146 0 —

lagrange07.data max stack/queue timeout 32383 timeout —
x2 + y2 + z2 + w2 = splits/choices timeout 16214 timeout 19636633

83461523083775142 backtracks timeout 0 timeout —
doubles timeout 46 timeout —

lagrange09.data max stack/queue 92 23 45 —
x2 + y2 + z2 + w2 = splits/choices 46 11 22 25

2021 backtracks 2 0 0 —
doubles 0 0 0 —

ex01.data max stack/queue 10628 72910 254 —
2x3y2 + 3y3z2 + 5z3w2 = splits/choices 2058405 99665 74513 failure

84662255 backtracks 2138825 50299 101210 —
doubles 7078935 129088 331188 —

ex02.data max stack/queue 6 9 7 —
2x3y2 + 3y3z2 + 5z3w2 = splits/choices 5 5 3 3

10 backtracks 5 2 0 —
doubles 0 0 0 —

ex04.data max stack/queue 329 213064 731 —
2x4 + 3y4 + 5z4 + 7w4 + 13u4 = splits/choices 6262 180091 386 failure

253930575 backtracks 14179 0 395 —
doubles 29559 3658440 524 —

maze01.data max stack/queue 16 51 27 —
x10 + y10 + z10 = splits/choices 39 51 26 26

413575475547 backtracks 26 11 0 —
doubles 24 22 0 —

maze05.data max stack/queue 3120 130 36 —
3x3y2 + 5y3z2 + 7x2z3 = splits/choices 3555 168 35 35

29177953 backtracks 3537 44 0 —
doubles 6875 184 0 —

maze06.data (using GMP) max stack/queue 21 30 30 —
3x14 + 5y15 + 7z16 = splits/choices 60 29 29 29

131350013988347832235 backtracks 45 0 0 —
doubles 102 0 0 —

SEA 2021

21:12 How to Find the Exit from a 3-Dimensional Maze

answer, the randomized algorithm beats all others in most cases. However, this is mainly due
to the best performance among those 20 runs. Even if the randomized algorithm outperforms
the priority one, the advantage is measured only in terms of a constant, provided we do
not count the doubles. For these two algorithms, the ratio of maximal stack/queue size
ranges within an interval from 1.0 to 3.6, with three notable exceptions, two in favor of the
randomized algorithm (ex01.data and ex04.data) and the other in favor of the priority
algorithm (langrange02.data). In the same spirit, the ratio of splits ranges within an
interval from 0.51 to 4.8. Nevertheless, in the case of ex04.data, the randomized algorithm
massively surpasses the priority version.

The probabilistic version works well only when the search spaces is populated with many
exits. If there is only a small number of exits, namely 1 or 46, respectively, and the search
space is huge, as in ex01.data and ex04.data, the probabilistic algorithm fails to find the
exit. The respective randomized algorithm needed 74513 splits for the first one, but only
386 in the second. Given that there are 4 or 5 variables, respectvely, in that problem, which
means the correct continuation room is chosen with probability 1/3 or 1/4, respectively,
exactly 74513 or even only 386 times, the chances to find the exit by a probabilistic algorithm
are practically equal to 0.

The performance of the algorithms essentially depends on the bounds. The data set
maze06.data has a horribly big exit label B, but actually its calculated bound is relatively
small: the maximal bound for maze06.data is 26. However, the bounds for lagrange07.data
are all equal to 288897081.

Interested readers are invited to write their own examples and try it out with this software.

References
1 Richard T. Bumby. Sums of four squares. In David V. Chudnovsky, Gregory V. Chudnovsky,

and Melvyn B. Nathanson, editors, Number Theory: New York Seminar 1991–1995, pages
1–8. Springer, 1996.

2 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT Press, 2nd edition, 2001.

3 D. R. Heath-Brown. Searching for solutions of x3 + y3 + z3 = k. In S. David, editor, Séminaire
de Théorie des Nombres, Paris, 1989–90, volume 102 of Progress in Mathematics, pages 71–76.
Birkhäuser, 1992.

4 David Hilbert. Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter
Potenzen (Waringsches Problem). Mathematische Annalen, 67:81–300, 1909.

5 Michael D. Hirschhorn and James A. Sellers. Partitions into three triangular numbers.
Australasian Journal of Combinatorics, 30:307–318, 2004.

6 Jon Kleinberg and Éva Tardos. Algorithm Design. Addison Wesley, 2006.
7 Joseph-Louis Lagrange. Démonstration d’un théorème d’arithmétique. Nouveaux mémoires de

l’Académie royale des sciences et belles-lettres de Berlin, 123-133, 1770.
8 Paul Pollack and Enrique Treviño. Finding the four squares in Lagrange’s theorem. Integers,

18A:A15, 2018.
9 Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory. Commu-

nications on Pure and Applied Mathematics, 39:S239–S256, 1986.
10 Joseph H. Silverman. Taxicabs and sums of two cubes. American Mathematical Monthly,

100(4):331–340, 1993.

Force-Directed Embedding of Scale-Free Networks
in the Hyperbolic Plane
Thomas Bläsius ! Ï

Karlsruhe Institute of Technology, Germany

Tobias Friedrich ! Ï

Hasso Plattner Institute, University of Potsdam, Germany

Maximilian Katzmann !

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
Force-directed drawing algorithms are the most commonly used approach to visualize networks.
While they are usually very robust, the performance of Euclidean spring embedders decreases if
the graph exhibits the high level of heterogeneity that typically occurs in scale-free real-world
networks. As heterogeneity naturally emerges from hyperbolic geometry (in fact, scale-free networks
are often perceived to have an underlying hyperbolic geometry), it is natural to embed them into
the hyperbolic plane instead. Previous techniques that produce hyperbolic embeddings usually make
assumptions about the given network, which (if not met) impairs the quality of the embedding. It is
still an open problem to adapt force-directed embedding algorithms to make use of the heterogeneity
of the hyperbolic plane, while also preserving their robustness.

We identify fundamental differences between the behavior of spring embedders in Euclidean and
hyperbolic space, and adapt the technique to take advantage of the heterogeneity of the hyperbolic
plane.

2012 ACM Subject Classification Theory of computation → Random projections and metric
embeddings

Keywords and phrases force-directed drawing algorithms, spring embedding, hyperbolic space

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.22

Supplementary Material Software (Source Code): https://github.com/maxkatzmann/
hyperbolic-spring-embedder.git

archived at swh:1:dir:7b9445f64fae3be4bbe3a692c2f94ded0bc600d1

Funding This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Grant No. 390859508.

1 Introduction

Network science is an increasingly popular field that ties in with many different research
areas such as biology or social science, where researchers examine real-world networks in
order to explain observed phenomena. While the goal is typically a mathematical analysis of
these graphs, more often than not the first step to understanding the structure of a network,
is to gain an intuition by looking at it, using a suitable visualization. The most natural way
to visualize a graph is to draw its vertices as points and edges as lines between them. In such
a drawing, it is typically desirable to have short edges while non-adjacent vertices should be
farther apart. On the one hand, this reduces visual clutter. On the other hand, it preserves
the typical interpretation of edges as a representation of similarity.

In Euclidean space, the approach that is most commonly used to embed graphs in such a
way are spring embedders or force-directed drawing algorithms [11]. Starting with a random
position for each vertex, they simulate physical forces between vertices. Attractive forces pull
adjacent vertices together and repulsive forces push non-adjacent vertices apart.

© Thomas Bläsius, Tobias Friedrich, and Maximilian Katzmann;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.blaesius@kit.edu
https://scale.iti.kit.edu/people/thomasblaesius
mailto:tobias.friedrich@hpi.de
https://hpi.de/friedrich
https://orcid.org/0000-0003-0076-6308
mailto:maximilian.katzmann@hpi.de
https://orcid.org/0000-0002-9302-5527
https://doi.org/10.4230/LIPIcs.SEA.2021.22
https://github.com/maxkatzmann/hyperbolic-spring-embedder.git
https://github.com/maxkatzmann/hyperbolic-spring-embedder.git
https://archive.softwareheritage.org/swh:1:dir:7b9445f64fae3be4bbe3a692c2f94ded0bc600d1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

Due to their basic nature, spring embedders can be applied to all types of graphs. However,
they typically struggle if a network contains high-degree vertices that tie together otherwise
loosely connected parts of the graph. In the Euclidean plane, there is not enough space close
to the high-degree vertices, to make all their edges short while keeping non-connected parts
away from each other, often leading to a visualization that resembles a ball of wool. This can
be resolved by embedding a network in the hyperbolic plane instead. There, space expands
exponentially, i.e., the area and circumference of a disk grows exponentially with its radius.
This makes it possible to have many vertices with pairwise large distance being close to a
single high-degree vertex.

In fact, a heterogeneous degree distribution (few vertices of high degree and many low-
degree vertices) emerges naturally from a hyperbolic geometry which is therefore perceived
to be underlying these so-called scale-free graphs [3, 13]. In particular, choosing an origin in
the hyperbolic plane, one can imagine a vertex’s distance to that origin (the vertex’s radius)
to be a measure of popularity: high-degree vertices are placed near the origin and low-degree
vertices are farther away. Additionally, the angular distance (around the origin) between two
vertices measures their similarity: the angular coordinates of adjacent vertices are close. If
we now distribute the vertices of a network uniformly within a hyperbolic disk, we obtain few
very popular vertices (near the disk center) that are connected to many unpopular vertices
(near the disk’s boundary) as a result of the exponential expansion of space.

To actually present a hyperbolic drawing to a user, one has to project the hyperbolic
plane to the Euclidean plane. This naturally results in a nice fish-eye view that highlights
what is currently in the center of the projection [14]. With these advantages of the hyperbolic
plane and the popularity of spring embedders, it is not surprising that a spring embedder has
been adapted to work for the hyperbolic plane [12]. This approach already produces good
results when the embedding is constrained to a small portion of the hyperbolic plane and it
showcases the nice fish-eye view effect obtained by the projection. Our goal is to extend their
work by considering larger portions of the plane in order to utilize the natural heterogeneity
of hyperbolic space to embed scale-free networks. Unfortunately, spring embedders encounter
some fundamental problems when confronted with this heterogeneity.

Due to the exponential expansion of space, geodesic lines between pairs of points are
bend towards the origin. Thus, moving towards another vertex almost always means moving
towards the origin first. Therefore, a less popular vertex (one with low degree) has to be
moved closer to the origin to get to where it actually belongs. However, this brings it closer
to every other vertex (the smaller the radius, the higher the popularity), which is prevented
by the repulsive forces. Thus, even bad embeddings with very long edges are rather stable.

Beyond spring embedders, other approaches have been proposed to generate hyperbolic
embeddings. Some of them determine hyperbolic coordinates for the vertices using a spanning
tree of the graph, for example to perform greedy routing [5, 10] or to visualize hierarchical
data in three-dimensional hyperbolic space [15]. In order to embed graphs with an underlying
hyperbolic geometry, the following techniques have been proposed.

An often used approach are maximum likelihood estimation embedders, which try to find
the coordinates for the vertices that maximize the probability of the network being generated
by an underlying hyperbolic model [18]. In the step model, such a hyperbolic random graph
is generated by placing n vertices in a hyperbolic disk of radius R and connecting any
two vertices with hyperbolic distance at most R. Thus, the probability of a graph being
produced by the model is 0, if it has edges longer than R or non-edges shorter than R.
Essentially, the goal of the embedder is to find an embedding such that adjacent vertices
are close to each other and non-adjacent vertices are farther apart, which is exactly, what

T. Bläsius, T. Friedrich, and M. Katzmann 22:3

spring embedders pursue as well. HyperMap [18] tries to solve this problem, by replaying the
network’s geometric growth in the hyperbolic plane: starting with high-degree vertices near
the origin, each vertex is placed close to its neighbors such that the probability is maximized
that the currently embedded graph emerged from the model. An improved version called
HyperMap-CN was later obtained by additionally taking the common neighborhood of two
vertices into account [17]. A further adaption yielded an algorithm with quasilinear running
time [2]. Additionally, a novel approach to embedding networks into the hyperbolic plane are
coalescent embeddings [16]. There, non-linear dimensionality reduction is applied to a matrix
representing distances between vertices in the graph. The result is a Euclidean embedding of
the network, in which metric distances between vertices match the corresponding distances
in the input matrix. The hyperbolic embedding is then obtained by deriving a circular order
of the vertices from the Euclidean embedding and combining it with information about the
degree of a vertex to approximate its position in the hyperbolic disk.

While the above techniques mostly produce good embeddings, they are not very robust.
For example, maximum likelihood embedders rely on a good initial embedding of the core
(the high-degree vertices) and place vertices with larger distance to the center near their
higher-degree neighbors. If the initial embedding of the core is bad (which can happen if
there are not enough high-degree vertices), the overall embedding will be bad as well. The
coalescent embedder encounters a similar issue if the initial Euclidean embedding is not good.

In the Euclidean plane, spring embedders have proven to be very robust and to quickly
produce good embeddings for non-complex graphs. It is still an open problem to adapt
this approach to work in the hyperbolic plane in a way that exploits the geometry to
better visualize heterogeneous networks. To answer this question, we provide a proof of
concept which shows that good hyperbolic embeddings of heterogeneous networks can be
obtained using a spring embedder. Our experiments indicate that the quality of the resulting
embeddings is on par with the one obtained using the previously mentioned embedding
techniques. As a consequence, we believe that our proof of concept lays the groundwork
for transferring the ensemble of techniques that have been developed to improve Euclidean
spring embedders into the hyperbolic setting.

Outline and Contribution. After a brief introduction into the hyperbolic space in Section 2,
we describe our embedding process in Section 3. First, we identify a fundamental difference
between Euclidean and hyperbolic spring embedders. Basically, the forces simulate a region
of influence around each vertex: attractive forces pull neighbors into this region and repulsive
forces push non-adjacent vertices out of it. In the hyperbolic plane this region of influence
has a very different impact on the embedding than in the Euclidean plane. In order to adapt
to this difference, we split the forces into two types: one that affects a vertex’s popularity
and one that tunes the similarity aspect. This, however, reduces the dimensionality of the
spring embedder, which makes it harder to escape local optima. We propose to overcome this
issue by embedding a network in the three-dimensional hyperbolic space first (Sections 3.1
to 3.4), and transitioning the resulting embedding to the plane afterwards (Section 3.5). In
order to evaluate this technique, we conducted experiments on different kinds of networks. In
Section 4 our results are compared to the existing embedding techniques mentioned above.

SEA 2021

22:4 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

σ

~v1
~v2

dist(~v1, ~v2)

ϕ1
λ2

r1

(a) The central angle σ is used to determine the
hyperbolic distance between the two vertices v⃗1
and v⃗2.

~v1

~v2

O
~k′

~k

γ

~v1
′

(b) Vertex v⃗1 is rotated towards v⃗2 around k⃗,
which goes through the origin O and is perpen-
dicular to the plane defined by v⃗1, v⃗2, and O.

Figure 1 Distances and vertex movement in three-dimensional hyperbolic space.

2 Preliminaries

Hyperbolic Plane. While space expands polynomially in the Euclidean geometry, the
expansion is exponential in the hyperbolic geometry. In the hyperbolic plane H2 a circle with
radius r has area 2π(cosh(r) − 1) and circumference 2π sinh(r), with cosh(x) = (ex + e−x)/2
and sinh(x) = (ex − e−x)/2, both growing as ex/2 ± o(1).

A point p ∈ H2 is identified using polar coordinates p = (r, φ), where r is the radius and
defines the distance to a designated origin O and φ ∈ [0, 2π) is the angular coordinate and
denotes the angular distance to a reference ray starting at O. Given two points p1 = (r1, φ1)
and p2 = (r2, φ2), the hyperbolic distance between them is given by

cosh(dist(p1, p2)) = cosh(r1) cosh(r2) − sinh(r1) sinh(r2) cos(∆(φ1, φ2)),

where ∆(φ1, φ2) = π − |π − |φ1 − φ2|| is the angular distance between p1 and p2. Finally,
given two points with radii r1, r2 ≤ R, respectively, the maximum angular distance such that
their hyperbolic distance is still at most R [8, Lemma 3.1], is given by

θ(r1, r2) = arccos
(

cosh(r1) cosh(r2) − cosh(R)
sinh(r1) sinh(r2)

)
= 2e

R−r1−r2
2 (1 + Θ(eR−r1−r2)). (1)

Three-Dimensional Hyperbolic Space. In H3 the coordinates of a vertex v are represented
by a tuple v⃗ = (r, λ, φ), which describes its radius, latitude, and longitude, respectively. As
can be seen in Figure 1a, the hyperbolic distance between two vertices v⃗1 and v⃗2 is obtained
by first determining the central angle σ between them, which is given by

cos(σ) = sin(φ1) sin(φ2) + cos(φ1) cos(φ2) cos(∆λ),

for ∆λ = |λ1 − λ2|. Afterwards, as in the two-dimensional case, the distance is obtained as

cosh(dist(v⃗1, v⃗2)) = cosh(r1) cosh(r2) − sinh(r1) sinh(r2) cos(σ). (2)

The rotation of a vertex v⃗1 towards another vertex v⃗2 around the origin works just as it
does in Euclidean space. We therefore convert our polar coordinates to Cartesian coordinates
and perform the rotation as if it was in Euclidean space. This rotation is defined by a single

T. Bläsius, T. Friedrich, and M. Katzmann 22:5

I(v)

I(u)
O

u

v

B(v)B(u)

R

Figure 2 Two vertices and their regions of influence are shown in a hyperbolic disk of radius R.
As the distance between v and the origin is larger than the one between u and the origin, v’s region
of influence I(v) is smaller than I(u), although B(u) and B(v) have the same radius R.

vector k⃗. The direction of k⃗ denotes the axis that the vertex rotates around. This axis
goes through the origin and is perpendicular to the plane defined by the origin O and the
points v⃗1 and v⃗2 (the right-hand rule applies). We obtain k⃗ = v⃗1 × v⃗2, where × denotes the
cross-product. The length of the vector determines the rotation angle. In Figure 1b one can
see how vertex v⃗1 is rotated towards v⃗2. It is rotated by |⃗k| = γ around the axis denoted
by k⃗. Note that inverting the rotation axis from k⃗ to k⃗′ inverts the direction of the rotation.

Given the Cartesian coordinates of v⃗ and a rotation vector k⃗, the rotation R(v⃗, k⃗) is
applied using Rodrigues’ formula, yielding the coordinates of the rotated vector v⃗′ as

v⃗′ = R(v⃗, k⃗) = v⃗ cos
(

|⃗k|
)

+
(

k⃗ × v⃗
)

sin
(

|⃗k|
)

+ k⃗
(

k⃗ · v⃗
) (

1 − cos
(

|⃗k|
))

, (3)

where × and · denote the cross product and dot product, respectively.

3 Embedding Process

In a force-directed embedding, the forces simulate a region of influence around a vertex v,
denoted by B(v) (a ball around v). Attractive forces pull v’s neighbors into B(v) and
repulsive forces push non-adjacent vertices out of it.

In the Euclidean plane the size of the region of influence is an input parameter that
determines the preferred length of the edges, essentially scaling the embedding. In hyperbolic
space the region of influence has a very different impact on the embedding. Recall that a
scale-free network emerges naturally, if we assume that its vertices are distributed uniformly
within a hyperbolic disk. Since there are no vertices outside of the disk, the region of
influence I(v) of a vertex v can be seen as a ball around v that is constrained to the disk.
This is depicted in Figure 2, where we interpret the polar coordinates in hyperbolic space as
polar coordinates in Euclidean space. The size of the region of influence I(v) changes with v’s
distance to the origin, even though the radius of the ball denoting I(v) is fixed. The closer v

is to the origin, the larger is the portion of the disk that is covered by I(v). Consequently,
the popularity of v is high. With increasing distance between v and the origin, the size of
I(v) decreases, i.e., v becomes less popular (again see Figure 2). The exponential expansion
of space now leads to an interesting phenomenon: the heterogeneous degree distribution of
scale-free networks emerges naturally by using the same radius for the hyperbolic disk (that
the vertices are distributed in) and the ball that denotes the region of influence [13].

SEA 2021

22:6 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

Unfortunately, this property of hyperbolic geometry impedes the successful application of
force-directed embedding algorithms. As mentioned in the introduction, moving a vertex
towards another vertex decreases its distance to (almost) all other vertices. Consequently,
the resulting repulsive forces prevent this movement, leading to bad stable embeddings. We
overcome this problem by dividing the forces into two types, one effecting the popularity
(i.e., the radii), and the other only the similarity (i.e., the angular coordinates). That way,
vertices no longer move on their geodesic lines. This division, however, reduces the movement
of the vertices to one dimension, which decreases the chances of escaping local optima. We
circumvent this issue by first embedding the graph in three-dimensional hyperbolic space. In
this way, the forces affecting the similarity move the vertices on a two-dimensional surface of
a sphere, leading to a similar behavior as in the Euclidean plane.

The general process can now be described as follows. Starting with a random initial
embedding of the graph in three-dimensional hyperbolic space, we iteratively apply forces to
move adjacent vertices close to each other and non-adjacent vertices farther apart, and in the
process adapt the radii of the vertices to tune their region of influence. Once this embedding
is stable, a plane is identified, that minimizes the distance to all vertices. Finally, forces are
applied to pull the vertices towards this designated plane, resulting in a two-dimensional
embedding of the network. In the following sections, we explain each step in greater detail.

3.1 Initial Embedding
Recall that we imagine the vertices of our network to be evenly distributed in a disk lying in
the hyperbolic plane that has the same radius as the region of influence around each vertex.
This radius R can be estimated such that it best fits the size of the given network [3].

We start with an initial embedding E that assigns each vertex a point in a three-dimensional
hyperbolic sphere of radius R. To this end, we draw a point uniformly distributed on the
surface of the three-dimensional unit sphere, and a radius uniformly at random from [0, R].

3.2 Forces
Recall that we have two types of movements. Changing the radial coordinate only affects
the size of the region of influence. Rotating a vertex around the origin moves the region
of influence without changing its size. To accommodate for these two different movements,
we apply two types of forces separately: popularity forces affect the radius of a vertex, and
similarity forces affect the latitude and longitude of a vertex within the sphere.

Popularity Forces. A single vertex v with radius rv is adjusted by comparing its degree
deg(v) with the expected number of vertices in its region of influence, assuming that the
current radii r1, . . . , rn of all vertices are fixed. Consider the following random experiment:
n vertices with radii r1, . . . , rn ≤ R are placed in a hyperbolic disk by choosing their angular
coordinates uniformly at random. Without loss of generality we can assume that φv = 0.
Now we observe the random variable X which denotes the number of vertices in I(v). Recall
that a vertex u is contained in I(v) if its distance to v is at most R. Moreover, θ(ru, rv)
denotes the maximum angular distance between u and v such that this is true (Equation (1)).
Since the probability for this to happen is Pr[u ∈ I(v)] = 2θ(ru, rv)/2π, we can compute
E[X] as

E[X] = 1
π

∑
u∈V \{v}

θ(rv, ru).

T. Bläsius, T. Friedrich, and M. Katzmann 22:7

d

π/8

0 R 2R
0

ϕ

R/2

fr(d)

fa(d)

Distance
A
n
gl
e

Figure 3 The functions fa(d) and fr(d) determine the magnitude of the attractive and repulsive
forces, respectively.

When applying the popularity force on a vertex v, we compare E[X] with deg(v). If
E[X] > deg(v), the region of influence of v is too large and rv is increased. If deg(v) = E[X],
rv is not changed. Otherwise it is decreased. In preliminary experiments we determined that
adjusting the radii using a fixed, small step size delivered the best results.

We note, that the radius of a vertex is not bounded from above, i.e., the radius R of
our disk (and therefore the size of the region of influence) can change during the embedding
process and is set to be the maximum radius of a vertex in the current embedding. That way
we can accommodate for potential errors that were made during the initial estimation of R.

Similarity Forces. The similarity forces move vertices without changing their radii. This
allows us to move vertices close to each other, without getting closer to all other vertices.

Let u ̸= v be two vertices with coordinates u⃗ and v⃗, respectively. In the following, we
observe the force that is caused by u and acts on v. Formally, the force is determined using a
function f : H3 × H3 → R3. The resulting vector describes the axis around which the vertex,
that the force acts on, is rotated. The direction of the force f(u⃗, v⃗) is perpendicular to the
plane containing u, v and the origin, and is given by k⃗ = (v⃗ × u⃗)/(|v⃗ × u⃗|). If the force is
repulsive, we invert the direction of the rotation by rotating around −k⃗. The length of f(u⃗, v⃗)
describes the magnitude of the force and was chosen to match the angle φ that v is rotated
by. It depends on the hyperbolic distance dist(u⃗, v⃗) between the two vertices (Equation (2)).
We define two functions fa (for attractive forces) and fr (for repulsive forces) that map the
distance d ∈ [0, 2R] to the magnitude φ ∈ [0, π/8] of the force. In preliminary experiments,
the upper bound of π/8 for φ proved to be useful in avoiding very large jumps. As they
delivered the best results in preliminary experiments, we chose the two functions to be

fa(d) =
{

0, d ≤ R/2,

π/8 ·
(2d−R

3R

)
, otherwise

and fr(d) =
{

π/8, d ≤ R,

π/8 ·
(
2 − d

R

)1/2
, otherwise,

which are depicted in Figure 3. Note that the repulsive force is as strong as possible if the
distance between the two vertices is less than R, i.e., when v is in the region of influence of u.

3.3 Force Application
After the initial random embedding we alternatingly apply batches of popularity and similarity
forces. In each iteration we compute the forces that act on the vertices and rotate them
accordingly. Additionally, some precautions are taken that help stabilize the embedding. In
a single iteration i, the total force that acts on a vertex v is determined, by first summing

SEA 2021

22:8 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

(a) The initial embedding with random coordin-
ates for all vertices.

(b) A stable embedding after applying popular-
ity and similarity forces.

Figure 4 Two three-dimensional embeddings (before and after applying forces) of a hyperbolic
random graph with 492 vertices.

the forces that are caused by all other vertices, which we denote with k⃗i(v). In order to
stabilize the embedding, k⃗i(v) is then scaled using a temperature τi ∈ (0, 1] that decreases as
τi = 0.975 ·τi−1 in every iteration. Additionally, to prevent oscillations, a velocity is simulated
by adding a portion ν (we use ν = 1/2) of the forces that acted on v in the previous iteration.
Taken together, we obtain the rotation vector κ⃗i(v), describing the total force that acts on v

in iteration i as κ⃗i(v) = νκ⃗i−1(v) + τik⃗i(v) and rotate v accordingly.

3.4 Stability
After every iteration i we obtain a new embedding Ei describing the current positions of all
vertices. From these positions we can derive a potential ρi which describes how unstable the
embedding is after iteration i. The potential is defined as the sum of the strengths of all
forces and can be computed as ρi =

∑
v∈V |κ⃗i(v)|. After every iteration we compute the

potential ρi and compare it with previous ρj for j < i to detect whether the potential is
decreasing, meaning the embedding is getting more stable. Figure 4 compares the initial
embedding of a graph with a stable one, obtained after iteratively applying the forces.

After iteration i the process stops if the potential has decreased in the last couple
of iterations, meaning ρj > ρj+1, for i − 10 < j < i and the difference to the previous
potential ρi−1 drops below a given stability threshold. Additionally, the process stops if the
number of iterations has exceeded a predefined threshold. Usually, the potential fluctuates
in the beginning, since the temperature is high, but as the temperature decreases over time,
so does the potential and the embedding becomes stable eventually.

3.5 Transition to the Plane
Once the three-dimensional embedding is stable, we convert it to a two-dimensional embedding,
by first determining the plane that contains the origin and minimizes the distance to all
vertices, using principal component analysis. Then, the embedding is rotated such that this
plane aligns with the plane P = {(r, λ, φ) | φ = 0}. Afterwards, in addition to the forces

T. Bläsius, T. Friedrich, and M. Katzmann 22:9

Length

Edges
Non-Edges

P
or
ti
on

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Figure 5 An edge-length histogram that is used to measure the embedding quality. It shows the
portion of edges (blue) and non-edges (red) of a given length. The filled regions denote the errors.

that were used so far, we apply forces that pull the vertices towards P . To this end, for
every vertex v with coordinate v⃗ = (r, λ, φ), we introduce a virtual vertex v′ with coordinate
v⃗′ = (r, λ, 0). The total force κ⃗i(v) that acts on v is now determined as before, with the
addition of a force that attracts v towards v′. In particular, we obtain the new position of v

by rotating it around κ⃗i(v) + κ⃗′
i(v). The additional force κ⃗′

i(v) = τi · π/15 · (v⃗′ × v⃗)/(|v⃗′ × v⃗|)
is independent of the distance between v and v′, constantly pulling v towards the plane.
By still applying the popularity and similarity forces, we try to preserve the quality of the
existing embedding while transitioning it towards the plane. This process ends as soon as
the average distance between the vertices and the plane drops below a certain threshold or
a maximum number of iterations is reached. Then, all vertices are moved onto the plane,
yielding the final two-dimensional embedding.

4 Experiments

In order to evaluate whether the adapted spring embedder works and how it compares to
existing embedding techniques, we implemented it in C++1, using Eigen [7] to perform
the principal component analysis needed for the transition to the two-dimensional plane.
Afterwards we ran experiments on the largest component of 16 real-world networks [19]
and 18 hyperbolic random graphs with different parameter configurations. In addition to
our spring embedder, we considered the Euclidean spring embedder FMMM [9] (using the
implementation found in OGDF [4]), as well as the maximum likelihood estimation embedder
HyperMap-CN [17], the previously mentioned quasilinear adaptation, which we abbreviate
with BFKL [2], and the coalescent embedder [16].

Embedding Quality. Recall, that the goal of an embedding technique is to place adjacent
vertices closely together and non-adjacent ones farther apart. In order to measure how well
this goal is achieved we introduce the edge-length histogram, as can be seen in Figure 5. It is
based only on a graph’s adjacency information and an embedding. This allows us to evaluate
embeddings of real-world networks, where ground truth data is usually not available. The
edge curve (blue) denotes the relative number of edges of a given length. The non-edge curve
(red) does the same for non-edges. We measure the error of the embedding by determining

1 Our code is available at https://github.com/maxkatzmann/hyperbolic-spring-embedder.git
(archived at swh:1:dir:7b9445f64fae3be4bbe3a692c2f94ded0bc600d1).

SEA 2021

https://github.com/maxkatzmann/hyperbolic-spring-embedder.git
https://archive.softwareheritage.org/swh:1:dir:7b9445f64fae3be4bbe3a692c2f94ded0bc600d1

22:10 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

0.0

0.1

0.2

0.3

0.4

A
ve
ra
ge

E
rr
or

6.3 8.0 8.6 5.3 7.6 8.2 5.0 6.1 6.1 17.2 15.1 16.9 15.5 15.8 17.8 12.7 18.1 14.2

n 1001 966 951 934 970 987 983 972 989 994 997 998 998 1000 1000 993 1000 1000

2.1 2.5 2.9 2.1 2.5 2.9 2.1 2.5 2.9 2.1 2.5 2.9 2.1 2.5 2.9 2.1 2.5 2.9

0.0 0.0 0.0 0.4 0.4 0.4 0.8 0.8 0.8 0.0 0.0 0.0 0.4 0.4 0.4 0.8 0.8 0.8

d
β

T

0.5

BFKL Coalescent SpringGround Truth FMMM HyperMap-CN

Figure 6 Errors obtained using different embedding techniques on hyperbolic random graphs.
Filled circles indicate edge errors. Hollow circles indicate non-edge errors. Bars denote their average.
The graphs differ in the number of vertices n, the average degree d, the power-law exponent of the
degree distribution β, and the temperature T .

the area under the minimum of the two curves. The edge error is the corresponding area
whenever the edge curve takes on the minimum (filled blue region). The non-edge error
(denoted by the filled red region) is defined analogously. The average error is the average of
the edge error and the non-edge error and the balancing error is the difference between them.

In a perfect embedding, the edge-length histogram would show a peak in the edge curve
to the left of another peak in the non-edge curve without any overlap, meaning all edges
are shorter than all non-edges. In other words, all vertices have their neighbors inside their
region of influence and all non-neighbors outside of it. Consequently, the average error and
the balancing error are both 0%. Whenever the two curves overlap, errors were made. The
average error gives some general hints about the overall quality of the embedding. But
assume an embedding has an average error of 50% (the worst error possible). This could
mean, for example, that the edge error and the non-edge error are both close to 50%, or (in
the extreme case where all vertices are placed on the same point) that the edge error is 0%
and the non-edge error is 100%. In that case the latter embedding is arguably worse than
the first one, which is revealed by looking at the balancing error.

Hyperbolic Random Graphs. Figure 6 shows the errors obtained in our experiments on
hyperbolic random graphs. These graphs are sampled by placing n vertices uniformly
at random in a hyperbolic disk of radius R = 2 log n + C, where C controls the average
degree d of the network. Furthermore, the power-law exponent β ∈ (2, 3) impacts the degree
distribution. The smaller β, the denser is the core of the network. In the step model, any
two vertices are connected, if the distance between them is at most R. In a relaxed version,
a temperature T (typically between 0 and 1) is introduced, which allows for long-range
edges (and short non-edges) by smoothing the step function. This influences the clustering
coefficient of the generated network: the smaller T , the higher the clustering. We note that
this notion of temperature is independent of the one used to stabilize the embedding.

T. Bläsius, T. Friedrich, and M. Katzmann 22:11

0.5

0.4

0.3

0.2

0.1

0.0

bi
o-

ce
le
ga

ns

bi
o-

de
se

as
om

e

bi
o-

ye
as

t-
pr

ot
ei
n-

in
te

r

bn
-fl

y-
dr

os
op

hi
la

m
ed

ul
la

1

bn
-m

ac
aq

ue
-r
he

su
s
br

ai
n

1

bn
-m

ou
se

re
tin

a
1

bn
-m

ou
se

vi
su

al
-c
or

te
x

2

ca
-C

Sp
hd

ca
-n

et
sc

ie
nc

e

ia
-r
ea

lit
y

in
f-e

ur
or

oa
d

rt
-tw

itt
er

-c
op

en

so
c-
ha

m
st
er

st
er

so
cf
b-

A
m

he
rs

t4
1

so
cf
b-

B
ow

do
in

47

te
ch

-r
ou

te
rs

-r
f

A
ve

ra
ge

E
rr

or

0.6

0.7
FMMM HyperMap-CN BFKL Coalescent Spring

Figure 7 Errors obtained using different embedding techniques on the largest component of
several real-world networks. Filled circles indicate edge errors. Hollow circles indicate non-edge
errors. Bars denote their average. Grey bars indicate that the embedding process did not finish
within 96 hours.

On these networks the considered techniques that generated embeddings in the hyperbolic
plane delivered mostly good results. The mean errors of the different techniques over all
generated graphs are:

Ground Truth FMMM HyperMap-CN BFKL Coalescent Spring
Average Error 2.8% 11.9% 14.5% 3.4% 5.9% 4.3%
Balancing Error 1.0% 13.4% 8.2% 1.0% 2.2% 1.8%

The BFKL embedder was the best one, delivering results that are very close to the ground
truth (the coordinates sampled during the graph generation). With the exception of FMMM
and HyperMap-CN, the remaining embedders also produced very good results.

As expected, FMMM had trouble fitting the hyperbolic random graphs into the Euclidean
plane. Figure 6 shows that on most networks FMMM obtained a small edge error at the
expense of a large non-edge error, yielding a balancing error of 13.4% on average. This does
not come as a surprise as there is simply not enough space in the Euclidean plane to keep
non-edges long while trying to obtain short edges. Unfortunately, HyperMap-CN seemed to
have issues with low temperatures. Excluding graphs with T = 0, HyperMap-CN obtained
an average error of 7.2%.

The hyperbolic spring embedder produced embeddings that are on par with the ground
truth and sometimes even better. The average error and the balancing error are small on
average, with 4.3% and 1.8%, respectively. This shows that spring embedders can be adapted
to take advantage of the intrinsic heterogeneity of the hyperbolic plane to produce good
embeddings of heterogeneous networks.

SEA 2021

22:12 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

(a) FMMM (b) BFKL (c) Spring

Figure 8 Embeddings of the largest component (containing 1458 vertices) of the bio-yeast-protein-
inter network, obtained using different techniques.

Real-World Networks. Figure 7 shows the errors of the embeddings obtained using the
different techniques on real-world networks. The mean errors over all graphs are:

FMMM HyperMap-CN BFKL Coalescent Spring
Average Error 10.1% 11.5% 42.1% 12.6% 10.1%
Balancing Error 10.9% 6.6% 15.8% 5.5% 4.1%

Overall the embedders produced good results, with the exception of BFKL with an average
error of 42.1%. As noted by the authors, this technique excels on larger graphs [2]. Thus,
one explanation for the bad performance is the constraint to smaller graph sizes (< 7000
vertices) that was necessary to compensate for the running time of other techniques. In fact,
while HyperMap-CN produced good results in general, it also encountered three instances
where it did not finish the embedding process within 96 hours. The remaining techniques
performed well with an average error of a little over 10%.

Figure 7 shows that FMMM encountered the same difficulties as on the hyperbolic random
graphs and was often not able to maintain long non-edges while making the edges short
(except for inf-euroroad, a road-network where the underlying geometry is arguably rather
Euclidean). Figure 8 depicts embeddings of the bio-yeast-protein-inter network.2 In the
FMMM embedding (Figure 8a) one can see how higher degree vertices are placed near the
center of the embedding and with them their low-degree neighbors. As a result, the center
part is very cluttered and the structure of the network is unclear.

Likewise, the maximum likelihood estimation techniques were sometimes not able to
produce embeddings that convey the structure of the network. They usually start the
embedding process by first embedding the core (high-degree vertices that are supposed to be
close to the origin) and determine the positions of later vertices based on the already placed
ones. As can be seen in Figure 8b, this fails if there are not enough vertices in the core. In
that case, the earlier stages of the embedding are rather arbitrary and later vertices can not
compensate for the initial errors.

On the other hand, the natural approach of applying forces between the vertices to
obtain embeddings that reflect the structure of the network well, proved to be very robust.
In 11 of the 16 embeddings the hyperbolic spring embedder delivered the best results and
was not far off on the remaining instances, yielding the best average and balancing errors

2 Further embedding evaluations can be found in Appendix A.

T. Bläsius, T. Friedrich, and M. Katzmann 22:13

of 10.1% and 4.1%, respectively. Figure 8c shows the hyperbolic spring embedding of the
bio-yeast-protein-inter network. One can observe a good trade-off between edges being too
long and non-edges being too short, resulting in a drawing where higher degree vertices
are placed towards the center and their low-degree neighbors are close to them near the
disk’s boundary. This separation between high- and low-degree vertices helps in reducing the
clutter, making it easier to see which vertices actually belong together.

5 Conclusion

It was previously observed that spring embedders encounter a fundamental problem when
being subjected to the natural heterogeneity of hyperbolic space. After explaining the core
difficulties we proposed a way to circumvent them: The application of the forces typically has
close to no impact on the position of a vertex as movement along geodesic lines simultaneously
affects its region of influence in two ways (popularity and similarity), which can be overcome
by differentiating between two types of forces and increasing the dimensionality in order to
better escape local optima. Our experiments indicate that the resulting approach produces
embeddings that are on par with other commonly used hyperbolic embedding techniques.

Adapting the standard force-directed embedding approach to work in hyperbolic space
paves the way for translating well known techniques that improve the quality of Euclidean
spring embedders into the hyperbolic setting. These include the use of geometric data
structures [1], the multilevel strategy of the previously mentioned FMMM embedder [9], and
the application of random sampling in order to improve the running time [6]. We believe
that these techniques can also be used to extend our proof of concept in order to further
improve its performance.

References
1 Josh Barnes and Piet Hut. A hierarchical O(NlogN) force-calculation algorithm. Nature,

324(6096):446–449, 1986. doi:10.1038/324446a0.
2 Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient embedding of

scale-free graphs in the hyperbolic plane. In 24th Annual European Symposium on Algorithms,
ESA 2016, pages 16:1–16:18, 2016. doi:10.4230/LIPIcs.ESA.2016.16.

3 Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet with
hyperbolic mapping. Nature Communications, 1(62), 2010. doi:10.1038/ncomms1063.

4 Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten Klein, and
Petra Mutzel. The Open Graph Drawing Framework (OGDF). In Handbook of Graph Drawing
and Visualization, chapter 17. CRC Press, 2014.

5 D. Eppstein and M. T. Goodrich. Succinct greedy geometric routing using hyperbolic geometry.
IEEE Transactions on Computers, 60(11):1571–1580, 2011. doi:10.1109/TC.2010.257.

6 R. Gove. A Random Sampling O(n) Force-calculation Algorithm for Graph Layouts. Computer
Graphics Forum, 38(3):739–751, 2019. doi:10.1111/cgf.13724.

7 Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.
8 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs:

Degree sequence and clustering. In Automata, Languages, and Programming, pages 573–585,
2012. doi:10.1007/978-3-642-31585-5_51.

9 Stefan Hachul and Michael Jünger. Drawing large graphs with a potential-field-based multilevel
algorithm. In Graph Drawing, 12th International Symposium, GD 2004, pages 285–295, 2004.
doi:10.1007/978-3-540-31843-9_29.

10 Robert Kleinberg. Geographic routing using hyperbolic space. In 26th IEEE International
Conference on Computer Communications, pages 1902–1909, 2007. doi:10.1109/INFCOM.
2007.221.

SEA 2021

https://doi.org/10.1038/324446a0
https://doi.org/10.4230/LIPIcs.ESA.2016.16
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1109/TC.2010.257
https://doi.org/10.1111/cgf.13724
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.1109/INFCOM.2007.221
https://doi.org/10.1109/INFCOM.2007.221

22:14 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

11 Stephen G. Kobourov. Force-directed drawing algorithms. In Handbook of Graph Drawing
and Visualization, chapter 12. CRC Press, 2014.

12 Stephen G. Kobourov and Kevin Wampler. Non-euclidean spring embedders. IEEE Trans-
actions on Visualization and Computer Graphics, 11(6):757–767, 2005. doi:10.1109/TVCG.
2005.103.

13 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.
doi:10.1103/PhysRevE.82.036106.

14 John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on hyperbolic
geometry for visualizing large hierarchies. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 401–408, 1995. doi:10.1145/223904.223956.

15 Tamara Munzner. H3: Laying out large directed graphs in 3d hyperbolic space. In Proceedings
of the 1997 IEEE Symposium on Information Visualization (InfoVis ’97), pages 2–10, 1997.
doi:10.1109/INFVIS.1997.636718.

16 Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, and Carlo Vit-
torio Cannistraci. Machine learning meets complex networks via coalescent embedding in the hy-
perbolic space. Nature Communications, 8(1):1615, 2017. doi:10.1038/s41467-017-01825-5.

17 Fragkiskos Papadopoulos, Rodrigo Aldecoa, and Dmitri Krioukov. Network geometry inference
using common neighbors. Physical Review E, 92(2):022807, 2015. doi:10.1103/PhysRevE.92.
022807.

18 Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov. Network mapping by
replaying hyperbolic growth. IEEE/ACM Transactions on Networking, 23(1):198–211, 2015.
doi:10.1109/TNET.2013.2294052.

19 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015. URL: http://networkrepository.com.

https://doi.org/10.1109/TVCG.2005.103
https://doi.org/10.1109/TVCG.2005.103
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1145/223904.223956
https://doi.org/10.1109/INFVIS.1997.636718
https://doi.org/10.1038/s41467-017-01825-5
https://doi.org/10.1103/PhysRevE.92.022807
https://doi.org/10.1103/PhysRevE.92.022807
https://doi.org/10.1109/TNET.2013.2294052
http://networkrepository.com

T. Bläsius, T. Friedrich, and M. Katzmann 22:15

A Additional Embedding Comparisons

On the following pages we show a few more comparisons of embeddings produced using the
various techniques as explained in Section 4.

Hyperbolic Random Graph (Figure 9)
Hyperbolic random graphs are sampled by distributing vertices uniformly at random in a
hyperbolic disk and connecting any two that are sufficiently close. Figure 9a depicts such a
graph using the sampled vertex positions. Since the underlying geometry of the network is
hyperbolic and not Euclidean, FMMM has no chance in finding an embedding that represents
the structure of the graph well (Figure 9b). The densely connected high-degree vertices as
well as their lower-degree neighbors are all placed close to each other, yielding a cluttered
embedding. Apart from the coalescent embedding (Figure 9e) the other techniques obtained
embeddings that resemble the ground truth well. This is reflected by the corresponding error
diagram in Figure 6 for the network with n = 970, d = 7.6, β = 2.5, and T = 0.4.

rt-twitter-copen (Figure 10)
Similarly to the embeddings in Figures 8a and 9a, FMMM succeeds in making the edges
short, which leads to a small average error. However, in order to achieve this, many of the
non-adjacent lower-degree vertices are placed close to the high-degree neighbors and, thus,
close to each other. Consequently, the small edge-error is counteracted by a comparatively
large non-edge error (denoted by the hollow-circle in Figure 7). While BFKL seemed to be
unable to find a good initial placement of the higher-degree vertices, the remaining techniques
produced reasonable results. Most notably, the spring embedder distributed the low-degree
vertices near the boundary of the embedding and placed them close to their higher-degree
neighbors. As a result, it obtained the best combination of average and balancing error.

inf-euroroad (Figure 11)
The underlying geometry of the road network inf-euroroad is arguably rather Euclidean than
hyperbolic. Therefore, it is no surprise that FMMM, the only considered embedder that
works with Euclidean geometry, obtained the best results here. The corresponding embedding
in Figure 11a resembles that of a road network and is, therefore, a good representation of
the structure of the graph. This is reflected by very small average and balancing errors, as
shown in Figure 7.

In heterogeneous networks we interpret the degrees of the vertices as a measure of their
popularity. In hyperbolic embeddings this is represented by the radial coordinates of the
vertices: a vertex that is closer to the center has a larger popularity (higher degree). However,
road networks are rather homogeneous, meaning most vertices have similar degree and, thus,
similar popularity. The hyperbolic embedders represent this by placing all vertices in a ring
close to the boundary of the embedding. The differences in the qualities of the embeddings is,
thus, revealed by how well the techniques captured the similarities of the vertices, i.e., how
close adjacent vertices are positioned in the ring. This is represented by the amount of edges
that go through the center of the embedding. Clearly, the coalescent embedder captured this
best, followed closely by the spring embedder, with HyperMap-CN and BFKL rather far off.
The exact same ranking is reflected in the corresponding average errors in Figure 7.

SEA 2021

22:16 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

(a) Ground Truth (b) FMMM

(c) HyperMap-CN (d) BFKL

(e) Coalescent (f) Spring

Figure 9 Embeddings of the largest component (containing 970 vertices) of a hyperbolic random
graph (with average degree 7.6, power-law exponent 2.5, and temperature 0.4), obtained using
different techniques.

T. Bläsius, T. Friedrich, and M. Katzmann 22:17

(a) FMMM (b) HyperMap-CN

(c) BFKL (d) Coalescent

(e) Spring

Figure 10 Embeddings of the largest component (containing 761 vertices) of the rt-twitter-copen
network, obtained using different techniques.

SEA 2021

22:18 Force-Directed Embedding of Scale-Free Networks in the Hyperbolic Plane

(a) FMMM (b) HyperMap-CN

(c) BFKL (d) Coalescent

(e) Spring

Figure 11 Embeddings of the largest component (containing 1174 vertices) of the inf-euroroad
network, obtained using different techniques. Here, FMMM obtained the best representation of the
structure of the network.

An Experimental Study of External Memory
Algorithms for Connected Components
Gerth Stølting Brodal !

Aarhus University, Denmark

Rolf Fagerberg !

University of Southern Denmark, Odense, Denmark

David Hammer !

Goethe Universität Frankfurt, Germany
University of Southern Denmark, Odense, Denmark

Ulrich Meyer !

Goethe Universität Frankfurt, Germany

Manuel Penschuck !

Goethe Universität Frankfurt, Germany

Hung Tran !

Goethe Universität Frankfurt, Germany

Abstract
We empirically investigate algorithms for solving Connected Components in the external memory
model. In particular, we study whether the randomized O(Sort(E)) algorithm by Karger, Klein, and
Tarjan can be implemented to compete with practically promising and simpler algorithms having
only slightly worse theoretical cost, namely Borůvka’s algorithm and the algorithm by Sibeyn and
collaborators. For all algorithms, we develop and test a number of tuning options. Our experiments
are executed on a large set of different graph classes including random graphs, grids, geometric
graphs, and hyperbolic graphs. Among our findings are: The Sibeyn algorithm is a very strong
contender due to its simplicity and due to an added degree of freedom in its internal workings
when used in the Connected Components setting. With the right tunings, the Karger-Klein-Tarjan
algorithm can be implemented to be competitive in many cases. Higher graph density seems to
benefit Karger-Klein-Tarjan relative to Sibeyn. Borůvka’s algorithm is not competitive with the two
others.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems;
Theory of computation → Graph algorithms analysis

Keywords and phrases Connected Components, Experimental Evaluation, External Memory, Graph
Algorithms, Randomization

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.23

Supplementary Material Software (Source Code): https://ae.cs.uni-frankfurt.de/r/p/em-cc
archived at swh:1:dir:a11f45c7dd725022c9898f14f1b2a9afe1136b9a

Funding Based upon work partially performed while attending AlgoPARC Workshop on Parallel
Algorithms and Data Structures at the University of Hawaii at Manoa, organized by Nodari Sitchinava
and in part supported by the National Science Foundation under Grant No. CCF-1930579. Gerth
Stølting Brodal and Rolf Fagerberg have been supported by the Independent Research Fund Denmark
under grants 9131-00113B and DFF-7014-00041, respectively. David Hammer, Ulrich Meyer, Manuel
Penschuck, and Hung Tran have been supported by the Deutsche Forschungsgemeinschaft (DFG)
under grants ME 2088/4-2 (SPP 1736 Algorithms for Big Data) and ME 2088/5-1.

Acknowledgements Extensive calculations on the Goethe-HLR high-performance computer of the
Goethe University Frankfurt were conducted for this research. The authors would like to acknowledge
the CSC team for their support. We would also like to thank Peter Sanders for valuable feedback on
an earlier draft of this paper.

© Gerth Stølting Brodal, Rolf Fagerberg, David Hammer, Ulrich Meyer, Manuel Penschuck, and
Hung Tran;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 23; pp. 23:1–23:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gerth@cs.au.dk
mailto:rolf@imada.sdu.dk
mailto:hammer@imada.sdu.dk
mailto:umeyer@ae.cs.uni-frankfurt.de
mailto:mpenschuck@ae.cs.uni-frankfurt.de
mailto:htran@ae.cs.uni-frankfurt.de
https://doi.org/10.4230/LIPIcs.SEA.2021.23
https://ae.cs.uni-frankfurt.de/r/p/em-cc
https://archive.softwareheritage.org/swh:1:dir:a11f45c7dd725022c9898f14f1b2a9afe1136b9a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 An Experimental Study of External Memory Algorithms for Connected Components

1 Introduction

The Connected Components (CC) problem is a fundamental algorithmic task on undirected
graphs and has a large number of applications including web graph analysis, communication
network design, image analysis, and clustering in computational biology. CC may be viewed
as a smaller sibling of the Minimum Spanning Forest (MSF) problem defined on weighted,
undirected graphs – any algorithm solving MSF and able to return the trees of the forest
one by one can be used to solve CC by first assigning arbitrary edge weights.

In internal memory, CC is simple to solve in linear time by DFS or BFS. A long-standing
open problem is whether MSF can also be solved deterministically in linear time. The large
body of work devoted to the question (see e.g. the references in [22]) indicates that in internal
memory, MSF is harder to tackle than CC, at least in terms of the algorithmic sophistication
needed (and potentially also in terms of the asymptotic complexity of the problem).

In external memory (see Section 2 for the definition of the model and its parameters),
the I/O-complexity of CC and MSF is bounded from below by Ω(E/V · Sort(V)) [18]
and a number of algorithms come within at most a logarithmic factor of O(Sort(E)). No
deterministic algorithm is known to match the lower bound, but a randomized algorithm
with O(Sort(E))1 expected cost exists [15, 8]. Unlike in internal memory, the known external
memory CC algorithms are essentially the same as the known algorithms for MSF, either
exactly or as close variants. The largest discrepancy between the two settings is for the
randomized O(Sort(E)) algorithm, where a fairly involved subroutine in its MSF variant
becomes straight-forward for CC.

It seems that the randomized O(Sort(E)) external memory algorithm was never empirically
investigated. One aim of this paper is to carry out such an investigation in the CC setting
where the discrepancy mentioned above gives the algorithm the largest opportunity of being
competitive in practice. Due to the large size of internal memory in most current computer
systems, it is not clear whether a small asymptotic advantage of at most a logarithmic
factor will materialize in practice for graphs of very large, but still plausible, sizes. In
more detail, we want to investigate implementations and tuning options for the randomized
O(Sort(E)) CC algorithm, as well as for the practically most promising of the remaining
(asymptotically slightly worse, but often simpler) external CC algorithms, and then compare
the best implementations of each algorithm on a broad range of graph classes. More generally,
the aim of this paper is to investigate the best algorithmic choices for solving the CC problem
in external memory.

Previous work. In the semi-external case, where V ≤ M , scanning the edges and maintaining
the components via a Union-Find data structure in internal memory will solve CC in
O(Scan(E)) I/Os. The classic Borůvka MSF algorithm was externalized by Chiang et al. [8]
by showing how to implement a Borůvka step in O(Sort(E)) I/Os, leading to O(log(V/M) ·
Sort(E)) I/Os for the entire algorithm. A simpler method for implementing a Borůvka step
in O(Sort(E)) I/Os was later given by Arge et al. [4]. Munagala and Ranade [18] gave a
CC algorithm using O(log log(V B/E) · Sort(E)) I/Os and also proved the above-mentioned
lower bound. The algorithm was generalized to MSF by Arge et al. [4], keeping the I/O
bound. The algorithm of [4] was further developed by Bhushan and Gopalan [7], slightly
improving the I/O bound.

1 Using sparsification, the algorithm can be implemented to use O(E/V · Sort(V)) I/Os [8], matching the
lower bound exactly. In this paper, we will consider its O(Sort(E)) version as the two bounds are very
close and in practice their difference is unlikely to outweigh the added algorithmic complication.

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:3

Karger, Klein, and Tarjan [15] gave an internal MSF algorithm with expected O(E)
running time using a linear time MSF verification algorithm as its central subroutine. The
algorithm can be externalized to use expected O(Sort(E)) I/Os [8] by using external Borůvka
steps and the external MSF verification algorithm by Chiang et al. [8]. For CC, it is an
easy observation (already made by [2]) that the MSF verification can be substituted by
a contraction step, which simplifies the implementation considerably. To the best of our
knowledge, neither the CC nor the MSF variant of this external memory algorithm has been
studied empirically.

A very simple randomized MSF algorithm using expected O(log(V/M) · Sort(E)) I/Os
was developed by Sibeyn and Meyer. It was first reported by Schultes [24], and further
described and empirically tested by Dementiev et al. [26]. A CC variant was theoretically
and empirically studied by Sibeyn [27] (and to a lesser extent by Schultes [25]). Due to
its simplicity, the algorithm is likely to have very competitive constants in its I/O bound,
which is argued theoretically in [27] and substantiated by the experiments in [24, 25, 26, 27];
however, none of these experiments include comparisons to other external memory algorithms.

Our contribution. We implement the CC version of the O(Sort(E)) randomized and external
algorithm by Karger, Klein, and Tarjan [15] and develop and investigate a number of tuning
options. We then compare it to tuned versions of what we consider the practically most
promising other algorithms for the CC, namely external Borůvka and the algorithm by
Sibeyn et al. [24, 25, 26, 27]. Our experiments are executed on numerous graph classes,
including G(n, p) graphs, grids, geometric graphs, and hyperbolic graphs (see Section 6).

Among our findings are: Sibeyn’s algorithm is a very strong contender due to its
simplicity and due to an added degree of freedom in its internal workings when used in the
CC setting. With the right tunings, the Karger-Klein-Tarjan algorithm can be implemented
to be competitive. Higher graph density seems to benefit Karger-Klein-Tarjan relative to
Sibeyn, as does larger graph sizes. The latter observation is in line with its better (expected)
asymptotic I/O bound. Borůvka’s algorithm is not competitive compared to its contenders.

2 Definitions

The Connected Components (CC) problem on an undirected graph G = (V, E) is to partition
V such that two nodes are in the same subset iff they are connected by a path in G. We
overload the symbols V and E: depending on the context, V may represent either the set or
the number of nodes, and E may similarly represent either the set or the number of edges.

We analyze the cost of algorithms in the I/O-model of Aggarwal and Vitter [1] where M

denotes the size of the internal memory, B denotes the block size, and Scan(N) = Θ(N/B)
and Sort(N) = Θ(N/B logM/B(N/M)) denote the costs of scanning and sorting N elements.

As input, we assume the standard external memory representation of a graph as a list
of its edges. This means that isolated nodes cannot be represented and should be handled
separately by the user, which is straight-forward as they constitute their own connected
components. We denote by V (E) the set of nodes contained in an edge set E. Hence, an
input is formally a graph G = (V (E), E), but for simplicity we denote it just by E. We
require the input E to be given in lexicographical order, as all our algorithms need this. We
thereby avoid an initial sorting step in the algorithms, which would only make their relative
differences in running times less clear. Unless otherwise stated, we also assume that each
unordered edge {u, v} is stored only once in its normalized form (min(u, v), max(u, v)).

SEA 2021

23:4 An Experimental Study of External Memory Algorithms for Connected Components

v1

v2

v3 v4

v5

v6v7

v v1 v2 v4 v6 v7
f ′(v) v1 v1 v6 v6 v6

(a) Obtain f ′ by
solving CC on E′

relabel
E by f ′

v3

v5

v6

v v3 v5 v6
f ′′(v) v5 v5 v5

(b) Obtain f ′′ by solving CC
on E relabeled by f ′

relabel the
stars of f ′

by f ′′

and merge

v1

v2

v3 v4

v5

v6v7

v v1 v2 v3 v4 v5 v6 v7
f(v) v1 v1 v5 v5 v5 v5 v5

(c) Obtain f by merging the star of f ′′

and the star of f ′ relabeled with f ′′

Figure 1 Relabeling and contraction. The input E and the subset E′ ⊆ E are illustrated in (a)
where E′ corresponds to solid black edges and E − E′ to dotted lines. Solving CC on E′ yields f ′

which represents the two CCs {v1, v2} and {v4, v6, v7} by v1 and v6, respectively. This corresponds
to the two stars indicated by the directed green edges. Since v3 and v5 are not covered by E′, they
are also not included in f ′. The result of the contraction E/E′ is shown in (b) with solid lines
and is obtained by relabeling E by f ′. Solving CC on E/E′ yields f ′′ indicated by the dashed
directed edges. In (c), we merge the stars of f ′ relabeled with f ′′ (solid) together with the stars
of f ′′ (dashed) and obtain the final result f . Observe that the star of f may contain edges (e.g.
(v7, v5)) that were not part of the original input E.

As output, we require a mapping f : V (E) → V (E) where f(v) = f(u) iff u and v are in
the same connected component. In other words, for each connected component one node
is chosen as its representative. Concretely, the mapping shall be returned as the list of
pairs {(v, f(v)) | v ∈ V (E)}, except that all identities (v, v) are omitted. Note that we can
interpret this output as the edge list of a directed graph composed of disjoint stars, where a
star is a set of nodes pointing to a common center node. Each star represents a connected
component in E.

A relabeling of a graph E by a mapping f : V (E) → V (E) means applying f to all edge
endpoints and then removing parallel edges and self-loops in the resulting edge list. If f

is given by a graph of oriented stars as described above, a relabeling can be implemented
in O(Sort(E)) I/Os by O(1) sorting and scanning steps on E. A contraction E/E′ of a
graph E by a subset E′ ⊆ E of its edges means solving CC on E′ and then relabeling E

by the returned mapping f ′. The concepts of relabeling and contraction are illustrated in
Figure 1 (a) and (b), respectively.

Note that if we next obtain a mapping f ′′ by solving CC on the contracted graph E/E′,
we can solve CC on the original graph E as follows: use the mapping f ′′ to relabel the
graph of stars representing f ′ (only the target of each star edge is affected by the relabeling)
and then return the union of those relabeled edges and the edges of the graph of stars
representing f ′′. The process is illustrated in Figure 1 (c). It is easy to verify that it will
produce a graph of stars representing the solution f to CC on the original graph E. All
recursive algorithms in the current paper use this process as their framework.

3 Algorithms

In this section, we describe the basic versions of the implemented algorithms.

Union-Find. In the semi-external case, where V (E) ≤ M , scanning the edges once
while maintaining a Union-Find data structure on V (E) in internal memory solves CC
in O(Scan(E)) I/Os and O(Eα(E, V (E))) time [28], where α is the inverse Ackermann
function. We use this as a base case.

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:5

Borůvka. A Borůvka step in the MSF setting means letting each node choose an incident
edge of minimum weight and then contracting the graph by the set E′ of chosen edges. In
E′, each node is in a connected component of size at least two, so the number of nodes is at
least halved in the step. As a Borůvka step requires O(Sort(E)) I/Os (see below), this leads
to a recursive algorithm which will use O(log2(V/M)Sort(E)) I/Os before the semi-external
base case is reached. This constitutes Borůvka’s algorithm.

The first part of a Borůvka step finds E′ with O(Sort(E)) I/Os as follows: double E

during a scan to make it contain both directions of each undirected edge. Then for all nodes
choose an incident edge of minimum weight via a single sort and scan of this version of E.

To implement the remainder of a Borůvka step, one can exploit that E′ is a graph
where each connected component has exactly one cycle, as seen by repeatedly following
paths of chosen edges until all nodes have been visited. Assuming that all edge weights are
unique (otherwise, use node IDs as tie-breakers), the weights along any such path are strictly
decreasing, except when traversing the lightest undirected edge {u, v} of the component in
two directions (u, v), (v, u), implying that the cycle is a two-cycle. Both directions have the
same normalized representation, hence can be identified and de-duplicated by sorting E′,
after which the connected component corresponds to a tree rooted in v. This can be done
for all such pairs in the same sorting step, making the edges E′ form a forest where each
tree coincides with a connected component. We select the roots as the components’ IDs.

In order to return the star graph of the mapping f ′, we have to inform each node of its
tree’s root. Early external methods [8, 2] used algorithms for Euler tours of trees based on
list ranking. We use a simpler method described in [4]. It requires O(Sort(V (E))) I/Os and
is based on the fact that edge weights are strictly increasing on root-to-leaf paths in the
trees, i.e., if we address messages to nodes by the weight of their incoming edge, parents will
be processed before their children. This allows edge weights to be used as a “time line” in a
general technique known as time-forward processing [17]. The propagation is done for all
trees simultaneously by maintaining a set of signals in an external priority queue. The data
structure is initialized by inserting signals for all children of all roots. Using sorting steps, we
also create a list L of tree edges not incident to a root. In L, all child edges of a node v are
grouped together, and the order between groups is determined by the weight of the parent
edge of v. We then repeatedly remove the signal with smallest key from the priority queue
and forward the information contained to the next block of children from L.

In the CC setting, the above algorithm for a Borůvka step can be implemented by
(formally) assigning to all edges their unique normalized identity as their weight. Note that
in the first part of the step, this is equivalent to each node simply choosing the edge to the
neighbor with the lowest ID.

Karger-Klein-Tarjan. The CC version [2] of the O(Sort(E)) randomized, external algorithm
based on Karger, Klein, and Tarjan [15] has the following recursive structure:

1. Perform three Borůvka steps on the input graph. Let the result be E.
2. Let E′ contain each edge of E independently with probability 1/2.
3. Compute the connected components of E′ recursively.
4. Form the contraction E′′ = E/E′.
5. Compute the connected components of E′′ recursively.
6. Relabel the result of step 3 by the result of step 5 and merge with the result of step 5, as

detailed in Section 2.
7. Perform the relabelings and merges corresponding to the contraction in each of the initial

Borůvka steps (as detailed in Section 2) and return the result.

SEA 2021

23:6 An Experimental Study of External Memory Algorithms for Connected Components

In step 4, only the edges in E − E′ need to be processed as contraction by E′ eliminates
all edges in E′. The crux of the Karger-Klein-Tarjan algorithm is that the number of edges
in E′′ is O(V (E)) in expectation. The argument for this is as follows (adapted from [15] to
the CC setting).

Consider building a spanning tree F for E′ by the standard Union-Find based algorithm
while performing the sampling. That is, consider each edge e of E sequentially and include it
in F iff it is sampled and it does not form a cycle with edges already in F . Case 1: e forms
a cycle. Then e will not appear in E′′ due to the contraction. Case 2a: e does not form a
cycle, and is sampled. Then e will not appear in E′′ due to the contraction (as it is included
in F). Case 2b: e does not form a cycle, and is not sampled. Then e may appear in E′′.
Since the final F is a spanning tree of E′, we have |F | ≤ V (E′) − 1 and hence |F | < V (E).
Thus, the number of Case 2b edges is a stochastic variable upper-bounded by a negative
binomial distribution with p = 1/2 and r = V (E) (the number of tails before V (E) heads
have appeared when flipping a fair coin). Therefore the expected number of Case 2b edges is
at most V (E), implying the same for the expected number of edges in E′′.

This statement is analogous to Lemma 2.1 of [15] for the MSF version. The rest of
the argument in [15] for the expected cost carries over2 almost verbatim, with O(E) time
substituted by O(Sort(E)) I/Os.

Sibeyn. The MSF algorithm presented in [26] is a surprisingly simple I/O-efficient algorithm.
It works by repeatedly letting some node select its minimum incident edge and contracting
that edge. These contractions are done in a lazy fashion using the time-forward processing
method with node IDs as the “time” dimension. The original algorithm is described in two
versions: one using buckets and the other using a priority queue.

We here describe the version based on priority queues. The algorithm represents the
undirected edges only in their normalized form (oriented from lower to higher ID). All
edges are initially inserted into a priority queue (PQ) which is ordered by source first and
edge weight second. This ordering allows the algorithm to perform node contractions by
repeatedly extracting the minimum edge in the PQ. When the extracted edge (u, v, w) has a
new source u compared to the previous extracted edge, {u, v} is the lightest edge incident
to u (after the contractions done so far) and is output as an MSF edge. The edge {u, v}
is then contracted and u’s remaining edges are forwarded to (i.e., taken over by) v. In
detail, all subsequent edges (u, v′, w′) with source u extracted from the PQ become {v, v′}
by inserting (min{v, v′}, max{v, v′}, w′) into the PQ, except that edges with v′ = v (i.e.,
self-loops) are skipped. In this MSF version of the algorithm, forwarded edges need to be
annotated with the original node IDs of their endpoints, in order for the output to be a
correct MSF. When the number V ′ of source IDs remaining in the PQ can fit in internal
memory, i.e., when V ′ ≤ M , the rest of the edges in the PQ are extracted and a semi-external
version of Kruskal’s algorithm is run on them. If using randomized node IDs, the algorithm
requires expected O(E log(V/V ′)) priority queue operations to contract the original node set
V to a smaller node set V ′ (i.e. for contracting V − V ′ nodes) [26]. This implies a total cost
of O(log(V/M) · Sort(E)) I/Os.

In our setting, the goal is to compute connected components. This allows the algorithm
to be simplified in a number of ways (some described in [25]). The tree that the algorithm
outputs should only capture connectivity, hence its edges need not be edges from the original

2 The argument in [15] allows for using only two initial Borůvka steps. We here follow the description of
the CC algorithm in [2], which uses three.

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:7

input E, so there is no need to annotate forwarded edges with original node IDs. Additionally,
one can choose an arbitrary edge out of the “current” source u as the new target to forward
edges to. A natural heuristic is to send the information as far forward in time as possible.
This is achieved by simply ordering the PQ by source in increasing order and by target in
decreasing order as the first edge out of each new source will then go to the furthest neighbor
(or known reachable node due to forwarded edges) immediately.

As the final CC information should be represented as a set of stars, some post-processing
has to be done on the rooted trees output by the modified node contraction algorithm. As
node IDs give a topological ordering of the tree edges, one can simply reverse the tree edges
and use time-forward processing in the opposite direction relative to the node contraction
phase. This post-processing only incurs O(Sort(V)) additional I/Os.

The bucket version of the algorithm replaces the priority queue with a set of unsorted
buckets. Two variants are described in the CC setting in [27, Section 3.4]: one which processes
each bucket in internal memory and one which uses the semi-external Union-Find algorithm
on each bucket. Choosing bucket sizes ahead of time for the former variant is non-trivial as
the density tends to increase during computation. We therefore focus on the latter variant in
this paper.

Randomized Borůvka. A standard Borůvka step has a first part where each node selects
an incident edge, and a second part where the connected components of this edge set E′ are
found via time-forward processing and returned as a mapping represented by a star graph.

We now describe a novel randomized method for the second part which is simpler than
time-forward processing, at the cost of a worse bound on the contraction factor. In Section 7,
we empirically investigate whether this trade-off is beneficial for the overall I/O cost when
using Borůvka steps (as part of Borůvka’s or Karger-Klein-Tarjan’s algorithm).

We consider the selected edge of a node as an outgoing oriented edge. The method is
simple: 1) Let each node keep its selected edge with probability p, resulting in the edge
set E′′. 2) Mark all edges (u, v) in E′′ for which E′′ contains an edge (w, u), then remove all
marked edges to give the final edge set E′′′. Step 1) can be done during the edge selection
process at no cost, and step 2) can be done in one additional sort and scan step. No (oriented)
path in E′′′ has length more than one, hence E′′′ is a star graph itself (it represents its own
connected components) and can just be returned. Note that while the star-graph computation
discussed for the original Borůvka algorithm requires the cycle of a connected component to
be a two-cycle, and therefore requires nodes to choose minimum incident edges according to
some assigned unique edge weights, this is not the case for our randomized variant.

▶ Lemma 1. E′′′ has expected size of at least p(1 − p)V (E).

Proof. E′ has size V (E), so the expected size of E′′ is pV (E). If we for each edge (w, u) in
E′ count a mark whenever (w, u) was kept and (u, v) was kept (where (u, v) is u’s chosen
edge), then we have an upper bound on the total number of marks (it is an upper bound, as
(u, v) could also be counted as marked via another edge (w′, u), but (u, v) can only hold one
mark). Hence, the expected number of edges removed from E′′ to E′′′ is less than p2V (E).
Thus, the expected size of E′′′ is at least p(1 − p)V (E), which is maximized for p = 1/2. ◀

When contracting using the star graph E′′′, each edge of E′′′ will remove at least one node, so
at least 1/2(1 − 1/2)V (E) = V (E)/4 nodes are removed in expectation. Thus, the expected
contraction factor is at least 1/(1 − 1/4) = 4/3. The contraction for a given graph may
be larger than this (just as for standard Borůvka steps and its lower bound of two on the
contraction factor). In Section 7, we empirically study contraction factors.

SEA 2021

23:8 An Experimental Study of External Memory Algorithms for Connected Components

4 Tuning Options

We suggest and experimentally evaluate several variations of the algorithms with potential
for impact on their practical running times and I/O costs.

Pipelining. Pipelining is the concept of one algorithmic sub-routine handing its output
directly to another sub-routine without storing the intermediate data on disk. Applying this
where possible can save I/Os, and our implementation platform STXXL offers tools for this
type of programming. Before settling on using it, however, we want to investigate its impact.

Contraction sub-routine. In Borůvka’s algorithm, and in the first step of the Karger-Klein-
Tarjan algorithm, nodes are contracted. We investigate if time-forward processing based
Borůvka steps or the proposed randomized version will be the fastest. The general form of
the I/O cost argument in [26, 24] states that if Sibeyn’s algorithm is run until the number
of nodes has been contracted from V to V ′, it uses expected O(log(V/V ′) · Sort(E)) I/Os.
Thus, another possible contraction sub-routine in Karger-Klein-Tarjan is to use Sibeyn.

Omitting node contractions at the root in Karger-Klein-Tarjan. From the details of the
cost analysis of Karger-Klein-Tarjan [15], it seems likely that the initial contraction in the
root node of its recursion tree will dominate the running time in practice. The asymptotic
result of expected O(Sort(E)) cost still holds if this contraction (but not the contractions
in other nodes of the recursion tree) is omitted. Then the algorithm will simply start with
a scan of the input edge list when sampling edges before the first recursive call. If the
returned mapping happens to contract nodes and edges well, the second recursive call will
not contribute much to the total I/O cost, either. In this case, the dominating part will
be the contraction after the first recursive call, which comprises two sorting steps and two
scannings steps on E (if we enter the base case in the second recursive call, we can even save
one of the sorting steps, because the edges do not need to be sorted before making the call).

Sampling parameter in Karger-Klein-Tarjan. The original sampling probability for edges
before the first recursive call in Karger-Klein-Tarjan was set to p = 1/2, but other values are
possible. Lowering p makes the first recursive call cheaper, and for denser graphs, we may
still have a good effect of the contraction before the second recursive call, because a sparser
subset of edges may still span large portions of the connected components. If this turns out
to be true, one could make p depend on the density (lower p when the density is higher).

Approximate counting algorithms for size estimation. In the recursive algorithms, there
is a need to estimate V in order to know when the semi-external base case can be entered.
One idea is to use approximate counting algorithms [3, 5, 10] from the streaming community
to determine an estimate on the number of unique nodes in the edge list. In the streaming
model this problem is referred to as the Distinct Elements problem and most solutions only
provide a (δ, ε) guarantee, meaning that the estimate is within a (1 + ε)-multiplicative error
with probability at least (1 − δ). As smaller values of ε and δ require more internal work
(mostly in the form of more evaluations of independent hash-functions), we investigate if we
can benefit from these methods while staying I/O-bound.

Which neighbor to contract in Sibeyn. In each step of Sibeyn, the MSF version of the
algorithm must choose to contract the current node and its neighbor given by its incident
edge of minimum weight. In the CC version, it is free to choose any neighbor. As argued

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:9

in [27], it may be beneficial to choose the neighbor with largest node ID. We investigate what
is the best choice and the gains possible, and we empirically compare choosing a neighbor
with largest node ID, a neighbor with smallest node ID, and a random neighbor (which
corresponds to the MSF version).

Minimizing the PQ in Sibeyn. When running the PQ version of Sibeyn, we may exploit
that the input edges are sorted. This allows us to skip the initial insertion of all edges into
the PQ: while running the algorithm, the list of original edges can just be merged with the
output of the PQ, which then only needs to contain reinserted edges, not original edges.

Influence of relinking in Sibeyn with buckets. In the bucket version of Sibeyn’s algorithm,
the connected components for a bucket are computed and signals are sent to later buckets.
Sibeyn [27] introduces a relinking variant which restructures the signals before sending them
to reduce the number of signals between buckets.

5 Implementation

All algorithms are implemented in C++ using the STXXL library [9], which offers highly
tuned external memory versions of fundamental algorithmic building blocks like sorting and
priority queues. It also supports pipelining, as described in Section 4. The external priority
queue of STXXL, which we use in several places in the algorithms implemented, is based
on [23].

In order to accommodate different contraction schemes in the contraction of the recurs-
ive Karger-Klein-Tarjan algorithm, we implemented a generic framework for performing
the sampling, contraction, relabeling and merging during the algorithm’s execution. The
supported contraction schemes are Sibeyn, Karger-Klein-Tarjan and randomized Borůvka
contractions. The framework comes in two flavors: a purely vector-based and a pipelined
stream-based implementation. This allows us to evaluate to what degree pipelining is
beneficial.

Edge representation. In our implementation we store each undirected edge by its ordered
pair (u, v) where u < v. For sorted edges we additionally employ a more I/O-efficient data
structure: consecutive edges with the same source u are compressed to a single entry u

followed by all its adjacent nodes and a delimiter.

Data structures. The pipelined implementations make use of several STXXL data structures.
In these, generated data is not saved in an explicit vector but fed to a container which then
functions as a data stream with read-only access. An example of this is STXXL’s sorter : in
the first phase, items are pushed into the write-only sorter in an arbitrary order by some
algorithm. After an explicit switch, the filled data structure becomes read-only and the
elements are provided as a sorted stream which can be rewound at any time. While a sorter
is functionally equivalent to filling, sorting and reading back an external memory vector, the
restricted access model reduces constant factors in the running time and I/O cost [6].

Semi-external base case. While we assume that the number of nodes in the original input
is known exactly, this is not necessarily true for recursive calls. As we aim to switch to
a semi-external base case algorithm, keeping track of the number of remaining nodes is
essential. For the Karger-Klein-Tarjan algorithm, the node contraction step contracts a

SEA 2021

23:10 An Experimental Study of External Memory Algorithms for Connected Components

specified number of nodes and as such, a good estimate for the number of nodes remaining
after initial contraction is simply the original node count minus the number contracted3. The
same holds for the contracted edge set passed on to the second recursive call: the number of
connected components returned from the first recursive call is known and corresponds to
the number additional nodes contracted. This leaves the first recursive call operating on the
sampled edges E′. The number of nodes here is trivially bounded both by the bound known
before sampling and by 2|E′|. The latter bound can be improved somewhat; as edges are
kept sorted, the number of unique sources can be counted while sampling and only |E′| is
added for an upper bound. Taking the best of these bounds at different stages, we maintain
an upper bound on the node count. By using these upper bounds we can save I/Os in the
relabeling as relabeled edges may immediately be piped into the semi-external base case
without the otherwise required final sorting step. Note that while computing the exact
number of nodes requires only a few scanning and sorting steps, this is too costly in practice
for competitive results.

6 Graph classes

For our experiments, we use a variety of different synthetic graph models. We consider four
types: the Gilbert type classic random graphs, random geometric and random hyperbolic
graphs, both belonging to the class of spatial network models, and finally deterministically
generated grid graphs. Using scalable graph generators, we generate fully external (M < V)
graphs with a range of different parameters. For a recent overview of such generators, see
[21].

Gilbert graphs. In the G(n, p) model of Gilbert [12], each edge is present independently with
probability p. The G(n, p) model can generate graphs with a varying number of connected
components for sufficiently small p. It is widely used in empirical work, but its degree
distribution is often considered atypical compared to real-world instances.

Random Geometric graphs. Random Geometric graphs (RGGs) [13, 19] are a simple case
of spatial networks where graphs are projected onto Euclidean space. In RGGs n points are
placed uniformly at random into a d-dimensional unit-cube [0, 1)d where any two points are
connected if their Euclidian distance is below a given threshold r. To generate graphs in this
model, we use the generator available in KaGen [11].

Random Hyperbolic graphs. Random Hyperbolic graphs (RHGs) [16, 14] are a special
case of spatial networks where graphs are projected onto hyperbolic space. We describe
the threshold model, the simplest RHG variant [14]. The points are randomly placed onto
a two-dimensional disk in hyperbolic space where the radial probability density function
increases exponentially towards the border. The angular coordinate is sampled uniformly at
random from [0, 2π) and points are connected if their hyperbolic distance is less than a given
threshold R. The density of points near the center is controllable by setting a dispersion
parameter α. One interesting feature of RHGs is that the node degrees follow a power law
distribution which is often found in real-world graph instances, in particular when generated
via human activities and choices. In the threshold model the exponent is γ = 1 + 2α with
high probability [14]. To generate graphs in this model, we use the HyperGen generator [20].

3 This gives an exact count except when a connected component is contracted to a singleton – at which
point it will not appear in the edge list.

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:11

Grid graphs. We consider two different types of square grid graphs. In both versions, the
nodes are seen as points in a two-dimensional grid; (x, y) for 1 ≤ x ≤ w and 1 ≤ y ≤ h.
For the simpler version, nodes are connected horizontally and vertically to their neighbors.
All nodes except for boundary nodes thus have degree 4. To achieve higher degree, we
additionally consider generalized grids in which nodes are connected to all nodes within
distance d under the infinity norm. That is, node (x, y) has edges to nodes (x + i, y + j)
where −d ≤ i ≤ d and −d ≤ j ≤ d, except where this exceeds the grid boundary. Internal
nodes in these graphs have degree 4d(d + 1). To investigate the effects of increasing the
number of components, we additionally generate graphs which we refer to as cubes consisting
of multiple disjoint layers, each of which is a generalized grid graph.

7 Experiments

Our experiments were carried out in two phases. In the first phase, we investigated the impact
of the various algorithmic variants and proposals for tuning described in Sections 3–5. This
was done on subsets of the test graphs of Section 6 and selected other test cases. The aim of
this phase was to develop a set of well-engineered implementations of the most promising
contenders. In the second phase, we then compared those on a large set of test graphs of
Section 6 – the compute time of this phase alone comprised one third of a year. Below, we
describe our experimental setup and our learnings from each of the two phases. For space
reasons, we mainly include plots for the second phase. The full set of plots are in Appendix A
(in the plots, the numbers V and E are denoted by n and m, respectively).

7.1 Experimental setup
The experiments were run on individual nodes of the Goethe-HLR cluster at Goethe University
Frankfurt, as this allowed us to run many experiments simultaneously (note that our
algorithms all are sequential, parallel algorithms for CC are beyond the scope of this paper).
The nodes each have Intel Xeon Skylake Gold 6148 CPUs and 192 GB of RAM. Each node
has a HGST Ultrastar HUS726020ALA610 hard drive which was used for the STXXL disk
file. The code was compiled using GCC version 8.3.1 with the optimization parameters O3
and march=native.

In each run, the input graph was first loaded onto the local hard drive in the appropriate
STXXL data structure: an edge stream for the stream-based implementations and an STXXL
vector for the vector-based implementations. The threshold for switching to the semi-external
base case was for all the algorithms set to 33,554,432 nodes which corresponds to 256 MiB
of node IDs. To capture wall-time and I/O volume, we used the iostats module provided
by the FOXXLL library (a component of STXXL). The main timing plots in Figures 10–17
show the wall time (bars) and total I/O volume (bytes read plus bytes written during the
execution of the algorithm) reported by the iostats.

To keep the combined compute time of the experiments from becoming infeasible (even
when executing experiments in parallel on a cluster), we reduced the RAM used by the CPUs
to a few GB, which allowed us values of V/M up to 80 and graph densities E/V up to 20
(although not both maximal values at the same time) while keeping individual experiments
under half a day of compute time. Our hypothesis was that if the algorithms are I/O-bound,
the relative running times of the algorithms would stay approximately the same even if
moving to larger sizes of RAM and from the hard disks of the cluster nodes to solid-state
disks. With the set of final contenders, we conducted experiments on selected graph classes

SEA 2021

23:12 An Experimental Study of External Memory Algorithms for Connected Components

on a single machine having 16 GB of RAM and a RAID with six solid-state disks of 480 GB
each. Those experiments confirmed our hypothesis, as the relative running times changed
less than 20% in almost all cases tested.

To limit the amount of memory used on the cluster nodes, we limited the internal memory
allowed for STXXL primitives used (sorting streams and priority queues were limited to
1 GB of RAM each). With the base case threshold (accounting for overhead), and the above
limits, the implementations should be able to run with approximately 2 GB of memory. We
did not have a mechanism to enforce a strict bound on the memory actually allocated, but
monitored the amount of RAM actually used, which was in the range of 2 GB to 5 GB. To
force disk accesses rather than additional buffering, the direct flag was used for the STXXL
disk file.

7.2 Phase 1 – Initial Findings

We now describe our main findings in phase one of our experiments. Unless otherwise
mentioned, the measure compared is wall clock time.

Randomized Borůvka and Borůvka

For our suggestion for randomized Borůvka steps, we first investigated the impact on the
observed contraction ratio of a number of different edge representations and of various
sampling parameters. On most graph classes, sampling parameters much closer to one than
to 1/2 gave better contraction ratios (see Figure 5), in line with Lemma 1 only giving a
lower bound. There was correlation among the graph classes between increased contraction
efficiency of the randomized Borůvka steps and increased contraction efficiency of standard
Borůvka (past the lower bound of two on the ratio). However, the ratio was consistently
worse for the randomized version, and its simpler code did not make up for this when
considering the total time of Borůvka’s algorithm. Additionally, both of the two versions of
Borůvka’s algorithm were clearly worse than Sibeyn’s algorithm based on PQs, both before
and after adding pipelining. For instance, when doing node contraction until the base case
is reached, we found that Sibeyn’s algorithm was approximately 59% faster than ordinary
Borůvka and we likewise found that one variant of our Karger-Klein-Tarjan implementation
using Sibeyn’s algorithm for node contraction was around 58% faster than one using the
randomized Borůvka steps (results vary across graphs, numbers given here are averages).
We therefore left Borůvka’s algorithm out of the final race.

Pipelining

Adding pipelining in STXXL turned out to improve our implementations of Sibeyn and of
Karger-Klein-Tarjan. Introducing pipelining (including compressed edge streams) reduced
the running time of one of our Karger-Klein-Tarjan variants approximately 73% on average
over a simple version based on STXXL vectors. Even for our Sibeyn implementation (where
even a simple implementation incurs much less copying), introducing pipelining improved
the running time by approximately 10% on average. The tunings to the PQ based version of
Sibeyn suggested in Section 4, e.g. reducing the processed volume of edges in the PQ, turned
out to be beneficial, lowering running time by an additional approximately 29% on average.

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:13

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

0.0

0.5

1.0

tim
e

(h
ou

rs
, b

ar
s)

0.00

0.25

0.50

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(a) m/n = 2.04

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

0

1

2

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(b) m/n = 5.00

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

0

2

4

tim
e

(h
ou

rs
, b

ar
s)

0

1

2

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(c) m/n = 10.00

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

0.0

2.5

5.0

tim
e

(h
ou

rs
, b

ar
s)

0

2

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(d) m/n = 20.00

Figure 2 (Subset of Figure 10) Running times and I/O volumes for G(n, p) graphs with a node
set size of 5GiB and varying density. The default variant always contracts and has a sampling
probability of p = 1/2. The remaining variants skip contraction in the root and have fixed sampling
probabilites. For m/n = 20, the default variant exceeded the local hard disk’s capacity leading to a
halt in the algorithm’s execution. We thus only report the elapsed wall time up until that point.

Approximate counting

For the estimation of V using approximate counting algorithms, we tested the FM algorithm
by Flajolet and Martin [10]. In essence, the FM algorithm computes for a given input stream
an estimate of its number of distinct elements. For this, every input element is mapped by a
hash function and incorporated into a later modified and returned proxy value. Due to the
output variance being intolerably large, standard median-of-means techniques are employed
which in turn, however, require more independent hash functions.

For several graph classes, we employed the FM algorithm in the sampling step of the
Karger-Klein-Tarjan algorithm with an increasing number of hash functions. To accurately
assess the returned estimates we separately ran the Karger-Klein-Tarjan algorithm with the
same seed and explicitly counted the correct number of nodes in each sampling step.

We found that the number of hash functions needed in order to get a useful precision in
the estimate was so high that it impacted the running time. Additionally, the errors in the
estimation are two-sided, which fits badly with the fact that invoking a Union-Find based
base case when not actually being semi-external will have disastrous effects on the running
time. Combined, this made us decide not to include this method in the final experiments.

Karger-Klein-Tarjan

For the contraction steps in the Karger-Klein-Tarjan algorithm we tried both standard and
randomized Borůvka steps, as well as the PQ based version of Sibeyn, and the latter proved
to be the better option.

When varying the sampling parameter p in Karger-Klein-Tarjan, we observed a rather
clear correlation (see Figure 2 and Figures 10–16): the best choice for both I/O volume and
running time seems to be p equal to the inverse density V/E of the input graph, likely for
the reasons conjectured in Section 4: a sampled subset of edges containing around V nodes
will often by itself contract the node set considerably, while the left recursion will be cheap if
this is achieved for small p, which may happen more often for high densities.

Also, when visualizing the recursion trees, a clear pattern was a balanced tree for this
value of p, whereas quite strongly left-leaning and right-leaning trees appeared for larger and
smaller values, respectively. Profiling of the distribution of time spent in the nodes of the
recursion trees showed the root to be dominating, which is aligned with the analysis in [15].
Often, the contraction step was dominating (as can also be seen in Figure 2). There was also
a small tendency for Karger-Klein-Tarjan to improve relative to the other algorithms when
V grew compared to M (for fixed density and graph class). These observations (which are

SEA 2021

23:14 An Experimental Study of External Memory Algorithms for Connected Components

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
n 1e5

0.3

0.4

0.5

0.6
m

es
sa

ge
s /

 (m
lo

g
n)

Gilbert graphs

random neighbor
last neighbor

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
n 1e5

1.5

2.0

2.5

m
es

sa
ge

s /
 (m

lo
g

lo
g

n) Gilbert graphs

random neighbor
last neighbor

Figure 3 (Copy of Figure 7) Number of forwarded messages divided by m log n (left) or m log log n

(right) for Gilbert graphs for increasing values of n. The value p is chosen s.t. a density of five is
fixed. In (left) we observe that the total number of produced messages is dominated by m log n

whereas in (right) we see that the volume asymptotically matches with m log log n if messages are
forwarded to the last neighbor.

visible in the plots in Figures 10–17) inspired us to implement variants of the Karger-Klein-
Tarjan which do not use contraction at the root, and adaptive variants which in all recursion
tree nodes choose contractions only for low (estimated) density and also choose a sampling
parameter close to V/E.

Choice of contraction target in Sibeyn

Perhaps our most interesting observation in phase one was the influence on Sibeyn of the
choice of which neighbor to contract (see Section 4). We tried the choices of nearest, random,
and farthest in node-ID order (i.e., the “timeline” in the time-forward processing by the PQ).
Of these, the random choice intuitively can be expected to behave like the MSF variant of
the algorithm (where each node must choose the neighbor of its lightest incident edge, and
where the node IDs are randomly permuted). As exemplified by the first plot of Figure 6,
where a message is a PQ entry (i.e., an edge in its original form or a later replaced form)
each inducing O(1) PQ operations, the choice of nearest is by far the worst and was not
considered again. On the other hand, farthest is always better than random (see rest of plots
in Figure 6).

This effect was first studied in [27], where an expected bound of O(E log log(V)) messages
was claimed (but the proof omitted) for Gilbert graphs. As seen in Figure 3, we here
verify that claim empirically, and also demonstrate that it does not hold for the random
choice. Even more interesting, for random grid graphs and random hyperbolic graphs, the
empirical evidence even suggests a better bound of expected O(E) (Figures 8 and 9). These
findings suggest that Sibeyn in practice is strictly faster for CC than for MSF, and that it
for the former may often run in cost O(Sort(E)). Additionally, the bulk of the messages
seem concentrated very late in the time-forward process, which in the external version is
preempted by entering the semi-external Union-Find case, which in turn has lower overhead
per edge/message than a PQ. Combined with the general simplicity of Sibeyn, these findings
indicate that it may be very hard to surpass. For our final Sibeyn implementations, we
naturally used the farthest neighbor choice.

7.3 Phase 2 – Final Algorithms

For the second and final phase of experiments we selected the following algorithms (with
implementation choices fixed as described above).

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:15

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(a) Gilbert graph, smallest node set, m/n = 5

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0
2
4
6
8

10
12
14

tim
e

(h
ou

rs
, b

ar
s)

0
1
2
3
4
5
6
7

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(b) Gilbert graph, largest node set, m/n = 5

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0
1
2
3
4
5

tim
e

(h
ou

rs
, b

ar
s)

0.0
0.5
1.0
1.5
2.0
2.5

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(c) Random Geometric graph

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(d) Random Hyperbolic graph

Figure 4 (Copies of Figure 10b, Figure 13b, Figure 16d and Figure 17c)
Running times and I/O volumes for two Gilbert graphs and the two largest generated RGG and
RGH instances.

Karger-Klein-Tarjan in several versions: One with contractions in all recursion tree
nodes and fixed sampling parameter p = 1/2. Four versions omitting contraction at
the root of the recursion tree and having fixed sampling parameters of 1/2, 1/4, 1/8,
and 1/16, respectively. Two adaptive versions which in each node of the recursion tree
choose (among the values above) the sampling parameter closest to the estimated inverse
density V/E of the input graph of the node, and also omit contraction if the estimated
density E/V is below a fixed threshold of 4 or 8, respectively. Two similar adaptive
versions where instead the threshold is 4 or 8, respectively, when the estimated V is
close to the base case, but tends to 2 for growing V . These nine algorithms are denoted
default, p = 1/2, p = 1/4, p = 1/8, p = 1/16, CT = 4, CT = 8, AT = 4, and AT = 8,
respectively.
Sibeyn’s algorithm based on buckets, using Union-Find for solving CC in buckets, as
described in [27] (where buckets are called bundles). We tried four increasing bucket
sizes, all without and with relinking to minimize edges straddling buckets (Section 4 and
[27]). These eight algorithms are denoted bundle-x and min-x for x = 1, 2, 3, 4.
The basic Sibeyn using a PQ. This algorithm is denoted sibeyn.

Comparing Karger-Klein-Tarjan variants

We find based on Figures 10–17 that among the Karger-Klein-Tarjan variants the adaptive
ones are either winning or performing close to the best variant. This can be observed for all
considered graph classes (see Figure 4 for an overview). In almost all cases, fixed contraction
thresholds tend to perform better than adaptive ones. Further, setting the threshold to a
small value seems preferable. This behaviour is consistent when increasing the number of
nodes while keeping the density fixed (see for instance Figure 10b, Figure 11b, Figure 12b
and Figure 13b) where it is clear that relative performances remain unchanged.

The good performance of these adaptive variants and the comparatively generally weak
performance of the default variant support our claim that contractions can be intoler-
ably costly.

SEA 2021

23:16 An Experimental Study of External Memory Algorithms for Connected Components

Comparing Sibeyn variants

We find that both versions of Sibeyn’s algorithm are strong contenders. While the PQ
based Sibeyn algorithm generally performs better on low density graphs (see Figure 4c and
Figure 4d), its relative performance gets worse with increasing V (see Figure 4a, Figure 4b
and Figures 10–13). Additionally, while the overall I/O volume may be near optimal (see
Figure 4d), the achieved wall clock time does not always reflect this, indicating that the I/Os
incurred by the PQ may be more costly than those for sorting.

In comparison, the bucket based Sibeyn algorithm performs consistently among the
studied graph classes (see Figure 4 and Figures 10–17). We notice two clear trends, larger
buckets generally perform better and adding relinking typically improves performance for
graphs with higher densities.

8 Conclusion

The results of our experiments in phase two on the above set of algorithms can be seen in
Figures 10–17. Sibeyn’s algorithm is a strong contender. One reason is that it is very simple,
using essentially only a priority queue (or repeated Union-Find in the bucket version). A
tuned implementation of external priority queues can be highly efficient: our measurements
on STXXL show that sorting by its priority queue is less than a factor of 2.5 slower than its
sorting routine. Another reason is that for its CC variant, the choice of farthest neighbors
seems to lower the number of messages generated to essentially linear (with the exact observed
bound depending on the graph class) in E, which translates into a similar number of priority
queue operations. Very few sorting and scanning steps on the input edge list can be performed
by a competing algorithm before it will lose to Sibeyn.

Still, with the right tunings, the Karger-Klein-Tarjan algorithm can be implemented to
be competitive in many cases. The best Karger-Klein-Tarjan variant often either wins over
PQ based Sibeyn, but not bucket based Sibeyn, or vice versa. If nothing is known about
the graph type and density, an adaptive variant such as CT = 4 may be a robust choice. In
general, higher graph density seems to benefit Karger-Klein-Tarjan relative to Sibeyn. If
choosing the bucket based Sibeyn variant, using the largest bucket size is clearly preferable
(and often the min variant has a slight advantage). Borůvka’s algorithm was not able to
compete with neither Sibeyn nor Karger-Klein-Tarjan.

Natural future work suggested by this work include: 1) To investigate theoretically the
observed positive effects on Sibeyn of the farthest neighbors choice. As demonstrated in
Figures 7–9, different results seem plausible for different graph classes. 2) To compare
empirically also the MSF versions of the algorithms.

References

1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.

2 Susanne Albers, Andreas Crauser, and Kurt Mehlhorn. Lecture notes on algorithms for very
large data sets. https://web.archive.org/web/19970816002522/http://www.mpi-sb.mpg.
de/~crauser/Plan.ps.gz, 1997.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

https://doi.org/10.1145/48529.48535
https://web.archive.org/web/19970816002522/http://www.mpi-sb.mpg.de/~crauser/Plan.ps.gz
https://web.archive.org/web/19970816002522/http://www.mpi-sb.mpg.de/~crauser/Plan.ps.gz
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:17

4 Lars Arge, Gerth Stølting Brodal, and Laura Toma. On external-memory MST, SSSP and
multi-way planar graph separation. J. Algorithms, 53(2):186–206, 2004. doi:10.1016/j.
jalgor.2004.04.001.

5 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct
elements in a data stream. In José D. P. Rolim and Salil P. Vadhan, editors, Randomization
and Approximation Techniques, 6th International Workshop, RANDOM 2002, Cambridge,
MA, USA, September 13-15, 2002, Proceedings, volume 2483 of Lecture Notes in Computer
Science, pages 1–10. Springer Berling Heidelberg, 2002. doi:10.1007/3-540-45726-7_1.

6 Andreas Beckmann, Roman Dementiev, and Johannes Singler. Building a parallel pipelined
external memory algorithm library. In 23rd IEEE International Symposium on Parallel
and Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009, pages 1–10. IEEE
Computer Society, 2009. doi:10.1109/IPDPS.2009.5161001.

7 Alka Bhushan and Sajith Gopalan. An I/O efficient algorithm for minimum spanning trees.
In Zaixin Lu, Donghyun Kim, Weili Wu, Wei Li, and Ding-Zhu Du, editors, Combinatorial
Optimization and Applications - 9th International Conference, COCOA 2015, Houston, TX,
USA, December 18-20, 2015, Proceedings, volume 9486 of Lecture Notes in Computer Science,
pages 499–509. Springer, 2015. doi:10.1007/978-3-319-26626-8_36.

8 Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Darren Erik
Vengroff, and Jeffrey S. Vitter. External-memory graph algorithms. In Proceedings of the
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1995. San
Francisco, California, USA, pages 139–149. SIAM, Philadelphia, PA, USA, 1995. URL:
http://dl.acm.org/doi/10.5555/313651.313681.

9 Roman Dementiev, Lutz Kettner, and Peter Sanders. STXXL: standard template library for
XXL data sets. Softw. Pract. Exp., 38(6):589–637, 2008. doi:10.1002/spe.844.

10 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applic-
ations. J. Comput. Syst. Sci., 31(2):182–209, 1985. doi:10.1016/0022-0000(85)90041-8.

11 Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter Sanders, Christian
Schulz, Darren Strash, and Moritz von Looz. Communication-free massively distributed graph
generation. J. Parallel Distributed Comput., 131:200–217, 2019. doi:10.1016/j.jpdc.2019.
03.011.

12 Edgar N. Gilbert. Random graphs. Ann. Math. Statist., 30(4):1141–1144, December 1959.
doi:10.1214/aoms/1177706098.

13 Edgar N. Gilbert. Random plane networks. Journal of the Society for Industrial and Applied
Mathematics, 9(4):533–543, 1961. doi:10.1137/0109045.

14 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs: Degree
sequence and clustering. In Proceedings of the 39th International Colloquium Conference on
Automata, Languages, and Programming - Volume Part II, ICALP 2012, Warwick, UK, July 9-
13, 2012, page 573–585. Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-31585-5_
51.

15 David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized linear-time algorithm
to find minimum spanning trees. J. ACM, 42(2):321–328, March 1995. doi:10.1145/201019.
201022.

16 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. Phys. Rev. E, 82:036106, September 2010.
doi:10.1103/PhysRevE.82.036106.

17 Anil Maheshwari and Norbert Zeh. A survey of techniques for designing I/O-efficient algorithms.
In Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors, Algorithms for Memory Hierarchies,
Advanced Lectures [Dagstuhl Research Seminar, March 10-14, 2002], volume 2625 of Lecture
Notes in Computer Science, pages 36–61. Springer, 2002. doi:10.1007/3-540-36574-5_3.

18 Kamesh Munagala and Abhiram G. Ranade. I/O-complexity of graph algorithms. In Robert En-
dre Tarjan and Tandy J. Warnow, editors, Proceedings of the 10th Annual ACM-SIAM

SEA 2021

https://doi.org/10.1016/j.jalgor.2004.04.001
https://doi.org/10.1016/j.jalgor.2004.04.001
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1109/IPDPS.2009.5161001
https://doi.org/10.1007/978-3-319-26626-8_36
http://dl.acm.org/doi/10.5555/313651.313681
https://doi.org/10.1002/spe.844
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1137/0109045
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1145/201019.201022
https://doi.org/10.1145/201019.201022
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1007/3-540-36574-5_3

23:18 An Experimental Study of External Memory Algorithms for Connected Components

Symposium on Discrete Algorithms, 17-19 January 1999, Baltimore, Maryland, USA, pages
687–694. ACM/SIAM, 1999. URL: https://dl.acm.org/doi/10.5555/314500.314891.

19 Mathew D. Penrose. Random Geometric Graphs. Oxford University Press, 2003. doi:
10.1093/acprof:oso/9780198506263.001.0001.

20 Manuel Penschuck. Generating practical random hyperbolic graphs in near-linear time and
with sub-linear memory. In Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and
Rajeev Raman, editors, 16th International Symposium on Experimental Algorithms, SEA 2017,
June 21-23, 2017, London, UK, volume 75 of LIPIcs, pages 26:1–26:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.SEA.2017.26.

21 Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich Meyer, Ilya
Safro, Peter Sanders, and Christian Schulz. Recent advances in scalable network generation.
CoRR, abs/2003.00736, 2020. arXiv:2003.00736.

22 Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm. J. ACM,
49(1):16–34, 2002. doi:10.1145/505241.505243.

23 Peter Sanders. Fast priority queues for cached memory. ACM J. Exp. Algorithmics, 5:7, 2000.
doi:10.1145/351827.384249.

24 Dominik Schultes. External Memory Minimum Spanning Trees. Bachelor thesis, Universität
des Saarlandes, 2003. URL: http://algo2.iti.kit.edu/schultes/emmst/emmst_short.pdf.

25 Dominik Schultes. External memory spanning forests and connected components, 2003. URL:
http://algo2.iti.kit.edu/dementiev/files/cc.pdf.

26 Jop Sibeyn, Roman Dementiev, Peter Sanders, and Dominik Schultes. Engineering an external
memory minimum spanning tree algorithm. In Jean-Jacques Levy, John C. Mitchell, and
Ernst W. Mayr, editors, Exploring New Frontiers of Theoretical Informatics, volume 155,
pages 195–208. Kluwer Academic Publishers, Boston, 2004. doi:10.1007/1-4020-8141-3_17.

27 Jop F. Sibeyn. External connected components. In Torben Hagerup and Jyrki Katajainen,
editors, Algorithm Theory - SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory,
Humlebæk, Denmark, July 8-10, 2004, volume 3111, pages 468–479. Springer Berlin Heidelberg,
2004. doi:10.1007/978-3-540-27810-8_40.

28 Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–
225, 1975. doi:10.1145/321879.321884.

https://dl.acm.org/doi/10.5555/314500.314891
https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
https://doi.org/10.4230/LIPIcs.SEA.2017.26
http://arxiv.org/abs/2003.00736
https://doi.org/10.1145/505241.505243
https://doi.org/10.1145/351827.384249
http://algo2.iti.kit.edu/schultes/emmst/emmst_short.pdf
http://algo2.iti.kit.edu/dementiev/files/cc.pdf
https://doi.org/10.1007/1-4020-8141-3_17
https://doi.org/10.1007/978-3-540-27810-8_40
https://doi.org/10.1145/321879.321884

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:19

A Plots

0.2 0.4 0.6 0.8 1.0
Selection probability p

0.0

0.1

0.2

0.3

0.4

0.5

R
at

io
 o

f c
on

tra
ct

ed
 n

od
es

Path graph (n = 1000)

0.2 0.4 0.6 0.8 1.0
Selection probability p

Gilbert graph (n = 1000, m
n = 2)

0.2 0.4 0.6 0.8 1.0
Selection probability p

Gilbert graph (n = 1000, m
n = 50)

1-way, ordered 1-way, flip 1/2 2-way 1-way, permuted, ordered

Figure 5 Contraction ratios achieved by variants of a randomized Borůvka step for varying p

and varying edge representations. For Gilbert graphs, the contraction ratio increases with increasing
selection probability p where the best candidates are the ordered variants. For path graphs, the
variants without randomness peak and start to perform worse.

0.00 0.25 0.50 0.75 1.00
Processed nodes ×103

0

1

2

Pr
oc

es
se

d
ed

ge
s

×104
Gilbert graph (n = 103, p = 1

n)

0.00 0.25 0.50 0.75 1.00
Processed nodes ×103

0

1

2

×103
Gilbert graph (n = 103, p = 1

n)

0.00 0.25 0.50 0.75 1.00
Processed nodes ×103

0.0

2.5

5.0

7.5
×104
Gilbert graph (n = 103, p = 20

n)

0.00 0.25 0.50 0.75 1.00
Processed nodes ×104

0

2

4

Pr
oc

es
se

d
ed

ge
s

×104

Grid graph (w = 100, h = 100),
 with permuted node IDs

0.00 0.25 0.50 0.75 1.00
Processed nodes ×104

0.0

0.5

1.0

1.5
×105

RHG (n = 104, d = 10, = 3),
 with permuted node IDs

first neighbor
random neighbor
last neighbor
cumulative degrees

Figure 6 Message volume of forwarded messages for different graphs depending on the contraction
strategy. Sibeyn’s algorithm processes significantly more edges (priority queue messages) when
messages are sent to the first neighbor (see first plot). In comparison, sending messages to the last
neighbor produces volumes very close to the baseline (cumulative degrees) and always performs
better than sending to a random neighbor.

SEA 2021

23:20 An Experimental Study of External Memory Algorithms for Connected Components

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
n 1e5

0.3

0.4

0.5

0.6
m

es
sa

ge
s /

 (m
lo

g
n)

Gilbert graphs

random neighbor
last neighbor

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
n 1e5

1.5

2.0

2.5

m
es

sa
ge

s /
 (m

lo
g

lo
g

n) Gilbert graphs

random neighbor
last neighbor

Figure 7 Number of forwarded messages divided by m log n (left) or m log log n (right) for Gilbert
graphs for increasing values of n. The value p is chosen s.t. a density of five is fixed. In (left) we
observe that the total number of produced messages is dominated by m log n whereas in (right) we
see that the volume asymptotically matches with m log log n if messages are forwarded to the last
neighbor.

0.0 0.2 0.4 0.6 0.8 1.0
n 1e6

0.9

1.0

1.1

1.2

1.3

m
es

sa
ge

s /
 (m

lo
g

lo
g

n) Grid graphs

random neighbor
last neighbor

0.0 0.2 0.4 0.6 0.8 1.0
n 1e6

2.4

2.6

2.8

m
es

sa
ge

s /
 m

Grid graphs

random neighbor
last neighbor

Figure 8 Number of forwarded messages divided by m log log n (left) or m (right) for quadratic
grid graphs for increasing values of n. By construction, these have density approximately two. In
(left) we observe that the total number of produced messages is dominated by m log log n whereas in
(right) we see that the volume asymptotically matches with m.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
n 1e5

0.8

0.9

1.0

1.1

1.2

m
es

sa
ge

s /
 (m

lo
g

lo
g

n) Random hyperbolic graphs

random neighbor
last neighbor

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
n 1e5

2.0

2.2

2.4

m
es

sa
ge

s /
 m

Random hyperbolic graphs

random neighbor
last neighbor

Figure 9 Number of forwarded messages divided by m log log n (left) or m (right) for RHGs for
increasing values of n. The degree parameter is set to 10 for all of these, yielding an approximate
density of five. The degree exponent is set to 3. In (left) we observe that the total number of produced
messages is dominated by m log log n whereas in (right) we see that the volume asymptotically
matches with m.

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:21

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(a) m = 1.34 × 109, m/n = 2.04

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(b) m = 3.36 × 109, m/n = 5.00

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

3

4

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

1.5

2.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(c) m = 6.71 × 109, m/n = 10.00

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0
1
2
3
4
5
6

tim
e

(h
ou

rs
, b

ar
s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(d) m = 1.34 × 1010, m/n = 20.00

Figure 10 Running times and I/O volumes for G(n, p) graphs with a node set size of 5GiB and
varying density. For m/n = 20, the default variant exceeded the local hard disk’s capacity leading to
a halt in the algorithm’s execution. We thus only report the elapsed wall time up until that point.
The considered algorithms are in fixed order from left to right:

default: fixed sampling p = 1/2, always contract
p = 1/x: fixed sampling p = 1/x, always contract except in root
CT = x: adaptive sampling, contract if estimated density below fixed threshold x

AT = x: adaptive sampling, contract if estimated density below adaptive threshold x

bundle-x: Sibeyn’s algorithm based on buckets, without linking
min-x: Sibeyn’s algorithm based on buckets, with linking
sibeyn: Sibeyn’s algorithm based on priority-queues

.

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

3

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

1.5

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(a) m = 2.68 × 109, m/n = 2.04

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0
1
2
3
4
5
6

tim
e

(h
ou

rs
, b

ar
s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(b) m = 6.71 × 109, m/n = 5.00

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

2

4

6

8

tim
e

(h
ou

rs
, b

ar
s)

0

1

2

3

4

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(c) m = 1.34 × 1010, m/n = 10.00

Figure 11 Running times and I/O volumes for G(n, p) graphs with a node set size of 10GiB and
varying density. For m/n = 10, the default variant exceeded the local hard disk’s capacity leading to
a halt in the algorithm’s execution. We thus only report the elapsed wall time up until that point.

SEA 2021

23:22 An Experimental Study of External Memory Algorithms for Connected Components

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0
1
2
3
4
5
6

tim
e

(h
ou

rs
, b

ar
s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(a) m = 4.03 × 109, m/n = 2.04

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0
2
4
6
8

tim
e

(h
ou

rs
, b

ar
s)

0
1
2
3
4

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(b) m = 1.01 × 1010, m/n = 5.00

Figure 12 Running times and I/O volumes for G(n, p) graphs with a node set size of 15GiB and
varying density.

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

2

4

6

8

tim
e

(h
ou

rs
, b

ar
s)

0

1

2

3

4

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(a) m = 5.37 × 109, m/n = 2.04
de

fa
ul

t
p=

1/
2

p=
1/

4
p=

1/
8

p=
1/

16
CT

=
4

CT
=

8
AT

=
4

AT
=

8
bu

nd
le

-1
m

in
-1

bu
nd

le
-2

m
in

-2
bu

nd
le

-3
m

in
-3

bu
nd

le
-4

m
in

-4
sib

ey
n

0
2
4
6
8

10
12
14

tim
e

(h
ou

rs
, b

ar
s)

0
1
2
3
4
5
6
7

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(b) m = 1.34 × 1010, m/n = 5.00

Figure 13 Running times and I/O volumes for G(n, p) graphs with a node set size of 20GiB and
varying density.

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(a) m = 1.34 × 109, m/n = 2.00

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

tim
e

(h
ou

rs
, b

ar
s)

0.0 I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(b) m = 1.34 × 109, m/n = 1.00

Figure 14 Running times and I/O volumes for (a) a grid graph with (w, h) = (25 905, 25 905)
and (b) a path graph. For both instances the parameters were chosen to generate a 20GiB graph.
Node IDs are permuted.

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(a) m = 3.89 × 109, m/n = 11.96

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(b) m = 4.05 × 109, m/n = 12.00

Figure 15 Running times and I/O volumes for cubes with the parameters (a) one layer and
(w, h, d) = (18 000, 18 000, 2) and (b) 100 layers and (w, h, d) = (2600, 1300, 2).

G. S. Brodal, R. Fagerberg, D. Hammer, U. Meyer, M. Penschuck, and H. Tran 23:23

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1
tim

e
(h

ou
rs

, b
ar

s)

0.0

0.5

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(a) n = 9.18 × 108, m = 1.04 × 109, m/n = 1.14

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(b) n = 1.06 × 109, m = 2.62 × 109, m/n = 2.46

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

3

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

1.5

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(c) n = 1.07 × 109, m = 5.48 × 109, m/n = 5.11

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0
1
2
3
4
5

tim
e

(h
ou

rs
, b

ar
s)

0.0
0.5
1.0
1.5
2.0
2.5

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(d) n = 1.07 × 109, m = 8.14 × 109, m/n = 7.59

Figure 16 Running times and I/O volumes for RGGs with roughly n = 230 and varying density.
Node IDs are permuted.

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(a) n = 6.54 × 108, m = 2.61 × 109, m/n = 3.99,
γ = 3

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(b) n = 6.46 × 108, m = 2.36 × 109, m/n = 3.65,
γ = 4

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0

I/O
 v

ol
um

e
(T

iB
, d

ot
s)

(c) n = 6.70 × 108, m = 5.57 × 109, m/n = 8.30,
γ = 3

de
fa

ul
t

p=
1/

2
p=

1/
4

p=
1/

8
p=

1/
16

CT
=

4
CT

=
8

AT
=

4
AT

=
8

bu
nd

le
-1

m
in

-1
bu

nd
le

-2
m

in
-2

bu
nd

le
-3

m
in

-3
bu

nd
le

-4
m

in
-4

sib
ey

n

0

1

2

tim
e

(h
ou

rs
, b

ar
s)

0.0

0.5

1.0
I/O

 v
ol

um
e

(T
iB

, d
ot

s)

(d) n = 6.70 × 108, m = 5.22 × 109, m/n = 7.80,
γ = 4

Figure 17 Running times and I/O volumes for RHGs with roughly n = 230, degree exponent
γ ∈ {3, 4} and varying density. Node IDs are permuted.

SEA 2021

	p000-Frontmatter
	Preface
	Steering Committee
	Organization

	p001-Franck
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 LocalEC Algorithms and Degree Counting Heuristics
	4.1 Local1 and Degree Counting Version
	4.2 Local2 and Degree Counting Version
	4.3 Proof of thm:local1,thm:local1+,thm:local2,thm:local2+

	5 Experimental Results
	5.1 Experimental Setup
	5.1.1 Data

	5.2 Planted Cuts
	5.3 Random Hyperbolic Graphs
	5.4 Real-World Networks
	5.5 Effectiveness of Degree Counting
	5.6 Success rate

	6 Conclusion and Future Work
	A Omitted Proofs
	A.1 Correctness

	B Full Near-Linear Vertex Connectivity Algorithm
	B.1 Vertex Connectivity via Local Edge Connectivity in Undirected Graphs
	B.2 Implementation Details

	C Preflow-push based Vertex Connectivity Algorithm

	p002-Huang
	1 Introduction
	2 Background and Related Work
	3 Preliminaries
	4 Five-Cycle Counting Algorithms
	4.1 Preprocessing: Graph Orientation
	4.2 Kowalik's Algorithm
	4.3 ESCAPE Algorithm
	4.4 Implementation

	5 Experiments
	6 Conclusion
	A Appendix

	p003-Blacher
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	3.1 Sorting Networks
	3.2 Pivot Selection
	3.3 Many Duplicate Keys
	3.4 In-place Partitioning
	3.5 Running Time Analysis

	4 Experiments
	5 Conclusions
	A Worked Example of Vectorized In-Place Partitioning

	p004-Buchin
	1 Introduction
	1.1 Previous Work
	1.2 Preliminaries and Problem Definitions
	1.3 Outline and Results

	2 Complexity Results
	3 Experiments
	3.1 Exact Algorithms
	3.1.1 Mixed Integer Program 1 (MSC-MS, MSC-TE, MSC-BE)
	3.1.2 Mixed Integer Program 2 (MSC-MS)
	3.1.3 Mixed Integer Program 3 (MSC-TE, MSC-BE)
	3.1.4 Constraint Program 1 (MSC-MS)
	3.1.5 Constraint Program 2 (MSC-TE, MSC-BE)
	3.1.6 Experimental Evaluation of Exact Algorithms

	3.2 Approximations and Heuristics
	3.2.1 Bipartite Approximation Algorithms with Coloring Partition
	3.2.2 (Meta-)Heuristics
	3.2.3 Experimental Evaluation of Approximations and Heuristics

	4 Conclusion and Open Problems

	p005-Arrighi
	1 Introduction
	2 Preliminaries
	3 Our Heuristics
	3.1 Preprocessing
	3.2 Minimum Steiner trees with 2 or 3 terminals
	3.3 Constructing an Initial Solution
	3.4 Optimization Procedure

	4 Experimental results
	5 Conclusion

	p006-Strasser
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Formal Setup: Inputs, Outputs, and Phases
	3.2 Contraction Hierarchy (CH)
	3.3 PHAST based Heuristic
	3.4 CH-Potentials

	4 Low Degree A* Improvements
	4.1 Skip Degree Two Nodes
	4.2 Skip Degree Three Nodes
	4.3 Stay in Largest Biconnected Component

	5 Applications
	5.1 Avoiding Tunnels and/or Highways
	5.2 Forbidden Turns and Turn Costs
	5.3 Predicted Traffic or Time-Dependent Routing
	5.4 Live and Predicted Traffic
	5.4.1 Three-Phase Setups

	5.5 Temporary Driving Bans

	6 Evaluation
	7 Conclusion

	p007-Dinklage
	1 Introduction
	2 Preliminaries
	3 Methodology
	4 Dynamic Universe Sampling
	5 Y-Fast Tries
	6 Fusion Trees
	7 Comparison
	A Additional Results
	B Choosing Parameters For Universe Sampling
	C Elaboration On Dynamic Fusion Nodes

	p008-Heuer
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 A New Balance Constraint For Weighted Hypergraphs
	5 Multilevel Recursive Bipartitioning with Vertex Weights Revisited
	6 Experimental Evaluation
	7 Conclusion and Future Work
	A Proof of Lemma 3
	B Generalized Balance Property
	C Proof of Claim 6
	D Configuration of Evaluated Partitioners
	E Prepacking Algorithm Statistics for KaHyPar-BP-K
	F Quality Comparison for epsilon = 0.03 and epsilon = 0.1
	G Absolute Running Times

	p009-Althaus
	1 Introduction
	2 Definitions and Basic Properties
	3 The Algorithm
	3.1 Theoretical Foundations of the Algorithm
	3.2 The Basic Algorithm

	4 Reducing the number of PTDs and PTDURs
	4.1 Rejecting PTDs with Non-Canonical Root Bags
	4.2 Equivalence of PTDs and PTDURs
	4.3 Choosing a Unique Root
	4.4 Normalization of PTDs
	4.5 Rejecting PTDURs Whose Root Cannot Be Extended To a Potential Maximal Clique
	4.6 PTD Outlets With More Than 2 Associated Components
	4.7 Using Upper and Lower Bounds

	5 Further Details of the Algorithm
	6 Experiments
	7 Conclusion
	A Appendix

	p010-Jo
	1 Introduction
	2 Preliminaries
	2.1 Range Maximum Queries and Cartesian Trees
	2.2 Davoodi et al.'s encoding data structure for {RT2Q} {}

	3 A Practical Implementation
	3.1 DFUDS and 2d-max heap
	3.2 Practical implementation of encoding {RT2Q} {}

	4 Experimental results
	5 Conclusion

	p011-Calamai
	1 Introduction
	1.1 Our results
	1.2 Two useful link stream transformations

	2 Negative results
	3 Computing the EAT diameter
	4 Pivot-diameter
	5 Experimental Results
	6 Concluding remarks
	A Proofs
	A.1 Proof of Lemma 1
	A.2 Proof of Theorem 9

	B Tables and figures

	p012-Puglisi
	1 Introduction
	2 Refined Brutes
	3 Petite Brutes
	3.1 RLZ-Compressed Document Array
	3.2 Run-Length Compressed Document Array
	3.3 Experiments Results

	4 Performance Comparison
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions and Future Work

	p013-Hanauer
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 O'Reach: Faster Reachability via Observations
	4.1 Extended Topological Orderings
	4.2 Supportive Vertices
	4.3 The Complete Algorithm

	5 Experimental Evaluation
	5.1 Experimental Results

	6 Conclusion
	A Appendix

	p014-Chen
	1 Introduction
	2 Preliminaries
	2.1 Persistence Diagrams and 1-Wasserstein distance
	2.2 Relation to optimal transport
	2.3 Quadtree-based approximation algorithms for optimal transport

	3 Approximating 1-Wasserstein distances for persistence diagrams
	3.1 Approximation algorithms via L_1 embedding
	3.1.1 Description of the new quadtree-based L_1-embedding
	3.1.2 Approximation guarantees

	3.2 Approximation algorithm via flowtree

	4 Experimental results
	5 Concluding remarks
	A Additional Proofs
	B Datasets
	C Results

	p015-Cazals
	1 Introduction
	1.1 Statistics on manifolds and p-means on S^1
	1.2 Contributions

	2 p-mean of a finite point set on S^1: characterization
	2.1 Notations
	2.2 Partition of S^1
	2.3 Piecewise expression for F_p

	3 Algorithm
	3.1 Analytical expressions and nullity of F^{'}_p
	3.2 Algorithm
	3.3 Generic implementation
	3.4 Robust implementation based on exact predicates
	3.5 Software availability

	4 Experiments
	4.1 Overview
	4.2 Robustness
	4.3 Fréchet mean
	4.4 Computation time and complexity
	4.5 Application to clustering on the flat torus

	5 Outlook
	A Supporting information
	A.1 Algorithm
	A.2 Results

	p016-Ahmed
	1 Introduction
	2 Subsetwise spanners
	3 Multi-level spanners
	4 Integer programming formulation
	5 Experiments
	5.1 Experiment parameters
	5.2 Results
	5.2.1 Multi-level +2W spanner
	5.2.2 Multi-level +2W(*, *) spanner
	5.2.3 Comparison between global and local spanners
	5.2.4 Multi-level +4W(*, *) spanner
	5.2.5 Comparison between +2W(*, *) and +4W(*, *) spanners
	5.2.6 Multi-level +6W spanner
	5.2.7 Comparison between +2W and +6W spanners
	5.2.8 Experiment on large graphs
	5.2.9 Impact of the initialization parameters

	5.3 Running time
	5.4 Experimental additive error
	5.5 Relative sparsity
	5.6 Amount of reduction

	6 Conclusion
	A Pairwise spanner constructions [3]
	B Experiments
	B.1 Multi-level +2W spanner
	B.2 Multi-level +2W(*, *) spanner
	B.3 Comparison between global and local error
	B.4 Multi-level +4W(*, *) spanner
	B.5 Comparison between +2W(*, *) and +4W(*, *) setups
	B.6 Multi-level +6W spanner
	B.7 Comparison between +2W and +6W setups
	B.8 Experiment on large graphs
	B.9 Impact of the initialization parameters

	p017-Hespe
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	3 Related Work
	4 Decomposition Branching
	4.1 Articulation Points
	4.2 Edge Cuts
	4.3 Nested Dissection

	5 Reduction Branching
	5.1 Almost Twins
	5.2 Almost Funnels
	5.3 Almost Unconfined
	5.4 Almost Packing

	6 Experimental Evaluation
	6.1 Experimental Environment
	6.2 Algorithm Configuration
	6.3 Instances
	6.4 Decomposition Branching
	6.5 Reduction Branching

	7 Conclusion and Future Work
	A Detailed Experimental Results

	p018-Buchhold
	1 Introduction
	2 Preliminaries
	3 Our Nearest-Neighbor Algorithm
	4 Applications
	4.1 Online Closest-POI Queries
	4.2 Travel Demand Generation

	5 Experiments
	5.1 Experimental Setup
	5.2 Online Closest-POI Queries
	5.3 Travel Demand Generation

	6 Conclusion

	p019-Gianfrotta
	1 Introduction
	2 Representation of the Context of RNA Structural Motifs
	2.1 Prior Definitions
	2.2 Definition of a k-extension
	2.3 Definition of a Contracted k-extension

	3 Similarity between Contracted k-extensions
	3.1 Maximum Common Subgraph : Variant of the MCES Problem
	3.2 Definition of the Similarity Metric to Maximize : the Contextual Graph Similarity

	4 Classification of k-extensions and Search for a Maximum Common Graph to a Class
	5 Experimental Results
	5.1 Correlation between Graph Similarity and 3D Similarity
	5.2 Motif Classification
	5.3 Advantage of the Contracted Representation

	6 Conclusion and Perspectives
	A Appendix
	A.1 Representation of the Context
	A.2 Experimental Results
	A.2.1 Correlation between Graph Similarity and 3D Similarity
	A.2.2 Motif Classification

	p020-Georgiadis
	1 Introduction
	2 Preliminaries
	3 Computing vertex-edge cut-pairs in linear time
	3.1 Computing vertex-edge cut-pairs via the GK framework
	3.2 Computing vertex-edge cut-pairs via SPQR trees

	4 Finding all cut-edges and computing the number of 2-cuts
	4.1 Computing 2-edge cuts via the GK framework
	4.2 Tsin's algorithm

	5 Empirical Analysis
	6 Concluding remarks
	A Omitted algorithms
	B Omitted experimental results

	p021-Hermann
	1 Introduction and Motivation
	2 Analysis
	2.1 Linear Board
	2.2 Matrix Board

	3 The Cube and Beyond
	4 Applications
	5 Implementation and Benchmarks
	6 Concluding Remarks

	p022-Blasius
	1 Introduction
	2 Preliminaries
	3 Embedding Process
	3.1 Initial Embedding
	3.2 Forces
	3.3 Force Application
	3.4 Stability
	3.5 Transition to the Plane

	4 Experiments
	5 Conclusion
	A Additional Embedding Comparisons

	p023-Brodal
	1 Introduction
	2 Definitions
	3 Algorithms
	4 Tuning Options
	5 Implementation
	6 Graph classes
	7 Experiments
	7.1 Experimental setup
	7.2 Phase 1 – Initial Findings
	7.3 Phase 2 – Final Algorithms

	8 Conclusion
	A Plots

