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Abstract
The Burrows–Wheeler transform (BWT) is a permutation whose applications are prevalent in data
compression and text indexing. The bijective BWT (BBWT) is a bijective variant of it. Although it
is known that the BWT can be constructed in linear time for integer alphabets by using a linear
time suffix array construction algorithm, it was up to now only conjectured that the BBWT can also
be constructed in linear time. We confirm this conjecture in the word RAM model by proposing a
construction algorithm that is based on SAIS, improving the best known result of O(n lg n/ lg lg n)
time to linear. Since we can reduce the problem of constructing the extended BWT to constructing
the BBWT in linear time, we obtain a linear-time algorithm computing the extended BWT at the
same time.
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1 Introduction

The Burrows–Wheeler transform (BWT) [4] is a transformation permuting the characters of
a given string T$, where $ is a character that is strictly smaller than all characters occurring
it T . The i-th entry of the BWT of T$ is the character preceding the i-th lexicographically
smallest suffix of T$, or $ if this suffix is T$ itself. Strictly speaking, the BWT is not a
bijection since its output contains $ at an arbitrary position while it requests the input T

to have $ as a delimiter at its end in order to restore T . A variant, called the bijective
BWT [19, 12], is a bijective transformation, which does not require the artificial delimiter $.
It is based on the Lyndon factorization [5] of T . In this variant, the output consists of the
last characters of the lexicographically sorted cyclic rotations of all factors composing the
Lyndon factorization of T .

In the following, we call the BWT traditional to ease the distinguishability of both
transformations. It is well known that the traditional BWT has many applications in data
compression [1] and text indexing [8, 9, 10]. Recently, such a text index was adapted to work
with the bijective BWT [2].
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7:2 Constructing the Bijective and the Extended BWT

Related Work. In what follows, we review the traditional BWT construction via suffix arrays,
and some algorithms computing the BBWT or the extended BWT. For the complexity
analysis, we take a text T of length n whose characters are drawn from a polynomial
bounded integer alphabet {1, . . . , nO(1)}. Let us start with the traditional BWT, which
we can construct thanks to linear time suffix array construction algorithms [23, 17] in
linear time. That is because the traditional BWT, denoted by BWT[1..n], is determined
by BWT[i] = T [SA[i] − 1] for SA[i] > 1 and BWT[i] = T [n] for SA[i] = 1. Considering the
bijective BWT, Gil and Scott [12] postulated that it can be built in linear time, but did
not give a construction algorithm. It is clear that the time is upper bounded by the total
length of all conjugates [22, after Example 9], which is O(n2). In the same paper, Mantaci
et al. [22] also introduced the extended BWT, a generalization of the BBWT in that it is
a BWT based on a set S of primitive strings, i.e., strings that are not periodic. Hon et
al. [15] provided an algorithm building the extended BWT in O(n lg n) time. Their idea is
to construct the circular suffix array SA◦ such that the i-th position of the extended BWT
is given by T [SA◦[i] − 1], where T is the concatenation of all strings in S. Bonomo et al. [3]
presented the most recent algorithm building the bijective BWT online in O(n lg n/ lg lg n)
time. In [3, Sect. 6], they also gave a linear time reduction from computing the extended BWT
to computing the BBWT. Knowing that an irreducible word has exactly one conjugate being
a Lyndon word, the reduction is done by exchanging each element of the set of irreducible
strings S by the conjugate being a Lyndon word, and concatenating these Lyndon words
after sorting them in descending order. Consequently, a linear-time BBWT construction
algorithm can be used to compute the extended BWT in linear time.

On the practical side, we are aware of the work of Branden Brown1, Yuta Mori in his
OpenBWT library2, and of Neal Burns3. While the first is a naive but easily understandable
implementation calling a general sorting algorithm on all conjugates to directly compute the
BBWT, the second seems to be an adaptation of the suffix array – induced sorting (SAIS)
algorithm [23] to induce the BBWT. The last one takes an already computed suffix array SA
as input, and modifies SA such that reading the characters T [SA[i] − 1] gives the BBWT.
For that, this algorithm shifts entries in SA to the right until they fit. Hence, the running
time is based on the lengths of these shifts, which can be O(n2), but seem to be negligible in
practice for common texts.

Our Result. In this article, we present a linear time algorithm computing the BBWT in
the word RAM model. The main idea is to adapt SAIS to compute the circular suffix array
of the Lyndon factors. We obtain linear running time by exploiting some facts based on the
nature of the Lyndon factorization.

2 Preliminaries

Our computational model is the word RAM model with word size Ω(lg n). Accessing a word
costs O(1) time. In this article, we study strings on an integer alphabet Σ = {1, . . . , σ} with
size σ = nO(1).

1 https://github.com/zephyrtronium/bwst
2 https://web.archive.org/web/20170306035431/https://encode.ru/attachment.php?

attachmentid=959&d=1249146089
3 https://github.com/NealB/Bijective-BWT

https://github.com/zephyrtronium/bwst
https://web.archive.org/web/20170306035431/https://encode.ru/attachment.php?attachmentid=959&d=1249146089
https://web.archive.org/web/20170306035431/https://encode.ru/attachment.php?attachmentid=959&d=1249146089
https://github.com/NealB/Bijective-BWT
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Figure 1 Constructing BBWT of T = cbbcacbbcadacbadacba. The Lyndon factors are high-
lighted ( ). Reading the characters of the penultimate column top-down yields BBWT. The last
column shows in its i-th row the starting position of the i-th smallest conjugate of a Lyndon factor
in the text. It is the circular suffix array studied later in Sect. 4.1. Note that cbb ≺lex cbbcada, but
cbbcada ≺ω cbb.

Strings. We call an element T ∈ Σ∗ a string. Its length is denoted by |T |. Given an
integer j ∈ [1..|T |], we access the j-th character of T with T [j]. Given a string T ∈ Σ∗,
we denote with T k that we concatenate k times the string T . When T is represented by
the concatenation of X, Y, Z ∈ Σ∗, i.e., T = XYZ, then X, Y , and Z are called a prefix,
substring, and suffix of T , respectively. A prefix X, substring Y , or suffix Z is called proper
if X ≠ T , Y ̸= T , or Z ̸= T , respectively. A proper prefix X of T is called a border of T if it
is also a suffix of T . T is called border-free if it has no border. For two integers i and j with
1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of T that begins at position i and ends at
position j in T . If i > j, then T [i..j] is the empty string. In particular, the suffix starting at
position j of T is denoted with T [j..n]. A string T is called primitive if it cannot be written
as T = Sk for a string S ∈ Σ+ and k ≥ 2.

Orders on Strings. We denote the lexicographic order with ≺lex. Given two strings S and T ,
then S ≺lex T if S is a proper prefix of T or there exists an integer ℓ with 1 ≤ ℓ ≤ min(|S|, |T |)
such that S[1..ℓ−1] = T [1..ℓ−1] and S[ℓ] < T [ℓ]. We write S ≺ω T if the infinite concatenation
Sω := SSS · · · is lexicographically smaller than T ω := TTT · · · . For instance, ab ≺lex aba
but aba ≺ω ab. The relation ≺ω induces an order on the set of primitive strings4, which we
call ≺ω-order.

4 The order cannot be generalized to strings in general since a ̸= aa but neither a ≺ω aa nor aa ≺ω a
holds.
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7:4 Constructing the Bijective and the Extended BWT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c b b c a c b b c a d a c b a d a c b a
L S* S L S* L S* S L S* L S* L L S* L S* L L S*

T =
1 2 3 4 5 6 7 8

E C E D B D B A
L S* L L S* L L S*

T (1) =

Figure 2 Splitting T and T (1) into LMS substrings. The rectangular brackets below the types
represent the LMS substrings. T (1) is T after the replacement of its LMS substrings with their
corresponding ranks defined in Sect. 4.3 and on the left of Fig. 3.

Lyndon Words. Given a primitive string T = T [1..n], its i-th conjugate conji(T ) is defined
as T [i + 1..n]T [1..i] for an integer i ∈ [0..n − 1]. Since T is primitive, all its conjugates
are distinct. We say that T and every one of its conjugates belongs to the conjugate class
conj(T ) := {conj0(T ), . . . , conjn−1(T )}. If a conjugate class contains exactly one conjugate
that is lexicographically smaller than all other conjugates, then this conjugate is called a
Lyndon word [21]. Equivalently, a string T is said to be a Lyndon word if and only if T ≺ S

for every proper suffix S of T . A consequence is that a Lyndon word is border-free.
The Lyndon factorization [5] of T ∈ Σ+ is the unique factorization of T into a sequence

of Lyndon words F1 · · · Fz, where (a) each Fx ∈ Σ+ is a Lyndon word, and (b) Fx ⪰lex Fx+1
for each x ∈ [1..z).

▶ Lemma 1 ([7, Algo. 2.1]). The Lyndon factorization of a string can be computed in linear
time.

Each Lyndon word Fx for x ∈ [1..z] is called a Lyndon factor. For what follows, we fix a
string T [1..n] over an alphabet Σ of size σ. We use the string T := cbbcacbbcadacbadacba
as our running example. Its Lyndon factorization is c, bbc, acbbcad, acbad, acb, a.

Bijective Burrows–Wheeler Transform. We denote the bijective BWT of T by BBWT,
where BBWT[i] is the last character of the i-th string in the list storing the conjugates of all
Lyndon factors F1, . . . , Fz of T sorted with respect to ≺ω. Figure 1 shows the BBWT of our
running example.

3 Reviewing SAIS

Our idea is to adapt SAIS to compute SA◦ instead of the suffix array. To explain this
adaptation, we briefly review SAIS. First, SAIS assigns each suffix a type, which is either L
or S:

T [i..|T |] is an L suffix if T [i..|T |] ≻lex T [i + 1..|T |], or
T [i..|T |] is an S suffix otherwise, i.e., T [i..|T |] ≺lex T [i + 1..|T |],

where we stipulate that T [|T |] is always type S. Since it is not possible that T [i..|T |] =
T [i + 1..|T |], SAIS assigns each suffix a type. An S suffix T [i..|T |] is additionally an S∗ suffix
(also called LMS suffix in [23]) if T [i − 1..|T |] is an L suffix. The substring between two
succeeding S∗ suffixes is called an LMS substring. In other words, a substring T [i..j] with
i < j is an LMS substring if and only if T [i..|T |] and T [j..|T |] are S∗ suffixes and there is
no k ∈ (i..j) such that T [k..|T |] is an S∗ suffix. A border case is T [|T |..|T |], which has to
be the smallest suffix of T (and can be achieved by appending the artificial character $ to
T lexicographically smaller than all other characters appearing it T ) such that T ||T |..|T |]
in an S∗ suffix. We additionally treat T [|T |..|T |] as an LMS substring. The types for the
suffixes of our running example are given in Fig. 2. Regarding the defined types, we make no
distinction between suffixes and their starting positions (e.g., the statements that (a) T [i] is
type L and (b) T [i..|T |] is an L suffix are equivalent).
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LMS Substring Contents Non-Terminal

T [2..5] bbca E
T [5..7] acb C
T [7..10] bbca E
T [10..12] ada D
T [12..15] acba B
T [15..17] ada D
T [17..20] acba B
T [20..20] a A

S∗ Suffix Contents

T [20] a
T [17..20] acba
T [12..20] acbadacba
T [5..20] acbbcadacbadacba
T [15..20] adacba
T [10..20] adacbadacba
T [2..20] bbcacbbcadacbadacba
T [7..20] bbcadacbadacba

Figure 3 Ranking of the LMS substrings and the S∗ suffixes of our running example given in
Sect. 4.3 and Fig. 2. Left: LMS substrings assigned with non-terminals reflecting their corresponding
rank in ≺LMS-order. Right: S∗ suffixes of T sorted in ≺lex-order. Note that T [5..7] = acb ≺lex

acba = T [12..15] = T [17..20], but acba ≺LMS acb.

Next, Nong et al. [23, Def. 3.3] define a relation ≺LMS on substrings of T based on the
lexicographic order and the types: Given two substrings S and U . Let i be the smallest
integer such that (1) S[i] < U [i] or (2) S[i] is type L and U [i] is type S or S∗. If such an
i exists, then we write S ≺LMS U . For two LMS substrings S and U with S ̸= U , either
S ≺LMS U or U ≺LMS S, even if S is a prefix of U (cf. the discussion below of Def. 3.3
in [23]). So ≺LMS is an order on the LMS substrings. The ≺LMS-order is shown on the left
side of Fig. 3 for the LMS substrings listed of the left side of Fig. 2. The crucial observation
is that the ≺LMS-order of the LMS substrings coincides with the lexicographic order of the
suffixes starting with the LMS substrings [23, Lemma 3.8].

Nong et al. [23, A3.4] compute the ≺LMS-order of all LMS substrings with the induced
sorting (which we describe below for the step of computing the rank of all suffixes). Figure 4
visualizes this computation on our running example. Hence, we can assign each LMS substring
a rank based on the ≺LMS-order. Next, we build a string T (1) of LMS substring ranks with
T (1)[i] being the rank of the i-th LMS substring of T in text order.5 See the right side of
Fig. 2 for our running example. We recursively call SAIS on this text of ranks until the ranks
of all LMS substrings are distinct. Given that we have computed T (k) and all characters of
T (k) (i.e., the ranks of the respective LMS substrings) are distinct, then these ranks determine
the order of the S∗ suffixes of T (k). The order of the S∗ suffixes of our running example are
given in Fig. 3 on the right side. Having the order of the S∗ suffixes, we allocate space for
the suffix array, and divide the suffix array into buckets, grouping each suffix with the same
starting character and same type (either L or S) into one bucket. Among all suffixes with
the same starting character, the L suffixes precede the S suffixes [18, Corollary 3]. Putting
S∗ suffixes in their respective buckets according to their order (smallest elements are the
leftmost elements in the buckets), we can induce the L suffixes, as these precede either L or
S∗ suffixes. For that, we scan SA from left to right, and take action only for suffix array
entries that are not empty: When accessing the entry SA[k] = i with i > 1, write i − 1 to the
leftmost available slot of the L bucket with the character T [i − 1] if T [i − 1..|T |] is an L suffix.
Finally, we can induce the ≺lex-order of the S suffixes by scanning the suffix array from right

5 We can obtain T (1) by scanning T from left to right and replacing each LMS substring by its respective
rank, but keep its last character in T if this character is the first character of the subsequent LMS
substring. We further omit the first characters of T that are not part of an LMS substring (which must
be of type L).

CPM 2021



7:6 Constructing the Bijective and the Extended BWT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3

20 5 10 12 15 17 2 7 4

19 14 4 9 18 13 1 6 11 16 5

17 12 5 10 15 2 7 3 8 6

A A B C C D D 7

S∗ suffixes
L suffixes

S suffixes

≺LMS-ranks

S L S L L

a b c d
2

1

types

starting
character

Figure 4 Inducing LMS substrings. Rows 1 and 2 show the partitioning of SA into buckets, first
divided by the starting characters of the respective LMS substrings, and second by the types L and
S. In Row 4, the S∗ suffixes are inserted into their respective S buckets. Here it is sufficient to only
put the smallest S∗ suffix in the correct order among all other S∗ suffixes in the same bucket. This
suffix is T [20..20] in our example, stored at the suffix array entry 1. The S∗ (resp. L) suffixes induce
the L (resp. S) suffixes in Row 5 (resp. Row 6). The last row assigns each S∗ suffix a meta-character
representing its ≺LMS-rank. We can compute two subsequent suffixes by character-wise comparison,
spending O(|T |) time in total since the LMS substrings have a total length of O(|T |).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3

20 17 12 5 15 10 2 7 4

19 14 4 9 18 13 1 6 16 11 5

3 8 6

20 17 12 5 15 10 19 14 2 7 3 8 4 9 18 13 1 6 16 11 7

19 16 11 4 14 9 18 13 1 6 2 7 3 8 17 12 20 5 15 10 8

b d d c b c c c c c b b b b a a a a a a 9

S∗ suffixes

L suffixes
S suffixes

BWT =
SA − 1 =

SA =

S L S L L

a b c d
2

1

types

starting
character

Figure 5 Inducing L and S suffixes from the ≺lex-order of the S∗ suffixes given in Fig. 2. Rows 1
and 2 show the partitioning of SA into buckets, first divided by the starting characters of the
respective suffixes, and second by the types L and S. Row 4 is SA after inserting the S∗ suffixes
according to their ≺lex-order rank obtained from the right of Fig. 3. The S∗ (resp. L) suffixes induce
the L (resp. S) suffixes in Row 5 (resp. Row 6). Putting all together yields SA in Row 7. In the
penultimate row SA − 1, each text position stored in SA is decremented by one, or set to n if this
position was 1. The last row shows T [(SA − 1)[i]] = BWT[i] in its i-th column, which is the BWT
of T . This BWT is not reversible since the input is not terminated with a unique character like $.
To obtain the BWT of T $, we first write T [SA[1]] = T [20] = a to the output, and then BWT, but
exchanging BWT[SA−1[1]] = BWT[17] = a with $, i.e., abddcbcccccbbbbaa$aaa.
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U V ≺lex ≺ω ≺LMS

aba aca < < <

adc adcb < < >

acb acba < > >

Figure 6 Comparison of the three orders studied in this paper applied to LMS substrings. Assume
that U and V are substrings of the text surrounded by a character d (i.e., T = . . . dUd . . . dV d . . .)
such that the first and the last character of both U and V start with an S∗ suffix. We mark with the
signs < and > whether U is smaller or respectively larger than V according to the corresponding
order. The orders can differ only when one string is the prefix of another string, as this is the case in
the last two rows. Finally, occurrences of U and V can be ≺LMS-incomparable in different contexts
such as . . . dUa . . . dV d . . ., for instance.

to left: When accessing the entry SA[k] = i, write i − 1 to the rightmost available slot of the
S type bucket with the character T [i − 1] if T [i − 1..|T |] is an S suffix. As an invariant, we
always fill an L bucket and an S bucket from left to right and from right to left, respectively.
So we can think of each L bucket and each S bucket as a list with an insertion operation at
the end or at the beginning, respectively. We conduct these steps for our running example
in Fig. 5.

In total, the induction takes O(|T |) time. The recursion step takes also O(|T |) time since
there are at most |T |/2 LMS substrings (there are no two text positions T [i] and T [i + 1]
with type S∗ for i ∈ [1..n − 1]). This gives T (n) = T (n/2) + O(n) = O(n) total time, where
T (n) denotes the time complexity for computing a suffix array of length n.

However, with SAIS we cannot obtain SA◦ ad-hoc since we need to exchange ≺lex with
≺ω. Although these orders are the same for Lyndon words [3, Thm. 8], they differ for LMS
substrings as can be seen in Fig. 6. Hence, we need to come up with an idea to modify SAIS
in such way to compute SA◦.

4 Our Adaptation

We want SAIS to sort Lyndon conjugates in ≺ω-order instead of suffixes in ≺lex-order.
For that, we first get rid of duplicate Lyndon factors to facilitate the analysis, and then
subsequently introduce a slightly different notion to the types of suffixes and LMS substrings,
which translates the suffix sorting problem into computing the BBWT.

4.1 Reduced String and Composed Lyndon Factorization
In a pre-computation step, we want to facilitate our analysis by removing all identical Lyndon
factors from T yielding a reduced string R. We want to remove them to make conjugates
unique; thus we can linearly order them. Consequently, the first step is to show that we
can obtain the BBWT of T from the circular suffix array of R (which we will subsequently
define):

The (composed) Lyndon factorization [5] of T ∈ Σ+ is the factorization of T into
T τ1

1 · · · T τt
t = T , where T1, . . . , Tt is a sequence of lexicographically decreasing Lyndon words

and τx ≥ 1 for x ∈ [1..t]. Let R := T1 · · · Tt denote the text, in which all duplicate Lyndon
factors are removed. Obviously, the Lyndon factorization of R is T1, . . . , Tt. Let b(Tx)
and e(Tx) denote the starting and ending position of the x-th Lyndon factor in R, i.e.,
R[b(Tx)..e(Tx)] is the x-th Lyndon factor Tx of R.

CPM 2021



7:8 Constructing the Bijective and the Extended BWT

Our aim is to compute the ≺ω-order of all conjugates of all Lyndon factors of R, which
are given by the set S :=

⋃t
x=1 conj(Tx). Like Hon et al. [14], we present this order in the

so-called circular suffix array SA◦ of {T1, . . . , Tt}, i.e., an array of length |R| with SA◦[k] = i

if R[i..e(Tx)]R[b(Tx)..i − 1] is the k-th smallest string in S with respect to ≺ω, where
i ∈ [b(Tx)..e(Tx)]. The length of SA◦ is |R| since we can associate each text position SA◦[k]
in R with a conjugate starting with R[SA◦[k]].

Having the circular suffix array SA◦ of {T1, . . . , Tt}, we can compute the BBWT of T

by reading SA◦[k] for k ∈ [1..|R|] from left to right: Given SA◦[k] = i ∈ [b(Tx)..e(Tx)], we
append T [i−] exactly τx times to BBWT, where i− is i − 1 or e(Tx) if i = b(Tx). (This is
analogous to the definition of BWT where we set BWT[i] = T [n] for SA[i] = 1, but here we
wrap around each Lyndon factor.)

4.2 Translating Types to Inf-Suffixes
In what follows, we continue working with R defined in Sect. 4.1 instead of T . Let R[i..]
denote the infinite string R[i..e(Tx)]TxTx · · · = conjk(Tx)conjk(Tx) · · · with x such that
i ∈ [b(Tx)..e(Tx)] and k = i − b(Tx). We say that R[i..] is an inf-suffix. As a shorthand, we
also write Tx[i..] = conji−1(Tx)conji−1(Tx) · · · for the inf-suffix starting at R[b(Tx) + i − 1].
In particular, Tx[|Tx| + 1..] = Tx[1..] = TxTx · · · .

Like in SAIS, we distinguish between L and S inf-suffixes:
R[i..] is an L inf-suffix if R[i..] ≻lex R[i+..], and
R[i..] is an S inf-suffix if R[i..] ≺lex R[i+..],

where i+ is either i + 1 or b(Tx) if i = e(Tx), and x is given such that i ∈ [b(Tx)..e(Tx)].
Finally, we introduce the S∗ inf-suffixes as a counterpart to the S∗ suffixes: If R[i..] is an S
inf-suffix, it is further an S∗ inf-suffix if R[i−..] is an L inf-suffix with i− being either i − 1 or
e(Tx) if i = b(Tx), and x ∈ [1..t] chosen such that i ∈ [b(Tx)..e(Tx)].

When speaking about types, we do not distinguish between an inf-suffix and its starting
position in R. This definition assigns all positions of R a type except those belonging to a
Lyndon factor of length one. We solve this by stipulating that all Lyndon factors of length
one start with an S∗ inf-suffix. However, in what follows, we temporarily omit all Lyndon
factors of length one because we will later see that they can be placed at the beginning
of their corresponding buckets in the circular suffix array. They nevertheless appear in
the examples for completeness. To show that suffixes and inf-suffixes starting at the same
position have the same type (except for some border-cases), the following lemma will be
particularly useful:

▶ Lemma 2 ([3, Lemma 7]). For i, j ∈ [1..|Tx|] and x ∈ [1..t], the following statements are
equivalent:
1. conji−1(Tx) = Tx[i..|Tx|]Tx[1..i − 1] ≺lex Tx[j..|Tx|]Tx[1..j − 1] = conjj−1(Tx);
2. conji−1(Tx) ≺ω conjj−1(Tx), i.e., Tx[i..] ≺lex Tx[j..];
3. Tx[i..|Tx|] ≺lex Tx[j..|Tx|].

▶ Lemma 3. Omitting all Lyndon factors of length one from R, the types of all positions
match the original SAIS types, except maybe R[1] and R[b(Tt) + 1..|R|], where R[1..] and
R[|R|..|R|] are always an S∗ inf-suffix and an S∗ suffix, respectively.

Proof. We show that inf-suffixes as well as suffixes starting with Lyndon factors have the
same type S∗:
inf-suffxes. Assume that R[b(Tx)..] is an L inf-suffix for an x ∈ [1..t]. According to the

definition R[b(Tx) + 1..] ≺lex R[b(Tx)..], i.e., Tx[2..] ≺lex Tx[1..], and with Lemma 2,
Tx[2..|Tx|] ≺lex Tx, contradicting that Tx is a Lyndon word. Finally, R[b(Tx)..] is an S∗

inf-suffix because Tx ≺lex Tx[|Tx|] and hence Tx[1..] ≺lex Tx[|Tx|..], again with Lemma 2.
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c b b c a c b b c a d a c b a d a c b a
S* S* S L S* L S* S L S* L S* L L S* L S* L L S*

T1 T2 T3 T4 T5 T6

R =
1 2 3 4 5 6 7

E B D C A C A
S* S* L L S* L S*

T
(1)
1 T

(1)
2 T

(1)
3 T

(1)
4

R(1) =

Figure 7 Splitting R and R(1) into LMS inf-substrings. The rectangular brackets below the types
represent the LMS inf-substrings. Broken brackets denote that the corresponding LMS inf-substring
ends with the first character of the Lyndon factor in which it is contained. They are colored in
green ( ); all other LMS inf-substrings are represented by brackets colored in blue ( ). R(1) is R

after the replacement of its LMS inf-substrings with their corresponding ranks defined in Sect. 4.3
and on the left of Fig. 8.

suffixes. Due to the Lyndon factorization, R[b(Tx)..|R|] ≻lex R[b(Tx+1)..|R|] for x ∈ [1..t−1].
Hence, the suffix R[e(Tx)..|R|] starting at R[e(Tx)] has to be lexicographically larger than
the suffix R[e(Tx) + 1..|R|] = R[b(Tx+1)..|R|], otherwise we could extend the Lyndon
factor Tx.

Consequently, R[b(Tx)..|R|] and R[b(Tx)..] are an S∗ suffix and an S∗ inf-suffix, respectively,
and R[e(Tx)..|R|] and R[e(Tx)..] are an L suffix and an L inf-suffix.

The claim for all other positions (
⋃t−1

x=1[b(Tx) + 1..e(Tx) − 1]) follows by observing that
Tx[1..] is the ≺lex-smallest inf-suffix among all inf-suffixes starting in Tx and R[b(Tx+1)..|R|]
is ≺lex-smaller than all suffixes starting in R[b(Tx)..e(Tx)] for x ∈ [1..t − 1]. ◀

A corollary is that R[i..|R|] ≺lex R[i..] for i ∈ [b(Tx)..e(Tx)] and x ∈ [1..t − 1] since Tx+1 ≺lex
Tx.6 Next, we define the equivalent to the LMS substrings for the inf-suffixes, which we
call LMS inf-suffixes: For 1 ≤ i < j ≤ |Tx| + 1, the substring (TxTx)[i..j] is called an LMS
inf-substring if and only if Tx[i..] and Tx[j..] are S∗ inf-suffixes and there is no k ∈ (i..j)
such that Tx[k..] is an S∗ inf-suffix. This definition differs from the original LMS substrings
(omitting the last one R[|R|..|R|] being a border case) only for the last LMS inf-substring of
each Lyndon factor. Here, we append Tx[1] instead of Tx+1[1] to the suffix starting with the
last type S∗ position of Tx.

4.3 Example

The LMS inf-substrings of our running example T := cbbcacbbcadacbadacba with R = T

are given in Fig. 7. Their ≺LMS-ranking is given on the left side of Fig. 8, where we associate
each LMS inf-substring, except those consisting of a single character, with a non-terminal
reflecting its rank. By replacing the LMS inf-substrings by their ≺LMS-ranks in the text while
discarding the single character Lyndon factors, we obtain the string T (1) := EBDCACA, whose
LMS inf-substrings are given on the right side of Fig. 7. Among these LMS inf-substrings, we
only continue with BDC and AC. Since all LMS-inf substrings are distinct, their ≺LMS-ranks
determine the ≺ω-order of the S∗ inf-suffixes as shown on the right side of Fig. 8. It is left to
induce the L and S suffixes, which is done exactly as in the SAIS algorithm. We conduct
these steps in Fig. 9, which finally lead us to SA◦.

6 Consequently, for transforming SA into SA◦, one only needs to shift values in SA to the right, as this is
done by one of the implementations mentioned in the related work.
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LMS Inf-Substring Contents Non-Terminal

R[1]R[1] cc -
R[2..4]R[2] bbcb E
R[5..7] acb B
R[7..10] bbca D
R[10..11]R[10] ada C
R[12..15] acba A
R[15..16]R[12] ada C
R[17..19]R[17] acba A
R[20]R[20] aa -

S∗ Inf-Suffix Contents

R[20..] a . . .

R[17..] acb . . .

R[12..] acbad . . .

R[5..] acbbcad . . .

R[15..] adacb . . .

R[10..] adacbbc . . .

R[7..] bbcadac . . .

R[2..] bbc . . .

R[1..] c . . .

Figure 8 Ranking of the LMS inf-substrings and the S∗ suffixes of our running example T = R

given in Sect. 4.3 and Fig. 7. Left: LMS inf-substrings assigned with non-terminals reflecting their
corresponding rank in ≺LMS-order. They have the same color as the respective rectangular brackets
on the left of Fig. 7. The first and the last LMS substring do not receive a non-terminal since their
lengths are one (remember that we omit Lyndon factors of length 1 in the recursive call). Right: S∗

inf-suffixes of T sorted in ≺lex-order, which corresponds to the ≺ω of the conjugate starting with
this inf-suffix. Compared with Fig. 3, the suffixes R[2..20] and R[7..20] in the ≺lex-order are order
differently than their respective inf-suffixes R[2..] and R[7..] in the ≺lex-order.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3

20 17 12 5 15 10 7 2 1 4

19 14 9 18 13 6 4 16 11 5

8 3 6

20 17 12 5 15 10 19 14 7 2 8 3 9 18 13 6 4 1 16 11 7

20 19 16 11 14 9 18 13 6 4 7 2 8 17 12 5 3 1 15 10 8

a b d d b c c c c c b b b a a a b c a a 9

S∗ suffixes

L suffixes
S suffixes

BBWT =
SA◦ − 1 =

SA◦ =

S L S L S L

a b c d
2

1

types

starting
character

Figure 9 Inducing L and S inf-suffixes from the ≺lex-order of the S∗ inf-suffixes given in Fig. 7.
Rows 1 and 2 show the partitioning of SA◦ into buckets, first divided by the starting characters of
the respective inf-suffixes, and second by the types L and S. Row 4 is SA◦ after inserting the S∗

inf-suffixes according to their ≺lex-order rank obtained from the right of Fig. 8. The S∗ (resp. L)
inf-suffixes induce the L (resp. S) inf-suffixes in Row 5 (resp. Row 6). Putting all together yields
SA◦ in Row 7. In the penultimate row SA◦ − 1, each text position stored in SA◦ is decremented by
one, wrapping around a Lyndon factor if necessary (for instance, (SA◦ − 1)[2] = 19 = e(T5) since
SA◦[2] = 17 = b(T5)). The last row shows R[(SA◦ − 1)[i]] in its i-th column, which is the BBWT
of R as given in Fig. 1.
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4.4 Correctness and Time Complexity
Let us recall that our task is to compute the ≺ω-order of the conjugates conjix−1(Tx) for
ix ∈ [1..|Tx|] of all Lyndon factors T1, . . . , Tt of R. We will frequently use that conjix−1(Tx) ≺ω

conjiy−1(Ty) is equivalent to Tx[ix..] ≺lex Ty[iy..] for ix ∈ [1..|Tx|] and iy ∈ [1..|Ty|]. We start
with showing that the ≺LMS-ranks of the LMS inf-substrings determine the ≺lex-order of the
S∗ inf-suffixes7, whenever the LMS inf-suffixes are all distinct.

▶ Lemma 4. Let Sx and Sy be two LMS inf-substrings that are prefixes of Tx[ix..] and Ty[iy..],
respectively, for ix ∈ [1..|Tx|] and iy ∈ [1..|Ty|]. If Sx ≺LMS Sy then Tx[ix..] ≺lex Ty[iy..].

Proof. Given Sx ≺LMS Sy, there is a position i such that (a) Sx[i] < Sy[i] or (b) Sx[i] is
type L and Sy[i] is type S; let i be the smallest such position. In the latter case (b), there is
a position j > i such that Tx[ix + j − 1] = Sx[j] < Sx[i] = Sy[i] < Sy[j] = Ty[iy + j − 1] and
Tx[ix..ix + j − 2] = Ty[iy..iy + j − 2], where we abused the notation that Tx[k] = (TxTx · · · )[k]
for a k ∈ [1..2|Tx|]. In both cases (a) and (b), Tx[ix..] ≺lex Tx[iy..]. ◀

Exactly as in the SAIS recursion step, we map each LMS inf-substring to its respective
meta-character via its ≺LMS-rank, obtaining a string R(1) whose characters are ≺LMS-ranks.
The lexicographic order ≺lex induces a natural order on the strings whose characters are
drawn from the ≺LMS-ranks. With that, we can determine the Lyndon factorization on R(1),
which is given by the following connection:

▶ Lemma 5. There is a one-to-one correspondence between Lyndon factors of R and R(1),
meaning that each Lyndon factor of R(1) generates a Lyndon factor in R by expanding each of
its ≺LMS-ranks to the characters of the respective LMS inf-substring (while omitting the last
character if it is the beginning of another LMS inf-substring), and vice-versa by contracting
the characters of R to non-terminals.

Proof. We first observe that each LMS inf-substring is contained in Tx[1..|Tx|]Tx[1] for
an x ∈ [1..t]. Now, let L be a Lyndon factor of R(1) with L = r1 · · · rℓ such that each
ri is a ≺LMS-rank. Suppose that there is a d ∈ [1..ℓ − 1] such that r1 · · · rd expands
to a suffix Tx[s..|Tx|] of Tx (again omitting the last character of each expanded LMS
inf-substring) and rd+1 · · · rℓ expands to a prefix P of Tx+1. Since L is a Lyndon word,
r1 · · · rd ≺lex r1 · · · rℓ ≺lex rd+1 · · · rℓ. Hence, Tx[s..|Tx|] ≺LMS Tx[s..|Tx|]Tx[1] ≺LMS P , and
with Lemma 4, Tx[1..] ≺lex Tx[s..] ≺lex Tx+1[1..], contradicting the Lyndon factorization of R

with Lemma 2.
Finally, suppose that a Lyndon factor L1 of R(1) expands to a proper prefix of a Lyndon

factor Tx. Let L2 be its subsequent Lyndon factor, which has to end inside Tx according to
the above observation. Then L2 ≺lex L1, which means that Tx contains an inf-suffix smaller
than Tx due to Lemma 2, contradicting that Tx is a Lyndon factor. ◀

Thanks to Lemma 5, we do not have to compute the Lyndon factorization of R(1) needed
in the recursive step, but can infer it from the Lyndon factorization of R. Additionally,
we have the property that the order of the LMS inf-substrings in the recursive step only
depends on the Lyndon factors they are (originally) contained in. It remains to show how
the ≺LMS-ranks of the LMS inf-substrings can be computed:

▶ Lemma 6. We can compute the ≺LMS-ranks of all LMS inf-substrings in linear time.

7 This is a counterpart to the property that the ≺LMS-ranks of the LMS substrings determine the
≺lex-order of the S∗ suffixes [23, Theorem 3.12].
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3

20 17 12 5 10 15 2 7 3 8 1 4

19 14 9 18 13 4 6 16 11 5

17 12 5 15 10 7 2 8 3 6

A A B C C D E 7

S∗ suffixes
L suffixes

S suffixes

≺LMS-ranks

S L S L S L

a b c d
2

1
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Figure 10 Inducing LMS inf-substrings. Thanks to the Lyndon factorization, we know the ≺ω-
order of the inf-suffixes starting with the Lyndon factors, which is T [20..] ≺ω T [17..] ≺ω T [12..] ≺ω

T [5..] ≺ω T [2..] ≺ω T [1..]. We insert the starting positions of these inf-suffixes in this order into
their respective buckets, and fill the S∗ buckets with the rest of S∗ inf-suffixes by an arbitrary order
(here we used the text order). Like Fig. 4, the S∗ (resp. L) suffixes induce the L (resp. S) suffixes in
Row 5 (resp. Row 6), but we skip those belonging to Lyndon factors of length one, since each of
them is always stored at the leftmost position of its respective bucket. In the last row, we assign
each LMS inf-substring a non-terminal based on its ≺LMS-rank, but omitting those that correspond
to factors of length one.

Proof. We follow the proof of [23, Theorem 3.12]. The idea is to know the ≺lex-order
among some smallest S∗ inf-suffixes with which we can induce the ≺LMS-ranks of all LMS
inf-substrings. Here, we use the one-to-one correlation between each LMS inf-substring R[i..j]
and the respective S∗ inf-suffix R[i..] by using the starting position i for identification. To
compute the order of the (traditional) LMS substrings, it sufficed to know the lexicographically
smallest S∗ suffix (cf. Fig. 4), which can be determined by appending an artificial character
such as $ to R with the property that it is smaller than all other characters appearing
in R. Here, we need to know the order of at least one S∗ inf-suffix per Lyndon factor.
That is because an inf-suffix can only induce the order of another inf-suffix of the same
Lyndon word. However, this is not a problem since we know that the inf-suffix starting
with a Lyndon factor Tx is smaller in ≺ω-order than all other inf-suffixes of Tx, for each
x ∈ [1..t]. In particular, we know that Tx ≻lex Tx+1 is equivalent to Tx ≻ω Tx+1 due to [3,
Thm. 8], and hence we know the ≺lex-ranks among all inf-suffixes starting with the Lyndon
factors.8 In what follows, we use the inf-suffixes starting with the Lyndon factors to induce
the ≺LMS-ranks of all LMS inf-substrings.

However, the inducing only works if we include all text positions: While an ordered
suffix R[i..|R|] induces the order of R[i − 1..|R|] in the traditional SAIS, here we want an
inf-suffix R[i..] to induce the order of R[i − 1..]. For that, we define a superset of the LMS
inf-substrings, whose elements are called LMS-prefixes [23, Sect. 3.4]: Let i ∈ [b(Tx)..e(Tx)]
for an x ∈ [1..t] be a text position, and let j > i be the next S∗ position in R. Then the
LMS-prefix Pi starting at position i is Pi := R[i..j] if j ≤ e(Tx) or Pi := R[i..j − 1]b(Tx)

8 Since Tt is the smallest Lyndon word, we have the invariants that SA◦[1] = b(Tt) and BBWT[1] =
R[e(Tt)] = R[|R|].
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if j = b(Tx+1). In particular, if i is the starting position of an LMS inf-substring S, then
Pi = S. The LMS-prefixes inherit the types (L or S) from their starting positions. We show
that we can compute the ≺LMS-ranks of all Pi’s by induce sorting:

Initialize the Suffix Array. We create SA◦ of size |R| to store the ≺LMS-ranks of all LMS-
prefixes, where the entries are initially empty. Like in SAIS, we divide SA◦ into buckets,
and put the LMS-prefixes corresponding to the LMS inf-substrings into the S buckets of
the respective starting characters in lexicographically sorted order. See also Fig. 10 for an
example.

Inducing L LMS-prefixes. We scan the suffix array from left to right, and take action
whenever we access a non-empty value i stored in SA◦: Given i ∈ [b(Tx)..e(Tx)] and i− = i−1
or i− = e(Tx) for i = b(Tx), we insert i− into the L bucket of the character Tx[i−] if R[i−..] is
an L inf-suffix. By doing so, we compute the ≺LMS -order of all L LMS-prefixes in ascending
lexicographic order per L bucket. The correctness follows by induction over the number k of
inserted L LMS-prefixes. Since we know that all LMS-prefixes Pb(Tx) for x ∈ [1..t] starting
with the Lyndon factors are stored correctly in ≺LMS-order, and each of them is preceded
by an L LMS-prefix, we perform the insertion of the first L LMS-prefix correctly, which
is induced by the lexicographically smallest S∗ LMS-prefix PTt[1]. For the induction step,
assume that there is a k > 1 such that when we append the (k + 1)-th L LMS-prefix Pi into
its corresponding bucket, we have stored an L LMS-prefix Pj with larger ≺LMS-rank in the
same bucket. In this case, we have that R[i] = R[j], Pj+1 ≻LMS Pi+1 and Pj+1 is stored to
the left of Pi+1. This implies that when we scanned SA◦ from left to right, before appending
Pi to its bucket, we already did a mistake.

The inducing step for the S LMS-prefixes works exactly in the same way by symmetry.
Finally, we scan the computed SA◦, and for each pair of subsequent positions i and j with
i < j corresponding to the starting positions of two LMS inf-suffixes, we perform a character-
wise comparison whether the LMS inf-substring starting at i is ≺LMS-smaller than the one
starting at j. By doing so, we can compute the ≺LMS-ranks of all LMS inf-substrings in linear
time because the number of character comparisons is bounded by the number of characters
covered by all LMS inf-substrings, which is O(|R|). ◀

With Lemma 6, we can determine the ≺ω -order of the S∗ inf-suffixes R. It is left to
perform the induction step to induce first the order of the L inf-suffixes, and subsequently
the S inf-suffixes, which we do in the same manner as SAIS, but access (TxTx · · · )[i−] instead
of R[i − 1] when accessing a suffix array entry with value i, where x chosen such that
i ∈ [b(Tx)..e(Tx)] and i− = i − 1 or i− = e(Tx) if i = b(Tx). The correctness follows by
construction: Instead of partitioning the suffixes into LMS substrings (maybe omitting
a prefix of R with L suffixes), we refine the Lyndon factors into a partitioning of LMS
inf-substrings.

Lyndon Factors of Length One. It is left to reintroduce the Lyndon factors of lengths one
to obtain the complete SA◦ of R. Remember that we omitted these factors at the recursive
call. After the recursive call, we reinsert each of them at the smallest position in the S bucket
of its respective starting character. By doing so, we correctly sort them due to the following
observation: Suppose that there is a Lyndon factor consisting of a single character b (the
following holds if b ∈ Σ or if b is a rank of an LMS substring considered in the recursive call).
All LMS inf-substrings larger than one starting with b are larger than bb in the ≺ω-order
because such an LMS inf-substring starting with R[i] having type S∗ is lexicographically
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smaller than R[i + 1..]. Consequently, bb · · · ≺lex R[i..] = bR[i + 1..] since b · · · ≺lex R[i + 1..].
Thus, the Lyndon factor consisting of the single character b does not have to be tracked
further in the recursive call since we know that its rank precedes the ranks of all other LMS
inf-substrings starting with b.

Time Complexity. By omitting Lyndon factors in the recursive calls, reducing R to a
string R′ where no two subsequent inf-suffixes R[i..] and R[i + 1..] are S∗, we can bound the
maximum number of all S∗ inf-suffixes by n/2 for the recursive call. After the recursion, we
can simply insert all omitted LMS inf-substrings into the order returned by the recursive call
by a linear scan. Hence, we obtain that T (n) = T (n/2) + O(n) = O(n), where T (n) is the
time complexity for computing a circular suffix array of length n. Note that the omission of
the single character Lyndon factors is crucial for obtaining this time complexity. Without,
there may be more than n/2 many S∗ inf-suffixes, and because we keep the same Lyndon
factorization in all recursive levels, we could have Θ(n) LMS inf-suffixes at each recursion
level. The final step of computing the BBWT of T from the circular suffix array SA◦ of R

can be done in linear time with a linear scan of SA◦ as described in Sect. 4.1.

4.5 Space Complexity
Given that z =

∑t
x=1 τx is the number of all non-composed Lyndon factors F1 · · · Fz, the

algorithm of Lemma 1 computing the Lyndon factorization online only needs to maintain
three integer variables of O(lg n) bits to find F1 · · · Fz. We can represent the non-composed
Lyndon factorization by a bit vector B of length n marking the ending position of each factor
Fx (x ∈ [1..z]) with a one. We additionally create a bit vector B2 of length z, and mark the
first occurrence of each non-composed Lyndon factor Fx in B2 for x ∈ [1..z] such that B2
stores t ones. Then the x-th ‘1’ in B2 corresponds to the x-th composed Lyndon factor Tx,
and the number of ‘0’s between the x-th and (x + 1)-th ‘1’ in B2 is τx − 1. It is now possible
to replace T by R and store the Lyndon factorization of R in B (and resizing B to length |R|)
since we can restore T later with B2. (Alternatively, we can simulate R having T and B2.)
This saves at least (z − t) lg σ ≥ z − t bits, such that our working space is at most n+ t+n lg σ

bits including the text space, before starting the actual algorithm computing SA◦. Building
a rank-support data structure on B helps us to identify the Lyndon factor covering a text
position of R in constant time [16]. A rank-support data structure provides support for a
rank query, i.e., retrieving the number of ones up to a queried position in B. Since a recursive
call of SAIS works on a text instance of at most |R|/2 characters, we can rebuild B from
scratch by rerunning the algorithm of Lemma 1 on R(1) or after finalizing the recursive call.
In total, we can maintain the Lyndon factorization in n + o(n) bits with O(n) total time
throughout all recursive calls. When a recursive call ends, we need to insert the omitted
Lyndon factors of length one into the list of sorted S∗ inf-suffixes. But this can be done with
a linear scan of the sorted S∗ inf-suffixes and their initial characters, since we know that the
omitted Lyndon factors have to be inserted at the first position among all inf-suffixes sharing
the same initial character. Additionally, we can achieve this within the space used for storing
the circular suffix array SA◦, since all S∗ inf-suffixes use up at most half of the positions of
the inf-suffix array. Overall, we have an algorithm running with n + t + o(n) bits on top of
our modified SAIS, which uses O(σ lg n) bits of working space additionally to SA◦. If σ is not
constant, one may consider an option to get rid of this additional space requirement. Luckily,
we can do so with the in-place suffix array construction algorithm of Goto [13] (or similarly
with [20]), which is a variation of SAIS, storing an implicit representation of these O(σ lg n)
bits within the space of SA◦. Since B2 is only needed for the final step computing the BBWT
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of T , we can compute SA◦ with n + o(n) additional bits of working space, and BBWT with
|SA◦| + n + t + o(n) additional bits of working space, where |SA◦| = n lg n denotes the size of
SA◦ in bits.

5 Conclusion

We proposed an algorithm computing the bijective Burrows–Wheeler transform (BBWT) in
linear time. Consequently, we can also compute the extended Burrows–Wheeler transform
(eBWT) within the same time bounds by a linear-time reduction of the problem to compute
the eBWT to computing the BBWT.

Our trick was to first reduce our input text T to a text R by removing all duplicate Lyndon
factors. Second, we slightly modified the suffix array – induce sorting (SAIS) algorithm to
compute the ≺ω-order of the conjugates of all Lyndon factors of R instead of the ≺lex-order
of all suffixes of R. For that, we introduced the notion of inf-suffixes and inf-substrings,
and adapted the typing system of L, S, and S∗ types from SAIS. By some properties of the
Lyndon factors, we could show that there are only some border cases, where a text position
receives a different type in our modification. Thanks to that, we could directly translate the
induce sorting techniques of SAIS, and obtain the correctness of our result.

Open Problems
The BBWT is bijective in the sense that it transforms a string of Σn into another string
of Σn while preserving distinctness. Consequently, given a string of length n, there is an
integer k ≥ 1 with BBWTk(T ) = BBWTk−1(BBWT(T )) = T . With our presented algorithm
we can compute the smallest such number k in O(nk) time. However, we wonder whether we
can compute this number faster, possible by scanning only the text in O(n) time independent
of k.

We also wonder whether we can define the BBWT for the generalized Lyndon factor-
ization [6]. Contrary to the Lyndon factorization, the generalized Lyndon factorization
uses a different order, called the generalized lexicographic order ≺gen. In this order, two
strings S, T ∈ Σ∗ are compared character-wise like in the lexicographic order. However,
the generalized lexicographic order ≺gen can use different orders <1, <2, . . . for each text
position, i.e., S ≺gen T if and only if S is a proper prefix of T or there is an integer ℓ with
1 ≤ ℓ ≤ min(|S|, |T |) such that S[1..ℓ − 1] = T [1..ℓ − 1] and S[ℓ] <ℓ T [ℓ].

Recently, Gibney and Thankachan [11] showed that finding an order of the alphabet
such that the number of Lyndon factors of a given string is minimized or maximized is
NP-complete. This is an important but negative result for finding an advantage of the BBWT
over the BWT, since the hope is to find a way to increase the number of Lyndon factors
and therefore the chances of having multiple equal factors that are contracted to a single
composed factor in the BBWT index of [2]. However, it is left open, whether we can find an
efficient algorithm that approximates the alphabet order maximizing the number of Lyndon
factor.

Another direction would be to find a string family for which we SA◦ and SA differ, for
instance, with a relatively high Hamming distance.
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