
A Graphical User Interface Framework for Formal
Verification
Edward W. Ayers !

DPMMS, University of Cambridge, UK

Mateja Jamnik !

Department of Computer Science and Technology, University of Cambridge, UK

W. T. Gowers !

DPMMS, University of Cambridge, UK

Abstract
We present the “ProofWidgets” framework for implementing general user interfaces (UIs) within an
interactive theorem prover. The framework uses web technology and functional reactive programming,
as well as metaprogramming features of advanced interactive theorem proving (ITP) systems to allow
users to create arbitrary interactive UIs for representing the goal state. Users of the framework can
create GUIs declaratively within the ITP’s metaprogramming language, without having to develop
in multiple languages and without coordinated changes across multiple projects, which improves
development time for new designs of UI. The ProofWidgets framework also allows UIs to make
use of the full context of the theorem prover and the specialised libraries that ITPs offer, such as
methods for dealing with expressions and tactics. The framework includes an extensible structured
pretty-printing engine that enables advanced interaction with expressions such as interactive term
rewriting. We exemplify the framework with an implementation for the leanprover-community fork
of Lean 3. The framework is already in use by hundreds of contributors to the Lean mathematical
library.
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1 Introduction

Modern ITP systems such as Isabelle, Coq and Lean use advanced language servers and
protocols to interface with text editors to produce a feature-rich proving experience. These
systems have helpful features such as syntax highlighting and code completion suggestions
as would be found in normal programming language tooling. They additionally include
prover-specific features such as displaying the goal state and providing interactive suggestions
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4:2 A Graphical User Interface Framework for Formal Verification

of tactics to apply in proof construction. ITP offers some additional GUI1 challenges above
what one might find in developing an editor extension for a standard programming language,
because the process of proving is inherently interactive: the user is constantly observing the
goal state of the prover and using this information to inform their next command in the
construction of a proof.

During research into new ways of interacting within Lean 3 theorem prover, we became
frustrated with the development workflow for prototyping GUIs for ITP. Each time the
interface design changes, one needs to coordinate changes across three different codebases;
the Lean core, the VSCode2 editor extension and our project directory. It became clear
that any approach to creating GUIs in which the editor code needs to be aware of the
datatypes used within the ITP metalogic is doomed to require many coordinated changes
across multiple codebases. This inspired our alternative approach; we designed a full-fledged
GUI framework in the metalogic of the ITP itself. This approach has the advantage of
tightening the development loop and has more general use outside of our particular project,
and across different ITP systems in general.

In this paper we present the ProofWidgets framework, which enables implementation of
UIs with a wide variety of features, for example:

Interactive term inspection: the ability to inspect the tree structure of expressions by
hovering the mouse over different parts of a pretty printed expression.
Discoverable tactics: interactive suggestions of available tactics for a given goal.
Discoverable term rewriting: the ability to inspect the equational rewrites at a particular
position in the expression tree.
Custom visualisations of structures like matrices, plots and graphs as well as rendering
LATEX mathematical typesetting.
The ability to implement language features such as go-to-definition for pretty-printed
expressions (as opposed to just text that appears in the editor).

Some of these features have been implemented to an extent within other provers (see
Section 5). However, ProofWidgets provides a unified, underlying framework for implementing
user interfaces in general, which can be used to implement these features in a customisable,
extensible and portable way.

The contributions presented in this paper are:
A new and general framework for creating portable, web-based, graphical UIs within a
theorem prover.
A functional API for creating widgets within the meta-programming framework of a
theorem prover.
An implementation of this framework for the Lean theorem prover.
A new representation of structured expressions for use with widgets.
A description and implementation of a goal-state widget used to interactively show and
explore goal states within the Lean theorem prover.

This paper is structured as follows. In Section 2 we provide an overview of some back-
ground topics to contextualise the work. Section 3 details the design goals and specification
of the ProofWidgets framework. Section 4 presents the ProofWidgets implementation for
Lean 3. Section 5 discusses related approaches. Section 6 is the conclusion and contains
some potential ideas for future work and extensions to the framework.

1 Graphical User Interface
2 Visual Studio Code code.visualstudio.com

code.visualstudio.com
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2 Background

2.1 Web-apps
Web-apps are ubiquitous in modern software. By a web-app, we mean any software that uses
modern browser technology to implement a graphical application. Web-apps are attractive
targets for development because they are platform independent and can be delivered from
a server on the internet using a browser or be packaged as an entirely local app using a
packaging framework such as electron. Many modern desktop and mobile applications such
as VSCode are thinly veiled browser windows.

To summarise the anatomy of a web-app: the structure of a web-page is dictated by a tree
structure called the Document Object Model (DOM). The DOM is an abstract representation
of the tree structure of an XML or HTML document with support for event handling as
might occur as a result of user interaction. The word fragment is used to denote a valid
subtree structure that is not the entire document. So for example, an “HTML fragment” is
used to denote a snippet of HTML that could be embedded within an HTML document.
With the help of a CSS style sheet, the web browser paints this DOM to the screen in a
way that can be viewed and interacted with by a user. Through the use of JavaScript and
event handlers, a webpage may manipulate its own DOM in response to events to produce
interactive web-applications. Modern browsers support W3C standards for many advanced
features: video playback, support for touch and ink input methods, drag and drop, animation,
3D rendering and many more. HTML also has a set of widely supported accessibility features
called ARIA which can be used to ensure that apps are accessible to all. The power of
web-apps to create portable, fully interactive user interfaces has clear applications for ITP
and indeed many have already been created (see Section 5 for a review).

2.2 Code editors and client-server protocols
Some modern code editors such as Atom and VSCode are built using web technology. In
order to support tooling features such as go-to-definition and hover information, these editors
act as the client in a client/server relationship with an independently running language server.
As the user modifies the code in the client editor, the client communicates with the server:
notifying it when the document changes and sending requests for specific information based
on the user’s interactions. As noted in the introduction, in ITP this communication is more
elaborate than in a normal programming language.

The most important thing to note here is that changing the communication protocol
between the client and the server is generally hard, because the developer has to update the
protocol in both the server and the client. There may even be multiple clients. This makes
it difficult to quickly iterate on new UI designs. A way of solving this protocol problem is to
offer a much tighter integration by combining the codebases for the editor and the ITP. This
is the approach taken by Isabelle/PIDE/jEdit [21] and has its own trade-offs as discussed
further in Section 5.

2.3 Functional GUI frameworks
Most meta-level programming languages for ITPs are functional programming languages.3
However GUIs are inherently mutable objects that need to react to user interaction. Reactive
programming [1] enables the control of the inherently mutating GUI within a pure functional

3 ML and Scala for Isabelle, OCaml for Coq, Lean for Lean.
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programming interface.4 The ideas of reactive programming have achieved a wide level
of adoption in web-app development thanks to the React JavaScript library and the Elm
programming language [6].

The programming model used by these reactive frameworks is to model a user interface
as a pure view function from a data source (e.g., a shopping list) to a DOM tree and an
update function for converting user input events to a new version of the data (e.g., adding
an item to the shopping list). Once the update function is applied and the data has been
updated, the system reevaluates the view function on the new data and mutates the DOM to
update. Although this may sound inefficient - recomputing the entire tree each time - there
is an optimisation available: if the view function contains nested view functions, one can
memoise these functions and avoid updating the parts of the DOM that have not changed.

A performance bottleneck in web-apps is the layout and painting stages of the browser
rendering pipeline; the process by which the abstract DOM is converted to pixels on a
screen.5 One way to reduce the processing time spent on layout and painting is to minimise
the number of changes made to the DOM. Both Elm and React achieve this through use of
a “Virtual DOM” (VDOM). This is where a shadow tree isomorphic to the DOM is kept.
When the data updates, the view function creates a new VDOM tree. This tree is then diffed
with the previous VDOM tree to produce a minimal set of changes to the real DOM. In
React, this diffing algorithm is called reconciliation.6

2.4 Lean
Lean [8] is an interactive theorem prover whose underlying logic is a dependent type theory
called the calculus of inductive constructions. Lean verifies the correctness of proofs using
its kernel, which type-checks proof terms (terms whose type is a proposition). Most users
of Lean prove theorems using its tactic language. This language amounts to a sequence
of invocations of the tactic monad, which enables one to write proof scripts in a similar
style to that popularised by the LCF provers [12]. Most notably for our purposes, between
each tactic invocation, Lean stores the goal state at that point, which amounts to a list of
contexts and types that need to be inhabited to complete the proof. This goal state is pretty
printed and sent for viewing in the client editor as plaintext, with some additional formatting
(i.e., syntax highlighting) applied in the client. Lean also allows users to write custom tactic
languages.

3 Framework architecture

The ProofWidgets framework has the following design goals:

Programmers write GUIs using the metaprogramming framework of the ITP.
Programmers are given an API that can produce arbitrary DOM fragments, including
inline CSS styles.
No cross-compilation to JavaScript or WebAssembly: the GUI-generating code must run in
the same environment as the tactic system. This ensures that the user interaction handlers
have full access to the tactic execution context, including the full database of definitions

4 A similar paradigm is that of functional reactive programming (FRP) first invented by Elliot [9]. This is
distinguished from general reactive programming by the explicit modelling of time.

5 See this chromium documentation entry for more information on critical paths in browser rendering.
https://www.chromium.org/developers/the-rendering-critical-path

6 https://reactjs.org/docs/reconciliation.html

https://reactjs.org
https://www.chromium.org/developers/the-rendering-critical-path
https://reactjs.org/docs/reconciliation.html
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and lemmas, as well as all of the metaprogramming library. In a cross-compilation based
approach (implementation difficulty notwithstanding), the UI programmer would have to
choose which parts of this context to export to the client.
To support interactively discoverable tactics, the system needs to be able to command
the client text editor to modify its sourcetext.
The pretty printer must be extended to allow for “interactive expressions”: expressions
whose tree structure may be explored interactively.
Programmers should be able to create visualisations of their data.
It should be convenient for programmers to be able to style their GUIs in a consistent
manner.
The GUI programming model should include some way of managing local UI state, for
example, whether or not a tooltip is open.
The GUI should be presented in the same output panel that the plaintext goal state was
presented in.
The framework should be backwards compatible with the plaintext goal state system.
Users should be able to opt out of the GUI if they do not like it or want to use a non
web-app editor such as Emacs.

These goal specifications led us to design ProofWidgets to use a declarative VDOM-
based architecture similar to that used in the Elm programming language [6] and the React
JavaScript library. By using the same programming model, we can leverage the familiarity
with commonly used React and Elm. In the following subsections we will detail the design of
ProofWidgets, starting with the UI programming model (Section 3.1) and the client/server
protocol (Section 3.2).

3.1 UI programming model
New user interfaces are created using the Html and Component types. A user may define an
HTML fragment by constructing a member of the inductive datatype Html, which is either
an element (e.g., <div></div>), a string or an object called a component to be discussed
shortly.

These fragments can have event handlers attached to them. For example, a button could
have an event attribute onclick (as used in Listing 1) which accepts a handler h : (Unit → α)
sending the unit type to a member of some type α. When this interface is rendered in the
client and the button is clicked, the server is notified and causes the node to “emit” the
element h() : α. The value of h() is then propagated towards the root of the Html tree until
it reaches a component.

A component is an inductive datatype taking two type parameters: π (the props type)
and α (the action type).7 It represents a stateful object in the user interface tree where the
state s : σ can change as a result of a user interaction event. By “stateful” we mean an object
which holds some mutating state for the lifetime of the user interface. Through the use of
components, it is possible to describe the behaviour of this state without having to leave the
immutable world of a pure functional programming language. Three functions determine the
behaviour of the component:

init : π → σ initialises the state.
view : π → σ → Html α maps the state to a VDOM tree.

7 This is designed to be familiar to those who use React components https://reactjs.org/docs/
components-and-props.html.

ITP 2021
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Figure 1 The output rendering of counter created in Listing 1.

update : π → α → σ → σ × Option β is run when a user event is triggered in the
child HTML tree returned by view. The emitted value a : α is used to produce a tuple
σ × Option β consisting of a new state s : σ and optionally, a new event b : β to emit. If
the new event is provided, it will propagate further towards the root of the VDOM tree
and be handled by the next component in the sequence.

For example, a simple counter component (see Listing 1 and Figure 1) has an integer s for
a state, and updating the state is done through clicking on the “increment” and “decrement”
buttons which will emit 1 and −1 when clicked. The values a are used to update the state to
a + s. Creating stateful components in this way has a variety of practical uses when building
user interfaces for inspecting and manipulating the goal state. We will see in Section 4.1 that
a state is used to represent which expression the user has clicked. Indeed, an entire tactic
state can be stored as the state of the component. Then the update function runs various
tactics to update the tactic state and output the new result.

Listing 1 Pseudocode listing showing a simple counter app showcasing statefulness. The output
is shown in Figure 1.
counter : Component Unit Empty
counter := with_state

( init = (p 7→ 0)
, view = (p 7→ i 7→

<div >
<button onclick ={() 7→ 1}>" increment "</ button >
i

<button onclick ={() 7→ −1}>" decrement "</ button >
</div >)

, update = (p 7→ a 7→ s 7→ (a + s, none))
)

3.2 Client/server protocol
Once the programmer has built an interface using the API introduced in Section 3.1, it
needs to be rendered and delivered to the browser output window. ProofWidgets extends the
architecture discussed in Section 2.2 with an additional protocol for controlling the life-cycle
of a user interface rendered in the client editor (Figure 2). When a sourcefile for the prover
is opened (in Figure 2, myfile.lean), the server begins parsing, elaborating and verifying
this sourcefile as usual. The server incrementally annotates the sourcetext as it is processed
and these annotations are stored in memory. The annotations include tracing diagnostics
messages as well as thunks8 of the goal states at various points in a proof. When the user

8 A thunk is a lazily evaluated expression.
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Figure 2 The architecture of the ProofWidgets client/server communication protocol. Arrows
that span the dividing lines between the client and server components are API requests and responses.
The contribution of this paper is present in the section marked “ProofWidgets protocol”. The arrows
crossing the boundary between the client and server applications are sent in the form of JSON
messages. Rightward arrows are requests and leftward arrows are responses.

clicks on a particular piece of sourcecode in the editor (“text cursor move” in Figure 2),
the client makes an info request for this position to the server, which responds with an ok
response containing the logs at that point.

The ProofWidgets protocol extends the info messages to allow the prover to similarly
annotate various points in the document with VDOM trees as introduced in Section 2.3. These
annotating components have the type Component TacticState Empty where TacticState
is the current state of the prover and Empty is the uninhabited type. A default component
for rendering goals of proof scripts is provided, but users may override this with their own
components. The VDOM trees are derived from this component, where the VDOM has the
same tree structure as the Html datatype (i.e., a tree of elements, strings and components),
but the components in the VDOM tree also contain the current state and the current child
subtree of the component. This serves the purpose of storing a model of the current state of
the user interface. These VDOMs can be rendered to HTML fragments that are sent to the
client editor and presented in the editor’s output window.

There are two ways to create a VDOM tree from a component: from scratch using
initialisation or by updating an existing VDOM tree using reconciliation.

ITP 2021



4:8 A Graphical User Interface Framework for Formal Verification

Initialisation is used to create a fresh VDOM tree. To initialise a component, the system
first calls init to produce a new state s. s is fed to the view method to create an Html
tree t. Any child components in t are recursively initialised.

The inputs to reconciliation are an existing VDOM tree v and a new Html tree t. t is
created when the view function is called on a parent component. The goal of reconciliation
is to create a new VDOM tree matching the structure of t, but with the component states
from v transferred over. The tree diffing algorithm that determines whether a state should be
transferred is similar to the React reconciliation algorithm9 and so we will omit a discussion
of the details here. The main point is that when a user interface changes, the states of the
components are preserved to give the illusion of a mutating user interface.

For interaction, the HTML fragment returned from the server may also contain event
handlers. Rather than being calls to JavaScript methods as in a normal web-app, the client
editor intercepts these events and forwards them to the server using a widget_event request.
The server then updates the component according to the event to produce a new Html tree
that is reconciled with the current VDOM tree. The ProofWidgets framework then responds
with the new HTML fragment derived from the new VDOM tree. In order to ensure that
the correct event handler is fired, the client receives a unique identifier for each handler that
is present on the VDOM and returns this identifier upon receiving a user interaction. So, in
effect, the ITP server performs the role of an event handler: processing a user interaction and
then updating the view rendered to the screen accordingly. In addition to updating the view,
the response to a widget_event request may also contain effects. These are commands to
the editor, for example revealing a certain position in the file or inserting text at the cursor
position. Effects are used to implement features such as go-to definition and modifying the
contents of sourcefiles in light of a suggested modification to advance the proof state. If a
second user interaction event occurs while the first is being handled, the server will queue
these events.

The architecture design presented above is a different approach to how existing tools
handle the user interface. It offers a much smaller programming API consisting of Component
and Html and a client/server protocol that supports the operation of arbitrary user interfaces
controlled by the ITP server. Existing tools (Section 5) instead give fixed APIs for interaction
with the ITP, or support rendering of custom HTML without or with limited interactivity.

To implement ProofWidgets for an ITP system, it is necessary to implement the three
subsystems that have been summarised in this section: a programming API for components;
the client editor code (i.e., the VSCode extension) that receives responses from the server
and inserts HTML fragments to the editors output window; and the server code to initialise,
reconcile and render these components.

4 Implementation and applications

In this section, we present the Lean implementation of ProofWidgets and discuss a set of
example widgets for interacting with proof objects.

The VSCode extension for Lean10 has an output pane called the “infoview” (the right-
hand pane in Figure 3) which is configured to use the ProofWidgets protocol. This infoview
window runs as a sandboxed web-browser instance and uses React to manage updating the

9 https://reactjs.org/docs/reconciliation.html
10 https://github.com/leanprover/vscode-lean
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Figure 3 Screenshot showing the interactive expression view in action within the Lean theorem
prover. The left-hand pane is the Lean source document and the right-hand pane is the infoview
showing the context and expected type at the editor’s cursor. There are two nested tooltips; one
giving information about an expression in the infoview and the other on an expression within the
first tooltip. The information that the tooltip provides is customisable, currently showing the type
of the expression and a list of implicit arguments for the given expression.

DOM based on the HTML fragments received from the server. Lean ProofWidgets can also
work over remote proving sessions (where the client editor is running on a different machine
to the ITP server, possibly in another country).

4.1 Interactive Expressions
By “interactive expressions” we mean augmenting a printed expression string with a mapping
structure such that the software can determine the correspondence between substrings and
subexpressions. This mapping can then be used to create interactive term inspectors and
tactics. As will be discussed in Section 5, pretty printing with this additional information
is not a novel feature, however the way in which we have designed it makes these features
available for producing proofs. Richly decorating expressions returned from the prover was
first described by Bertot and Laurent as ’proof by pointing’ [4].

An example of the interactive expression module in action is given in Figure 3: as one
hovers over the various expressions and subexpressions in the infoview, one gets semantically
correct highlighting for the expressions, and when you click on a subexpression, a tooltip
appears containing type information. This tooltip is itself a component and so can also be
interacted with, including opening a nested tooltip.

A number of other features are demonstrated in Figure 3:
Hovering over subterms highlights the appropriate parts of the pretty printed string.
The buttons in the top right of the tooltip activate effects including a “go to definition”
button and a “copy type to clipboard” button.
Expressions within the tooltip can also be explored in a nested tooltip. This is possible
thanks to the state tracking system detailed in Section 3.2.

Note that the Lean editor already has features for displaying type information for the
source document with the help of hover info. However, this tooltip mechanism is only
textual (not interactive) and only works on expressions that have been written in the source
document. Prior to ProofWidgets there was no way to inspect expressions as they appeared
in the infoview.

ITP 2021
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Figure 4 An expression tree for (x ++ y) ++ [1,2] is shown in Figure 4a. Each f or a above the
lines is an expression coordinate. The red [a,a,f,a] example of an expression address, corresponding
to the red line on the tree. Each green circle in the tree will pretty-print to a string independent
of the expression tree above it. Figure 4b shows a eformat tree produced by pretty-printing the
expression (x ++ y) ++ [1,2]. The green circles are eformat.tag constructors and the blue address
text within is the relative address of the tag in relation to the tag above it. So that means that the
full expression address for a subterm can be recovered by concatenating the Addresses above it in
the tree, for example the 2 subexpression is at [] ++ [a] ++ [a,f,a] = [a,a,f,a].

All of the code which dictates the appearance and behaviour of the infoview widget is
written in Lean and reloads dynamically when its code is changed. This means that users
can produce their own custom tooltips and improve upon the infoview experience within
their own Lean project.

In terms of performance, the generality of the ProofWidgets architecture means that it
is possible for the user of the UI to execute long-running calculations or to render a large
VDOM. This would result in creating a sluggish UI. However, for realistic use cases, such
as producing a goal state widget as shown in Figure 3, the system should be responsive.
Using the Chromium developer tools, the round trip time from a mouse pointer movement
to updating the pixels on the screen was measured to be less than 80ms on an Intel i7
laptop from 2012 for a goal state widget with over 1000 VDOM nodes. This means that the
system can easily handle events that need to be responsive without requiring more advanced
hardware requirements than would be needed for ITP without ProofWidgets.

To support interactive expressions, we modified the Lean pretty-printer. Prior to our
modifications, the pretty-printer would take an expression and a context for the expression
and produce a member of the format type. This is implemented as a symbolic expression
or “sexpr” a la LISP [17]. Our modification causes the pretty-printer to instead produce an
instance of eformat. eformat is the same as format except that certain points in the sexpr
tree are tagged with two pieces of information: the subexpression that produced the substring
and an expression address indicating where the subexpression lies in the parent expression.
The expression address is a list of expression coordinates used to reference subterms of an
expression. By expression coordinate, we mean an enum that indexes the recursive arguments
in the constructors for an expression. This is visualised in Figure 4a and Figure 4b. Listing 2
gives a simplified picture of the datatypes used to define expression coordinates and eformat.

The eformat tags act as a reversed source-map between the resulting sexpr and the
original expression. This tagging also works beneath specialised syntax such as lists [1,2,3]
and set comprehensions. This tagged string is used to create ProofWidgets that allow users
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Listing 2 Simplified datatypes to demonstrate expression coordinates and eformat. Here the
simplified expr datatype has four constructors for creating variables, function application, lambda
abstraction and constants. Next, define coordinates coord on expr. Each constructor of coord
corresponds to a different recursive argument in a constructor for expr. An eformat is a string with
structural information present.
inductive expr
| var : string → expr
| app : expr → expr → expr
| lam : string → expr → expr
| const : string → expr

inductive coord
| f | a | lam_body

def address := list coord

inductive eformat
| tag : expr → address → eformat → eformat
| append : eformat → eformat → eformat
| of_string : string → eformat

to interactively inspect various parts of the expression in the infoview. In the case of a
subexpression being below a binder (e.g., in the body of a lambda expression) the pretty
printer instantiates the de-Bruijn [7] variable with a dummy local variable, so the given
subexpression doesn’t contain free de-Bruijn variables and still typechecks without having to
know the binders above the subexpression.

To render an interactive expression, we define a stateful component:11

p : component (tactic_state × expr) empty

The tactic_state object includes some contextual information such as metavariable context
that are needed to print the expression correctly. The state of p includes an optional address
of the expression. When the user hovers over a particular point in the printed eformat, the
expression address corresponding to that part of the string is calculated using the tags and
this address is set as the state of the component. This address is then used to colour in the
portion of the string that is currently hovered over by the user’s mouse cursor which gives
the semantic-aware highlighting effect.

4.2 Use within the Lean community
Our Lean implementation of the ProofWidgets framework has been adopted in to the
leanprover-community fork of Lean 3 and mathlib, Lean’s library of formalised mathemat-
ics [16]. The library is highly active and has hundreds of contributors using the widgets
system12 to render goal states.

11 The sourcecode for this component within mathlib, the Lean mathematical library, can be found at https:
//github.com/leanprover-community/mathlib/blob/master/src/tactic/interactive_expr.lean.

12 See https://leanprover-community.github.io/mathlib_stats.html for statistics on mathlib contri-
butions.
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Figure 5 Community-made projects using ProofWidgets. In order, these are: explode proof
viewer for inspecting proof terms by Minchao Wu; Mathematica bridge for viewing plots using
Mathematica by Robert Y Lewis and Minchao Wu; Sudoku solver and visualiser by Markus Himmel;
Rubik’s cube formalisation by Kendall Frey.

The implementation in Lean has already been picked up by the community to make a
wide variety of graphical interface solutions which can be viewed in Figure 5. Of particular
note is the Mathematica bridge by Lewis and Wu [13], which connects Lean to Wolfram
Mathematica and uses our framework to show Lean functions plotted by Mathematica.

ProofWidgets are also in use within mathlib to rapidly prototype new user interface
features as they are requested. As a concrete example: in the development of the Lean
VSCode extension, it was requested that it should be possible to filter some of the variables in
the goal state to declutter the output window (see Figure 6). This was achieved by reparsing
the textual goal state emitted by the Lean server component and removing the filtered items
using regular expressions. Using ProofWidgets, it was required to add some specific code
for the VSCode client – supporting such a feature in other editors would require rewriting
the filtering code. Additionally, if the Lean server changes how the goal state is formatted,
the filtering code would need to be rewritten. Even if an API which allows more semantic
access to the expression structure is used, such as SerAPI [10], there is still the problem
that the filtering code has to be written multiple times for each supported editor. Using
ProofWidgets, the filtering code can be written once in Lean itself and it then works in

https://github.com/leanprover-community/mathlib/pull/4718
https://github.com/leanprover-community/mathlib/pull/4718
http://robertylewis.com/leanmm/lean_mm.pdf
http://robertylewis.com/leanmm/lean_mm.pdf
https://github.com/TwoFx/sudoku
https://github.com/kendfrey/rubiks-cube-group
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
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Figure 6 Example widget for filtering goal states, an example of being able to implement new UI
features within Lean.

any editor that supports the widgets API (at the time of writing VSCode and a prototype
version of the web editor). Furthermore, Lean users are free to make any custom tweaks to
the UI without needing to make any changes to the editor code.

5 Related work

We now list some of the other tools and systems for creating user interfaces within the
context of interactive theorem proving and how they relate to our work.

Isabelle’s Prover IDE (PIDE) was developed by Wenzel in Scala and is based on the
jEdit text editor [21]. It richly annotates Isabelle documents and proof states to provide
inline documentation, interactive and customisable commands, and automatic insertion of
text, among other features. Isabelle’s development environment allows users to code their
own UI in Scala, which performs a similar role to ProofWidgets. PIDE broadly shares the
design goals of ProofWidgets, but approaches the problem differently.

An advantage of the ProofWidgets approach compared to PIDE’s is that the API between
the editor and the prover can be smaller since, in ProofWidgets, the appearance and behaviour
is entirely dictated by the server. In contrast, the implementation of PIDE is tightly coupled
to the bundled jEdit editor, which has some advantages over ProofWidgets in that it gives
more control to the developer to create new UIs. The downside of PIDE’s approach here
is that one must maintain this editor and so supporting any other editor with feature-
parity becomes difficult. ProofWidgets also makes use of modern web technology which is
ubiquitously supported. In contrast, PIDE uses a Java UI library called Swing. Creating
custom UIs in PIDE requires coding in both Scala and StandardML, and the result does not
easily generalise to the VSCode Isabelle extension.

There have been some recent efforts to support VSCode as a client editor for Isabelle files
[22]. A web-based client for Isabelle, called Clide [15] was developed, although ultimately it
provides only a subset of the functionality of the jEdit version.

SerAPI [10] is a library for machine-machine interaction with the Coq theorem prover.
This supports some web-based IDE projects such as jsCoq [11] and, recently, Alectyron [18].
Alectyron enables users to embed web-based representations of data. SerAPI contrasts to
ProofWidgets in that it expects another program to be responsible for displaying graphical
elements such as goal states and visualisations; in the ProofWidgets architecture all of the
UI appearance and behaviour code is also written in Lean, and the web-app client can render
general UIs emitted by the system.

There are some older GUI-centric theorem provers that should be mentioned: LΩUI

[19], HyperProof [3] and XBarnacle [14]. These tools were all highly innovative for including
graphical and multimodal representations of proofs, however the code for these has succumbed
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to bit rot, to the extent that they can only be viewed through the screenshots that were
included with the papers. Source code for Ωmega and CLAM (which LΩUI and XBarnacle
use respectively) can be found in the Theorem Prover Museum.13

Vicary’s Globular [2] and Breitner’s Incredible Proof Machine [5] also inspired our work.
These tools are natively web-based and offer a visual representation of the proof state for
users to manipulate. A lot of the motivation behind ProofWidgets was to bring some of this
visual pixiedust to a more general, heavyweight proof assistants.

6 Conclusion and future work

We designed the ProofWidgets framework: a general client/server protocol, a functional UI
programming API and a system for tagging pretty-printed expressions. The framework is
implemented in Lean to allow for rapid development of new modalities of interaction with
provers, all within the metalanguage of Lean. This enables a faster development cycle for
improving the UI of Lean which has a direct impact on the users of ITP. We hope that these
benefits can be brought to other interactive theorem provers in the future.

6.1 Future work

In terms of performance, in order to produce responsive interfaces that use long-running
tactics (e.g., searching a library or running a solver) it will be necessary to provide a
mechanism for allowing concurrency. At the moment, if a long-running operation is needed
to produce output, this will block the rendering process and the UI will become unresponsive
for the length of the operation. Currently, Lean has a task type which represents a ’promise’
to the result of a long-running operation, which could be utilised to solve this problem. This
could be cleanly incorporated in ProofWidgets by providing an additional hook with_task
(see Listing 3):

Listing 3 Adding concurrency to components.
component . with_task

( get_task : π → Task τ )
: ( Component (( Option τ × π) α) → ( Component π α)

Here, get_task returns a long-running task object and the props for the inner component
transition from none to some t : τ upon the completion of the task. Cancelling a task is
implemented simply by causing a rerender.

The next implementation project is to support Lean 4. Lean 4 has a bootstrapped
compiler, so the reconciling code can be written in Lean 4 itself without having to modify
the core codebase as was necessary for Lean 3. Lean 4 has an overhauled, extensible parser
system [20] which could be used to create an HTML-like domain-specific language directly
within Lean.

13 https://theoremprover-museum.github.io/

https://en.wikipedia.org/wiki/Software_rot
https://theoremprover-museum.github.io/
https://github.com/leanprover/lean4
https://theoremprover-museum.github.io/
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