
Syntactic-Semantic Form of Mizar Articles
Czesław Byliński !Ï

Computer Networks Section, University of Bialystok, Poland

Artur Korniłowicz1 !Ï

Institute of Computer Science, University of Bialystok, Poland

Adam Naumowicz !Ï

Institute of Computer Science, University of Bialystok, Poland

Abstract
Mizar Mathematical Library is most appreciated for the wealth of mathematical knowledge it contains.
However, accessing this publicly available huge corpus of formalized data is not straightforward
due to the complexity of the underlying Mizar language, which has been designed to resemble
informal mathematical papers. For this reason, most systems exploring the library are based on an
internal XML representation format used by semantic modules of Mizar. This representation is easily
accessible, but it lacks certain syntactic information available only in the original human-readable
Mizar source files. In this paper we propose a new XML-based format which combines both syntactic
and semantic data. It is intended to facilitate various applications of the Mizar library requiring
fullest possible information to be retrieved from the formalization files.

2012 ACM Subject Classification Information systems → Extensible Markup Language (XML)

Keywords and phrases Mizar system, mathematical knowledge representation, XML representation

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.11

Supplementary Material A collection of prototype hyper-linked Mizar articles generated from the
new ESM syntactic-semantic format can be found at
Dataset: http://alioth.uwb.edu.pl/~artur/mmlesx/

Acknowledgements The Mizar processing has been performed using the infrastructure of the
University of Bialystok High Performance Computing Center.

1 Introduction

Since the beginning of the Mizar project [5], the verifier has been the main computer program
of the whole system. Its function is to check user-provided input files (called “Mizar articles”)
in terms of syntactic correctness and logical validity of mathematical content encoded in
the Mizar language. The application has been designed analogously to building compilers,
so it has a lexical and syntactic analysis modules as well as a module for performing the
semantic analysis of the source text. But of course the Mizar verifier does not generate any
executable code. Instead, the last module confirms that a given article does not contain
errors, or otherwise reports a list of errors found in the text. Hence, the absence of errors in
the result of text analysis means the correctness of the text in terms of syntactic, semantic
and logical content. In the initial Mizar implementations, this was the sole result of running
the verifier, i.e. the tool provided only the information about encountered errors in the form
of a text listing file.

The development of the Mizar language conducted under constant leadership of Andrzej
Trybulec was reinforced by the experience related to the creation of new Mizar texts as well
as experiments with various limited versions of Mizar (e.g. Mizar MSE, Mizar HPF) [12]. At

1 Corresponding author

© Czesław Byliński, Artur Korniłowicz, and Adam Naumowicz;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Interactive Theorem Proving (ITP 2021).
Editors: Liron Cohen and Cezary Kaliszyk; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bylinski@math.uwb.edu.pl
http://math.uwb.edu.pl/~bylinski
mailto:arturk@math.uwb.edu.pl
http://math.uwb.edu.pl/~arturk
https://orcid.org/0000-0002-4565-9082
mailto:adamn@math.uwb.edu.pl
http://math.uwb.edu.pl/~adamn
https://orcid.org/0000-0003-4224-9798
https://doi.org/10.4230/LIPIcs.ITP.2021.11
http://alioth.uwb.edu.pl/~artur/mmlesx/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Syntactic-Semantic Form of Mizar Articles

the same time, the source code of Mizar verifiers evolved as a result of implementations on
subsequent computers. Notably, Mizar 2 (the predecessor of current Mizar) was implemented
on one of Polish third-generation computers, Odra 1305, using the Pascal compiler available
for ICL 1900 machines. This version of the compiler was a port of Pascal P2 from the CDC
6000 machine to ICL 1900. At that time, the Mizar language was designed in such a way, so
that the parsing, semantic analysis, and logical correctness procedures could be implemented
as a one-pass program on the mainframe computer. The coding made use of the “top-down”
approach with main algorithms based on recursive procedures. Then, Mizar 2 code was
transferred from Odra 1305 to IBM 360 using Pascal P8000 with small code changes and later
formed the base of implementing Mizar on the PDP-11 minicomputer. Due to the memory
limitations of that machine, a one-pass implementation was not possible and therefore the
verifier was divided into a series of passes implementing the subsequent stages of Mizar text
processing and analysis. This change has become a permanent feature of the system since
then. Initially there were seven passes which covered tokenization, syntax analysis, identifier
analysis, semantic analysis of Mizar’s linguistic structures, checking proof structure, inference
correctness and schematization. The division into the passes was due to both content-related
and technical reasons. The information about subsequent results of the analysis between the
passes was transmitted via text files. The syntax of these files was strictly technical, it was
only about providing information necessary for further analysis. The communication files
were treated as temporary working files, generated only for the duration of the verifier’s work.
The final result of the text analysis was realized a bit differently than in Mizar 2. Namely,
one error file was created, to which specific errors detected by individual passes were added.
When the Mizar verifier was ported from PDP-11 to the IBM PC machines using the Turbo
Pascal compiler, the number of passes was limited to four. At that time, the Mizar script
still contained an axiomatic part describing the mathematical theory necessary to formulate
new definitions and prove theorems.

A next significant change in the Mizar implementation was related to the creation of
the Mizar Mathematical Library (MML) [4]. The Mizar script took the modern form of
current Mizar articles, containing the so-called environment part (MML references) and the
actual text. The verifier, or actually additional programs based on the code of the verifier,
have been used to create library files describing all the notions, definitions and theorems
introduced and proven in a given article. Current MML provides an interrelated library built
from axiomatic foundations (Tarski-Grothendieck set theory) in which all derived facts are
positively checked by the Mizar verifier and can be included in the MML only under this
condition. Further development of Mizar software and the MML are now closely inter-related.
Each new version of the Mizar software must be MML compliant. And on the other hand,
after any language changes, MML must be refactored to be compatible with the new Mizar
system.

At some stage of work on the implementation of the Mizar verifier (around 2004) and,
more broadly, the Mizar system, the structure of MML database files and intermediate
files transmitting information between the verifier’s modules was changed. Instead of
specific internal formats available only from within the Pascal (Delphi and Free Pascal)
implementation of the system, a new XML-based form was introduced [17]. Initially it was
only a technical change, but soon the more easily accessible information about Mizar articles
started to be used by several external applications (c.f. [8, 18, 7]). Most of these applications
have utilized the XML file carrying the information passed to the Mizar inference checker
and schematizer modules. However, the disadvantage of these files is that they contain
already pre-processed semantic information needed for the checker, which only partially

C. Byliński, A. Korniłowicz, and A. Naumowicz 11:3

allows reconstructing the original content of the article needed for some applications. As
such they are not always suitable for use independently of the Mizar system, e.g. for the
needs of formal systems other than Mizar. In recent years, several attempts have been made
to use the MML for other proof systems (c.f. [9, 20, 10]). So there emerged a need to provide
readily-available information about the content of the MML without the necessity of analyzing
Mizar articles. The idea was to develop a format describing Mizar articles in which the
formalizations contained in the MML could become accessible by any semantic mathematics
databases or other formal systems. Consequently, the current versions of the Mizar verifier,
in addition to the basic user feedback, i.e. the confirmation that a processed article is correct,
also generate the description of the article in a syntactic form with the associated semantics
as XML files. In 2012, the creation of files describing the syntactic form of Mizar articles was
re-organized. The corresponding files are generated by the two initial modules of the Mizar
verifier: the parser which creates a description of the syntactic tree of the analyzed article in
a file technically named WSM (Weakly Strict Mizar) [7, 14], and an identification module
which creates an MSM file (More Strict Mizar). MSM files are descriptions of the syntax
of the Mizar article with additional information about the identifiers used: sentence and
variable identifiers. However, they do not contain information about the exact constructors
used and being defined. Moreover, they do not provide unambiguous information that the
Mizar system uses to process the whole MML.

Recently (2020), a new variant of the Mizar verifier’s Analyzer module has been im-
plemented. This module is responsible for the semantic analysis of the Mizar language
structure. Now it is possible to generate semantic information, while preserving the syntactic
information used in the original Mizar source text. In previous versions of the Analyzer
module, all expressions were at that point transformed into the form of so called “semantic
correlates” used by the Checker module. This resulted in the loss of information about
their syntactic form and rendered the exact reconstruction of the original syntax impossible,
because the transformation is irreversible [15]. The most recent implementation of the Ana-
lyzer preserves enough information to create an article description in the form of a syntactic
tree extended with associated semantic data. The new data format was named ESM (Even
more Strict Mizar). The corresponding file generated by the Mizar verifier contains an
exact description of the syntactic structure of the article in connection with the resolved
semantic information. The disambiguation concerns all entered symbols and the semantics of
definitions, expressions and theorems introduced and used in the article. Moreover, unlike the
previously available data formats storing only the information necessary for proof checking by
the Mizar verifier, the ESM representation is enriched with absolute references to database
items (within a particular MML version), which can be understood regardless of the local
environment of a given article. This information is eventually suitable for direct use by any
formal systems independently of the Mizar software.

2 Even more Strict Mizar (ESM)

In this section we present the extension of previously available WSM and MSM data repres-
entation formats (generated by the Mizar verifier as intermediate files with corresponding
.wsx and .msx filename extensions). Although the ESM new data format gives access to
information currently stored in the XML (.xml) files generated by the Mizar analyzer module,
it does not replace the old representation completely, since the latter is still used as the main
input for the checker pass. The advantage of ESM, however, is that this representation of
Mizar texts can be used independently from the dedicated Mizar proof checking software.

ITP 2021

11:4 Syntactic-Semantic Form of Mizar Articles

Table 1 Constructors (C) and patterns (P): + means introduction of a new constructor/pattern.

Predicate Attribute Mode Functor
C P C P C P C P

definition + + + + + + + +
redefinition of definiens + + + +

redefinition of result type n/a n/a n/a n/a + + + +
redefinition with properties + + n/a n/a n/a n/a + +

synonym + + + +
antonym + + n/a n/a n/a n/a

2.1 Mizar definitions
The Mizar language allows users to define mathematical notions of several basic categories:
predicates, adjectives, types, operations and structures. Using the Mizar terminology, various
aspects of all these definitions are internally represented either as formats, constructors,
or patterns. Formats represent syntactic information about the kind of symbol used in
the definition together with the number and position of arguments. Constructors, on the
other hand, provide a numbering system for representing the semantics of mathematical
objects. The unique numbering scheme is provided independently within each category of
defined notions. And finally patterns represent joint information about the used format,
constructor, types of all arguments, and positions of visible arguments for a given definition.
The distinction between constructors and patterns is necessary to accommodate various
linguistic features like synonyms or redefinitions available in the Mizar language which offer
different contextual ways of representing semantically equal objects. In principle, there are
more patterns than constructors since not all definitions introduce new constructors, see
Table 1. In the current Mizar implementation, the information about all available and newly
defined notions is scattered across multiple intermediate XML-based resource files. The next
section presents basic technical details concerning these files (identified by their respective
filename extensions by Mizar utilities) necessary for developing software which makes use of
all definition-related information.

2.2 Intermediate file types
First of all, new symbols introduced to denote concepts defined in a Mizar article are collected
in the .dcx file, which also includes information about all Mizar reserved words used in
the processed article. Each symbol is represented by its category (kind), number (nr),
and spelling (name). It should be noted that symbols of different categories are numbered
separately.

After the article is parsed, the formats are collected in .frx files. Each format is
represented by kind, format number (nr), symbol number (symbolnr, computable from .dcx),
number of visible arguments (argnr), including the number of left arguments (leftargnr).
The number of right arguments can obviously be computed as the difference between the
values of argnr and leftargnr. Notably, the numbering is continuous here, i.e. it is common
to all kinds of definitions introducing the formats. Moreover, it should be noted that not all
definitions introduce new formats – if the notation signatures are repeated, only one copy
of the format is collected. Specific binding force of operations (if different from the default
value) is also included in the format files, but it is not used to distinguish between formats.

The internal constructor descriptions are scattered across two files. Firstly, constructors
imported from the database are collected in .aco files which consist of two sections. The first
section, marked with the <SignatureWithCounts> element, contains incremental sums of

C. Byliński, A. Korniłowicz, and A. Naumowicz 11:5

constructors added by successive files imported from the database. By performing appropriate
calculations on these sums, it is possible to reconstruct the name of the article and the number
of the definition introducing a given constructor in later procedures. That section is followed
by a list with descriptions of all imported constructors. Such a description contains a number
of attributes representing the constructor’s category (kind), the name of the article (aid)
in which the constructor was introduced, the number (nr) in this article, and the relative
number (relnr) of a given constructor in relation to all constructors available in a given
article, the types of arguments, result types, and the indication whether a given constructor
introduces any property. Constructors are numbered in their respective categories, i.e., mode
constructors separately from predicate constructors, and so on. Constructors of concepts
introduced in a given article are collected in .xml files. Their descriptions are consistent
with those of imported constructors.

The most extensive description of defined objects is represented by patterns. Patterns
imported from the database are stored in .eno files and their content is based on the following
attributes:

kind – category of the pattern
nr – number within one imported file
aid – imported article file name
formatnr – number of used format
constrkind – kind of used constructor
constrnr – number of used constructor
relnr – relative number w.r.t. a category

With the new ESM language representation, newly defined patterns are stored by the verifier
in .esx files (in previous releases of the Mizar system, they were stored in .xml files). Their
extended description is based on the following attributes:

spelling – spelling of the token (retrieved from the format)
position – position of the token
formatdes – description of used format (retrieved from the format)
formatnr – number of used format
patternnr – number of the pattern within a category w.r.t. the environment
absolutepatternMMLId – unique identifier of the pattern w.r.t. the whole MML, but
within a pattern category, e.g., “FUNCT_2:4” where FUNCT_2 is an MML article
identifier
origpatternnr – number of the original (being redefined) pattern within a category
w.r.t. the environment in redefinitions
absoluteorigpatternMMLId – unique identifier of the original (being redefined) pattern
w.r.t. the whole MML, but within groups, in redefinitions
constr – category (kind) and number of the constructor w.r.t. the environment, e.g.,
“V4” where V represents the category of adjectives
absoluteconstrMMLId – unique identifier of the constructor w.r.t. the whole MML, but
within a given category
origconstrnr – number of the original (being redefined) constructor w.r.t. the environ-
ment in redefinitions
absoluteorigconstrMMLId – unique identifier of the original (being redefined) con-
structor w.r.t. the whole MML, but within a given category, in redefinitions.

To summarize, Table 2 shows the location of definition-related data in Mizar resource files.

ITP 2021

11:6 Syntactic-Semantic Form of Mizar Articles

Table 2 Location of definitional data in resource files.

Resource Imported Defined
symbol .dcx .dcx
format .frx .frx
constructor .aco .xml
pattern .eno .xml (also .esx)

Below we present a series of snippets of Mizar code and corresponding ESM representations
(underlined attributes with values in bold face extend the information inherited from WSM
and MSM formats). We start with a definition of the first projection (selecting first elements
of contained pairs). This operation defined for an arbitrary set in the MML article XTUPLE_0
is presented in Listing 1.

Listing 1 Definition of the first projection

definition
let X be set;
func proj1 X −> set means

:: XTUPLE_0:def 12
x in it iff ex y st [x,y] in X;
correctness;

end;

The underlying ESM representation of the definition is given in Listing 2. The Standard-
Type element within Loci-Declaration corresponds to the type of the argument, i.e. “set”
introduced in the MML article HIDDEN. Moreover, the Type-Specification element indicates
that in this general context the result type of the operation is also a set.

Listing 2 ESM representation of the first projection (definiens is elided)

<Block kind="Definitional−Block" position="192\10" endposition="202\3">
<Item kind="Loci−Declaration" position="193\5" endposition="193\14">
<Loci−Declaration>
<Qualified−Segments>
<Explicitly−Qualified−Segment position="193\7">
<Variables>
<Variable idnr="25" spelling="X" position="193\7" kind="Constant"
serialnr="54" varnr="1"/>

</Variables>
<Standard−Type nr="1" formatnr="3" patternnr="2" absolutepatternMMLId="HIDDEN:2"

spelling="set" sort="Mode" constrnr="2" absoluteconstrMMLId="HIDDEN:2"
originalnr="0" position="193\14">

<Arguments/>
</Standard−Type>

</Explicitly−Qualified−Segment>
</Qualified−Segments>

</Loci−Declaration>
</Item>
<Item kind="Functor−Definition" position="194\6" endposition="197\32">
<Functor−Definition MMLId="XTUPLE_0:12">
<Redefine occurs="false"/>

C. Byliński, A. Korniłowicz, and A. Naumowicz 11:7

<InfixFunctor−Pattern formatdes="O43[0(1)1]" formatnr="37" spelling="proj1"
position="194\12" patternnr="21" absolutepatternMMLId="XTUPLE_0:12" constr="K18"
absoluteconstrMMLId="XTUPLE_0:9" origconstrnr="0">
<Loci/>
<Loci>
<Locus idnr="25" varidkind="Identifier" spelling="X" position="193\7" origin="Constant"
kind="Constant" serialnr="54" varnr="1"/>

</Loci>
</InfixFunctor−Pattern>
<Type−Specification>
<Standard−Type nr="1" formatnr="3" patternnr="2" absolutepatternMMLId="HIDDEN:2"
spelling="set" sort="Mode" constrnr="2" absoluteconstrMMLId="HIDDEN:2" originalnr="0"
position="198\21">
<Arguments/>

</Standard−Type>
</Type−Specification>
<Definiens>...</Definiens>

</Block>

Then, if we consider a relation, then it is more natural to call this projection the domain
of the relation. Hence, as in the article RELAT_1, we can introduce a convenient synonym for
this operation (for the same constructor) under the assumption that the argument is of the
relation type:

Listing 3 Domain as a synonym for the first projection

notation :: RELAT_1
let R be Relation;
synonym dom R for proj1 R;

end;

Listing 4 ESM representation of the domain

<Block kind="Notation−Block" position="103\8" endposition="106\3">
<Item kind="Loci−Declaration" position="104\5" endposition="104\19">
<Loci−Declaration>
<Qualified−Segments>
<Explicitly−Qualified−Segment position="104\7">
<Variables>
<Variable idnr="29" spelling="R" position="104\7"

kind="Constant" serialnr="31" varnr="1"/>
</Variables>
<Standard−Type nr="5" formatnr="44" patternnr="6" position="104\19"
spelling="Relation" sort="Expandable−Type" absolutepatternMMLId="RELAT_1:1">
<Arguments/>

</Standard−Type>
</Explicitly−Qualified−Segment>

</Qualified−Segments>
</Loci−Declaration>
</Item>
<Item kind="Func−Synonym" position="105\13" endposition="105\27">
<Func−Synonym>
<InfixFunctor−Pattern formatdes="O12[0(1)1]" formatnr="45" spelling="dom"

ITP 2021

11:8 Syntactic-Semantic Form of Mizar Articles

origpatternnr="16" absoluteorigpatternMMLId="XTUPLE_0:12" patternnr="27"
absolutepatternMMLId="RELAT_1:1" constr="K32"
absoluteconstrMMLId="XTUPLE_0:9" origconstrnr="0" position="105\13">
<Loci/>
<Loci>
<Locus idnr="29" varidkind="Identifier" spelling="R" position="104\7" origin="Constant"
kind="Constant" serialnr="31" varnr="1"/>

</Loci>
</InfixFunctor−Pattern>

Finally, when the relation happens to be defined on a given set X, we may use this
information as in the article RELSET_1 to redefine the domain with a more specific result
type, i.e. a subset of X (this creates a new constructor):

Listing 5 Redefinition of the domain

definition :: RELSET_1
let X be set;
let R be X−defined Relation;
redefine func dom R −> Subset of X;

end;

Listing 6 Excerpt from ESM representation of the redefinition

<Functor−Definition>
<Redefine occurs="true"/>
<InfixFunctor−Pattern formatdes="O2[0(1)1]" formatnr="45" spelling="dom" position="113\18"
origpatternnr="23" absoluteorigpatternMMLId="RELAT_1:1" patternnr="35"
absolutepatternMMLId="RELSET_1:1" constr="K48"
absoluteconstrMMLId="RELSET_1:1" origconstrnr="42"
absoluteorigconstrMMLId="XTUPLE_0:9">
<Loci/>
<Loci>
<Locus idnr="22" varidkind="Identifier" spelling="R" position="112\23" origin="Constant"
kind="Constant" serialnr="40" varnr="2"/>

</Loci>
</InfixFunctor−Pattern>
<Type−Specification>
<Standard−Type nr="5" formatnr="34" patternnr="4" position="113\30"
spelling="Subset" sort="Expandable−Type" absolutepatternMMLId="SUBSET_1:2">
<Arguments>
<Simple−Term idnr="11" spelling="X" position="113\35" origin="ReservedVar"
sort="Constant" serialnr="3" varnr="1"/>

</Arguments>
</Standard−Type>

</Type−Specification>

Thanks to the absolute references provided within the ESM format it is possible to easily
distinguish the two notions represented by different constructors (absoluteconstrMMLId =
"XTUPLE_0:9" and absoluteconstrMMLId = "RELSET_1:1”) and three different patterns
(absolutepatternMMLId = "XTUPLE_0:12", absolutepatternMMLId = "RELAT_1:1" and
absolutepatternMMLId = "RELSET_1:1") used when applying this operation in various
contexts.

C. Byliński, A. Korniłowicz, and A. Naumowicz 11:9

2.3 Decoding Mizar definitions
All the available internal formats may still be used for specific tasks related to processing
Mizar articles. However, in many cases the implementation may significantly benefit from
utilizing the ESM format. The potential transition requires understanding both the formerly
used data structures and the new ESM capabilities. For example, in order to demonstrate
how the use of ESM facilitates the unique identification of all components of formulas, let us
first analyze the formula A c= A \/ B using only its XML representation:

.xml file .aco file

<Pred kind="R" nr="3" pid="4">
<Var nr="1"/>
<Func kind="K" nr="6" pid="16">
<Var nr="1"/>
<Var nr="2"/>
</Func>
</Pred>

<SignatureWithCounts>
<ConstrCounts name="HIDDEN">
<ConstrCount kind="M" nr="2"/>
<ConstrCount kind="R" nr="2"/>
</ConstrCounts>
<ConstrCounts name="TARSKI">
<ConstrCount kind="M" nr="2"/>
<ConstrCount kind="R" nr="5"/>
<ConstrCount kind="K" nr="4"/>
</ConstrCounts>
<ConstrCounts name="XBOOLE_0">
<ConstrCount kind="M" nr="2"/>
<ConstrCount kind="V" nr="1"/>
<ConstrCount kind="R" nr="8"/>
<ConstrCount kind="K" nr="9"/>
</ConstrCounts>

To identify which inclusion and which union are used in the formula, the following steps
should be done:

1. From values kind="R" and constructor number nr="3" and content of .aco file we
can conclude that the inclusion is the first predicate in TARSKI article (numeral 3 is
bigger than 2 in the line <ConstrCount kind="R" nr="2"/> and lower than 5 in the line
<ConstrCount kind="R" nr="5"/>).

2. From values kind="R" and pattern number pid="4" and the line:
<Pattern kind="R" nr="1" aid="TARSKI" formatnr="7"

constrkind="R" constrnr="3" relnr="4">
of .eno file (pid="4" = relnr="4") we know the format number formatnr="7".

3. From values kind="R" and formatnr="7" and the line:
<Format kind="R" nr="7" symbolnr="4" argnr="2" leftargnr="1"/>
of .frx file (formatnr="7" = nr="7") we know the number of used symbol symbolnr="4",
and we know that the predicate has two arguments (argnr="2") and arguments are
placed as one on the left side of the symbol (leftargnr="1") and one on the right side
of the symbol.

4. From kind="R" and symbolnr="4" and the line:
<Symbol kind="R" nr="4" name="c="/> of .dcx file (symbolnr="4" = nr="4") we con-
clude that c= is used as a symbol of the relation (name="c=").

5. Similar reasoning can be done about the operation coded as kind="K" and nr="6" .

And when we look at the corresponding piece of the .esx file:

ITP 2021

11:10 Syntactic-Semantic Form of Mizar Articles

Table 3 XML elements of basic concepts.

Terms Types Formulas
Aggregate-Term Clustered-Type Biconditional-Formula
Circumfix-Term ReservedDscr-Type Conditional-Formula

Forgetful-Functor-Term Standard-Type Conjunctive-Formula
Fraenkel-Term Struct-Type Disjunctive-Formula

Global-Choice-Term Existential-Quantifier-Formula
Infix-Term FlexaryConjunctive-Formula

Internal-Selector-Term FlexaryDisjunctive-Formula
Numeral-Term Multi-Attributive-Formula

Placeholder-Term Multi-Relation-Formula
Private-Functor-Term Negated-Formula

Qualification-Term Private-Predicate-Formula
Selector-Term Qualifying-Formula

Simple-Fraenkel-Term Relation-Formula
Simple-Term RightSideOf-Relation-Formula

it-Term Universal-Quantifier-Formula

Listing 7

<Relation−Formula nr="4" formatnr="7" patternnr="4" absolutepatternMMLId="TARSKI:1"
leftargscount="1" spelling="c=" sort="Relation−Formula" constrnr="3"
absoluteconstrMMLId="TARSKI:1" originalnr="0" position="11\4">

<Arguments>
<Simple−Term idnr="4" spelling="A" position="11\1" origin="ReservedVar"

sort="BoundVar" serialnr="1" varnr="1"/>
<Infix−Term nr="17" formatnr="37" patternnr="16" absolutepatternMMLId="XBOOLE_0:2"

leftargscount="1" spelling="\/" sort="Functor−Term" constrnr="6"
absoluteconstrMMLId="XBOOLE_0:2" originalnr="0" position="11\9">

<Arguments>
<Simple−Term idnr="4" spelling="A" position="11\6" origin="ReservedVar"

sort="BoundVar" serialnr="1" varnr="1"/>
<Simple−Term idnr="5" spelling="B" position="11\11" origin="ReservedVar"

sort="BoundVar" serialnr="2" varnr="2"/>
</Arguments>

</Infix−Term>
</Arguments>

</Relation−Formula>

we can see that all this information is accessible in one place and no extra computations are
required to identify used notions.

3 Main ESM grammar items

In this section we show a selection of ESM grammar items and examples of corresponding
Mizar code. Presented data types are specifically related to the extension with respect to
earlier WSM and MSM representations. Table 3 lists the names of all possible basic formula,
type and term kinds now shared by all strict Mizar formats.

All various Mizar term categories are presented in Table 4 with examples of their
applicability. Four possible basic Mizar type variants are represented as elements listed in
Table 5, while Table 6 presents available formula categories, respectively.

C. Byliński, A. Korniłowicz, and A. Naumowicz 11:11

Table 4 XML elements of terms with examples.

Term Description Example
Aggregate-Term tuple structure ZeroStr(#A,a#)
Circumfix-Term bracketed term [:A,B:]

Forgetful-Functor-Term sub-tuple structure the ZeroStr of Gr
Fraenkel-Term Fraenkel operator {n where n is Nat:

n is odd}
Global-Choice-Term global-choice operator the set

Infix-Term standard term A \/ B
Internal-Selector-Term structure selector (inside its definition) the carrier

Numeral-Term numeral 1
Placeholder-Term argument of private definitions $1

Private-Functor-Term private functor (deffunc) F(1)
Qualification-Term type-cast operator 1 qua Element of REAL

Selector-Term structure selector (with argument) the carrier of Gr
Simple-Fraenkel-Term Fraenkel operator the set of all n

where n is Nat
Simple-Term constant a

it-Term definiendum representation it

Table 5 XML elements of types with examples.

Types Description Example
Clustered-Type type with adjectives finite set

ReservedDscr-Type dependent type in reservations Element of V
Standard-Type standard type object

Struct-Type structural type 1-sorted

3.1 Structures
Comparing to the information previously stored in WSM, the description of defined structures
is significantly extended. Let us consider the following structure definition as an example.

reserve S1,S2 for 1-sorted;

definition
let S1;
let S2 be 1-sorted;
struct (ModuleStr over S1, RightModStr over S2) BiModStr over S1,S2
(#

carrier -> set,
addF, multF -> BinOp of the carrier,
ZeroF, OneF -> Element of the carrier,
lmult -> Function of [:the carrier of S1, the carrier:], the carrier,
rmult -> Function of [:the carrier, the carrier of S2:], the carrier

#);
end;

The same definition with annotations from corresponding pieces of .esx file may look
like this:

ITP 2021

11:12 Syntactic-Semantic Form of Mizar Articles

Table 6 XML elements of formulas with examples.

Formulas Description Example
Biconditional-Formula equivalence iff
Conditional-Formula implication implies
Conjunctive-Formula conjunction &
Disjunctive-Formula disjunction or

Existential-Quantifier-Formula existentially quantified formula ex x st P[x]
FlexaryConjunctive-Formula flexary conjunctive & ... &
FlexaryDisjunctive-Formula flexary disjunction or ... or
Multi-Attributive-Formula attributive formula {} is empty

Multi-Relation-Formula chain formula A c= B c= C
Negated-Formula negation not

Private-Predicate-Formula private predicate (defpred) P[set,Nat]
Qualifying-Formula explicit type qualification 1 is object
Relation-Formula standard formula 1 <= 2

RightSideOf-Relation-Formula tail of chain formula c= C
Universal-Quantifier-Formula universally quantified formula for x holds P[x]

definition
let S1;

:: <Loci-Declaration> / <Qualified-Segments> / <Implicitly-Qualified-Segment>
let S2 be 1-sorted;

:: <Loci-Declaration> / <Qualified-Segments> / <Explicitly-Qualified-Segment>
struct
(ModuleStr over S1, RightModStr over S2) :: <Structure-Definition> / <Ancestors>
BiModStr :: <Structure-Pattern>
over S1,S2 :: <Structure-Pattern> / <Loci>
(# :: <Field-Segments>
carrier :: <Field-Segment> / <Selectors>
->
set, :: <Field-Segment> / <Standard-Type>
addF, multF :: <Field-Segment> / <Selectors>
->
BinOp of the carrier, :: <Field-Segment> / <Standard-Type>
ZeroF, OneF -> Element of the carrier,
lmult -> Function of [:the carrier of S1, the carrier:], the carrier,
rmult -> Function of [:the carrier, the carrier of S2:], the carrier
#);

end;

Apart from the representation of visible syntactic elements, the XML data structure of
ESM now contains the following extra elements enclosed within the <Structure-Patterns-
Rendering> container.

1. <AggregateFunctor-Pattern> representing the patterns for tuple terms encoded as
<Aggregate-Term>. Aggregates represent concrete full structures. For example rings of
integers with addition and multiplication as ring operations.

2. <ForgetfulFunctor-Pattern> representing the patterns for substructure terms
<Forgetful-Functor-Term>. Forgetful terms can represent full structures or substruc-
tures which are ancestors (direct or indirect) of the structure, for example the 1-sorted
of B is an indirect and the ModuleStr of B is a direct ancestor of some B of type
BiModStr.

C. Byliński, A. Korniłowicz, and A. Naumowicz 11:13

3. <Strict-Pattern> defining a special adjective strict. For example a ring is not a strict
group, because it contains more selectors than those of a group. strict is generated
automatically when a definition of a structure occurs. Regular adjectives, like empty,
finite, etc. must be defined within regular definitional blocks.

4. <Selectors-List> / <SelectorFunctor-Pattern> representing the patterns of terms
of the category encoded as <Selector-Term> Selector terms represent one field of a given
structure, for example the carrier of B.

4 Applications

The proposed representation format is intended to facilitate various applications based on
Mizar formalizations. Its validity and completeness has been initially tested and demonstrated
with a collection of HTML files generated from Mizar source files allowing precise browsing
through the library and exploring semantic links between notions. Another natural applica-
tion of the extended ESM representation is in the system used by the journal Formalized
Mathematics (FM)2.

4.1 Linked Mizar Mathematical Library
As Mizar articles in the MML library had been continuously revised while Formalized
Mathematics published their state at the time of the publication, an electronic counterpart
of FM, called Journal of Formalized Mathematics (JFM), was developed in 1995 with the
intention of representing the updated MML. The project initially funded by the ONR
Grant N00014-95-1-1336 Automated hyper-linking in an electronic mathematical proof-check
journal 3 continued till 2004. A central part of the project was a collection of HTML files
generated from Mizar source files which offered users intuitive browsing through the library
and exploring the inter-linked notions. After introducing in 2004 the internal XML-based
format (.xml files) representing the result of the Mizar verifier’s analyser pass, J. Urban used
it to re-implement the HTML4 linking part of JFM using XSL and extending the original
format with useful extra functionality, e.g. rendering of complete proofs. Since then, the
technology was frequently used by various external systems based on the MML semantic
connections and linking (c.f. [3, 19, 16, 1, 11, 13]).

It should be noted that Urban’s HTML rendering of Mizar articles is enriched with
various elements invisible in the content of the original Mizar texts, and generated during the
verification, such as: definitional theorems (the internal representation of definitions in the
form of equivalence theorems) or expanded attribute clusters (sets of attributes appearing in
the text extended with automatically calculated consequences based on registrations available
in the environment). The representation thus realized is therefore richer than the content
of the article seen at the level of the Mizar text. However, generating HTML documents
on the basis of .xml files involves the necessity of multiple “recalculations” of numerical
representations of objects (formats, patterns or constructors). It also loses the original
structure of logical formulas as a result of translating these formulas into semantic correlates
needed by the checker or expanding local variables introduced with the set construct).

2 ISSN 1426-2630 (Print), eISSN 1898-9934 (Online), http://fm.mizar.org
3 https://apps.dtic.mil/dtic/tr/fulltext/u2/a322951.pdf
4 Available on-line at http://mizar.uwb.edu.pl/version/current/html/

ITP 2021

http://fm.mizar.org
https://apps.dtic.mil/dtic/tr/fulltext/u2/a322951.pdf
http://mizar.uwb.edu.pl/version/current/html/

11:14 Syntactic-Semantic Form of Mizar Articles

Table 7 Examples of link anchor names.

kind name
attribute #articlename_V1_P1
predicate #articlename_R1_P1
functor #articlename_K1_P1

expandable mode #articlename_ME1_P1
regular mode #articlename_M1_P1

selector #articlename_U1_P1
aggregate #articlename_G1_P1
structure #articlename_L1_P1

theorem #ARTICLENAME:1
definition #ARTICLENAME:def1
scheme #ARTICLENAME:sch1

local reference #Lab_S1_L1
local predicate #PrP_S1_V1
local functor #PrF_S1_V1

The potential utility of our new ESM syntactic-semantic format (.esx files) can also
be demonstrated by a similar collection of hyper-linked Mizar articles (see Supplementary
Material). In comparison to the representation generated and partially reconstructed from
the .xml files, it is now possible to render the semantic connections between linked notions
and at the same preserve the original syntactic structure of the underlying Mizar text.

The ready-available information was used to implement a system of links (anchor names)
for the definitions of:

all basic concepts, i.e. predicates, adjectives, types, operations and structures
local predicates and local functors,
local labels and references to external statements, definitions, and schemas.

The links from concepts to their definitions consist of: the ID of the article in which the
term was defined, concept type (V, R, M, K, O, L, G, U), constructor number of a given
concept and the pattern number of a given concept preceded by the letter P. Table 7 presents
the details of the link naming convention used.

As an example, let us look at the representation of the adjective odd defined as the
antonym of even in the article abian.miz. odd is represented as abian_V1_P2. We can see
the difference between the constructor number (1) and the pattern number (2). It results
from the fact that antonyms generate a new pattern, and do not generate a new constructor
(antonyms inherit the constructor numbers of the originals).

Links to local predicates consist of the PrP prefix, a serial number preceded by S and
the current predicate number available in the given reasoning block preceded by V. Links to
local functors have the same structure but with the PrF prefix. Finally, links to local labels
use the prefix Lab.

References to theorems, definitions, and schemes consist of the article identifier from
which the item is derived and the corresponding number preceded by def for a definition or
sch for a scheme.

Considering the redefinition of a relation’s domain described in Section 2.1, we may
see its rendering at http://alioth.uwb.edu.pl/~artur/mmlesx/relset_1.html#relset_
1_K1_P1 with a link to the synonymous notion being redefined at http://alioth.uwb.

http://alioth.uwb.edu.pl/~artur/mmlesx/relset_1.html#relset_1_K1_P1
http://alioth.uwb.edu.pl/~artur/mmlesx/relset_1.html#relset_1_K1_P1
http://alioth.uwb.edu.pl/~artur/mmlesx/relat_1.html#xtuple_0_K9_P1

C. Byliński, A. Korniłowicz, and A. Naumowicz 11:15

edu.pl/~artur/mmlesx/relat_1.html#xtuple_0_K9_P1. The internal XML-based HTML
representation at http://mizar.uwb.edu.pl/version/current/html/relset_1.html#K1
lacks this syntactic information and offers only a link to the original constructor (http:
//mizar.uwb.edu.pl/version/current/html/xtuple_0.html#K9).

The system of links can be further extended e.g. with references to the origin of constants,
quantified variables, scheme variables etc. Please note that although the aim of the project
was to reproduce the text of the Mizar articles as faithfully as possible, the differences in the
use of spaces, line breaks or brackets are currently disregarded. Accurate reproduction of
these aspects would require more purely textual information generated by the Mizar parser
to be recorded and stored in .wsx files.

4.2 Formalized Mathematics
Formalized Mathematics (FM) publishes papers based on regular Mizar formalizations
accepted for inclusion into the Mizar Mathematical Library following a round of human
peer-review. After acceptance, the underlying Mizar scripts are automatically translated
into a LATEX format [2] and the resulting generated natural language (English) texts become
available as traditional mathematical papers downloadable as PDF files. The current
implementation the of software responsible for the translation is based on a number of XSLT
style-sheets which convert .wsx files representing parse-trees of given Mizar articles into
a series of XML files containing human readable meta-text with increasing level of semantic
detail [6]. As the original Mizar scripts are plain text files encoded with standard ASCII,
traditional mathematical symbols like ∪, Σ, or

∫
cannot be directly used in Mizar texts.

To render them in the LATEX documents, authors of Mizar formalizations can propose their
preferred translation patterns to FM editors. These patterns allow changing formal and often
technical-looking Mizar statements into more natural representation resembling standard
mathematical notation using traditional symbols or a fixed placement and order of arguments.
Sometimes these patterns become more complex, e.g. in the case of matrices, where the
translation needs a special language construct rather than a simple symbolic replacement.

The current FM translation method based primarily on the .wsx files has the downside
that some different notions introduced in the Mizar script are indistinguishable without special
processing by more advanced modules of the Mizar verifier. For example, the multiplication
of complex numbers and the multiplication of elements of a ring, when they both are written
as infix operations utilizing the same symbol. Such shortcomings are overcome by the
richer information present in the new proposed ESM format. The corresponding new .esx
representations look like this:

Listing 8

<Functor−Definition MMLId="E1:1">
<InfixFunctor−Pattern formatdes="O43[1(2)1]" formatnr="80" spelling="∗"

position="24\9" patternnr="224" absolutepatternMMLId="E1:2" constr="K465"
absoluteconstrMMLId="E1:1" origconstrnr="0">

Listing 9

<Functor−Definition MMLId="E1:2">
<InfixFunctor−Pattern formatdes="O43[1(2)1]" formatnr="80" spelling="∗"

position="33\9" patternnr="225" absolutepatternMMLId="E1:3" constr="K466"
absoluteconstrMMLId="E1:2" origconstrnr="0">

ITP 2021

http://alioth.uwb.edu.pl/~artur/mmlesx/relat_1.html#xtuple_0_K9_P1
http://mizar.uwb.edu.pl/version/current/html/relset_1.html#K1
http://mizar.uwb.edu.pl/version/current/html/xtuple_0.html#K9
http://mizar.uwb.edu.pl/version/current/html/xtuple_0.html#K9

11:16 Syntactic-Semantic Form of Mizar Articles

We can observe that both operations have the same formatnr="80", but they can now
be uniquely identified by values of the patternnr and constr attributes. Consequently, the
future FM representations of Mizar articles can be improved accordingly once the translation
is based on patterns rather than formats.

5 Conclusions

In this paper we announced the existence of an extended XML-based data format simplifying
the access to mathematical notions formalized in Mizar and available as part of the Mizar
Mathematical Library, called Even more Strict Mizar (ESM). It is designed to combine and
provide an easy access to both syntactic and semantic data of the underlying Mizar scripts.
The extra information should allow creating various applications of the Mizar library requiring
fullest possible information to be retrieved from the formalization files, especially using
external general-purpose XML processing libraries (e.g. dom4j5 or RapidXml6). Additionally,
the work on the new language helped to analyze and improve the structure of already existing
Mizar XML file formats (WSM and MSM).

References
1 Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise

selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning,
52(2):191–213, 2014. doi:10.1007/s10817-013-9286-5.

2 Grzegorz Bancerek. Automatic translation in Formalized Mathematics. Mechanized Mathem-
atics and Its Applications, 5(2):19–31, December 2006.

3 Grzegorz Bancerek. Information retrieval and rendering with MML query. In Jonathan
Borwein and William Farmer, editors, Mathematical Knowledge Management, volume 4108
of Lecture Notes in Computer Science, pages 266–279. Springer Berlin Heidelberg, 2006.
doi:10.1007/11812289_21.

4 Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman
Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, June
2018. doi:10.1007/s10817-017-9440-6.

5 Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman
Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art
and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and
Volker Sorge, editors, Intelligent Computer Mathematics – International Conference, CICM
2015, Washington, DC, USA, July 13–17, 2015, Proceedings, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer, 2015. doi:10.1007/978-3-319-20615-8_17.

6 Grzegorz Bancerek, Adam Naumowicz, and Josef Urban. System description: XSL-based
translator of Mizar to LaTeX. In Florian Rabe, William M. Farmer, Grant O. Passmore, and
Abdou Youssef, editors, Intelligent Computer Mathematics – 11th International Conference,
CICM 2018, Hagenberg, Austria, August 13–17, 2018, Proceedings, volume 11006 of Lecture
Notes in Computer Science, pages 1–6. Springer, 2018. doi:10.1007/978-3-319-96812-4_1.

7 Czesław Byliński and Jesse Alama. New developments in parsing Mizar. In Johan Jeuring,
John A. Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and
Volker Sorge, editors, Intelligent Computer Mathematics 11th International Conference, AISC
2012, 19th Symposium, Calculemus 2012, 5th International Workshop, DML 2012, 11th

5 https://dom4j.github.io/
6 http://rapidxml.sourceforge.net/

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/11812289_21
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-319-96812-4_1
https://dom4j.github.io/
http://rapidxml.sourceforge.net/

C. Byliński, A. Korniłowicz, and A. Naumowicz 11:17

International Conference, MKM 2012, Systems and Projects, volume 7362 of Lecture Notes
in Artificial Intelligence, pages 427–431. Springer-Verlag, Berlin, Heidelberg, 2012. doi:
10.1007/978-3-642-31374-5_30.

8 Ingo Dahn. Interpretation of a Mizar-like logic in first-order logic. In Ricardo Caferra and
Gernot Salzer, editors, FTP (LNCS Selection), volume 1761 of Lecture Notes in Computer
Science, pages 137–151. Springer, 1998. doi:10.1007/3-540-46508-1_9.

9 Mihnea Iancu, Michael Kohlhase, Florian Rabe, and Josef Urban. The Mizar Mathematical
Library in OMDoc: Translation and applications. Journal of Automated Reasoning, 50(2):191–
202, February 2013. doi:10.1007/s10817-012-9271-4.

10 Cezary Kaliszyk and Karol Pąk. Isabelle import infrastructure for the Mizar Mathematical
Library. In Florian Rabe, William M. Farmer, Grant O. Passmore, and Abdou Youssef, editors,
Intelligent Computer Mathematics – 11th International Conference, CICM 2018, Hagenberg,
Austria, August 13–17, 2018, Proceedings, volume 11006 of Lecture Notes in Computer Science,
pages 131–146. Springer, 2018. doi:10.1007/978-3-319-96812-4_13.

11 Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. CoRR, abs/1310.2805, 2013. URL:
http://arxiv.org/abs/1310.2805.

12 Roman Matuszewski and Piotr Rudnicki. Mizar: The first 30 years. Mechanized Mathematics
and Its Applications, Special Issue on 30 Years of Mizar, 4(1):3–24, March 2005.

13 Kazuhisa Nakasho. Development of a flexible Mizar tokenizer and parser for information
retrieval system. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors,
Proceedings of the 2019 Federated Conference on Computer Science and Information Systems,
FedCSIS 2019, Leipzig, Germany, September 1–4, 2019, volume 18 of Annals of Computer
Science and Information Systems, pages 77–80, 2019. doi:10.15439/2019F151.

14 Adam Naumowicz and Radosław Piliszek. Accessing the Mizar library with a weakly strict
Mizar parser. In Michael Kohlhase, Moa Johansson, Bruce R. Miller, Leonardo de Moura, and
Frank Wm. Tompa, editors, Intelligent Computer Mathematics – 9th International Conference,
CICM 2016, Bialystok, Poland, July 25–29, 2016, Proceedings, volume 9791 of Lecture Notes
in Computer Science, pages 77–82. Springer, 2016. doi:10.1007/978-3-319-42547-4_6.

15 Karol Pąk. Combining the Syntactic and Semantic Representations of Mizar Proofs. In
Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2018
Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznan,
Poland, September 9–12, 2018, volume 15 of Annals of Computer Science and Information
Systems, pages 145–153. IEEE, 2018. doi:10.15439/2018F248.

16 J. Urban, G. Sutcliffe, S. Trac, and Y. Puzis. Combining Mizar and TPTP Semantic Presenta-
tion and Verification Tools. Studies in Logic, Grammar and Rhetoric, 18(31):121–136, 2009.

17 Josef Urban. XML-izing Mizar: Making semantic processing and presentation of MML easy. In
Michael Kohlhase, editor, Mathematical Knowledge Management, 4th International Conference,
MKM 2005, Bremen, Germany, July 15–17, 2005, Revised Selected Papers, volume 3863 of
Lecture Notes in Computer Science, pages 346–360. Springer, 2005. doi:10.1007/11618027_23.

18 Josef Urban. MizarMode – an integrated proof assistance tool for the Mizar way of formalizing
mathematics. Journal of Applied Logic, 4(4):414–427, 2006.

19 Josef Urban. MoMM – fast interreduction and retrieval in large libraries of formalized
mathematics. Int. J. on Artificial Intelligence Tools, 15(1):109–130, 2006. URL: http:
//ktiml.mff.cuni.cz/~urban/MoMM/momm.ps.

20 Josef Urban, Piotr Rudnicki, and Geoff Sutcliffe. ATP and presentation service for Mizar
formalizations. Journal of Automated Reasoning, 50(2):229–241, February 2013. doi:10.1007/
s10817-012-9269-y.

ITP 2021

https://doi.org/10.1007/978-3-642-31374-5_30
https://doi.org/10.1007/978-3-642-31374-5_30
https://doi.org/10.1007/3-540-46508-1_9
https://doi.org/10.1007/s10817-012-9271-4
https://doi.org/10.1007/978-3-319-96812-4_13
http://arxiv.org/abs/1310.2805
https://doi.org/10.15439/2019F151
https://doi.org/10.1007/978-3-319-42547-4_6
https://doi.org/10.15439/2018F248
https://doi.org/10.1007/11618027_23
http://ktiml.mff.cuni.cz/~urban/MoMM/momm.ps
http://ktiml.mff.cuni.cz/~urban/MoMM/momm.ps
https://doi.org/10.1007/s10817-012-9269-y
https://doi.org/10.1007/s10817-012-9269-y

	1 Introduction
	2 Even more Strict Mizar (ESM)
	2.1 Mizar definitions
	2.2 Intermediate file types
	2.3 Decoding Mizar definitions

	3 Main ESM grammar items
	3.1 Structures

	4 Applications
	4.1 Linked Mizar Mathematical Library
	4.2 Formalized Mathematics

	5 Conclusions

