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Preface

The Symposium on Foundations of Responsible Computing (FORC), now in its second year,
is a forum for mathematically rigorous research in computation and society writ large. The
Symposium aims to catalyze the formation of a community supportive of the application of
theoretical computer science, statistics, economics, and other relevant analytical fields to
problems of pressing and anticipated societal concern.

Twenty-four papers were selected to appear at FORC 2021, held virtually due to the
COVID-19 pandemic, on June 9-11, 2021. The 24 papers were selected by the program
committee, with the help of additional expert reviewers, out of 52 submissions. FORC 2021
offered two submission tracks: archival-option (giving authors of selected papers the option
to appear in this proceedings volume) and non-archival (in order to accommodate a variety
of publication cultures, and to offer a venue to showcase FORC-relevant work that will
appear or has recently appeared in another venue). Seven archival-option and 17 non-archival
submissions were selected for the program.

Thank you to the entire program committee and to the external reviewers for their hard
work during the review process amid the challenging conditions of the pandemic. It has
been an honor and a pleasure to work together with you to shape the program of this young
conference. Finally, we would like to thank our generous sponsors: the Simons Collaboration
on the Theory of Algorithmic Fairness and the Harvard Center of Mathematical Sciences
and Applications (CSMA) for partial conference support.

Katrina Ligett, Jerusalem
Swati Gupta, Atlanta, Georgia
April 19, 2021
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Privately Answering Counting Queries with
Generalized Gaussian Mechanisms

Arun Ganesh &=

Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, CA, USA

Jiazheng Zhao &
Computer Science Department, Stanford University, CA, USA

—— Abstract

We give the first closed-form privacy guarantees for the Generalized Gaussian mechanism (the
mechanism that adds noise z to a vector with probability proportional to exp(—(||z||p/0)?) for
some o, p), in the setting of answering k counting (i.e. sensitivity-1) queries about a database with
(e, 0)-differential privacy (in particular, with low £s-error). Just using Generalized Gaussian noise,
we obtain a mechanism such that if the true answers to the queries are the vector d, the mechanism
outputs answers d with the fo-error guarantee:

\/kloglog klog(1/3)
€

E[ld-dl-] =0

This matches the error bound of [18], but using a much simpler mechanism. By composing
this mechanism with the sparse vector mechanism (generalizing a technique of [18]), we obtain
a mechanism improving the v/kloglogk dependence on k to v/klogloglogk, Our main technical
contribution is showing that certain powers of Generalized Gaussians, which follow a Generalized
Gamma distribution, are sub-gamma.

In subsequent work, the optimal £o-error bound of O(4/klog(1/6)/¢€) has been achieved by [4]
and [9] independently. However, the Generalized Gaussian mechanism has some qualitative advant-
ages over the mechanisms used in these papers which may make it of interest to both practitioners
and theoreticians, both in the setting of answering counting queries and more generally.

2012 ACM Subject Classification Security and privacy — Privacy-preserving protocols
Keywords and phrases Differential privacy, counting queries, Generalized Gaussians
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1 Introduction

A fundamental question in data analysis is to, given a database, release answers to k numerical
queries about a database d, balancing the goals of preserving the privacy of the individuals
whose data comprises the database and preserving the utility of the answers to the queries.
A standard formal guarantee for privacy is (e, §)-differential privacy [6, 5]. A mechanism M
that takes database d as input and outputs (a distribution over) answers d to the queries is
(¢, 0)-differentially private if for any two databases d,d" which differ by only one individual
and for any set of outcomes S, we have:
© Arun Ganesh and Jiazheng Zhao;
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Privately Answering Counting Queries with Generalized Gaussian Mechanisms

Pr [deS]<e Pr [deS]+6. (1)

d~M(d) d~M(d")

When § = 0, this property is referred to e-differential privacy. Without loss of generality,
we will treat d (resp. (i) as a k-dimensional vector corresponding to the answers to the queries
(resp. the answers outputted by the mechanism). In this paper, we focus on the setting of
counting queries, i.e. queries for which the presence of each individual in the database affects
the answers by at most 1. In turn, throughout the paper we say a mechanism taking vectors
in R* as input and outputting distributions over R¥ is (e, §)-differentially private if (1) holds
for any two k-dimensional vectors d,d’ such that ||[d — d’||sc < 1 and any subset S of R¥.

To balance the goals of privacy and utility, we seek a mechanism M that minimizes some
objective function of the (distribution of) additive errors d — d, while satisfying (1). One
natural and well-understood objective function is the ¢1-error ||d — d||, /k, which gives the
average absolute error of the answers to the queries. The well-known and simple Laplace
mechanism [6], which outputs d = d + z with probability proportional to exp(—||z||1/co) for
an appropriate value of o, achieves expected ¢1-error of O(min{+/klog(1/d),k}/e). A line of
works on lower bounds [11, 3] culminated in a result of [18] showing this is optimal up to
constants.

A less well-understood objective function is the q-error ||d — d||s, which gives the
maximum absolute error of the answers to the queries. The maximum absolute error is of
course a more strict objective function than the average absolute error; indeed, the Laplace
mechanism only achieves error O(klogk/e) and the Gaussian mechanism (which outputs
d = d + x with probability proportional to exp(—||z||3/02) for an appropriate value of &)
achieves error O(y/klogklog(1/d)/€). The first improvements on ¢s-error over the Laplace
and Gaussian mechanisms were given by [18]!. To summarize, the results of that paper
(which prior to this paper were all the best known results) are:

An e-differentially private mechanism satisfying:

Pr |:|CZ— dl|lec > O (k)] < e UK (2)
) €

d~M(d

(this matches a lower bound of [10] up to constants).
An (e, §)-differentially private mechanism satisfying:

~ kloglog klog(1/0 Q@
Pr [||dd||m ZO (\/ 0og log Og( / )>‘| Seflog ()k. (3)

d~M(d) €

The mechanism achieving (3) starts by taking the Gaussian mechanism, and then uses the
sparse vector mechanism to correct the entries of x with large error in a private manner.
A lower bound showing any (e, §)-differentially private mechanism must satisfy:

lld—dll] = © (Vk“”“(l”’> | (1

Edw/\/l(d)

L Their paper considers the problem setting where queries ask what fraction of n individuals satisfy some
property, i.e. queries have sensitivity 1/n instead of 1, and the goal is to find the minimum n needed to
achieve error at most a. Achieving error A with probability 1 — p in our setting is equivalent to needing
n > A/a to achieve error « with probability 1 — p in their setting.
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The additional y/log k term in the Gaussian mechanism’s error bound comes from the
fact that Gaussians’ largest entries are roughly +/log k times larger than their average entries.
More generally, if we consider sampling x with probability proportional to exp(—(||z||,/o))
for some o, p, the largest entry will be roughly logl/ Pk times larger than the average entry.
We refer to this distribution as the Generalized Gaussian with shape p and scale o, as is it
referred to in e.g. [17]. This leads to a natural question answered in this paper: What error
bounds can we get by instead using Generalized Gaussian mechanisms?

1.1 Our Results and Techniques
Our first result is as follows:

» Theorem 1. For all 1 < p < logk, ¢ < O(1), § € [279F/P) 1/k], there exists a (e,0)-
differentially private mechanism M that takes in a vector d € R* and outputs a random
d € RF such that for some sufficiently large constant ¢, and all t > 0:

Pr ||J— d||oo > Ct\/%bgl/pk 10g(1/5)‘| < g t'logk
-_ 6 -

d~MPE (d)

In particular, this implies:

VEkplogt/? k\/log(1/6)>

EJNM(d)[HJ* dllsc] = O (

We also have for all 1 < g < p:

14 - dlq} o <\/kplog<1/6>> .

d~M(d) |: kl/q €

We note that the lower bound on § in Theorem 1 can easily be removed: if § is smaller
than 2-9(/P) we can instead use the mechanism achieving (2), which matches the error
guarantees of Theorem 1 in this range of §. The mechanism is simply to add noise from a
Generalized Gaussian with shape p and an appropriate scale parameter . In our analysis,

we arrive at the bounds ¢ < 2094 and o < 262 - 7”@12%(1/6), although we did not attempt
to optimize the constants in favor of a simpler analysis and presentation. We believe the
multiplicative constants in both bounds can be substantially improved with a more careful
analysis.

Setting p = ©(loglog k), this result matches the asymptotic error bound of (3). However,
this result improves on (3) qualitatively. Although the mechanism achieving (3) is already
not too complex, the Generalized Gaussian mechanism we use is even simpler, just adding
noise from a well-known distribution. Notably, Generalized Gaussian mechanisms retain the
property of the Gaussian mechanism that the noise added to each entry of d is independent
(unlike the mechanism giving (3), which uses dependent noise), and that the noise has a
known closed-form distribution that is easy to sample from?. To the best of our knowledge,
this is the first analysis giving privacy guarantees for Generalized Gaussian mechanisms
besides that in [14]. Even then, [14] does not give any closed-form bounds on the value of
o needed for privacy. This analysis may be of independent interest for other applications
where one would normally use the Gaussian mechanism, but may want to use a Generalized
Gaussian mechanism with p > 2 to trade average-case error guarantees for better worst-case
error guarantees.

2 see e.g. https://sccn.ucsd.edu/wiki/Generalized_Gaussian_Probability_Density_Function.
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We give a summary of our analysis here; the full analysis is given in Section 2. We first
need to determine what value of o causes the Generalized Gaussian mechanism to be private.
Viewing the Generalized Gaussian mechanism as an instance of the exponential mechanism
of [15], this reduces to deriving a tail bound on ||z + 1H£ — HQ?H; for x sampled from the
noise distribution. If p is even this is roughly equal to p E?Zl x? -1 By a Chernoff bound on
the signs of each random variable in the sum, this is roughly tail bounded by the sum of
Vklog(1/4) of the m? ~! random variables. These variables are distributed according to a
Generalized Gamma distribution, which we prove is sub-gamma in Section B. This gives us
the desired tail bound, and thus an upper bound on the o needed to ensure (¢, §)-differential
privacy. To prove the error guarantees, we derive tail bounds on the £,-norm of = sampled
from Generalized Gaussian distributions, as well as on the coordinates of points sampled
from unit-radius £,-spheres, the latter of which is done by upper bounding the volume of
“sphere caps” of these spheres.

Building on this result, we improve the previous best-known /., error for answering
counting queries with (e, §)-differential privacy:

» Theorem 2. For all e < O(1), § € [27O(k/logloglogh) 1 /p] ¢ ¢ [070(%)], there exists
a (€,0)-differentially private mechanism M that takes in a vector d € R¥ and outputs a
random d € R* such that for a sufficiently large constant c:

€

Pr [|d_d|w >

cty/klogloglog klog(1/6) < o—log'k
e .
d~M(d) B

In particular, if we choose e.g. t = 2 we get:

€

E. ()[||d~—d|| ]_O<\/k10glog10gklog(1/5)>
d~M(d o] — .

Again, the lower bound on ¢ can easily be removed using the mechanism achieving (2).
We arrive at this result by improving upon Generalized Gaussian mechanisms in the same
manner [18] improves upon the Gaussian mechanism: After sampling = from a Generalized
Gaussian, we apply the sparse vector mechanism to z to get Z which satisfies ||z — Z||c <
||||oo. We then just output d = d 4+ 2 — . The full analysis is given in Section 3. Similarly
to [18], the major technical component is showing that at least k/ logQ(l) k entries of x are
small with high probability, which we do using the tail bounds derived in Section 2. This is
necessary for the sparse vector mechanism to satisfy that ||z — Z||« is, roughly speaking, the
(k/ log™) k)-th largest entry of x rather than the largest entry with high probability.

1.2 Subsequent Work and Comparisons

Following our work, [4] and [9] independently gave mechanisms with optimal expected oo-
error O(+/klog(1/8)/€), quantitatively improving our results. Since in practice v/loglogk
is unlikely to be much larger than the constants hidden by the asymptotic notation (e.g.,
using the natural log, v/loglogk = 2 for k ~ 5 -1023), the qualitative differences between our
results and these two results make our results still of interest to e.g. practitioners. Theorem 1
is our qualitatively more appealing result, and so we highlight the differences with that result
in particular. Again, we note that while the explicit constant in Theorem 1 is likely too large
to be of practical interest, we believe this constant can be substantially improved with a
more refined analysis, hopefully making the mechanism practical.
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The result of [4] remarkably uses a bounded noise distribution, and in turn the mazimum
{oo-error rather than just the average f..-error of their mechanism is bounded, in contrast
with Generalized Gaussian mechanisms whose maximum £,.-error is unbounded. However, a
bounded noise distribution cannot e.g. satisfy group differential privacy for all group sizes
simultaneously, whereas Generalized Gaussian mechanisms can. Also, while both results
simply add noise, Generalized Gaussians are more well-studied than the noise distribution of
[4] and can be sampled by simplying powering and rescaling samples from Gamma random
variables, which should make them easier to implement in practice.

The result of [9] at a high level adds noise and then repeatedly applies the sparse vector
mechanism to correct entries with large noise, in contrast to just adding noise. In addition,
their result uses arguably even simpler sampling primitives than ours (it only needs to
sample Laplace distributions and permutations of lists), but their overall mechanism needs
a somewhat more involved iterative approach rather than a one-shot sample. Finally, as
presented the resulting noise distribution from their overall mechanism does not have e.g. a
closed-form or independent entries which may be desirable.

1.3 Preliminaries
For completeness, we restate the noise distribution of interest here:

» Definition 3. The (multivariate) Generalized Gaussian distribution with shape
p and scale o denoted GGauss(p, o), is the distribution over x € R¥ with probability
distribution function (pdf) proportional to exp(—(||z||,/0)P).

1.3.1 Sub-Gamma Random Variables

The following facts about sub-gamma random variables will be useful in our analysis:
» Definition 4. A random variable X is sub-gamma to the right with variance v and

scale ¢ if:

VA € (0,1/c) : Elexp(M(X — E[X]))] < exp (2(1)\110)\)> .

Here, we use the convention 1/c = oo if ¢ = 0. We denote the class of such random
variables Tt (v, ¢). Similarly, a random variable X is sub-gamma to the left with variance
v and scale ¢, if —X € T (v,¢), i.e.:

VA € (0,1/c) : Elexp(ME[X] — X))] < exp (2(1)\_116)\)) .

We denote the class of such random variables T~ (v, c).

We refer the reader to [1] for a textbook reference for this definition and proofs of the
following facts.

» Fact 5. If for i € [n] we have a random variable X; € T'" (v, ¢;), then X = Diem) Xi
satisfies X € F+(Zie[n] Vi, MaX,e[n) ¢;) (and the same relation holds for I'~(v,c)).

» Lemma 6. If X € I'"(v,¢) then for all t > 0:
Pr[X > E[X] + V2vt +ct] <e*.

Similarly, if X € I'~(v,c) then for all t > 0:
Pr[X < E[X] — V2ut —ct] <e™".

1:5
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» Fact 7. Let X ~ Gammal(a), i.e. X has pdf satisfying:

p(z) oc 227 te™,

Then X satisfies X € T (a,1) and X € T (a,0).

1.3.2 Other Probability Facts

We will use the following standard fact to relate distributions of variables to the distributions
of their powers:

» Fact 8 (Change of Variables for Powers). Let X be distributed over (0,00) with pdf
proportional to f(x). Let Y be the random wvariable X¢ for ¢ > 0. Then Y has pdf
proportional to y%_lf(y%).

Finally, we’ll use the following standard tail bounds:

» Lemma 9 (Laplace Tail Bound). Let X be a Laplace random variable with scale b, Lap(b).
That is, X has pdf proportional to exp(—|x|/b). Then we have Pr[|x| > tb] < e*.

» Lemma 10 (Chernoff Bound). Let X1, Xo, ... Xy be independent Bernoulli random variables.
Let n =FE [Zie[k] Xl] Then for t € [0,1], we have:

t2
Pr|Y Xi>(1+t)u| <exp (-3“) .

1€ (k]

2 Generalized Gaussian Mechanisms

In this section, we analyze the Generalized Gaussian mechanism that given database d,
samples © ~ GGauss(p, o) and outputs d = d + x. We denote this mechanism M?. When
p = 1 this is the Laplace mechanism, and when p = 2 this is the Gaussian mechanism.

2.1 Privacy Guarantees

We first determine what o is needed to make this mechanism private. We start with the
following lemma, which gives a tail bound on the change in the “utility” function ||d — d||} if
d changes by A € [—1,1]:

» Lemma 11. Let x € R¥ be sampled from GGauss(p, o). Then for 4 < p <logk that is an
even integer, § € [27C%/P) 1/k], and any A € [~1,1]* we have with probability 1 — §:

lle = Alp = [|2][5 < 32pk"/P~/2\/plog(1/6)||x|lp~" + 2k2p*.

We remark that the requirement that p be an even integer can be dropped by generalizing
the proofs in this section appropriately. However, we can reduce proving Theorem 1 for
all p to proving it for only even p by rounding p up to the nearest even integer (at the
loss of a multiplicative constant of at most v/2), and only considering even p simplifies the
presentation. So, we stick to considering only even p.

Proof. By symmetry of GGauss(p, o) we can assume A has all negative entries. Then we
have:



A. Ganesh and J. Zhao

k

lle = Allp = ||zl = > (@i — A0 —af)

=1

E o ax—A
:Z/ pldy<2/ p*dy<pz p1<pZ:£z+1
i=1"v%i

=1

We want to replace the terms (z; + 1)P~1 with terms xfl since the latter’s distribution
is more easily analyzed. To do so, we use the following observation:

» Fact 12. Ifp < Vk/2:

Fact 12 gives:

S ts (1-2) 5 e (10 2) 5 ateaty

i=1

It now suffices to show that:
2

<1— p) > xiP—1+(1+) D fafPmt < 32k P2 /plog(1/6) || 5,
\/E By <0 \/> i:x; >0

with probability at least 1 — . Note that each x; is sampled independently with probability
proportional to exp(—(|x;|/o)?P). Since multiplying = by a constant rescales both sides of
(5) by the same multiplicative factor, it suffices to show (5) when each z; is independently
sampled with probability proportional to exp(—|x;|?), i.e. when o = 1. By change of variables,

—1__1 _p_
yi = |z;|P~1 is sampled from the distribution with pdf proportional to y7~" " exp(—y? ).

This is the Generalized Gamma random variable with parameters (p—il, %), which we

denote GGamma(-1;, -£;). We show the following property of this random variable in
p—1°p

Appendix B:

» Lemma 13. For anyp > 4, letY be the random variable GGamma(—1 527), let p =E[Y].

Then p € [1/p,1.2/p),Y € TF(u,1), and Y € T~ (p, 3/2).

Let k' be the number of positive coordinates in z. A Chernoff bound gives that k' <
g + 31/k10g% with probability 1 — 6/3. By Lemma 13 and Fact 5 Zi:zi<0
D= ((k = k), 3/2) and Y7, S lilP~" is in T (K, 1) for pu as defined in Lemma 13. We
now apply Lemma 6 with t = log(6/d) to each sum. Since § > 279*/vP) 1og(6/6) =
O(\/klog(1/6)/p), i.e. we are still in the range of ¢ for which the square-root term in the
tail bound of Lemma 6 is the linear term ct. So Lemma 6 gives that:

Pr Z |z [Pt < (k= K — 24/2kplog(1/6)| < 6/6,

Li:x; <0

|z; [P~ is in

Pr Z lzs [P~ > k' + 24/2kplog(1/6) | < 4/6.

1:7
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Combined with the Chernoff bound, this gives that with probability 1 — 26/3:

(B B R B

i:2,<0 i3 >0
<- (1 - 3%) (6~ )0 — (2v2) /i Tog(1/9)) (6)
+ (1 + \2/%) (k’u +(2v2) kulog(1/5))

<(2K' — k) + (2VEp)p + (4v2)\/kplog(1/0)
<6p/klog(1/8) + (2Vkp)p + (5v/2) v/ kplog(1/6)
plog(1/6)

<16ku - 7
<16kp NG (7)
In the last step, we use that p < logk < log(1/9) for the range of p,d we consider. On
the other hand, by Fact 5 37,y 2P ™! = ||x\|g:} is sampled from a random variable in

I'~(kp,3/2) and thus by Lemma 13 and Lemma 6 is at least kp/2 with probability at least
1-9/3,ie kp< 2||x\|§:} with probability at least 1 — 6/3. Combined with (7) by a union
bound we get with probability 1 — §:

(1) Tk (14 2] St <o PR
\/E i <0 \/E i:x; >0 a \/E :

Finally, by the Cauchy-Schwarz inequality for any a < b and k-dimensional z we have
|z|]a < kYo=12|z|]p. So, ||x|\§j < kl/”||a:|\£’1, giving (5) with probability 1 — § as
desired. <

Given Lemma 11, determining the value of ¢ that makes MZP private is fairly straightfor-
ward:

» Lemma 14. Let M?Z be the mechanism such that MZ(d) samples x € RF from x ~
GGauss(p,o) and outputs d = d+ x. For 4 < p <logk that is an even integer, e < O(1),
§ € [27O0/P) 1/k], and

:@<kplog<1/6>>,

€

MP s (e,0)-differentially private.

Proof. It suffices to show that for any vector A in [—1,1]*:

Pr[M2(d) = d — Allp — ||z
_ Pr {log( r[ME(d) ] > < e] = Pr {'I 5 = Il <e|l>1-6.
d~ME (d) PrMb(d+ A) = d] d~ME (d) oP

Here, we abuse notation by letting Pr also denote a likelihood function. By Lemma 11
we now have with probability 1 — §/2 for a sufficiently large constant c:

2 — AJE = [l2][2 < 64pkM/P~V/2 \/pTog(1/8) |o|l2~ + 2p°Kk3.

The pdf of the rescaled norm r = ||z||, /o is proportional to r*~1 exp(—r?) over (0, 00)
(the r*~1 appears because the (k — 1)-dimensional surface area of the £,-sphere of radius 7 is

proportional to r*~1). Letting R denote 7P, the pdf of R is proportional to Ry exp(—R)
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by change of variables, i.e. R is the random variable Gamma(%). Then by the Gamma tail

bound, with probability at least 1 — e~%01%/P > 1 —§/2, R is contained in [2—’;, %]7 so ||z||p

1/p 1/p
is contained in [o (%) o (2?’“) |. Then by a union bound, with probability 1 — §:

[l = Allp = ll«llp _ 128p'/7 kplog(1/5)+4p2k%

oP o oP

Noting that n!/™ is contained within [1,e'/¢] for all n > 1, letting

kplog(1/5
= 185 . pog(/)7
€

lz—Allp—ll=l}

we get that L < e with probability 1 — ¢ as desired. <

oP

2.2 Error Guarantees

In this section, we analyze the ¢, error of M2, for a given choice of § in the range specified
in Lemma 14. We give an expected error bound, and also a tail bound on the error. The error
analysis follows almost immediately from the following lemma, which bounds the fraction of
a sphere cap’s volume with a large first coordinate:

» Lemma 15. Let x be chosen uniformly at random from a k-dimensional £y,-sphere with
arbitrary radius, i.e. the set of points with ||z||, = R for some R, for p > 1. Then we have:

_ E—1)P
Prflar| > rllallp] < (1 — 12) 5D/ < exp <_(p>?"> .

This lemma or one providing a similar bound likely already exists in the literature, but
we are unaware of a reference for it. So, for completeness we give the full proof at the end of
the section.

» Corollary 16. Let x be chosen uniformly at random from a k-dimensional £,-sphere with

arbitrary radius for p > 1. Then we have:

E—1)rP
Pr([[a]oc > rllall,) < k- exp (_<p>> .

Proof. This follows from Lemma 15 and a union bound over all k& coordinates (which have
identical marginal distributions). <

Combining this corollary with Lemma 14, it is fairly straightforward to prove our first
main result:

» Theorem 17. Let M2 be the mechanism such that ME(d) samples z € R* from GGauss(p,
o) and outputs d = d+ x. For 4 < p < logk that is an even integer, For e < O(1),
§€[279%/P) 1/k], and

kplog(1/0
o — 185. VHplog(1/0)
€

M2 s (e, 0)-differentially private and for some sufficiently large constant ¢, and all t > 0:

B VEplog'/? k+\/log(1/6 v
 Pr 11d — d||oc > 1480t - P log og(1/0) < et logk | o—-001k/p
d~ME (d) €

1:9
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Proof. The privacy guarantee follows from Lemma 14.
/P L./
For the tail bound, if ||d — d||s > 1480t - Vklog Tk plog(l/é we have either ||z||, >

1/241/
370 - S VPIBAD) )| > 498 TR 1)) Recall that (||z],/0)? is distributed

according to a Gamma(%) random variable, and thus by a Gamma tail bound exceeds 2k/p

1/241/p _/, 1/p
with probability at most e ~-*9%/P_ In turn, ||z||, > 370- i Eplog(l/é) > (%) o with

4tlog!/? k

at most this probability. Then it follows by setting r = = ¢7— in Corollary 16 and a union
bound that:
k1 1/%,/ log(1/8) 4tlog/? k
Pr [|d ] > 1480¢ - Vklog plog(1/ 1 < Pr ll lloo > %le\lp
e 001k/D < oy, <(k - 1):ptp logk> 4 e 00Lk/p < —t"logh | ,—.001k/p, <
D

This proves Theorem 1, up to some details which we defer to Section A.

2.3 Proof of Lemma 15

To prove this lemma we’ll need the following lemma about convex bodies.

» Lemma 18. Let A C B C R* be two compact convez bodies with A contained in B, and
A’, B’ be their respective boundaries. Then Volp_1(A’) < Volp_1(B’), where Voli,_1 denotes
the (k — 1)-dimensional volume.

Proof. For any compact convex body S and its boundary S’; the (k — 1)-dimensional volume
of S’ satisfies:

Volk,l(S')oc/ Voly,_1(mpr S)do
Sk

Where S* is the k-dimensional unit sphere and 7,7 S is the orthogonal projection of S
onto the subspace of R* orthogonal to 6 (see e.g. Section 5.5 of [13] for a proof of this
fact). Since A C B it follows that for all # we have Voly_;(my7t A) < Vol,_1(meT B) and so
VOlkfl(Al) < VOlkfl(B/). <

The idea behind the proof of Lemma 15 is to show that the region of the £,-ball with large
positive first coordinate is contained within a smaller £,-ball, and then apply Lemma 18:

Proof of Lemma 15. By rescaling, we can assume ||z||, = 1 and instead show:
Prflzy| > 7] < (1 —r#)*7 0P

Volp—1 ({2 : |z1| > 7 |zl = 1}) _ Volps ({2 : 21 > 1 [[2]lp = 1})

r1| > = ,

Pl == G S e el = ) Vol ({2 0 lall, = 1)
Where Voli_; denotes the (k — 1)-dimensional volume. To bound this ratio, let v be the
vector (r,0,0,...,0), and consider the (compact, convex) body By = {z:z1 > ||z —v|[, <

(1- rp)l/p}. We have r? 4+ (v — r)P < vP for 0 < r < v, so By contains the (also compact,
convex) body By = {z : 1 > r,||z||[, < 1}. Then by Lemma 18 the (k — 1)-dimensional
surface area of Bj is larger than that of By. The boundary of B; is the union of the bodies
Bioi={z:z1=nllz—v|, <A —r")P} and By := {x: 21 >, ||z —v||, = (1 —rP)/P},
whose intersection has (k — 1)-dimensional volume 0. Similarly, the boundary of By is the
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(1—rpP)i/p

Bl,a = BZ,a

Figure 1 A picture of the bodies in the proof of Lemma 15 for p = 2,k = 2. Bs has stripes that
are the same color as B; \ Bz to emphasize that B; contains Bs.

union of the bodies By o := {z : 1 =r,||z||, < 1} and Bap := {x : 1 > r,||z||, = 1}, whose
intersection has (k — 1)-dimensional volume 0. See Figure 1 for an example of a picture of
all of these bodies.

Nothing that B , = Bs 4, we conclude that Volg_1(B1 ) > Volg_1(Ba). Now we have:

Voly—1 ({z s 2y 2 1 llall, = 13) _ Voler({z 21 > 1 [lz — vl = (1 —r?)'/7})
Voly—1 ({2 : 21 2 0, [l = 1}) ~ Voly—1 ({2 : 21 2 0, [z]|, = 1})

The body in the numerator of the final expression is the body in the denominator, but
shifted by v and rescaled by (1 — ?)*/? in every dimension. So, the final ratio is at most
(1 —rP)(B=1/p, |

3 Composition with Sparse Vector

In this section, we generalize the mechanism of [18], which is a composition of the Gaussian
mechanism and sparse vector mechanism of [7], by analyzing a composition of M2 and the
sparse vector mechanism instead®. The guarantees given by sparse vector can be given in
the following form that we will use:

» Theorem 19 (Sparse Vector). For every k > 1,csv < k,esy,0sv,Bsyv >0, and

w5y > 0 (JW log(/f/ﬁsv)>

A%

there exists a mechanism SV that takes as input d € R* and outputs d € R* such that:
SV is (esv, dsv )-differentially private.
If at most cgy entries of d have absolute value strictly greater than agy /2, then:

Pr [||d—d||w > asv] < Bsv.
d~SV(d)

Regardless of the value of d we have for all t > 0:

Pr [||d — d|| > max{||d||s0, t\/kog(1/dsv)/esv )] < ke ).

d~SV (d)

3 Unlike its preprint, the journal version of [18] uses a slightly different mechanism based on the exponential
mechanism in place of the sparse vector mechanism. A similar change can likely be made to the mechanism
given in this section; we stick to using the sparse vector mechanism for a slightly simpler proof.
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The proof is deferred to Section A. We now prove Theorem 20, from which Theorem 2
follows up to some minor details (see Section A):

» Theorem 20. For any 4 < p < logk that is an even integer, ¢ < O(1), § € [27O*/P) 1/k],

and t € |0, O(%)], there exists a (¢, 0)-differentially private mechanism M that takes in

a vector d € R¥ and outputs a random d € R* such that for a sufficiently large constant ¢ :

ctr/kplog(1/6)(loglog k)*/?
€

<e” log! k.

- Pr [|Jd|w2
d~M(d)

Proof. The mechanism is as follows: We sample x ~ GGauss(p,o) for

o < kplog(1/6)> |

€

If ||z[|p > 2ko® /p, we output d. Otherwise, we instantiate SV from Theorem 19 with
parameters:

t+/kplog(1/8)(loglog k)'/?
asy = 12t(log log k)/7e <SP 0g(1/6)(loglog k) L oy = 4k/log?t 'k,
€

esv = €/2, dsv =4/3, Bsv = exp(—log' k)/2.
We input z to SV to sample &, and then output d = d + = — &.
First, note that:

Vesy log(1/dsv) log(k/Bsv) _ \/@%lOg(l/é)(Ing+logt k) < 4V/klog(1/9)

— — 9

€SV € €

i.e. « satisfies the requirements of Theorem 19 as long as the constant hidden in the O(-)
notation in the choice of ¢ is sufficiently large.

To analyze the privacy guarantee, this is the composition of:

The mechanism of Theorem 17, which if the constant hidden in the O(-) in the expression

for o is sufficiently large, is (e/2,0/3)-differentially private.

The SV mechanism of Theorem 19, with parameters set so it is (¢/2, §/3)-differentially

private.

The event that [|z[|) > 2ko? /p, causing us to release the database, which we recall from

the Proof of Theorem 17 happens with probability at most 2-*/P) < §/3.

By composition, we get that the mechanism is (e, 0)-differentially private as desired.

To show the tail bound on {-error: If ||z[[b > 2ko® /p, then we have d = d, so trivially
the tail bound is satisfied. So, it suffices to show that conditional on ||z|[} < 2ka?/p
occurring, we have the tail bound. By a union bound, the guarantees of Theorem 19 give
that ||d — d||ec = ||z — #||oc < asy (i.e the tail bound is satisfied) if at most 4k/log?™? k
entries of 2 have absolute value greater than agy /2 with probability less than, say, e—2log’k,
Using r = 37,‘(1”51]:1#1“) in Lemma 15 and a union bound with the 1 — §/3 probability event
that ||z||, < (2k/p)}/Pa, for each coordinate z; of 2 we have:

z;| > agy /2 = 6t(loglog o=2r o > r|lx|ly,
2 = 6t(loglog k)'/?o = 2rk'/? »

with probability at most bgz%tk +2-k/p) < 10g232t ;- Since we sample z with probability

proportional to exp(— 3 ;¢ |2i?/0?), each coordinate’s distribution is independent, so
—Q(k/log?t?' k) ~ e—2log' k

using a Chernoff bound we conclude that with probability e at most

4k/ log2+2t k coordinates have absolute value greater than agy as desired. <
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4  Future Directions

As mentioned before, we did not attempt to optimize the constant multiplier in Theorem 1,
and our resulting constant is likely too large to be practical. Since the Generalized Gaussian
generalizes the Laplace and Gaussian mechanisms, which have good multiplicative constants
in practice, we expect that a more careful analysis of the Generalized Gaussian will also lead
to a error bound that is practical.

Another question concerns stronger measures of privacy than (e, §)-DP, including Rényi-
DP [16] and zero-concentrated-DP [2]. To show the Generalized Gaussian mechanism satisfies
these notions of privacy requires one to bound a moment generating function of the privacy
loss %, which in some sense requires the privacy loss to be subexponential.
Roughly speaking, our analysis shows with probability at least 1 — §, the privacy loss lies
in an interval in which it behaves as a subgaussian random variable. However, past this
interval, our analysis fails to show it even behaves subexponentially. This is because our use
of the gamma tail bound of Lemma 6 weakens at two points in the regime where § < 27%/P.
The first is that the final expression in (7) has a dependence on ¢ of log(1/d) instead of
V/log(1/6) when § < 27%/P_ since the linear term ct in Lemma 6 begins to dominate the
error. The second is that, roughly speaking, we use the gamma tail bound to show that |[z|[P
deviates from its expectation of k/p by at most /klog(1/d)/p with probability 1 —d. When
§ > 27F/P this lets us treat |||} as always being within a constant factor of its expectation
in our analysis. However, when ¢ is small enough, the term /klog(1/d)/p becomes much
larger than the term k/p, and so we can only bound |[|z|[5’s deviation from its expectation
by an expression with 4/log(1/0) dependence on .

Our final tail bound on the privacy loss is effectively a product of the tail bound of
Lemma 11 and the tail bound on [|z|[5~!, and so it shows concentration that is worse than
sub-exponential in the small 0 regime, which is insufficient for proving these stronger notions
of privacy. We believe this is a function of our analysis rather than of the Generalized
Gaussian mechanism, but do not know of an alternate analysis that confirms this belief.
Determining whether Generalized Gaussian mechanisms can satisfy stronger notions of
privacy for larger values of p is an interesting open direction.
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is drawn from Lap(b) where b = O(y/klog(1/dsv)/€esy). So the maximum error for these
(at most cgy < k) entries is stochastically dominated by the maximum of the absolute value
of k of these Laplace random variables, which is at most tb with probability ke~*. |
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A.2 Proof of Theorem 1

We first need the following corollary of Lemma 15:

» Corollary 21. Let « be chosen uniformly at random from a k-dimensional £y-sphere with
arbitrary radius for p > 1. Then we have:

5log!/? k
Elllz]leo] < WH@"Hp

Proof. Since ||x||oo/||2||, takes values in [0,1], by Lemma 15 we have:

Ellj2] oo/ I12]1s] = / Pr{|[zlloo/llzlp > rldr

21+1/p 1Ogl/P k

27 (Plog [Pk 1
K1/P (k — 1)7117
< /0 1dr + /21+1/p . k- exp (_p > dr

k1/p
21+1/P ogl/P | ! (k—1)2° 1 log k
ST + /21“/1, e/ & k- exp ( i ) dr
kl/p
21+1/p logl/p k 1
< By E— + /21+1/p10g1/pk k-exp(—2logk)dr
kl/p
- 2H1/Plogt/P 1
- kl/p k
5log'/? k
- kl/p
Here we use that 27 > p for all p > 1 and that (1 — £)* < e~ for all ¢ > 0. <

Proof of Theorem 1. We use Theorem 17 after rounding p up to the nearest even integer
(this loses at most a multiplicative constant in the resulting error bounds). If the constant
hidden in ©(loglog k) is a sufficiently large function of ¢, this gives the desired tail bound,
up to the additive e=-%9"%/P in the probability bound (which may be larger than the e~*"10g¥
term for large values of p). To remove the additive e~ -001%/P: if the less than e~ 001F/P < §

probability event that (||z||,/0)P exceeds 2k/p occurs, we can instead just output d = d, i.e.

instead set = 0. This gives an (e, 26)-private mechanism that always satisfies (||z||,/0)P <
2k/p, and then we can rescale our choice of ¢ appropriately. The tail bound can now be
derived as in the proof of Theorem 17. Similarly, since we always have (||z||,/0)? < 2k/p,
the expectation of ||z|| follows from Corollary 21. Finally, the expectation of ||z||, for
1 < g < p follows by using Jensen’s inequality twice and the unconditional upper bound
on [Jel[2:

E[l|z]lq) < E[||2||Z]"/® = k9B [j21|)" T < kYIE[|z[P]VP = KV VPE]| |2 |7]
< kMY 2k /p)Pe = O(KY0). <

A.3 Proof of Theorem 2

Proof of Theorem 2. The tail bound in Theorem 2 follows immediately from Theorem 20
by choosing p to be an even integer satisfying p = O(logloglog k).
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For the expectation, we use the tail bound of Theorem 2. We have:

o0
Eanica [l — dlloc] = / Pr{||d - d]]oc > s]ds

a b [e's
= / Pr[||d — d||oe > s]ds —|—/ Pr[||d — d||o > s]ds —|—/ Pr[||d — d||oc > sds.
0 b

a

2¢4/k logloglog k log(1/6) b— kr/log(1/6)

€

We choose a = . The integral over [0, a] is of course

bounded by a. By Theorem 20, the integral over [a, b] is bounded by b-e~ log? k < 7”1%6(1/5) <a
Finally, to bound the third term, recall that the mechanism of Theorem 20 outputs d (i.e.
effectively chooses z, % = 0 instead) if ||x]|, is too large. So, unconditionally we have:

2¢+/klogloglog klog(1/6)

€

ll]loc < llallp < (2k/p)"/P0 < <b.

So by the third property in Theorem 19 we have for s € [b, 00):

Pr [[|d—d|[ec > 8] = Pr(|lz — 2| > s] < ke 2/ (VEIos1/9)/9),
d~M(d) &

And so by change of variables, with s’ = s/(y/klog(1/0)/€)

= klog(1 k15 /log(1
[ et = fas < YU [ mongy  FOVIBD o o,
b €

So we conclude

\/k: log log log k log(1/5)>
€ )

Egpmay [1d = dllsc] <3a=0 (
as desired. <

B Concentration of Generalized Gammas

In this section we consider the Generalized Gamma random variable GGamma(a, b) para-
meterized by a,b with pdf:

bxafleth

p(x) = W,x € (0, 00).

Where the Gamma function I'(x) is defined over the positive reals as

We recall that I'(z) is a continuous analog of the factorial in that it satisfies I'(z + 1) =
x-T(xz). When b =1, GGamma(a,b) is exactly the Gamma random variable Gamma(a)
(we will use Gamma to denote the random variable and T' to denote the function to avoid
ambiguous notation).

We want to show that sums of GGamma(p—ll, 577) random variables concentrate nicely.
To do this, we will show that they are sub-gamma:
To show that GGamma(p1 T e —L-) are sub-gamma, we will relate the moment-generating

function of GGamma(—~ to that of the Gamma random variable with the same mean

p—17 p— 1)
using the following facts:
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» Fact 22. For a Generalized Gamma random variable X ~ GGamma(a,b) the moments

are E[X"] = %. In particular, for a Gamma random variable X ~ Gamma(a) the
moments are E[X"] = F(%Z)T)

See e.g. Section 17.8.7 of [12] for a derivation of this fact. Note here that GGamma(p T
577) has mean p = 1/I'(1/p). To relate the moments of Generalized Gamma random
variables to Gamma random variables’ we note the following about u:

» Fact 23. For all p > 2, we have % < < 72.

F(1/17)
Putting it all together, we get the following lemmas, which combined with Fact 23 give
us Lemma 13:

> Lemma 24. LetY = GGamma(ﬁ, 527) for p = 2. Then, for p=E[Y] = F(ll/p)7
have Y € T"(u,1).

Proof. We compare the moment-generating function of (the centered version of) Y to that
of X = Gamma(p) where p = E[Y]. X is in I'(i, 1) so it suffices to show Y’s moment
generating function is smaller than X’s. First, looking at the moment generating function of
Y, we have:

EeM]=1+Xu+ >

S{EA%

« F(l+ (pp 1))]
p)

=1+ A+ Z
l r(%)

(a)
<14+ Z
r=2
Ll r) ”] — B[],

®) TN
r=2

(a) follows because the Gamma function is monotonically increasing in the range [1.5, 00).
(b) follows because p =

ﬁ > 1/p for p > 1, and because for positive integers r,

ITiZ Ol(a: + 1) is monotonically increasing in z. Since X € I't(u, 1) and X, Y have the same
mean, we have that Y € T (u, 1) as well. <

» Lemma 25. LetY = GGammon(—1 527) for p > 3. Then, for p=E[Y] = L
have Y € T~ (p,3/2).

Proof. Similarly to the previous lemma, we have for all 0 < A < 2/3:

E[ef)\Y]
(o) T2 + 221y
=1—AN+2 (7‘!) r(;) ]
o0 :AQT‘ F(%—FQ’/‘%) A F(% 2T+ )
21—)\M+;_(2r)!' T(%) (1_27"-1-1. F( +27'_ )]
o [ A\2r F(%—i—?}”) F(%+2T1)p%1) A
oSl (e s ﬂ
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© = [ a2z T(5+2r) A T +2r+1)
‘Sl_A‘H; @)l 1) < 2+l T(Lt2n) )
(d) TN T(p+2r) A D(p+2r+1)

= 1_A“+;[(2r)!' (1) (1_2r+1' (i1 21) )}
4 — [(=)" Tle+r)] o AX

=! A“+Z;{H o) =Ee

Which, up to proving (c), (d) hold, shows that Y € I'"(u, 3/2) since X and Y have the
same mean and X € I'"(u,0) C I'"(u,3/2). (c) follows because the change in each term in
the sum is

A1

(2r)! @

p

[F(;+2r) —F(;+2rpp1> - <r<;+2r+1> —F<;+(2r+1)ppl))].

To show this expression is non-negative, it suffices to show that just the term in the
brackets is positive, or equivalently, for all » > 2,p > 3:

(L (p=1) r(: p=1
F(1+2r> 1-— (”+2r P ) > A F(1+27’+1> 1-— (p+(2T+1) p) .
p I (L+2r) 2r+1 \p I(L+2r+1)

Since we have I' (% +2r+ 1) = (% +2r)T (% + 27") < (2r+ 1)(% +2r), it further suffices

to just show:
1 r(iyor-l))
T(5+2r)
>\

r,p) =
f(rp) 1 P(I+@r+1)E2) T
RN CEEZEE))
For any fixed r > 2, one can verify analytically that f(r,p) is monotonically decreasing
in p over p € [1,00) and the limit as p goes to infinity is g(r) := % where 1) is the

d
digamma function ¢ (z) = diigﬂ(;ﬂ ). One can also verify analytically that g(r) is monotonically

increasing, and ¢(2) = 6672 So, for all » > 2,p > 3 we have f(r,p) > 2/3 and thus for
A € [0,2/3], the inequality (c) is satisfied.
(d) follows by looking at the function

Tz +r) A T+r+1)\ MMz +7r) = )
z(“‘)—m)(l‘rﬂ' NEES) )‘(“m)ﬂf“”’

For r > 2, A < 1, one can verify analytically that z(x) is monotonically increasing in
the interval (0,1/2] D (O,%] 2 (0,p]. Since p > %, this gives that each term in the
right-hand-side of (d) is larger than the corresponding term on the left-hand-side. <
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—— Abstract

We consider settings in which the right notion of fairness is not captured by simple mathematical

definitions (such as equality of error rates across groups), but might be more complex and nuanced
and thus require elicitation from individual or collective stakeholders. We introduce a framework in
which pairs of individuals can be identified as requiring (approximately) equal treatment under a
learned model, or requiring ordered treatment such as “applicant Alice should be at least as likely to
receive a loan as applicant Bob”. We provide a provably convergent and oracle efficient algorithm for
learning the most accurate model subject to the elicited fairness constraints, and prove generalization
bounds for both accuracy and fairness. This algorithm can also combine the elicited constraints
with traditional statistical fairness notions, thus “correcting” or modifying the latter by the former.
We report preliminary findings of a behavioral study of our framework using human-subject fairness
constraints elicited on the COMPAS criminal recidivism dataset.
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1 Introduction

The literature on algorithmic fairness has consisted largely of researchers proposing and

showing how to impose technical definitions of fairness [18, 32, 66, 3, 4, 34, 60, 48, 29, 26, 4, 14].

Because these imposed notions of fairness are described analytically, they are typically

simplistic, and often have the form of equalizing simple error statistics across groups. Our

starting point is the observation that:

1. This process cannot result in notions of fairness that do not have any simple, analytic
description, and

2. This process also overlooks a more precursory problem: namely, who gets to define what
s fair?

It’s unlikely that researchers alone are best fit for defining algorithmic fairness. Recent
work identifies undue power imbalances [40] and biases [39] that arise when algorithm
designers and researchers are the only voices in conversations around ethical design. [59]
find that many machine learning practitioners are disconnected from the “organisational

© Christopher Jung, Michael Kearns, Seth Neel, Aaron Roth, Logan Stapleton, and Zhiwei Steven Wu;

licensed under Creative Commons License CC-BY 4.0
2nd Symposium on Foundations of Responsible Computing (FORC 2021).
Editors: Katrina Ligett and Swati Gupta; Article No. 2; pp. 2:1-2:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://doi.org/10.4230/LIPIcs.FORC.2021.2
https://arxiv.org/abs/1905.10660
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2

Fairness Elicitation

and institutional realities, constraints and needs” specific to the contexts in which their

algorithms are applied. Researchers may not be able to propose a concise technical definition,

e.g. statistical parity, to capture the nuances of fairness in any given context. Furthermore,

many philosophers hold that stakeholders who are affected by moral decisions and experts

who understand the context in which moral decisions are made will have the best judgment

about which decisions are fair in that context [63, 39].

To this end, we aim to allow stakeholders and experts to play a central role in the process
of defining algorithmic fairness. This is aligned with recent works on wvirtual democracy,
which propose and enact participatory methods to automate moral decision-making [13, 51,
31, 46, 21].

The way we involve stakeholders is motivated by two concerns:

1. We want stakeholders to have free rein over how they may define fairness, e.g. we don’t
want to simply have them vote on whether existing, simple constraints like statistical
parity or equalized odds is best; and

2. We want non-technical stakeholders to be able to contribute, even if they may not
understand the inner workings of a learning algorithm.

We hold that people often cannot elucidate their conceptions of fairness; yet, they can
identify specific scenarios where fairness or unfairness occurs.! Drawing from individual
notions of fairness like [17, 29] that are defined in terms of pairwise comparisons, we therefore
aim to elicit stakeholders conceptions of fairness by asking them to compare pairs of individuals
in specific scenarios. Specifically, we ask whether it’s fair that one particular individual
should receive an outcome that is as desirable or better than the other.

When pointing out fairness or unfairness, this kind of pairwise ranking is natural. For
example, after Serena Williams was penalized for a verbal interaction with an umpire in the
2018 U.S. Open Finals, tennis player James Blake tweeted, “I have said worse and not gotten
penalized. And I've also been given a “soft warning” by the ump where they tell you knock it
off or T will have to give you a violation. [The umpire] should have at least given [Williams]
that courtesy” [65]. Here, Blake thinks that: 1) Williams should have been judged as or less
severely than he would have been in a similar situation; and 2) the umpire’s decision was
unfair, because Williams was judged more severely.

Thus, we ask a set of stakeholders about a fixed set of pairs of individuals subject to a
classification problem. For each pair of individuals (A4, B), we ask the stakeholder to choose
from amongst a set of four options:

1. Fair outcomes must classify A and B the same way (i.e. they must either both get a
favorable classification or both get an unfavorable classification).

2. Fair outcomes must give A an outcome that is equal to or preferable to the outcome of B.

3. Fair outcomes must give B an outcome that is equal to or preferable to the outcome of A

4. Fair outcomes may treat A and B differently without any constraints.

These constraints, a data distribution, and a hypothesis class define a learning problem:
minimize classification error subject to the constraint that the rate of violation of the elicited
pairwise constraints is held below some fixed threshold. Crucially and intentionally we elicit
relative pairwise orderings of outcomes (e.g. A and B should be treated equally), but do not
elicit preferences for absolute outcomes (e.g. A should receive a positive outcome). This is

1 This is philosophically akin to a theory of moral epistemology called moral perception, which claims
that we know moral facts (e.g. goodness or fairness) via perception, as opposed to knowing them via
rules of morality (see [10]).



C. Jung, M. Kearns, S. Neel, A. Roth, L. Stapleton, and Z.S. Wu

because fairness — in contrast to justice — is often conceptualized as a measure of equality
of outcomes, rather than correctness of outcomes?. In particular, it remains the job of the
learning algorithm to optimize for correctness subject to elicited fairness constraints.

We remark that the premise (and the foundation for the enormous success) of machine
learning is that accurate decision making rules in complex scenarios cannot be defined with
simple analytic rules, and instead are best derived directly from data. Our work can be viewed
similarly, as deriving fairness constraints from data elicited from experts and stakeholders.
In this paper, we solve the computational, statistical, and conceptual issues necessary to do
this, and demonstrate the effectiveness of our approach via a small behavioral study.

1.1 Results
Our Model

We model individuals as having features in X and binary labels, drawn from some distribution
P. A committee of stakeholders® u € U has preferences about whether one individual should
be judged better than another individual. We imagine presenting each stakeholder with a
set of pairs of individuals and asking them to choose one of four options for each pair, e.g.
given the features of Serena Williams and Jacob Blake:

1. No constraint;

2. Williams should be treated as well as Blake or better;

3. Blake should be treated as well as Williams or better; or
4. Williams and Blake should be treated similarly.

Here, when we refer to how an individual should be treated, we mean the probability that an
individual is given a positive label by the classifier. This may be a bit of a relaxation of these
judgments, since they are not about actualized classifications, but rather the probabilities of
positive classification. For example, we may not consider it a violation of fairness preference
(2) if Williams is judged worse than Blake in a specific scenario; yet, if an ump is more
likely to judge Williams worse than Blake in general, then this would violate this fairness
preference.

We represent these preferences abstractly as a set of ordered pairs C,, C X x X’ for each
stakeholder u. If (x,2’) € C,,, this means that stakeholder u believes that individual 2’ must
be treated as well as individual x or better, i.e. ideally the classifier h classifies such that
h(z") > h(zx). This captures all possible responses above. For example, for Serena Williams
(s) and Jacob Blake (b), if stakeholder u responds:

No constraint < (s,b) ¢ C, nor (b,s) & Cly;

Williams as well as Blake < (b,s) € Cy;

Blake as well as Williams < (s,b) € Cy; or

Treated similarly < (s,b) € C,, and (b,s) € C, (since if h(b) > h(s) and h(s) > h(b),
then h(s) = h(b)).

i L

Sidney Morgenbesser, following the Columbia University campus protests in the 1960s, reportedly said
that the police had treated him unjustly, but not unfairly. He said that he was treated unjustly because
the police hit him without provocation — but not unfairly, because the police were doing the same to
everyone else as well.

Though we develop our formalism as a committee of stakeholders, note that it permits the special case
of a single subjective stakeholder, which we make use of in our behavioral study.
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We impose no structure on how stakeholders form their views nor on the relationship
between the views of different stakeholders —i.e. the sets {C), } ey are allowed to be arbitrary
(for example, they need not satisfy a triangle inequality), and need not be mutually consistent.
We write C = U, C,.

We then formulate an optimization problem constrained by these pairwise fairness
constraints. Since it is intractable to require that all constraints in C' be satisfied exactly,
we formulate two different “knobs” with which we can quantitatively relax our fairness
constraints.

For v > 0 (our first knob), we say that the classification of an ordered pair of individuals
(z,2") € C satisfies v-fairness if the probability of positive classification for z’ plus 7 is
no smaller than the probability of positive classification for z, i.e. E[h(z")] +v > E[h(z)].
In this expression, the expectation is taken only over the randomness of the classifier h.
Equivalently, a y-fairness violation corresponds to the classification of an ordered pair of
individuals (z,2’) € C if the difference between these probabilities of positive classification
is greater than v, i.e. E[h(x) — h(z")] > . Thus, v acts as a buffer on how likely it is that
x’ be classified worse than z before a fairness violation occurs. For example, if Blake (b)
receives a good label (i.e. no penalty) 80% of the time and Williams (s) 50% of the time,
then for v = 0.1 this constitutes a ~-fairness violation for the ordered pair (b, s) € C, since
E[h(b) — h(s)] =0.3> 0.1 =~.

We might ask that for no pair of individuals do we have a v-fairness violation:

max E[h(z) — h(z)] < 7.

(z,2")eC
On the other hand, we could ask for the weaker constraint that over a random draw
of a pair of individuals, the expected fairness violation is at most 7 (our second knob):
E(e,2)~p2[(h(z) — h(z)) - 1[(z,2") € C]] < n. We can also combine both relaxations to
ask that the in expectation over random pairs, the “excess” fairness violation, on top of an
allowed budget of v, is at most 7. For example, as above, if Blake receives a good label 80%
of the time and Williams 50%, for v = 0.1, the umpire classifier would pick up 0.2 excess
fairness violation for (b, s) € C. In Section 2, we weight these excess fairness violations by the
proportion of stakeholders who agree with the corresponding fairness constraint and mandate
their sum be less than 7. Subject to these constraints, we would like to find the distribution
over classifiers that minimizes classification error: given a setting of the parameters v and 7,
this defines a benchmark with which we would like to compete.

Our Theoretical Results

Even absent fairness constraints, learning to minimize 0/1 loss (even over linear classifiers) is
computationally hard in the worst case (see e.g. [20, 19]). Despite this, learning seems to
be empirically tractable in the real world. To capture the additional hardness of learning
subject to fairness constraints, we follow several recent papers [2, 33] in aiming to develop
oracle efficient learning algorithms. Oracle efficient algorithms are assumed to have access to
an oracle (realized in experiments using a heuristic — see the next section) that can solve
weighted classification problems. Given access to such an oracle, oracle efficient algorithms
must run in polynomial time. We show that our fairness constrained learning problem is
computationally no harder than unconstrained learning by giving such an oracle efficient
algorithm (or reduction), and show moreover that its guarantees generalize from in-sample
to out-of-sample in the usual way — with respect to both accuracy and the frequency and
magnitude of fairness violations. Our algorithm is simple and amenable to implementation,
and we use it in our experimental results.
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Our Experimental Results

We implement our algorithm and run a set of experiments on the COMPAS recidivism
prediction dataset, using fairness constraints elicited from 43 human subjects. We establish
that our algorithm converges quickly (even when implemented with fast learning heuristics,
rather than “oracles”). We also explore the Pareto curves trading off error and fairness
violations for different human subjects, and find empirically that there is a great deal of
variability across subjects in terms of their conception of fairness, and in terms of the degree
to which their expressed preferences are in conflict with accurate prediction. We find that
most of the difficulty in balancing accuracy with the elicited fairness constraints can be
attributed to a small fraction of the constraints.

1.2 Related Work
Individual Fairness and Elicitation

Our work is related to existing notions of individual fairness like [17, 29] that conceptualize
fairness as a set of constraints binding on pairs of individuals. In particular, the notion of
metric fairness proposed in [17] is closely related, but distinct from the fairness notions we
elicit in this work. In particular: 1) We allow for constraints that require that individual
A be treated better than or equal to individual B, whereas metric fairness constraints are
symmetric, and only allow constraints of the form that A and B be treated similarly. In this
sense our notion is more general; 2) We elicit binary judgments between pairs of individuals,
whereas metric fairness is defined as a Lipschitz constraint on a real valued metric. In this
sense our notion is more restrictive. Though, we — along with a line of work on classification
with pairwise constraints — see merit in pairwise constraints because they “can be relatively
easy to collect from human feedback” [49, p. 114].

The most technically related piece of work is Rothblum and Yona [53], who first frame
individual fairness in a PAC learning setting and prove similar generalization guarantees
to ours for a relaxation of metric fairness. Our conceptual focus is quite different, however:
for general learning problems, they prove worst-case hardness results, whereas we derive
algorithms in the oracle-efficient model and evaluate them on real elicited user data. The
concurrent work of [41] makes a similar observation about guaranteeing fairness with respect
to an unknown metric, although their aim is the orthogonal goal of fair representation
learning.

Dwork et al. [17] first proposed the notion of individual metric-fairness that we take
inspiration from, imagining fairness as a Lipschitz constraint on a randomized algorithm,
with respect to some “task-specific metric”. Since the original proposal, the question of
where the metric should come from has been one of the primary obstacles to its adoption,
and the focus of subsequent work. Zemel et al. [67] attempt to automatically learn a
representation for the data (and hence, implicitly, a similarity metric) that causes a classifier
to label an equal proportion of two protected groups as positive. Kim et al. [35] consider a
group-fairness like relaxation of individual metric-fairness, asking that on average, individuals
in pre-specified groups are classified with probabilities proportional to the average distance
between individuals in those groups. They show how to learn such classifiers given access to

an oracle which can evaluate the distance between two individuals according to the metric.

Compared to our work, they assume the existence of a fairness metric which can be accessed
using a quantitative oracle, and they use this metric to define a statistical rather than
individual notion of fairness. Gillen et al. [23] assume access to an oracle which simply
identifies fairness violations across pairs of individuals. Under the assumption that the oracle
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is exactly consistent with a metric in a simple linear class, they give a polynomial time
algorithm to compete with the best fair policy in an online linear contextual bandits problem.
In contrast to [23], we make essentially no assumptions at all on the structure of the “fairness”
constraints. Bechavod et al. [8] generalize the setting of Gillen et al. [23] by making no
assumption on the underlying metric and reduce the number of calls to the fairness oracle.
Tlvento [28] studies the problem of metric learning with the goal of using only a small number
of numeric valued queries, which are hard for human beings to answer, relying more on
comparison queries. In contrast with [28], we do not attempt to learn a metric, and instead
directly learn a classifier consistent with the elicited pairwise fairness constraints.

Classification with Pairwise Constraints

Stretching back to at least Kleinberg and Tardos [37], there is a line of work that considers
classification problems with pairwise constraints which define similarity or dissimilarity
between the labels of two data points [49, 7, 49, 68, 6, 57]. Kleinberg and Tardos [37], for
example, introduce a classification problem with pairwise equality constraints and a distance
metric between pairs. The constraints we elicit differ in that they are asymmetric inequality
relations between pairs, rather than equality or metric constraints. Much of this work is
conceptually different from ours, as it is concerned with clustering and semi-supervised
learning, e.g. [7] or [6].

Preference Elicitation, Social Choice Theory, and Virtual Democracy

Preference elicitation is a well-established area in machine learning [52, 16]. Social choice
or voting theory aims to elicit and aggregate people’s preferences in order to find a winner
or ranking over alternatives (see [50] for an overview). The aim of this work is often to
suggest aggregation methods which meet some desirable criteria, such as strategyproofness.
Virtual democracy is a framework for eliciting normative preferences, constructing a model
from these preferences — typically via voting methods — in order to automate moral decision
making based on these norms [1, 51, 13, 46, 31, 5, 21]. Our work is conceptually similar: we
elicit and learn from moral preferences. However, our work differs in two regards: 1) We
focus specifically on fair classification, whereas virtual democracy is concerned with more
general moral decisions, e.g. the kind of trolley problem scenarios in the Moral Machine
experiment [5]; 2) As such, we can incorporate elicited preferences into a fair learning problem
rather than using voting methods to aggregate them.

Human Perspectives on Algorithmic Fairness

A number of recent qualitative and HCI works have focused on understanding perspectives
on algorithms and fairness from the public [25, 24, 56, 61, 62, 55] and from practitioners
[27, 47, 59]. These works suggest that 1) algorithms should incorporate stakeholder input
into the fairness principles they use and 2) these fairness principles are context-specific
[11, 15, 43, 44, 9, 54]. These works also offer a perspective on how explaining or asking
people about fairness influences how they respond [45, 64, 54, 9]. These works provide largely
qualitative findings, which may be difficult to translate into specific design implications. Our
work complements these prior works by offering a way to easily implement a fair algorithm
based on human perspectives.
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2 Problem Formulation

Let S denote a set of labeled examples {z; = (x;,y;)}";, where z; € X is a feature vector
and y; € Y is a label. We will also write Sx = {z;}; and Sy = {y;}?_;. Throughout
the paper, we will restrict attention to binary labels, so let J = {0,1}. Let P denote
the unknown distribution over X x ). Let H denote a hypothesis class containing binary
classifiers h : X — Y. We assume that H contains a constant classifier (which will imply that
the “fairness constrained” ERM problem that we define is always feasible). We’ll denote
classification error of hypothesis h by err(h,P) := Pr(, ,)~p(h(z) # y) and its empirical
classification error by err(h,S) := L 3" | 1(h(z;) # y;).

We assume there is a set of one or more stakeholders U, such that each stakeholder u € U
is identified with a set of ordered pairs (z,z’) of individuals C,, C X?%: for each (z,2) € C,,
stakeholder u thinks that 2’ should be treated as well as z or better, i.e. ideally that for the
learned classifier h, the classification h(z’) > h(z) (we will ask that this hold in expectation
if the classifier is randomized, and will relax it in various ways). For each ordered pair (z,z'),
let wy 5 be the fraction of stakeholders who would like individual = to be treated as well

as ¢': that is, wy v = W Note that if (z,2’) € C,, and (2/,z) € C,, then the
stakeholder wants x and z’ to be treated similarly in that ideally h(z) = h(z’).

In practice, we will not have direct access to the sets of ordered pairs C,, corresponding
to the stakeholders u, but we may ask them whether particular ordered pairs are in this set
(see Section 5 for details about how we actually query human subjects). We model this by
imagining that we present each stakeholder with a random set of pairs A C [n]?, and for each
ordered pair (z;,x;), ask if z; should not be treated worse than z;; we learn the set of ordered

pairs in AN C, for each u. Define the empirical constraint set C,, = {(z;, z;) € Culv(ijiea

and Wy, = M%{#, if (i,7) € A and 0 otherwise. We write that ¢ = U, C,,. For
brevity, we will sometimes write w;; instead of wy, ;. Note that w;; = w;; for every
(1,7) € A.

Our goal will be to find the distribution over classifiers from H that minimizes classification
error, while satisfying the stakeholders’ fairness preferences, captured by the constraints C.
To do so, we’ll try to find D, a probability distribution over H, that minimizes the training
error and satisfies the stakeholders’ empirical fairness constraints, C. For convenience, we
denote the expected classification error of D as err(D,P) := Ep~plerr(h,P)] and likewise
its expected empirical classification error as err(D, S) := Ep~plerr(h,S)]. We say that any
distribution D over classifiers satisfies (v, 7)-approximate subjective fairness if it is a feasible
solution to the following constrained empirical risk minimization problem:

DeA%l,gijzoerr(D’S) (1)
such that ¥(i,5) € (nl” s E_[h(ws) — h(e))] < @y 47 @)
h~D
ﬁ)ijOlij <
<. (3)
i
(i,9)€[n]

This “Fair ERM” problem, whose feasible region we denote by Q(S,,~, ), has decision
variables D and {«;;}, representing the distribution over classifiers and the “fairness violation”
terms for each pair of training points, respectively. The parameters v and 7 are constants
which represent the two different “knobs” we have at our disposal to quantitatively relax the
fairness constraint, in an /., and ¢; sense, respectively.

The parameter v defines, for any ordered pair (x;,z;), the maximum difference between
the probabilities that z; and z; receive positive labels without constituting a fairness

violation. The parameter a;; captures the “excess fairness violation” beyond v for (z;, x;).
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The parameter n upper bounds the sum of these allotted excess fairness violation terms oj,
each weighted by the proportion of judges who perceive they ought to be treated similarly w;;
and normalized with the total number of pairs presented |A|. Thus, n bounds the expected
degree of dissatisfaction of the panel of stakeholders U, over the random choice of an ordered
pair (2;,z;) € A and the randomness of their classification. We iterate over all (i, j) € [n]?
(not just those in C') because w;; = 0 if no judge prefers x; should be classified as well as x;.

To better understand v and 7, we consider them in isolation. First, suppose we set v = 0.
Then, any difference in probabilities of positive classification between pairs is deemed a
fairness violation. So, if we choose (D, {e;;}) such that the sum of weighted differences in
positive classification probabilities exceeds 7, i.e.

Wij En~ p[h(xi) — h(x;)]
2 A

> 1,
(i,9)€n]?

then this is an infeasible solution. Second, suppose that n = 0. Then, for any (z;,z;) € C (for
which ;; > 0), if the expected difference in labels exceeds 7, i.e. Ep~ plh(z;) — h(z;)] > 7,
then this is an infeasible solution.

2.1 Fairness Loss

Our goal is to develop an algorithm that will minimize its empirical error err(D, S), while
satisfying the empirical fairness constraints C. The standard VC dimension argument states
that empirical classification error will concentrate around the true classification error: we
hope to show the same kind of generalization for fairness as well. To do so, we first define
fairness loss with respect to our elicited fairness preferences here.

For some fixed randomized hypothesis D € AH and w, define -fairness loss be-
tween an ordered pair as Ilp ., ((z,2')) = ws, max (0,Ep~p [A(z) — h(z’)] — 7). For
a set of pairs M C X x X, the y-fairness loss of M is defined to be: IIp (M) =
ﬁ > (w.ayem Hpywy ((@,2")) . This is the expected degree to which the difference in classi-
fication probability for a randomly selected pair exceeds the allowable budget ~, weighted by
the fraction of stakeholders who think that =’ should be treated as well as . By construction,
the empirical fairness loss is bounded by n (i.e. IIp (M) < Zij %
show in Section 4, the empirical fairness should concentrate around the true fairness loss
My (P) = B vz (o (2, 2)].

< n), and we

2.2 Cost-sensitive Classification

In our algorithm, we will make use of a cost-sensitive classification (CSC) oracle. An

instance of CSC problem can be described by a set of costs {(z;,c?,c})}™, and a hy-
pothesis class, H. Costs ¢! and ¢} correspond to the cost of labeling x; as 0 and 1 re-
spectively. Invoking a CSC oracle on {(x;,c¥,cl)}? | returns a hypothesis h* such that

h* € argming ey >oiy (R(zi)el + (1 — h(x;)) ). We say that an algorithm is oracle-efficient
if it runs in polynomial time assuming access to a CSC oracle.

3 Empirical Risk Minimization

In this section, we give an oracle-efficient algorithm whose pseudocode is shown in Algorithm 1
for approximately solving our (in-sample) constrained empirical risk minimization problem.
Details are deferred to the full version of this paper which is available on arXiv [30]. We
prove the following theorem:
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Algorithm 1 No-Regret Dynamics.

Input: training examples {z;,y;}7;, bounds Cy and C, time horizon T, step sizes uy
and {pl}5,
Set 9 = 0 € R™’

Set 70 =0
fort=1,2,...,T do
ex 0 N
Set Aj; = Cx 5 ]/Z ey for all pairs (i, ) € [n]?
Set Tt = prO][O,C-,—] ( + :U“T (|A| 27,_7 WijC 77))

D!, at « BEST, (A, 1)
for (i,j) € [n]* do
01 = 05 + 5 (En~pe [h(xi) = h(z;)] — al; =)

.1 T 1 T
Output: =Y, D' 5>, o

» Theorem 1. Fiz parameters v,C.,Cy that serve to trade off running time with approx-
2
imation error. There is an efficient algorithm that makes T = <QCA W) csc

oracle calls and outputs a solution (ﬁ, &) with the following guarantee. The objective value
s approximately optimal:

err(D, ) < min err(D, S) + 2v.
(D,a)eQ(S,w,y,m)

And the constraints are approzimately satisfied: B, p[h(x:)—h(z;)] < busj+y+-5 1+2” ,V(i,4) €
[n]? a"dlAlzu z’wwaw<n+1+2u

3.1 OQutline of the Solution

We frame the problem of solving our constrained ERM problem (equations (1) through (3))
as finding an approximate equilibrium of a zero-sum game between a primal player and a
dual player, trying to minimize and maximize respectively the Lagrangian of the constrained
optimization problem.

The Lagrangian for our optimization problem is

L(D,a,\,7)=err(D,S)+ Y A < LB [h(i) = hiz)] - oy —7>

(4,9)€[n]?

| Z WigQig —

(4,5)€[n]?

For the constraint in equation (2), corresponding to the ~-fairness violation for each
ordered pair of individuals (z;,z;), we introduce a dual variable );;. For the constraint (3),
which corresponds to the n-fairness violation over all pairs of individuals, we introduce
a dual variable of 7. For brevity, we define vectors A € A and a which are made up of
all the multipliers \;; and the excess fairness violation allotments o;;, respectively. The
primary player’s action space is (D, a) € (AH, [0, 1]”2), and the dual player’s action space is

2
(A7) € (R™,R).

2:9
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Solving our constrained ERM problem is equivalent to finding a minmax equilibrium
of L:

argmin err(D,S) = argmin max L(D,ao, A7)
(D, o) €Q(S,10,7,m) DeAM,ac0,1]7? AeR™T,T€R

Because L is linear in terms of its parameters, Sion’s minimax theorem [58] gives us

min max L(D,a,\,7) = max min  L(D,a, A\, 7).
DeAH,ac0,1]"* AeR"? reR AeR”? reR DeAH,ac(0,1]72

By a classic result of Freund and Schapire [22], one can compute an approximate equilib-
rium by simulating “no-regret” dynamics between the primal and dual player. “No-regret”
meaning that the average regret —or difference between our algorithm’s plays and the single
best play in hindsight— is bounded above by a term that converges to zero with increasing
rounds.

In our case, we define a zero-sum game wherein the primary player’s plays from action space
(D, ) € (AH,[0,1]""), and the dual player’s plays from action space (A,7) € (Rﬁi), R>). In
any given round %, the dual player plays first and the primal second. The prima_l player can
simply best respond to the dual player (see Algorithm 2).

However, since the dual player plays first, they cannot simply best respond to the primal
player’s action. The dual player has to anticipate the primal player’s best response in order
to figure out what to play. Ideally, the dual player would enumerate every possible primal
play and calculate the best dual response. However, this is intractable. So, the dual player
updates dual variables {\, 7} according to no-regret learning algorithms (exponentiated
gradient descent [36] and online gradient descent [69], respectively).

The time-averaged play of both players converges to an approximate equilibrium of the
zero-sum game, where the approximation is controlled by the regret of the dual player. This
approximate equilibrium corresponds to an approximate saddle point for the Lagrangian L,
which is equivalent to an approximate solution to the Fair ERM problem.

We organize the rest of this section as follows. First, for simplicity, we show how the
primal player updates {D, a} (even though the dual player plays first). Second, we show how
the dual player updates {A, 7}. Finally, we prove that these updates are no-regret and relate
the regret of the dual player to the approximation of the solution to the Fair ERM problem.

3.2 The Primal Player’s Best Response

In each round ¢, given the actions chosen by the dual player (A, 7%), the primal player needs to
best respond by choosing (D!, at) such that (D?, at) € argmin e ny yepapn £(0; @, AL 7).
We can separate the optimization problem into two as shown above in Algorithm 2: one
optimization over hypothesis D and one over violation factor . As for DY, the primal player
can update the hypothesis D by leveraging a CSC oracle. Given A, we can set the costs as

follows:
o_ 1 1 1 t t
¢ = H]EhND [1(y; #0)], ¢ = ;Ewa [T (yi #1)] + (>‘z‘j - )\ji)-

Then, D' = ht = CSC ({(x;,c),c})}™;) (we note that the best response is always a
deterministic classifier h').

As for af, we can show that the primal player sets of; = 1 if 7* T}A]\ —Al; <0and 0
otherwise. We defer its derivation and proofs to the full version of this paper which is

available on arXiv [30].
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Algorithm 2 Best Response, BEST, (A, 7), for the primal player.

Input: training examples S = {z;,y;}1-1, A € A, 7 € T, CSC oracle CSC
fori=1,...,ndo

if y; =0 then
Set ¢ =0
Set ¢f = L + D ji Nij — Aji
else
Set ¢ = %
Set ¢} = D ji Nij — Aji
D =0C5C(S,c

for (i,5) € [n)? do
. {1 : T% — >\'L'j S O
0: T\T - )\” > 0.
Output: D, «

3.3 The Dual Player’s No-regret Updates

In order to reason about convergence, we need to restrict the dual player’s action space
to lie within a bounded ¢; ball, defined by the parameters C, and C) that appear in
our theorem — and serve to trade off running time with approximation quality: A =
{)\ € Rf Al < C’,\} ,T={r €Ry :|7]|; < C-}. The dual player will use exponentiated
gradient descent [36] to update A and online gradient descent [69] to update 7, where the
reward function will be defined as: rA(A) =37, i <2 Afj (Enop [A(z) — h(25)] — aij — )

and 7y (7t) = 7¢ (ﬁ Z(i_j)e[”]Q wija; — 1) . We defer its derivation and proofs to the full
version of this paper which is available on arXiv [30].

4 Generalization

In this section, we show that fairness loss generalizes out-of-sample. (Error generalization
follows from the standard VC-dimension bound, which — because it is a uniform convergece
statement is unaffected by the addition of fairness constraints. See the supplement for the
standard statement.)

Proving that the fairness loss generalizes doesn’t follow immediately from a standard
VC-dimension argument for several reasons: it is not linearly separable, but defined as
an average over non-disjoint pairs of individuals in the sample. The difference between
empirical fairness loss and true fairness loss of a randomized hypothesis D € AH is also a
non-convex function of the supporting hypotheses h, and so it is not sufficient to prove a
uniform convergence bound merely for the base hypotheses in our hypothesis class H. We
circumvent these difficulties by making use of an e-net argument, together with an application
of a concentration inequality, and an application of Sauer’s lemma. Briefly, we show that
with respect to fairness loss, the continuous set of distributions over classifiers have an e-net
of sparse distributions. Using the two-sample trick and Sauer’s lemma, we can bound the
number of such sparse distributions. The end result is the following generalization theorem:

2:11

FORC 2021



2:12 Fairness Elicitation

» Theorem 2. Let S consists of n i.i.d points drawn from P and let M represent a set of m
pairs randomly drawn from S x S. Then we have:

SPr ( sup
~P"
MZ(Sxs)ym \DEAH

e-2n dk —ne? e-2n ax’
2
< <8< 3 ) exp( 3 )+< P ) exp(—SmE )),

where k' = % +1, k= In(2n?) + 1, and d is the VC-dimension of H.

8e2

Mpunr(M)— [HD7w,w<x7x'>]\ > 25)
(z,x")~P2

To interpret this theorem, note that the right hand side (the probability of a failure of
generalization) begins decreasing exponentially fast in the data and fairness constraint sample
parameters n and m as soon as n > Q(dlog(n)log(n/d)) and m > Q(dlog(m)log(n/d)).

5 A Behavioral Study

The framework and algorithm we have provided can be viewed as a tool to elicit and enforce
a notion of fairness defined by a collection of stakeholders. In this section, we describe
preliminary results from a human-subject study we performed in which pairwise fairness
preferences were elicited and enforced by our algorithm. We note that the subjects included
in our empirical study were not stakeholders affected by the algorithm we used (the COMPAS
algorithm). Thus, our results should not be interpreted as cogent for any policy modifications
to the COMPAS algorithm. We instead report our empirical findings primarily to showcase
the performance of our algorithm and to act as a template for what should be reported if
our framework were applied with relevant stakeholders (for example, if fairness preferences
about COMPAS data were elicited from inmates).*

5.1 Data

Our study used the COMPAS recidivism data gathered by ProPublica ° in their celebrated
analysis of Northepointe’s risk assessment algorithm [42]. This data consists of defendants
from Broward County in Florida between 2013 to 2014. For each defendant the data consists
of sex (male, female), age (18-96), race (African-American, Caucasian, Hispanic, Asian,
Native American), juvenile felony count, juvenile misdemeanor count, number of other
juvenile offenses, number of prior adult criminal offenses, the severity of the crime for which
they were incarcerated (felony or misdemeanor), as well as the outcome of whether or not
they did in fact recidivate. Recidivism is defined as a new arrest within 2 years, not counting
traffic violations and municipal ordinance violations.

5.2 Subjective Fairness Elicitation

We implemented our fairness framework via a web app that elicited subjective fairness notions
from 43 undergraduates at a major research university. After reading a document describing
the data and recidivism prediction task, each subject was presented with 50 randomly chosen

We omit such an empirical study due to the difficulty of accessing such stakeholders and leave this for
future work.

The data can be accessed on ProPublica’s Github page here. We cleaned the data as in the ProPublica
study, removing any records with missing data. This left 5829 records, where the base rate of two-year
recidivism was 46%.


https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
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In your view, as a matter of fairness, should the following two individuals recieve the same recidivism prediction, or is it ok to give them different predictions?

sex age race juv. felony count  juv. misdemeanor count  juv. other count  priors count severity of charge
Male 25  Caucasian 0 1 0 6  Felony
Vs.
sex age race juv. felony count  juv. misdemeanor count  juv. other count  priors count  severity of charge
Male 29  African-American 0 0 1 10  Felony

Should be treated equally Ok to treat differently, or no opinion

Figure 1 Screenshot of sample subjective fairness elicitation question posed to human subjects.

pairs of records from the COMPAS data set and asked whether in their opinion the two
individuals should treated (predicted) equally or not. Importantly, the subjects were shown
only the features for the individuals, and not their actual recidivism outcomes, since we
sought to elicit subjects’ fairness notions regarding the predictions of those outcomes. While
absolutely no guidance was given to subjects regarding fairness, the elicitation framework
allows for rich possibilities. For example, subjects could choose to ignore demographic factors
or criminal histories entirely if they liked, or a subject who believes that minorities are more
vulnerable to overpolicing could discount their criminal histories relative to Caucasians in
their pairwise elicitations.

For each subject, the pairs they identified to be treated equally were taken as constraints
on error minimization with respect to the actual recidivism outcomes over the entire COMPAS
dataset, and our algorithm was applied to solve this constrained optimization problem, using
a linear threshold heuristic as the underlying learning oracle [33]. We ran our algorithm with
17 = 0 and variable 7 in Equations (1) through (3), which represents the strongest enforcement
of subjective fairness — the difference in predicted values must be at most v on every pair
selected by a subject. Because the issues we are most interested in here (convergence, tradeoffs
with accuracy, and heterogeneity of fairness preferences) are orthogonal to generalization
— and because we prove VC-dimension based generalization theorems — for simplicity, the
results we report are in-sample.

5.3 Results

Since our algorithm relies on a learning heuristic for which worst-case guarantees are not
possible, the first empirical question is whether the algorithm converges rapidly on the
behavioral data. We found that it did so consistently; a typical example is Figure 2a, where
we show the trajectories of model error vs. fairness violation for a particular subject’s data
for variable values of the input + (horizontal lines). After 1000 iterations, the algorithm has
converged to the optimal errors subject to the allowed ~.

Perhaps the most basic behavioral questions we might ask involve the extent and nature
of subject variability. For example, do some subjects identify constraint pairs that are much
harder to satisfy than other subjects? And if so, what factors seem to account for such
variation?

Figure 2b shows that there is indeed considerable variation in subject difficulty. For each
of the 43 subjects, we have plotted the error vs. fairness violation Pareto curves obtained by
varying v from 0 (pairs selected by subjects must have identical probabilistic predictions of
recidivism) to 1.0 (no fairness enforced whatsoever). Since our model space is closed under
probabilistic mixtures, the worst-case Pareto curve is linear, obtained by all mixtures of the
error-optimal model and random predictions. Easier constaint sets are more convex. We see
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single-Subject Trajectory for Various y's Variability of Subject Pareto Curves correlation = 0.681134
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Figure 2 (a) Sample algorithm trajectory for a particular subject at various 7. (b) Sample
subjective fairness Pareto curves for a sample of subjects. (c) Scatterplot of number of constraints
specified and number of opposing constraints vs. error at v = 0.3. (d) Scatterplot of number of
constraints where the true labels are different vs. error at v = 0.3. (e) Correlation between false
positive rate difference and ~ for racial groups.

in the figure that both extremes are exhibited behaviorally — some subjects yield linear or
near-linear curves, while others permit huge reductions in unfairness for only slight increases
in error, and virtually all the possibilities in between are realized as well. ©

Since each subject was presented with 50 random pairs and was free to constrain as many
or as few as they wished, it is natural to wonder if the variation in difficulty is explained
simply by the number of constraints chosen. In Figure 2c we show a scatterplot of the the
number of constraints selected by a subject (z axis) versus the error obtained (y axis) for
~v = 0.3 (an intermediate value that exhibits considerable variation in subject error rates) for
all 43 subjects. While we see there is indeed strong correlation (approximately 0.69), it is
far from the case that the number of constraints explains all the variability. For example,
amongst subjects who selected approximately 16 constraints, the resulting error varies over a
range of nearly 8%, which is over 40% of the range from the optimal error (0.32) to the worst
fairness-constrained error (0.5). More surprisingly, when we consider only the “opposing”
constraints, pairs of points with different true labels, the correlation (0.489) seems to be
weaker. Enforcing a classifier to predict similarly on a pair of points with different true labels
should increase the error, and yet, it is less correlated with error than the raw number of
constraints. This suggests that the variability in subject difficulty is due to the nature of the
constraints themselves rather than their number or disagreement with the true labels.

It is also interesting to consider the collective force of the 1432 constraints selected by
all 43 subjects together, which we can view as a “fairness panel” of sorts. Given that there
are already individual subjects whose constraints yield the worst-case Pareto curve, it is
unsurprising that the collective constraints do as well. But we can exploit the flexibility of
our optimization framework in Equations (1) through constraint (3), and let v = 0.0 and
vary only 7, thus giving the learner discretion in which subjects’ constraints to discount
or discard at a given budget 1. In doing so we find that the unconstrained optimal error

6 The slight deviations from true convexity are due to approximate rather than exact convergence.
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can be obtained while having the average (exact) pairwise constraint be violated by only
roughly 25%, meaning roughly that only 25% of the collective constraints account for all the
difficulty.

Finally, we can investigate the extent to which behavioral subjective fairness notions align
with more standard statistical fairness definitions, such as equality of false positive rates.
For instance, for each subject and a pair of racial groups, we take the absolute difference
in false positive rates of the classifier at v € {0.0,0.1,...,1.0} and calculate the correlation
coefficient between realized values of v (which measure violation of subjective unfairness)
and the false positive rate differences. Figure 2e shows the average correlation coefficient
across subjects for each pair of racial groups. We note that subjective fairness correlates
with a smaller gap between the false positive rates across Caucasians and African Americans:
but correlates substantially less for other pairs of racial groups.

We leave a more complete investigation of our behavioral study for future work, including
the detailed nature of subject variability and further comparison of behavioral subjective
fairness to standard algorithmic fairness notions.

6 Discussion and Limitations

We provide a framework to involve non-technical stakeholders into the process of defining
algorithmic fairness. Our approach offers a means for stakeholders to encode their more
nuanced, contextual principles of fairness into a model. By eliciting pairwise fairness
preferences, our approach is designed to be easily understood by laypeople, even if they do
not understand the technicalities of the learning algorithm. We provide theoretical guarantees,
as well as preliminary experiments to demonstrate the functionality of our algorithm.

Here, we anticipate a criticism: biases may be embedded into the model if the stakeholders
we elicit from are biased. To address this, we clarify that our approach aims to easily elicit
and operationalize what stakeholders think is fair and unbiased. As such, if stakeholders
truthfully report their preferences, then our approach should produce a model which these
stakeholders believe is unbiased. In this sense, we consider what is biased and what is fair
in our context to be subjective. While this point of view may be uncomfortable within the
algorithmic fairness community, it is a well-established argument within ethics and normative
economics [38]. Furthermore, if the design goal is for the model to achieve some objective
standard of neutrality, then we believe this should be addressed at the level of choosing which
stakeholders to elicit from and how they are elicited — see Section 1.2 for related qualitative
and HCI works which consider how to elicit fairness preferences from people. We consider
this to be an important direction for future work.”
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—— Abstract

Redistricting is the problem of dividing up a state into a given number k of regions (called districts)
where the voters in each district are to elect a representative. The three primary criteria are: that
each district be connected, that the populations of the districts be equal (or nearly equal), and
that the districts are “compact”. There are multiple competing definitions of compactness, usually
minimizing some quantity.

One measure that has been recently been used is number of cut edges. In this formulation of
redistricting, one is given atomic regions out of which each district must be built (e.g., in the U.S.,
census blocks). The populations of the atomic regions are given. Consider the graph with one vertex
per atomic region and an edge between atomic regions with a shared boundary of positive length.
Define the weight of a vertex to be the population of the corresponding region. A districting plan
is a partition of vertices into k£ pieces so that the parts have nearly equal weights and each part is
connected. The districts are considered compact to the extent that the plan minimizes the number
of edges crossing between different parts.

There are two natural computational problems: find the most compact districting plan, and
sample districting plans (possibly under a compactness constraint) uniformly at random.

Both problems are NP-hard so we consider restricting the input graph to have branchwidth at
most w. (A planar graph’s branchwidth is bounded, for example, by its diameter.) If both k and
w are bounded by constants, the problems are solvable in polynomial time. In this paper, we give
lower and upper bounds that characterize the complexity of these problems in terms of parameters
k and w. For simplicity of notation, assume that each vertex has unit weight. We would ideally like
algorithms whose running times are of the form O(f(k,w)n®) for some constant ¢ independent of k
and w (in which case the problems are said to be fized-parameter tractable with respect to those
parameters). We show that, under standard complexity-theoretic assumptions, no such algorithms
exist. However, the problems are fixed-parameter tractable with respect to each of these parameters
individually: there exist algorithms with running times of the form O(f(k)n°™) and O(f(w)n"*1).
The first result was previously known. The new one, however, is more relevant to the application to
redistricting, at least for coarse instances. Indeed, we have implemented a version of the algorithm
and have used to successfully find optimally compact solutions to all redistricting instances for France
(except Paris, which operates under different rules) under various population-balance constraints.
For these instances, the values for w are modest and the values for k are very small.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases redistricting, algorithms, planar graphs, lower bounds
Digital Object Identifier 10.4230/LIPIcs.FORC.2021.3

Related Version A version without discussion of the implementation is at:
Previous Version: http://https://arxiv.org/abs/2009.00188

Funding Philip N. Klein: Supported by National Science Foundation grant CCF-1841954.

Ddniel Marz: Supported by European Research Council (ERC) consolidator grant No. 725978
SYSTEMATICGRAPH.

Archer Wheeler: Supported by National Science Foundation grant CCF-1841954.

© Vincent Cohen-Addad, Philip N. Klein, Daniel Marx, Archer Wheeler, and Christopher Wolfram;
37 licensed under Creative Commons License CC-BY 4.0

2nd Symposium on Foundations of Responsible Computing (FORC 2021).

Editors: Katrina Ligett and Swati Gupta; Article No. 3; pp. 3:1-3:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:marx@cispa.de
https://doi.org/10.4230/LIPIcs.FORC.2021.3
http://https://arxiv.org/abs/2009.00188
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

Computational Tractability of Redistricting

Figure 1 On the left is an imaginary state/department. In the middle, the state is subdivided
into smaller regions (atoms), e.g. census tracts. On the right, the planar dual is shown. Each atomic
region is represented by a node. (There is also a node for the single infinite region outside the state
boundary but here we ignore that node here.) For each maximal contiguous boundary segment
between a pair of atomic regions, the planar dual has an edge between the corresponding pair of
nodes.

Figure 2 The figure on the left shows an example of a districting plan with seven districts. Each
district is the union of several atomic regions. The figure in the middle depicts the districting plan
superimposed on the planar dual, showing that it corresponds to a partition of the atoms into
connected parts; the cost of the solution is the sum of costs of edges of the dual that cross between
different parts. In this paper, a districting plan is compact to the extent that this sum of costs is
small. The figure on the right illustrates a breadth-first search in the radial graph of the graph G of
atomic regions. As stated in Section 2.2, the radial graph of G has a node for every vertex of G and
a node for every face of GG, and an edge between a vertex-node and a face-node if the vertex lies on
the face’s boundary. This diagram shows that every face is reachable from the outer face within six
hops in the radial graph of the graph G of atomic regions. This implies that the branchwidth of G
and of its dual are at most six.

1 Introduction

For an undirected planar graph G with vertex-weights and a positive integer k, a connected
partition of the vertices of G is a partition into parts each of which induces a connected
subgraph. If G is equipped with nonnegative integral vertex weights and [L, U) is an interval
we say such a partition has part-weight in [L,U) if the sum of weights of each part lies in the
interval. If G is equipped with nonnegative edge costs, we say the cost of such a partition is
the sum of costs of edges uv where u and v lie in different parts.

Consider the following computational problems:

optimization: Given a planar graph G with vertex weights and edge costs, a number k,
and a weight interval [L,U), find the minimum cost of a partition into k connected parts
with part-weight in [L, U).

sampling: Given in addition a number C, generate uniformly at random a cost-C' partition
into k connected parts with part-weight in [L, U).
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These problem arise in political redistricting. Each vertex represents a small geographical
region (such as a census block or census tract or county), and its weight represents the
number of people living in the region. Each part is a district. A larger geographic region
(such as a state) must be partitioned into k districts when the state is to be represented in
a legislative body by k people; each district elects a single representative. The partition is
called a districting plan.

The rules governing this partitioning vary from place to place, but usually there are (at
least) three important goals: contiguity, population balance, and compactness.t

Contiguity is often interpreted as connectivity; we represent this by requiring that the set

of small regions forming each district is connected via shared boundary edges.

Population balance requires that two different districts have approximately equal numbers

of people.

One measure of compactness that has been advocated e.g. by DeFord, Duchin, Solomon,

and Tenner [7, 8, 11, 12] is the number of pairs of adjacent small regions that lie in distinct

districts, equivalent to the cardinality of the cut-set corrresponding to the partition.
Thus in the definitions of the optimization and sampling problems above, the connectiv-
ity constraint reflects the contiguity requirement, the part-weight constraint reflects the
population balance requirement, and the cost is a measure of compactness.

The optimization problem described above arises in computer-assisted redistricting; an
algorithm for solving this problem could be used to select a districting plan that is optimally
compact subject to contiguity and desired population balance, where compactness is measured
as discussed above.

The sampling problem arises in evaluating a plan; in court cases [4, 35, 24, 23, 36] expert
witnesses argue that a districting plan reflects an intention to gerrymander by comparing it
to districting plans randomly sampled from a distribution. The expert witnesses use Markov
Chain Monte Carlo (MCMC), albeit unfortunately on Markov chains that have not been
shown to be rapidly mixing, which means that the samples are possibly not chosen according
to anything even close to a uniform distribution. There have been many papers addressing
random sampling of districting plans (e.g. [1, 3, 8, 23, 24]) but, despite the important role of
random sampling in court cases, there are no results on provably uniform or nearly uniform
sampling from a set of realistic districting plans for a realistic input in a reasonable amount
of time.

It is known that even basic versions of these problems are NP-hard. If the vertex weights
are allowed to very large integers, expressed in binary, the NP-hardness of SUBSET Sum
already implies the NP-completeness of partitioning the vertices into two equal-weight subsets.
However, in application to redistricting the integers are not very large. For the purpose of
seeking hardness results, it is better to focus on a special case, the unit-weight case, in which
each vertex has weight one. For this case, Dyer and Frieze [13] showed that, for any fixed
p > 3, it is NP-hard to find a weight-balanced partition of the vertices of a planar graph
into connected parts of size p. Najt, Deford, and Solomon [33] showed that even without the
constraint on balance, uniform sampling of partitions into two connected parts is NP-hard.

Following Ito et al. [27, 26] and Najt et al. [33], we therefore consider a further restriction
on the input graph: we consider graphs with bounded branchwidth /treewidth.?

1 These terms are often not formally defined in law.
2 Treewidth and branchwidth are very similar measures; they are always within a small constant factor of
each other. Thus a graph has small treewidth if and only if it has small branchwidth.
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Figure 3 This map shows the twenty-one cantons for the department “Sarthe” of France. The
cantons are the atomic regions for the redistricting of Sarthe. The corresponding radial graph has
radius six, so there is a branch decomposition of width w = 6. For the upcoming redistricting of
France, Sarthe must be divided into k& = 3 districts.

The branchwidth of a graph is a measure of how treelike the graph is: often even an
NP-hard graph problem is quickly solvable when the input is restricted to graphs with low
branchwidth. For planar graphs in particular, there are known bounds on branchwidth that
are relevant to the application. A planar graph on n vertices has branchwidth O(y/n), and a
planar graph of diameter d has branchwidth O(d). There is an stronger bound, which we
will review in Section 2.2.

Najt, Deford, and Solomon [33] show that, for any fixed k and fixed w, the optimization and
sampling problems without the constraint on population balance can be solved in polynomial
time on graphs of branchwidth at most w.? Significantly, the running time is of the form
O(f(k,w)n®) for some constant ¢. Such an algorithm is said to be fized-parameter tractable
with respect to k and w, meaning that as long as k and w are fixed, the problem is considered
tractable. Fixed-parameter tractability is an important and recognized way of coping with
NP-completeness.

However, their result has two disadvantages. First, as the authors point out, the big O
hides a constant that is astronomical; for NP-hard problems, one expect that the dependence
on the parameters be at least exponential but in this case it is a tower of exponentials. As
the authors state, the constants in the theorems on which they rely are “too large to be
practically useful.”

Second, because their algorithm cannot handle the constraint on population balance, the
algorithm would not be applicable to redistricting even if it were tractable. The authors
discuss (Remark 5.11 in [33]) the extension of their approach to handle balance: “It is easy to
add a relational formula...that restricts our count to only balanced connected k-partitions....
From this it should follow that ... [the problems are tractable]. However ... the corresponding
meta-theorem appears to be missing from the literature.”

In our first result, we show that in fact what they seek does not exist: under a stand-
ard complexity-theoretic assumption, there is no algorithm that is fixed-parameter
tractable with respect to both k and w.

More precisely, we use the analogue of NP-hardness for fixed-parameter tractability,
W1]-hardness. We show the following in Section 4.

3 They use treewidth but the results are equivalent.



V. Cohen-Addad, P. N. Klein, D. Marx, A. Wheeler, and C. Wolfram

» Theorem 1. For unit weights, finding a weight-balanced k-partition of a planar graph of
width w into connected parts is W[1]-hard with respect to k + w.

In the theory of fixed-parameter tractability (see e.g. Section 13.4 of [6]) this is strong
evidence that no algorithm exists with a running time of the form O(f(k,w)n®) for fixed ¢
independent of k and w.

This is bad news but there is a silver lining. The lower bound guides us in seeking
good algorithms, and it does not rule out an algorithm that has a running time of the form
F(E)nC®) or f(w)n®®). That is, according to the theory, while there is no algorithm that
is fixed-parameter tractable with respect to both k& and w simultaneously, there could be one
that is fixed-parameter tractable with respect to k alone and one that is fixed-parameter
tractable with respect to w alone.

These turn out to be true. First we discuss fixed-parameter tractability with respect to
k. Tto et al. [27, 26] show that, even for general (not necessarily planar) graphs there is an
algorithm with running time O((w + 1)2W+DU2(w+DE2n) where U is the upper bound on
the part weights. Thus for unit weights, the running time is O((w 4 1)2(w+1p2w+3),

However, for the application we have in mind this is not the bound to try for. Indeed,
the motivation for this project arose from a collaboration between the first author and some
other researchers. That team, in anticipation of the upcoming redistricting in France, sought
to find good district plans with respect to various criteria for French departments. Their
approach was to develop code that, for each department, would explicitly enumerate all
district plans that (a) are connected and (b) are population-balanced to within 20% of the
mean. Their effort succeeded on all but three departments (not including Paris, which follows
different rules): Doubs (25), Sadne-et-Loire (71) and, Seine-Maritime (76). The question
arose: could another algorithmic approach succeed in finding optimal district plans for these
under some objective function? We observed that the numbers of districts tend to be wvery
small (sixty-three out of about a hundred departments have between two and five districts,
and the average is a little over three.) The number of atoms of course tends to be much
larger, but the diameter of the graph is often not so large, and hence the same is true for
branchwidth.*

Thus, to address such instances, we need an algorithm that can tolerate a very small
number k of districts and a moderately small branchwidth w. We prove the following in
Section 5.

» Theorem 2. For the optimization problem and the sampling problem, there are algorithms
that run in O(c*U*Sn(log U +log S)) time, where c is a constant, k is the number of districts,
w >k is an upper bound on the branchwidth of the planar graph, n is the number of vertices
of the graph, U is the upper bound on the weight of a part, and S is an upper bound on the
cost of a desired solution.

Remarks.

1. In the unit-cost case (every edge cost is one), S < n.

2. In the unit-weight, unit-cost case, the running time is O(c*n**2logn).

3. For practical use the input weights need not be the populations of the atoms; if approximate

population is acceptable, the weight of an atom with population p can be, e.g., [p/1000].

4 For example, the French redistricting instances all have branchwidth at most eight; the average is about
five.
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In order to demonstrate that the theoretical algorithm is not inherently impractical, we
developed an implementation for the optimization problem, and successfully applied it to find
solutions for the redistricting instances in France. French law requires that the population
of each department needs to be within 20% of the mean. The implementation found the
cut-size-minimizing solutions subject to the 20% population balance constraint, and subject
to a 10% population balance constraint. Using a 5% population balance constraint, we
found optimal solutions for over half of the departments. We briefly describe the results in
Section 6, and we illustrate some district plans in the full version of the paper.

2 Preliminaries

2.1 Branchwidth

A branch decomposition of a graph G is a rooted binary tree with the following properties:
1. Each node x is labeled with a subset C(z) of the edges of G.
2. The leaves correspond to the edges of G: for each edge e, there is a leaf x such that

C(z) = {e}.

3. For each node x with children z; and x2, C(z) is the disjoint union of C(z1) and C(z3).
We refer to a set C(x) as a branch cluster. A vertex v of G is a boundary vertex of C(x) if G
has at least one edge incident to v that is in C'(z) and at least one edge incident to v that
is not in C'(z). The width of a branch cluster is the number of boundary vertices, and the
width of a branch decomposition is the maximum cluster width. The branchwidth of a graph
is the minimum w such that the graph has a branch decomposition of width w.

For many optimization problems in graphs, if the input graph is required to have small
branchwidth then there is a fast algorithm, often linear time or nearly linear time, and often
this algorithm can be adapted to do uniform random sampling of solutions. Therefore Najt,
Deford, and Solomon [33] had good reason to expect that there would be a polynomial-
time algorithm to sample from balanced partitions where the degree of the polynomial was
independent of w and k.

2.2 Radial graph

For a planar embedded graph G, the radial graph of GG has a node for every vertex of G and
a node for every face of G, and an edge between a vertex-node and a face-node if the vertex
lies on the face’s boundary. Note that the radial graph of G is isomorphic to the radial graph
of the dual of G. There is a linear-time algorithm that, given a planar embedded graph G
and a node r of the radial graph, returns a branch decomposition whose width is at most the
number of hops required to reach every node of the radial graph from r (see, e.g., [30]). For
example, Figure 2 shows that the number of hops required is at most six, so the linear-time
algorithm would return a branch decomposition of width w at most six.

Using this result, some real-world redistricting graphs can be shown to have moderately
small branchwidth. For example, Figure 3 shows a department of France, Sarthe, that will
need to be divided into k& = 3 districts. The number of hops required for this example is six,
so we would get a branch decomposition of width w at most six.

2.3 Sphere-cut decomposition

The branch decomposition of a planar embedded graph can be assumed to have a special
form. The radial graph of G can be drawn on top of the embedding of G so that a face-node
is embedded in the interior of a face of G and a vertex-node is embedded in the same location
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as the corresponding vertex. We can assume that the branch decomposition has the property
that corresponding to each branch cluster C' is a cycle in the radial graph that encloses
exactly the edges belonging to the cluster C, and the vertices on the boundary of this cluster
are the vertex-nodes on the cycle. This is called a sphere-cut decomposition [10]. If the branch
decomposition is derived from the radial graph using the linear-time algorithm mentioned
above, the sphere-cut decomposition comes for free. Otherwise, there is an O(n?) algorithm
to find a given planar graph’s least-width branch decomposition, and if this algorithm is
used it again gives a sphere-cut decomposition.

3 Related work

There is a vast literature on partitioning graphs, in particular on partitions that are in
a sense balanced. In particular, in the area of decomposition of planar graphs, there are
algorithms [37, 34, 38] for sparsest cut and quotient cut, in which the goal is essentially to
break off a single piece such that the cost of the cut is small compared to the amount of
weight on the smaller side. The single piece can be required to be connected. There are
approximation algorithms for variants of balanced partition [19, 17] into two pieces. These
only address partitioning into k = 2 pieces, the pieces are not necessarily connected, and
the balance constraint is only approximately satisfied. In one paper [29], the authors use a
variant of binary decision diagrams to construct a compact representation of all partitions of
a graph into k connected parts subject to a balance constraint. However, their algorithm
does not address the problem of minimizing the size of the cut-set.

There are many papers on algorithms relevant to computer-aided redistricting (a few
examples are [5, 14, 22, 25, 32, 18]). Note that in this paper we focus on algorithms that
have guaranteed polynomial running times (with respect to fixed parameters k and w) and
that are guaranteed to find optimal solutions or that provably generate random solutions
according to the uniform distribution. There has been much work on using Markov Chain
Monte Carlo as a heuristic for optimization or for random generation but so far such methods
are not accompanied by mathematical guarantees as to running time or quality of output.

Finally, there many papers on W[l]-hardness and more generally lower bounds on fixed-
parameter tractability, as this is a well-studied area of theoretical computer science. Our
result is somewhat rare in that most graph problems are fixed-parameter tractable with
respect to branchwidth/treewidth. However, there are by now other W{[1]-hardness results
with respect to treewidth [9, 2, 16, 31, 21, 20] and a few results [2, 15] were previously known
even under the restriction that the input graph must be planar.

4 W/[1]-Hardness

In this section, we show that the problem is W[1]-hard parameterized by k + w, where k is
the number of districts and w the treewidth of the graph.

We start with the following lemma that shows that it is enough to prove that a more
structured version of the problem (bounded vertex weights, each region must have size greater
than 1) is W[1]-hard.

» Lemma 3. If the planar vertez-weighted version of the problem is W[1]-hard parameterized
by k + w when the total weight of each region should be greater than 1, and the smallest
weight is 1 and the largest weight is polynomial in the input size, then the planar unweighted
version of the problem is W[1]-hard parameterized by k + w.

3:7

FORC 2021



3:8

Computational Tractability of Redistricting

Proof. Consider a weighted instance of the problem satisfying the hypothesis of the lemma.
Let wmin and Whax respectively denote the minimum and maximum weights. First, rescale
all the weights of the vertices so as to make them integers. Since the input weights are
rationals and Wi,ax is polynomial in the input size, this does not change the size complexity
of the problem by more than a polynomial factor. We now make the following transformations
to the instance. For each vertex v of weight w(v), create w(v) — 1 unit-weight dummy vertices
and connect each of them to v with a single edge, then remove the weight of v.

This yields a unit-weight graph which satisfies the following properties. First, if the input
graph was planar, then the resulting graph is also planar. Second, since the ratio Wi,ay is
polynomial in the input size, the total number of vertices in the new graph is polynomial in
the input size. Finally, any solution for the problem on the vertex-weighted graph can be
associated to a solution for the problem on the unit-weight graph: for each vertex v of the
original graph, assign each of the w(v) — 1 dummy vertices to the same region as v. We have
that the associated solution has connected regions of exactly the same weight as the solution
in the weighted graph. Moreover, we claim that any solution for the unit-weight graph
is associated to a solution of the input weighted graph: this follows from the assumption
that the prescribed weights for the regions is greater than 1 and that the regions must be
connected. Thus for each vertex v, in any solution all the w(v) — 1 dummy vertices must
belong to the region of v.

Therefore, if the planar vertex-weighted version of the problem is W[1]-hard parameterized
by k 4+ w when the smallest weight is at least 1, the total weight of each region should be
greater than 1, and the sum of the vertex weights of the graph is polynomial in the input size,
then the planar unit-weight version of the problem is W[1]-hard parameterized by k+w. <

By Lemma 3, we can focus without loss of generality on instances G = (V, E),w : V — R,
where the vertex weights w lie in the interval [1,|V|¢] for some absolute constant ¢. We next
show that the problem is W[1]-hard on these instances.

We reduce from the Bin Packing problem with polynomial weights. Given a set of integer
values vy, ...,v, and two integers B and k, the Bin Packing problem asks to decide whether
there exists a partition of vq,...,v, into k parts such that for each part of the partition,
the sum of the values is at most B. The Bin Packing problem with polynomially bounded
weights assumes that there exists a constant ¢ such that B = O(n¢). Note that for the case
where the weights are polynomially bounded, we can assume w.l.o.g. that the sum of the
weights is exactly kB by adding kB — ", v; elements of value 1. Since the weights are
polynomially bounded and that each weight is integer we have that (1) the total number of
new elements added is polynomial in n, hence the size of the problem is polynomial in n, and
(2) there is a solution to the original problem if and only if there is a solution to the new
problem: the new elements can be added to fill up the bins that are not full in the solution
of the original problem.

We will make use of the following theorem of Jansen et al. [28].

» Theorem 4 ([28]). The Bin Packing problem with polynomial weights is W[1]-hard para-
meterized by the number of bins k. Moreover, there is no f(k)no(k/ 1ogk) time algorithm
assuming the exponential time hypothesis (ETH).

We now proceed to the proof of Theorem 1. From an instance of Bin Packing with
polynomially bounded weights and whose sum of weights is kB, create the following instance
for the problem. For each i € [2n + 1], create
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[ {k if 4 is odd

k+1 ifdiseven

vertices s}, ..., sf Let S; = {s},..., sf(i)}. Moreover, for each odd 7 < n, for each 1 < j <k,
connect s to s7_, and s/ 41, and when j <k, also to s/ and sfill . Let G be the resulting
graph.
It is easy to see that G is planar. We let f., be the longest face:

{sh,. .., sh shtt sk o sh sggil, e SEn 1y Saps s SB)

We claim that the treewidth of the graph is at most 7k. To show this we argue that the
face-vertex incidence graph G of G has diameter at most 2k + 4 and by Lemma 3 this
immediately yields that the treewidth of G is at most 10k. We show that each vertex of G is
at hop-distance at most k + 2 of the vertex corresponding to f... Indeed, consider a vertex
sf (for a face, consider a vertex sg on that face). Recall that for each i, jo, we have that szg

is adjacent to sgj_l and sffl'l and so, s{ is at hop-distance at most k + 1 from either sf(i)

or s} in G. Moreover both s} and st are on face foo and so sf is at hop-distance at most
k+2 from fo in G. Hence the treewidth of G is at most 10k.

Our next step is to assign weights to the vertices. Then, we set the weight w(sf) of
every vertex s/ of {sl,...,s%} to be (kB)? and the weight w(s?) of every vertex s/ of
{83n41s---+ 55,11} to be (kB)1. For each odd i # 1,2n + 1 we set a weight of 1/(2n — 2).
Finally, we set the weight of each vertex sf where i is even to be v;/5. Let T = (kB)? +
(kB)* +1/2+ kB, and recall that kB =" v;.

» Fact 1. Consider a set S of vertices containing exactly one vertex of S; for each i. Then
the sum of the weights of the vertices in S is T.

We now make the target weight of each region to be (kB)? + (kB)* + kB+ B =T + B.
We have the following lemma.

» Lemma 5. In any feasible solution to the problem, there is exactly 1 vertex of {si,..., s¥}
and exactly 1 vertex of {sk sfl(n)} in each region.

nyce

Proof. Recall that by definition we have that ) . v; = kB. Moreover, the number of
vertices with weight equal to (kB)? is exactly k. Thus, since the target weight of each region
is (kB)? + (kB)* + B + kB, each region has to contain exactly 1 vertex from {si,..., sV}
and exactly 1 vertex from {si, ..., s2™1}. <

We now turn to the proof of completeness and soundness of the reduction. We first show
that if there exists a solution to the Bin Packing instance, namely that there is a partition
into k parts such that for each part of the partition, the sum of the values is B, then there
exists a feasible solution to the problem. Indeed, consider a solution to the Bin Packing
instance {By,..., Br} and construct the following solution to the problem. For each odd
i, assign vertices s},...,s¥ to regions Ry,..., Rj respectively. For each i € [n], perform
the following assignment for the even rows. Let u; be the integer in [k] such that v; € B,,.
Assign all vertices si;, ..., sgfl to regions Ry, ... R,,_1 respectively. Assign both vertices
4 and s4i T to region R,,. Assign all vertices syi 2, ... s5! to regions Ry, y1,... Ry. The
connectivity of the regions follows from the fact that for each odd <, sg is connected to both
ng and sfill and to both s/ and s77].

We then bound the total weight of each region. Let’s partition the vertices of a region R;
into two: Let Sg; be a set that contains one vertex from each S; and let S;zj be the rest of

the elements. The total weight of the vertices in Sg, is by Fact 1 exactly 7. The total weight

3:9

FORC 2021



3:10

Computational Tractability of Redistricting

of the remaining vertices corresponds to the sum of the values v; such that |R; N.S;| = 2
which is Zvi eB, Vi = B since it is a solution to the Bin Packing problem. Hence the total
weight of the region is T'+ B, as prescribed by the problem.

We finally prove that if there exists a solution for the problem with the prescribed region
weights, then there exists a solution to the Bin Packing problem. Let Ri,..., R; be the
solution to the problem. By Lemma 5, each region contains one vertex of si,...s¥ and one
vertex of si,...sk ... Since the regions are required to be connected, there exists a path
joining these two vertices and so by the pigeonhole principle for each odd i, each region
contains exactly one vertex of s%, oo sf Moreover for each even i, each region contains at
least one vertex of s,...s""1 and exactly one region contains two vertices. Let ¢(i) € [k]
be such that [Ry) N {s},... sFT11| = 2. We now define the following solution for the Bin
Packing problem. Define the jth bin as B; = {v; | ¢(i) = j}. We claim that for each bin B;
the sum of the weights of the elements in B; is exactly B. Indeed, observe that region R;

contains exactly one vertex of s!,...s¥ for each odd i and exactly one vertex of s},...s"*?

k+1
%

vertices. Thus by Fact 1, the total sum of the weights is T + Zu #(i)=j Vi and since the target
weight is T'+ B we have that Zi|¢(z‘):j v; = B. Since the weight of B; is exactly Zi|¢(i):j v;
the proof is complete.

for each even i except for the sets si,...s where ¢(i) = j for which it contains two

5 Algorithm

In this section, we describe the algorithms of Theorem 2. In describing the algorithm, we
will focus on simplicity rather than on achieving the best constant possible as the base of k.

5.1 Partitions

A partition of a finite set 2 is a collection of disjoint subsets of {2 whose union is Q. A
partition defines an equivalence relation on : two elements are equivalent if they are in the
same subset,.

There is a partial order on partitions of Q: m < 7y if every part of 7 is a subset of a
part of mo. This partial order is a lattice. In particular, for any pair 71, mo of partitions of
2, there is a unique minimal partition 73 such that m; < 73 and 7o < 73. (By minimal, we
mean that for any partition m4 such that m; < w4 and my < 74, it is the case that w3 < my4.)
This unique minimal partition is called the join of m; and 7o, and is denoted 7 V 5.

It is easy to compute 7w V m: initialize 7 := 71, and then repeatedly merge parts that
intersect a common part of mo.

In a slight abuse of notation, we define the join of a partition m; of one finite set {; and
a partition 7o of another finite set €25. The result, again written m; V w9, is a partition of
Q1 U Q. It can be defined algorithmically: iniitalize 7 to consist of the parts of mo, together
with a singleton part {w} for each w € Qs — Q1. Then repeatedly merge parts of 7 that
intersect a common part of .

5.2 Noncrossing partitions

The sphere-cut decomposition is algorithmically useful because it restricts the way a graph-
theoretic structure (such as a solution) can interact with each cluster. For a cluster C,
consider the corresponding cycle in the radial graph, and let 8¢ be the cyclic permutation
(v1 v2 -+ vy) of boundary vertices in the order in which they appear in the radial cycle.
(By a slight abuse of notation, we may also interpret ¢ as the set {vy,..., v}
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First consider a partition p'™ of the vertices incident to edges belonging to C, with the
property that each part induces a connected subgraph of C. Planarity implies that the
partition induced by p'™ on the boundary vertices {vi,..., v, } has a special property.

» Definition 6. Let 7 be a partition of the set {1,...,m}. We say 7 is crossing if there are
integers a < b < ¢ < d such that one part contains a and ¢ and another part contains b and d.

It follows from connectivity that the partition induced by p'™ on the boundary vertices
Oc is a noncrossing partition. Similarly, let p°** be a partition of the vertices incident to

out

edges that do not belong to C; then p°"* induces a noncrossing partition on the boundary
vertices of C.

The asymptotics of the Catalan numbers imply the following (see, e.g., [10]).

» Lemma 7. There is a constant c¢; such that the number of noncrossing partitions of

{1,...,w} is O(c}).

Finally, suppose p is a partition of all vertices of G such that each part is connected.
Then p = p" V p°U* where p'™ is a partition of the vertices incident to edges in C' (in which

t is a partition of the vertices incident to edges not in C (in

each part is connected) and p°*
which each part is connected).
Because the only vertices in both p™ and p°** are those in ¢, the partition p induces

out

on f¢ is 7 V °% where 7" is the partition induced on 8¢ by p™™ and 7°U is the partition

induced on 6¢c by p°ut.

5.3 Algorithm overview

The algorithms for optimization and sampling are closely related.

The algorithms are based on dynamic programming using the sphere-cut decomposition
of the planar embedded input graph G.

Each algorithm considers every vertex v of the input graph and selects one edge e that is
incident to v, and designates each branch cluster that contains e as a home cluster for v.

We define a topological configuration of a cluster C' to be a pair (7%, 7°U%) of noncrossing
partitions of 6 with the following property:
7V % has at most k parts. (1)

The intended interpretation is that there exist p™ and p°"* as defined in Section 5.2 such

that ¢™ is the partition p™™ induces on fc and ¢°"! is the partition p°"* induces on ¢.

We can assume that the vertices of the graph are assigned unique integer IDs, and that
therefore there is a fixed total ordering of f-. Based on this total ordering, for any partition
7 of O, let p be the number of parts of 7, and define representatives(w) to be the p-vector
(v1,v2,...,vp) obtained as follows:

v1 is the smallest-ID vertex in 6¢,

v9 is the smallest-ID vertex in ¢ that is not in the same part as vy,

vg is the smallest-ID vertex in 6¢ that is not in the same part as v; and is not in the

same part as va,
and so on.

This induces a fixed total ordering of the parts of 7™ v 7°ut,

We define a weight configuration of C to be a k-vector w = (w1, ..., wy) where each w;
is a nonnegative integer less than U. There are U* such vectors.

We define a weight/cost configuration of C to be a k-vector together with a nonnegative
integer s less than S. There are U*S such configurations.
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We define a configuration of C to be a pair consisting of a topological configuration and
a weight /cost configuration. The number of configurations of C' is bounded by c*U*S.

The algorithms use dynamic programming to construct, for each cluster C, a table
Te indexed by configurations of C. In the case of optimization, the table entry T¢[¥]
corresponding to a configuration ¥ is true or false. For sampling, T¢[¥] is a cardinality.

Let ¥ = ((x™, 7°%), ((w1,...,wg),s)) be a configuration of C. Let count(¥) be the
number of partitions p™ of the vertices incident to edges belonging to C' with the following
properties:

p™ induces 7™ on 6.

Let 7 = m" vV ¢°"*. Let representatives(m) = (vq,...,v,). Then for j = 1,...,p, w; is

the total weight of vertices v for which C is a home cluster and such that v belongs to

i t
the same part of p™ V 7°"" as v;.

For optimization, T¢[P] is true if count(¥) is nonzero. For sampling, Te[¥] = count (V).
We describe in Section 5.5 how to populate these tables. Next we describe how they can be
used to solve the problems.

5.4 Using the tables

For the root cluster C, the cluster that contains all edges of G, 04 is empty. Therefore there
is only one partition of 64, the trivial partition 7y consisting of a single part, the empty set.

To detemine the optimum cost in the optimization problem, simply find the minimum
nonnegative integer s such that, for some w = (wy, ..., wx) such that each w; lies in [L,U),
the entry T [((7o, mo), (w, s))] is true. To find the solution with this cost, the algorithm needs
to find a “corresponding” configuration for each leaf cluster C'({uv}) ; that configuration tells
the algorithm whether the two endpoints v and v are in the same district. This information
is obtained by a recursive algorithm, which we presently describe.

Let Cy be a cluster with child clusters C; and Cs. For i = 0,1,2, let (7", 79"%) be a
topological configuration for cluster C;. Then we say these topological configurations are
consistent if the following properties hold:

For i = 1,2, 79" = rout v/ i .

i = mit v e,

For i =0,1,2, let (w;, s;) be a weight/cost configuration for C;. We say they are consistent
if wyg = wq + wo and sg = s1 + S9.

Finally, for i = 0,1,2, let ¥; = ((71*, 7%%), (w;, s;)) be a configuration for cluster C;.
Then we say ¥, Uy, U3 are consistent if the topological configurations are consistent and
the weight/cost configurations are consistent.

» Lemma 8. For a configuration Vg of Co, count(Wo) = >y, g, count(¥1)- count(V¥2) where
the sum is over pairs (U1, ¥s) of configurations of C1,Cy such that Uy, Uy, Wy are consistent.

The recursive algorithm, given a configuration ¥ for a cluster C' such that To[¥] is
true, finds configurations for all the clusters that are descendants of C' such that, for each
nonleaf descendant and its children, the corresponding configurations are consistent; for
each descendant cluster C’, the configuration ¥’ selected for it must have the property that
Te V'] is true.

The algorithm is straightforward:



V. Cohen-Addad, P. N. Klein, D. Marx, A. Wheeler, and C. Wolfram 3:13

Algorithm 1 DESCEND(Cy, ¥o).

define DESCEND(Co, Wo):
precondition: Tcy[¥o] = true
assign Yo to Co
if Cy is not a leaf config
for each config ¥y = ((7®, 79"%), (w1, 51)) of Cy’s left child C1,
if Te, [W4] is true
for each topological config (75", 73%) of Co’s right child C
let (w2, s2) be the weight/cost config of C> such that
Wy, U1, Uy are consistent
where Uy = (75, 73"), (w2, 52))
if Te, [U2] = true
call DESCEND(C', ¥1) and DESCEND(C2, ¥3)
return, exiting out of loops

Lemma 8 shows via induction from root to leaves that the procedure will successfully
find configurations for all clusters that are descendants of Cy. For the root cluster C' and a
configuration W of C' such that T [¥] is true, consider the V¢ configurations found for each

leaf cluster, and let (w2, 72%%) be the topological configuration of ¥ Consider the partition

p=\r&
C

where the join is over all leaf clusters C. Because there are no vertices of degree one, for each
leaf cluster C({uv}), both w and v are boundary vertices, so p is a partition of all vertices
of the input graph. Induction from leaves to root shows that this partition agrees with the
weight /cost part (W, §) of the configuration V. In particular, the weights of the parts of p
correspond to the weights of w, and the cost of the partition equals §.

In the step of DESCEND that selects (wa, s2), there is exactly one weight/cost config that
is consistent (it can be obtained by permuting the elements of w; and then subtracting from
wy and subtracting s; from sg). By an appropriate choice of an indexing data structure to
represent the tables, we can ensure that the running time of DESCEND is within the running
time stated in Theorem 2. For optimization, it remains to show how to populate the tables.

Algorithm 2 DESCEND(Co, Yo, p).

define DESCEND(Co, ¥o, p):
precondition: p < Te,[Pol
assign ¥y to Co
if Cp is not a leaf config
for each config U1 = ((mi*, 7"), (w1, 51)) of Co’s left child C1,
for each topological config (75, 7$"*) of Cy’s right child Ca
let (w2, s2) be the weight/cost config of Cs such that
o, Wy, Uy are consistent
where ¥y = ((75*, 75", (w2, s2))
A i=To, V1] - To, [Vs]
ifp<A
q:= |p/Tc,[¥2]]
r:=r mod T, [Vs]
call DESCEND(C1, U1, q) and DESCEND(C?, Uq, 1)
return
else p := p — A and continue

FORC 2021
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Induction shows that this procedure, applied to root cluster C and a configuration ¥ and
an integer p < Té[\i/], selects the pt" solution among those “compatible” with . This can
be used for random generation of solutions with given district populations and a given cost.
Again, the running time for the procedure is within that stated in Theorem 2.

5.5 Populating the tables

For this section, let us focus on the tables needed for sampling. Populating the table for
a leaf cluster is straightforward. Therefore, suppose Cy is a cluster with children C; and

of 900 5
in __out out

of f¢,, there are unique partitions «§*, 7", 75"* such that the topologlcal configurations

(7T(1)n 7T8ut) (771111771_(1)ut) (7T1211,7T§ut)

out 1n

Ca. We first observe that, given noncrossing partitions = of Oc,, and 7
are consistent. (The formulas that show this are in the
pseucode below.)

The second observation: consider a configuration ¥y = (ko, (wo,so)) of Cyp. Then
count(¥y) is

Z Z count((k1, (w1, s1))) - count((Ka, (wa, s2))) (2)

k1,62 (w1,81),(w2,52)

where the first sum is over pairs of topological configurations x; for C7 and and ko where
Ko, K1, ko are consistent, and the second sum is over pairs of weight/cost configurations that
are consistent with (wy, sg). Note that because of how weight/cost configuration consistency
is defined, the second sum mimics multivariate polynomial multiplication. We use these
observations to define the procedure that populates the table for Cy from the tables for C
and Cs.

Algorithm 3 CoMBINE(Cy, C1, C2).

def COMBINE(Cy, C1, C):
initialize each entry of T¢, to zero
for each noncrossing partition 75" of ¢,

for each noncrossing partition 7' of ¢,
for each noncrossing partition 73" of fc,

W?Ut 7,l_8ut V, 7T§n

WSUt _ 7,l_gu‘n V; 71_iln
=it v e
comment: now we populate entries of T¢,[-] indexed by
configurations of Cy with
topological configuration (mf, 7g"").
fori=1,2,
let p;(x,y) be a polynomial over variables z1, ..., 2k, y
such that the coefficient of 2} -- -z *y*
is To (2, 78, ((wa, .- wi), 5))]
let p(x,y) be the product of pi(x,y) and p2(x,y)
for every weight/cost configuration ((wi,...,ws),s)
add to T[((7d, 7§"), (w1, . . ., wk), 8))] the
coefficient of 1" - - -z, *y® in p(x,y)

w

The three loops involve at most ¢ iterations, for some constant ¢. Multivariate polynomial
multiplication can be done using multidimensional FFT. The time required is O(N log N),
where N = U*S. (This use of FFT to speed up an algorithm is by now a standard algorithmic
technique.) It follows that the running time of the algorithm to populate the tables is as

described in Theorem 2.
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6 Implementation, and application to redistricting in France

Our implementation differs from the algorithm described in Section 5 in a few minor ways.
Each configuration stores the populations of districts that intersect its boundary in a canonical
order, as opposed to storing a k-vector containing the populations of all k£ districts. This
reduces the number of configurations by reducing the redundancy of multiple configurations
which are the same up to the ordering of the districts.

Also, our implementation does not use the FFT-based method for combining configura-
tions; that method is helpful when the number of configurations is close to the maximum
possible number but we expect that in practice the number will be substantially lower.

To demonstrate the effectiveness of our implementation, we applied it to the redistricting
instances in France. There are about a hundred departments in France. The atoms are
called cantons. For each department, one must find a partition of the cantons. Each part
must be connected and each part’s population can differ from the average by at most 20%.
Omitting the special department of Paris (because its structure and rules are different)
and the departments for which the target number of districts is one, we are left with
eighty departments. The implementation was able to find solutions for every department.
Additionally we were able to find solutions for over half of the departments with a tighter
bound of 5%.

We were able to compute these solutions for all departments on a single machine within
eight hours. As shown in Figure 5 the cut edge size of the optimal solution increases only
slightly as the population constraint increases. This data suggests there is little downside to
creating departments with closer populations when such a solution exists.

6.1 Example: Sarthe

Consider for example the department Sarthe. We specify that the minimum population of a
district is 150,000 and the maximum population is 200,000. The computation took about 30
seconds on a single core of a 2018 MacBook Pro (Figure 4a).

Moutiers; )

Pré-en-Pail suporche |

Villainesla-Juhel b
= Nogerts-Rotrou

(a) A districting of the cantons of Sarthe, France, (b) Sarthe with seven districts.
generated with four districts.
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instances for which our implementation finds a solution.
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—— Abstract

Decision makers increasingly rely on algorithmic risk scores to determine access to binary treatments
including bail, loans, and medical interventions. In these settings, we reconcile two fairness criteria
that were previously shown to be in conflict: calibration and error rate equality. In particular, we
derive necessary and sufficient conditions for the existence of calibrated scores that yield classifications
achieving equal error rates at any given group-blind threshold. We then present an algorithm that
searches for the most accurate score subject to both calibration and minimal error rate disparity.
Applied to the COMPAS criminal risk assessment tool, we show that our method can eliminate error
disparities while maintaining calibration. In a separate application to credit lending, we compare our
procedure to the omission of sensitive features and show that it raises both profit and the probability
that creditworthy individuals receive loans.
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1 Introduction

Today’s algorithms reach deep into decisions that guide our lives, from loan approvals to
medical treatments to foster care placements. Making these high-impact decisions fairly
is an effort undergoing public scrutiny. In one investigation, ProPublica showed that an
algorithm operating in the U.S. criminal justice system, COMPAS, discriminated against
black defendants by misclassifying them as high-risk at significantly higher rates than white
defendants [2]. On the other hand, it was later revealed that the same algorithm did satisfy a
different form of fairness: calibration of scores for both black and white defendants [10]. This
meant that on average, a defendant’s score reflected the same risk level regardless of race.

Researchers have sought to explain how a screening algorithm like COMPAS can satisfy
one natural notion of fairness but not another, spurring a research agenda to characterize how
definitions of algorithmic fairness relate to one another. Multiple studies in this literature
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proved that algorithms face inevitable tradeoffs whenever they predict on groups that have
different average outcomes [15, 5, 4, 7, 14]. These influential “impossibility results” have
underscored the need for practitioners to target certain fairness criteria at the expense of
others.

We show that it is in fact possible to reconcile the two notions of fairness that gained
influence following the COMPAS investigation: calibration and equal error rates. In important
previous work, these two criteria were proven to be mutually incompatible when both are
applied to a risk score [15, 22] and when both are applied to a classifier [5]. Naturally these
findings were interpreted as evidence that calibration and equal error rates are incompatible
altogether [1]. It was therefore speculated that COMPAS’s enforcement of score calibration
made its error rate imbalances inevitable [5].

In contrast, we show that both calibration and equal error rates can be reconciled in
COMPAS and in many other real-world settings where protected groups have different
mean outcomes. We relax the mathematical tension between these two fairness criteria
by separately enforcing calibration on the score and equal error rates on the corresponding
classifier. In particular, we prove that it is possible to design calibrated scores that yield
equal error rate classifications at group-blind cutoffs, and we provide a method to do so with
maximal accuracy. Furthermore, we develop practical extensions of the method, such as
showing how to enforce weaker notions of the equal error rate criterion (like the “equality
of opportunity” criterion of Hardt et al. [12]) and how to accommodate multiple protected
subgroups.

Our framework and method can be applied to two settings. In the first, we consider
the problem of providing risk scores to a profit-maximizing third-party agent, such as a
lender, who then uses them to assign binary treatments, such as loan approvals and denials.
We illustrate how to construct calibrated scores that lead this profit-maximizer to make
classifications satisfying equal error rates. In the second setting, we consider risk assessments
like COMPAS that output both scores and classification recommendations, and show that
the scores can be made to satisfy calibration while the classification recommendations can
be made to satisfy equal error rates.

This paper supports growing evidence on the complementary relationship between data
quality and fairness objectives [11, 8, 9, 6, 13, 14]. In particular, we show that access to
sufficiently informative features is required to satisfy our fairness criteria, and that the
feasible set of solutions grows with the informativeness of the data. In an empirical credit
lending example, we compare our method to a commonly practiced strategy of data omission.
It yields higher lender profit while also improving access to loans for creditworthy applicants
in all groups.

The results proceed as follows. In Section 2, we prove that it is possible to construct
calibrated scores that lead to equal error rate classifications and we precisely characterize
when such scores exist. In Section 3, we propose an algorithm that produces the most
accurate possible score satisfying the fairness criteria and minimizing the decision-maker’s
errors. We apply our method in Section 4 to two empirical settings. We first assess its
performance in helping a lender screen loan applicants of various educational backgrounds.
We also apply the method to the COMPAS criminal risk assessment tool, where we show
that our procedure can eliminate error rate imbalances in risk classifications while preserving
calibration of scores.
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1.1 Related Work

Our paper belongs to a body of work that studies the mathematical relationships between
various individual and group measures of fairness. Calibration and equal error rates have
been formalized and extensively studied in prior work [22, 12, 15, 5]. In particular, Kleinberg
et al. [15] and Pleiss et al. [22] show that these criteria are incompatible when applied to a
risk score and Chouldechova [5] shows the corresponding result for binary classifiers. We
consider a natural variation of the problem where we ask whether a calibrated score can,
upon being supplied to a rational third-party, lead to equal-error predictions. Surprisingly,
we find that the answer is yes.

Our work also contributes to a recent strand of the literature which studies how algorithmic
prediction can interact with self-interested decision makers, bridging the classical problem of
prediction with the traditionally economic problem of information design [20, 24]. From this
perspective, we study the existence of scores that lead to desirable equilibria: those in which
the final decision rule is group-blind due to calibration, and the resulting decisions satisfy
equal error rates.

Finally, we believe it is important to emphasize that the two fairness criteria we study do
not encompass all notions of fairness. Tradeoffs remain between these criteria and others. For
example, enforcing equal error rates requires that the classifications’ positive and negative
predictive values will be unequal across groups, meaning that one groups’ scores would
carry greater signal to the decision-maker than the others’ [5]. In addition, equal error
rate classifications will generically require changes to the Bayes’ optimal classifications, and
enforcing calibration does not diminish this requirement [6].

Decisions for how to prioritize fairness conditions are likely to vary by application going
forward. We hope that by clarifying the precise relationship between two influential criteria,
we can facilitate these decisions, and that in settings where calibration and equal error
rates are considered essential, our algorithm can help yield accurate predictions and fairer
outcomes.

2 Theoretical Results

2.1 Formal Setting

Let us consider a triple (Y, X, A) on a common probability space P, where Y € {0,1} is an
outcome variable, X € R? is a vector of features, and A € {H, L} is a protected attribute
differentiating two groups with unequal base rates pg = E[Y|A] of the outcome,

pr < pm- (1)

Our goal is to estimate a score function p = p(X, A) € [0, 1] that predicts Y with maximum
accuracy subject to the constraints of calibration and equal error rates. Specifically, we hand
P to a decision-maker tasked with selecting classifications § € {0, 1} that minimize their loss
function

>

0 y=
Ug,y) =91 y>9 (2)
ko y<g,

where k > 0 is the relative cost of false positive classifications. Note that any loss function
that is minimized when y = ¢ is equivalent to ¢ after an affine transformation.
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Let us suppose the decision-maker might be able to observe group affiliation A in addition
to p. To ensure that classifications are based only on p and not on A, we constrain p to
satisty calibration within groups,

E[Y[A,p] = E[Y[p] = p. (3)
If (3) holds, the decision-maker’s expected loss given p and A becomes
E[L(Y,9)p, A] = p(1 = §) + k(1 = p)7. (4)

This expected loss is minimized with a cutoff decision rule that is independent of group
affiliation A,

9 =1p=p} ()

where the cutoff p = ¥/(k+1) is fixed by the decision-maker’s loss function.

Our second condition constrains § to satisfy equal error rates, ensuring that the classifica-
tion only depends on the group through the target variable. Following the decision rule (5),
we may write this as

(H{p=zpr LAY (6)

Our calibration and equal error rate conditions are summarized by (3) and (6), respectively.

2.2 Relation to Impossibility Results

We first introduce a general impossibility result, relate it to previous work, and show where
our assumptions diverge to make our proposed criteria satisfiable. The following theorem
proves that a single algorithmic output Z cannot generally satisfy notions of both calibration
and equal error rates.

» Theorem 1. Let Y, A, and Z be random variables satisfying the following three conditions.
() (v 1L A4)|Z,

(i) (Z 1L 4)]Y,

(iii) P(A= H|Z), P(Y = 1|A, Z) € (0,1).

Then A and (Z,Y) must be independent.

Proof. Suppose that (Y, A, Z) satisfy (i) (ii) and (iii). Assumption (iii) implies that the
law of (A,Y, Z) is strictly positive. By the Hammersley-Clifford theorem (see e.g. [18]), the
conditional independence relations are summarized by a graph on {Y, A, Z} where every
path from Y to A travels through Z, and every path from A to Z travels through Y. There
are only two graphs with this property:

A Z Y
o o0—0
A Z Y
o o o

In neither of these graphs does there exist a path from A to (Y, Z), so we conclude that A
and (Y, Z) must be independent for (i) (ii) and (iii) to simultaneously hold. <

Note that when A denotes group affiliation and Y denotes outcomes, (i) is a form of calibration
and (ii) is a form of the equal error rate condition. Assumption (iii) is a strong form of
predictive uncertainty that is generalized in the appendix. Thus the theorem shows that
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when there is predictive uncertainty and Y depends on A (i.e. when the base rates are
unequal), it is impossible for a single Z to satisfy both calibration and equal error rates.
For example, letting Z be a classifier recovers the result of Chouldechova that (i) equal

positive and negative predictive values are unachievable alongside (ii) equal error rates [5].

Meanwhile, letting Z be a risk score shows that (i) calibration is unachievable alongside (ii)
a condition that implies balance in the positive and negative class, similar to the result of
Kleinberg et al. [15].

Our own setting bypasses the mathematical impossibility described in Theorem 1 by
imposing constraints on two separate algorithmic outputs rather than one. We require (i)
calibration from the scores p and (ii) equal error rates from the resulting classifications

§=1{p > p}.

2.3 Necessary and Sufficient Conditions

In this section we characterize exactly when there exists a calibrated p that leads to equal
error rate classifications ¢ at the cutoff p. Our conditions can be easily checked in a given
setting, and they are shown to depend on the informativeness of the features X.

The graphical framework in this section builds on methods developed by Hardt et al. [12].

All the necessary and sufficient conditions will be illustrated in R?, with true positive rates on
the vertical axis and false positive rates on the horizontal. The feasible region will be the set
in R? corresponding to error rates achievable by an equal error rate classifier § = 1{p > p}
where p is calibrated.

We first study the entire set corresponding to equal error rate classifiers, without regard
to calibration or the decision-maker’s cutoff p. Then we study the entire set corresponding
to classifiers that can be based on the cutoff p applied to calibrated scores, without regard
to the equal error rate condition. Finally, we prove that the intersection of these two sets
determines feasibility of enforcing both conditions, and we characterize when the intersection
is nonempty.

2.3.1 Classifiers Satisfying Equal Error Rates

We wish to identify the entire set of error rates in R? achievable by classifiers with equal
error rates. Hardt et al. [12] succeeded in doing so, and we review and adapt their results in
this subsection. To lay the groundwork for the geometric reasoning to follow, we first denote
the group A false positive rate and true positive rate associated with a given classifier § as a
point in R?,

a(g,A) = (]P’(g =1Y =0,4),P(g=1]Y = 1,A)>.

We may now define the set of achievable error rates in R2. Let H be the set of all possibly
random classifiers h(X, A). The set of achievable error rates for group A is

S(A) ={a(g, 4) |§ = h(X,A),h € H} CR?, (7)

and the set of achievable rates for all classifiers satisfying equal error rates is given by
S(L) N S(H). To better understand this intersection, we characterize S(A) in terms of
Receiver Operator Characteristic (ROC) curves following Hardt et al. [12]. By definition, an
ROC curve of a given score p traces the true and false positive rates associated with each

possible cutoff rule 1{p > ¢} for ¢ € [0, 1]. Therefore it contains all points a(1{p > ¢}, A).

With these tools in hand, we are ready to characterize the feasible set of rates S(A) for
group A.
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Figure 1 Achievable equal error rates (shaded). Figure 2 Achievable equal error rates from

Two pairs of ROC curves form the boundaries of calibrated score at cutoff p (shaded). The restric-
S(L) and S(H). Points in the intersection S(L)N tions (11) correspond to half-spaces above the red
S(H) correspond to equal error rate classifiers.  dashed lines.

» Proposition 2. Let p* = p*(X, A) be the Bayes optimal score satisfying p* = E[Y|X, 4],
i.e., the best score given our data. Then the set of achievable rates S(A) is exactly the convex
hull of the union of the group-A ROC curve of the best score p* and the group-A ROC curve
of the worst score 1 — p*, i.e. the convex hull of

{a(]l{p* >c} A) ‘O <ec< 1}

U{(l,l)—a(]l{p* 20},A)’0§c§1}.

Figure 1 illustrates typical examples of S(L), S(H), and the intersection S(L) N S(H)
which represents the rates achievable by equal error rate classifiers.

2.3.2 Classifiers Compatible with Calibration

We now put aside the equal error rate constraint and concentrate on identifying the entire
set of classifiers that are implementable with the cutoff p applied to some calibrated scores p.
The set is characterized by the following proposition.

» Proposition 3. A classifier § can be written as § = 1{p > p} for some calibrated p if and
only if its group-specific positive predictive values exceed p, and its group-specific negative
predictive values exceed 1 — p. In particular, for A € {L, H},

B(Y =1)§=1,4)>p, P(Y =0[j=0,4)>1—p. (8)

Proof. Suppose that § = 1{p > p} where p is calibrated. Then § must satisfy the inequalities

P(Y =1/ =1,A) = E[Y|p > j, A

< p. (10)

Therefore, if § is based on a calibrated score p at cutoff p, then it is necessary for the
group-specific positive and negative predictive values to exceed p and (1 — p), respectively.
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Conversely, given any classifier § that satisfies the inequalities (9) and (10), we can always
put

P9, A) =P(Y =19, A)

to obtain a calibrated score that takes just two possible values per group with the cutoff p
guaranteed to be between them. This choice of p thus satisfies § = 1{p > p} by construction.
<

As we will see in the following subsection, this result lays the foundation for the necessary
and sufficient conditions for the satisfiability of our fairness criteria.

2.3.3 The Feasibility Region

Proposition 3 demonstrates that the following are equivalent:
(i) There exists a calibrated score p such that § = 1{p > p} satisfies equal error rates.
(ii) There exists a classifier § satisfying equal error rates and (8).

)

In practice, we propose checking (ii) to identify whether (i) holds. To do so, we use Bayes
rule to write (8) as group-specific restrictions on true and false positive rates so that we can
consider them in the same space as the equal error rate constraints given by Hardt et al. [12].
The following theorem and the accompanying Figure 2 indicate that each restriction (8)
corresponds to a half-space in R?, and that the feasibile region corresponds to the intersection
of those half-spaces with each other and with the equal error rates region S(L) N S(H).

» Theorem 4. Let B4 = pa/(1 — pa) denote the group-specific odds ratios, with 81, < Bp.
Then our fairness criteria are simultaneously satisfiable at cutoff p if and only if there exists
(a1,1) € S(L)N S(H) satisfying the two inequalities
a P (1-o) _ Bu(l-p)
a1~ Br(l=p)" (1-az) p
We next provide easily checkable necessary and sufficient conditions for when the feasible

(11)

region is nonempty.
» Corollary 5. Let (a1, da) denote the point at which the inequalities (11) hold with equality.
Our fairness criteria are simultaneously satisfiable at cutoff p if and only if any of the
following holds: a7 <0, a7 > 1, or both groups’ ROC curves corresponding to p* lie above
(dy,ds). Note that (a1, d2) are fized by the group base rates and decision-maker’s cutoff p,
— (1 D 1 1—p)—p
4 = B (ﬁH ( + BH)p) , y = (ﬁH( p} p) . (12)
(Bu — BL) p (Bu — BL) 1-p

We note that the feasible region depends on the decision-maker’s cutoff p, which in turn

depends on their relative valuation of false positive and false negative classifications, k. In

particular, when k is either very large or close to 0, the set of feasible error rates shrinks to
include only those corresponding to no positive classifications or no negative classifications.

Data quality also contributes to the feasibility of enforcing both fairness criteria, as
illustrated by Theorem 4 and Figure 2. Note that the intersection of the half-spaces defined
in (11) are fixed by given parameters: fr, 8, and p. Beyond these, what determines the
size of the feasible region is the height of the ROC curves.

Higher ROC curves correspond to more accurate predictions, which can be achieved by
including more informative features X. This expands the region S(H)NS(L) and thus always
weakens the constraints dictating whether equal error rates and calibration are compatible
in a given setting. Therefore, increasing the quality of data that an algorithm can access
promotes our notions of fairness, whereas removing data compromises them.

4:7
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3 A Loss-Minimizing Algorithm

After checking that our fairness criteria are feasible in a given setting, a natural next step
is to search for the constrained optimal solution, i.e. to identify the most accurate score p
that minimizes the decision-maker’s loss subject to our fairness constraints. Our strategy
is to first estimate the most accurate score p* = E[Y|X, A] without regard to fairness, and
then to transform the estimate in two separate stages. First, we identify the error rates
that minimize loss subject to the fairness conditions (Section 3.1). Second, we identify the
MSE-minimizing calibrated scores p that gives rise to those error rates at the decision-maker’s
cutoff p (Section 3.2). Lastly, we lay out extensions of the algorithm that can accommodate
practical use cases (Section 3.3).

3.1 Stage 1: Error Rate Optimization

The first stage of the algorithm identifies feasible error rates that minimize the decision
maker’s loss.

Let R denote the set of points (a1, as) in the feasible region, i.e. the pairs of error rates
in S(H) N S(L) that satisfy (11). Note that R is necessarily convex, as it is the intersection
of four convex regions: S(H), S(L), and the half-spaces defined in (11). Moreover, according
to the decision-maker’s loss function, a classifier corresponding to error rates (o, o) obtains
expected loss

laq,an) = kay (1 —E[Y]) + (1 — a)E[Y]. (13)

Thus, straightforward convex optimization will identify the error rates that minimize the
linear function ¢ over (aq,az) € R. The optimal error rates identified, z* = (af, a), will
be on the upper-left boundary of the feasible region in Figure 2, with the precise point
determined by the decision-maker’s relative preference k over false positive and false negative
classifications.

Algorithm Stage 1 Find loss-minimizing feasible error rates.

Input: Raw scores {p}}, labels {Y;}, group identities {A;}, base rates p4, cutoff p, loss
parameter k.
Step 1: Define convex feasible region R by taking intersection of rates (ai,as) in
S(L) N S(H) that satisfy (11). To compute S(L) N S(H), use {pf} to determine each
group’s ROC curves.
if R is empty then

Output: No feasible solution.
end if
Step 2: Minimize loss function (13) over (aq, a2) € R.
Output: Optimal target rates (af, a3) from Step 2.

» Remark 6. The sets S(L) and S(H) correspond to the Bayes optimal score p* = E[Y|X, A],
which needs to be estimated in practice. Given an estimated score p, we propose using a
holdout sample to first calibrate p and then perform our algorithm. The resulting scores will
satisfy the fairness criteria approximately by a law-of-large-numbers argument, where the
fidelity is determined solely by the size of the holdout sample (see e.g. [27]).
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3.2 Stage 2: Risk Score Optimization

Once a feasible set of error rates is chosen, the decision-maker’s expected loss is determined.
However, multiple choices of calibrated scores may achieve those target rates at the cutoff
p, and we expect that in practice, decision-makers would prefer more accurate scores. This
section thus describes a method to recover the MSE-minimizing score p that implements the
target rates z* by solving a constrained optimal transport problem [21].

We base the method on the finding that the best p satisfying the fairness criteria is
recoverable through post-processing the Bayes optimal score p* = E[Y'| X, A]. We include
a proof for this in the appendix, following a similar argument of Hardt et al. [12]. In the
appendix we also discuss how our procedure can be thought of as finding the smallest
mean-preserving contraction of p* that yields the targeted error rates. Readers will note that
the post-processing procedure requires some randomization of input scores. We explore the
effects of the randomization empirically in our online appendix [23], and meanwhile highlight
that our algorithm’s accuracy objective limits the extent to which scores p* change.

Our method defines one linear program per group A and seeks the most accurate p4 that
yields error rates at the cutoff p given by

O‘(l{ﬁA > ﬁLA) =z"= (O‘;a;)'

For the remainder of the section, we simplify notation by suppressing A subscripts and note
that the procedure is performed once for each group A € {H, L}.

Our approach will involve a transformation kernel, or transport map, that maps the
distribution of the most accurate estimate of p* to the distribution of our post-processed
p. We assume for simplicity that the p* estimate has already been calibrated, and that
it is discrete (which we justify in the appendix). In particular, p* takes N ordered values
p = (p1,p2,--.,pN), each with probability mass given by s = (s1,s2,...,sn5) where ) . s; = 1.
Furthermore, we will denote the post-processed p as taking those same discrete values p but
with different probability masses that we seek to optimize, f = (f1, fo,..., fn)-

We call T' the matrix that maps probability masses from the discrete distribution of p*
to that of p. In particular, with probability 7;;, the kernel will map an individual with score
p; to the output score p;. Therefore, the probability distribution of p will be determined by

TTs=f. (14)

In order to produce probability distributions, 7' must be right-stochastic: elements must take
values between 0 and 1, and each row should sum to 1.

N
0<Ti <1and an:1 Vi,je{l,...N}. (15)
k=1

According to our fairness criteria, we further constrain T'. To ensure that p will be calibrated,
we need the outcome of individuals assigned score f; to satisfy Y = 1 with probability p;.
Given our assumption that p* has itself been calibrated, this reduces to

N

ZTijPiSi :pjfj V] € {1,,N} (16)
i=1
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The targeted false- and true-positive rates (af, a3) derived in Section 3.1 similarly require:

N N
> Tipisi ({p; > p} — a3) =0,

j=14i=1

N N
2D Tl =pi)si (H{p; > p} —af) = 0. (17)

j=11i=1

—

Finally, we formulate an objective. Note that the mean-squared error of p satisfies the
bias-variance decomposition

E[(p—Y)?] = E[(p - E[Y|X, A])*] + E[(Y - E[Y|X, A])?],
and thus the p that minimizes the left hand side is obtained by minimizing the first term on

the right hand side. In particular, if the input score p* is E[Y|X, A], then the post-processed
score that minimizes mean-squared error will also minimize

N N
Bl - 5" = Y0 > Tiglpi — 1) (18)

Furthermore, even if p* is not exactly equal to E[Y|X, A], the triangle inequality in L?(PP)
implies

E[(p - Y)?]? <E[(p* — Y)?]? +E[(p— p*)?]2.

Thus, by minimizing the objective (18) we can effectively control the additional error due to
post-processing. Combining this with the above constraints yields a straightforward linear
program.

Algorithm Stage 2 For each group, find calibrated scores achieving target rates.

Input: Raw scores {p;}, number of bins N, target error rates from stage 1 of algorithm
(aF,a3), cutoff p.

Step 1: Produce discrete score approximation of p*: label N ordered values (p1,p2, ... ,PN)
with masses (s1, $2,...,SN).

Step 2: Find score transformation kernel 7' that minimizes (18) subject to the constraints
(14), (15), (16) and (17).

Step 3: Map each individual with given raw score to a new post-processed score, based
on probabilities given by kernel T

Output: Scores p from Step 3. By design these satisfy calibration and yield error rates
(af,a3) at cutoff p.

3.3 Available Extensions

Our procedure can be modified to handle additional use cases. We can flexibly trade off the
fairness and accuracy objectives, minimize error disparities rather than eliminate them when
the feasible region is empty, accommodate a setting where the decision-maker’s cutoff p is
estimated with error, and apply the procedure to more than two groups.
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3.3.1 Relaxing the fairness criteria

An alternative formulation of our algorithm can accommodate multiple cases encountered in
practice. By modifying Stage 1 to include a weighted error-rate penalty, users can flexibly
trade off the fairness and accuracy objectives, minimize error disparities rather than eliminate
them when the feasible region R is empty, and enforce just one error constraint as in the
“equality of opportunity” criterion of Hardt et al. [12]. In general, the more flexible procedure
will output group-specific optimal error rates: zj and zj;. These group-specific targets are
then inputted into Stage 2 which is otherwise unchanged.

To modify Stage 1, first we define a broader domain for the algorithm to search over
in place of R. It contains all the error rates implementable by a calibrated score at the

decision-maker’s cutoff, according to the inequalities (11), without regard to equal error rates.

The domain is R(H) x R(L) where

l—ax _ p/Pa <a2}.

170[1 (17]3) - a7 (19)

RA) = { (a0 € 50a)

(Note that this is guaranteed to be nonempty, as it contains the error rates of the classifier
1{p* > p}.) We also replace the loss function (13) with a generalized version that includes
both the decision-maker’s expected loss from the error rates as well as the groups’ rate
disparities. The new loss function is

Yl(zp) + (1 —¥)l(zp) + (21 — zH)TA(zL —2H) (20)

where £(z4) is the decision-maker’s expected loss kaga(1 — E[Y|A]) + (1 — asa)E[Y|A] and
v is the fraction of individuals in group L. Meanwhile, A is a positive semidefinite matrix
that provides the flexibility of varying the enforcement of minimal error rate differences. For
example, taking A = A for arbitrarily large A recovers the equal error rate solution when
the feasible region R is nonempty, and otherwise outputs the solution that minimizes error
rate disparities. Meanwhile a small choice of A places relatively more weight on accuracy.
Alternatively, A could be chosen so that differences in the true and false positive rates are
weighted differently. For example, we can achieve equal true positive rates and allow false

positive rates to vary [12] by letting A(2,2) be large and assigning 0 to all other entries in A.

As a result of the flexible procedure, group-specific error rates z; and zj; are identified
to minimize the generalized loss function (20). The second stage of the algorithm can then
be applied to identify a calibrated score that yields those target rates.

3.3.2 Accommodating an interval of possible k£ or p

In settings where the exact p is unknown or not fixed, users can adapt our algorithm to
function for any cutoff in an interval (p — ¢, p+ €). It can be tailored to produce scores p that
are either below p — € or above p + ¢, so that any cutoff applied within the interval would
execute the same classifications.

In particular, we propose a couple modifications to generalize our algorithm to this setting.

We wish for anyone receiving scores above p+ € to be classified as § = 1 and anyone receiving
scores below p — € as § = 0. Following the reasoning in Proposition 3, for such a score to be

calibrated, the associated PPV should exceed p + € and the NPV should exceed 1 — (p — ¢).

Therefore, the feasible region previously defined in Theorem 4 by (11) is now defined by the
points (aq, 1) € S(L) N S(H) that satisfy
as Bte (1-a) _ Bu(l-(p-0)
ar ~ fr(l—(p+e) (1-a2) p—e '

(21)
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Figure 3 Evaluating algorithm performance. In each figure, maroon represents the high-mean
group while blue represents the low-mean group. Panels (a) and (b) correspond to the criminal justice
application, showing respectively that we can eliminate error rate disparities and maintain score
calibration in COMPAS. Note that we define a true positive classification as correctly identifying
someone who would not reoffend. Panel (c¢) covers the credit lending application, illustrating the
empirical ROC curves from the rich feature set (opaque) and the limited feature set (translucent).
Compared to a data omission strategy, our method raises the probability that creditworthy individuals
from all education groups access loans.

This feasible region is used in Stage 1. In Stage 2, we add another constraint to specify
that no post-processed scores be assigned values inside the interval of possible cutoffs:

Ty =0 Vk such that p, € (p—€,p + €). (22)

The rest of the procedure remains unchanged. The cost of the added flexibility is a tighter
feasible region and higher MSE of the final score.

3.3.3 Satisfying the criteria for more than two protected groups

The algorithm can be modified to satisfy the fairness criteria for multiple groups, across
multiple identifiers. First define each group as a unique combination of protected features.
Then, the feasible set of error rates is given by the intersection of each S(A) with the points
satisfying the inequalities (11) where H is the highest-mean group and L is the lowest-mean
group. Stage 1 of the algorithm proceeds to find the optimal set of error rates in that feasible
region. Stage 2 proceeds as usual, implementing a separate program for each group.

4 Empirical Results

Let us take our procedure to data. In the first application, we post-process real COMPAS
scores to demonstrate that risk assessments can be designed to output both calibrated risk
scores as well as binary risk summaries satisfying equal error rates. Afterwards, we design a
risk score to aid a lender’s classification task to authorize loans, showing that it outperforms
a common alternative strategy based on the omission of sensitive features. For interested
readers, extensive detail about each application is presented in our online appendix [23].
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4.1 Predicting criminal recidivism

Our procedure can design risk assessments that output both calibrated scores as well as
binary “high” or “low” risk summaries satisfying equal error rates. We illustrate this in
our first application, where we modify real criminal justice risk scores from COMPAS. As
noted earlier, a ProPublica investigation showed that current COMPAS scores yield error
imbalances across race, although they satisfy predictive parity overall [2, 1].

To check whether we can correct COMPAS error imbalances without sacrificing score
calibration, we applied our post-processing technique to Broward County risk scores made
public by ProPublica [16]. We define the outcome of interest as recidivism within two years,
and we convert existing COMPAS scores that range from [1,10] to probabilities in [0, 1]. We
define the classification cutoff as the minimum score of defendants classified as “high risk” in
COMPAS, according to ProPublica’s influential analysis [17]. This corresponds to a cutoff of
p = 0.54 and loss parameter k = 1.17.

We compute the feasible region of achievable error rates according to Stage 1 of our
algorithm and identify the loss-minimizing pair, as depicted in Figure 3a. Then, we use
Stage 2 to post-process the COMPAS scores to achieve new calibrated scores yielding that
optimal pair of error rates. The calibration of our scores is depicted in Figure 3b, where
we group together by race defendants with the same post-processed scores and show that
their corresponding recidivism outcomes lie on the main diagonal. Overall, our procedure
eliminates the reported error disparities across racial groups (Figure 3a) while also preserving
calibration (Figure 3b).

4.2 Predicting loan repayment

We next present an example of designing a risk score to inform a credit lender’s approvals of
loan applicants. Our goal is to deliver to the lender calibrated scores for applications from
two groups—one highly educated (H) and another less educated (L)—while ensuring that
they yield classifications with equal group TPRs at the lender cutoff. That way, we know
that qualified applicants will have the same probability of receiving a loan regardless of their
education level. We suppose the lender in question views defaulting as highly costly and only
authorizes loans to individuals with calibrated scores greater than = .9, corresponding to
loss parameter k = 10.

We simulate this scenario by applying our algorithm to the Survey of Income and Program
Participation (SIPP), a nationally-representative survey of the civilian population spanning
multiple years [25]. We select as our outcome the ability to pay rent, mortgage, and utilities
in 2016, and predict that outcome using survey responses from two years prior. We label
individuals with at most a secondary school education as L and those with higher education
as H.

The full dataset contains over 1,800 features spanning detailed financial variables (includ-
ing work history, assets, and debts), as well as sensitive features (including demographic
information). We apply our algorithm to the full feature set and derive calibrated scores that
yield equal TPRs at the lender’s cutoff, using our algorithm extension that allows FPRs to
vary. Then, we compare its performance to two accuracy-maximizing procedures: one based
on the full feature set, and another commonly-practiced approach based on the omission of
sensitive features. The results are summarized numerically in Table 1 and graphically in
Figure 3c. Compared to prediction on all features and no post-processing, our algorithm
raises the TPR of L and lowers that of H, while raising lender loss. Meanwhile, compared
to the commonly used data omission strategy, our algorithm raises the probabilities that
creditworthy applicants from both education groups are granted loans, and lowers loss for
the lender.
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Table 1 Application to credit lending. Row [1] is based on raw scores. Row [2] summarizes
the classifier that minimizes lender loss subject to equal true positive rates, given by the equal
opportunity algorithm in Hardt et al. (2016). Row [3] summarizes our algorithm, which produces
a calibrated score corresponding to equal true positive rate classifications; since it retrieves the
same error rates as row [2], we see there is no added loss from enforcing score calibration. Row [4]
summarizes the scores from the alternative procedure that omits sensitive features, displaying greater
loss for the lender, lower true positive rates for both groups, and substantial error disparities across

groups.

Algorithmic Target Lender Loss TPR (H/L) FPR (H/L) Score MSE
Trained on all features

[1]  Accuracy Maximizing 517 (.795/.661)  (.341/.255) .072

[2] Eq. TPR Only .532 (.727/.727)  (.299/.339) N/A

[3] *Eq. TPR + Calibration* 532 (.727/.727)  (.299/.339) .073
Trained on limited features

[4]  Accuracy Maximizing .591 (.603/.518)  (.202/.230) 077

5 Conclusion

Decision-makers stand to benefit from algorithmic predictions. This paper studies fair predic-
tion in the widespread setting in which a risk score is constructed to aid their classification
tasks. We prove that it is possible to construct calibrated scores that lead to equal error
rate classifications at group-blind cutoffs. We characterize exactly when it is possible and
propose an algorithm that produces the most accurate score satisfying the fairness criteria
and minimizing the decision-maker’s errors. Compared to a commonly practiced strategy of
omitting sensitive data, we show that our algorithm can produce scores that enhance both
efficiency and equity.
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A Appendix

A.1 Addendum to Theorem 1

Addendum. We relax condition (iii) of Theorem 1 and replace it with the weaker condition
that Var(Y'|Z) > e almost surely. This will correspond to the assumption that ¥ cannot be
perfectly predicted from any realization of Z.

We will make use of the criterion that Borel random variables R and R’ are independent
conditional on ¥ iff for all bounded, continuous f and g we have

E[f(R)g(R')[Z] = E[f(R)|Z]E[g(R)|Z].

Now suppose that (Z, A,Y) are known to satisfy Theorem 1 conditions (i) and (ii), and
that Var(Y'|Z) > 0. Then let n be a Ber(¢) random variable independent of (Z, A,Y). We
consider a variable A, that takes value A with probability 1 — ¢ and otherwise flips the
variable A with probability &, that is,

A,=A+n (mod2).

This gives us a triple (Z, A,,Y") that satisfies E[A|Z] € (0,1) and E[Y|4, Z] € (0,1) almost
surely by construction, corresponding to condition (iii) from the Theorem. We can also show
that the triple satisfies the other two conditions. For instance, to show that condition (i)
holds, let S be an arbitrary set such that S € o(2).

We will use the fact that any o(Z)-measurable random variable V and any random
variable U satisfy E[E[U|Z]V] = E[UV]. In particular,

E[E[f(Ap)g(Y)|Z]Lzes] = E[f(Ay)g(Y)1zes], (5 € a(Z))

=Ea,zy) [Ey[f(A)]g(Y)1zes], (n 1L (A.Y. 7))
19(Y)|Z]1zes], (S € o(Z))
IZIE[g(Y)|Z]1zes], (V 1L A Z)
[9(Y

|
=E[E[f(A,)|Z]E[g(Y)|Z]1 zes]

where the last step follows since E[g(Y)|Z]1z¢s is Z-measurable.
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Because S was arbitrary and both E[f(A,)|Z|E[¢g(Y)|Z] and E[f(A,)g(Y)|Z] are o(Z)-
measurable, we can conclude that E[f(A,)|Z]E[g(Y)|Z] = E[f(Ay)g(Y)|Z] almost surely so
(i) is satisfied. A very similar argument shows that (ii) holds. Therefore, by Theorem 1, A,
is independent of (Z,Y). Then given arbitrary bounded and continuous functions f and g,

E[f(Ay)g(Z,Y)] = E[f(Ay)|E[g(Z,Y)].

Using the fact that A, — A as n | 0 in L?*(P), and that h — E[h] and (h, ') — E[hR] are
continuous in L?(P), we conclude by continuity that

E[f(A)g(2,Y)] = E[f(A)|E[g(Z,Y)].

Since f and g were arbitrary, we have in fact shown that A is independent of (Z,Y), as
wanted.

Thus, we have succeeded in proving the following refinement: under Theorem 1 assump-
tions (i) and (ii), if Y cannot be perfectly predicted from any realization of Z, then the
random variables A and (Y, Z) must be independent.

Since assumptions (i) and (ii) continue to hold if we condition on Z € S for any .S, we can
say further that if Theorem 1 conditions (i) and (ii) hold and P is the set of values of Z from
which perfect prediction is not possible, i.e. Var(Y|Z) > 0 then A and Y are independent
conditionally on Z € P. <

A.2 Proof of Proposition 2

Proof. First we can prove a lemma stating that S(A) is convex. To see this, let £ be an
independent Ber(\) random variable. Then, by iterating expectations, one sees that

a(@+£(2-19),4) = Aa(z, 4) + (1 = Na(g, A).

Using this convexity, we can prove the proposition. Note that the points a(1{p* > ¢}, A)
that make up the group-A ROC curve of p* describe the error rates achieved by all cutoff
classifiers based on p*, and so they are in S(A). Meanwhile, since

Oé(l - :1?714) = (17 1) - Q(Q,A),

the points (1,1) — a(1{p* > ¢}, A) must also be in S(A). This corresponds to the group-A
ROC curve of the scores 1 —p*. Any point in the convex hull of these two ROC curves can be
achieved by randomization as in the aforementioned lemma. For further details and intuition,
see Section 4 in Hardt et al. [12]. Note that Hardt et al. choose not to illustrate the feasible
region below the main diagonal as it corresponds to classifiers that are worse than random.

To show that all attainable error rates belong to this set, we use the convexity of S(A)
to note that the support points of S(A) correspond to all classifiers that yield extrema of
v101 (g, A) +v202(7, A) where (1, 72) are arbitrary weights. To describe these support points
tractably, we can use the result derived later in the appendix (Proposition 7) that shows that
optimal classifications can be chosen to depend on only p* and A, where p* = E[Y|X, A].
Thus the extrema of 7 - a(g, A) are achieved by cutoff rules f(p*, A) = 1{p* > ¢} and
f(p*, A) = 1{p* < ¢}, giving support points

U {a(l{p* > e} 4), (L1) - a(1{p* > c},A>},
c€[0,1]

which as we have shown are contained in S(A). Finally, we use the fact that a convex set
containing all of its support points is equal to the convex hull of its support points. <
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A.3 Proof of Extension of Proposition 3

Proof. Suppose that i holds and call p; the fair score for which § = 1{p; > p} satisfies equal
error rates. Then since py is calibrated,

P(Y =1l = 1,A) = E[Y|p; > 5, A] = Elpslps > 5, A] > ,
P(Y =1/§=0,4) < p.

So in addition to satisfying equal error rates, § satisfies (9) and (10), which are equivalent to
the two conditions in (8). Thus ii is a necessary condition for fairness.

Now we show the converse; ii is also sufficient for fairness. Suppose that ii holds and
let g7 be a classifier satisfying equal error rates and (8). Choose p(§r, A) = P(Y = 1|gs, A).
These scores are calibrated by construction. Also, since they satisfy p(gf = 0, 4) < p and
p(gr =1, A) > p, they exactly implement the classifier §; at the cutoft p. <

A.4 Proof of Theorem 4

Proof. Building on the above extension of Proposition 3, it is enough for us to show that the
existence of the point (ay,ag) € S(L) N S(H) satisfying (11) is equivalent to the following:
There exists a classifier § satisfying equal error rates and (8).

First note that S(L) N S(H) is nonempty, since for example (0,0) and (1, 1) are points
in both S(L) and S(H). So we can consider some arbitrary (aq, ag) that is in S(L) N S(H)
and is therefore implementable by an equal error rate classifier that we call §.. We need to
show that g, satisfying the conditions in (8) VA is equivalent to its corresponding true and
false positive rates (a1(Je, A), @2(Je, A)) satisfying (11) VA. Recall that the PPV condition
in (8) required

B(Y = 1]ge = 1,4) > p.
Applying Bayes’ rule to the inequality, we have
P(g. = 1Y =1, AP(Y = 1|A)
P(ge = 1|A)

_ @z (Je, A)pra S

042(@57 A)MA + al(gev A)(l - /’LA)

After algebraic manipulation, the restriction can be written

PY =1[ge =1,4) =

)

as(fe,A) o P —pa) P

ar(fe, A) ~ (1=plua  (1=Dp)fa’

where 84 = r#a/(1—pa). Therefore (a1 (fe, A), a2(fe, A)) must satisfy the following

a2(geaA) > ;5
al(?geaA) o (1 _ﬁ)ﬁA

Since 81, < B, the condition is more restrictive when A = L, giving the first condition in
(11). We next similarly transform the NPV condition in (8), recalling it requires P(Y =
0/g = 0,A) >1— p. By Bayes’ rule,

R P(j = 0]Y =0, A)P(Y = 0|A

- (1— 0n(§, A)(1 — pa) o
T 0@ AN — )+ (@ A~ P
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After algebraic manipulation, this becomes VA

(=@ A) _ (1=5)ba
-a(ed) " 5

Since By > (1, the most restrictive case is when A = H, giving the second condition in (11).

Note that special attention should be given to the corner solutions. At point (0,0), the
first condition in (11) becomes irrelevant and so the second condition in (11) is necessary
and sufficient. Meanwhile at (1, 1), the second condition in (11) becomes irrelevant so the
first condition in (11) is necessary and sufficient. <

A.5 Proof of Corollary 5

Proof. Let F' and G denote the lines for which the inequalities (11) hold with equality. That
is to say, F,G C R? are given by

Qg D _
o 5L<1p>}’ “= {(0‘1’0‘2) i

F:{(al,ag)ER (1—a3) D

(1-a1) Bu(l-p) }

The lines intersect at (&, d2) given by (12). Our proof will rest on a few basic facts:
S(L)N S(H) is convex, F contains (0,0), G contains (1,1), and both lines have positive
slope. First we prove that if &1 <0, &; > 1, or both ROC curves lie above the intersection
(&1, &), then there exists a point (a, a) satisfying the feasibility conditions in Theorem 4.

Case I: 0 < ay < 1 and (dh,ds) lies below both ROC curves. Note that increasing as
slackens both inequalities (11). Thus, if 0 < @ < 1 and (a1, d) lies below both ROC curves,
there then exists a point (a7, o) with as > &2 that lies on the minimum of the two ROC
curves, hence in S(H) N S(L), and moreover the inequalities (11) hold at (a1, ae). This is a
feasible point.

Case II: &; < 0. On the other hand, if &; < 0, then in (0,1) x R the line F lies strictly
above G. Then the point (0,0) € S(L)NS(H) N F lies above G, meaning that the second
condition in (11) holds and the point is feasible.

Case III: &; > 1. If &3 > 1, then in (0,1) X R the line G lies strictly above F. Then
the point (1,1) € S(L) N S(H) NG lies above F, so the first condition in (11) holds and the
point is feasible.

Finally, we prove the converse that if 0 < &1 < 1 and &3 lies above at least one of the
ROC curves, then the feasible region is empty. Let the intersection of S(L) N S(H) with the
half-space above F' be denoted by Ir, and the intersection of S(L)NS(H) with the half-space
above G be denoted by I. We need to show that Ir N Ig is empty. The argument follows
from the convexity of S(L) NS(H) and the fact that both F' and G have positive slopes. In
particular, due to the convexity of S(L) N S(H), the positive slope of F, and the fact that
(0,0) is in F', we know the line F' must intersect the boundary of S(L) N S(H) strictly to the
left of &;. Meanwhile, G must intersect the boundary of S(L) N .S(H) strictly to the right of
&1. Thus the rightmost point of Iz lies strictly to the left of the leftmost point of Ig, and
the intersection of S(L) N S(H) with both half-spaces above F' and G must be empty. <

A.6 Justification for post-processing p* in algorithm

First we justify post-processing the Bayes optimal p* to arrive at the optimal fair . To do
so we adapt Proposition 5.2 from Hardt et al. [12] to our setting and prove the following
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» Proposition 7. For any source distribution over (Y, X, A) with Bayes optimal regressor
given by p*(X, A) = E[Y| X, A] and loss function ¢, there exists a predictor p(p*, A) such that

(i) P is an optimal predictor satisfying our fairness properties of calibration and equal error
rates. That is, E[{(155p,Y)] < E[l(1gsp,Y)] for any § that satisfies the properties.

(ii) p is derived from (p*, A). In particular, it is a (possibly random) function of the random
variables (p*, A) alone, and is independent of X conditional on (p*, A).

Proof. To start, first note that our fairness properties of calibration and equal error rates on
a score p and classifications 1{p > p} are “oblivious.” That is, they depend only on the joint
distribution of (Y, A, p) given the known cutoff p. We will show that for any arbitrary § that
satisfies the fairness properties, we can construct a p that also satisfies fairness, yields the
same expected loss, and is derived from (p*, A).

Consider an arbitrary § = f(X, A) satisfying the fairness properties. We can define
p(p*, A) as follows: draw a vector X’ independently from the conditional distribution of X
given the realized values of p* and A, and set p = f(X’, A). Note this p satisfies (ii) by
construction.

To show that this p satisfies the fairness properties and yields the same expected loss as
g, note that since Y is binary with conditional expectation equal to the Bayes optimal p*,
we know Y is independent of X conditional on p*. Therefore (Y, p*, X, A) and (Y, p*, X', A)
have the same joint distribution, and so must (f(X,A),A,Y) and (f(X’, A),A,Y). Since
the fairness properties are oblivious and depend only on these latter joint distributions, then
we know that as long as § satisfies them then so will p. Finally, we can deduce that (Y, §) and
(Y, p) also have the same joint distribution, meaning that (i) is satisfied with equality. <«

A.7 Our algorithm as a mean-preserving contraction of scores

We observe that a calibrated score derived from another is a mean-preserving contraction.
Since the Bayes optimal p* that serves as input to our algorithm frequently satisfies calibration
(see Liu et al. 2019), then our post-processing method can be viewed as finding its smallest
mean preserving contraction that achieves equal error rates at the decision-maker’s cutoff.

The relationship between calibrated scores related by post-processing is characterized by
our proposition below.

» Proposition 8. Let ps be any calibrated score of group A, i.e. satisfying E[Y |pa] = pa for
members of A, and let pa = f(pa, () be a score post-processed from pa that is also calibrated,
where € is independent of Y conditional on pa. Then, pa is a mean-preserving contraction
of pa, withpa =pa+ Z and E[Z|pa] = 0. Conversely, any pa that satisfies pa = pa+ Z
with E[Z|pa] = 0 is calibrated.

Proof. We first show that p4 is a mean-preserving contraction of p4. To start, note that
the post-processed pa is assumed to be calibrated, so E[Y|pa] = pa. Moreover, since
pa = f(pa, (), we have o(Pa) C o(pa,(). Therefore by the tower property of conditional
expectation,

pa =E[Y|pa] = E[E[Y|pa,(][pa]
= E[E[Y |pa]|pa], (by conditional independence of ()
= E[pa|pal, (by calibration of p4).

Then pa = pa + (Pa — E[palpa]l) = pa + (pa — E[pa|pa]) where the second term is by
construction mean independent of p4, so P4 is a mean-preserving contraction of p4.
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Now we show that if the score p4 is a mean-preserving contraction of ps such that
pa = pa + Z for some Z satisfying E(Z|pa) = 0, then p4 is calibrated. Observe that

Elpalpal = E[pa + Z|pa]l = E[palpa] +E[Z|pa] = pa

which is sufficient to show that P, is calibrated. To see why, recall that py4 is calibrated and
note that by the tower property of conditional expectation with o(pa) C o(pa),

Elpalpal = E[E(Y [pa)|pa] = E[Y[pa]. <

A.8 Justification for discretizing p*

Our algorithm uses the discretization of p* to construct a linear program that maps probability
masses from p* to p. Note that even if the original p* is not discrete, it can easily be discretized
into N bins by taking p’ = |Np*|/N. The discretized score will satisfy |[p’ — p*| < N~1
almost surely, so for large values of N, the discretization p’ approximates p* well.
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—— Abstract

The 2020 Decennial Census will be released with a new disclosure avoidance system in place,

putting differential privacy in the spotlight for a wide range of data users. We consider several key
applications of Census data in redistricting, developing tools and demonstrations for practitioners
who are concerned about the impacts of this new noising algorithm called TopDown. Based on a
close look at reconstructed Texas data, we find reassuring evidence that TopDown will not threaten
the ability to produce districts with tolerable population balance or to detect signals of racial
polarization for Voting Rights Act enforcement.
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1 Introduction

A new disclosure avoidance system is coming to the Census: the 2020 Decennial Census
releases will use an algorithm called TopDown to protect the data from increasingly feasible
reconstruction attacks [2]. Census data is structured in a nesting sequence of geographic
units covering the whole country, from nation at the top to small census blocks at the
bottom. TopDown starts by setting a privacy budget € > 0 which is allocated to the levels of
a designated hierarchy, then adding noise at each level in a differentially private way [12].
When ¢ — oo, the data alterations vanish, while ¢ — 0 yields pure noise with no fidelity to
the input data. The algorithm continues with a post-processing step that leaves an output
dataset that is designed to be suitable for public use.
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Redistricting is the process of dividing a polity into territorially delimited pieces in which
elections will be conducted. The Census has a special release — named the PL 94-171 after
the law that requires it — that reports the number of residents in every geographic unit
in the country by race, ethnicity, and the number of voting-age residents [9]. The 2020
release is slated to occur by September 2021, after which many thousands of district lines
will be redrawn: not only U.S. Congressional districts, but those for state legislatures, county
commissions, city councils, and many more.

Many user groups have expressed concerns about the effects of differential privacy on
redistricting. They largely but not exclusively concern two issues. First, “One Person, One
Vote” case law calls for balancing population across the electoral districts in a jurisdiction,
whether small like city council districts or large like congressional districts. Most states
balance congressional districts to within one person based on Census counts. Second, the
most reliable legal tool against gerrymandering has been the Voting Rights Act of 1965
(VRA), which requires a demonstration of racially polarized voting (RPV). This RPV analysis
is typically performed by statistical techniques that infer voting by race from precinct-level
returns. Many voting rights advocates worry that noising of Census data will confuse
population balancing practices, and others worry that it will attenuate RPV signals, making
it harder to press valid claims.

The Census Bureau has been commendably transparent about the development of
TopDown, making working code publicly available along with documentation and research
papers describing the algorithm. The complexity of the algorithm makes it extremely difficult
to study analytically, so many people have sought to run it on realistic data. However, since
person-level Census data remain confidential for 72 years after collection, detailed input data
for TopDown is not public. Data users who would like to understand its impacts are left with
two options: decades-old data or a limited demonstration data product.

In this paper, we get around the empirical obstacle by use of reconstructed block-level 2010
microdata for the state of Texas, and we try to understand the algorithm through theoretical
analysis of a much-simplified toy algorithm, ToyDown, that retains the two-stage, top-down
structure of TopDown but is much easier to analyze symbolically. We investigate three
questions about the count discrepancies created by TopDown in units of census geography
and “off-spine” aggregations like districts and precincts.

Hierarchical budget allocation. We derive easy-to-evaluate expressions for ToyDown errors
as a function of the privacy budget allocation. Error at higher levels of the geographic
hierarchy impacts lower-level counts with a significant discount, suggesting that bottom-
heavy allocations may be optimal for accuracy on small geographies. This is consistent with
the small-district errors in our experiments with TopDown. For larger districts, a tract-heavy
allocation gives greatest accuracy. Equal allocation over the levels is a strong performer in
both cases, making this a good choice from the point of view of multi-scale redistricting.

District construction. From there, we create further tests to study the impacts of district
design. We compare hierarchically greedy to geometrically greedy district-generation schemes,
where the former attempt to keep large units whole and the latter attempt to build districts
with short boundaries. We find that the ToyDown model gives errors very closely keyed to
the fragmentation of the hierarchy, but that spatial factors damp out the primary role of
fragmentation in the shift to the TopDown setting.
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Robustness of linear regression. Finally, we consider the unweighted linear regressions
commonly used to assess racial polarization in voting rights cases. We find that the noise
from both ToyDown and TopDown introduces an attenuation bias that seems alarming at
first. However, unweighted linear regression on precincts is already vulnerable to major skews
imposed by the inclusion of very small precincts. For any reasonable way of counteracting
that — trimming out the tiny precincts or weighting the regression by the number of votes
cast — the instability introduced by ToyDown and TopDown all but vanishes.

Our investigation is set up to answer questions about the status quo workflow in
redistricting. As usual with studies of differential privacy, a finding that DP unsettles the
current practices might lead us to call to refine the way it is applied, but might equally lead
us to interrogate the traditional practices and seek next-generation methods for redistricting.
In particular, it is clear that the practice of one-person population deviation across districts
was never reasonably justified by the accuracy of Census data nor required by law, and the
adoption of differential privacy might give redistricters occasion to reconsider that practice.
We make a similar observation about the way that racially polarized voting analysis is
commonly performed in expert reports. On the other hand, by focusing on decisions still to
be announced like the privacy budget and its allocation over the hierarchy, we are able to
make recommendations that can assist the Bureau in protecting privacy while attending to
the important concerns of user groups.

2 Background on Census and redistricting

2.1 The structure of Census data and the redistricting data products

Every ten years the U.S. Census Bureau attempts a comprehensive collection of person-level
data — called microdata — from every household in the country. The microdata are confidential,
and are only published in aggregated tables subject to disclosure avoidance controls. The
Decennial Census records information on the sex, age, race, and ethnicity for each member of
each household, using categories set by the Office of Management and Budget [8]. The 2020
Census used six primary racial categories: White, Black, American Indian, Asian, Native
Hawaiian/Pacific Islander, and Some Other Race. An individual can select these in any
combination but must choose at least one, creating 2 — 1 = 63 possible choices of race.
Separately, ethnicity is represented as a binary choice of Hispanic/Latino or not.

The 2010 Census divided the nation into over 11 million small units called census blocks
which nest in larger geographies in a six-level “central spine”: nation — state — county —
tract — block group — block. Counts of different types are provided with respect to these
geographies. This tabular data is then used in an enormous range of official capacities, from
the apportionment of seats in the U.S. House of Representatives to the allocation of many
streams of federal and state funding. The redistricting (PL 94-171) data includes four such
tables: H1, a table of housing units whose types are occupied/vacant; and four tables of
population, P1 (63 races), P2 (Hispanic, and 63 races of non-Hispanic population), and
P3/P4 (same as P1/P2 but for voting age population). Each table can be thought of as a
histogram, with each included type constituting one histogram bin. For instance, in table P1
there is 1 person in the ¢ =White+Asian bin in the Middlesex County, MA, block numbered
31021002.

Treating the 2010 tables as accurate, it is easy to infer information not explicitly presented
in the tables. For instance, the same bin in the P3 table (race for voting age population) also
has a count of 1, implying that there are no White+Asian people under 18 years old in block
31021002. This is the beginning of a reconstruction process that would enable an attacker, in
principle, to learn much of the person-level microdata behind the aggregate releases.
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2.2 Disclosure avoidance

Title 13 of the U.S. Code requires the Bureau to take measures to protect the privacy of
respondents’ data [1]. In the 2010 Census, this was largely achieved by an ad hoc mechanism
called data swapping: a Bureau employee manually swapped data between small census
blocks to thwart re-identification. In 2020, swapping is no longer considered adequate to
protect against more sophisticated (but mathematically straightforward) data attacks that
seek to reconstruct the individual microdata. An internal Census Bureau study concluded
that data swapping was unacceptably vulnerable: Census staff were able to reconstruct the
2010 Census responses of — and correctly reidentify — tens of millions of people.

With the reconstruction/reidentification threat in mind, the Bureau has developed an
algorithm called TopDown [2], which begins with a noising step that is differentially private,
following a mathematical formalism that provides rigorous guarantees against information
disclosure [12]. Differentially private algorithms obey a quantifiable limit to how much the
output can depend on an individual record in the input. The relationship of output to input
is specified by a tuneable parameter, €, often called the privacy budget. When € — oo, the
output approaches equality to the input (high risk of disclosure). When & — 0, the output
bears no resemblance to the input whatsoever (no risk of disclosure). Like a fiscal budget,
the privacy budget can be allocated until it is fully spent, in this case by spending parts of
the budget on particular queries and on levels of the hierarchy.

TopDown takes an individual-level table of census data and creates a “synthetic” dataset
that will be used in its place to generate the PL 94-171 tables. It can be thought of as
taking as input a histogram with a bin for each person type (i.e., a combination of race, sex,
ethnicity, etc.) and outputting an altered version of the same histogram. It proceeds in two
stages. First, it privatizes the input histogram counts: it adds enough random noise to get
the required level of differential privacy (according to the budget £). At this stage, it also
allocates a portion of the total privacy budget for generating additional noisy histograms of
data of particular importance to the Census Bureau. Second, TopDown does post-processing
on the noisy histograms to satisfy a handful of additional plausibility constraints. Among
other things, post-processing ensures that the resulting histograms contain only non-negative
integers, are self-consistent, and agree with the raw input data on a handful of invariants
(e.g., total state population).

The overall privacy guarantees of TopDown are poorly understood. In this paper, we
design a simpler cousin of TopDown nicknamed ToyDown and we explore the properties of
both ToyDown and TopDown, primarily focusing on reconstructed Texas data from 2010.

2.3 The use of Census products for redistricting

The PL 94-171 tables are the authoritative source of data for the purposes of apportionment
to the U.S. House of Representatives, and with a very small number of exceptions also for
within-state legislative apportionment. The most famous use of population counts is to
decide how many members of the 435-seat House of Representatives are assigned to each
state. In “One person, one vote” jurisprudence initiated in the Reynolds v. Sims case of
1964, balancing Census population is required not only for Congressional districts within
a state but also for districts that elect to a state legislature, a county commission, a city
council or school board, and so on [17, 18, 3].

Today, the Congressional districts within a state usually balance total population extremely
tightly: each of Alabama’s seven Congressional districts drawn after the 2010 Census has
a total population of either 682,819 or 682,820 according to official definitions of districts
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and the Table P1 count, while Massachusetts districts all have a population of 727,514 or
727,515. Astonishingly, though no official rule demands it, more than half of the states
maintain this “zero-balancing” practice (no more than one person deviation) for Congressional
districts [16]. This ingrained habit of zero-balancing districts to protect from the possibility
of a malapportionment challenge is the first source of worry in the redistricting sphere. If
disclosure avoidance practices introduce some systematic bias — say by creating significant
net redistribution towards rural and away from urban areas — then it becomes hard to control
overall malapportionment, which could in principle trigger constitutional scrutiny. In the
end, redistricters may not care very much how many people live in a single census block, but
it could be quite important to have good accuracy at the level of a district.

The second major locus of concern for redistricting practitioners is the enforcement of the
Voting Rights Act (VRA). Here, histogram data is used to estimate the share of voting age
population held by members of minority racial and ethnic groups. Voting rights attorneys
must start by satisfying three threshold tests without which no suit can go forward.

Gingles 1: the first “Gingles factor” in VRA liability is satisfied by creating a demon-

stration district where the minority group makes up over 50% of the voting age population.

Gingles 2-3: the voting patterns in the disputed area must display racial polarization.

The minority population is shown to be cohesive in its candidates of choice, and bloc

voting by the majority prevents these candidates from being elected. In practice, inference

techniques like linear regression or so-called “ecological inference” are used to estimate
voting preferences by race.

Since the VRA has been a powerful tool against gerrymandering for over 50 years, many
worry that even where the raw data would clear the Gingles preconditions, the noised data
will tend towards uniformity — blocking deserving plaintiffs from a cause of action.

3 Census TopDown and ToyDown

3.1 Setup and notation

For the Census application, the data universe is a set of types: for instance, the redistricting
data (the PL 94-171) has the types T = T X T X Ty 4 X Ty, where Ty is the set of 63
races, T is binary for ethnicity (Hispanic or not), T4 is binary for age (voting age or not),
and Ty is the set of housing types. (The fuller decennial Census data has more types.)

A hierarchy H is a rooted tree of some depth d, so that every leaf has distance < d — 1
from the root. We will usually assume the hierarchy has uniform depth, so that every leaf is
exactly d — 1 away from the root. For node h € H, let n(h) € N be the number of children
of h in the tree, and let £(h) be the level of node h. A hierarchy is called homogeneous if
each node at level ¢ has the same number of children, denoted n,. Let Hy denote the set of
nodes at level £, so that the set of leaves is Hy in the uniform-depth case. Label the root of
the tree h = 1. We adopt an indexing of the tree and refer to the ith child of h as h;; the
parent of any non-root node h is denoted h. In Census data, the hierarchy represents the
large and complicated set of nested geographical units, from the nation at the root down to
the census blocks at the leaves. The standard hierarchy has the six levels (nation — state —
county — tract — block group — block) described above.

We associate with hierarchy H and types T a set of counts Ayt = {aps € N}nener,
where ay: is the population of type ¢ in unit h of census geography. We say Ap r is
hierarchically consistent if the counts add up correctly: for every non-leaf h and every ¢, we
require ap s = Zie[n(h)] ap, ¢ For a singleton T, we write Ay = {as}. We set an allocation
(€1,...,€q) breaking down the privacy budget € = >_ &; to the different levels of the hierarchy.
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Our queries will always be counting queries, so that for instance gp44(h) returns the
number of 44-year-old females in geographic unit h. This particular query is part of a “sex
by age” histogram Qsez,age = {¢s,a 1 5 € Tg,a € T4}, which partitions 7" into bins by sex
and age. In this language, ¢r 44 is a bin of the sex-by-age histogram. By slight abuse of
notation, we will use the same terminology for the queries and their outputs, so that the
histogram can be thought of as the collection of queries or the collection of counts. Similarly,
the “voting age by ethnicity by race” histogram consists of a query for each combination of
the 2 x 2 x 63 possible combinations of the three attributes.

3.2 ToyDown and TopDown

The Bureau’s TopDown and our simplified ToyDown are both algorithms for releasing
privatized population counts for every h € H. That is, these algorithms protect privacy by
noising the data histograms. TopDown releases not just total population counts, but counts
by type. We will define single-attribute and multi-attribute versions of ToyDown that noise
Ap and Ap 7, respectively, where consistency must hold for each type ¢.

TopDown and ToyDown share the same two-stage structure. Starting with hierarchically
consistent raw counts a, the noising stage generates differentially private counts a. The
post-processing stage solves a constrained optimization problem to find noisy counts « that
are close to the @ values while satisfying hierarchical consistency and other requirements.
TopDown is named after the iterative approach to post-processing: one geographic level at a
time, starting at the top (nation) and working down to the leaves (blocks). We sketch the
noising and post-processing here, and we describe them in Appendix A in more detail.

The simple ToyDown model can be run in a single-attribute version (only counts Ay ),
a multi-attribute version (counts by type Ag 1), or in multi-attribute form enforcing non-
negativity. The single-attribute version is easy to describe: level by level, random noise values
are selected from a Laplace distribution with scale 1/e, and added to each count, replacing
each aj, with @, = aj + L. Then, working from top to bottom, the noisy a; are replaced
with the closest possible real numbers «, satisfying hierarchical consistency. Multi-attribute
ToyDown is defined analogously, but using Ag 1 instead of Ay and requiring hierarchical
consistency within each type t € T. Non-negative ToyDown adds the inequality requirement
that ap > 0.

TopDown is structurally similar but much more complex, with more kinds of privatized
counts in the noising stage and a great many more constraints in the post-processing stage,
including integrality. The privatized counts computed by TopDown are specified by a collection
of histograms (or complex queries) called a workload W. For each bin of each histogram
in the workload and for each node h in the geographic hierarchy, TopDown adds geometric
noise to the count. The post-processing step finds the closest integer point that satisfies
the requirements given by hierarchical consistency, non-negativity, as well as additional
conditions given as invariants and structural inequalities. For example, any block with
zero households in the raw counts must have zero households and zero population in the
output adjusted counts. Together, the invariants, structural inequalities, integrality, and
non-negativity make this optimization problem very hard. The problem is NP-hard in the
worst case and TopDown cannot always find a feasible solution. There is a sophisticated
secondary algorithm for finding approximate solutions that is beyond the scope of this paper.

ToyDown is simple enough that solutions can often be obtained symbolically. ToyDown
simplifies the noising stage by fixing the workload to be the detailed workload partition
Qdetailed = {{t}},cr consisting of all singleton sets and using the continuous Laplace
Mechanism instead of the discrete Geometric Mechanism. It simplifies the post-processing
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stage by dropping invariants, structural inequalities, integrality, and non-negativity. When
negative answers are permitted, multi-attribute ToyDown is equivalent to executing |T|
independent instances of single-attribute ToyDown on inputs Ag; = {apt}ren for each
t € T. As a result, many of our analytical results for single-attribute ToyDown extend
straightforwardly to multi-attribute ToyDown (allowing negative answers) by scaling by a
factor of |T| in appropriate places.

4 Methods

We use both analytical and empirical techniques in this work. This section describes our
high-level empirical approach: what algorithms and raw data we used and how we used
them. See Appendix B for more details. We repeatedly ran TopDown and ToyDown in
various configurations on a reconstructed person-level Texas dataset created by applying a
reconstruction technique to the block-level data from the 2010 Census, following [15] based on
[11]. The reconstructed microdata records — obtained from collaborators — contain block-level
sex, age, ethnicity, and race information consistent with a collection of tables from 2010
Census Summary File 1.

We executed 16 runs of TopDown with each of 20 different allocations of the privacy budget

across the five lower levels of the national census geographic hierarchy: € = eo+e3+e4+e5+¢6.

The 20 allocations consist of five different splits across the levels (Table 1) for each of four
total budgets € € {0.25,0.5,1.0,2.0}. TopDown operates on the six-level Census hierarchy
and requires specifying €. In our experiments, we ran TopDown with a fixed total privacy
budget €;01q1 = 10, with €; = 10 — . Because the nation-level budget is so much higher
than the lower level budgets, we omit further discussion of it. The TopDown workload was
modeled after the workload used in the 2018 End-to-End test release, omitting household
invariants and queries.

We also ran three variants of ToyDown (single-attribute, multi-attribute, and non-negative)
on a simplified version of the same data 2010 data. We executed 16 runs of each variant
with each of five different splits of the privacy budget across the five lower levels of the
census geographic hierarchy (Table 1), fixing the total budget for those five levels at € = 1.
The data was derived from the reconstructed Texas data simplified to include only seven
distinct types: one for the total Hispanic population and one for each of six subgroups of
the non-Hispanic population based on race (White; Black; American Indian; Asian; Native
Hawaiian /Pacific Islander; and Some Other Race or multiple races). Post-processing for single-
attribute ToyDown was implemented in NumPy, while post-processing for multi-attribute
and non-negative ToyDown used a Gurobi solver.

5 Hierarchical budget allocation

The relationship of the hierarchical allocation (e1,...,e4) to various measures of output
accuracy is not obvious. On one hand, it might seem that higher values of £4 (the block-level
budget) will best promote accuracy at the block level, for a fixed e. But on the other
hand, imposing hierarchical consistency forces lower levels to be consistent with the totals at
higher levels, which means that noise at higher levels can trickle down to lower levels. These
competing effects create tradeoffs that are hard to balance without further analysis.
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Table 1 Names of designated budget splits used in a
ToyDown and TopDown runs below, each with a budget of
€1 = 9 on the nation and a total of 1 allocated below the a a 0
national level.
state | county ‘ tract ‘ BG ‘ block @ 0 a @ a a a a
Split name g2 e3 £4 €5 €6
equal 0.2 0.2 0.2 0.2 0.2 Figure 1 A district in a three-
state-heavy 0.5 0.25 0.083 | 0.083 | 0.083 level hierarchy. The 0/1 weight of a
tract-heavy | 0.083 0.167 0.5 0.167 | 0.083 leaf indicates its membership in the

BG-heavy | 0.083 0.083 0.167 0.5 0.167

block-heavy | 0.083 | 0.083 | 0.083 | 025 | 0.5 district; each non-leaf weight is the

average of the node’s children.

5.1 ToyDown error expressions

» Definition 1 (District, weights, error). A district D C Hy is a subset of the leaves (blocks)
of the hierarchy H. For hierarchy H, a district D induces weights wy, € [0,1] on the hierarchy
nodes, defined recursively as follows:

For each leaf h € Hy, let wp, =1 if h 6 D and wy, = 0 otherwise.

Fort{<d-—1andh e Hy, let w, = n(h) > ) Whi be the average of the weights of

the children.

i€[n(h

In a homogeneous hierarchy, we can observe that each wy equals the fraction of the leaves
descended from h that belong to D. In particular, the root weight is wy = |D|/|Hg4| = 1/k if
there are k districts of equal population made from nodes of equal population.

For node h € H, we record the error B, = ap, — ap, introduced by ToyDown to the count
ap. The total error over district D is Ep = ZheD E}. Let h denote the parent of node h.

» Theorem 2 (Error expressions). Ey = Ly. For £ € {2,...,d} and non-root node h; € Hy,
and for every district D with associated weights wy, on the nodes,

1
E, =L, +—— = _
he = L, + o E Lh , Ep =wiLi+ g (wp — w;,) L. (1)
j€n(h he H\{1}

We make several observations. First, our intuition that error at higher levels trickles down
to lower levels is correct, but this effect is rather weak. The error at a child h; is determined
by the parent error Ej, discounted by the degree n(h), the number of siblings. This suggests
that placing more budget at level £ is an efficient way to secure accuracy at that level, until
a fairly extreme level of error at higher levels overwhelms the degree-based “discount.”

Second, because the Lj; are all independent random variables with E(Lp) = 0 and
Var(Ly) =8/ 55( h)» the theorem provides the following expression for variance that we use
repeatedly.

» Corollary 3 (Error expectation and variance). For all D C Hy; and associated weights wy,,
the expected error and error variance produced by ToyDown satisfy E(Ep) = 0 and

d
Var(Ep) = 8w1 + Z ( Z wp, — wﬁ)2> . (2)

heH,

Third, we get a more explicit expression if restricting to homogeneous hierarchies H.
Consider the case of a singleton district {h} made of a single census block h € Hy.
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» Corollary 4 (Error variance, homogeneous case). The ToyDown error for a single block
h € Hy satisfies

d
8 8ng—1(ne—1 — 1)
Var(Ey) = . 3
ar( h) 62 D) +Z€%(ng_1"'nd_1)2 ( )

Figure 2 plots this expression for various ways of splitting a total privacy budget of
¢ = 1 across a three-level hierarchy with n; = ne = 10. The minimum of f(x1,...,24) =
Zi,l:l a¢/z} subject to >, z¢ = € and ¢ > 0 is achieved at z, = 5‘1;/3/21' ai/?’ for all ¢. For
the example in Figure 2, the minimum-variance split is (g1, €2,€3) = (0.038,0.171,0.791) with
variance 14.52. (See accompanying CoLab notebook.) One important note in interpreting
Figure 2 is that these variance numbers are absolute and don’t depend on knowing population
counts for the nodes of the hierarchy. They are simply based on sampling Laplace noise with
the given parameters. If a variance of about 15 in the bottom-level counts is too high to be
tolerated in an application, one would have to increase € to achieve lower variance.

— =01

£=02
— =03
— =04

£=05
— =06
500 £=07
£=08
400 £=0.9

Table 2 L! error measurements from
selected TopDown runs on reconstructed
Texas data. The allocation (e1,...,e6) goes
from the nation £ = 1 down to census blocks
at £ = 6.

- _ - € ‘ Allocation ‘ L' error
B W o w 1.0 | (.16, .16, .16, .16, .16, .2) 0.03
1.0 | (.2, .16, .16, .16, .16, .16) 0.03
1.0 (1,.1,.1, .1, .1, .5) 0.02

Figure 2 ToyDown error variance for a leaf node
in the three-level hierarchy with n1 = ne = 10 and
€ = 1. The curves show varying e3 (colors) and the
relative balance of 1 and g2 (z-axis).

1.0 | (.02,.02, .02, .02, .02, .9) 0.03
1.0 | (.66, .30, .01, .01, .01, .01) 0.09

5.2 Empirical error experiments in TopDown

Next, we move to TopDown, which requires the use of input data. First, using reconstructed
2010 Texas data, we varied the relative allocation vector and the total £, then measured
the effects with an L' error metric included in the Census code [5]. This is a measure of
block-level error: it adds the magnitudes of changes in the bins, then divides by twice the
total population in the histogram.

Table 2 reports a small selection of the 1004 different scenarios explored. In general, the
lowest error outcomes were observed in a few scenarios: when the budget was distributed
near-equally to the levels of the hierarchy, and when half of the available budget was placed
at the bottom level — beyond 4 = €/2, further bottom-weighting gave diminishing returns in
block-level accuracy.

But a budget allocation that produces small block-level errors may not produce small
errors for districts, depending on the degree of cancellation or correlation. Next, we use
random district generation to understand the effects of off-spine aggregation. In particular,
we employ the Markov chain sampling algorithm called recombination (or ReCom), which runs
an elementary move that fuses two neighboring districts and re-partitions the double-district
by a random balanced cut to a random spanning tree [10].
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Figure 3 Three sample districts (yellow) in Dallas County, each within two percent of the ideal
population for k = 4 districts. These are drawn by tract ReCom, block ReCom, and a square-favoring
algorithm, respectively.

We begin with county commission districts in Dallas County, where k = 4. Since the 2010
population of Dallas County was roughly 2.4 million, each district will have roughly 600,000
people, making them nearly as big as congressional districts and much larger than tracts.
We also include divisions of the county into k = 175 districts of between 13,000 and 14,000
people each for a small-district comparison. Figure 4 plots the data from our experiments on
a logarithmic scale. Each histogram displays 400 values, one for each district drawn by the
specified district-drawing algorithm; each value is the mean observed district-level population
error magnitude over 16 executions of the specified hierarchical noising algorithm using the
specified budget allocation.

First, consider two unrealistic forms of district-generation: tract Disconn (red) and block
Disconn (orange), which randomly choose units of the specified type until assembling a
collection with the appropriate population. These are unrealistic because they do not form
connected districts; here, they are used to illustrate the effects of aggregation, neglecting
spatial factors entirely. We see in Figure 4 that block-based methods generate hugely more
error than tract-based methods, except if the budget allocation is concentrated at the bottom
of the hierarchy. The effect is stronger for ToyDown (in keeping with Theorem 2), but is
easily observed for TopDown as well.

We compare that with the more realistic district-generation algorithm block ReCom
(blue), which builds compact and connected districts out of block units. This tends to give
error levels in between the extremes set by the other two. Likewise, tract ReCom (green)
builds compact and connected districts from tracts. One reasonable mechanism by which
ReCom has much lower error than Disconn is that ReCom districts will tend to have higher
“hierarchical integrity,” keeping higher-level units whole just by virtue of being connected
and plump. The interior of ReCom districts will thus contain many whole block groups
and tracts. Near the boundary, block groups and tracts are more fragmented, leaving the
corresponding block-level errors uncancelled. These fragmentation ideas are explored more
fully in Section 6 and some sample districts are depicted here.

The cancellation effect is significant: in most experiments, the error level for ReCom
districts is much closer to that of tract Disconn than block Disconn (recall the data is plotted
on a logarithmic scale). Overall, drawing districts out of larger pieces (e.g., using tract
Disconn instead of ReCom, or ReCom instead of block Disconn) lowers error magnitude
significantly in the best case and has little or no effect in the worst case.

Although tract ReCom and tract Disconn behave very similarly under ToyDown, the
compact districts perform noticeably worse than their disconnected relatives once we pass
to the full complexity of TopDown. At first this seems puzzling, because compact and
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Figure 4 These histograms show district-level error on a log scale for various combinations of
budget splits (rows), district-drawing algorithms (colors), and noising algorithms (columns). We
include both large districts and small districts, dividing the county into k = 4 and k = 175 equal
parts. Each histogram displays 400 values, one for each district drawn by the specified algorithm,
plotting the mean observed district-level population error magnitude over 16 executions of the
noising algorithm using the specified budget allocation.

connected districts are being punished by the geography-aware TopDown. But the reason for
this is apparent on further reflection: spatial autocorrelation is causing the post-processing
corrections to move nearby tracts in the same direction, impeding the cancellation that
makes counts usually more accurate on larger geographies.

In the end, the story that emerges from these investigations is that, with full TopDown,
the best accuracy that can be observed for large districts occurs when they are made from
whole tracts and the allocation is tract-heavy; an equal split is not much worse. For districts
with population around 13,000, £ = 1 noising creates errors in the low hundreds for compact,
connected districts, with the best performance for block-heavy allocations. Again, an equal
split is not much worse, suggesting that this might be a good policy choice for accuracy in
districts across many scales.

6 Geometrically compact vs hierarchically greedy districts

The analysis above suggests that the district-level error Ep will depend not only on the
randomness of the noising algorithms, but also on the geometry of D and the structure of H.
This section studies the hypothesis that districts that disrespect the geographical hierarchy
will tend to have higher error magnitude. This section defines the fragmentation score,
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relates a district’s fragmentation score to its error variance under ToyDown, and compares
the fragmentation of two simple district-drawing algorithms on homogeneous hierarchies and
simple geographies. Ultimately, we find that the explanatory value of the fragmentation
score decays as we move to more realistic deployment of TopDown. This discrepancy raises
important questions for future study: Which of the many additional features of TopDown
attenuates the fragmentation—variance relationship?

We define a score intended to capture the contribution to Var(Ep) of the shape of the
district with respect to the hierarchy. Recall that h denotes the parent of node h.

» Definition 5 (Fragmentation score). For D C Hy, let Frag(D) = Z (wp, — w;,)?.
heH

Because weights are in [0, 1], the score obeys 0 < Frag(D) < |H| for all districts, with higher
scores indicating the presence of more units that are only partially included in D.

This fragmentation score is reverse-engineered from the expression for the variance of
district-level population errors when using ToyDown with privacy divided equally across levels
of the hierarchy (Corollary 3): namely, Var(Ep) = %2 (w? + Frag(D)). When the district
D itself is a random variable sampled from some distribution, the expected fragmentation
E(Frag(D)) is similarly related to Var(Ep). Namely, using the law of total variation, when
each level gets ¢/d privacy budget:

2
Var(Ep) = E(Var(Ep|D))+ Var (E(Ep|D)) = E(Var(Ep|D)) = %([E(Frag(D))—i—[E(w%)).

When ¢ is allocated unequally across levels, as for the other splits in Table 1, the simple
analytical relationship between the fragmentation score and the error variance breaks down.

Observe that a hierarchy H does not capture all of the geometry relevant to district
drawing. In particular, H does not directly encode any information about block adjacency,
and therefore we can’t detect from H that a district is contiguous. For algorithms to generate
contiguous districts, we need to make use of the plane geometry associated to H. We restrict
our attention to the simplest case: homogeneous hierarchies (where every node on level £ < d
has exactly ny children) and square tilings. (where each unit on level ¢ is a square and has
ng children that cover it with a \/ng x \/ng grid tiling).

We analyze the fragmentation score for two simple district-drawing algorithms (see
Appendix C). The Greedy algorithm builds a district from the largest subtrees possible, only
subdividing a subtree when necessary. It takes as input H and k£ € N and returns a district
of size N = ||Hy|/k|, assembled by starting with the largest available units at random and
adding units that are adjacent in the labeling sequence without passing size N, then allowing
one partial unit, and so on recursively at lower levels. Observe that Greedy depends only on
the hierarchy H. The Square algorithm takes as input a square, homogeneous hierarchy H
and k € N such that the district size is a perfect square, |D| = |Hy|/k = s4%. It outputs a
uniformly random s4 X s4 square of blocks.

» Theorem 6. Let Do ~ Greedy(H, k), Dg ~ Square(H,k). Forny -ng---ng_o >k > 2,

let L =argmin{f:ny-ng---ng > k}.

L d—1
k—1 1 2 (/N1 g1 11
E(Frag(Dg)) < 7z Zz:;ng—l—i Z ng; E(Frag(Dp)) > 3 (\/E - 2) Vd—1-

{=L+1
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Dallas County is nearly a perfect square shape, so it gives us an opportunity to set some
roughly realistic parameters to evaluate these bounds. There are 529 tracts in Dallas County,
with an average of 3.2 blocks groups per tract and 26.4 blocks per block group, yielding
44,113 total blocks. We can approximate these parameters by setting d = 4, using k = 4
as for the county commission districts, and setting (n1,nq,n3) = (484, 4,25) which has a
reasonably similar 48,400 blocks (as a result, L = 1). The bounds in the theorem say that
E(Frag(Dg)) < 98 and E(Frag(Dg)) > 264. Note: for homogeneous hierarchies H with
equal-population leaves, the score Frag(Dg) is independent of algorithm randomness and
can be computed exactly; for the above parameters Frag(D¢g) = 90.75. So the bound in the
theorem is fairly tight, at least in this case.

To interpret the theorem, it is helpful to think of Greedy as being hierarchically greedy
and Square as being geometrically greedy. That is, the former is oriented toward using the
biggest possible units and keeping them whole, so that spatial considerations are secondary;
the latter is oriented towards “compact” geographies with a lot of area relative to perimeter,
and unit integrity is secondary. The theorem shows that compactness alone (a function of the
plane geometry) does not keep down the fragmentation score (a function of the hierarchy),
and indeed the bounds get farther apart as the hierarchy gets larger and more complicated.
In Appendix C, we compare these theoretical results to empirical district errors, finding that
fragmentation tracks well with errors in ToyDown, but that the complexity of the TopDown
model weakens the relationship, suggesting a need for more sophisticated tools.

7 Ecological regression with noise

7.1 Inference methods for Voting Rights Act enforcement

When elections are conducted by secret ballot, it is fundamentally impossible to precisely
determine voting patterns by race from the reported outcomes alone. The standard methods
for estimating these patterns use the cast votes at the precinct level, combined with the
demographics by precinct, to infer racial polarization. Because the general aggregate-to-
individual inference problem is called “ecological” (cf. ecological paradox, ecological fallacy),
the leading techniques are called ecological regression (ER) and ecological inference (EI). Tt is
rare that EI and ER do not substantively agree, and we focus on ER here because it lends
itself to easily interpretable pictures.

ER is a simple linear regression, fitting a line to the data points determined by the
precincts on a demographics-vs-votes plot. A high slope (positive or negative) indicates a
likely strong difference in voting preferences, which is necessary to demonstrate the Gingles
2-3 tests for a VRA lawsuit.

The top row of Figure 5 shows standard ER run on the precincts of Dallas County,
with each precinct plotted according to its percentage of Hispanic voting age population or
HVAP (x-axis) and the share of cast votes that went to Lupe Valdez (y-axis). Strong racial
polarization would show up as a fit line of high slope. This process produces a point estimate
of Hispanic support for Valdez, found by intersecting the fit line with the x = 1 line, which
represents the scenario of 100% Hispanic population. The point estimate of non-Hispanic
support for Valdez is at the intersection of the fit line with x = 0.

7.2 Summary of Experiments

ToyDown and TopDown were both run on the full Texas reconstruction from 2010. We plotted
Dallas County votes from three contests: votes for Obama for president in 2012 general
election, votes for Valdez for governor in the 2018 Democratic Party primary runoff, and
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Figure 5 Comparing ecological regression on un-noised data (top row) with various styles of
noising. ER is re-run on data noised by differentially private ToyDown (second row), and data
noised by TopDown (third row), both with e = 1, equal split. The blue dots repeat the un-noised
data, the pink dots show 16 runs of noised data with pink fit lines re-computed each time. Below
that, the histograms show the point estimates of Latino (gold) and non-Latino (teal) support for
Valdez estimated from ER on data noised by ToyDown (lighter) and TopDown (darker). The last row
contrasts the differentially private algorithms with a naive variant that adds noise to each precinct
from a mean-zero Gaussian distribution, set to match the average precinct level L' error observed
in the ToyDown runs (in this case, this is o = 20). Across all of these experiments, the conclusion
is striking: TopDown performs better than ToyDown and far better than a naive Gaussian variant,
even without filtering precincts; if precincts are filtered or weighted, none of the noising alternatives
threatens the ability to detect racially polarized voting.
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Table 3 Point estimates from ER for Dallas County in the Valdez/White primary runoff in 2018.
In the first table, estimates are made with (un-noised) VAP data from the 2010 Census. In the
filtered precincts case, precincts with fewer than 10 cast votes are excluded from the initial set of 827
precincts. In the weighted precincts case, precincts are weighted by the number of cast votes. The
ToyDown and TopDown estimates are made from VAP data from 16 runs with ¢ = 1 and an e-budget
with all levels given equal weighting. Variance is the empirical variance over the repeated runs of
the noising algorithm and is in units of 10™%, shown to two significant digits.

All precincts (827)

Filtered precincts (626) Weighted precincts (827)

Race || this group | complement || this group | complement || this group | complement
Black 0.917 0.518 0.851 0.620 0.835 0.595
White 0.555 0.623 0.474 0.811 0.478 0.805

All (827) Filtered (626) Weighted (827)

Race | Algorithm | statistic || group | compl. || group | compl. || group | compl.
Hispanic | ToyDown | variance || 36000 7000 250 43 160 19

Black | ToyDown mean 0.798 0.543 0.851 0.62 0.835 0.595
Black | ToyDown | variance || 39000 2100 89 5.9 25 2.1

White | ToyDown mean 0.476 | 0.674 0.473 | 0.811 0.478 | 0.805
White | ToyDown | variance || 17000 8000 64 36 33 17
Hispanic | TopDown | variance || 45000 6700 480 100 120 16

Black | TopDown mean 0.91 0.52 0.85 0.62 0.835 0.595
Black | TopDown | variance || 30000 1200 250 23 45 2.4

White | TopDown mean 0.582 0.607 0.472 0.81 0.47 0.804
White | TopDown | variance || 10000 3400 92 37 92 10

votes for Chevalier for comptroller in the 2018 general election. We chose these contests
because in each, ER finds evidence of strong racially polarized voting when using published
2010 census data. All three contests gave similar findings; we’ll choose the Valdez runoff
contest as our focus here.

For both ToyDown and TopDown, we vary how we handle the inclusion of small precincts in
the ecological regression. The options are All (every precinct is a data point in the scatterplot,
all weighted equally); Filtered (only including precincts with at least 10 votes cast in that
election); or Weighted (weighting the terms in the objective function in least-squares fit by
number of votes cast). Filtering and weighting are done using the exact number of cast votes,
not the differentially private precinct population totals, which is realistic to the use case.

For each noising run we have a block- or precinct-level matrix, M of noised counts, with
height b, the number of geographic units (blocks or precincts), and width ¢, the number of
attributes for which there are counts recorded. We also have a corresponding matrix M of
un-noised counts. We can compute the Lq error by summing over the absolute value of every
entry in M — M. ToyDown and TopDown were run 16 times for each configuration. Let Eg,q
be the average L error across noising runs.

If we add Gaussian noise to each count instead, the expected L1 error is ), ; E[|X; ;]
where X;; ~ N(0, ¢%). This is the half-normal distribution, so E[|X;;|] = 22 We
rearrange to find the standard deviation o = % that defines the Gaussian distribution

R
(with u = 0), so that adding a random variable drawn from it to each unit count will produce
an expected L! error matching the average E,,, observed across the runs.
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7.3 The role of small precincts

Practitioners who use ER have raised two questions regarding the effect of differential privacy:
(1) How robust will the estimate be after the noising? (2) Will noising diminish the estimate
of candidate support from a minority population? We analyzed the effects of TopDown and
ToyDown on the 2018 Texas Democratic primary runoff election, where Lupe Valdez was a
clear minority candidate of choice in Dallas county.!

We begin by observing that of the 827 precincts in Dallas County, 201 have fewer than
10 cast votes from that election day — in fact, 99 precincts recorded zero cast votes. These
precincts are a big driver of instability under DP. This is not surprising; percentage swings
are much higher in small numbers even if the noise injected might be low. However, down-
weighting these small precincts makes the estimate almost always agree with the un-noised
estimate. Specifically, we assign weights to the precincts equivalent to the number of total
votes in the precinct. Figure 5 shows how the estimates vary by run type and data treatment.

8 Conclusion

The central goal of this study has been to take the concerns of redistricting practitioners
seriously and to investigate potential destabilizing effects of TopDown on the status quo. A
second major goal is to make recommendations, both to the Disclosure Avoidance team at
the Census Bureau and to the same practitioners — the attorneys, experts, and redistricting
line-drawers in the field. Texas generally, and Dallas County in particular, was selected
because it has been the site of several interesting Voting Rights Act cases in the last 20

years.?

Our top-line conclusion is that, at least for the Texas localities and election data we
examined, TopDown performs far better than more naive noising in terms of preserving
accuracy and signal detection for election administration and voting rights law. Perhaps
more importantly, we have created an experimental apparatus to help other groups conduct
independent analyses.

This work has led us to isolate several elements of common redistricting practice that lead
to higher-variance outputs and more error under TopDown. The first example is the common
use of a full precinct dataset, with no population weighting, in running racial polarization
inference techniques. The second major example is the use of the smallest available units,
census blocks, for building districts of all sizes, with no particular priority on intactness
for larger units of Census geography. In both cases, we find that these were already likely
sources of silent error. Filtering small precincts (or, better, weighting by population) and
building districts that prioritize preserving whole the largest units that are suited to their
scale are two examples of simple updates to redistricting practice. Besides being sound on
first principles, these adjustments can insulate data users from DP-related distortions and
help safeguard the important work of fair redistricting.

L We also examined the general elections for President in 2012 and Comptroller in 2018, with similar
findings.

2 This is a large county with considerable racial and ethnic diversity. Follow-up work will consider smaller
and more racially homogeneous localities.
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A ToyDown and TopDown

ToyDown is described in Algorithm 2. It uses the Laplace distribution Lap(b) with scale
parameter b, i.e., the probability distribution over R with mean zero and probability density
function P[L] = %e*w/b. It has variance 2b2. TopDown uses the geometric distribution, a
discretized version of the Laplace distribution with integer support.

The inputs to TopDown are as follows. Ayt = {an+}nhem ter, where ap, is the number

of people in h of type t; W = (Q1,...,Qw)|) is a workload consisting of a collection of
histograms Q; € = (1, ...,€4) is a hierarchical allocation of the privacy budget, with €, > 0
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at each level; B : W — [0,1] with > 5.y B(Q) = 1 is a probability vector describing the
relative privacy budget on each histogram in the workload; invariants V; and structural
inequalities S. We write ap, = {ap}ter (and oy, analogously). For a query ¢, we write
q(ap) = Zteq ap,: (and ¢(ay,) analogously).

In the first stage (lines 2-5), a geometric random variable is added to the raw counts a to
produce noised counts a. In the second stage (lines 6-8), the noised counts are adapted to
the nearest integer values that meet a collection of equality and inequality conditions. These
equalities and inequalities, over the real numbers, describe a convex polytope; therefore the
post-processing can be thought of geometrically as a closest-point projection to the integer
points in the convex body under L? distance.

The noising stages of both ToyDown and TopDown are e-differentially private for € =
Z‘Z:l g¢. In ToyDown, this stage can be viewed as generating a single histogram at each
level ¢ using budget ¢,. Following the Census Bureau, we use bounded differential privacy,
wherein the global sensitivity of histogram queries is 2. In TopDown, the budget at level
¢ is further divided among the |W| histograms @ in the workload, each receiving B(Q)e,
of the budget. Because ToyDown’s post-processing is data independent, ToyDown is e-DP.
TopDown’s post-processing is not data independent: the invariants and structural inequalities
may depend on the original data.

Algorithm 1 TopDown, based on [2].

1: procedure ‘TOP])OVVN(AH,T7 €1,€2,...,6q, W, B, V, S)

2 forhe HLQeW,qe @ do

3: B < exp(=B(Q) - ¢(ny/2)

4 Gh.g < Geom(p) > See [6]
5 Qg < q(an) + Grq > Geometric mechanism with

sensitivity 2, budget B(Q) - gyn)

6: for/=1,...,ddo

7 Compute hierarchically-consistent > A sophisticated heuristic algorithm
non-negative integers {an. ¢ fhem, teT out of scope for this work
minimizing 3, g, Sgew, (@(an) = nq)*,
subject to the invariants: v*(ay,) = v*(ay) for all h € Hy, v € V
and structural inequalities: s(ap,ap) <0 for all h € Hy, s € S

8: return {oy,  them et

B Detailed materials and methods

B.1 Primary data sources

2010 US Census demographic data was downloaded using the Census API, and the 2010
census block, block group, and tract shapefile for Dallas County were downloaded from
the US Census Bureau’s TIGER /Line Shapefiles. For our VRA analysis, we obtained both
statewide election results and a statewide precinct shapefile from the Texas Capitol Data
Portal, which we then trimmed to the precincts within Dallas County.?

3 Data comes from data.capitol.texas.gov/topic/elections and data.capitol.texas.gov/topic/
geography.
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Algorithm 2 ToyDown.

1: procedure TOYDOWN(Ay = {an}nem, 1,82, -, €d) > (Single attribute)
2 for h € H do

3 Ly ~ Lap(2/eon))

4: ap < ap + Ly, > Laplace mechanism with sensitivity 2, budget €,
5 for/=1,...,ddo

6 Compute hierarchically consistent {ap, }rhen,

minimizing °, ¢ g, (o — a@n)?

7 return {op }ren
8: procedure MultiAttrTOYDOWN(Agn 1 = {anither teT, €1, €2, - - -, €d)
9: for he H,t €T do
10: L ~ Lap(2/eqn))
11: At < ant+ Ly > Laplace mechanism with sensitivity 2, budget ey,
12: for /=1,...,ddo
13: Compute hierarchically consistent
(optionally, non-negative) {an ¢ them, ter
minimizing ZhEHg,tGT (Qtht — Qht)
14: return {ap}hemter

We use a person-level dataset obtained by applying a reconstruction technique to the
block-level data from Texas from the 2010 Census.* The reconstructed microdata records
contain block-level sex, age, ethnicity, and race information consistent with a collection
of tables from 2010 Census Summary File 1. We note that this reconstruction follows
the same strategy used by the Census Bureau itself as the first step of its reidentification
experiment [15], based on [11].

The reconstructed data is far from perfect. Unlike the Bureau, we do not have access
to the ground truth data needed to quantify the errors. The Bureau’s own reconstruction
experiment reconstructed 46% of entries exactly, plus an additional 25% within +1 year
error in age [15]. We note that our reconstructed data contains no household information,
because this was not present in the tables used in the constraint system. This is significant
because the TopDown configurations for the US Census Bureau’s 2010 Demonstration Data
Products [7] include household-based workload queries and invariants.

B.2 TopDown configuration

The exact configuration files and code for all the runs are available in this paper’s accompa-
nying repository [13]. The TopDown code used for this paper was modified from the publicly
available demonstration release of the US Census Bureau’s Disclosure Avoidance System
2018 End-to-End test release [4]. The input data fed to the algorithm was obtained by
restructuring the reconstructed 2010 block-level Texas microdata into the 1940s IPUMs
data format. Most importantly, the reconstructions allowed for 63 distinct combination of
races whereas the End-to-End release only allows for 6 races, so all multi-racial entries were
re-categorized as Other in our TopDown runs.

4 A team led by data scientist and journalist Mark Hansen at Columbia, including Denis Kazakov,
Timothy Donald Jones, and William Reed Palmer, designed an algorithm to solve for the detailed data,
which we describe in this section. Code is available upon request [14].
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Because TopDown’s post-processing is done level by level, the noisy counts in Dallas
County do not depend on the noisy counts at the tract-level or below in counties other than
Dallas. We modified the census reconstructed data to focus on Dallas county and minimize
the computation time spent processing the other 253 counties in Texas. Specifically, for every
non-Dallas county, we placed all of the population into a single block.

We do not enforce certain household invariants that the Census Bureau is planning to
enforce, and our workload omits household queries that are used in Census’s demonstration
data products. Our choice to omit household queries and invariants is result of our use of
reconstructed 2010 census microdata which does not include household information. We
did perform additional runs with household invariants and queries using crude synthetic
household data, the results of which are available in the data repository accompanying this
paper [13]. In those runs, the population in each block was grouped into households of size 5
with at most one group smaller than 5. Ultimately, we focused on the experiments that did
not require synthetic household data.

The TopDown runs without the household workload or invariants use a workload consisting
of two histograms: Qgetaited a0d Qua,eth,race With 10% and 90% of the budget respectively.
(The additional runs with households includes an additional households and group quarters
histogram in the workload assigned 22.5% of the budget, leaving 10% and 67.5% for Quctaiicd
and Quq eth,race respectively.) The End-to-End TopDown code reports a differentially private
estimate of the L! error with £ = 0.0001 not included in privacy budget specified elsewhere
in the configuration file and discussed elsewhere in this paper.

C District fragmentation

Algorithm 3 Greedy.

1: procedure GREEDY(H, k)

2 if k=1 then

3: Return H

4: N<—|_|Hd|/kJ,D<—®, h* < hy

5 while N > 0 do

6 For h* and D, let S(h*, D) be the set of
children & of h* that are disjoint from D.

7: while 3h € S(h*, D) : |h| < N do

8 D+ DUR > Associating h with the blocks descendent from it

: N < N — |h
10: Pick h* € S(h*, D)

return D
Algorithm 4 Square.

1. procedure SQUARE(H, k)

2: sq < /| Hal/k > Side length in blocks of the district
3: Syq < /N1 Ny Ng—1 > Side length in blocks of the region
4: Sample 4,5 € {1,...,S4 — sq4 + 1} uniformly at random

5: return D; ;, the square district with top left corner at (7, j)
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In Section 6, we defined the fragmentation score and its relationship to error variance for
ToyDown, and analyzed the expected fragmentation score of districts produced by different
district drawing algorithms. Now we apply TopDown to examine the relationship between a
district’s population error and geometry, as captured by the fragmentation score.

We fix the a total budget and an equal allocation across levels: 0.2 = ey =e3 = ¢4 = €5 =
€6, as in Table 1. (We do not need to noise the nation because we are focusing on Texas; we
do need to noise Texas even though its total population is invariant, because its population
by race is allowed to vary.) We apply ReCom to build districts out of tracts, block groups,
and blocks — all of which are part of the census hierarchy — and add a realistic variant that
builds from whole precincts. These are about the same size as block groups and are more
commonly used in redistricting.
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Figure 6 Do the building-block units of districts matter? Histograms of fragmentation score
(left column) and mean error magnitude (right column) are shown across four district-drawing
algorithms that prioritize compactness. (Dallas County, k = 4.) We see that using larger units leads
to significantly lower fragmentation and correspondingly low district-level error in ToyDown, but the
advantage erodes when we pass to TopDown.

Figure 6 plots the data from our experiments. Each of the 12 histograms displays 400
values, one for each district drawn by the specified district-drawing algorithm. The histograms
on the left plot the fragmentation score of each district; the histograms on the right plot the
mean observed district-level population error magnitude over 16 executions of the specified
hierarchical noising algorithm.

The size of the constituent units is observed to have a controlling effect on the fragmentation
score, as expected. As we would expect, this carries over to the simplest ToyDown (allowing
negativity). (Note that since the error has zero mean, higher variance drives up the mean
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magnitude of error.) But the choice of base units makes far less difference by the time we
move to full TopDown. These observations are consistent, again, with a strong similarity
across spatially nearby units. All four kinds of ReCom will tend to produce compact, squat
districts whose units are more closely geographically proximal than would be observed with
disconnected or elongated shapes. Random noise is uncorrelated, but the post-processing
effects can be highly spatially correlated because of spatial relationships in the underlying
counts by race, ethnicity, and voting age.

D Robustness of noisy ER

Figure 7 extends the findings from Figure 5 with more splits and allocations, showing that
as long as small precincts are filtered out, ecological regression for RPV analysis in Dallas
County is robust to changes in the allocation of the privacy budget across the levels of the
hierarchy and the total privacy budget for TopDown. The corresponding plots for ToyDown
are essentially indistinguishable. (ER with precincts weighted by population is similarly
robust.)

Ecological regression Point estimates
equal split block-heavy  tract-heavy equal split  block-heavy tract-heavy
2
S
I 5
W
™
I
W

Figure 7 Ecological regression for the Valdez-White runoff election with ¢ = .5 and ¢ = 2
and three different budget allocations, together with corresponding point estimates for Latino and
non-Latino support for Valdez, with small precincts filtered out as in Figure 5. Findings stay
remarkably stable.
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—— Abstract

We extend the notion of minimax fairness in supervised learning problems to its natural conclusion:

lezicographic minimax fairness (or lexifairness for short). Informally, given a collection of demographic
groups of interest, minimax fairness asks that the error of the group with the highest error be
minimized. Lexifairness goes further and asks that amongst all minimax fair solutions, the error of
the group with the second highest error should be minimized, and amongst all of those solutions,
the error of the group with the third highest error should be minimized, and so on. Despite
its naturalness, correctly defining lexifairness is considerably more subtle than minimax fairness,
because of inherent sensitivity to approximation error. We give a notion of approximate lexifairness
that avoids this issue, and then derive oracle-efficient algorithms for finding approximately lexifair
solutions in a very general setting. When the underlying empirical risk minimization problem absent
fairness constraints is convex (as it is, for example, with linear and logistic regression), our algorithms
are provably efficient even in the worst case. Finally, we show generalization bounds — approximate
lexifairness on the training sample implies approximate lexifairness on the true distribution with
high probability. Our ability to prove generalization bounds depends on our choosing definitions
that avoid the instability of naive definitions.
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1 Introduction

Most notions of statistical group fairness ask that a model approximately equalize some
error statistic across demographic groups. Often this is motivated as a tradeoff: the goal is
to lower the error of the most disadvantaged group, and if doing so requires increasing the
error on some more advantaged group, so be it — this is a cost that we are willing to pay in
the name of equity. But solutions which equalize group errors do not in general mediate a
clean tradeoff in which losses in accuracy on more advantaged groups result in increases in
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accuracy on less advantaged groups: instead, generically (i.e. except in the very special case
in which the Bayes optimal error is identical for all groups), a constraint of equalizing group
error rates may require artificially increasing the error on at least one group, without any
corresponding benefit to any other group.

A partial answer to this criticism of standard notions of group fairness is the classical
notion of minimazx fairness, recently studied by [23, 9] in the context of supervised learning.
Minimax fairness asks for a model which minimizes the error of the group most disadvantaged
by the model —i.e. the group with maximum group error. In doing so, it realizes the promise
of equal error solutions in that it trades off higher error on populations more advantaged by
the model for lower error on populations less advantaged by the model when this is possible —
but without artificially increasing the error of any group when doing so. Indeed, it is not
hard to see that a minimax model necessarily weakly Pareto dominates an equal error rate
model, in the sense that group errors are only lower in the minimax solution simultaneously
for all groups.

This narrative is most sensible if there are only two demographic groups of interest. If
there are more than two groups, there may be many different minimax optimal models
that have very different error profiles for groups other than the max error group. How
should we choose amongst these? Prior work [9] has broken ties by optimizing for overall
classification accuracy. But why should we entirely give up on the goal of optimizing for the
most disadvantaged, partially enunciated in the motivation of minimax fairness, once we
have fixed the error of only one of many groups?

In this paper we propose the natural continuation of this idea, which we call lexicographic
minimaz fairness. Informally speaking, this notion recurses on the idea that we wish to
minimize the cost of the least well off. A model that satisfies lexicographic fairness, which
we call a lexifair model, will minimize the maximum error v; on any group, amongst all
possible models (i.e. a lexifair model is a also a minimax model). Further, amongst the set
of all minimax models, a lexifair model must minimize the error of the group with the second
highest error 72. Amongst all of these models, it further minimizes the error of the group

with the third highest error s, and so on.!

1.1 Qur Contributions

Our first contribution is a definition of (approximate) lexicographic minimax fairness. Cor-
rectly defining an actionable notion of lexicographic minimax fairness is surprisingly subtle.
For standard computational and statistical reasons, it will not be possible to exactly match
the distributional lexicographically optimal error rates 1,72, s, etc. But as we will observe,
these lexicographically optimal error rates can be arbitrarily unstable, in the sense that
amongst the set of models that have minimax error larger than ~; by even an arbitrarily
small margin, the value of the optimal lexifair error on the third highest error group ~4 can
be arbitrarily larger than 3 (See our example in Section 2.1.1). An implication of this is
that the vectors of errors 7, 7' representing exact lexifair solutions in and out of sample
can be entirely incomparable and arbitrarily different from one another. Hence we need a
definition of approximate lexifairness that accounts for this instability, and allows for sensible
statements about approximation and generalization.

Another challenge arises in the interaction between our definitions and our (desired)
algorithms. A constraint on the highest error amongst all groups, which arises in defining
minimax error, is convex, and hence amenable to algorithmic optimization. However, naive

L Tt is easy to see that there are cases in which a lexifair model may have arbitrarily smaller errors than a
minimax model on all but the worst-off group.
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specifications of lexifairness involve constraints on the second highest group errors, the third
highest group errors, and more generally kth highest errors. These are non-convex constraints
when taken in isolation. However, as it turns out, a constraint on the second highest error
becomes convex when we restrict attention to minimax optimal classifiers, and more generally,
a constraint on the kth highest error becomes convex once the values of the lower order group
errors are constrained to their lexifair values. We show this by giving a clearly convex variant
of our lexifair definition, specified by exponentially many linear constraints, which replace
constraints on the k’th highest error groups with constraints on the sums of all k-tuples of
group errors. We then show that our definition of “convex lexifairness” is equivalent to our
original notion of lexifairness, at least in the exact case (absent approximation). We give our
formal definitions in Section 2.1.2.

With our notion of approximate lexifairness in hand and our convexified constraints, we
give oracle-efficient algorithms for finding approximate lexifair models in both the regression
and classification case. This means that our algorithms are efficient reductions to the problem
of unconstrained (that is, standard non-fair) learning over the same model class. Despite the
worst-case intractability of most natural learning problems even absent fairness considerations,
a desirable feature of oracle-efficient algorithms is that they can be implemented using any
of the common and practical heursitics for non-fair learning, often with good empirical
success [20, 30, 16, 1].

Our algorithms are based on solving the corresponding constrained optimization problem

by recasting it as a (Lagrangian) minmax optimization problem, and using no-regret dynamics.

Because our “convexified” lexifairness constraints are exponentially numerous, the “constraint
player” in our formulation has exponentially many strategies — but as we show, we can
efficiently optimize over her strategy space using an efficient separation oracle. Hence the
constraint player can always play according to a “best response” strategy in our simulated
dynamics. When our base model class is continuous and our loss function convex (as it is
with e.g. linear regression), then the “learner” in our dynamics can play gradient descent over
parameter space. In this case, our oracle efficient-algorithms are in fact fully polynomial time
algorithms because our reduction to weighted learning problems involves only non-negative
weights, which preserves convexity. In the classification case, when our loss function is
non-convezx, we can convexify it by considering the set of all probability distributions over
base models. Here the parameters we optimize over become the weights of the probability
distribution, and our loss function (i.e. the expected loss over the choice of a random
model) becomes linear in our (enormous) parameter space. In this case, we are effectively
solving a linear program that has both exponentially many variables and exponentially many
constraints — but we are nevertheless able to do so in an oracle-efficient manner by making
appropriate use of the Follow the Perturbed Leader algorithm [18] for no-regret learning.

Finally, we prove a generalization theorem, showing that if we have a dataset S (sampled
i.i.d. from an underlying distribution) that has sufficiently many samples from each group, and
if we have a model that is approximately lexifair for S, then the model is also approximately
lexifair on the underlying distribution. This is significantly more involved than just a standard
uniform convergence argument — which would simply state that our in and out of sample
errors on each group are close to one another — because approximate lexifairness additionally
depends on the precise relationship between these group errors. Nevertheless, we show that
uniform convergence is a sufficient condition to guarantee that in-sample lexifairness bounds
correspond to out of sample lexifairness bounds.
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1.2 Related Work

There are many notions of group or statistical fairness that are studied in the fair machine
learning literature, which are generally concerned with equalizing various measures of error
across protected groups; see e.g. [4, 24] for surveys of many such metrics.

Minimax solutions are a classical approach to fairness that have been used in many
contexts including scheduling, fair division, and clustering (see e.g. [14, 3, 29, 5, 6]). A
number of these works employ techniques for solving two-player zero-sum games as part of
their algorithmic solution [6, 5]. This is the same general algorithmic framework that we
use. More recently, minimax group error has been proposed as a fairness solution concept for
classification problems in machine learning [23, 9, 22]. These works generally do not specify
how to choose between multiple minimax solutions, with the exception of [9], which gives
algorithms for choosing the solution with smallest overall classification error subject to the
minimax constraint.

Lexicographic minimax fairness has been studied in the fair division literature for tasks
such as quota allocation in mobile networks, load balancing, and network design [10, 7, 25,
33, 32, 28, 2, 27, 26]. As far as we know, we are the first to study lexicographic fairness in a
learning context in which the quantities of interest must be estimated, and hence the first to
identify the sensitivity issues that arise when defining approzimate notions of lexicographic
fairness.

An alternative approach to learning one classifier for all groups is to learn decoupled
classifiers [11, 31], i.e. a separate classifier for each group. The decoupling of error rates
across all groups eliminates tradeoffs between groups, and hence results in classifiers that are
lexicographically fair (within the class of decoupled classifiers). But there are at least three
important reasons one might want to learn a single classifier (the approach we take) rather
than a separate classifier for each group. The first is that learning separate classifiers for each
group requires that the groups be disjoint, which is not needed in our approach. For example,
we could divide the population into groups according to race, gender, and age — despite
the fact that individuals will fall into multiple groups simultaneously. In other words, our
algorithms can be used to obtain subgroup or intersectional fairness [19, 20, 15, 21, 17, 13].
Second, learning separate classifiers for each group requires that protected group membership
be used explicitly at classification time, which can be undesirable or illegal in important
applications. Finally, learning a single classifier allows for the possibility of transfer learning,
whereby a small sample from some group can be partially made up for by larger quantities
of data from other (nevertheless related) groups.

2 Model and Definitions

Let Z = X x Y be an arbitrary data domain. Each data point in our setting is a pair
z = (x,y) where © € X is the feature vector and y € ) is the response variable (i.e. the
label). Let X consist of points belonging to K (not necessarily disjoint) groups Gy, ..., Gk,
so we can write X = UX_ G. We write P to denote an arbitrary distribution over Z, and Py,
to denote the marginal distribution induced by P on the kth group Gy, x Y. Let S = {z}7,
be a data set of size n, which for the purposes of proving generalization bounds, we will take
to consist of n data points drawn i.i.d. from P. Denote the points in S that are contained in
Gk by Gk, x Y, so we can write S = UK_| Gy
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Let H C {h: X — Y} be the model class of interest, and let L : H x Z — R, be a loss
function that takes a data point z and a model h as inputs, and outputs the loss of h on z.
For instance, in the case of classification and zero-one loss, we have L(h,z) = 1 [h(z) # y].
We will abuse notation and write L, (-) for L(-,z) for any data point z. Throughout the
paper, for any distribution P, we write the expected loss of a model h over P as:

Lp(h) = L(h, P) £ E.p [L2(h)].

We slightly abuse notation and write Lg(h) to denote the empirical loss on a dataset S.
Here and throughout the paper when S plays the role of a distribution, we interpret that as
the uniform distribution over the points in S, and accordingly, z ~ S as a point sampled
uniformly at random from S.

Until Section 7, we will work exclusively with sample quantities, and so for simplicity
of notation, let us define Ly(h) = Lg, (h) to denote the sample loss of a model h on the
k’th group. When necessary, we will write Ly (h, P) to denote Lp, (h), the corresponding
distributional loss of h on the k’th group. For any model h and any data set S = Up{G}}, let
hg be the ordering induced on the groups {G,}E | by the loss of h, breaking ties arbitrarily.
In other words, hg : [K] — [K] is any bijection such that the following condition holds:
Ligy(h) = Ly o) (h) = ... = Ly () (h). The corresponding distributional ordering of the
groups by any model h is defined similarly: for any model h and any distribution P over
Z, let hp : [K] — [K] be the ordering induced on the groups {Gx}+; by the expected loss
of h, breaking ties arbitrarily. In other words, hp is any bijection such that the following
condition holds: Ly, q)(h,P) > Ly, 2)(h, P) > ... > Ly () (h, P). When the distribution
(data set) is clear from context, we elide the dependence on the distribution (data set) and
simply write h for hp (hg).

Our definition of lexifairness will be given recursively. At the base level, we define
Ho) = H to be the set of all models in our class. Then recursively for all 1 < j < K, we
define:

’}/j é her?{[lgil) LB(])(h)’ H(j) é {h S H(jfl) : Lﬁ(]) (h) = ’yj} .

In words, v; is the smallest error that any model in H(;_1) obtains on the group that has
the jth highest error, and H;) is the set of all models in H;_;y that attain this minimum —
i.e. that have jth highest error equal to ;. Thus, 71 is the minimax error — i.e. the highest
group error for the model that is chosen to minimize the maximum group error. Similarly, v
is the error of the second highest group for all minimax optimal models that further minimize
the error of the second highest group, and so on. With this notation in hand, we can define
exact lexifairness as follows:

» Definition 1 (Exact Lexicographic Fairness). Let 1 < ¢ < K. We say a model h € H
satisfies level- (ezact) lexicographic fairness (lexifairness) if for all j < £, Ly ;y(h) < ;.

Minimax fairness corresponds to level-1 lexifairness. This is a definition of exact lexifair-
ness, in that it permits no approximation to the error rates - i.e. we require Ly, j)(h) < v, for
all j, and hence Ly, ;y(h) = ; for all j. For a variety of reasons, we will need definitions that
tolerate approximation. For example, because we inevitably have to train on a fixed dataset,
but want our guarantees to generalize to new datasets drawn from the same distribution, we
will need to accommodate statistical approximation. The optimization techniques we will
bring to bear will also only be able to approximate lexifairness, even in sample. But it turns
out that defining a sensible approximate notion of lexifairness is more subtle than it first
appears.

6:5

FORC 2021



6:6

Lexicographically Fair Learning

2.1 Approximate Lexifairness: Stability and Convexity

We begin with the “obvious” but ultimately flawed definition of approximate lexifairness
(Definition 2), and then explain why it is lacking in stability. This will lead us to the
definitions we finally adopt: Definition 3 and its convezified version (Definition 5), which we
show is equivalent (Claim 7), and for which we can develop efficient algorithms.

2.1.1 The Challenge of Stability

The most natural seeming definition of approximate lexifairness begins with our notion of
exact lexifairness (Definition 1), and adds slack to all of the inequalities contained within.
In other words, we attempt to find a model that has sorted group errors 71,73, ..., v} that
pointwise approximate the optimal lexifair vector of sorted group errors ~v1,...,7k.

» Definition 2 (A Flawed Definition). Let 1 < ¢ < K and o > 0. We say a model h € H
satisfies (¢, a)-lexicographic fairness if for all j < £, Ly ;) (h) < v; + a.

To see the problem with the above definition, consider a setting with three groups, and
a model class H that contains all distributions (or randomized classifiers) over two pure
classifiers {hi,ha}. Imagine that hy induces the (unsorted) vector of group error rates
(0.5,0.5,0), and hs induces the (unsorted) vector of group error rates (0.5 + 2« 0,0.5), for
some arbitrarily small @ > 0. Note that it is easy to construct distributions over labeled
instances with exactly these group error vectors by simply arranging each classifier to disagree
with the labels on the specified fraction of a group. So, for simplicity we abstract away the
data and directly discuss the error vectors.

The minimax group error for this model class is v; = 0.5, and is achieved only by hy
which has error 0.5 on the first and second groups. Since the largest group error of hy is
also on the first group with value 0.5 4 2« > 0.5, any distribution over {hq, ho} that places a
non-zero probability on hy will therefore violate the (exact) minimax constraint. This in turn
implies that 1y = {h1}. Therefore, the only exact lexifair model is h; and thus v; = 0.5,
Y2 = 0.5, Y3 = 0.

However, imagine that because of estimation error (as is inevitable if we are learning
based on a finite sample) or optimization error (since we generally don’t have access to exact
optimization oracles in learning settings), we slightly misestimate the minimax group error
7 to be v; = 0.5 4+ . If we now optimize, allowing the largest group error to be as much
as 74 = 0.5 + a, we may now find randomized classifiers which put weight as large as 0.5
on hy. The uniform distribution over {hq, h2} induces the unsorted vector of group errors
(0.5 + ,0.25,0.25). The induced error on the second group (which is now also the group
with second largest error) of 0.25 is considerably smaller than v = 0.5. So far this appears
to be all right, since 74 < 7. But if we now attempt to optimize the error of the third
highest error 4, subject to the constraint that the largest group error is (close to) v; and
the second largest group error is (close to) 4, we now find that we are forced to settle for
third highest group error +4 = 0.25, which is considerably larger than the value of the third
highest group’s error of v3 = 0 in the exact lexifair solution.

This example highlights a fundamental instability of our first (flawed) attempt at defining
approximate lexifairness: even arbitrarily small estimation (or optimization) error introduced
to the minimax error rate y; can result in large, non-monotonic effects for later group errors
— enforcing even a valid upper bound on -1 can cause 73 to increase substantially, and these
effects compound even further if we have more than three groups.
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2.1.2 A Stable and Convex Definition

With the proceeding example of the instability inherent in our (flawed) Definition 2, we now
give the definition of approximate lexifairness that we begin with:

» Definition 3 (Approximate Lexicographic Fairness). Fiz a distribution P. Let 1 < ¢ < K and

a > 0. For any sequence of mappings €= (e1, €2, ..., ) where ¢; € R, define 'H(O)('P) =
and recursively for all 1 < j < ¥ define:

HE)(P) £ S h € H_y(P) : Liy(h,P) < min_ Lgjy(g,P) + ¢ (h)
gE’H(j,l)(P)
and let ||€]]oo = maxi<j<emaxpney €;(h). We say a model h € H satisfies (¢, )-lexicographic
fairness (“lexifairness”) with respect to P if there exists € with ||€]lcs < v such that for all
Jj< L

Lygy(h,P) < min  Lgi(9,P) +¢5(h) + .

9EMT; 1, (P)

When we prove bounds on empirical lexifairness, we simply take the distribution to be the
uniform distribution over the data set S. When the distribution is clear from context, we will
write ’Hfj) and elide the dependence on the distribution.

Note that there are two distinctions between Definition 3 and Definition 2. First, the
recursively defined sets ’Hf,) now incorporate some €;(-) slack in their parameterization which
will help capture statistical (or optimization) error. Second (and crucially), we now call a
solution (¢, «)-approximately lexifair if it satisfies our requirements for some sequence of
relaxations € that is component-wise less than « for all models h. It is this second point that
avoids the instability and non-monotonicity that arises from Definition 2. We observe that
Definition 3 is a strict weakening of Definition 2:

» Claim 4. Definition 3 is a relaxation of Definition 2: if a model satisfies (£, )-lexicographic
fairness according to Definition 2, then it also satisfies (¢, )-lexicographic fairness according
to Definition 3.

Proof. If a model satisfies (¢, )-lexicographic fairness according to Definition 2, then by
taking € = 0, it also meets the conditions of Definition 3. <

We now face another definitional challenge. A priori, Definition 3 appears to be highly
non-convex, because it constrains the second highest group error, the the third highest
group error, etc.? This is in contrast to standard equal-error notions of fairness, or minimax
fairness (which constrains only the highest group error) that are convex in the sense that a
distribution over fair models remains fair. Without convexity of this sort, the algorithmic
problem of finding a fair model becomes much more challenging. But in fact (at least
for a = 0), Definition 3 does give a convex constraint. To see this, we first introduce an
alternative notion of convex lexifairness, and then show that it actually represents the exact
same constraint as lexifairness when the approximation parameter o = 0.

2 E.g., if we have two groups and two models which induce group errors (0.5,0) and (0, 0.5) respectively,
both solutions have a second-highest error of 0 — but convex combinations have a second highest error
strictly greater than 0. So absent other structure, upper bounding the second highest group error
of a model corresponds to a non-convex constraint. But note that in this two-group example, the
non-convexity dissapears if we restrict attention to minimax optimal models. This is what we will take
advantage of more generally.
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» Definition 5 (Convex Lexicographic Fairness). Fiz a distribution P. Let 1 < ¢ < K and
a > 0. For any sequence of mappings €= (€1, €2, ..., €¢) where e; € RM, define .7:50) (P) 2 H,
and recursively for all 1 < j < £ define:

J J
{h € Fj_1)(P): {ih-mai(E[K] ZLir(h,P) < min max L; (9,P)+ ej(h)}

ey —1 96]:(3-,1)(7)) {i1,--%5} =1

and let ||€]loc = maxi<j<emaxpey €;(h). We say a model h € H satisfies (£, a)-convex
lezicographic fairness with respect to P if there exists € with ||€]|cc < o such that for all j < £:

J J
max L; (h,P) < min max L;, (g,P) +€j(h) +a.
{il,---,ij}Q[K]Z:l (- 7) geffjfl)(P){1'1,---71';'}2[1(]; (9. P) + (k)

When we prove bounds on empirical convex lexifairness, we simply take the distribution to be
the uniform distribution over the data set S. When the distribution is clear from context, we
will write ]-'(gj) and elide the dependence on the distribution.

Here, we have replaced constraints on the j’th highest group error with constraints on
the sum of group errors over all ~ K7 subsets of groups of size j. This has replaced a
single constraint with many constraints, but each is convex, and hence the resulting set of
constraints defined by }"(gj) is convex. We will formally prove this in the following claim.

» Claim 6 (Convexity of ]-"(gj)). Let L, : H — Ry be a convex loss function. If the initial
model class H is convez, then for all j and all € such that the mappings €; € R* are concave,
the set .7-'6.) 18 convez.

The proof can be found in the full version of the paper ([8]), and proceeds by straightfor-
ward induction. We note that while some classes of models naturally satisfy the convexity
conditions of the above claim with respect to their corresponding parameters (e.g. linear
and logistic regression), this claim will apply to arbitrary classification models with zero-one
loss as well. In these settings, we will convexify the class of models by considering the set
of all probability distributions over deterministic models. The loss of a distribution (i.e. a
randomized model) is then defined as the ezpected loss, when the model is sampled from
the corresponding distribution. Hence, by linearity of expectation, our loss functions will be
convex (linear) in the parameters — i.e. the weights — of these distributions.

It turns out that our notion of convex lexifairness is identical to our notion of lexifairness
(and so our original definition in fact specified a convex set of constraints), at least when the
approximation parameter a = 0. We prove this in the following claim:

» Claim 7 (Relationship between .7-'6.) and Hfj) when €= 0). For all j, and =0, we have
Fiy =Hip-

The intuition for the claim is the following. The sets ;) in Definition 3 constrain the
error of the group that has the j’th highest error. In contrast, the sets F ;) from Definition 5
constrain the sum of the errors for all possible j-tuples of groups. Amongst all of these
constraints, the binding one will be the constraint corresponding to the j groups that have
the largest errors. But because (inductively) the errors of the top j — 1 error groups have
already been appropriately constrained in F(;_y), this reduces to a constraint on the j’th
highest error group, as desired. These constraints are numerous, but each is convex, and so
the resulting set of constraints can be seen to be convex. See the full version of the paper
([8]) for the formal proof of Claim 7, which proceeds by induction.
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We emphasize that despite the complexity of our final Definition 5, what we have shown is
that it is in fact a relaxation of our initial, natural definition of exact lexifairness (Definition 1)
— and in particular Definitions 1, 3, and 5 coincide exactly when o = 0. We do not know
the precise relationship between our definitions of approximate lexifairness and approximate
convex lexifairness for a > 0 — but because both are smooth relaxations of the same base
definition, both should be viewed as capturing the same intuition as Definition 1 (exact
lexifairness) when « is small.

3 Game Theory and No-Regret Learning Preliminaries

3.1 No-Regret Dynamics

In this subsection, we briefly review the seminal result of Freund and Schapire [12]: Under
certain conditions, two-player zero-sum games can be (approximately) solved by having
access to a no-regret online learning algorithm for one of the players.

Suppose in this subsection that S; and S5 are two vector spaces over the field of real
numbers. Consider a zero-sum game with two players: a player with strategies in S; (the
minimization player) and another player with strategies in Sy (the maximization player). Let
U : 51 xS2 = Rxg be the payoff function of this game. For every strategy s; € S; of player
one and every strategy so € So of player two, the first player gets utility —U (s, s2) and the
second player gets utility U(s1, s2).

» Definition 8 (Approximate Equilibrium). A pair of strategies (s1,$2) € S1 X Sq is said to be
a v-approximate minimax equilibrium of the game if the following conditions hold:
U(s1,s2) — min U(s],s2) <v, max U(sy,sy) —U(s1,82) <v
s €S 55€S52

In other words, (s1,s2) is a v-approximate equilibrium of the game if neither player can
gain more than v by deviating from their strategies.

Freund and Schapire [12] proposed an efficient framework for approximately solving the
game: In an iterative fashion, have one of the players play according to a no-regret learning
algorithm, and let the second player (approximately) best respond to the play of the first
player. The empirical average of each player’s actions over a sufficiently long sequence of
such play will form an approximate equilibrium of the game. The formal statement is given
in the following theorem.

» Theorem 9 (No-Regret Dynamics [12]). Let Sy and Ss be convex, and suppose the utility
function U is convex-concave: U(-,82) : S1 — Rxq is convex for all sy € Sa, and U(s1,-) :
Sy — R is concave for all s1 € Sy. Let (s},s%,..., sT) be the sequence of play for the first
player, and let (s3,s3,...,51) be the sequence of play for the second player. Suppose for

V1,9 > 0, the regret of the players jointly satisfies

T T

T
ZU(S%,S%) — min U(sy,sh) < T, max U(sh, s9) — Z U(st,sh) <wvT
t=1 €51 2652 4 t=1

Let 51 = % Zthl st € 8 and 55 = + Zthl sb € Sy be the empirical average play of the
players. We have that the pair (51,52) is a (11 + va)-approzimate equilibrium of the game.

No regret online learning algorithms are algorithms that can guarantee the conditions of
Theorem 9 against arbitrary adversaries. We will use two no-regret online learning algorithms:
Online Projected Gradient Descent, which we will use in regression settings in which models
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are represented by parameters in a Euclidean space, and Follow the Perturbed Leader (FTPL),
which we will use in binary classification settings ([8]). We will make use of these no-regret
learning algorithms in our proposed algorithm for learning a lexifair model; full explanations
and pseudocode are in Appendix C.

4 Finding Lexifair Models

In this section we focus on developing the tools required to prove the following (informally
stated) theorem. Formal claims appear in Theorems 13 (regression) and 14 (classification).

» Theorem 10 (Informal). Suppose the model class H is convex and compact, and that
the loss function L, : H — Rxq is convex for all data points z € Z. There exists an
efficient algorithm that returns a model which is (¢, «)-convex lexicographic fair (according to
Definition 5), for any given £ and «.

We will propose algorithms for both classification and regression settings. The algorithms
we propose proceed inductively to solve the minimax problems defined recursively by our
convex lexifair definition. The first minimax problem is the one that minimizes the maximum
group error rate: minyey maxye(x) Li(h). Let us denote the estimated value (computed
by the first phase of our algorithm) for this minimax problem by 7;. The second minimax
problem is minimizing the maximum sum of any two group error rates subject to the
constraint that all group error rates are at most n;: the estimated value for this minimax
problem is called 7. The rest of the minimax problems are defined in a similar inductive
fashion: suppose at round j < ¢, we are given some estimates (11, ...,71,-1) for the first j —1
minimax values. Now using these estimates, the new minimax problem for the sum of any j
group error rates can be stated as follows.

J
hen {{uﬁ?i{gx] ZL”(h)} ‘ @
ir}CIK]

Vr<j—1,Y{i1,..., ir}C r=1
Liy (h)+...4Li. (h)<ny

We can reformulate this problem by calling the objective max(;, . i 1cix) Zf,:l L. (h) :==n;
and introducing a new set of constraints which require that any sum of j group error rates
must be at most n;. Note that this new formulation introduces a new variable, 7;, to the
optimization problem. We therefore have that the optimization problem (1) is equivalent to

. A
min n; = OPT; (m,...,mj-1) (2)
heH n;€[0,5-L prl:
Vr<j, ¥{i1,...,ip }C[K]
Liy (h)+... 4Ly, (R)<np

which is a constrained convex optimization problem given that the model class H and the loss
function L are convex. Here Ly; = max, j, L,(h) is an upper bound on the loss function which
identifies the range of feasible values for 7);: [0, j- Las]. Recall that in this round, (91,...,1;-1)
are given from the previous rounds, and 7; is a variable in the optimization problem. We
denote the optimal value of the optimization problem (2) by OPT; (n1,...,1;-1).

4.1 Formulation as a Two-Player Zero-Sum Game

Optimization problem (2) is written as a constrained optimization problem, but we can
express it equally well as an unconstrained minimax problem via Lagrangian duality. The
corresponding Lagrangian can be written as:
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J
Li () N =m+ > > Ainigoist - (Liy (W) + ...+ Li (h) = ;) (3)
r=1 {iy,...,iy } C[K]

where we introduce one dual variable A for every inequality constraint in the optimization
problem (2), and index the dual variables by their corresponding constraint. Therefore,
there are ¢; = > 7_, (I:) dual variables in this round. Solving optimization problem (2) is
equivalent to solving the following minimax problem:

min max L; ((h,m;),\) = max min L;((h,n;), A 4
he?—t,nje[o,jLM]AeRquo 5 ((hyms), A) AeR‘;jOhEanjE[ovj'LM] i ((hyms), A) (4)

where the minimax theorem holds because 1) the range of the primal variables, i.e. H and
[0,7 - L], is convex and compact, the range for the dual variable (RZ,) is convex, and
2) L; ((h,n;),\) is convex in its primal variables (h,7;) and concave in the dual variable
A. Therefore we focus on solving the minimax problem (4) which can be seen as solving a
two-player zero-sum game with payoff function £; ((h,7n;), ). Using the no-regret dynamics
of [12] (see Section 3.1), we will have the primal player (or Learner) with strategies (h,n;) €
H x [0,7 - Las] play a no-regret learning algorithm and let the dual player (or Auditor) with
strategies A € A; = {A € RY, : ||A]l1 < B} best respond. Here we place an upper bound
B on the ¢;-norm of the dual variable to guarantee convergence of our algorithms. This
nuisance parameter will be set optimally in our algorithms, and we note that the minimax
theorem continues to hold in the presence of this upper bound on A\. We will first analyze
the best response problem for both players — i.e. the problem of optimizing the Lagrangian
for one of the players fizing the strategy of the other player.

4.2 The Auditor’s Best Response

Fixing the (h,n;) variables of the Learner and the estimated values (n1,...,7;-1) from
previous rounds, the Auditor can best respond by solving
J
argmax ‘Cj ((ha 77]’)7 >‘) = argmaxz Z )‘{’i1,i2,...,ir} . (Lu (h) +.+ Lir (h) - Ur) .
AEA,; AN =1 (g in )OI

Since the objective is linear in the dual variables A, the Auditor can without loss of generality
best respond by putting all its mass B on the variable Ag;, i, . ;.3 corresponding to the most
violated constraint, if one exists. In particular, given any model A € ‘H and any ordering h
induced by h on the groups, we have that the Auditor’s best response Apest(h,7;) is

0eRY ifVr <j: Lyqy(h) +... + Ly (h) <y

Abest (R, 1) =

where the entries of A\* are defined as follows.

. B if{ivyig, .y = {R(1), R(2),. .., h(r*)} 5)
{idzied 70 0 Oherwise

where 7* € argmax,. ; (Lﬁ(l)(h) + .o+ Ly (h) — nr).

Note that the Auditor’s best response can be computed efficiently because it only requires
sorting the vector of error rates across K groups. We summarize the best response algorithm
for the Auditor in Algorithm 1.
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Algorithm 1 The Auditor’s Best Response (Apest): jth round.

Input: Learner’s play (h,n;), previous estimates (n1,...,15-1)

Compute Ly (h) for all groups k € [K];

Find the top j elements of vector (L (h),..., Lk (h)) and call them:
Lﬁ(l)(h) >...2> Lﬁ(j)(h);

if Vi <j: Ly (h) + ...+ Ly (h) < npr then Aoy = 0;

else Let r7* € argmax, (Lﬁ(l)(h) +...+ Lﬁ(r)(h) — 77,«), Aout = A* as in

Equation (5) ;
Output: A\, € A

4.3 The Learner’s Best Response

Given dual weights A € A; chosen by the Auditor, the Learner can best respond by solving

argmin L ((h,n;), ).
heH,n; €[0,5-L )
We note that the objective function £; ((h,n;),A) can be decomposed into three terms: one
that depends only on the model h, another that depends only on 7;, and finally one that is
constant (with respect to (h,n;)). Therefore, this optimization problem is separable for the
Learner — the decomposition is formally described below.

L ((hyn;),A) = L5 (h, X) + L3 (3, 2) + C5 (V) (6)

where

K Jj—1
L} (h,A) 2w (A)Lp(h), where w,(A) £ > Nrsinsooniic} (7)
r=1

5=0 {iz,...,is }C[K]\{r}

L3(nj,\) & | 1- Z Aliryinnis}y | T (8)

{i1,--,35 } C[K]

j—1
Ci(\) &~ Z Z i ig,onsin} * T (9)

r=1 {iy,...,ip }C[K]

Given this decomposition of the Lagrangian, the best response (h,7;) of the Learner to the
variables A of the Auditor is as follows:

(h,n;) = (argmin E; (h,A), argmin L? (nj,/\)> .

heH 15 €[0,§-Lm]

Note that the first optimization problem is a weighted minimization problem over the
class H, and the second one is a simple minimization of a linear function. Furthermore, even
though in general computing the sums in Equations (7) and (8) can be computationally
hard (because they are sums over exponentially many terms), when the Auditor is best
responding (which will be the case in our algorithms), these sums can be computed efficiently.
We formally state this claim in Fact 11.
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» Fact 11. When the Auditor is using its best response algorithm (Algorithm 1) to respond
to the Learner, the Auditor will either output zero or identify a single subset C of groups
(IC| < j) on which the constraints are violated maximally. In the former case, w.(\) =0 for
allr and 1 — Z{il,...,ij}g[l{] iy in,...;i;y = L. In the latter case, we have

w(N)=B-1[reC], 1-— > Myipniyy=1-B-1[C| =]
{ilv"'aij}g[K]

4.4 Solving the Game with No-Regret Dynamics

Having analyzed the best response problem for both players, we now focus on developing
efficient algorithms to approximately solve the two-player zero-sum game defined above, which
corresponds to finding an approximate convex lexifair model. The algorithms we propose
use no-regret dynamics (see Section 3.1) in which the Learner plays a no-regret learning
algorithm and the Auditor best responds according to Algorithm 1. As a consequence, we
get that the empirical average of the played strategies ((?L,ﬁj), 5\) of the players over the
course of the iterative algorithms will form a v-approximate equilibrium of the game for
some small value of v > 0 (according to Definition 8). Then, by the following theorem, we
can turn these equilibrium guarantees into the fairness guarantees of the output model h. Its
proof can be found in [8].

We remark that what we mean by the empirical average will depend on the setting. If we
are in a setting in which the loss function is convex in the model parameters (e.g. logistic
or linear regression), then we can actually average the model parameters, and output a
single deterministic model. Alternately, if we are in a classification setting in which the loss
function (e.g. zero-one loss) is non-convex in the model parameters, then by averaging, we
mean using the randomized model that corresponds to the uniform distribution over the
empirical play history.

» Theorem 12. At round j, let (%1, ...

]—1)
the previous rounds and let the strategies ((h,7;
game for this round, i.e.,

[,j ((ﬁ,ﬁj),S\) < heH,n?éi[g,jLM]Lj ((h, nj), 5\) + v, l:j ((}Al, Aj),j\) > max [,j ((}Al, Aj),)\) — V.

.7 be any given estimated minimax values from
), A) form a v-approzimate equilibrium of the

We have that f); < OPT; (1, ...,0—1) + 2v, and for all r < j,

T .
~ R jLM + 2V
max L; (h) <ip + —5—.
{i1,onrir }C[K] Sz:; ir () < i B

We will next instantiate this general result to give concrete algorithms for learning convex
lexifair models in the regression and classification settings respectively.

5 Finding Lexifair Regression Models

Suppose in this section that J C R and A is a class of models in which each model is
parametrized by some d-dimensional vector in R%: H = {hy : § € ©} where © C R%. In this
parametric setting we can think of each parameter § € © as a model and write the loss
function as a function of 6. Suppose the loss function L, : © — R is differentiable for
all 2.3 We will have the Learner play according to the Online Projected Gradient Descent

3 If it is not differentiable we can use sub-gradients instead of gradients.
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Algorithm 2 LexiFairReg: Finding a Lexifair Regression Model.

Input: S = UleGk data set consisting of K groups, (¢, ) desired fairness
parameters, loss function parameters Lj; and G, diameter D of the model
class ©

for j=1,2,...,¢ do

Set T: — 4j2(GD+LM)42(2a+jLM)2.
i= P ;
Set B; = O¢+jLM.
(éj, ;) = RegNR(T}, Bj; M1, ..., M;j—1) (Calling Algorithm 3)
end

Output: (¢, a)-convex lexifair model 6,

algorithm (see Appendix C.1) where the gradients of the corresponding loss function of the
game for the Learner (i.e. £;((0,7n;),A)) can be computed using Equations (7) and (8), and
the decomposition given in (6):

VoL; ((0.1;),3) = VoL; (6, 2) Zwr )WoL,(6), (10)
Vi, L5 ((0,1),A) = Vmﬁ? (nj,A) =1 - Z Alityin,vis}e (11)
{1,145 }C K]

The algorithm for this setting is given as Algorithm 2, which makes calls to a subroutine
(Algorithm 3) that solves the two-player zero-sum games defined above by having the Learner
play Online Projected Gradient Descent (see Appendix C) and the Auditor best respond
using Algorithm 1. Note that since the Auditor is best responding, computing the sums in
Equations (10) and (11) can be done efficiently per Fact 11.

» Theorem 13 (Lexifairness for Regression). Suppose © C R? is convex, compact, and bounded
with diameter D: supg grcg |0 — 0'||, < D. Suppose the loss function L, : © — Rxg is convex
and that there exists constants Ly and G such that L,(-) < Ly and |VoL,(-)|l2 < G, for
all data points z € Z. We have that for any ¢ < K and any « > 0, the model 6, c© output
by Algorithm 2 is (¢, «)-convex lexicographic fair.

The proof of this theorem (which can be found in Appendix A) involves bounding the
regret of each player, and then appealing to Theorem 12.

6 Finding Lexifair Classification Models

In this section we briefly discuss how we can find lexifair models in a classification setting. All
details including our algorithm for this setting and its analysis can be found in [8]. Suppose
in this section that ) = {0, 1} and our model class H is the probability simplex over a class of
deterministic binary classifiers. We slightly abuse notation and write H for the given class of
deterministic classifiers and write AH = {p : p is a distribution over H} for the probability
simplex, and work with AH as our model class. Let the loss function be zero-one loss: for
any h € H: L,(h) = 1{h(z) # y}. The loss of any randomized model p on data point z is
defined as the expected loss of h on z when h is sampled from H according to the distribution
p. In other words,

L.(p) £ Epnp [L2(h)]
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Algorithm 3 RegNR: jth round.

Input: Number of rounds T, dual variable upper bound B, previous estimates

(’rlla v 7"7j71)

. _ D r_ __JLm
Set learning rates n = TBOVT and ' =

T

Initialize the Learner: 6" € ©,n; € (0,7 - Lal;

fort=1,2,...,T do

Learner plays (6°,77);

Auditor best responds: A\ = Apest (0%, 75; (11, - - - ,mj-1)) using Algorithm 1;
Learner updates its actions using Projected Gradient Descent:

0'"! = Projg (Gt —n- V@Ej(Ht,r];, )\t))

77;"‘!‘1 = Proj[O,j-LM] (n; - 7]/ . anﬁj(Qt, 7757 )\t))

where the gradients are given in Equations (10) and (11).

end
Output: the average play 6 = % Zthl ' € ©, and 7); = + Zthl n% € 0,5 Ll

which is convex (linear) in the model p (weights of the distribution). We will also assume
that the model class ‘H has finite VC dimension. Sauer’s Lemma will then imply that for

any finite dataset, H induces only finitely many labelings. This will serve two purposes.

First, it allows us to write the optimization problem as a linear program with finitely many
variables (probability weights over the set of all possible induced labelings), and therefore
appeal to strong duality. Second, it allows us to pose the Learner’s best response problem as
an n-dimensional linear optimization problem, over the only exponentially many labelings
of the n data points. This is what will allow us to apply Follow the Perturbed Leader and
obtain oracle-efficient no-regret learning guarantees for the Learner. Here we are following
an approach similar to that of [19]. The final algorithm will then have the Learner play
according to Follow the Perturbed Leader (given access to a Cost Sensitive Classification
Oracle for the function class H), and have the Auditor best respond.

» Theorem 14 (Lexifairness for Classification). Let H be any class of binary classifiers with
finite VC dimension, and let L,(p) = Epp [L2(R)] for any randomized model p € AH where
L.(h) =1{h(zx) # y} is the zero-one loss. Fix any ¢ < K and any o > 0. There exists an
oracle-efficient algorithm (see [8]) such that for any § > 0, with probability at least 1 — ¢, its
output model is (£, &)-convex lexicographic fair.

7 Generalization

In this section, we turn our attention to out of sample bounds. Standard uniform convergence
statements would tell us that if we have enough samples from every group, then our in-sample
group errors are good estimates of our out of sample group errors. However, this alone does
not directly imply that we satisfy approximate lexifairness out of sample. We prove this is
the case below. Our ability to prove out of sample bounds crucially relies on our definitional
choices that removed the instability of the naive Definition 2. Specifically, we show that if:
1. Our base class H satisfies a standard uniform convergence bound across every group (so
that we can control the maximum gap between in and out of sample error across every
h € H, within each group k), and
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2. We have a model that is approximately convex lexifair on our dataset S ~ P™, then
then our model is also appropriately convex lexifair on the underlying distribution (with
some loss in the approximation parameter).

» Theorem 15 (Generalization for Convex Lexifairness). Fix any distribution P. Suppose for
every 0 > 0, there exists 5(5) such that the following uniform convergence bound holds.

P Li (h,S)— Ly (h,P)| > B(d)| <d

I | pemax L (h S) = Li (h, P)| > B(9)
where S is a data set sampled i.i.d. from P. We have that for every data set S sampled i.i.d.
from P, if a model h satisfies (£, «)-convex lexicographic fairness with respect to S, then with

probability at least 1 — § it also satisfies (£, ’)-convex lexicographic fairness with respect to
P for o/ = a+205(9).

The proof of the theorem is given in Appendix B. We can now instantiate the above
theorem in a classification setting in which we have VC-type convergence bounds. A corollary
that we get by applying standard uniform convergence bounds for finite VC classes is the
following:

» Corollary 16 (Generalization for Convex Lexifairness: Classification Setting). Suppose H is
a class of binary classifiers with VC dimension dy and let L,(p) = Epp [L.(h)] for any
randomized model p € AH where L,(h) = 1 {h(z) # y} is the zero-one loss. We have that
for every P, every data set S = {Gy}r of size n sampled i.i.d. from P, if a model p € AH
satisfies (£, a)-convex lexicographic fairness with respect to S, then with probability at least
1 — 4 it also satisfies (£, 2a)-convex lexicographic fairness with respect to P provided that

P (dylog (n) + log LOn)

min |Gg| = Q (

1<k<K

We have here proven a generalization theorem for convex lexifairness (Definition 5) which
is the definition that our algorithms satisfy. We also prove a generalization theorem for
lexifairness (Definition 3) which can be found in [8].
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A  Proofs from Section 5

» Theorem 13 (Lexifairness for Regression). Suppose © C R? is convex, compact, and bounded
with diameter D: supg grcq [0 — 0|l < D. Suppose the loss function L, : © — Rxg is convex
and that there exists constants Ly; and G such that L.(-) < Ly and ||VoL.()|2 < G, for
all data points z € Z. We have that for any ¢ < K and any o > 0, the model 0, € © output
by Algorithm 2 is (¢, a)-convex lexicographic fair.

Proof. We will show that for every round j, the model éj computed by our algorithm is
(4, a)-convex lexicographic fair, and as a consequence, the very last model (é@) is (¢, )-convex
lexicographic fair. Fix any round j < £. Let (6%,7%, A\")Z_; be the sequence of plays in the
no-regret dynamics of Algorithm 3 in this round. First, note that by the decomposition given
in Equation (6), we have
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T

Zﬁj (0 m). X) = 0co mrmg] L] Z£ (6.

t=1
T
= {;ﬁjl (et,)\t) —Ieréigzﬁ; (9,)\t)} + {;E? (77;7)\t) . Ef(I)I;DLM ZL‘,Q Mjs A }

In other words, we can decompose the regret of the Learner into two terms: one is the regret
of gradient descent plays corresponding to 6, and the other one is the corresponding regret
of gradient descent plays for n;. Note that by Equations (10) and (11) we have the following
bounds on the norm of gradients for the Learner. We also use the fact that when the Auditor
is best responding, w,(A\!) can be simplified as in Fact 11.

K
VoL ((8.0): M)l < D [wr )] VoL (B)], < §BG

r=1

vaﬁj ((971%)»”)”2 = 1= Z X«t{il,@ ..... ij} <1+B
{i1,0.055 YC[K]

Now letting n = W and ' = (1iLB§Jf in Algorithm 3 and using the regret bound of

Online Projected Gradient Desccent (Theorem 18), we have

éc; (6%, \) — gggic; (0,)\") < jBGDVT
T
> L) - i Zﬁ 1 \) < (B + ) IyVT
and therefore the regret of the Learner can be bounded by
T
;q ((6°,n%), \) — o nfrél[gj . Za ((0,m;),\") < §(GD+ Lar)(B+1)VT := v;T.

Let v; £ j(GD + L) (B 4 1)/v/T. Now using the guarantees of the no-regret dynamics
(Theorem 9), the average play of the players (6,1;, A) forms a v;-approximate equilibrium of
the game in the sense that

L; ((0,9),7) < min Li ((0,m5),8) +v5, L5 ((0,7), )>max[, (6,

T 0€0,m;€[0,5-Ly)

i), A) = v;.
Finally, using Theorem 12 we can turn these into the following guarantees. First,
Mj < OPTy (M, ..., Mj-1) + 2v; (12)

and second, for all r < j,

r o R gLy + 2v;
L; (6;) < . 1
{il,..r.n,i??gm; A=t (9

Define €, £ 7, —OPT, (71, ..,7—1) for all 7 < j (€’s here are basically constant mappings
in R*). We immediately have from Equation (12) that: €, < 2v,, for all »r < j. Now let

€ = (€1,...,€5), and let ]-'(go) = O be the initial model class. Note that according to
Definition 5 and given the defined €, we have for every r < j,
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min max L; (0) =OPT, (1,...,fr-1) -
06]: {11, ,w}C[KZ T (771 1] 1)

And therefore, by Equation (13), for all » < j:

r

A A JLM + 2Vr
max Llr 0 S e —
{ilv---air}g[K]SZ::l ( ) n B

N " Ly + 2v,
:OPTT(,’]17"'7777‘—1)+€7‘+]M7

B
r L 2w,
= min max Z Lir (g) + € + M

& inYC B
g€F(, _y) tiasir}CIK] S

which completes the proof by the choice of v, = § for all 7 < j (to guarantee that
€l < @), and B = O‘HTLM Note that this setting of parameters, together with v; =
J(GD + Ly)(B +1)/V/T, implies that

45%(GD + Ly )*(2a + jLa)?

T = . <
ol

B Proofs from Section 7

» Theorem 15 (Generalization for Convex Lexifairness). Fiz any distribution P. Suppose for
every § > 0, there exists 5(6) such that the following uniform convergence bound holds.

P Ly (h,S) — Ly (h,P)| > B(6
o herE[K]| k (h,S) = Ly (h, P)| > B(0)
where S is a data set sampled i.i.d. from P. We have that for every data set S sampled i.i.d.
from P, if a model h satisfies (£, )-convex lexicographic fairness with respect to S, then with
probability at least 1 — § it also satisfies (£,’)-convex lexicographic fairness with respect to

P for o' =a+205(9).

Proof. Fix a distribution P and a data set S sampled i.i.d. from P. Suppose h satisfies
(¢, a)-convex lexicographic fairness with respect to S. Therefore, according to our convex
lexifairness definition, there exists a sequence of mappings € = (e1,...,€) where ¢; € R*,
and a sequence of function classes {f(gj)(S )}; such that

max { maxe;(h') » < a
1<j<e | her

and that for all j < £:

J j
max L; (h,S min max L; (9,5) +¢€j(h) + 14
{il,-.-,ij}Q[K]; ( )< 9EFE, 4 (S) {in,e ,zj}g[K]; (9,5) +€(h) (14)

where recall that ]:(0)( ) = H and that for all j € [¢],

h e F&_1)(S) : max Li (W,S) min max Li, (9,5) + ¢ (h)
{ G- {irses “}C[K]Z gef(f 5 {irses “}C[K]Z !
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Let us define a mapping V : H — R such that for every b’ € H,

J
1 n A i /
vi(h') = max L; (W, max L; (b, S
j( ) {117 71]}C Z {llv"'vij}g[K]; ( )
and let
J
2 A . .
vi=  min max L; (g,5 min max L; (g,P
T geF ) (8) linmi CIK Z ge]-'(g].fl)( ){il,‘..,ij}Q[K]; (@ %)

Now define for every h' € H, 7;(h') £ €;(h')+v; (h')+ v} and let .7:(73) (P) be defined according

to our convex lexifairness definition with the sequence of mappings defined by 7 = (71,...,7¢).

In other words, ]:(T)) (P) =H, and for all j € [(],
Fi(P) =

{h'efz;n(m max ZLMP min - max ZL”’ +”h)}

gEf(T7 HP) {1,035 }CIK

» Claim 17. For all j, 7, (P) = F(;(5).

Proof. We use induction on j. For j = 0, we have .7-"(7;)(73) = (%)(S) =H. For j > 1, we
have

' e Fy(P)
<:>h’e]—'g H(P),
J
max L, (W,P min max L (g,P)+ (I
{ir ,z]}C[KZ il gef] L (P) L, ,ij}gm; w8, P) + 134

N e ]—"(Ej_l)(S)
J

max Z L (W, P min Z )+ 7 (R)

{1,045} C gefe 1 (8) Liase. 71;}C[K -
"e ]—' G 1)(S)
{1, ml%(c Z Li, (W, 5 gefr(%lHll)( 8) {i,. H’l%?i(c (K] 7 Z Li(9.8) + (W)
=N e ]-"(Ej)(S)
where the second line follows from the induction assumption (.7:6.71)(73) = 571)(5 )) and
the third line follows from the definition of 7;. This establishes our claim. |

We have that for all j < ¢, the model h satisfies

max ZL“hP s, max > Li(h,S)+vj(h) < ...
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J
. < min max Li (9,8) + ¢;(h) + a+vi(h
9EF G4y (8) {insesy ij}g[K]; (9,5) +¢€;(h) i (h)
J
= min max Li (9,P)+ 12 +€;(h) + a+vi(h
quJ 1)(S ) {inse 711}Q[K]; ( ) J J( ) j( )
J
- miIl +T h) + «
geF, (J 1)(’P){'Ll’ 7ZJ}C[K Zl J( )

where the first inequality follows from Equation (14). The third line follows from the definition
of v7. The last equality follows from Claim 17 and the fact that 7;(h) = €;(h)+vj (h)+v;. The
proof is complete by the uniform convergence bound provided in the theorem statement. With
probability at least 1—§ over the random draws of the data set .S, we have maxp/cy |1/j1 ()] <
jB(9) and \1/]2| < jB(6), and hence for all 7 < ¢,

[[7]|co = max {maXTj(h')}

1<j<e | W eH

1<j<¢ | h'eH 1<j<e | v/

< max {maxej(h')} + max {max|1/ (W) + 1/]2|}

< a+ 205(9). <

C No-Regret Learning Algorithms

C.1 Online Projected Gradient Descent

Consider an online setting where a learner is playing against an adversary. The learner’s
action space is some Euclidean subspace © C R which is equipped with the ¢5 norm denoted
by [||l- At every round t of the interaction between the learner and the adversary, the
learner picks an action 8" € © and the adversary chooses a loss function ¢* : © — R>(. The
learner then incurs a loss of £¢(0%) at that round. Suppose the learner is using some algorithm
A to update its actions from round to round. The goal for the learner is that the regret of A
defined as

T T
2300 - géigz:ﬁ(e)
t=1 t=1

grows sublinearly in 7. When © and the loss functions played by the adversary are convex,
a standard choice of algorithm to use for the learner is Online Projected Gradient Descent
(Algorithm 4), where in each round, the algorithm updates its action §**! for the next round
by taking a step in the opposite direction of the gradient of the loss function evaluated at the
action of that round: V£!(6). The updated action is then projected onto the feasible action
space ©: Projg(f) £ argming g || — 0'||,. Note if the loss functions are not differentiable,
we can use subgradients (which are defined given the convexity of the loss functions) instead
of gradients and the guarantees will remain.

» Theorem 18 (Regret for Online Projected Gradient Descent [34]). Suppose © C R? is convex,
compact and has bounded diameter D: supy gcq |0 — 0'[|, < D. Suppose for allt, the loss
functions €' are convexr and that there exists some G such that |[VE'(-)||, < G. Let A be
Algorithm 4 run with learning rate 1 = D/(G\/T). We have that for every sequence of loss
functions (£*,0%,...,07) played by the adversary, R4(T) < GDVT.
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Algorithm 4 Online Projected Gradient Descent.

Input: learning rate n

Initialize the learner 6 € ©;
fort=1,2,...do

Learner plays action 0¢;
Adversary plays loss function £¢;
Learner incurs loss of £¢(6%);
Learner updates its action:

0't! = Projg (8" — nVL' (0"))

end

Algorithm 5 Follow the Perturbed Leader (FTPL).

Input: learning rate n

Initialize the learner a' € A;

fort=1,2, ... do

Learner plays action a;

Adversary plays loss vector £¢;

Learner incurs loss of (¢!, a!). Learner updates its action:

at*! = argmin <Z és,a,> + % <£t,a>

a€A s<t

where £ ~ Uniform ([O7 1]”1)7 independent of every other randomness.
end

C.2 Follow the Perturbed Leader

Here assume the learner’s action space is A C {0, 1}d. At every round ¢, the learner chooses
an action a® € A and then the adversary plays a loss vector ¢! € R?. The learner then incurs
a loss of (¢!, a') which is the inner product if a’ and ¢*. Suppose the learner is using some
algorithm A to pick its actions in every round. The goal for the learner is to ensure that the

regret of A defined as R4(T) = ZtT:lMt, al) — minge 4 ZtT:l@t, a) grows sublinearly in 7.

Follow the Perturbed Leader (FTPL) ([18]), which is described in Algorithm 5, can provide
guarantees in this setting.

» Theorem 19 (Regret of FTPL [18]). Suppose for allt, f* € [-M, M]*. Let A be Algorithm 5
run with learning rate n = 1/(M\/d7) We have that for every sequence of loss vectors
(€', 02,... 4T played by the adversary, E[R4(T)] < 2Md3/?\/T, where expectation is taken
with respect to the randomness in A.
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—— Abstract

In this paper we propose a causal modeling approach to intersectional fairness, and a flexible, task-
specific method for computing intersectionally fair rankings. Rankings are used in many contexts,
ranging from Web search to college admissions, but causal inference for fair rankings has received
limited attention. Additionally, the growing literature on causal fairness has directed little attention
to intersectionality. By bringing these issues together in a formal causal framework we make the
application of intersectionality in algorithmic fairness explicit, connected to important real world
effects and domain knowledge, and transparent about technical limitations. We experimentally
evaluate our approach on real and synthetic datasets, exploring its behavior under different structural
assumptions.
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1 Introduction

The machine learning community recognizes several important normative dimensions of
information technology including privacy, transparency, and fairness. In this paper we
focus on fairness — a broad and inherently interdisciplinary topic of which the social and
philosophical foundations are not settled [11]. To connect to these foundations, we take an
approach based on causal modeling. We assume that a suitable causal generative model
is available and specifies relationships between variables including the sensitive attributes,
which define individual traits or social group memberships relevant for fairness. The model
is a statement about how the world works, and we define fairness based on the model
itself. In addition to being philosophically well-motivated and explicitly surfacing normative
assumptions, the connection to causality gives us access to a growing literature on causal
methods in general and causal fairness in particular.

Research on algorithmic fairness has mainly focused on classification and prediction tasks,
while we focus on ranking. We consider two types of ranking tasks: score-based and learning
to rank (LTR). In score-based ranking, a given set of candidates is sorted on the score
attribute (which may itself be computed on the fly) and returned in sorted order. In LTR,
supervised learning is used to predict the ranking of unseen items. In both cases, we typically
return the highest scoring k items, the top-k. Set selection is a special case of ranking that
ignores the relative order among the top-k.
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rank rank

(a) original ranking. (b) counterfactually fair.

Figure 1 CSRanking by weighted publication count, showing positions of intersectional groups
by department size, large (L) and small (S), and location, North East (N), West (W), South East
(S). Observe that the top-20 in Figure la is dominated by large departments, particularly those
from the West and from the North East. Treating small departments from the South East as the
disadvantaged intersectional group, and applying the techniques described in Section 2 of the paper,
we derive the ranking in Figure 1b that has more small department at the top-20 and is more
geographically balanced.

Further, previous research mostly considered a single sensitive attribute, while we use
multiple sensitive attributes for the fairness component. As noted by Crenshaw [14], it is
possible to give the appearance of being fair with respect to each sensitive attribute such
as race and gender separately, while being unfair with respect to intersectional subgroups.
For example, if fairness is taken to mean proportional representation among the top-k, it is
possible to achieve proportionality for each gender subgroup (e.g., men and women) and for
each racial subgroup (e.g., Black and White), while still having inadequate representation for
a subgroup defined by the intersection of both attributes (e.g., Black women). The literature
on intersectionality includes theoretical and empirical work showing that people adversely
impacted by more than one form of structural oppression face additional challenges in ways
that are more than additive [12, 16, 37, 43].

1.1 Contribution

We define intersectional fairness for ranking in a similar manner to previous causal definitions
of fairness for classification or prediction tasks [10, 26, 30, 36, 55]. The idea is to model the
causal effects between sensitive attributes and other variables, and then make algorithms
fairer by removing these effects. With a given ranking task, set of sensitive attributes,
and causal model, we propose ranking on counterfactual scores as a method to achieve
intersectional fairness. From the causal model we compute model-based counterfactuals to
answer a motivating question like “What would this person’s data look like if they had (or had
not) been a Black woman (for example)?” We compute counterfactual scores treating every
individual in the sample as though they had belonged to one specific, baseline intersectional
subgroup. For score-based ranking we then rank these counterfactual scores, but the same
approach to causal intersectional fairness can be combined with other machine learning tasks,
including prediction (not necessarily specific to ranking).

The choice of a baseline counterfactual subgroup is essentially arbitrary, and there are
other possibilities like randomizing or averaging over all subgroups. We focus on using one
subgroup now for simplicity, but in principle this choice can depend on problem specifics
and future work can investigate dependence on this choice. In fact, our framework allows for
numeric sensitive attributes, like age for example, where treating everyone according to one
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baseline counterfactual is possible even though subgroup terminology breaks down. In this
case we can still try to rank every individual based on an answer to a motivating question
like “What would this person’s data look like if they were a 45-year old Black woman?”

While intersectional concerns are usually raised when data is about people, they also
apply for other types of entities. Figure 1 gives a preview of our method on the CSRankings
dataset [5] that ranks 51 computer science departments in the US by a weighted publication
count score (lower ranks are better). Departments are of two sizes, large (L, with more
than 30 faculty members) and small (S), and are located in three geographic areas, North
East (N), West (W), and South East (S). The original ranking in Figure la prioritizes
large departments, particularly those in the North East and in the West. The ranking in
Figure 1b was derived using our method, treating small departments from the South East as
the disadvantaged intersectional group; it includes small departments at the top-20 and is
more geographically balanced.

We begin with relatively simple examples to motivate our ideas before considering more
complex ones. The framework we propose can, under the right conditions, disentangle
multiple interlocked “bundles of sticks,” to use the metaphor in Sen and Wasow [42] for
causally interpreting sensitive attributes that may be considered immutable. We see this as
an important step towards a more nuanced application of causal modeling to fairness.

1.2 Motivating example: Hiring by a moving company

Cousider an idealized hiring process of a moving company, inspired by Datta et al. [15], in
which a dataset of applicants includes their gender G, race R, weight-lifting ability score
X, and overall qualification score Y. A ranking of applicants 7 sorts them in descending
order of Y. We assume that the structural causal model shown in Figure 2a describes the
data generation process, and our goal is to use this model to produce a ranking that is
fair with respect to race, gender, and the intersectional subgroups of these categories. The
arrows in the graph pointing from G and R directly to Y represent the effect of “direct”
discrimination. Under US labor law, the moving company may be able to make a “business
necessity” argument [17] that they are not responsible for any “indirect” discrimination on
the basis of the mediating variable X. If discrimination on the basis of X is considered
unenforceable, we refer to X as a resolving mediator, and denote this case as the resolving
case, following the terminology of Kilbertus et al. [26].

A mediator X may be considered resolving or not; this decision can be made separately
for different sensitive attributes, and the relative strengths of causal influences of sensitive
attributes on both X and Y can vary, creating potential for explanatory nuance even in
this simple example. Suppose that X is causally influenced by G but not by R, or that the
relative strength of the effect of G on X is larger than that of R. Then, if X is considered
resolving, the goal is to remove direct discrimination on the basis of both R and G, but
hiring rates might still differ between gender groups if that difference is explained by each
individual’s value of X. On the other hand, if X is not considered resolving, then the goal
also includes removing indirect discrimination through X, which, in addition to removing
direct discrimination, might accomplish positive discrimination, in the style of affirmative,
action based on the effect of G on X.

Once the goal has been decided, we use the causal model to compute counterfactual
scores Y — the scores that would have been assigned to the individuals if they belonged to
one particular subgroup defined by fixed values of R and G, while holding the weight-lifting
score X fixed in the resolving case — and then rank the candidates based on these scores. The
moving company can then interview or hire the highly ranked candidates, and this process
would satisfy a causal and intersectional definition of fairness. We analyze a synthetic dataset
based on this example in Section 3 with results shown in Figure 3a.
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(a) Mi (b) Mo (c) Ms (d) My (e) M5

Figure 2 Causal models that include sensitive attributes G (gender), R (race), and A (age),
utility score Y, other covariates X, and a latent (unobserved) variable U.

1.3 Organization of the paper

In Section 2 we introduce notation and describe the particular causal modeling approach
we take, using directed acyclic graphs and structural equations, but we also note that our
higher level ideas can be applied with other approaches to causal modeling. We present
the necessary modeling complexity required for interaction effects in the causal model, the
process of computing counterfactuals for both the resolving and non-resolving cases, and
the formal fairness definition that our process aims to satisfy. In Section 3 we demonstrate
the effectiveness of our method on real and synthetic dataset. We present a non-technical
interpretation of our method, and discuss its limitations, in Section 4. We summarize
related work in Section 5 and conclude in Section 6. Our code is publicly available at
https://github.com/DataResponsibly/CIFRank.

2 Causal intersectionality

In this section we describe the problem setting, and present our proposed definition of
intersectional fairness within causal models and an approach to computing rankings satisfying
the fairness criterion.

2.1 Model and problem setting
2.1.1 Causal model

As an input, our method requires a structural causal model (SCM), which we define briefly
here and refer to [23, 33, 39, 44] for more detail. An SCM consists of a directed acyclic graph
(DAG) G = (V,E), where the vertex set V represents variables, which may be observed
or latent, and the edge set E indicates causal relationships from source vertices to target
vertices. Several example DAGs are shown in Figure 2, where vertices with dashed circles
indicate latent variables.

For V; € V let pa; = pa(V;) C V be the “parent” set of all vertices with a directed edge
into V;. If pa; is empty, we say that V; is exogenous, and otherwise we assume that there
is a function f;(pa;) that approximates the expectation or some other link function, such
as the logit, of V;. Depending on background knowledge or the level of assumptions we are
willing to hazard, we assume that functions f; are either known or can be estimated from
the data. We also assume a set of sensitive attributes A C V| chosen a priori, for which
existing legal, ethical, or social norms suggest that the ranking algorithm should be fair.
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2.1.2 Problem setting

In most of our examples we consider two sensitive attributes, which we denote G and
R, motivated by the example of Crenshaw [14] of gender and race. We let Y denote an
outcome variable that is used as a utility score in our ranking task, and X be a priori
non-sensitive predictor variables. In examples with pathways from sensitive attributes to
Y passing through X we call the affected variables in X mediators. Finally, U may denote
an unobserved confounder. In some settings a mediator may be considered a priori to be a
legitimate basis for decisions even if it results in disparities. This is what Foulds et al. [18]
call the infra-marginality principle, others [10, 30, 36] refer to as path-specific effects, and
Zhang and Bareinboim [55] refer to as indirect effects; Kilbertus et al. [26] call such mediators
resolving variables. We adopt the latter terminology and will show examples of different
cases later. In fact, our method allows mediators to be resolving for one sensitive attribute
and not for the other, reflecting nuances that may be necessary in intersectional problems.

For simplicity of presentation, we treat some sensitive attributes as binary indicators of a
particular privileged status, rather than using a more fine grained coding of identity, but
note that this is not a necessary limitation of the method. Our experiments in Section 3
use models M in Figure 2a and M5 in Figure 2e, but richer datasets and other complex
scenarios such as My also fit into our framework. Sequential ignorability [21, 38, 40, 47] is a
standard assumption for model identifiability that can be violated by unobserved confounding
between a mediator and an outcome, as in M3 in Figure 2¢, or by observed confounding
where one mediator is a cause of another, as in My in Figure 2d. We include these as
indications of qualitative limitations of this framework.

2.2 Counterfactual intersectional fairness

2.2.1 Intersectionality

It is common in predictive modeling to assume a function class that is linear or additive in
the inputs, that is, for a given non-sensitive variable V/:

> fuVh).

Vi€pa;

Such simple models may be less likely to overfit and are more interpretable. However, to

model the intersectional effect of multiple sensitive attributes we must avoid this assumption.

Instead, we generally assume that f; contains non-additive interactions between sensitive
attributes. With rich enough data, such non-linear f; can be modeled flexibly, but to keep
some simplicity in our examples we will consider functions with linear main effects and second
order interactions. That is, if the set pa; of parents of V; includes ¢ sensitive attributes

Aj, Ajy,s ... Aj, and p non-sensitive attributes X, ., Xj, .,,... Xj, , , we assume
f (pa (J) + Zﬂl ot anﬂ)AJ’ + Z Z ﬁ(J)A A (1)
I=1 r=I+1

The coefficients (or weights) r]l(j ) model the main causal effect on V; of disadvantage

() model the non-additive combination of

on the basis of sensitive attribute A;,, while 7,7
adversity related to the interactions of A;, and Aj,. For the example the model M; in
Figure 2a with sensitive attributes G and R, mediator X, and outcome Y, we can write (1)

for Y as
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fr(X,6,R) =57 + 80X + 070G + 0l R+ ny LRG (2)

For ease of exposition we mostly focus on categorical sensitive attributes, and in that
case (1) can be reparameterized with a single sensitive attribute with categories for each
intersectional subgroup. In the simplest cases then it may appear this mathematical approach
to intersectional fairness reduces to previously considered fairness problems. However, our
framework is not limited to the simplest cases. And even with two binary sensitive attributes
it may be necessary to model the separate causal relationships between each of these and
one or more mediators, which may also be considered resolving or non-resolving separately
with respect to each sensitive attribute. With numeric attributes our framework can include
non-linear main effects and higher order interactions, and in Appendix A.2 we present results
for an experiment with a numeric sensitive attribute.

Our experiments use simpler examples with one mediator so the results are easier to
interpret and compare to non-causal notions of fairness in ranking. Sophisticated models like
Figure 2b, with combinations of resolving and non-resolving mediators, would be more difficult
to compare to other approaches, but we believe this reflects that real-world intersectionality
can pose hard problems that our framework is capable of analyzing. And while identifiability
and estimation are simplified in binary examples, the growing literature on causal mediation
discussed in Section 5 can be used on harder problems.

2.2.2 Counterfactuals

Letting A denote the vector of sensitive attributes and a’ any possible value for these, we
compute the counterfactual Ya. o by replacing the observed value of A with a’ and then
propagating this change through the DAG: any directed descendant V; of A has its value
changed by computing f; (paj) with the new value of a’, and this operation is iterated until
it reaches all the terminal nodes that are descendants of any of the sensitive attributes A.
We interpret these model-based counterfactuals informally as “the value Y would have taken
if A had been equal to a’”

For graphs with resolving mediators we may keep the mediator fixed while computing
counterfactuals. We describe this process in detail for model M; in Figure 2a, with both the
resolving and the non-resolving cases. We focus on this model for clarity, but all that we say
in the rest of this section requires only minor changes to hold for other models such as M
without loss of generality, provided they satisfy sequential ignorability [21, 38, 40, 47]. Our
implementation is similar to what Kusner et al. [30] refer to as “Level 3” assumptions, but
we denote exogenous error terms as € instead of U.

We consider the case where Y is numeric and errors are additive

X =fx(G,R)+ €%, Y =fy(X,G,R)+¢€.

with fy given in (2) and fx defined similarly. The case where Y is not continuous fits in
the present framework with minor modifications, where we have instead a probability model
with corresponding link function g so that

E[Y|X,G, Rl =g ' (fv(X,G, R)).

Suppose that the observed values for observation ¢ are (y;,x;, gi, i), with exogenous

errors €, €}

s . Since we do not model any unobserved confounders in model M1, we suppress

the notation for U and denote counterfactual scores, for some (¢, ') # (g, r), as:

V= (Y)aca = (Yi)(G,rye(g)
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If X is non-resolving, then we first compute counterfactual X as @ := fx(g',7’) + €,
substituting (¢’,7’') in place of the observed (g;, ;). Then we do the same substitution while
computing:

}/i/ = fY(x;mg/vr/) =+ 62’/ = fY(fX(g/arl) + 65(39177"/) + 61Y~
If X is resolving, then we keep the observed X and compute:
Yil = fY(xivgl7Tl) + EZY'

If X is semi-resolving, for example resolving for R but not for GG, in which case we compute
counterfactual X as z} := fx(¢’,7;) + €~ and then

Y? = fY(fX(gl,'f'i) +€zXﬂg/7TJ) +63/

If the functions fx, fy have been estimated from the data, then we have observed residuals

X .Y

r,r) instead of model errors in the above. Finally, in cases where we model unobserved

confounders U we may also attempt to integrate over the estimated distribution of U as
described in [30].

2.3 Counterfactually fair ranking
2.3.1 Ranking task

We use an outcome or utility score Y to rank a dataset D, assumed to be generated by a
model M from among the example SCMs in Figure 2. If the data contains a mediating

predictor variable X, then the task also requires specification of the resolving status of X.

Letting n = |D|, a ranking is a permutation 7 = 7(D) of the n individuals or items, usually
satisfying:

To satisfy other objectives, like fairness, we generally output a ranking 7 that is not
simply sorting on the observed values of Y. Specifically, we aim to compute counterfactually
fair rankings.

» Definition 1 (Counterfactually fair ranking). A ranking 7 is counterfactually fair if, for
all possible x and pairs of vectors of actual and counterfactual sensitive attributes a # a’,
respectively, we have:

P(+(Yaca(U)) =k | X =x, A = a)
— P(#(Yaca (U)) = k| X = x,A = a) (4)

for any rank k, and with suitably randomized tie-breaking. If any mediators are considered
resolving then the counterfactual Ya o (U) in this definition is computed accordingly, holding
such mediators fized.

This definition is one natural adaptation of causal definitions in the recent literature on
fairness in classification and prediction tasks [10, 26, 30, 36, 55] to the ranking setting. To
satisfy Equation 4, we rank using counterfactuals that treat all individuals or items in the
dataset according to one fixed baseline value a’.

There are other possible definitions relaxing (4), for example using expected rank or
enforcing equality for some but not all values of k. We leave the problems of deriving
algorithms satisfying these and comparing performance to future work.
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2.3.2 Implementation

We use the following procedure to compute counterfactually fair rankings, keeping our focus

on model M in Figure 2a for clarity and readability.

1. For a (training) dataset D, we estimate the parameters of the assumed causal model
M. A variety of frequentist or Bayesian approaches for estimation can be used. Our
experiments use the R package mediation [46] on model M; in Figure 2a.

2. From the estimated causal model we compute counterfactual records on the (training)
data, transforming each observation to one reference subgroup A < a’, we set a’ to be
the disadvantaged intersectional group. This yields counterfactual training data Da. 4.

3. For score-based ranking, we sort Ya. o/ in descending order to produce the counterfactually
fair ranking 7(Ya«a’). For learning to rank (LTR), we apply a learning algorithm on
DA and consider two options, depending on whether the problem structure allows the
use of the causal model at test time: if it does, then we in-process the test data from the
learned causal model before ranking counterfactual test scores, and if it does not, then we
rank the unmodified test data. We refer to the first case as c¢f-LTR and emphasize that
in the second case counterfactually fairness may not hold, or hold only approximately, on
test data.

Proposition 2 below says that this implementation, under common causal modeling
assumptions, satisfies our fair ranking criteria. The proof is in Appendix A.1.

» Proposition 2 (Implementing counterfactually fair ranking). If the assumed causal model M
is identifiable and correctly specified, implementations described above produce counterfactually
fair rankings in the score-based ranking and cf-LTR tasks.

3 Experimental Evaluation

In this section we investigate the behavior of our framework under different structural
assumptions of the underlying causal model on real and synthetic datasets. We quantify
performance with respect to several fairness and utility measures, for both score-based rankers
and for learning to rank.

3.1 Datasets and evaluation measures
Datasets

We present experimental results on the real dataset COMPAS [1] and on a synthetic
benchmark that simulates hiring by a moving company, inspired by Datta et al. [15]. We
also present results on another synthetic benchmark that is a variant of the moving company
dataset, but with an additional numerical sensitive attribute, in Appendix A.2.

COMPAS contains arrest records with sensitive attributes gender and race. We use a
subset of COMPAS that includes Black and White individuals of either gender with at least 1
prior arrest. The resulting dataset has 4,162 records with about 25% White males, 59%
Black males, 6% White females, and 10% Black females. We fit the causal model M in
Figure 2a with gender G, race R, number of prior arrests X, and COMPAS decile score Y,
with larger Y predicting higher likelihood of recidivism. In our use of this dataset, we will
rank defendants on Y from lower to higher, prioritizing them for release or for access to
supportive services as part of a comprehensive reform of the criminal justice system.

Moving company is a synthetic dataset drawn from the causal model M; in Figure 2a,
with edge weights: w(G — X) =1, w(R— X) =0, w(G —Y) =0.12, w(R = Y) = 0.08,
and w(X — Y) = 0.8. This dataset is used in the scenario we discussed in our motivating
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example in Section 1.2: Job applicants are hired by the moving company based on their
qualification score Y, computed from weight-lifting ability score X, and affected by gender
G and race R, either directly or through X. Specifically, weight-lifting ability X is lower for
female applicants than for male applicants; qualification score Y is lower for female applicants
and for Blacks. Thus, the intersectional group Black females faces greater discrimination
than either the Black or the female group. In our experiments in this section, we assume that
women and Blacks each constitute a 37% minority of the applicants, and that gender and
race are assigned independently. As a result, there are about 40% White males, 14% Black
females, and 23% of both Black males and White females in the input with 2, 000 records.

Fairness measures

We investigate whether the counterfactual ranking derived using our method is fair with
respect to intersectional groups of interest, under the given structural assumptions of the
underlying causal model. We consider two types of fairness measures: those that compare
ranked outcomes across groups, and those that compare ranked outcomes within a group.
To quantify fairness across groups, we use two common measures of fairness in classification
that also have a natural interpretation for rankings: demographic parity (DP) at top-k and
equal opportunity (EO) at top-k, for varying values of k. To quantify fairness within a group,
we use a rank-aware measure called in-group fairness ratio (IGF-Ratio), proposed by Yang
et al. [49] to surface intersectional fairness concerns in ranking. We report our IGF-Ratio
results in Appendix A.3, and refer the reader to an extended version of this paper [50] for
experiments with other rank-aware fairness measures.

Demographic parity (DP) is achieved if the proportion of the individuals belonging to
a particular group corresponds to their proportion in the input. We will represent DP by
showing selection rates for each intersectional group at the top-k, with a value of 1 for all
groups corresponding to perfect DP.

Equal opportunity (EO) in binary classification is achieved when the likelihood of receiving
the positive prediction for items whose true label is positive does not depend on the values
of their sensitive attributes [19]. To measure EO for LTR, we will take the set of items
placed at the top-k in the ground-truth ranking to correspond to the positive class for that
value of k. We will then present sensitivity (true positives / true positives 4 false negatives)
per intersectional group at the top-k. If sensitivity is equal for all groups, then the method
achieves EO.

WM BM BWF ©BF WM FBM EWF FBF

2 L X qyotas R 2 non-resolving

1 1
) I | [}
o ; ; - 8o
S 2 | | resolving S 2 resolving
'é 14—+ i ' § 1
E I I ol ! K
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2 | " , original 2 original

1 | 1 | 1

0 L bl - o
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(a) moving company. (b) COMPAS.

Figure 3 Demographic parity on the moving company and COMPAS datasets. X-axis shows the
top-k values of the rankings and Y-axis shows the selection rate while each span of Y-axis represents
different rankings and each color represents an intersectional group. The assumed causal model for
both moving company and COMPAS is M; in Figure 2a.
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Utility measures

When the distribution of scores Y differs across groups, then we may need to sacrifice
score-utility to produce a fair ranking. We evaluate the score-utility of the counterfactual
rankings using two measures, Y -utility loss at top-k, applicable for both score-based ranking
and LTR, and average precision (AP), applicable only for LTR. Both compare a “ground
truth” ranking 7 induced by the order of the observed scores Y to a proposed fair ranking o
(we use o rather than # here to make notation more readable).

We define Y-utility loss at top-k as Li(o) = 1 — Zle Ya(i)/Zle Yri). Yo@) is the
observed score of the item that appears at position ¢ in o, while Y ;) is the observed score
of the item at position ¢ in the original ranking 7. Ly, ranges between 0 (best) and 1 (worst).

Average precision (AP) quantifies, in a rank-compounded manner, how many of the items
that should be returned among the top-k are indeed returned. Recall that 71 j denotes the
set of the top-k items in a ranking 7. We define precision at top-k as P, = |71 No1. kl|/k,
where 7 is the “ground truth” ranking and o is the predicted ranking. Then, AP, (o) =
Zle P; x 1o (i) € T1..k]/k, where 1 is an indicator function that returns 1 if the condition
is met and 0 otherwise. AP}, ranges between 0 (worst) and 1 (best).

3.2 Score-based ranking

In the first set of experiments, we focus on score-based rankers, and quantify performance
of our method in terms of demographic parity (Figure 3 and 5) and score-based utility, on
mowing company (over 100 executions) and COMPAS.

Synthetic datasets

Recall that, in the moving company example, the goal is to compute a ranking of the
applicants on their qualification score Y that is free of racial discrimination, while allowing
for a difference in weight-lifting ability X between gender groups, thus treating X as a
resolving variable. Figure 3a compares DP of three rankings for the moving company
example: original, resolving, and quotas on R, described below.

Recall that perfect DP is achieved when selection rate equals to 1 for all groups. We
observe that the original ranking, the bottom set of bars in Figure 3a, under-represents
women (WF and BF) compared to their proportion in the input, and that White men (WM)
enjoy a higher selection rate than do Black men (BM). Specifically, there are between 62-64%
White men (40% in the input), 27-28% Black men (23% in the input), 6% White women
(23% in the input), and 3-9% Black women (14% in the input) for k£ = 50, 100, 200.

In comparison, in the counterfactually fair ranking in which X is treated as resolving,
shown as the middle set of bars in Figure 3a, selection rates are higher for the Blacks of both
genders than for the Whites. For example, selection rate for White men is just over 1, while
for Black men it’s 1.5. Selection rates also differ by gender, because weight-lifting ability X
is a mediator, and it encodes gender differences.

Finally, the ranking quotas R, the top set of bars in Figure 3a, shows demographic party
for racial groups when the ranking is computed using representation constraints (quotas) on
race R. This ranking is computed by independently sorting Black and White applicants on Y
and selecting the top individuals from each list in proportion to that group’s representation
in the input. Opting for quotas on race rather than on gender, or on a combination of gender
and race, is reasonable here, and it implicitly encodes a normative judgement that is explicit
in our causal model M; in Figure 2a — that race should not impact the outcome, while
gender may.
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Appendix A.2 describes another synethetic dataset, moving company+age, with three
sensitive attributes: categorical gender GG and race R, and numerical age A, with records
drawn from the causal model M3 in Figure 2e. Our results on this dataset further showcase
the flexibility of our framework.

Real datasets

We now present results of an evaluation of our method on a real dataset, COMPAS. Figure 3b
shows demographic parity (DP) of three different rankings: original, resolving, and non-
resolving, discussed below. Recall that in our use of COMPAS defendants are ranked on their
decile score Y from lower to higher, prioritizing them for release or for access to supportive
services. Our goal is to produce a ranking that is free of racial and gender discrimination.
There is some debate about whether the number of prior arrests, X, should be treated as a
resolving variable. By treating X as non-resolving, we are stating that the number of prior
arrests is itself subject to racial discrimination.

We observe that, in the original ranking, shown as the bottom set of bars in Figure 3b,
Whites of both genders are selected at much higher rates than Blacks. Gender has different
effect by race: men are selected at higher rates for Whites, and at lower rates for Blacks.
There are 33-38% White men (25% in the input), 46-49% Black men (59% in the input),
7-8% White women (6% in the input), and 8-10% Black women (10% in the input), for
k = 500, 1000, 1500.

Comparing the original ranking to the counterfactually fair ranking that treats the number
of prior arrests X as a resolving mediator, shown as the middle set of bars in Figure 3b, we
observe an increase in selection rates for Black males and Black females, and a significant
reduction in selection rates for White males. Further, comparing with the counterfactually
fair ranking that treats X as non-resolving, the top set of bars in Figure 3b, we observe
that only Black individuals are represented at the top-500, and that selection rates for all
intersectional groups for larger values of k are close to 1, achieving demographic parity.

We also computed utility loss at top-k, based on the original Y scores (see Section 3.1 for
details). For moving company, we found that counterfactually fair ranking resolving suffers
at most 1% loss across the values of k, slightly higher than the loss of the quotas R ranking,
which is close to 0. For COMPAS, we found that overall utility loss is low in most cases,
ranging between 3% and 8% in the fair ranking resolving, and between 3% and 10% in the
fair ranking non-resolving. The slightly higher loss for the latter case is expected, because
we are allowing the model to correct for historical discrimination in the data more strongly
in this case, thus departing from the original ranking further.

3.3 Learning to rank

We now investigate the usefulness of our method for supervised learning of counterfactually
fair ranking models. We use ListNet, a popular Learning to Rank algorithm, as implemented
by Ranklib!. ListNet is a listwise method — it takes ranked lists as input and generates
predictions in the form of ranked lists. We choose ListNet because of its popularity and
effectiveness (see additional information about ListNet and other predictive ranking models
in [32] and [34], respectively).

We conduct experiments in two regimes that differ in whether to apply our method as a
preprocessing fairness intervention on the test set (see Implementation in Section 2). In both
regimes, we make the training datasets counterfactually fair. Specifically, we first fit a causal

! https://sourceforge.net/p/lemur/wiki/RankLib/
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Figure 4 Equal opportunity on moving company with k = 200. X-axis shows the treatments:
training & test on fair rankings with X as resolving (resolving cf-LTR) and non-resolving (non-
resolving c¢f-LTR); training on fair rankings & test on unmodified rankings with X as resolving
(resolving LTR) and non-resolving (non-resolving LTR). Y-axis shows the ratio of sensitivity between
each counterfactually fair treatment and the original ranking. Intersectional groups are denoted by
different colors. Solid boxes correspond to c¢f-LTR variants. All results are over 50 training/test
pairs.

model M on the training data, then update the training data to include counterfactually fair
values of the score Y and of any non-resolving mediators X, and finally train the ranking
model R (e.g., ListNet) on the fair training data. We now have two options: (1) to run R
on the unmodified (biased) test data, called LTR in our experiments, or; (2) to preprocess
test data using M, updating test with counterfactually fair values for the score Y and for
any non-resolving mediators X, before passing it on to R, called c¢f-LTR.

Note that the c¢f-LTR setting shows the effectiveness of our method for the disadvantaged
intersectional groups, in that the performance of the model is compareble across groups,
while LTR setting shows the performance of a ranking model on biased test data. Similar to
score-based ranking, we also consider two structural assumptions of the underlying causal
model: resolving and non-resolving for each setting above.

We quantify performance of our method in terms of equal opportunity (EO) and average
precision (AP) (see Section 3.1), on moving company over 50 training/test pairs. Figure 4
shows performance of the ranking model (e.g., ListNet) in terms of equal opportunity on
moving company, comparing four settings produced from above options: resolving cf-LTR,
non-resolving cf-LTR, resolving LTR, and non-resolving LTR. Recall that a method achieves
equal opportunity (EO) if sensitivity is equal across groups. Note that sensitivity is affected
by groups’ representation in the data, meaning that higher sensitivity for a group might be
due to its limited representation in the top-k rankings (lower positives) rather than the better
treatment in the model (higher true positives). Thus, to reduce the effect of imbalanced
representation across groups, we present semsitivity ratio: the ratio of the sensitivity at each
setting above (with the fairness treatment on training, or on both training and test data) to
the sensitivity of the original ranking model (without any fairness intervention) in Figure 4.

Note that the original ranking model achieves high sensitivity for all intersectional groups
(0.9, 0.9, 0.95, and 1 for White men, Black men, White women, and Black women, respectively)
and so can be seen as achieving EO within gender groups, because their representation at
the top-k is similar. As shown in Figure 4, performance of the fair ranking models (e.g., the
cf-LTR variants in the left two columns for resolving and non-resolving X respectively), in
which both the training and the test data are counterfactually fair, is comparable to the
original ranking model in terms of sensitivity, with the medians of all boxes close to the
sensitivity ratio of 1.
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The resolving variants (e.g., resolving cf-LTR and LTR columns in Figure 4) show lower
sensitivity for women, likely because women are selected at lower rates since X is treated
as resolving for gender). The LTR variants (e.g., resolving and non-res LTR columns in
Figure 4) show lower sensitivity for women because the test dataset is unmodified in this
set of experiments. Finally, when the fairness intervention is applied on both training and
test datasets (e.g., resolving and non-res c¢f-LTR columns in Figure 4), it leads to better
sensitivity for women.

We also quantified utility as average precision (AP) in evaluating supervised learning
of counterfactually fair ranking models. For moving company, AP is 77% for the original
ranking model when unmodified ranking are used for training and test. For counterfactually
fair training data with non-resolving X (weight-lifting), AP on unmodified test (non-res
LTR) is 27% but it increases to 91% when test data is preprocessed (non-res cf-LTR). For
counterfactually fair training data with resolving X, AP is 68% for unmodified test (resolving
LTR) and 83% when test is preprocessed (resolving cf-LTR).

4 Discussion

This work aims to mitigate the negative impacts of ranking systems on people due to
attributes that are out their control. In this section we anticipate and discuss concerns that
may arise in the application of our method.

There are objections to modeling sensitive attributes as causes rather than considering
them to be immutable, defining traits. Some of these objections and responses to them are
discussed in [33]. In the present work we proceed with an understanding that the model is a
simplified and reductive approximation, and support for deploying an algorithm and claiming
it is fair should require an inclusive vetting process where formal models such as these are
tools for inclusively achieving consensus and not for rubber stamping or obfuscation.

There are many issues outside the scope of the present work but which are important
in any real application. Choices of which attributes are sensitive, which mediators are
resolving (and for which sensitive attributes), the social construction and definitions of
sensitive attributes, choices of outcome/utility or proxies thereof, technical limitations in
causal modeling, the potential for (adversarial) misuse are all issues that may have adverse
impacts when using our method. We do stress that these are not limitations inherent to our
approach in particular, rather, these concerns arise for virtually any approach in a sensitive
application. For an introductions to these issues, including a causal approach to them,
see [4, 29].

Further, like any approach based on causality, our method relies on strong assumptions
that are untestable in general, though they may be falsified in specific cases. Sequential
ignorability in particular is a stronger assumption in cases with more mediating variables, or
with a mediator that is causally influenced by many other variables (observed or unobserved).
Such cases increase the number of opportunities for sequential ignorability to be violated for
one of the mediators or by one of the many causes of a heavily influenced mediator.

Finally, intersectional fairness is not a purely statistical or algorithmic issue. As such,
any technical method will require assumptions at least as strong as the causal assumptions
we make. In particular, there are normative and subtle empirical issues embedded in any
approach to fairness, such as the social construction of sensitive attributes, or the choice
of which mediators may be considered resolving in our framework. For these reasons we
believe the burden of proof should fall on any approaches assuming the world (causal model)
is already less unfair or that fairness interventions should be minimized, for example by the
use of resolving variables.
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5 Related Work

Intersectionality. From the seeds of earlier work [13], including examples that motivated
our experiments [14], intersectional feminism has developed into a rich interdisciplinary
framework to analyze power and oppression in social relations [12, 43]. We refer especially to
the work of Noble [37], and D’Ignazio and Klein [16], in the context of data and information
technology. Other recent technical work in this area focuses on achieving guarantees across
intersectional subgroups [20, 24, 27|, including on computer vision tasks [7], or makes
connections to privacy [18]. These do not take a causal approach or deal with ranking
tasks. In our framework, intersectionality does not simply refer to a redefinition of multiple
categorical sensitive attributes into a single product category or inclusion of interaction terms,
as was done in recent work [20, 24, 27]. Specific problems may imply different constraints or
interpretations for different sensitives attributes, as shown in the mowving company example,
where a mediator (e.g., weight-lifting ability) may be considered resolving for one sensitive
attribute but not for another.

Causality and fairness. A growing literature on causal models for fair machine learning [10,
26, 30, 36, 55] emphasizes that fairness is a normative goal that relates to real world (causal)
relationships. One contribution of the present work is to connect intersectionality and fair
ranking tasks to this literature, and therefore to the rich literature on causal modeling.
Some recent work in causal fairness focuses on the impact of learning optimal, fair policies,
potentially under relaxations of standard causal assumptions that allow interference [28, 35].
Some of the most closely related work uses causal modeling to analyze intersectional fairness
from a philosophical standpoint [6] or in a public health setting [22], but these are focused
on foundations and interpretation, rather than on implementation or machine learning tasks.

Ranking and fairness. While the majority of the work on fairness in machine learning
focuses on classification or risk prediction, there is also a growing body of work on fairness and
diversity in ranking [2, 8, 9, 31, 45, 48, 49, 51, 52, 53], including a recent survey [54]. Yang
et al. [49] consider intersectional concerns, although not in a causal framework. The authors
observe that when representation constraints are stated on individual attributes, like race
and gender, and when the goal is to maximize score-based utility subject to these constraints,
then a particular kind of unfairness can arise, namely, utility loss may be imbalanced across
intersectional groups. Barnabo et al. [3] study similar problem through explicitly modeling
the trade-off between utility and fairness constraints. In our experiments we observed a
small imbalance in utility loss across intersectional groups (1-5%) and will investigate the
conditions under which this happens in future work. Finally, Wu et al. [48] apply causal
modeling to fair ranking but estimates scores from observed ranks, uses causal discovery
algorithms to learn an SCM, and does not consider intersectionality, while the present work
considers the case when scores are observed and the SCM chosen a priori.

6 Conclusion

Our work builds on a growing literature for causal fairness to introduce a modeling framework
for intersectionality and apply it to ranking. Experiments show that this approach can be
flexibly applied to different scenarios, including ones with mediating variables, and the results
compare reasonably to intuitive expectations we may have about intersectional fairness for
those examples. The flexibility of our approach and its connection to causal methodology
makes possible a great deal of future work including exploring robustness of rankings to
unmeasured confounding [25] or uncertainty about the underlying causal model [41].
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Future technical work can relax some assumptions under specific combinations of model
structures, estimation methods, and learning task algorithms. For example, we have shown in
experiments that the LTR task (without in-processing) with ListNet works reasonably well,
but future work could identify the conditions when this insensitivity of a learned ranker to
counterfactual transformations on the training data guarantees that counterfactual fairness
will hold at test time, perhaps with explicit bounds on discrepancies due to issues like
covariate shift. We proposed ranking on counterfactual scores, treating everyone as a member
of the disadvantaged intersectional group, but there are other possible fair strategies. For
any fixed baseline intersectional group, for example the most advantaged one, if we compute
counterfactuals and treat everyone as though they belong to that fixed group, we would also
achieve intersectional counterfactual fairness. The same is true if we treat everyone based on
the average of their counterfactual values for all intersectional subgroups. Future work may
explore whether any of these choices have formal or computational advantages, making them
preferable in specific settings.
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A  Appendix

A.1 Proof of Proposition 2

Proposition 2 (Implementing counterfactually fair ranking) If the assumed causal model M is
identifiable and correctly specified, implementations described above produce counterfactually
fair rankings in the score based ranking and cf-LTR tasks.

Proof of Proposition 2. The proof is essentially by construction, but we provide more detail
now for model M;. Fixing a baseline intersectional subgroup (go, 7o), the counterfactual
training data in our implementation will use Y(g gy« (go,ro), €ither by ranking these for score
based ranking or training a predictive model for LTR. We wish to show that

P(f-(Y(GyR)“(Q,T)) =k | X =z, (Gv R) = (g,?‘)) (5)

is unchanged under all counterfactual transformations, denoted by Y(g gy« (4, if the
causal model has been correctly specified. First, we consider the case where the functions
fx, fy are known. If X is resolving, then

(Yi) (@, Ry (go.r0) = f¥ (Tir 9o, 70) + €]

for all 4. In this case the conditional distribution of these scores (5) is invariant under
counterfactual transformations (g,r) < (¢’,7') because z; is held fixed, (¢’,r’") will be
substituted with the fixed baseline values (go,70), and the error term is exogenous and
in particular its distribution does not change under transformations of (g,r). If X is not
resolving then we use

(Y3)(G.R)—(go,r0) = Jv (Fx(g0,70) + €5, g0,70) + €]

Under counterfactual transformations (g,7) < (¢’,7’) all of the inputs above stay fixed
except for the error terms, and, as before, these errors do not depend on (g, r) so the training
data scores have the desired distributional invariance. The semi-resolving case is similar.

For score based ranking 7 sorts the counterfactual scores, denoted by (Yi)(a R)(go,m0)"
Since the distributions of these scores are unchanged under counterfactual transformations as
we just established, the probability for any score to equal a given rank k is also unchanged,
hence 7 is a counterfactually fair ranking. In cf-LTR, at test time the test data is first
transformed to the intervened version DE%SfR) (go,70) before inputting to 7. As before, the
distribution of the predicted rank for observation ¢ under any counterfactual transformation
(G,R) < (¢',7") is fixed to that of the distribution under (G, R) < (go,70), which depends
only on the exogenous errors.

Finally, we relax the assumption that the functions fx, fy are known. Since we have
assumed the causal model is identifiable and correctly specified (in particular, it satisfies
sequential ignorability in cases where the model has mediators), these functions can be
estimated on the (training) data via any appropriate causal inference method. Hence,
counterfactually fair ranking condition will hold approximately due to plug-in estimation
€rror. <

A.2 Additional experimental results: score-based ranking

In this section, we show evaluation results of using our method on a more complicated data
under a different causal model: a synthetic dataset with three sensitive attributes and one of
them is a continuous or numeric attribute (e.g., age) under an assumed causal model M in
Figure 2e.
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Mowving company + age is a variant of moving company dataset with 10,000 records
drawn from the causal model M5 in Figure 2e, with three sensitive attributes: gender G,
race R, and age A, with edge weights w(G — X) = 0.95, w(R — X) =0, w(A — X) = 0.05,
w(G@—=Y)=01,wR—-Y)=01,wA—-Y)=0.1,and w(X - Y)=0.7. Age A affects
the weight-lifting ability score X and the qualification score Y in a piece-wise linear fashion,
with X and Y decreasing for ages A above some thresholds. Specifically, the effect of age on
X is negligible for ages below 45, then slightly negative, and more strongly negative above
age 55. The mean age for White and Black individuals are 35 and 45 respectively. We use
this dataset to showcase the applicability of our framework to cases with more than two
sensitive attributes, and to cases where sensitive attributes may be continuous.

Figure 5 shows the performance of our methods in terms of demographic parity on moving
company+age (over 100 executions), focusing on three different rankings: original, resolving,
and quotas R. Recall that moving company+age includes a continuous sensitive attribute
age in addition to gender and race. We present selection rates for two age groups, younger
(age < 45) and older (age > 45) in Figure 5a, and at each age in Figure 5b. We observe
that in the original ranking, the bottom set of bars in Figure 5a, younger applicants are
selected at a higher rate compared to older applicants within each intersectional group. For
example,young White males and young Black males are both selected at higher rate than
their older counterparts old White males and old Black males. Further, selection rates for
racial and gender groups differ in the original ranking. For example, White males are selected
at a much higher rate than other intersectional groups. These disparities in selection rates
are preserved in the quotas R ranking, shown as the top set of bars in Figure 5a. Recall
that the goal for moving company+age is to compute a ranking of the applicants that is free
of racial and age discrimination while allowing for a difference in weight-lifting ability X
between gender groups, thus treating X as resolving variable. In the counterfactually fair
ranking resolving, the middle set of bars in Figure 5a, we observe an increase in selection
rates for Black males, and also note that the age of the applicants does not materially affect
their selection rates.

Figure 5b presents selection rates for each value of age, for each intersectional group on
gender and race, at the top-200. Observe that the original ranking, shown in the bottom set
of lines, exhibits a disparity in selection rates between the Black and the White applicants

for all age values, and that selection rates drop substantially for all groups around age > 50.

The quotas R ranking, the top set of lines in Figure 5b, reduces the disparity in selection
rates between racial groups (e.g., there is no gap between the lines for White males and
Black males for any age), but it still shows a disparity by age, meaning that selection rates
drop for all groups around age > 50, just as they did in the original ranking. Finally, the
counterfactually fair ranking resolving, shown as the middle set of lines in Figure 5b, reduces
disparities in selection rates by both race and gender.

We also computed utility loss at top-k, based on the original Y scores (see Section 3.1 for
details). For moving company+age, the loss of the counterfactually fair ranking resolving
and of the quotas R ranking is at most 1% across the values of k.

A.3 Additional experimental results: rank-aware fairness measures

In this section, we report evaluation results of using a rank-aware fairness measure called
in-group fairness ratio (IGF-Ratio) on moving company, moving company+age, and
COMPAS. In-group fairness ratio (IGF-Ratio) is the simpler of two in-group fairness measures
proposed in [49]. It captures an important intersectional concern that arises when an input
ranking must be re-ordered (and thus suffer a utility loss) to satisfy some fairness or

7:19

FORC 2021



7:20 Causal Intersectionality and Fair Ranking

WMY EWMO FBMY BMBMO FWFY BWFO BFY MBFO WM -BM —~WF - BF
i | il , ., QuotasR 2 quotas R
1 1
2, i -.+|ﬁ “n.l.'i “'.l.'i 2,
»S 2 | | resolving _5 2 resolving
81 1 : B4
3, ' ‘m'h ‘w5,
274 i 0 original 2 original
1 I I I 1
0 ] Lol | L ! 0
50 100 200 21 26 29 33 37 41 45 49 53 57 61 65 69
(a) (b) k = 200.

Figure 5 Demographic parity on the moving company+age dataset. The X-axis shows the top-k
values of the rankings for (a) and shows the value of the attribute age A for (b). For both subplots,
the Y-axis shows the selection rate, while each span of Y-axis represents different rankings and each
color represents an intersectional group. The assumed causal model is M5 in Figure 2e. Figure 5a
shows the results for the binarized attribute age A according to a threshold: younger (Y): age < 45
and older (O): age > 45.

diversity constraint. Specifically, IGF-Ratio compares the amount of re-ordering within each
intersectional groups, and considers a ranking fair if the corresponding loss is balanced across
groups. Let us denote by 71, the set of the top-k items in 7. For a given intersectional
group g and position k, IGF-Ratiog (T, g) is the ratio of lowest score of any item from g in
71..., and the highest score of an item from g not in 71 ;. IGF-Ratio requires non-negative
scores and ranges from [0, 1], with higher values implying better in-group fairness. To make
the scores non-negative, we increase the values of ¥ by |min(Y")].

Table 1 shows the results of in-group fairness ratio (IGF-Ratio) in counterfactually fair
score-based ranking derived using our method on moving company (over 100 executions),
moving company+age (over 100 executions), and COMPAS. To compute this measure, we
cannot have any ties in the ranking. For COMPAS, we broke the ties by Y-score by randomly
permuting the items within an equivalence class by score. Recall that IGF-Ratio ranges
between 0 and 1 and that a higher value is better, since it indicates that the ratio of the
score of the lowest-scoring selected item among the top-k and of the highest-scoring item not
among the top-k is close to 1. Observe that most IGF-Ratio values are close to 1, meaning
that there is only a limited amount of re-ordering of individuals within each intersectional
group. Further, in-group fairness loss in terms of IGF-Ratio is balanced among intersectional
groups in all cases, while some groups (e.g. White males) face a slightly lower but acceptable
IGF-Ratio in the fair ranking non-resolving.

Table 1 IGF-Ratio on moving company, moving company+age, and COMPAS. A higher value is
better: it indicates that the ratio of scores of the lowest-scoring selected item among the top-k£ and
of the highest-scoring item not among the top-k is close to 1. In the table, k12,3 = 50, 100, 200 for
moving company (n = 2000) and moving company+age (n = 10,000), and k1,2,3 = 500, 1000, 1500
for COMPAS (n = 4162). N/A is used when a particular intersectional group is not represented
among the top-k.

k1 k2 ks
WM | BM | WF | BF | WM | BM | WF | BF | WM | BM | WF | BF
non-res 098 | 094 | 093 | 094 | 0.96 | 0.95 | 0.91 | 0.92 | 0.94 | 0.94 | 0.89 | 0.89
resolving | 0.95 | 0.95 | 0.98 | 0.98 | 0.93 | 0.93 | 0.96 | 0.96 | 0.92 | 0.92 | 0.93 | 0.94
non-res 0.82 0.9 0.99 | 0.99 0.8 099 | 099 | 098 | 0.99 | 0.98 | 0.99 | 0.97
resolving | 0.99 | 0.99 | 0.99 | 0.94 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
non-res N/A | 1.00 | N/A | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
resolving | N/A | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

Dataset Ranking

moving company

moving company+age

COMPAS
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