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Preface

The International Conference on Interactive Theorem Proving (ITP) is the main venue for the
presentation of research into interactive theorem proving frameworks and their applications.
It has evolved organically starting with a HOL workshop back in 1988, gradually widening to
include other higher-order systems and interactive theorem provers generally, as well as their
applications. This year’s conference, the twelfth to be held under the ITP name, is co-located
with the 36th Annual Symposium on Logic in Computer Science (LICS 2021), and was to
be held in Rome, Italy. However, due to the COVID-19 global pandemic, the conference
will be held in an online format for the first time. Previous ITP conferences took place in
Edinburgh 2010, Nijmegen 2011, Princeton 2012, Rennes 2013, Vienna 2014, Nanjing 2015,
Nancy 2016, Brasilia 2017, Oxford 2018 and Portland 2019; those in 2010, 2014 and 2018
were under the umbrella organization of the Federated Logic Conference (FLoC).

This year’s conference attracted a total of 57 submissions (51 long papers and 6 short
papers). Each paper was systematically reviewed by at least three program committee
members or appointed external reviewers, as a result of which the PC winnowed down the
selection to be presented at the conference: 29 papers (28 long papers and 1 short). We
thank the authors of both accepted and rejected papers for their submissions, as well as the
PC members and external reviewers for their invaluable work.

As well as all the regular papers, we are very pleased to have invited keynote talks
by Nadia Polikarpova (University of California, San Diego, joint talk with LICS), Andrei
Popescu (University of Sheffield), and Magnus Myreen (Chalmers). The present volume
collects all the accepted papers contributed to the conference as well as the latter two invited
papers. This is the second time that the ITP proceedings are published in the LIPIcs series.
We thank all those at Dagstuhl for their responsive feedback on all matters associated with
the production of the finished proceedings, as well as the EasyConferences staff for their
support in the logistics.

We are grateful to Daniele Gorla for offering to organize ITP in Rome and his flexibility
in changing the format in face of the pandemic. We would like to also extend this thanks to
all authors and speakers, as we are certain that adjusting to the new format of the conference
required some additional effort. Finally we are thankful to the ITP Steering Committee for
their guidance throughout.

12th International Conference on Interactive Theorem Proving (ITP 2021).
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The CakeML Project’s Quest for Ever Stronger
Correctness Theorems
Magnus O. Myreen Ñ

Chalmers University of Technology, Gothenburg, Sweden

Abstract
The CakeML project has developed a proof-producing code generation mechanism for the HOL4
theorem prover, a verified compiler for ML and, using these, a number of verified application
programs that are proved correct down to the machine code that runs them (in some cases, even
down to the underlying hardware). The purpose of this extended abstract is to tell the story of
the project and to point curious readers to publications where they can read more about specific
contributions.
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grateful for comments on drafts of this text from Michael Norrish, Johannes Åman Pohjola, Andreas
Lööw, Yong Kiam Tan, Oskar Abrahamsson and Konrad Slind. I want to thank the team of CakeML
contributors for making the CakeML project such a pleasure to work on. Finally, I would like to
thank the late Mike Gordon whose enthusiasm for the CakeML project and belief in its contributions
are still felt and appreciated to this day.

1 Motivation and Beginning

Around the year 2012, the CakeML project started as a reaction to the practice of using the
following steps to produce verified applications using interactive theorem provers (ITPs).
1. Write functions in the logic of an ITP;
2. prove correctness properties of the functions as theorems in the ITP; and
3. ask the ITP to generate SML/OCaml/Haskell code based on the functions in the logic.

Scott Owens and my reaction was the following: the code generators in Step 3 ought to
show with theorems proved in the ITP that the generated code has the same behaviour as
the supplied functions, and the theorems should ideally be expressed in terms of a formal
semantics for the programming language in question (SML, OCaml or Haskell). However,
the code generators1 in use at the time did not provide users with such theorems.

The first publication of the CakeML project [32] showed that it is possible to build a
proof-producing code generator that automatically proves a theorem stating the relationship
between the given function’s behaviour and the behaviour of the generated ML code with
respect to an operational semantics of a subset of SML.

1 In Coq terminology, this code generation is called code extraction.
© Magnus O. Myreen;
licensed under Creative Commons License CC-BY 4.0
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definition of Verilog semantics

definition of CakeML source semantics

Figure 1 A diagram of the parts of the CakeML project described in this paper.

The introduction to this first publication made it clear that there really ought to be two
parts to code generation: A) proof-producing translation of functions in the logic to functions
deeply embedded in a programming language, and B) verified compilation for programs
written in that programming language down to executable machine code. At the time when
Scott Owens and I wrote this, we did not envision that we would deliver on B. However, that
changed when Ramana Kumar got involved.

In the build up to the next publication, the project got its name “CakeML” which
was initially short for Cambridge and Kent ML, following the tradition of naming SML
implementations based on location names. At the time, Ramana and I were at Cambridge
and Scott was at Kent. However, as the project grew, we have decided that the name CakeML
is to be regarded as just a name rather than an abbreviation.

A close collaboration between Ramana Kumar, Scott Owens, Michael Norrish and myself
delivered on B and resulted in the second paper CakeML: A Verified Implementation of
ML [22], which explains how we created a verified read-eval-print loop implementing the
CakeML operational semantics. The second paper has become the canonical reference for
the CakeML project as a whole, even though the CakeML compiler has changed significantly
since this first version, as will be described in the next section.
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This paper gives a tour of the CakeML project and its ambition to achieve end-to-end
verified code. Figure 1 illustrates the different parts of the project: the CakeML compiler is
at the centre of the figure (Section 2); infrastructure and verified applications are above the
compiler (Section 3); below the compiler, we have work that dives into the hardware layers
(Section 4). Future work is mentioned in Section 5, but is not part of Figure 1.

2 Verified Compiler and Runtime

The CakeML project has put much focus on its verified compiler, which has evolved from
a simple compiler to one with eight intermediate languages and several compilation passes
within each intermediate language [41].

2.1 In-Logic Execution and Transportation of Correctness Results
The purpose of the CakeML compiler is to provide a way to generate machine code from
given source programs in a way that allows users to transport any properties proved of the
source code down to the generated machine code. This transportation feature is, of course, a
desire in most compiler verification projects, but the CakeML project has taken this desired
feature perhaps more literally than most other compiler verification projects. A property is
fully transported when the final theorem is about the generated machine code and does not
mention the compiler. In-logic execution of the compiler is necessary for this.

The CakeML compiler is written in such a way that it can be fully executed inside of
an ITP. Such in-logic executions result in theorems of the form compile input = machine_code,
where input is a concrete source-level program and machine_code is a concrete list of bytes.
With concrete compilation results as theorems in the logic, and a standard result that compile
only produces machine code that has identical behaviour (up to out-of-memory errors), one
can transport properties P proved of the source-level program input down to the machine_code.
Crucially, the in-logic compilation allows us to state the resulting theorem in terms of P and
the semantics of machine_code without any mention of the complicated compile function.

These ideas are explained in Kumar et al. [21], which argues for the importance of ITP
code generation mechanisms that prove the correctness down to the level of machine code.

2.2 Compiler Bootstrapping inside an ITP
The CakeML project is perhaps most well known for the fact that it is the first project
to bootstrap a verified compiler entirely inside an ITP. Bootstrapping entails running a
compiler on itself to generate machine code implementing itself. This seemingly circular
concept can seem confusing at first. However, it follows quite directly from the concepts
we have seen above: given a compiler function compile defined as a normal function in an
ITP, we can apply the proof-producing code generator [32] to generate a behaviourally
equivalent source program compile_prog and, to this source program, we can apply the in-logic
compilation method described in the previous section. The result is a verified implementation
of the compile function as concrete machine code. Separately from CakeML, the idea of
bootstrapping a compiler inside an ITP has been described in a simple minimal setting [30].

2.3 The First Version: Compilation in a Read-Eval-Print Loop
The CakeML compiler was, from the start, an end-to-end compiler consisting of lexing,
parsing, type inference and code generation. Each part was proved correct: the parser
implementation was proved sound and complete with respect to a context-free grammar

ITP 2021
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for Standard ML syntax; our type inferencer was proved sound (and later complete [42]
when Yong Kiam Tan joined the effort) w.r.t. the type system; we proved that no typed
program will ever hit a runtime error in our operational semantics; and finally we also
proved that any program that avoids runtime errors in the source semantics is compiled
to identically behaving machine code, up to out-of-memory errors that can happen in the
generated machine code. This caveat about out-of-memory errors is necessary because the
CakeML source language does not pose any limits on the size of lists, arrays or integers, but
the compilation target, x86-64 machine code operates in a finite state space.

The first version of the compiler was bootstrapped and used as a component in a verified
x86-64 implementation of a read-eval-print loop for the CakeML language [22]. In this first
version, the code generator was simple: it compiled to a stack-based bytecode language,
which mapped quite directly to short snippets of x86-64 machine code. The implementation
did include a bignum library [31] and a verified garbage collector [28]. The verification of the
type inferencer built on prior work on unification [23].

The most challenging part of the first version was perhaps the dynamic compilation
aspect: the compiler is repeatedly executed at runtime by the read-eval-print loop, which
affected the compiler proofs [18]. We made use of proof methods developed in the context of
verification of a just-in-time compiler [29].

2.4 A New Optimising Compiler Backend
Even before the first compiler version was ready, a plan was shaping up to do better both in
terms of proof methodology and compiler implementation. We also decided to focus on more
conventional static ahead-of-time compilation rather than dynamic compilation.

The proof methodology was improved by switching from relational big-step semantics to
functional big-step semantics [35]. Semantics written in functional big-step style take the
form of clocked interpreter functions that neatly fit with proof-by-rewriting in higher-order
logic. This style of semantics allowed us to conveniently prove preservation of terminating
and non-terminating behaviour using only one simulation proof per compiler phase. Most
simulation proofs are in the direction of compilation, i.e. forward.

The compiler implementation was redone almost entirely. The new design had several
intermediate languages that were designed with optimisations in mind. The new implement-
ation avoided compiling via a stack-based bytecode, and instead used graph-colouring based
register allocation. We also took care to compile curried functions into efficient code [36]. At
this point Yong Kiam Tan and Anthony Fox had become active in the project. Yong Kiam
Tan made significant contributions to the lower-level languages, including register allocation,
compilation of calling conventions and the assembler. Anthony Fox was crucial in making the
new compiler target five machine languages [11]: 64-bit x86-64, ARMv8, MIPS and RISC-V,
and 32-bit ARMv7; later a sixth (the Silver ISA) was added, as will be described in Section 4.

The new compiler implementation has offered plenty of opportunities for student projects
and experimental extensions. Students have, for example, contributed new optimisations [3],
infrastructure for visualisation of the compiler’s transformations [16] and even a generational
copying garbage collector [9]. One of the experimental extensions has explored giving CakeML
a flexible fast-math-compatible floating-point semantics [5].

The most up-to-date description of the CakeML compiler is Tan et al. [41]. That paper
includes benchmarks comparing the performance of the CakeML generated code with code
from other ML compilers. The new CakeML compiler generates code with performance
numbers that are in the same ballpark as the performance numbers for code compiled with
Poly/ML, SML/NJ and native-code compiled OCaml.
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2.5 A Space Cost Semantics
The CakeML compiler’s correctness statement has always contained an irritating get-out
clause: the CakeML compiler’s correctness statement allows the generated machine code to
exit early due to out-of-memory errors. As mentioned earlier, out-of-memory errors cannot
be ruled out in general since the source semantics has no bounds on the size of data and
numbers, but the target machine code runs in settings where memory is finite.

To address this wart in the compiler correctness theorem, we have defined a space cost
semantics [15] that can be used to prove tight memory bounds for concrete CakeML programs.
The cost semantics has been proved sound w.r.t. CakeML’s compiler and enables transfer of
liveness properties proved for the source code down to liveness properties of the generated
machine code.

3 Verified Applications

In parallel with the development of the compiler, we improved our techniques for generating
CakeML source code and post hoc verification of manually written CakeML code.

3.1 Characteristic Formulae and Improved Code Generation
In the beginning, we could only produce verified CakeML code using the proof-producing
synthesis tool mentioned in Section 1. This tool could initially only target the pure part of
the CakeML language. However, the CakeML language includes SML-style impure features
such as exceptions and mutable state in the form of references, arrays, and byte arrays. We
did take some early steps towards support for impure CakeML code for a journal version [33]
of the original synthesis paper, but the solution was ad hoc and unsatisfactory.

Separately from CakeML, Arthur Charguéraud developed a separation logic style reasoning
framework called Characteristic Formulae for ML (CFML) for reasoning about OCaml code
in Coq [8], and in 2016, I had the fortune of having Armaël Guéneau, who had worked with
CFML, visit me for an internship. During his five-month internship, Guéneau produced
a CFML variant in HOL for CakeML, and developed and proved it sound w.r.t. CakeML
operational semantics. This CakeML adaption [13] of CFML covered every aspect of the
CakeML language: (mutually recursive) functions as values, mutable state, exceptions and
even reasoning about I/O through CakeML foreign function interface.

Guéneau’s original work on Characteristic Formulae (CF) for CakeML has been extended
and used for several applications. A file-system model was built on top of it in order to
allow us to reason about file accessing programs [10]. For this work, Johannes Åman Pohjola
improved CakeML’s foreign-function interface. Later, Son Ho contributed an important
forward simulation tactic for separation logic CF proofs (unpublished). Most recently, the CF
framework was extended to handle correctness proofs of non-terminating programs [4]; this
extension makes it possible to prove liveness properties for diverging (productive and non-
productive) CakeML programs. A simplified version of this Hoare logic for non-termination
has been proved sound and complete.

Once CF was well developed, we revisited our desire for proof-producing code generation
that targets CakeML’s impure features. We took inspiration from how effectful computations
are modelled using monads in Haskell and developed techniques for creating impure CakeML
code from monadic HOL functions [2]. Our method builds on the separation logic setup
provided by CF for CakeML. The fact that CF for CakeML and our code synthesis tool
share infrastructure meant that we were able to provide links by which results proved in
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one system could be transferred for use in the other. The speed of the CakeML compiler
binary was significantly improved by this access to the impure features of CakeML. In a
separate improvement to the code generator, some reduction in code bloat was provided by
new techniques for code generated for case expressions [43].

In parallel to the work described above which took place in HOL4, Lars Hupel and
Tobias Nipkow developed a different CakeML code generator [17] in Isabelle/HOL. This code
generator differed from the one in HOL4 in that the Isabelle/HOL version was (for most
part) a once-and-for-all verified tool, while the code generator in HOL4 was (for most part)
a proof-producing tool. The bridge between Isabelle/HOL and HOL4 was provided by the
Lem tool [27]. Most parts of the CakeML source language semantics are specified in the Lem
language and, from this prover-independent specification, the Lem tool generates definitions
in HOL4 and Isabelle/HOL.

3.2 Example Applications
The tools described above have been used to create end-to-end verified applications:

We have verified a number of Unix-like tools such as grep, sort, cat, diff, patch, and a
word frequence counter. These examples were mostly developed to showcase features of
our file system models and CF setup.
From early on [34], there was a drive to develop a verified proof assistant for higher-order
logic based on CakeML. Ramana Kumar made significant progress in this direction [18, 20].
In the process, a new definition mechanism for higher-order logic (proposed by Rob Arthan)
was proved sound [19]. Later, this line of work was continued when Arve Gengelbach
and Johannes Åman Pohjola [37] proved consistency of ad-hoc overloading, as allowed by
constant definitions in Isabelle/HOL.
There has been work on verified checkers of different kinds: a checker for OpenTheory
article files [1], a checker for proof certificates produced by SAT solvers [40], a checker for
vote counting [12], and a checker for floating-point error bounds [6].
Formally specified security components, such as filters, monitors, and attestation schemes,
are being synthesized to CakeML running on seL4 [38, 39]; the intent is to thereby improve
the security of legacy embedded systems.
A verified CakeML application was also developed to be a verified monitor for cyber-
physical systems [7].

4 Extending down into Hardware

The CakeML project has also dived into the hardware levels of computing systems. Our
adventure in the hardware world was motivated by two questions:
1. Can our end-to-end correctness theorems be extended beyond the level of machine code

and into the hardware layers? (And if so, down to what layer?)
2. Can the techniques that we have developed for proof-producing code generation and

compiler verification be adapted to work for the creation of verified hardware?

Andreas Lööw has explored these questions in his research. For question 2, he formalised a
subset of Verilog in HOL4 and built a proof-producing HOL-function-to-Verilog generator [25]
using ideas from the proof-producing CakeML code generator.

For question 1, Andreas Lööw defined a small CPU, called Silver, as HOL functions in the
subset understood by his Verilog code generator, and proved correctness of the CPU w.r.t. a
specification of the custom instruction set architecture (ISA) that it support. The ISA that
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the Silver CPU implements was added as a target to the CakeML compiler by Anthony Fox.
Finally, a number of CakeML developers helped verify a minimal implementation of a file
system written in Silver machine code. Together these components allowed us to create a
verified stack where end-to-end correctness theorems extend from high-level specifications all
the way down to the Verilog implementation of the CPU that executes the machine code
that the CakeML compiler produces, with all layers in between verified [26]. In short, the
result was a Silver platform for CakeML programs to stand on.

The exploration of questions 1 and 2 continues: Andreas Lööw has built a verified
Verilog-to-netlist compiler [24] that can compile (a subset of) the Verilog produced by his
first tool. The netlists are technology mapped netlists for FPGAs.

5 Conclusions and Future Directions

The CakeML project started off as a simple reaction to the state of code generators/extractors
and has since snowballed into an ambitious compiler verification project. The core aim has
remained the same: to provide users with tools that allow transfer of properties proved about
functions in logic down to concrete executable code (machine code or even hardware).

5.1 Reflection
What made it possible for the CakeML project to develop so far? There are, of course, many
factors at play and no definite answers, but here are some points I believe are important:

Struck a chord. I believe the end-to-end correctness theorems that the project has as
its core aim inspires people to join, and functional programming (and reasoning about
functional programs) is of interest to many with relevant backgrounds.
Luck. We were fortunate early on: the initial group of people worked well together which
was vital for getting the project off the ground.
No initial funding and no named leader. The CakeML project started and ran for several
years without any CakeML-specific funding, which meant that there was no named project
leader and people were contributing to the project due to their own interest rather than
because they were paid to work on this project.

5.2 What Next?
When something has been built well, I believe it has potential to be a platform to build
on. One aspect that I am keen to explore is the use of CakeML and its compiler as part
of other projects, e.g. projects that develop verification tools or compilers for languages
other than ML. In this direction, there is on-going work within the CakeML project to
develop a compiler for a clean low-level imperative language using parts of the CakeML
compiler; and, similarly, there is another on-going project developing a verified complier for
a Haskell-inspired functional language using the CakeML compiler as a component. There is
also on-going work on developing a verified compiler for a choreographic language [14].
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Abstract
Low-level pointer-manipulating code is ubiquitous in operating systems, networking stacks, and
browsers, which form the backbone of our digital infrastructure. Unfortunately, this code is susceptible
to many kinds of bugs, which lead to crashes and security vulnerabilities. A promising approach
to eliminating bugs and reducing programmer effort at the same time is to use program synthesis
technology to generate provably correct low-level code automatically from high-level specifications.

In this talk I will present a program synthesizer SuSLik, which accepts as input a specification
written in separation logic, and produces as output a provably correct C program. SuSLik is
the first synthesizer capable of generating a wide range of operations on linked data structures
(such as singly- and doubly-linked lists, binary trees, and rose trees) without additional hints from
the user. It is also the first synthesizer to automatically discover recursive auxiliary functions
required for nested data structure traversal. To make this possible, SuSLik relies on a novel proof
system – synthetic separation logic – to derive correct-by-construction programs directly from their
specifications. Program proofs generated by SuSLik can be automatically translated into three
foundational verification frameworks embedded in Coq: Hoare Type Theory (HTT), Iris, and Verified
Software Toolchain (VST).
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Abstract
We describe Bounded-Deducibility (BD) security, an expressive framework for the specification and
verification of information-flow security. The framework grew by confronting concrete challenges of
specifying and verifying fine-grained confidentiality properties in some realistic web-based systems.
The concepts and theorems that constitute this framework have an eventful history of such “con-
frontations”, often involving trial and error, which are reported in previous papers. This paper is
the first to focus on the framework itself rather than the case studies, gathering in one place all the
abstract results about BD security.
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1 Introduction

Bounded-Deducibility (BD) security is a framework we have developed recently for the
specification and verification of information-flow security. It is applicable widely, to systems
described as nondeterminisic I/O automata, and caters for the fine-grained specification of
restrictions on their flows of information. We formalized the framework in the proof assistant
Isabelle/HOL [31,32] and used it in the verification of confidentiality properties of some web
applications.
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Information-flow security has a rich history, with many formal definitions having been
proposed, differing in how systems, attackers, and flow policies are modeled [18, 26, 29, 30, 33,
34,42–44,46,47]. Nevertheless, a new notion seemed necessary because the existing notions
(Section 4) were not expressive enough for our case studies: multi-user web-based systems
with flows of information requiring fine-grained control. For example, about a multi-user
multi-conference management system, we wanted to prove a property such as the following,
which refers to the series of uploads of a document’s versions in a system: “A group of users
learn nothing about a paper beyond the absence of any upload unless one of them becomes an
author of that paper or a PC member at the paper’s conference.” (Importantly, the property
is about not only what can be directly accessed, but also what can be learned by interacting
with the system – this distinguishes information-flow control from mere access control.)
Every abstract definition and theorem in the BD security framework was inspired from, and
refined based on, the needs of concrete interactive systems. This ended up contributing to
the area of information-flow security an increased level of precision in specification and proof,
of the kind that we believe can make a difference in practical system verification.

In previous papers [7–9, 23, 37], BD security has only been discussed in the context of
verifying these concrete systems. This helps with intuition and motivation, but makes it
easy to miss the forest from the trees, i.e., miss the abstract level of the development. The
current paper is the first to collect in one place all our abstract results, and to present
them independently of any case studies (Section 2). They include the BD unwinding proof
method (Section 2.5), as well as theorems on proof (Section 2.6) and system compositionality
(Section 2.7). We hope that this paper will better demonstrate the scope of the framework
and help identify potential new applications. The framework is open-ended and open-
source [10,35], and new contributions are welcome.

Three major verification case studies will also be briefly described while recalling their
contribution to the framework’s design (Section 3). These are the CoCon conference manage-
ment system (Section 3.1, [23,37]), the CoSMed social media platform (Section 3.2, [7, 9]),
and the CoSMeDis distributed extension of CoSMed (Section 3.3, [8]).

Notations
We write function application by juxtaposition, without placing the argument in parentheses,
as in f a, unless required for disambiguation, e.g., f (g a). Multiple-argument functions will
usually be considered in curried form – e.g., we think of f : A → B → C as a two-argument
function, and f a b denotes its application to a and b. We write “◦” for function composition.
Bool denotes the two-element set of Booleans, {true, false}. Predicates and relations will be
modeled as functions to Bool. For example, P : A → Bool is a (unary) predicate on A and
Q : A → A → Bool is a binary relation on A. Given a ∈ A, we write “P a holds”, or simply
“P a”, to mean that P a = true; and similarly for binary relations.

Given a set A, we write Set(A) for the powerset (i.e., set of all subsets) of A, and List(A) for
the set of lists with elements in A. We write [a1, . . . , an] for the list consisting of the indicated
elements; in particular, [] is the empty list and [a] is a singleton list. As a general convention,
if a, b denote elements in A, then al, bl will denote elements in List(A). An exception will
be the system traces – even though they are lists of transitions t, for them we will use the
customized notation tr . We write “·” for list concatenation. Applied to a non-empty list
[a1, . . . , an], the function head returns its first element a1. Given a function f : A → B and
[a1, . . . , an] ∈ List(A), map f [a1, . . . , an] returns [ f a1, . . . , f an]. Given a partial function
f : A⇀ B and [a1, . . . , an] ∈ List(A), let [ai1 , ai2 , . . . , aik ] be the sublist of [a1, . . . , an] that keeps
only elements on which f is defined (where 1 ≤ i1 < i2 < · · · < ik ≤ n); then map f [a1, . . . , an]
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returns [ f ai1 , . . . , f aik ]. In other words, partial functions are mapped while omitting the
elements on which they are not defined. Given a predicate P, filter P [a1, . . . , an] returns the
sublist of [a1, . . . , an] that keeps only the elements satisfying P.

2 Specification and Reasoning Framework

Our framework is developed around a simple and general notion of system: nondeterministic
I/O automata. It also provides a notion of policy to describe the (dis)allowed flows of
information in these systems. A policy has several parameters that regulate the tension
between observations (what can be seen) and secrets (what needs to be protected). The
judicious use of these parameters allows fine-tuning not only what, but also how much needs
to be protected, and when, or even for how long. The framework offers methods to prove
that the policies are satisfied by systems, and to manage proof and system complexity via
compositionality results.

2.1 System model
The systems whose information-flow security properties will be studied are nondeterministic
I/O automata. Namely, we call system a tuple A = (State, Act, Out, istate, Trans), where:

State, ranged over by σ, σ′ etc., is the set of states;
Act, ranged over by a, b etc., is the set of actions;
Out, ranged over by ou, ou′ etc., is the set of outputs;
istate ∈ State is the initial state;
Trans ⊆ State × Act × Out × State is the set of transitions.

(Note that we call “action” what is usually called “input” for I/O automata.) A transition
t = (σ, a, ou, σ′) ∈ Trans has the following interpretation: If action a is taken while the
system is in state σ, the system may respond by producing output ou and changing the
state to σ′. We call σ the source, a the action, ou the output, and σ′ the target of t. The
transition’s action a is also denoted by actOf t. We will write σ t=⇒ σ′ to express that
t ∈ Trans, σ is the source of t and σ′ is the target of t.

A trace is any non-empty list of transitions [t1, . . . , tn] such that the source of t1 is istate
and, for all i ∈ {2, . . . , n}, the source of ti is the target of ti−1. We let Trace, ranged over by
tr , be the set of traces. A trace fragment has the form [ti, . . . , t j] with 1 ≤ i < j ≤ n, where
[t1, . . . , tn] is a trace. We write TraceFσ for the set of trace fragments that start in σ, i.e.,
have σ as the source of their first transition. Note that all these concepts are relative to a
system A. When we want to emphasize the underlying system, we may write TraceA instead
of Trace, TraceFA,σ instead of TraceFσ, etc.

2.2 Flow policies
Given a system A = (State, Act, Out, istate, Trans), our goal is to express its information-flow
security via policies that are capable of fine-grained distinctions between desirable flows
(which are important for the system’s functionality) and undesirable flows (which constitute
information leaks possibly exploitable by attackers). To achieve such surgical precision, a
policy should accurately identify the following: (1) What observations can be made on the
system, (2) Which data constitute secrets that need protection, (3) How much of these
secrets should be protected (and how much can be revealed), and (4) Under which conditions
protection is required.
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3:4 Bounded-Deducibility Security

For accommodating these requirements, we define a flow policy F to consist of:
(1) an observation infrastructure (Obs, isObs, getObs), where

Obs, ranged over by o, o′ etc., is a chosen domain of observations,
isObs : Trans → Bool is a predicate identifying observation-producing transitions,
getObs : Trans → Obs is a function for producing observations from transitions;

(2) a secrecy infrastructure (Sec, isSec, getSec), where
Sec, ranged over by s, s′ etc., is a chosen domain of secrets,
isSec : Trans → Bool is a predicate identifying secret-producing transitions,
getSec : Trans → Sec is a function for producing secrets from transitions;

(3) a declassification bound, i.e., a relation on lists of secrets, B : List(Sec) → List(Sec) →
Bool;

(4) a declassification trigger, i.e., a predicate on transitions, T : Trans → Bool.

Note that the observation and secrecy infrastructures have the same form. We define
O : Trace → List(Obs) by O = map getObs ◦ filter isObs, and S : Trace → List (Sec) by
S = map getSec ◦ filter isSec. Thus, O uses filter to select the transitions in a trace that are
observable according to isObs, and then applies getObs to each selected transition. Similarly,
S produces lists of secrets by filtering with isSec and applying getSec. Thus, when applied to
a trace tr , O and S give the lists of observations and respectively secrets produced by tr .

2.3 Bounded-Deducibility security
For the rest of Section 2, let us fix a system A = (State, Act, Out, istate, Trans) and a flow
policy F , where (Obs, isObs, getObs) is its observation infrastructure, (Sec, isSec, getSec)
its secrecy infrastructure, B its declassification bound and T its declassification trigger.
Furthermore, let O : Trace → List(Obs) and S : Trace → List(Sec) be the functions on traces
induced by these observation and secrecy infrastructures.

A system A is said to be Bounded-Deducibility (BD) secure with respect to the flow policy
F , written A |= F , provided that for all tr1 ∈ Trace and sl1, sl2 ∈ List(Sec),

if never T tr1, S tr1 = sl1 and B sl1 sl2,
then there exists tr2 ∈ Trace such that O tr2 = O tr1 and S tr2 = sl2.

The predicate never T tr1 says that T holds for no transition in tr1.
Here is how to interpret the above definition: tr1 is a trace that occurs when running the

system, and sl1 is the list of secrets that it produces. BD security says that, if the trigger T
is never fired during tr1, it is impossible for an observer (potential attacker) to distinguish
tr1 from any other trace tr2 that produces some secrets sl2 that are B-related to (i.e., located
within bound B from) sl1. Hence, for all the observer knows (via the observation function
O), the trace tr1 might as well have been tr2.

When referring to the items in this definition, we will call tr1 “the original trace” and
tr2 “the alternative trace”. We will also apply the qualifiers “original” and “alternative” to
the produced lists of observations and secrets. Note that BD security is a ∀∃-statement:
quantified universally over the original trace tr1 and the alternative secrets sl2, and then
existentially over the alternative trace tr2. (The universal quantification over sl1 is done
only for clarity; it can be avoided, since sl1 = S tr1.)

We can think of B negatively, as a lower bound for uncertainty, or positively, as an upper
bound for the amount of information release, also known as declassification. For example, if
B is an equivalence, then the observers learn the equivalence class of the secret, but nothing
more. On the other hand, T is a trigger removing the bound B: As soon as T becomes true,
the containment of declassification is no longer guaranteed. In summary, BD security says:
An observer O cannot learn about the secrets anything beyond B unless T occurs.
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Figure 1 BD security illustrated.

Fig. 1 contains a visual illustration of BD security’s two-dimensional nature: The system
traces (displayed on the top left corner) produce observations (on the bottom left), as well
as secrets (on the top right). The figure also includes an abstract example of traces and
their observation and secret projections. The original trace tr1 consists of three transitions,
tr1 = [t1, t′1, t′′1 ], of which all produce secrets, [s1, s′

1, s′′
1 ], and only the first and the third

produce observations, [o1, o′′
1 ] – all these are depicted in red. The alternative trace tr2 also

consists of three transitions, tr2 = [t2, t′2, t′′2 ], of which the first and the third produce secrets,
[s2, s′′

2 ], and the first two produce observations, [o2, o′
2] – all these are depicted in blue. Thus,

the figure’s functions O and S are given by filters and producers behaving as follows:

isObs getObs isSec getSec
t1 true o1 true s1
t′1 false true s′

1
t′′1 true o′′

1 true s′′
1

isObs getObs isSec getSec
t2 true o2 true s2
t′2 true o′

2 false
t′′2 false true s′′

2

The empty slots in the tables correspond to values of getObs and getSec that are irrelevant,
since the corresponding values of isObs and isSec are false. The ∀∃ statement expressing BD
security is illustrated on the figure by making a choice of the ∀-quantified entities and the
∃-quantified entities: Given the original trace, here [t1, t′1, t′′1 ] (which produces the shown
observations and secrets and has all its transitions satisfying ¬T) and given some alternative
secrets, here [s2, s′′

2 ], located within the bound B of the original secrets, BD security requires
the existence of the alternative trace, here [t2, t′2, t′′2 ], producing the same observations and
producing the alternative secrets.

2.4 From nondeducibility to bounded deducibility

BD security is a natural evolution of the idea of nondeducibility introduced in pioneering
work by Sutherland [46]: by refining the notion of “nothing being deducible” to that of
“nothing being deducible beyond a certain bound and unless a certain trigger occurs”.

Indeed, nondeducibility can be expressed in terms of operators O : Trace → List(Obs)
and S : Trace → List(Sec) by requiring that, for all tr1 ∈ Trace and sl1, sl2 ∈ List(Sec), if
S tr1 = sl1 then there exists tr2 ∈ Trace such that O tr2 = O tr1 and S tr2 = sl2. Thus,
BD security becomes nondeducibility when B is everywhere true and T everywhere false –
meaning no declassification, i.e., maximum uncertainty.
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2.5 Unwinding proof method

To prove that the system is BD secure with respect to the flow policy, A |= F , one needs to
do the following: Given

the original trace tr1 for which never T holds and which produces the list of secrets sl1,
and an alternative list of secrets sl2 such that B sl1 sl2 holds,

one should provide an alternative trace tr2 whose produced list of secrets is exactly sl2 and
whose produced list of observations is the same as that of tr1.

Following the tradition of unwinding for noninterference-like properties [19,26,41], we want
to construct tr2 from tr1 incrementally: As tr1 grows, tr2 should grow nearly synchronously.
Unwindings are traditionally binary relations ∆ on State that bookkeep the states reached
by tr1 and tr2, say σ1 and σ2, and show how these can evolve transition by transition in the
process of constructing tr2 from tr1; they guarantee that any ∆-related states σ1 and σ2

evolve via transitions σ1
t1=⇒ σ′

1 and σ2
t2=⇒ σ′

2 to ∆-related states σ′
1 and σ′

2. In our case,
unlike in the traditional case, we have a significantly more complex infrastructure to deal
with: Since the produced observations of tr1 and tr2 will have to be equal, it is reasonable
to track them synchronously; but the produced secrets are regulated by arbitrary bounds B,
hence they will have to track them more flexibly.

To address the above, an unwinding for BD security will be not just a binary relation
between states, but a binary relation between pairs consisting of a state and a list of secrets.
Let us introduce some convenient notation to describe this. For any pairs (σ, sl) and (σ′, sl ′)
in State × List(Sec) and any transition t, we will write (σ, sl) t=⇒ (σ′, sl ′) as a shorthand for
the following two statements: (1) σ t=⇒ σ′, and (2) either ¬ isSec t and sl ′ = sl, or isSec t
and there exists s such that sl = [s] · sl ′. The second statement means that the transition t
either does not produce a secret thus leaving sl unchanged (sl ′ = sl), or produces the secret
from the beginning of sl thus reducing it to sl ′; we can think of this as a transition between
lists of secrets that are still to be produced. Moreover, for any two transitions t1 and t2, we
will write t1 =Obs t2 as a shorthand for the following two statements: (1) isObs t1 if and only
if isObs t2, and (2) if isObs t1 then getObs t1 = getObs t2. In other words, t1 and t2 produce
either the same observation or no observation.

A relation ∆ : (State × List(Sec)) → (State × List(Sec)) → Bool is said to be a BD
unwinding if, for all (σ1, sl1), (σ2, sl2) ∈ State × List(Sec) such that σ1 is (¬T)-reachable,
σ2 is reachable and ∆ (σ1, sl1) (σ2, sl2), we have that one of the following three cases holds:
(1) sl1 ̸= [] or sl2 = [], and reaction ∆ (σ1, sl1) (σ2, sl2); or
(2) iaction ∆ (σ1, sl1) (σ2, sl2); or
(3) sl1 ̸= [] and exit σ1 (head sl1).
Above, a state being reachable means that there exists a trace tr leading to it; and (¬T)-
reachability additionally requires that all transitions in tr satisfy ¬T.

The predicates reaction, iaction (read “independent action”) and exit will be defined below.
The first two describe possible evolution patterns for the pairs (σ1, sl1) and (σ2, sl2) so that
the result is still in ∆. By contrast, the exit predicate provides a shortcut for an early finish
during a proof by unwinding. When reading the definitions of these predicates, the reader
should keep in mind what we want from a BD unwinding: to manage the incremental growth
of an alternative trace (that has currently reached state σ2), in response to the growth of an
original trace (that has currently reached state σ1), while considering the list of secrets sl1
that the remainder of the original trace is assumed to produce and the list of secrets sl2 that
the remainder of the alternative trace will have to produce.
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reaction ∆ (σ1, sl1) (σ2, sl2) is defined to mean that, for all t1 ∈ Trans and (σ′
1, sl

′
1) ∈

State × List(Sec) such that (σ1, sl1) t1=⇒ (σ′
1, sl

′
1), one of the following two cases holds:

(1) ¬ isObs t1 and ∆ (σ′
1, sl

′
1) (σ2, sl2); or

(2) there exist t2 ∈ Trans and (σ′
2, sl

′
2) ∈ State × List(Sec) such that (σ2, sl2) t2=⇒ (σ′

2, sl
′
2),

t1 =Obs t2 and ∆ (σ′
1, sl

′
1) (σ′

2, sl
′
2).

Thus, reaction ∆ (σ1, sl1) (σ2, sl2) describes two ways in which one can “react” to a
transition t1 taken by the original trace: (1) either ignoring it (if it is unobservable), or (2)
matching it with a transition t2 of the alternative trace. In both cases, we must stay in ∆.

iaction ∆ (σ1, sl1) (σ2, sl2) is defined to mean that there exist t2 ∈ Trans and (σ′
2, sl

′
2)

∈ State × List(Sec) such that (σ2, sl2) t2=⇒ (σ′
2, sl

′
2), ¬ isObs t2, isSec t2 and ∆ (σ1, sl1)

(σ′
2, sl

′
2).

Thus, iaction describes the possibility of an “independent” (i.e., non-reactive) action
by taking an unobservable secret-producing transition in the alternative trace. While the
unobservability requirement (¬ isObs t2) is justified by the desire to keep the observations
synchronized, the reason for the secret-producing requirement (isSec t2) is more subtle:
Repeating unobservable and non-secret-producing independent actions could indefinitely
delay the growth of the original trace while making no progress with the alternative list of
secrets, rendering unwinding reasoning unsound.

exit σ s is defined to mean that, for all states σ′ that are (¬T)-reachable from σ and all
transitions t with source σ′ such that ¬ T t, if isSec t then getSec t ̸= s.

The idea behind exit is that BD security holds trivially for original traces that are unable
to produce their due list of secrets sl1; and exit detects this (thus closing that branch of the
unwinding proof) by noticing that not even the first secret in sl1 can be produced starting
from the current state σ1 – indeed, in the definition of unwinding, exit is invoked with σ1
and head sl1.

Left unexplained so far are the (non)emptiness conditions guarding the invocations of the
reaction and exit predicates in the definition of BD unwinding. For exit, it is obvious that we
need sl1 ̸= [] for talking about the first element in sl1. But for reaction, why require that
sl1 ̸= [] or sl2 = []? Again, this decision has to do with the soundness of BD unwinding as a
proof method: If the negation of this condition is true, it means that the original trace is done
with producing its secrets (sl1 = []) and the alternative trace still has some secrets to produce
(sl2 ̸= []). In that case, we want to enforce an iaction move which, being secret-producing,
would make progress through the remaining alternative list of secrets sl2; this is achieved by
preventing a reaction move, which would be the only alternative (since an exit move needs
sl1 ̸= []). With these definitions, BD unwinding fulfills its goal:

▶ Lemma 1. [23, 37] Assume ∆ is a BD unwinding and let σ1, σ2 ∈ State such that
reach ¬ T σ1 and reach σ2. Then, for all tr1 ∈ TraceFσ1 and sl1, sl2 ∈ List(Sec),

if never T tr1, S tr1 = sl1 and ∆ (σ1, sl1) (σ2, sl2),
then there exists tr2 ∈ TraceFσ2 such that O tr2 = O tr1 and S tr2 = sl2.

In other words, assuming ∆ (σ1, sl1) (σ2, sl2) holds and given the remaining part tr1 of
the original trace (starting in σ1) which produces secrets sl1, there exists a trace tr2 that
produces the same observations and produces the desired secrets sl2. The lemma’s proof
goes by induction on the sum of the lengths of tr1 and sl2. The induction step either reaches
a contradiction (if exit is invoked), or consumes a transition from tr1 (if reaction is invoked)
or a secret from sl2 (if iaction is invoked).

To connect this result to BD security, in particular to factor in the bound B as well, we
additionally require that a BD unwinding ∆ includes the bound B in the initial state. So
we can think of ∆ as generalizing and strengthening the bound, and then maintaining it all
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3:8 Bounded-Deducibility Security

the way to the successful production of the alternative trace required by BD security. We
are closing in on the main result about BD unwinding, a consequence of the lemma taking
σ1 = σ2 = istate. It states that BD unwinding is a sound proof method for BD security.

▶ Theorem 2. (Unwinding Theorem [23,37]) Assume that the following hold:
(1) For all sl1, sl2 ∈ List(Sec), if B sl1 sl2 then ∆ (istate, sl1) (istate, sl2).
(2) ∆ is a BD unwinding.
Then A |= F .

According to this theorem, to prove BD security of a system, it suffices to define a relation
∆ and show that (1) it includes the bound B in the initial state and (2) it is a BD unwinding.

2.6 Proof compositionality
When verifying a BD security policy for a large system, defining a single monolithic BD
unwinding could be daunting. We can alleviate this by working not with a single unwinding
relation, but with a network of relations, such that any relation may “unwind” into any
number of relations in the network.

To this end, we refine the notion of BD unwinding. Given a relation ∆ and a set of relations
∆s, ∆ is a said to be a BD unwinding into ∆s if it satisfies the same conditions as in the
definition of BD unwinding, just that iaction ∆ and reaction ∆ are replaced by iaction (

∨
∆s)

and reaction (
∨

∆s), where
∨

∆s is the disjunction (i.e., union) of all the relations in ∆s.
Namely, for all (σ1, sl1), (σ2, sl2) ∈ State × List(Sec) such that σ1 is (¬T)-reachable, σ2 is
reachable and ∆ (σ1, sl1) (σ2, sl2), one of the following three cases holds:
(1) sl1 ̸= [] or sl2 = [], and reaction (

∨
∆s) (σ1, sl1) (σ2, sl2); or

(2) iaction (
∨

∆s) (σ1, sl1) (σ2, sl2); or
(3) sl1 ̸= [] and exit σ1 (head sl1).

This enables a form of sound compositional reasoning: If we verify a condition as above
for each component relation, we obtain an overall secure system.

▶ Theorem 3. (Multiplex Unwinding Theorem [37]) Let ∆s be a set of relations. For each
∆ ∈ ∆s, let next∆ ⊆ ∆s be a (possibly empty) set of “successors” of ∆, and let ∆init ∈ ∆s be
a chosen “initial” relation. Assume the following hold:
(1) For all sl1, sl2 ∈ List(Sec), if B sl1 sl2 then ∆init (istate, sl1) (istate, sl2).
(2) Each ∆ ∈ ∆s is a BD unwinding into next∆.
Then A |= F .

The network of components can form any directed graph – Fig. 2 shows an example.
However, when doing concrete proofs by unwinding, we found that the following essentially
linear network often suffices (Fig. 3): Each ∆i unwinds either into itself, or into ∆i+1 (if i ̸= n),
or into an exit component ∆e that always chooses the “exit” unwinding condition. (In practice,
∆e will collect “error” situations that break invariants, hence preventing the original trace from
producing its due secrets.) To express this, we define the notion of ∆ being a BD continuation-
unwinding into ∆s similarly to that of “BD unwinding into” but excluding the exit case, i.e.,
requiring that either (1) sl1 ≠ [] or sl2 = [], and reaction (

∨
∆s) (σ1, sl1) (σ2, sl2), or (2)

iaction (
∨

∆s) (σ1, sl1) (σ2, sl2) hold. And ∆ is said to be a BD exit-unwinding if the exit
case, (3) sl1 ̸= [] and exit σ1 (head sl1), holds. We obtain:

▶ Theorem 4. (Sequential Multiplex Unwinding Theorem [37]) Consider the indexed set of
relations {∆1, . . . ,∆n} and the relation ∆e such that the following hold:
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Figure 2 A network of unwinding compon-
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Figure 3 A linear network with exit.

(1) For all sl1, sl2 ∈ List(Sec), if B sl1 sl2 then ∆1 (istate, sl1) (istate, sl2).
(2) ∆i is a BD continuation-unwinding into {∆i,∆i+1,∆e}.
(3) ∆e is a BD exit-unwinding.
Then A |= F .

Although the Multiplex Unwinding Theorems are easy consequences of the (plain) Un-
winding Theorem, we found them to be very useful tools for managing proof complexity.

2.7 System compositionality
A complexity management desideratum equally important to proof compositionality is system
compositionality: the possibility to infer BD security for a compound system from BD security
of the components. Next, we will describe a compositionality result for a communicating
network of systems. We start with two, then we generalize to n systems.

2.7.1 Product systems
Let A1 = (State1, Act1, Out1, istate1, Trans1) and A2 = (State2, Act2, Out2, istate2, Trans2) be
two systems. We want to model communication between A1 and A2 by matching certain
transitions that these systems must take synchronously while exchanging data. This is
captured by a relation match : Trans1 → Trans2 → Bool. Transition matching gives a very
flexible communication scheme: It can model message-passing communication using the
transitions’ actions and outputs, but also shared-state communication using the transitions’
source and target states.

We will distinguish between separate (local) component actions and communication
actions. We write isComi a (for i ∈ {1, 2}) to indicate that an action a is in the latter category
for Ai. Namely, isComi a holds whenever there exist t1 and t2 such that match t1 t2 holds
and a is the action of ti.

We define the match-communicating product of A1 and A2, written A1 ×match A2, as the
following system (State, Act, Out, istate, Trans):

State = State1 × State2;
Act = Act1 +Act2 +Act1 ×Act2; thus, Act is a disjoint union of Act1 (representing separate
actions of the first component), Act2 (for separate actions of the second component), and
Act1 × Act2 (for joint communicating actions); we write (1, a1), (2, a2), and (a1, a2) for
actions of the first, second and third kind, respectively;
Out = Out1 + Out2 + Out1 × Out2; thus, like Act, Out is a disjoint union, and we use
similar notations for its elements: (1, ou1), (2, ou2) and (ou1, ou2);
istate = (istate1, istate2);
Trans contains three kinds of transitions:
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separate A1-transitions ((σ1, σ2), (1, a1), (1, ou1), (σ′
1, σ2)),

where (σ1, a1, ou1, σ
′
1) ∈ Trans1 and ¬ isCom1 a1;

separate A2-transitions ((σ1, σ2), (2, a2), (2, ou2), (σ1, σ
′
2)),

where (σ2, a2, ou2, σ
′
2) ∈ Trans2 and ¬ isCom2 a2;

communication transitions ((σ1, σ2), (a1, a2), (ou1, ou2), (σ′
1, σ

′
2)),

where (σ1, a1, ou1, σ
′
1) ∈ Trans1, (σ2, a2, ou2, σ

′
2) ∈ Trans2

and match (σ1, a1, ou1, σ
′
1) (σ2, a2, ou2, σ

′
2).

Thus, a transition t of A1 ×match A2 has exactly one of the following three forms shown
above. In the first case, t is completely determined by an A1-transition t1 = (σ1, a1, ou1, σ

′
1)

and an A2-state σ2 – we write t = sep1 t1 σ2, marking that t is given by the separate transition
t1. Similarly, in the second case we write t = sep2 σ1 t2, where t2 = (σ2, a2, ou2, σ

′
2). In the

third case, we write t = com t1 t2, marking that t proceeds as a communication transition.
Thus, in our new notation, any transition of A1 ×match A2 has either the form sep1 t1 σ2, or
sep2 σ1 t2, or com(t1, t2).

2.7.2 Product flow policies
Let F1 and F2 be flow policies for A1 and A2. Given i ∈ {1, 2}, we write (Obsi, isObsi, getObsi)
for the observation infrastructure, (Seci, isSeci, getSeci) for the secrecy infrastructure, Bi for
the declassification bound and Ti for the declassification trigger of Fi. We want to compose the
policies F1 and F2 in a natural way, forming a policy for the product A1 ×matchA2. To achieve
this, we need observation and secret counterparts of the transition-matching predicate match,
in the form of predicates matchO : Obs1 → Obs2 → bool and matchS : Sec1 → Sec2 → bool.
Triples (match,matchO,matchS) will be called communication infrastructures.

A sanity property that we will assume about our communication infrastructures is that
its matching operators are compatible with (i.e., preserved by) the secrecy and observation
infrastructure operators.
Compatible Communication: For all t1 ∈ Trans1 and t2 ∈ Trans2, if match t1 t2 then:

isSec1 t1 if and only if isSec2 t2, and in this case we have matchS (getSec1 t1) (getSec2 t2);
isObs1 t1 if and only if isObs2 t2, and in this case we have matchO (getObs1 t1) (getObs2 t2).

The product of F1 and F2 along a communication infrastructure (match,matchO,matchS),
written F1 ×(match,matchO,matchS) F2, is defined as the following flow policy for A1 ×match A2.

We start with its observation and secrecy infrastructures, which are naturally defined con-
sidering that observations and secrets can be produced either separately or in communication
steps. The observation infrastructure (Obs, isObs, getObs) is the following:

Obs1 + Obs2 + Obs1 × Obs2; thus, an element of Obs will have either the form (1, o1), or
(2, o2), or (o1, o2), where oi ∈ Obsi.
For any t ∈ Trans, isObs t and getObs t are defined as follows:

if t has the form sep1 t1 σ2, then isObs t = isObs1 t1 and getObs t = (1, getObs1 t1);
if t has the form sep2 σ1 t2, then isObs t = isObs2 t2 and getObs t = (2, getObs2 t2);
if t has the form com t1 t2, then isObs t = (isObs1 t1 and isObs2 t2) and getObs t =
(getObs1 t1, getObs2 t2).

One could argue that, when t has the form com t1 t2, isObs t should be defined not as
(1) isObs1 t1 and isObs2 t2, but as (2) isObs1 t1 or isObs2 t2, thus making the compound
transition observable if either component transition is observable. However, we will only
work under the assumption of Compatible Communication (introduced above), which makes
(1) and (2) equivalent.
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Sep1
sl ∈ sl1 ×matchS sl2 ¬ isComS1 s1

sl · [(1, s1)] ∈ (sl1 · [s1]) ×matchS sl2
Sep2

sl ∈ sl1 ×matchS sl2 ¬ isComS2 s2

sl · [(2, s2)] ∈ sl1 ×matchS (sl2 · [s2])

Empty ·
[] ∈ [] ×matchS []

Com sl ∈ sl1 ×matchS sl2 matchS s1 s2

sl · [(s1, s2)] ∈ (sl1 · [s1]) ×matchS (sl2 · [s2])

Figure 4 Shuffle product for lists of secrets.

The secrecy infrastructure (Sec, isSec, getSec) is defined similarly to the observation
infrastructure: Sec is taken to be Sec1 + Sec2 + Sec1 × Sec2, and isSec and getSec are defined
correspondingly.

The trigger T of the product flow policy is also the natural one: Any firing of the trigger
on either side, either separately or during communication, will fire the composite trigger.
Formally, we take T t to mean the following: (1) if t has the form sep1 t1 σ2, then T1 t1
holds; (2) if t has the form sep2 σ1 t2, then T2 t2 holds; (3) if t has the form com t1 t2, then
T1 t1 holds or T2 t2 holds.

It remains to define the bound B of the product flow policy. Let sl ∈ List(Sec) be a list of
secrets in the composite secret domain. Intuitively, the most restrictive bound B we can hope
for will forbid the declassification, for any lists of secrets sl1 ∈ List(Sec1) and sl2 ∈ List(Sec2)
into which sl can be decomposed (i.e., which can be combined to make up sl), of anything
beyond what can be declassified about sl1 and sl2 within the components’ bounds B1 and B2.

To capture this, we collect all valid ways of combining sl1 and sl2, via the matchS-
shuffle product operator ×matchS : List(Sec1) → List(Sec2) → Set(List(Sec)) whose inductive
definition is shown in Fig. 4. The set sl1 ×matchS sl2 contains all possible interleavings of sl1
and sl2, achieved by separate individual steps (rule Sep1 and Sep2) and communication
steps (rule Com). For i ∈ {1, 2}, isComSi s is the secret counterpart of the predicate isComi,
expressing that the secret s participates in a matchS-relationship. We define B sl sl ′ to
mean that, for all sl1, sl ′

1 ∈ List(Sec1) and sl2, sl ′
2 ∈ List(Sec2), if sl ∈ sl1 ×matchS sl2 and

sl ′ ∈ sl ′
1 ×matchS sl ′

2, then B1(sl1, sl ′
1) and B2(sl2, sl ′

2) hold.

2.7.3 Compositionality result
We next introduce some properties that refer to the flow policies F1 and F2 and the commu-
nication infrastructure (match,matchO,matchS). Together with Compatible Communication,
they will be sufficient for compositionality.
Strong Communication: For all t1 ∈ Trans1 and t2 ∈ Trans2, if the following hold:

isCom1(actOf1 t1) and isCom2 (actOf2 t2),
isObs1 t1, isObs2 t2 and matchO (getObs1 t1) (getObs2 t2),
isSec1 t1 and isSec2 t2 imply matchS (getSec1 t1) (getSec2 t2),

then match t1 t2 holds.
The property says that, for observable communicating transitions, observation matching

together with secret matching (the latter conditional on secrecy) causes the matching of the
entire transitions.
Observable Communication: For all t1 ∈ Trans1, isCom1 (actOf1 t1) implies isObs1 t1; and for
all t2 ∈ Trans2, isCom2 (actOf2 t2) implies isObs2 t2.

The property says that all communicating transitions are observable (i.e., isObs is true
for them), although it does not say anything about what can actually be observed about
them (via getObs).

ITP 2021



3:12 Bounded-Deducibility Security

Secret Polarization: For all t2 ∈ Trans2, isSec2 t2 implies isCom2 (actOf2 t2).
The property says that any A2-transition that is secret-producing must be a communic-

ating transition, which means that only A1 is able to produce secrets independently.
We are now ready to state our system compositionality result about BD security:

▶ Theorem 5. (System Compositionality Theorem [8]) Assume that the flow policies F1 and
F2 and the communication infrastructure (match,matchO,matchS) satisfy all the above prop-
erties, namely Compatible, Strong and Observable Communication, and Secret Polarization.
Moreover, assume A1 |= F1 and A2 |= F2. Then A1 ×match A2 |= F1 ×(match,matchO,matchS) F2.

In [8], we discuss in great detail this theorem’s assumptions in the context of verifying a
concrete distributed system. The main strength of the theorem is that it allows composing
general bounds and triggers. For this to work, we put restrictions on the observation and
secrecy infrastructures. Among these, Compatible Communication seems to occur naturally
in communicating systems – at least in our case studies of interest, which are multi-user web-
based systems. When targeting such systems, Strong and Observable Communication seem to
be achievable for a given desired policy via a uniform process of strengthening the observation
and secrecy infrastructures: allowing one to observe as much non-sensitive information as
possible, and making minor adjustments to the bounds and triggers to accommodate the
additional harmless information unblocked [8, App. B].

On the other hand, Secret Polarization is the major limitation of the theorem.1 For
multi-user systems, this means that, for the notion of secret defined by the flow policies
F1 and F2, only users of one of the two component systems, A1, can be allowed to upload
secrets. However, this does not prevent us from considering another notion of secret, where
the other component is the issuer, as part of a different pair of flow policies F ′

1 and F ′
2.2

Finally, an inconvenience of applying the theorem is the somewhat artificial nature of
the composite bound. While by design the composite bound is as restrictive as possible
(which is good for accuracy), in practice we would prefer a less restrictive but more readable
bound, referring to secrets of a simpler nature than the composite secrets. To obtain this, we
can perform an adjustment using a general-purpose theorem that transports a BD security
property between different observation and secret domains, possibly loosening the bound
and weakening the trigger, i.e., overall weakening the flow policy.

This works as follows. Let F and F ′ be two flow policies for a system A, where we
write (Obs, isObs, getObs) and (Obs′, isObs′, getObs′) for their observation infrastructures,
and similarly for their secrecy infrastructures, bounds and triggers. F ′ is said to be weaker
than F , written F ′ ≤ F , if there exist two partial functions f : Sec⇀ Sec′ and g : Obs⇀ Obs′

that preserve the secrecy and observation infrastructures, the bounds and the triggers, i.e.,
such that the following hold:

isSec′ t if and only if isSec t and f is defined on getSec t, and in this case f (getSec t) =
getSec′ t;
isObs′ t if and only if isObs t and g is defined on getObs t, and in this case g (getObs t) =
getObs′ t;
T t implies T′ t;
B′ sl ′ tl ′ and map f sl = sl ′ imply that there exists tl such that map f tl = tl ′ and B sl tl.

1 In [8, Sec. V.8], we discuss in great detail the technical reasons for requiring Secret Polarization, which
have to do with BD security favoring the under-specification of the time ordering between observations
and secrets.

2 See also [8, App. E] for a discussion on combining independent secret sources for more holistic multi-policy
security guarantees.
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▶ Theorem 6. (Transport Theorem [8]) If A |= F and F ′ ≤ F , then A |= F ′.

In conclusion, one can use the System Compositionality Theorem to obtain for the
composite system A1 ×match A2 a flow policy F = F1 ×(match,matchO,matchS) F2 with a strong
bound, and the Transport Theorem to produce from this a perhaps weaker but more natural
flow policy F ′ (for the same system A1 ×match A2). [8, App.A] gives more intuition on using
the two theorems in tandem.

2.7.4 The n-ary case
The System Compositionality Theorem generalizes quite smoothly from the binary to the
n-ary case. Let (Ak = (Statek, Actk, Outk, istatek, Transk))k∈{1,. . .,n} be a family of n systems.
We fix, for each k, k′ with k ̸= k′, a matching predicate matchk,k′ : Transk × Transk′ → Bool.
We write match for the family (matchk,k′)k,k′ and isComk,k′ : Actk → Bool for the corresponding
notion of communication action (belonging to Ak and pertaining to communication with
Ak′). We will make the sanity assumption that a system cannot use the same action to
communicate with different systems.
Pairwise-Dedicated Communication: If k′ ̸= k′′, then for all k the predicates isComk,k′

and isComk,k′′ are disjoint, in that there exists no a ∈ Actk such that isComk,k′ a and
isComk,k′′ a. The match-communicating product of the family of systems (Ak)k∈{1,. . .,n}, written∏match

k∈{1,. . .,n}Ak, generalizes of the binary case. Namely, it is the following system
(State, Act, Out, istate, Trans):

State =
∏

k∈{1,. . .,n} Statek; so the states are families (σk)k∈{1,. . .,n}, or (σk)k for short;
Act =

∑
k∈{1,. . .,n} Actk +

∑
k,k′∈{1,. . .,n},k ̸=k′ Actk × Actk′ ; we write (i, ai) for elements

of the i’th summand on the left (separate actions by component Ai), and ((i, ai), ( j, a j))
for elements of the (i, j)’th summand on the right (joint communicating actions by
components Ai and A j);
Out =

∑
k∈{1,. . .,n} Outk +

∑
k,k′∈{1,. . .,n},k ̸=k′ Outk × Outk′ (similarly to Act);

istate = (istatek)k∈{1,. . .,n};
Trans contains two kinds of transitions:

for i ∈ {1, . . . , n}, separate Ai-transitions ((σk)k, (i, ai), (i, oui), (σk)k[i := σ′
i ]), where

(σi, ai, oui, σ
′
i) ∈ Transi and ¬ isComi ai;

for i, j ∈ {1, . . . , n} such that i ̸= j, communication transitions (between Ai and A j)
((σk)k, ((i, ai), ( j, a j)), ((i, oui), ( j, ou j)), (σk)k[i := σ′

i , j := σ′
j]), where (σi, ai, oui, σ

′
i)

∈ Transi, (σ j, a j, ou j, σ
′
j) ∈ Trans j and matchi, j(σi, ai, oui, σ

′
i)(σ j, a j, ou j, σ

′
j).

Above, we wrote (σk)k[i := σ′
i ] for the family of states that is the same as (σk)k, except for

the index i where it is updated from σi to σ′
i ; and similarly for (σk)k[i := σ′

i , j := σ′
j].

Given the flow policies Fk for the component systems Ak and the families of matching
predicates for transitions, match = (matchk,k′)k,k′ , observations, matchO = (matchOk,k′)k,k′ ,
and secrets, matchS = (matchSk,k′)k,k′ , the product flow policy

∏(match,matchO,matchS)
k∈{1,. . .,n} Fk is

defined as a straightforward generalization of the binary case. For example, its observation
domain is

∑
k∈{1,. . .,n} Obsk +

∑
k,k′∈{1,. . .,n},k ̸=k′ Obsk × Obsk′ , so that it contains either

separate observations (k, ok) or joint observations ((k, ok), (k′, ok′)). Its trigger T is defined
on separate i-transitions to be the trigger of the i component, and on (i, j)-communication
transitions to be the disjunction of the triggers of the i and j component. And its bound
B sl sl ′ is defined from the component bounds: For all (slk)k, (sl ′

k)k ∈
∏

k∈{1,. . .,n} List(Seck),
if sl ∈×matchS(slk)k and sl ′ ∈×matchS(sl ′

k)k, then, for all k, Bk slk sl ′
k holds – where×matchS

is the n-ary matchS-shuffle product operator, which applied to a family of lists of secrets
(slk)k gives all possible interleavings of these lists achieved by separate individual steps and
communication steps.
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Now we can formulate an n-ary generalization of the System Compositionality Theorem.
Most of its assumptions will be those of the binary version, applied to all pairs of components
(k, k′) for k, k′ ∈ {1, . . . , n} and k ̸= k′. The only exception is Secret Polarization, which must
be strengthened. It is not sufficient to have a single secret issuer for every pair (k, k′), but
we need a unique secret issuer for the entire system of n components.
Unique Secret Polarization: There exists i ∈ {1, . . . , n} such that for all k ∈ {1, . . . , n} with
k ̸= i and for all t ∈ Transk, isSeck t implies isComk,i (actOfk t).

▶ Theorem 7. (System Compositionality Theorem, n-ary case [8]) Assume the following:
For all k, k′ ∈ {1, . . . , n} such that k ≠ k′, the flow policies Fk and Fk′ and their
communication infrastructure (matchk,k′ ,matchOk,k′ ,matchSk,k′) satisfy the properties of
Pairwise-Dedicated, Compatible, Strong and Observable Communication.
The families (Fk)k∈{1,. . .,n} and (matchk,k′ ,matchOk,k′ ,matchSk,k′)k,k′∈{1,. . .,n},k ̸=k′ (as a whole)
satisfy Unique Secret Polarization.
Ak |= Fk for all k ∈ {1, . . . , n}.

Then
∏match

k∈{1,. . .,n}Ak |=
∏(match,matchO,matchS)

k∈{1,. . .,n} Fk.

In conclusion, the generalization of the System Compositionality Theorem to the n-ary
case proceeds almost pairwise, but with an additional sanity assumption (Pairwise-Dedicated
Communication) and a strengthened assumption (Unique Secret Polarization).

3 Verified Systems

We have formalized in Isabelle/HOL the BD security framework (consisting of Section 2’s
concepts and theorems) [10, 35]. Recall that the framework operates on nondeterministic
I/O automata. We have instantiated it to particular (deterministic) automata representing
the functional kernels of some web-based systems. Fig. 5 shows the high-level architecture of
these systems, which follows a paradigm of security by design:

The kernel is formalized and verified in Isabelle.
The formalization is automatically translated into a functional programming language
– which in all our case studies was Scala, one of the target languages of Isabelle’s code
generator [20,21].
The translated program is wrapped in a user-friendly web application.

3.1 CoCon
CoCon [23,36,37] is an EasyChair-like conference management system, which was deployed to
two international conferences: TABLEAUX 2015 and ITP 2016 [37, §5]. The web application

Web
Application

Functional
Program

Isabelle
Specification

code generation

Figure 5 High-level architecture of the verified systems.



A. Popescu, T. Bauereiss, and P. Lammich 3:15

Table 1 Confidentiality properties for CoCon. The observations are made by a group of users G.

Secrets Declassification Trigger Declassification Bound

Paper
Some user in G is
one of the paper’s authors

Last uploaded version

Some user in G is
one of the paper’s authors
or a PC memberB

Absence of any upload

Review Some user in G is the review’s author
Last edited version
before Discussion and
all the later versions

Some user in G is the review’s author
or a non-conflicted PC memberD

Last edited version
before Notification

Some user in G is the review’s author
or a non-conflicted PC memberD

or the reviewed paper’s authorN
Absence of any edit

Discussion
Some user in G is
a non-conflicted PC member

Absence of any edit

Decision
Some user in G is
a non-conflicted PC member

Last edited version

Some user in G is
a non-conflicted PC member
or a PC memberN

or the decided paper’s authorN

Absence of any edit

Reviewer
assignment

Some user in G is
a non-conflicted PC memberR

Reviewers being
non-conflicted PC members,
and number of reviewers

Some user in G is
a non-conflicted PC memberR

or one of the reviewed paper’s authorsN

Reviewers being
non-conflicted PC members

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review

layer of Fig. 5 was realized as a thin REST API implemented in Scalatra [45] wrapped around
the verified kernel together with a stateless GUI written in AngularJS [2] that communicates
with the API.

CoCon was our first case study, which motivated the initial design and formalization of the
BD security framework. Our goal to express, let alone verify, fine-grained policies concerning
the flow of information in CoCon between users and documents, could not be supported
by the existing concepts in the literature. (See [23, §4.1] for a discussion.) Examples of
properties we wanted to express are:
(1) A group of users learn nothing about a paper beyond the last uploaded version unless

one of them becomes an author of that paper.
(2) A group of users learn nothing about a paper beyond the absence of any upload unless

one of them becomes an author of that paper or a PC member at the paper’s conference.
(3) A group of users learn nothing about the content of a review beyond the last edited

version before Discussion phase and the later versions unless one of them is that review’s
author.

The BD security trigger and bound were born out of the need to formally capture the
“unless” and “beyond” components of such properties. Tab. 1 summarizes informally the
CoCon properties we have expressed in our framework as flow policies. The observation
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Table 2 Confidentiality properties for the original CoSMed. The observations are made by a
group of users G. The trigger is vacuously false.

Secrets Declassification Bound

Content of a given post

Updates performed while or last before
one of the following holds:
– Some user in G is the admin,

is the post owner
or is friends with its owner

– The post is marked as public

Friendship status between
two given users U and V

Status changes performed while or last before
the following holds:
– Some user in G is the admin

or is friends with U or V

Friendship requests between
two given users U and V

Existence of accepted requests while or last before
the following holds:
– Some user in G is the admin

or is friends with U or V

Table 3 Confidentiality properties for CoSMeDis, lifted from CoSMed. The observations are
made by n groups of users – one group Gi at each node i. The declassification trigger is vacuously
false.

Secrets Declassification Bound

Content of a given post at node i

Updates performed while or last before
one of the following holds:
– Some user in Gi is the node’s admin,

is the post owner
or is friends with its owner

– The post is marked as public
– Some user in G j for j ̸= i is the admin at node j

or is remote friends with the post’s owner

Friendship status between
two given users U and V at node i

Status changes performed while or last before
the following holds:
– Some user at node i is the node’s admin

or is friends with U or V

Friendship requests between
two given users U and V at node i

Existence of accepted requests while or last before
the following holds:
– Some user at node i is the node’s admin

or is friends with U or V

infrastructure is always the same, given by the actions and outputs of a fixed group G of users.
The secrecy infrastructures are given by the various documents managed by the system (paper
content, review, discussion, decision) but also, in the table’s last two rows, by information
about the reviewers assigned to a paper. These properties should be read as follows: A group
of users learns nothing about the given secret (more precisely, about all the uploads or edits
performed on a document in the indicated “secret” category) beyond the indicated bound,
unless the indicated trigger becomes true. For example, the above properties (1)–(3) are
the first three shown in the table, with slightly stronger triggers factoring in the conference
phase as well, which we indicate succinctly via “phase stamps” – e.g., the presence of the
phase stamp “D” indicates the requirement that the conference must have moved into the
Discussion phase. For each type of secret, we have a range of increasingly restrictive bounds
matched by increasingly weaker triggers – indeed, the more we tighten the bound (meaning
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we allow less information to flow), the weaker the trigger becomes (since there are more
events that could break the bound). This bound–trigger dynamics exhaustively characterizes
the possible flows in the system.

The notion of BD unwinding was developed and refined during the verification of CoCon’s
policies. The opportunity to take proof shortcuts (via the exit predicate) was discovered
during practical “proof hacking” sessions, and led to major simplifications in the development.
The different unwinding components in the Sequential Multiplex Unwinding Theorem were
naturally mapped to the different phases of a conference’s workflow.

3.2 CoSMed
CoSMed [9,11] is a simple Facebook-style social media platform, where users can register,
create posts and establish friendship relationships. It was implemented following the same
high-level architecture as CoCon. But unlike CoCon, CoSMed is only a research prototype,
not intended for practical use.

CoSMed’s confidentiality properties raised new challenges and inspired a more expressive
way of modeling flows. In the style of CoCon, we could have specified and proved properties
such as:

A group of users learn nothing about a post unless one of them is the admin, or is the
post’s owner, or becomes friends with the owner, or the post gets marked as public.

Remember that the trigger introduced via “unless” expresses a condition in whose presence
the property stops guaranteeing anything – in other words, a trigger opens an access window
indefinitely. While true, such a property is not strong enough to be useful for CoSMed, where
both friendship and public visibility can be freely switched on and off by the owner at any
time (e.g., by “unfriending” a user, and later “friending” them again). Instead, we wanted to
prove more dynamic flow policies, reflecting any number of successive openings and closings
of the access windows during system execution.

Tab. 2 summarizes informally the BD security properties that we ended up proving for
CoSMed. The observation infrastructure is again given by a group G of users, and the secrecy
infrastructure refers to either the content of a given post, or to information on the friendship
status between two users or on the issued friendship requests. For example, the property on
the first row is the dynamic-flow refinement of the coarser property discussed above:

A group of users learn nothing about a post beyond the updates performed while (or last
before) one of them is the admin, or is the post’s owner, or becomes friends with the
owner, or the post is marked as public.

Thus, the “beyond–unless” bound-trigger combination we had employed for CoCon gave
way to a “beyond–while” scheme for CoSMed, where “while” refers to the allowed access
windows. To achieve this formally, we made the triggers vacuously false (i.e., deactivated
them completely) and incorporated the opening and closing of access windows in inductively
defined bounds. [9] discusses in detail this paradigm shift, which however did not require
adjustments to the framework itself.

3.3 CoSMeDis
CoSMeDis [8, 12] is a multi-node distributed extension of CoSMed that follows a Diaspora-
style scheme [1]: Different nodes can be deployed independently at different internet locations.
The admins of any two nodes can initiate a protocol to connect these nodes, after which
the users of one node can establish friendship relationships and share data with users of the
other. Thus, a node of CoSMeDis consists of CoSMed plus actions for connecting nodes and
cross-node post sharing and friending.
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Our goal was to extend the confidentiality properties we had verified for CoSMed first to
one CoSMeDis node, then to the multi-node CoSMeDis network. [8] describes in great detail
this verification extension effort, which led to the discovery of the System Compositionality
Theorems. The outcome was the properties shown in Tab. 3, which are natural multi-node
generalizations of CoSMed’s properties (from Tab. 2). They were obtained by applying the
n-ary System Compositionality Theorem, then the Transport Theorem to switch to more
readable secrets and bounds.

4 Related Work

We only discuss briefly the most related work, focusing on the general framework rather than
the verification case studies. For more comprehensive literature comparisons (which also
cover verification), we refer to our earlier papers [8, 9, 37].

Since we aimed for high expressiveness and precision, we defined BD security by quantifying
over execution traces of general systems. This “heavy duty” approach, sometimes called
system-based security [26], can be contrasted with language-based security [42], concerned with
coarser-grained but tractable notions that can be automatically analyzed on programming
language syntax.

BD security provides an expressive realization of Sabelfeld and Sands’s dimensions of
declassification [44] in a system-based setting. It descends from the epistemic logic [40]
inspired tradition of modeling information-flow security, pioneered by Sutherland with
Nondeducibility [46] and continued with Halpern and O’Neill’s Secrecy Maintenance [22]
and with Askarov et al.’s Gradual Release [3–6], the latter developed in a language-based
setting. Our BD unwinding is a non-trivial generalization of unwinding proof methods going
back to Goguen and Meseguer [19] and Rushby [41], which have been extensively studied as
part of Mantel’s MAKS framework [24,26]. Unlike these predecessors which use safety-like
unwinding conditions, BD unwinding combines safety with liveness: In the BD unwinding
game, the “defender”, who builds the alternative trace tr2, must

not only be able to always stay in the game – a safety-like property,
but also be able to eventually produce the alternative secrets sl2 (provided the “attacker”,
who controls the original trace tr1, has produced all the original secrets sl1) – a liveness-like
property.

Because of the restrictive way of handling the liveness part of the aforementioned game, BD
unwinding is not a complete proof method, in that it cannot prove every instance of BD
security. We leave a complete extension of BD unwinding as future work.

Our system compositionality result joins a body of technically delicate work in system-
based security, where the difficult terrain was recognized early on [27]. Several frameworks
have been developed in various settings, e.g., event systems [25], reactive systems [39]
and process calculi [13, 17]. Some of these focus on formulating very restricted classes of
security properties that are always guaranteed to be preserved under a given notion of
composition, such as McCullough’s Restrictiveness [28]. Others, such as Mantel’s MAKS
framework [24, 25], formulate side conditions on the components’ security properties that
guarantee compositionality. Our result is in the latter category, and refers to a significantly
more expressive notion of information-flow security than its predecessors (which is not to say
that our result subsumes these previous results).

Temporal logics designed for information-flow security, such as SecLTL [15] and
HyperCTL∗ [14,16,38], can express similar-looking properties to the instances of BD security
we verified for CoCon – though semantically they differ by interpreting trace quantification
synchronously.
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Abstract
We present the “ProofWidgets” framework for implementing general user interfaces (UIs) within an
interactive theorem prover. The framework uses web technology and functional reactive programming,
as well as metaprogramming features of advanced interactive theorem proving (ITP) systems to allow
users to create arbitrary interactive UIs for representing the goal state. Users of the framework can
create GUIs declaratively within the ITP’s metaprogramming language, without having to develop
in multiple languages and without coordinated changes across multiple projects, which improves
development time for new designs of UI. The ProofWidgets framework also allows UIs to make
use of the full context of the theorem prover and the specialised libraries that ITPs offer, such as
methods for dealing with expressions and tactics. The framework includes an extensible structured
pretty-printing engine that enables advanced interaction with expressions such as interactive term
rewriting. We exemplify the framework with an implementation for the leanprover-community fork
of Lean 3. The framework is already in use by hundreds of contributors to the Lean mathematical
library.
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1 Introduction

Modern ITP systems such as Isabelle, Coq and Lean use advanced language servers and
protocols to interface with text editors to produce a feature-rich proving experience. These
systems have helpful features such as syntax highlighting and code completion suggestions
as would be found in normal programming language tooling. They additionally include
prover-specific features such as displaying the goal state and providing interactive suggestions
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of tactics to apply in proof construction. ITP offers some additional GUI1 challenges above
what one might find in developing an editor extension for a standard programming language,
because the process of proving is inherently interactive: the user is constantly observing the
goal state of the prover and using this information to inform their next command in the
construction of a proof.

During research into new ways of interacting within Lean 3 theorem prover, we became
frustrated with the development workflow for prototyping GUIs for ITP. Each time the
interface design changes, one needs to coordinate changes across three different codebases;
the Lean core, the VSCode2 editor extension and our project directory. It became clear
that any approach to creating GUIs in which the editor code needs to be aware of the
datatypes used within the ITP metalogic is doomed to require many coordinated changes
across multiple codebases. This inspired our alternative approach; we designed a full-fledged
GUI framework in the metalogic of the ITP itself. This approach has the advantage of
tightening the development loop and has more general use outside of our particular project,
and across different ITP systems in general.

In this paper we present the ProofWidgets framework, which enables implementation of
UIs with a wide variety of features, for example:

Interactive term inspection: the ability to inspect the tree structure of expressions by
hovering the mouse over different parts of a pretty printed expression.
Discoverable tactics: interactive suggestions of available tactics for a given goal.
Discoverable term rewriting: the ability to inspect the equational rewrites at a particular
position in the expression tree.
Custom visualisations of structures like matrices, plots and graphs as well as rendering
LATEX mathematical typesetting.
The ability to implement language features such as go-to-definition for pretty-printed
expressions (as opposed to just text that appears in the editor).

Some of these features have been implemented to an extent within other provers (see
Section 5). However, ProofWidgets provides a unified, underlying framework for implementing
user interfaces in general, which can be used to implement these features in a customisable,
extensible and portable way.

The contributions presented in this paper are:
A new and general framework for creating portable, web-based, graphical UIs within a
theorem prover.
A functional API for creating widgets within the meta-programming framework of a
theorem prover.
An implementation of this framework for the Lean theorem prover.
A new representation of structured expressions for use with widgets.
A description and implementation of a goal-state widget used to interactively show and
explore goal states within the Lean theorem prover.

This paper is structured as follows. In Section 2 we provide an overview of some back-
ground topics to contextualise the work. Section 3 details the design goals and specification
of the ProofWidgets framework. Section 4 presents the ProofWidgets implementation for
Lean 3. Section 5 discusses related approaches. Section 6 is the conclusion and contains
some potential ideas for future work and extensions to the framework.

1 Graphical User Interface
2 Visual Studio Code code.visualstudio.com

code.visualstudio.com
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2 Background

2.1 Web-apps
Web-apps are ubiquitous in modern software. By a web-app, we mean any software that uses
modern browser technology to implement a graphical application. Web-apps are attractive
targets for development because they are platform independent and can be delivered from
a server on the internet using a browser or be packaged as an entirely local app using a
packaging framework such as electron. Many modern desktop and mobile applications such
as VSCode are thinly veiled browser windows.

To summarise the anatomy of a web-app: the structure of a web-page is dictated by a tree
structure called the Document Object Model (DOM). The DOM is an abstract representation
of the tree structure of an XML or HTML document with support for event handling as
might occur as a result of user interaction. The word fragment is used to denote a valid
subtree structure that is not the entire document. So for example, an “HTML fragment” is
used to denote a snippet of HTML that could be embedded within an HTML document.
With the help of a CSS style sheet, the web browser paints this DOM to the screen in a
way that can be viewed and interacted with by a user. Through the use of JavaScript and
event handlers, a webpage may manipulate its own DOM in response to events to produce
interactive web-applications. Modern browsers support W3C standards for many advanced
features: video playback, support for touch and ink input methods, drag and drop, animation,
3D rendering and many more. HTML also has a set of widely supported accessibility features
called ARIA which can be used to ensure that apps are accessible to all. The power of
web-apps to create portable, fully interactive user interfaces has clear applications for ITP
and indeed many have already been created (see Section 5 for a review).

2.2 Code editors and client-server protocols
Some modern code editors such as Atom and VSCode are built using web technology. In
order to support tooling features such as go-to-definition and hover information, these editors
act as the client in a client/server relationship with an independently running language server.
As the user modifies the code in the client editor, the client communicates with the server:
notifying it when the document changes and sending requests for specific information based
on the user’s interactions. As noted in the introduction, in ITP this communication is more
elaborate than in a normal programming language.

The most important thing to note here is that changing the communication protocol
between the client and the server is generally hard, because the developer has to update the
protocol in both the server and the client. There may even be multiple clients. This makes
it difficult to quickly iterate on new UI designs. A way of solving this protocol problem is to
offer a much tighter integration by combining the codebases for the editor and the ITP. This
is the approach taken by Isabelle/PIDE/jEdit [21] and has its own trade-offs as discussed
further in Section 5.

2.3 Functional GUI frameworks
Most meta-level programming languages for ITPs are functional programming languages.3
However GUIs are inherently mutable objects that need to react to user interaction. Reactive
programming [1] enables the control of the inherently mutating GUI within a pure functional

3 ML and Scala for Isabelle, OCaml for Coq, Lean for Lean.
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programming interface.4 The ideas of reactive programming have achieved a wide level
of adoption in web-app development thanks to the React JavaScript library and the Elm
programming language [6].

The programming model used by these reactive frameworks is to model a user interface
as a pure view function from a data source (e.g., a shopping list) to a DOM tree and an
update function for converting user input events to a new version of the data (e.g., adding
an item to the shopping list). Once the update function is applied and the data has been
updated, the system reevaluates the view function on the new data and mutates the DOM to
update. Although this may sound inefficient - recomputing the entire tree each time - there
is an optimisation available: if the view function contains nested view functions, one can
memoise these functions and avoid updating the parts of the DOM that have not changed.

A performance bottleneck in web-apps is the layout and painting stages of the browser
rendering pipeline; the process by which the abstract DOM is converted to pixels on a
screen.5 One way to reduce the processing time spent on layout and painting is to minimise
the number of changes made to the DOM. Both Elm and React achieve this through use of
a “Virtual DOM” (VDOM). This is where a shadow tree isomorphic to the DOM is kept.
When the data updates, the view function creates a new VDOM tree. This tree is then diffed
with the previous VDOM tree to produce a minimal set of changes to the real DOM. In
React, this diffing algorithm is called reconciliation.6

2.4 Lean
Lean [8] is an interactive theorem prover whose underlying logic is a dependent type theory
called the calculus of inductive constructions. Lean verifies the correctness of proofs using
its kernel, which type-checks proof terms (terms whose type is a proposition). Most users
of Lean prove theorems using its tactic language. This language amounts to a sequence
of invocations of the tactic monad, which enables one to write proof scripts in a similar
style to that popularised by the LCF provers [12]. Most notably for our purposes, between
each tactic invocation, Lean stores the goal state at that point, which amounts to a list of
contexts and types that need to be inhabited to complete the proof. This goal state is pretty
printed and sent for viewing in the client editor as plaintext, with some additional formatting
(i.e., syntax highlighting) applied in the client. Lean also allows users to write custom tactic
languages.

3 Framework architecture

The ProofWidgets framework has the following design goals:

Programmers write GUIs using the metaprogramming framework of the ITP.
Programmers are given an API that can produce arbitrary DOM fragments, including
inline CSS styles.
No cross-compilation to JavaScript or WebAssembly: the GUI-generating code must run in
the same environment as the tactic system. This ensures that the user interaction handlers
have full access to the tactic execution context, including the full database of definitions

4 A similar paradigm is that of functional reactive programming (FRP) first invented by Elliot [9]. This is
distinguished from general reactive programming by the explicit modelling of time.

5 See this chromium documentation entry for more information on critical paths in browser rendering.
https://www.chromium.org/developers/the-rendering-critical-path

6 https://reactjs.org/docs/reconciliation.html

https://reactjs.org
https://www.chromium.org/developers/the-rendering-critical-path
https://reactjs.org/docs/reconciliation.html


E. W. Ayers, M. Jamnik, and W. Gowers 4:5

and lemmas, as well as all of the metaprogramming library. In a cross-compilation based
approach (implementation difficulty notwithstanding), the UI programmer would have to
choose which parts of this context to export to the client.
To support interactively discoverable tactics, the system needs to be able to command
the client text editor to modify its sourcetext.
The pretty printer must be extended to allow for “interactive expressions”: expressions
whose tree structure may be explored interactively.
Programmers should be able to create visualisations of their data.
It should be convenient for programmers to be able to style their GUIs in a consistent
manner.
The GUI programming model should include some way of managing local UI state, for
example, whether or not a tooltip is open.
The GUI should be presented in the same output panel that the plaintext goal state was
presented in.
The framework should be backwards compatible with the plaintext goal state system.
Users should be able to opt out of the GUI if they do not like it or want to use a non
web-app editor such as Emacs.

These goal specifications led us to design ProofWidgets to use a declarative VDOM-
based architecture similar to that used in the Elm programming language [6] and the React
JavaScript library. By using the same programming model, we can leverage the familiarity
with commonly used React and Elm. In the following subsections we will detail the design of
ProofWidgets, starting with the UI programming model (Section 3.1) and the client/server
protocol (Section 3.2).

3.1 UI programming model
New user interfaces are created using the Html and Component types. A user may define an
HTML fragment by constructing a member of the inductive datatype Html, which is either
an element (e.g., <div></div>), a string or an object called a component to be discussed
shortly.

These fragments can have event handlers attached to them. For example, a button could
have an event attribute onclick (as used in Listing 1) which accepts a handler h : (Unit → α)
sending the unit type to a member of some type α. When this interface is rendered in the
client and the button is clicked, the server is notified and causes the node to “emit” the
element h() : α. The value of h() is then propagated towards the root of the Html tree until
it reaches a component.

A component is an inductive datatype taking two type parameters: π (the props type)
and α (the action type).7 It represents a stateful object in the user interface tree where the
state s : σ can change as a result of a user interaction event. By “stateful” we mean an object
which holds some mutating state for the lifetime of the user interface. Through the use of
components, it is possible to describe the behaviour of this state without having to leave the
immutable world of a pure functional programming language. Three functions determine the
behaviour of the component:

init : π → σ initialises the state.
view : π → σ → Html α maps the state to a VDOM tree.

7 This is designed to be familiar to those who use React components https://reactjs.org/docs/
components-and-props.html.
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Figure 1 The output rendering of counter created in Listing 1.

update : π → α → σ → σ × Option β is run when a user event is triggered in the
child HTML tree returned by view. The emitted value a : α is used to produce a tuple
σ × Option β consisting of a new state s : σ and optionally, a new event b : β to emit. If
the new event is provided, it will propagate further towards the root of the VDOM tree
and be handled by the next component in the sequence.

For example, a simple counter component (see Listing 1 and Figure 1) has an integer s for
a state, and updating the state is done through clicking on the “increment” and “decrement”
buttons which will emit 1 and −1 when clicked. The values a are used to update the state to
a + s. Creating stateful components in this way has a variety of practical uses when building
user interfaces for inspecting and manipulating the goal state. We will see in Section 4.1 that
a state is used to represent which expression the user has clicked. Indeed, an entire tactic
state can be stored as the state of the component. Then the update function runs various
tactics to update the tactic state and output the new result.

Listing 1 Pseudocode listing showing a simple counter app showcasing statefulness. The output
is shown in Figure 1.
counter : Component Unit Empty
counter := with_state

( init = (p 7→ 0)
, view = (p 7→ i 7→

<div >
<button onclick ={() 7→ 1}>" increment "</ button >
i

<button onclick ={() 7→ −1}>" decrement "</ button >
</div >)

, update = (p 7→ a 7→ s 7→ (a + s, none))
)

3.2 Client/server protocol
Once the programmer has built an interface using the API introduced in Section 3.1, it
needs to be rendered and delivered to the browser output window. ProofWidgets extends the
architecture discussed in Section 2.2 with an additional protocol for controlling the life-cycle
of a user interface rendered in the client editor (Figure 2). When a sourcefile for the prover
is opened (in Figure 2, myfile.lean), the server begins parsing, elaborating and verifying
this sourcefile as usual. The server incrementally annotates the sourcetext as it is processed
and these annotations are stored in memory. The annotations include tracing diagnostics
messages as well as thunks8 of the goal states at various points in a proof. When the user

8 A thunk is a lazily evaluated expression.
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Figure 2 The architecture of the ProofWidgets client/server communication protocol. Arrows
that span the dividing lines between the client and server components are API requests and responses.
The contribution of this paper is present in the section marked “ProofWidgets protocol”. The arrows
crossing the boundary between the client and server applications are sent in the form of JSON
messages. Rightward arrows are requests and leftward arrows are responses.

clicks on a particular piece of sourcecode in the editor (“text cursor move” in Figure 2),
the client makes an info request for this position to the server, which responds with an ok
response containing the logs at that point.

The ProofWidgets protocol extends the info messages to allow the prover to similarly
annotate various points in the document with VDOM trees as introduced in Section 2.3. These
annotating components have the type Component TacticState Empty where TacticState
is the current state of the prover and Empty is the uninhabited type. A default component
for rendering goals of proof scripts is provided, but users may override this with their own
components. The VDOM trees are derived from this component, where the VDOM has the
same tree structure as the Html datatype (i.e., a tree of elements, strings and components),
but the components in the VDOM tree also contain the current state and the current child
subtree of the component. This serves the purpose of storing a model of the current state of
the user interface. These VDOMs can be rendered to HTML fragments that are sent to the
client editor and presented in the editor’s output window.

There are two ways to create a VDOM tree from a component: from scratch using
initialisation or by updating an existing VDOM tree using reconciliation.

ITP 2021
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Initialisation is used to create a fresh VDOM tree. To initialise a component, the system
first calls init to produce a new state s. s is fed to the view method to create an Html
tree t. Any child components in t are recursively initialised.

The inputs to reconciliation are an existing VDOM tree v and a new Html tree t. t is
created when the view function is called on a parent component. The goal of reconciliation
is to create a new VDOM tree matching the structure of t, but with the component states
from v transferred over. The tree diffing algorithm that determines whether a state should be
transferred is similar to the React reconciliation algorithm9 and so we will omit a discussion
of the details here. The main point is that when a user interface changes, the states of the
components are preserved to give the illusion of a mutating user interface.

For interaction, the HTML fragment returned from the server may also contain event
handlers. Rather than being calls to JavaScript methods as in a normal web-app, the client
editor intercepts these events and forwards them to the server using a widget_event request.
The server then updates the component according to the event to produce a new Html tree
that is reconciled with the current VDOM tree. The ProofWidgets framework then responds
with the new HTML fragment derived from the new VDOM tree. In order to ensure that
the correct event handler is fired, the client receives a unique identifier for each handler that
is present on the VDOM and returns this identifier upon receiving a user interaction. So, in
effect, the ITP server performs the role of an event handler: processing a user interaction and
then updating the view rendered to the screen accordingly. In addition to updating the view,
the response to a widget_event request may also contain effects. These are commands to
the editor, for example revealing a certain position in the file or inserting text at the cursor
position. Effects are used to implement features such as go-to definition and modifying the
contents of sourcefiles in light of a suggested modification to advance the proof state. If a
second user interaction event occurs while the first is being handled, the server will queue
these events.

The architecture design presented above is a different approach to how existing tools
handle the user interface. It offers a much smaller programming API consisting of Component
and Html and a client/server protocol that supports the operation of arbitrary user interfaces
controlled by the ITP server. Existing tools (Section 5) instead give fixed APIs for interaction
with the ITP, or support rendering of custom HTML without or with limited interactivity.

To implement ProofWidgets for an ITP system, it is necessary to implement the three
subsystems that have been summarised in this section: a programming API for components;
the client editor code (i.e., the VSCode extension) that receives responses from the server
and inserts HTML fragments to the editors output window; and the server code to initialise,
reconcile and render these components.

4 Implementation and applications

In this section, we present the Lean implementation of ProofWidgets and discuss a set of
example widgets for interacting with proof objects.

The VSCode extension for Lean10 has an output pane called the “infoview” (the right-
hand pane in Figure 3) which is configured to use the ProofWidgets protocol. This infoview
window runs as a sandboxed web-browser instance and uses React to manage updating the

9 https://reactjs.org/docs/reconciliation.html
10 https://github.com/leanprover/vscode-lean

https://reactjs.org/docs/reconciliation.html
https://github.com/leanprover/vscode-lean
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Figure 3 Screenshot showing the interactive expression view in action within the Lean theorem
prover. The left-hand pane is the Lean source document and the right-hand pane is the infoview
showing the context and expected type at the editor’s cursor. There are two nested tooltips; one
giving information about an expression in the infoview and the other on an expression within the
first tooltip. The information that the tooltip provides is customisable, currently showing the type
of the expression and a list of implicit arguments for the given expression.

DOM based on the HTML fragments received from the server. Lean ProofWidgets can also
work over remote proving sessions (where the client editor is running on a different machine
to the ITP server, possibly in another country).

4.1 Interactive Expressions
By “interactive expressions” we mean augmenting a printed expression string with a mapping
structure such that the software can determine the correspondence between substrings and
subexpressions. This mapping can then be used to create interactive term inspectors and
tactics. As will be discussed in Section 5, pretty printing with this additional information
is not a novel feature, however the way in which we have designed it makes these features
available for producing proofs. Richly decorating expressions returned from the prover was
first described by Bertot and Laurent as ’proof by pointing’ [4].

An example of the interactive expression module in action is given in Figure 3: as one
hovers over the various expressions and subexpressions in the infoview, one gets semantically
correct highlighting for the expressions, and when you click on a subexpression, a tooltip
appears containing type information. This tooltip is itself a component and so can also be
interacted with, including opening a nested tooltip.

A number of other features are demonstrated in Figure 3:
Hovering over subterms highlights the appropriate parts of the pretty printed string.
The buttons in the top right of the tooltip activate effects including a “go to definition”
button and a “copy type to clipboard” button.
Expressions within the tooltip can also be explored in a nested tooltip. This is possible
thanks to the state tracking system detailed in Section 3.2.

Note that the Lean editor already has features for displaying type information for the
source document with the help of hover info. However, this tooltip mechanism is only
textual (not interactive) and only works on expressions that have been written in the source
document. Prior to ProofWidgets there was no way to inspect expressions as they appeared
in the infoview.
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Figure 4 An expression tree for (x ++ y) ++ [1,2] is shown in Figure 4a. Each f or a above the
lines is an expression coordinate. The red [a,a,f,a] example of an expression address, corresponding
to the red line on the tree. Each green circle in the tree will pretty-print to a string independent
of the expression tree above it. Figure 4b shows a eformat tree produced by pretty-printing the
expression (x ++ y) ++ [1,2]. The green circles are eformat.tag constructors and the blue address
text within is the relative address of the tag in relation to the tag above it. So that means that the
full expression address for a subterm can be recovered by concatenating the Addresses above it in
the tree, for example the 2 subexpression is at [] ++ [a] ++ [a,f,a] = [a,a,f,a].

All of the code which dictates the appearance and behaviour of the infoview widget is
written in Lean and reloads dynamically when its code is changed. This means that users
can produce their own custom tooltips and improve upon the infoview experience within
their own Lean project.

In terms of performance, the generality of the ProofWidgets architecture means that it
is possible for the user of the UI to execute long-running calculations or to render a large
VDOM. This would result in creating a sluggish UI. However, for realistic use cases, such
as producing a goal state widget as shown in Figure 3, the system should be responsive.
Using the Chromium developer tools, the round trip time from a mouse pointer movement
to updating the pixels on the screen was measured to be less than 80ms on an Intel i7
laptop from 2012 for a goal state widget with over 1000 VDOM nodes. This means that the
system can easily handle events that need to be responsive without requiring more advanced
hardware requirements than would be needed for ITP without ProofWidgets.

To support interactive expressions, we modified the Lean pretty-printer. Prior to our
modifications, the pretty-printer would take an expression and a context for the expression
and produce a member of the format type. This is implemented as a symbolic expression
or “sexpr” a la LISP [17]. Our modification causes the pretty-printer to instead produce an
instance of eformat. eformat is the same as format except that certain points in the sexpr
tree are tagged with two pieces of information: the subexpression that produced the substring
and an expression address indicating where the subexpression lies in the parent expression.
The expression address is a list of expression coordinates used to reference subterms of an
expression. By expression coordinate, we mean an enum that indexes the recursive arguments
in the constructors for an expression. This is visualised in Figure 4a and Figure 4b. Listing 2
gives a simplified picture of the datatypes used to define expression coordinates and eformat.

The eformat tags act as a reversed source-map between the resulting sexpr and the
original expression. This tagging also works beneath specialised syntax such as lists [1,2,3]
and set comprehensions. This tagged string is used to create ProofWidgets that allow users
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Listing 2 Simplified datatypes to demonstrate expression coordinates and eformat. Here the
simplified expr datatype has four constructors for creating variables, function application, lambda
abstraction and constants. Next, define coordinates coord on expr. Each constructor of coord
corresponds to a different recursive argument in a constructor for expr. An eformat is a string with
structural information present.
inductive expr
| var : string → expr
| app : expr → expr → expr
| lam : string → expr → expr
| const : string → expr

inductive coord
| f | a | lam_body

def address := list coord

inductive eformat
| tag : expr → address → eformat → eformat
| append : eformat → eformat → eformat
| of_string : string → eformat

to interactively inspect various parts of the expression in the infoview. In the case of a
subexpression being below a binder (e.g., in the body of a lambda expression) the pretty
printer instantiates the de-Bruijn [7] variable with a dummy local variable, so the given
subexpression doesn’t contain free de-Bruijn variables and still typechecks without having to
know the binders above the subexpression.

To render an interactive expression, we define a stateful component:11

p : component (tactic_state × expr) empty

The tactic_state object includes some contextual information such as metavariable context
that are needed to print the expression correctly. The state of p includes an optional address
of the expression. When the user hovers over a particular point in the printed eformat, the
expression address corresponding to that part of the string is calculated using the tags and
this address is set as the state of the component. This address is then used to colour in the
portion of the string that is currently hovered over by the user’s mouse cursor which gives
the semantic-aware highlighting effect.

4.2 Use within the Lean community
Our Lean implementation of the ProofWidgets framework has been adopted in to the
leanprover-community fork of Lean 3 and mathlib, Lean’s library of formalised mathemat-
ics [16]. The library is highly active and has hundreds of contributors using the widgets
system12 to render goal states.

11 The sourcecode for this component within mathlib, the Lean mathematical library, can be found at https:
//github.com/leanprover-community/mathlib/blob/master/src/tactic/interactive_expr.lean.

12 See https://leanprover-community.github.io/mathlib_stats.html for statistics on mathlib contri-
butions.
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Figure 5 Community-made projects using ProofWidgets. In order, these are: explode proof
viewer for inspecting proof terms by Minchao Wu; Mathematica bridge for viewing plots using
Mathematica by Robert Y Lewis and Minchao Wu; Sudoku solver and visualiser by Markus Himmel;
Rubik’s cube formalisation by Kendall Frey.

The implementation in Lean has already been picked up by the community to make a
wide variety of graphical interface solutions which can be viewed in Figure 5. Of particular
note is the Mathematica bridge by Lewis and Wu [13], which connects Lean to Wolfram
Mathematica and uses our framework to show Lean functions plotted by Mathematica.

ProofWidgets are also in use within mathlib to rapidly prototype new user interface
features as they are requested. As a concrete example: in the development of the Lean
VSCode extension, it was requested that it should be possible to filter some of the variables in
the goal state to declutter the output window (see Figure 6). This was achieved by reparsing
the textual goal state emitted by the Lean server component and removing the filtered items
using regular expressions. Using ProofWidgets, it was required to add some specific code
for the VSCode client – supporting such a feature in other editors would require rewriting
the filtering code. Additionally, if the Lean server changes how the goal state is formatted,
the filtering code would need to be rewritten. Even if an API which allows more semantic
access to the expression structure is used, such as SerAPI [10], there is still the problem
that the filtering code has to be written multiple times for each supported editor. Using
ProofWidgets, the filtering code can be written once in Lean itself and it then works in

https://github.com/leanprover-community/mathlib/pull/4718
https://github.com/leanprover-community/mathlib/pull/4718
http://robertylewis.com/leanmm/lean_mm.pdf
http://robertylewis.com/leanmm/lean_mm.pdf
https://github.com/TwoFx/sudoku
https://github.com/kendfrey/rubiks-cube-group
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
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Figure 6 Example widget for filtering goal states, an example of being able to implement new UI
features within Lean.

any editor that supports the widgets API (at the time of writing VSCode and a prototype
version of the web editor). Furthermore, Lean users are free to make any custom tweaks to
the UI without needing to make any changes to the editor code.

5 Related work

We now list some of the other tools and systems for creating user interfaces within the
context of interactive theorem proving and how they relate to our work.

Isabelle’s Prover IDE (PIDE) was developed by Wenzel in Scala and is based on the
jEdit text editor [21]. It richly annotates Isabelle documents and proof states to provide
inline documentation, interactive and customisable commands, and automatic insertion of
text, among other features. Isabelle’s development environment allows users to code their
own UI in Scala, which performs a similar role to ProofWidgets. PIDE broadly shares the
design goals of ProofWidgets, but approaches the problem differently.

An advantage of the ProofWidgets approach compared to PIDE’s is that the API between
the editor and the prover can be smaller since, in ProofWidgets, the appearance and behaviour
is entirely dictated by the server. In contrast, the implementation of PIDE is tightly coupled
to the bundled jEdit editor, which has some advantages over ProofWidgets in that it gives
more control to the developer to create new UIs. The downside of PIDE’s approach here
is that one must maintain this editor and so supporting any other editor with feature-
parity becomes difficult. ProofWidgets also makes use of modern web technology which is
ubiquitously supported. In contrast, PIDE uses a Java UI library called Swing. Creating
custom UIs in PIDE requires coding in both Scala and StandardML, and the result does not
easily generalise to the VSCode Isabelle extension.

There have been some recent efforts to support VSCode as a client editor for Isabelle files
[22]. A web-based client for Isabelle, called Clide [15] was developed, although ultimately it
provides only a subset of the functionality of the jEdit version.

SerAPI [10] is a library for machine-machine interaction with the Coq theorem prover.
This supports some web-based IDE projects such as jsCoq [11] and, recently, Alectyron [18].
Alectyron enables users to embed web-based representations of data. SerAPI contrasts to
ProofWidgets in that it expects another program to be responsible for displaying graphical
elements such as goal states and visualisations; in the ProofWidgets architecture all of the
UI appearance and behaviour code is also written in Lean, and the web-app client can render
general UIs emitted by the system.

There are some older GUI-centric theorem provers that should be mentioned: LΩUI

[19], HyperProof [3] and XBarnacle [14]. These tools were all highly innovative for including
graphical and multimodal representations of proofs, however the code for these has succumbed
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to bit rot, to the extent that they can only be viewed through the screenshots that were
included with the papers. Source code for Ωmega and CLAM (which LΩUI and XBarnacle
use respectively) can be found in the Theorem Prover Museum.13

Vicary’s Globular [2] and Breitner’s Incredible Proof Machine [5] also inspired our work.
These tools are natively web-based and offer a visual representation of the proof state for
users to manipulate. A lot of the motivation behind ProofWidgets was to bring some of this
visual pixiedust to a more general, heavyweight proof assistants.

6 Conclusion and future work

We designed the ProofWidgets framework: a general client/server protocol, a functional UI
programming API and a system for tagging pretty-printed expressions. The framework is
implemented in Lean to allow for rapid development of new modalities of interaction with
provers, all within the metalanguage of Lean. This enables a faster development cycle for
improving the UI of Lean which has a direct impact on the users of ITP. We hope that these
benefits can be brought to other interactive theorem provers in the future.

6.1 Future work

In terms of performance, in order to produce responsive interfaces that use long-running
tactics (e.g., searching a library or running a solver) it will be necessary to provide a
mechanism for allowing concurrency. At the moment, if a long-running operation is needed
to produce output, this will block the rendering process and the UI will become unresponsive
for the length of the operation. Currently, Lean has a task type which represents a ’promise’
to the result of a long-running operation, which could be utilised to solve this problem. This
could be cleanly incorporated in ProofWidgets by providing an additional hook with_task
(see Listing 3):

Listing 3 Adding concurrency to components.
component . with_task

( get_task : π → Task τ )
: ( Component (( Option τ × π) α) → ( Component π α)

Here, get_task returns a long-running task object and the props for the inner component
transition from none to some t : τ upon the completion of the task. Cancelling a task is
implemented simply by causing a rerender.

The next implementation project is to support Lean 4. Lean 4 has a bootstrapped
compiler, so the reconciling code can be written in Lean 4 itself without having to modify
the core codebase as was necessary for Lean 3. Lean 4 has an overhauled, extensible parser
system [20] which could be used to create an HTML-like domain-specific language directly
within Lean.

13 https://theoremprover-museum.github.io/

https://en.wikipedia.org/wiki/Software_rot
https://theoremprover-museum.github.io/
https://github.com/leanprover/lean4
https://theoremprover-museum.github.io/
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finite extensions of Q, called number fields, as well as their rings of integers (Section 2),
whose relations mirror the way Q contains Z as a subring. In this paper, we describe our
project aiming at formalizing these notions and some of their important properties. Our goal,
however, is not to get to the definitions and properties as quickly as possible, but rather to
lay the foundations for future work, as part of a natural and more general theory as we shall
explain below.

In particular, our project resulted in formalized definitions and elementary properties of
number fields and their rings of integers (Section 3.3), Dedekind domains (Section 4), and
the ideal class group and class number (Section 7). Apart form the very basics concerning
number fields, these concepts were not formalized before as far as we are aware of. We note
that our formal definition of the class number is an essential requirement for the use of
theorem provers in modern number theory research. The main proofs that we formalized
show that two definitions of Dedekind domains are equivalent (Section 4.3), that the ring
of integers is a Dedekind domain (Section 6) and that the class group of a number field is
finite (Section 7). In fact, most of our results for number fields are also obtained in the more
general setting of global fields.

Our work is developed as part of the mathematical library mathlib [25] for the Lean 3
theorem prover [9]. The formal system of Lean is a dependent type theory based on the
calculus of inductive constructions, with a proof-irrelevant impredicative universe Prop at the
bottom of a noncumulative hierarchy of universes Prop : Type : Type 1 : Type 2 : ... ;
“an arbitrary Type u” is abbreviated as Type*. Other important characteristics of Lean as
used in mathlib are the use of quotient types, ubiquitous classical reasoning and the use of
typeclasses to define the hierarchy of algebraic structures.

Organizationally, mathlib is characterized by a distributed and decentralized community
of contributors, a willingness to refactor its basic definitions, and a preference for small yet
complete contributions over larger projects added all at once. In this project, as part of the
development of mathlib, we followed this philosophy by contributing pieces of our work as
they were finished. We, in turn, used results contributed by others after the start of the
project. At several points, we had just merged a formalization into mathlib that another
contributor needed, immediately before they contributed a result that we needed. Due
to the decentralized organization and fluid nature of contributions to mathlib, its contents
are built up of many different contributions from over 100 different authors. Attributing
each formalization to a single set of main authors would not do justice to all others whose
additions and tweaks are essential to its current use. Therefore, we will make clear whether
a contribution is part of our project or not, but we will not stress whom we consider to be
the main authors.

The source files of the formalization are currently in the process of being merged into
mathlib. The up-to-date development branch is publically available.1 We also maintain a
repository2 containing the source code referred to in this paper.

2 Mathematical background

Let us now introduce some of the main objects we study, described informally. We assume
some familiarity with basic ring and field theory.

1 https://github.com/leanprover-community/mathlib/tree/dedekind-domain-dev
2 https://github.com/lean-forward/class-number

https://github.com/leanprover-community/mathlib/tree/dedekind-domain-dev
https://github.com/lean-forward/class-number
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A number field K is a finite extension of the field Q, and as such has the structure
of a finite dimensional vector space over Q; its dimension is called the degree of K. The
easiest example is Q itself, and the two-dimensional cases are given by the quadratic number
fields Q(

√
d) = {a + b

√
d : a, b ∈ Q} where d ∈ Z is not a square. For an interesting cubic

example, let α0 be the unique real number satisfying α3
0 + α2

0 − 2α0 + 8 = 0. It gives
rise to the number field Q(α0) = {a + bα0 + cα2

0 : a, b, c ∈ Q}. In general, taking any
root α of an irreducible polynomial of degree n over Q yields a number field of degree n:
Q(α) = {c0 + c1α + . . . + cn−1αn−1 : c0, c1, . . . , cn−1 ∈ Q}, and, up to isomorphism, these
are all the number fields of degree n.

The ring of integers OK of a number field K is defined as the integral closure of Z in K,
namely

OK :=
{

x ∈ K : f(x) = 0 for some monic polynomial f with integer coefficients
}

,

where we recall that a polynomial is called monic if its leading coefficient equals 1. While
it might not be immediately obvious that OK is a ring, this follows from general algebraic
properties of integral closures. Some examples of OK are the following. Taking K = Q,
we get OK = Z back. For K = Q(i) = Q(

√
−1) we get that OK is the ring of Gaussian

integers Z[i] = {a + bi : a, b ∈ Z}. But for K = Q(
√

5) we do not simply get Z[
√

5] =
{a + b

√
5 : a, b ∈ Z} as OK , since the golden ratio φ := (1 +

√
5)/2 ̸∈ Z[

√
5] satisfies the

monic polynomial equation φ2 − φ − 1 = 0; hence by definition, φ ∈ OK . It turns out
that OK = Z[φ] = {a + bφ : a, b ∈ Z}. Finally, if K = Q(α0) with α0 as before, then
OK = {a + bα0 + c(α0 + α2

0)/2 : a, b, c ∈ Z}, illustrating that explicitly writing down OK can
quickly become complicated. Further well-known rings of integers are the Eisenstein integers
Z[(1 +

√
−3)/2] and the ring Z[

√
2].

Thinking of OK as a generalization of Z, it is natural to ask which of its properties still
hold in OK and, when this fails, if a reasonable weakening does.

An important property of Z is that it is a principal ideal domain (PID), meaning that
every ideal is generated by one element. This implies that every nonzero nonunit element
can be written as a finite product of prime elements, which is unique up to reordering and
multiplying by ±1: a ring where this holds is called a unique factorization domain, or UFD.
For example, 6 can be factored in primes in 4 equivalent ways, namely 6 = 2 · 3 = 3 · 2 =
(−2) · (−3) = (−3) · (−2). In fact, the previously mentioned examples of rings of integers are
UFDs, but this is certainly not true for all rings of integers. For example, unique factorization
does not hold in Z[

√
−5] : it is easy to prove that 6 = 2 · 3 and 6 = (1 +

√
−5)(1 −

√
−5)

provide two essentially different ways to factor 6 into prime elements of Z[
√

−5].
As it turns out, there is a way to remedy this. Namely, by considering factorization of

ideals instead of elements: given a number field K, with ring of integers OK , a beautiful
and classical result by Dedekind shows that every nonzero ideal of OK can be factored as a
product of prime ideals in a unique way, up to reordering.

Although unique factorization in terms of ideals is of great importance, it is still interesting,
and sometimes necessary, to also consider factorization properties in terms of elements. We
mentioned that unique factorization in Z follows from the fact that every ideal is generated
by a single element. Now, it is convenient to extend the notion of ideals of Z to that of
fractional ideals. These are additive subgroups of Q of the form 1

d I with I an ideal of Z
and d a nonzero integer. When the distinction is important, we refer to an ideal I ⊆ Z as
an integral ideal. The nonzero fractional ideals of Z naturally form a multiplicative group
(whereas there is no integral ideal I ⊆ Z such that I ∗ (2Z) = (1)). The statement that
every ideal is generated by a single element translates to the fact that the quotient group of
nonzero fractional ideals modulo Q× is trivial (where a

b ∈ Q× corresponds to 1
b aZ, and as

usual, the multiplicative group of invertible elements of a ring R is denoted by R×).

ITP 2021



5:4 Dedekind Domains and Class Groups

It turns out that this quotient group can be defined for every ring of integers OK . The
fundamental theoretical notion beneath this construction is that of Dedekind domain: these
are integral domains D which are Noetherian (every ideal of D is finitely generated), integrally
closed (if an element x in Frac D (the fraction field of D) is a root of a monic polynomial
with coefficients in D, then actually x ∈ D), and of Krull dimension at most 1 (every nonzero
prime ideal of D is maximal). It can be proved that the nonzero fractional ideals of D again
form a group, and the quotient of this group by the image of the natural embedding of
(Frac D)× is called the (ideal) class group ClD.

What is arithmetically crucial is the theorem ensuring that the ring of integers OK of
every number field K is a Dedekind domain, and that in this case the class group ClOK

is
actually finite. In particular, ClOK

can be seen as “measuring” how far ideals of OK are
from being generated by a single element and, consequently, as a measure of the failure of
unique factorization. The order of ClOK

is called the class number of K. Intuitively, then,
the smaller the class number, the fewer factorizations are possible. In particular, the class
number of K is equal to 1 if and only if OK is a UFD.

The statements in the previous paragraph also hold for function fields, namely fields
which are finite extensions of Fq(t) ≃ FracFq[t], where Fq[t] stands for the ring of univariate
polynomials (in a free variable t) with coefficients in a finite field with q elements Fq. Recall
that when q is a prime number, Fq is simply the field Z/qZ. A field which is either a number
field or a function field is called a global field.

In the next sections we will describe the formalization of the above concepts.

3 Number fields, global fields and rings of integers

We refer the reader to Section 2 for the mathematical background needed in this section.
We formalized number fields as the following typeclass:

class is_number_field (K : Type*) [field K] : Prop :=
[cz : char_zero K] [fd : finite_dimensional Q K]

The class keyword declares a structure type (in other words, a type of records) and enables
typeclass inference for terms of this type. Round brackets mark parameters explicitly supplied
by the user, such as (K : Type*), square brackets mark instance parameters inferred by the
typeclass system, such as [field K]. The condition [cz : char_zero K] states that K has
characteristic zero, so the canonical ring homomorphism Z → K is an embedding. This implies
that there is a Q-algebra structure on K (found by typeclass instance search), endowing K with
the Q-vector space structure used in the [fd : finite_dimensional Q K] hypothesis.

Typeclasses were originally introduced in Haskell as a mechanism for operator overload-
ing [28], and are used throughout Lean’s core library and mathlib to endow types with
mathematical structures consisting of both operators and their properties [25]. The typeclass
system will automatically infer values for instance parameters, by searching for values of the
appropriate type among the local parameters or declarations marked as an instance [2, §10].

We defined the function field K over a finite field Fq using the following typeclass:

class is_function_field_over {Fq F : Type*} [field Fq] [fintype Fq]
[field F] (f : fraction_map (polynomial Fq) F) (K : Type*) [field K]
[algebra f.codomain K] : Prop :=

[fd : finite_dimensional f.codomain K]
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Curly brackets mark implicit parameters inferred through unification, such as {Fq F :
Type*}. The map f witnesses that F is a fraction field of the polynomial ring Fq[t], the
notation f.codomain endows F with the Fq[t]-algebra structure of Fq(t). We present a more
detailed analysis of fraction_map in Section 3.5.

3.1 Field extensions

The definition of is_number_field illustrates our treatment of field extensions. A field L

containing a subfield K is said to be a field extension L/K. Often we encounter towers of
field extensions: we might have that Q is contained in K, K is contained in L, L is contained
in an algebraic closure K of K, and K is contained in C. We might formalize this situation
by viewing Q, K, L and K as sets of complex numbers C and defining field extensions as
subset relations between these subfields. This way, no coercions need to be inserted in order
to map elements of one field into a larger field. Unfortunately, we can only avoid coercions
as far as we are able to stay within one largest field. For example, the definition of complex
numbers depends on many results for rational numbers, which would need to be proved
again, or transported, for the subfield of C isomorphic to Q.

Instead, we formalized results about field extensions through parametrization. The fields
K and L can be arbitrary types and the hypothesis “L is a field extension of K” is represented
by an instance parameter [algebra K L] denoting a K-algebra structure on L. There are
multiple possible K-algebra structures for a field L and Lean does not enforce uniqueness
of typeclass instances, but the mathlib maintainers try to ensure all instances that can be
inferred are definitionally equal. The algebra structure provides us with a canonical ring
homomorphism algebra_map K L : K → L; this map is injective because K and L are fields.
In other words, field extensions are given by their canonical embeddings.

3.2 Scalar towers

The main drawback of using arbitrary embeddings to represent field extensions is that we
need to prove that these maps commute. For example, we might start with a field extension
L/Q, then define a subfield K of L, resulting in a tower of extensions L/K/Q. In such a
tower, the map Q → L should be equal to the composition Q → K followed by K → L. Such
an equality cannot always be achieved by defining the map Q → L to be this composition:
in the example, the map Q → K depends on the map Q → L.

The solution in mathlib is to parametrize over all three maps, as long a there is also
a proof of coherence: a hypothesis of the form “L/K/F is a tower of field extensions” is
translated into three instance parameters [algebra F K], [algebra K L] and [algebra F
L], along with a parameter [is_scalar_tower F K L] expressing that the maps commute.

The is_scalar_tower typeclass derives its name from its applicability to any three types
between which exist scalar multiplication operations:

class is_scalar_tower (M N α : Type*)
[has_scalar M N] [has_scalar N α] [has_scalar M α] : Prop :=

(smul_assoc : ∀ (x : M) (y : N) (z : α), (x · y) · z = x · (y · z))

For example, if R is a ring, A is an R-algebra and M an A-module, we can state that M

is also an R-module by adding a [is_scalar_tower R A M] parameter. Since x · y for an
R-algebra A is defined as algebra_map R A x * y, applying smul_assoc for each x : K

with y = (1 : L) and z = (1 : F ) shows that the algebra_maps indeed commute.

ITP 2021
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Common is_scalar_tower instances are declared in mathlib, such as for the maps
R → S → A when S is a R-subalgebra of A. The effect is that almost all coherence proof
obligations are automated through typeclass instance search. Only when defining a new
algebra structure were we required to supply the is_scalar_tower instances ourselves. Our
reliance on typeclasses did not cause any noticeable slowness in proof checking: there was no
instance that should be found but could not due to timeouts.

3.3 Rings of integers
When K is a number field (defined as a field satifying is_number_field), the ring OK of
integers in K is defined as the integral closure of Z in K. This is the subring containing
those x : K that are the root of a monic polynomial with coefficients in Z:

def number_field.ring_of_integers (K : Type*) [field K]
[is_number_field K] : subalgebra Z K :=

integral_closure Z K

where integral_closure was previously defined in mathlib.
When K is a function field over the finite field Fq, we defined OK analogously as

integral_closure (polynomial Fq) K. To treat both definitions of ring of integers on an
equal footing, we will work with the integral closure of any principal ideal domain when
possible.

3.4 Subobjects
The ring of integers is one example of a subobject, such as a subfield, subring or subalgebra,
defined through a characteristic predicate. In mathlib, subobjects are “bundled”, in the form
of a structure comprising the carrier set and proofs showing the carrier set is closed under
the relevant operations. Bundled subobjects provide similar benefits as bundled morphisms;
the choice for the latter is explained in the mathlib overview paper [25].

Two new subobjects that we defined in our development were subfield as well as
intermediate_field. We defined a subfield of a field K as a subset of K that contains 0
and 1 and is closed under addition, negation, multiplication and taking inverses. If L is a field
extension of K, we defined an intermediate field as a subfield that is also a K-subalgebra:
a subfield that contains the image of algebra_map K L. Other examples of subobjects
available in mathlib are submonoids, subgroups and submodules (with ideals as a special case
of submodules).

The new definitions found immediate use: soon after we contributed our definition of
intermediate_field to mathlib, the Berkeley Galois theory group used it in a formalization
of the primitive element theorem. Soon after the primitive element theorem was merged
into mathlib, we used it in our development of the trace form. This anecdote illustrates the
decentralized development style of mathlib, with different groups and people building on each
other’s results in a collaborative process.

By providing a coercion from subobjects to types, sending a subobject S to the subtype
of all elements of S, and putting typeclass instances on this subtype, we could reason about
inductively defined rings such as Z and subrings such as integral_closure Z K uniformly.
If S : subfield K, there is a canonical ring embedding, the map that sends x : S to K

by “forgetting” that x ∈ S, and we registered this map as an algebra S K instance, also
allowing us to treat field extensions of the form Q → C and subfields uniformly. Similarly,
for F : intermediate_field K L, we defined the corresponding algebra K F, algebra F
L and is_scalar_tower K F L instances.
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3.5 Fields of fractions

The fraction field Frac R of an integral domain R can be defined explicitly as a quotient
type as follows: starting from the set of pairs (a, b) with a, b ∈ R such that b ̸= 0, one
quotients by the equivalence relation generated by (αa, αb) ∼ (a, b) for all α ̸= 0 : R, writing
the equivalence class of (a, b) as a

b . It can easily be proved that the ring structure on
R extends uniquely to a field structure on Frac R; in mathlib this construction is called
fraction_ring R. When R = Z, this yields the traditional description of Q as the set of
equivalence classes of fractions, where 2

3 = −4
−6 , etc. The drawback of this construction is that

there are many other fields that can serve as the field of fractions for the same ring. Consider
the field {z ∈ C : ℜz ∈ Q, ℑz ∈ Q}, which is isomorphic to Frac(Z[i]) but not definitionally
equal to it.

The strategy used in mathlib is to rather allow for many different fraction fields of our
given integral domain R, as fields K along with an injective fraction map f : R → K which
witnesses that all elements of K are “fractions” of elements of R, and to parametrize every
result over the choice of f . In the definition used by mathlib, a fraction map is a special
case of a localization map. Different localizations restrict the denominators to different
multiplicative submonoids of R \ {0}.

The conditions on f imply that K is the smallest field containing R, expressed by the
following unique mapping property. If g : R → A is an injective map to a ring A such that
g(x) has a multiplicative inverse for all x ̸= 0 : R, then it can be extended uniquely to a map
K → A compatible with f and g. In particular, if f1 : R → K1 and f2 : R → K2 are fraction
maps, they induce an isomorphism K1 ≃ K2. The construction of Frac R then results in a
field of fractions (with fraction map fraction_ring.of R) rather than the field of fractions.

This comes at a price: informally, at any given stage of one’s reasoning, the field K is
fixed and the map f : R → K is applied implicitly, just viewing every x : R as x : K. It
is now impossible to view f(R) ≤ K as an inclusion of subalgebras, because the map f is
needed explicitly to give the R-algebra structure on K. As a solution, we use a type synonym
f.codomain := K and instantiate the R-algebra structure given by f on this synonym.

3.6 Representing monogenic field extensions

In Section 2 we have informally said that every number field K can be written as K = Q(α)
for a root α of an irreducible polynomial P ∈ Q[X]. This can be made precise in several ways.
For instance, one can consider a large field L (of characteristic 0) where P splits completely,
then choose a root α ∈ L and let K = Q(α) be the smallest subfield of L containing α. Or,
one can consider the quotient ring Q[X]/P and observe that this is a field where the class X

(mod P ) is a root of P . The assignment α 7→ X (mod P ) yields an isomorphism of the two
fields, but any other choice of a root α′ ∈ L leads to another isomorphism Q(α′) ∼= Q[X]/P .
Although mathematically we often tacitly identify the constructions, there is no canonical
representation of the monogenic extensions of Q, those which can be obtained by adjoining a
single root of one polynomial.

The same continues to hold if we replace the base field Q with another field F , thus
considering extensions of the form F (α), now requiring that α be a root of some P ∈ F [X].
Various constructions of F (α) have already been formalized in mathlib. The ability to switch
between these representations is important: sometimes K and F are fixed and we want an
arbitrary α; sometimes α is fixed and we want an arbitrary type representing F (α).

ITP 2021
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To find a uniform way to reason about all these definitions, we chose to formalize the
notion of power basis to represent monogenic field extensions: this is a basis of the form
1, x, x2, . . . , xn−1 : K (viewing K as a F -vector space). We defined a structure type bundling
the information of a power basis. Omitting some generalizations not needed in this paper,
the definition reads:

structure power_basis (F K : Type*) [field F] [field K] [algebra F K] :=
(gen : S) (dim : N)
(is_basis : is_basis F (λ (i : fin dim), gen ^ (i : N)))

We formalized that the previously defined notions of monogenic field extensions are equivalent
to the existence of a power basis.

With the power_basis structure, we gained the ability to parametrize our results, being
able to choose the F and K in a monogenic field extension K/F , or being able to choose the
α generating F (α) (by setting power_basis.gen pb equal to α). To specialize a result from
an arbitrary K with a power basis over F to a specific construction of K = F (α), one can
apply the result to the power basis generated by α and rewrite power_basis.gen F(α) = α.

4 Dedekind domains

The right setting to study algebraic properties of number fields are Dedekind domains. We
formalized fundamental results on Dedekind domains, including the equivalence of two
definitions of Dedekind domain.

4.1 Definitions
There are various equivalent conditions, used at various times, for an integral domain D to
be a Dedekind domain. The following three have been formalized in mathlib:

is_dedekind_domain D: D is a Noetherian integral domain, integrally closed in its
fraction field and has Krull dimension at most 1;
is_dedekind_domain_inv D: D is an integral domain and nonzero fractional ideals of D

have a multiplicative inverse (we discuss the notion and formalization of fractional ideals
in Section 4.2);
is_dedekind_domain_dvr D: D is a Noetherian integral domain and the localization of
D at each nonzero prime ideal is a discrete valuation ring.

Note that fields are Dedekind domains according to these conventions.
The mathlib community chose is_dedekind_domain as the main definition, since this

condition is usually the one checked in practice [22]. The other two equivalent definitions were
added to mathlib, but before formalizing the proof that they are indeed equivalent. Having
multiple definitions allowed us to do our work in parallel without depending on unformalized
results. For example, the proof of unique ideal factorization in a Dedekind domain ini-
tially assumed is_dedekind_domain_inv D, and the proof that the ring of integers OK is a
Dedekind domain concluded is_dedekind_domain (ring_of_integers K). After the equiv-
alence between is_dedekind_domain D and is_dedekind_domain_inv D was formalized,
we could easily replace usages of is_dedekind_domain_inv with is_dedekind_domain.

The conditions is_dedekind_domain and is_dedekind_domain_inv require a fraction
field K, although the truth value of the predicates does not depend on the choice of K.
For ease of use, we let the type of is_dedekind_domain depend only on the domain D by
instantiating K in the definition as fraction_ring D. From now on, we fix a fraction map
f : D → K.
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class is_dedekind_domain (D : Type*) [integral_domain D] : Prop :=
(to_is_noetherian_ring : is_noetherian_ring D)
(dimension_le_one : dimension_le_one D)
(is_integrally_closed : integral_closure D (fraction_ring D) = ⊥)

The notation ⊥ is used in mathlib for the bottom element of a lattice. For example, here
⊥ denotes the smallest D-subalgebra of fraction_ring D, i.e. D itself, and ⊥ : ideal D
denotes the zero ideal.

Applications of is_dedekind_domain can choose a specific fraction field through the
following lemma exposing the alternate definition:

lemma is_dedekind_domain_iff (f : fraction_map D K) :
is_dedekind_domain D ↔

is_noetherian_ring D ∧ dimension_le_one D ∧
integral_closure D f.codomain = ⊥

We marked is_dedekind_domain as a typeclass by using the keyword class rather
than structure, allowing the typeclass system to automatically infer the Dedekind domain
structure when an appropriate instance is declared, such as for PIDs or rings of integers.

4.2 Fractional ideals
The notion which is pivotal to the definition of the ideal class group of a Dedekind domain
is that of fractional ideals: given any integral domain R with a field of fractions F , we
define is_fractional as a predicate on R-submodules J of F , informally as “there is an
x : R with xJ ⊆ R”. For a Dedekind domain, nonzero fractional ideals form a group under
multiplication. As seen in Section 3.5, this notion depends on the field K as well as on
the fraction map f : R → K. A more precise way of stating the above condition is then
f(x)J ⊆ f(R). We formalized the definition of fractional ideals relative to a map f : R → K

as a type fractional_ideal f, whose elements consist of the R-submodule of F along with a
proof of is_fractional. The structure of fractional ideals does not depend on the choice of a
fraction map, which we formalized as an isomorphism fractional_ideal.canonical_equiv
between the fractional ideals relative to fraction maps f1 : R → K1 and f2 : R → K2.

We defined the addition, multiplication and intersection operations on fractional ideals, by
showing that the corresponding operations on submodules map fractional ideals to fractional
ideals. We also formalized that these operations give a commutative semiring structure on
the type of fractional ideals. For example, multiplication of fractional ideals is defined as

lemma fractional_mul (I J : fractional_ideal f) :
is_fractional f (I * J : submodule R f.codomain) := _ -- proof omitted

instance : has_mul (fractional_ideal f) :=
⟨λ I J, ⟨I * J : submodule R f.codomain, fractional_mul I J⟩⟩

Defining the quotient of two fractional ideals requires slightly more work. Consider any
R-algebra A and an injection R ↪→ A. Given ideals I, J ≤ R, the submodule I/J ≤ A is
defined by the property

lemma submodule.mem_div_iff_forall_mul_mem {x : A} {I J : submodule R A} :
x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I
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Beware that the notation 1/I might be misleading here: indeed, for general integral domains,
the equality I ∗ 1/I = 1 might not hold. As an example, one can consider the ideal (X, Y ) in
C[X, Y ]. On the other hand, we formalized that this equality holds for Dedekind domains
(Section 4.3) as the following lemma:

lemma fractional_ideal.is_unit {hD : is_dedekind_domain D}
(I : fractional_ideal f) (hne : I ̸= ⊥) : is_unit I

This justifies the notation I−1 = 1/I. In fact, we define this notation even for the ideal 0,
by declaring that 0−1 = 0. This reflects the existence of the typeclass group_with_zero in
mathlib, consisting of groups endowed with an extra element 0 whose inverse is again 0.

Moreover, mathlib used to define a/b := a ∗ b−1, but our definition of I−1 = 1/I would
cause circularity. This led us to a major refactor of this core definition. In particular, we
had to weaken the definitional equality to a proposition; this involved many small changes
throughout mathlib.3

4.3 Equivalence of the definitions
We now describe how we proved and formalized that the two definitions is_dedekind_domain
and is_dedekind_domain_inv of being a Dedekind domain are equivalent. Let D be a
Dedekind domain, and f : D → K a fraction map to a field of fractions K of D.

To show that is_dedekind_domain_inv implies is_dedekind_domain, we follow the
proof given by Fröhlich in [14, Chapter 1, § 2, Proposition 1.2.1]. A constant challenge that
was faced while coding this proof was already mentioned in Section 3.5, namely the fact that
elements of the ring must be traced along the fraction map. The proofs for being integrally
closed and of dimension being less than or equal to 1 are fairly straightforward.

Formalizing the Noetherian condition was the most challenging. Fröhlich considers
elements a1, . . . , an ∈ I and b1, . . . , bn ∈ I−1 for any nonempty fractional ideal I, satisfying∑

i aibi = 1. However, it is quite challenging to prove that an element of the product of two D-
submodules A and B must be of the form

∑m
i=1 ai ∗bi, for ai ∈ A and bi ∈ B for all 1 ≤ i ≤ m.

Instead, we show that, for every element x ∈ A ∗ B, there are finite sets T ⊆ A, T ′ ⊆ B such
that x ∈ span (T * T’), formalized as submodule.mem_span_mul_finite_of_mem_mul.
Now considering a nonzero integral ideal I of the ring D, by definition of invertibility we can
write 1 ∈ (1 : fractional_ideal f) = I * 1 / I. Hence, we obtain finite sets T ⊂ I

and T ′ ⊂ 1/I such that 1 is contained in the D-span of T ∗ T ′. We used the norm_cast
tactic [19] to resolve most coercions, however, this tactic did not solve coercions coming from
the fraction map. With coercions, the actual statement of the latter expression in Lean is
↑T’ ⊆ ↑↑(1 / ↑I), which reads

(T’ : set (fraction_ring.of D).codomain) ⊆
(((1 / (I : fractional_ideal (fraction_ring.of D)))

: submodule D (fraction_ring.of D).codomain)
: set (fraction_ring.of D).codomain

The lemma fg_of_one_mem_span_mul then shows that I is finitely generated, concluding
the proof.

3 The pull requests are available as https://github.com/leanprover-community/mathlib/pull/5302
and https://github.com/leanprover-community/mathlib/pull/5303.

https://github.com/leanprover-community/mathlib/pull/5302
https://github.com/leanprover-community/mathlib/pull/5303
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The theorem fractional_ideal.mul_inv_cancel proves the converse, namely that
is_dedekind_domain implies is_dedekind_domain_inv. The classical proof consists of
three steps: first, every maximal ideal M ⊆ D, seen as a fractional ideal, is invertible;
secondly, every nonzero ideal is invertible, using that it is contained in a maximal ideal;
thirdly, the fact that every fractional ideal J satisfies xJ ≤ I for a suitable x ∈ D and an
ideal I ⊆ D implies that every fractional ideal is invertible, concluding the proof that nonzero
fractional ideals form a group. The third step was easy, building upon the material developed
for the general theory of fractional_ideal f. Concerning the first two, we found that
passing from the case where M is maximal to the general case required more code than
directly showing invertibility of arbitrary nonzero ideals. The formal statement reads

lemma coe_ideal_mul_one_div [hD : is_dedekind_domain D]
(I : ideal D) (hne : I ̸= ⊥) :
↑I * ((1 : fractional_ideal f) / ↑I) = (1 : fractional_ideal f)

from where it becomes apparent that we had to repeatedly distinguish between I : ideal
D, and its coercion ↑I : fractional_ideal f although these objects, from a mathematical
point of view, are identical.

The formal proof of this result relies on the lemma exists_not_mem_one_of_ne_bot,
which says that for every non-trivial ideal 0 ⊊ I ⊊ D, there exists an element in the field K

which is not integral (so, not in f(D)) but lies in 1/I. The proof begins by invoking that
every nonzero ideal in the Noetherian ring D contains a product of nonzero prime ideals. This
result was not previously available in mathlib. The dimension condition shows its full force
when applying this lemma: each prime ideal in the product, being nonzero, will be maximal
because the Krull dimension of D is at most 1; from this, exists_not_mem_one_of_ne_bot
follows easily. Having the above lemma at our disposal, we were able to prove that every
ideal I ̸= 0 is invertible by arguing by contradiction: if I ∗ 1/I ⪇ D, we can find an element
x ∈ K \ f(R) which is in 1/(1 ∗ 1/I) thanks to exists_not_mem_one_of_ne_bot and some
easy algebraic manipulation will imply that x is actually integral over D. Since D is integrally
closed, it must lie in f(D), contradicting the construction of x. Combining these results
gives the equivalence between the two conditions for being a Dedekind domain.

5 Principal ideal domains are Dedekind

As an example of our definitions, we discuss in some detail our formalization of the fact
that a principal ideal domain is a Dedekind domain. There is no explicit definition of
PIDs in mathlib, rather it is split up into two hypotheses. One uses [integral_domain R]
[is_principal_ideal_ring R] to denote a PID R, where is_principal_ideal_ring is a
typeclass defined for all commutative rings:

class is_principal_ideal_ring (R : Type*) [comm_ring R] : Prop :=
(principal : ∀ (I : ideal R), is_principal I)

Our proof that the hypotheses [integral_domain R] [is_principal_ideal_ring R]
imply is_dedekind_domain R was relatively short:

instance principal_ideal_ring.to_dedekind_domain (R : Type*)
[integral_domain R] [is_principal_ideal_ring R] :
is_dedekind_domain R :=

⟨principal_ideal_ring.is_noetherian_ring,
dimension_le_one.principal_ideal_ring _,
unique_factorization_monoid.integrally_closed (fraction_ring.of R)⟩
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Recall from Section 3 that the instance keyword marks the declaration for inference by the
typeclass system.

The Noetherian property of a Dedekind domain followed easily by the previously defined
lemma principal_ideal_ring.is_noetherian_ring, since, by definition, each ideal in a
principal ideal ring is finitely generated (by a single element).

We proved the lemma dimension_le_one.principal_ideal_ring, which is an instanti-
ation of the existing result is_prime.to_maximal_ideal, showing a nonzero prime ideal in
a PID is maximal. The latter lemma uses the characterization that I is a maximal ideal if
and only if any strictly larger ideal J ⊋ I is the full ring R. If I is a nonzero prime ideal
and J ⊋ I in the PID R, we have that the generator j of J is a divisor of the generator i of
I. Since I is prime, this implies that either j ∈ I, contradicting the assumption that J ⊋ I,
i = 0, contradicting that I is nonzero, or that j is a unit, implying J = R as desired.

The final condition of a PID being integrally closed was the most challenging. We used the
previously defined instance principal_ideal_ring.to_unique_factorization_monoid to
deduce that a PID is a unique factorisation monoid (UFM), to instantiate our proof that every
UFM is integrally closed. In the same way that principal ideal domains are generalized to
principal ideal rings, mathlib generalizes unique factorization domains to unique factorization
monoids. A commutative monoid R with an absorbing element 0 and injectivity of multipli-
cation is defined to be a UFM, if the relation “x properly divides y” is well-founded (implying
each element can be factored as a product of irreducibles) and an element of R is prime if and
only if it is irreducible (implying the factorization is unique). The first condition is satisfied
for a PID since the Noetherian property implies that the division relation is well-founded. The
second condition followed from principal_ideal_ring.irreducible_iff_prime. To prove
that an irreducible element p is prime, the proof uses that prime elements generate prime
ideals and irreducible elements of a PID generate maximal ideals. Since all maximal ideals are
prime ideals, the ideal generated by p is maximal, hence prime, thus p is prime. We proved
the lemma irreducible_of_prime, which shows the converse holds in any commutative
monoid with zero.

To show that a UFM is integrally closed, we first formalized the Rational Root Theorem,
named denom_dvd_of_is_root, which states that for a polynomial p : R[X] and an element
of the fraction field x : Frac R such that p(x) = 0, the denominator of x divides the leading
coefficient of p. If x is integral with minimal polynomial p, the leading coefficient is 1,
therefore the denominator is a unit and x is an element of R. This gave us the required
lemma unique_factorization_monoid.integrally_closed, which states that the integral
closure of R in its fraction field is R itself.

6 Rings of integers are Dedekind domains

An important classical result in algebraic number theory is that the ring of integers of
a number field K, defined as the integral closure of Z in K, is a Dedekind domain. We
formalized a stronger result: given a Dedekind domain D and a field of fractions F , if K is a
finite separable extension of F , then the integral closure of D in K is a Dedekind domain with
fraction field K. Our approach was adapted from Neukirch [22, Theorem 3.1]. Throughout
this section, let D be a Dedekind domain with a field of fractions F (given by the map
f : D → F ), K a finite, separable field extension of F and let S denote the integral closure
of D in K.
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The first step was to show that K is a field of fractions for the integral closure, namely,
there is a map fraction_map_of_finite_extension f K : fraction_map S K. The main
content of fraction_map_of_finite_extension consisted of showing that all elements
x : K can be written as y/z for elements y ∈ S, z ∈ D ⊆ S; the standard proof of this fact
(see [10, Theorem 15.29]) formalized readily.

We could then show that the integral closure of D in K is a Dedekind domain, by proving
it is integrally closed in K, has Krull dimension at most 1 and is Noetherian. The fact that
the integral closure is integrally closed was immediate.

To show the Krull dimension is at most 1, we needed to develop basic going-up theory
for ideals. In particular, we showed that an ideal I in an integral extension is maximal if it
lies over a maximal ideal, and used a result already available in mathlib that a prime ideal I

in an integral extension lies over a prime ideal.

lemma is_maximal_of_is_integral_of_is_maximal_comap
(I : ideal S) [is_prime I]
(hI : is_maximal (comap f I)) : is_maximal I

theorem is_prime.comap (I : ideal S) [hI : is_prime I] :
is_prime (comap f I)

The final condition, that the integral closure S of D in L is a Noetherian ring, required the
most work. We started by following the first half of Dummit and Foote [10, Theorem 15.29],
so that it sufficed to find a nondegenerate bilinear form B such that all integral x, y : K

satisfy B(x, y) ∈ integral_closure D K. We then formalized the results in Neukirch [22,
§§ 2.5–2.8] to show that the trace form is a bilinear form satisfying these requirements.

6.1 The trace form
In the notation from the previous section, consider the bilinear map lmul := λ x y : K,
x * y. The trace of the linear map lmul x is called the algebra trace TrK/F (x) of x. We
defined the algebra trace as a linear map, in this case from K to F :

noncomputable def trace : K →l[F] F :=
linear_map.comp (linear_map.trace F K) (to_linear_map (lmul F K))

This definition was marked noncomputable since linear_map.trace makes a case distinction
on the existence of a finite basis, choosing an arbitrary finite basis if one exists and returning
0 otherwise. This latter case did not occur in our development.

We defined the trace form to be an F -bilinear form on K, mapping x, y : K to TrK/F (xy).

noncomputable def trace_form : bilin_form F K :=
{ bilin := λ x y, trace F K (x * y), .. /- proofs omitted -/ }

In the following, let L/K/F be a tower of finite extensions of fields, namely we assumed
[algebra F K] [algebra K L] [algebra F L] [is_scalar_tower F K L], as described
in Section 3.2.

The value of the trace depends on the choice of F and K; we formalized this as lemmas
trace_algebra_map x : trace F K (algebra_map F K x) = findim F K • x as well as
trace_comp K x : trace F L x = trace F K (trace K L x). These results followed by
direct computation.

To compute TrK/F (x), it therefore suffices to consider the trace of x in the smallest field
containing x and F , which is the monogenic extension F (x) discussed in Section 3.6. There
is a nice formula for the trace in F (x), although the terms in this formula are elements in a

ITP 2021



5:14 Dedekind Domains and Class Groups

larger field L (such as the splitting field of the minimal polynomial of x). In formalizing this
formula, we first mapped the trace to L using the canonical embedding algebra_map F L,
which gave the following lemma statement:

lemma power_basis.trace_gen_eq_sum_roots (pb : power_basis F K)
(h : polynomial.splits (algebra_map F L) pb.minpoly_gen) :
algebra_map F L (trace F K pb.gen) =

sum (roots (map (algebra_map F L) pb.minpoly_gen))

We formulated the lemma in terms of the power basis, since we needed to use it for F (x)
here and for an arbitrary finite separable extension L/K later in the proof.

The elements of (pb.minpoly_gen.map (algebra_map F L)).roots are called conju-
gates of x in L. Each conjugate of x is integral since it is a root of (the same) monic
polynomial, and integer multiples and sums of integral elements are integral. Combining
trace_gen_eq_sum_roots and trace_algebra_map showed that the trace of x is an integer
multiple (namely findim F(x) L) of a sum of conjugate roots, hence we concluded that the
trace (and trace form) of an integral element is also integral.

Finally, we showed that the trace form is nondegenerate, following Neukirch [22, Proposi-
tion 2.8]. Since K/F is a finite, separable field extension, it has a power basis pb generated
by x. Letting xk denote the k-th conjugate of x in an algebraically closed field L/K/F ,
the main difficulty was in checking the equality

∑
k xi+j

k = TrK/F (xi+j). Directly applying
trace_gen_eq_sum_roots was tempting, since we had a sum over conjugates of powers on
both sides. However, the two expressions did not precisely match: the left hand side is a sum
of conjugates of x, where each conjugate is raised to the power i + j, while the conclusion of
trace_gen_eq_sum_roots resulted in a sum over conjugates of xi+j .

Instead, the paper proof switched here to an equivalent definition of conjugate: the
conjugates of x in L are the images (counted with multiplicity) of x under each embedding
σ : F (x) → L that fixes F . This equivalence between the two notions of conjugate was
contributed to mathlib by the Berkeley group in the week before we realized we needed
it. Mapping trace_gen_eq_sum_roots through the equivalence gave TrK/F (x) =

∑
σ σx.

Since each σ is a ring homomorphism, σ xi+j = (σ x)i+j , so the conjugates of xi+j are the
(i + j)-th powers of conjugates of x, which concluded the proof.

7 Class group and class number

Given a Dedekind domain with fraction map f : D → K, we formalized the notion of class
group in Lean by defining a map to_principal_ideal f : units f.codomain → units
(fractional_ideal f), and defined the class group as

def class_group := quotient_group.quotient (to_principal_ideal (range f))

In general, Dedekind domains can have infinite class groups. However, as discussed in
Section 2, the rings of integers of global fields have finite class groups.

We let K be a number field and K ′ be a function field, with ring of integers OK and
OK′ (w.r.t. a fixed Fq[t]), respectively. Most proofs of the finiteness of ClOK

one finds
in a modern textbook (see [22, Theorems 4.4, 5.3, 6.3]) depend on Minkowski’s lattice
point theorem, a result from the geometry of numbers (which has been formalized in
Isabelle/HOL [11]). Extending this proof to show the finiteness of ClOK′ is quite involved and
does not result in a uniform proof for ClOK

and ClOK′ . Our formalization instead adapted
and generalized a classical approach to the finiteness of ClOK

, where the use of Minkowski’s
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theorem is replaced by the pigeonhole principle. For an informal writeup of the proof,
used in the formalization efforts, see https://github.com/lean-forward/class-number/
blob/itp-2021-final/FiniteClassGroup.pdf. The classical approach seems to go back
to Kronecker and can be found, for instance, in [17]. We note that some other “uniform”
approaches can be found in [1] and [24].

Let D be an Euclidean domain: in particular, it will be a PID and hence a Dedekind
domain. Given a fraction map f : D → F , let K be a finite separable field extension of F . We
formalized, in the theorem class_group.finite_of_admissible, that the integral closure
of D in K has a finite class group if D has an “admissible” absolute value abs. This notion
originated in our project from the adaptation and generalization of the classical finiteness proof
in interaction with the formalization efforts. Very informally, the admissibility conditions
require that the remainder operator % produces values that are not too far apart. Formally,
we defined the type of admissible absolute values on D as follows, where to_fun is local
notation for an application of the absolute value operator:

structure admissible_absolute_value (D : Type*) [euclidean_domain D]
extends euclidean_absolute_value D Z :=

(card : R → N) (exists_partition :
∀ (n : N) (ε > (0 : R) (b ̸= (0 : D)) (A : fin n → D),
∃ (t : fin n → fin (card ε)), ∀ i0 i1, t i0 = t i1 →
(to_fun (A i1 % b - A i0 % b) : R) < to_fun b · ε)

The above condition formalizes and generalizes an intermediate result in paper finiteness
proofs; the different proofs for number fields and function fields (still assuming K/F separable)
become the same after this point. We used division with remainder to replace the fractional
part operator on F in the classical proof, which was essential to incorporate function fields,
and at the same time allowed our proof to stay entirely within D to avoid coercions.

The absolute value extends to a norm abs_norm f abs : integral_closure D K → Z.
We used the admissibility of abs to find a finite set finset_approx L f abs of elements of
D, such that the following generalization of [17, Theorem 12.2.1] holds.

theorem exists_mem_finset_approx’ (a b : integral_closure D L) :=
∃ (q : integral_closure D L) (r ∈ finset_approx L f abs),
abs_norm f abs (r · a - q * b) < abs_norm f abs b

After this, the classical approach mentioned above formalized smoothly.
It remained to define an admissible absolute value for Z and Fq[t]. On Z, it was

straightforward to formalize that the usual Archimedean absolute value fulfils the requirements.
For Fq[t], we showed that |f |deg := qdeg f for f ∈ Fq[t] is the required admissible absolute
value; we note that this was somewhat more involved to formalize. We concluded that when
K is a global field, restricting to separable extensions of Fq(t) in the function field case (but
see the remark below), the class group is finite:

noncomputable instance : fintype
(class_group (number_field.ring_of_integers.fraction_map K)) :=

class_group.finite_of_admissible K int.fraction_map int.admissible_abs

noncomputable instance [is_separable f.codomain K] : fintype
(class_group (function_field.ring_of_integers.fraction_map f K)) :=

class_group.finite_of_admissible F f polynomial.admissible_card_pow_degree
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Finally, we defined number_field.class_number and function_field.class_number
as the cardinality of the respective class groups.

We remark that it is possible to get rid of the [is_separable f.codomain K] assumption
above. For instance, using that any function field K, given as finite extension of Fq(t), contains
an s ∈ K such that K/Fq(s) is a finite and separable extension; see for example [18, Corollary
4.4 in Chapter VIII] (noting that Fq is perfect and K has transcendence degree 1 over Fq).
One then also needs to show that finiteness of the class group of the integral closure of Fq[s]
in K is preserved upon replacing Fq[s] by Fq[t]. A trivial way to get rid of the assumption in
the statement above is to simply move it to our definition of function field. While this would
be mathematically consistent by the result just cited, we did not opt to do this (for instance
showing a finite extension of a function field is a function field would become nontrivial).

We rounded off our development by determining the class number in the simplest possible
case: the rational numbers Q. First, we formalized the theorem class_number_eq_one_iff,
stating that the class number of K is 1 if and only if OK is a principal ideal domain. After
defining the isomorphism rat.ring_of_integers_equiv showing OQ is Z, we could use the
fact that Z is a PID to conclude that the class number of Q is equal to 1:

theorem rat.class_number : number_field.class_number Q = 1 :=
class_number_eq_one_iff.mpr (is_principal_ideal_ring.of_surjective _

rat.ring_of_integers_equiv.symm.surjective)

8 Discussion

8.1 Related work
Broadly speaking, one could see the formalization work as part of number theory. There are
several formalization results in this direction. Most notably, Eberl formalized a substantial
part of analytic number theory in Isabelle/HOL [12]. Narrowing somewhat to a more algebraic
setting, Cano, Cohen, Dénès, Mörtberg and Siles formalized constructive definitions in ring
theory, most notable for our discussion being the Krull dimension [5]. We are not aware
of any other formal developments of fractional ideals, Dedekind domains or class groups of
global fields.

There are many libraries formalizing basic notions of commutative algebra such as
field extensions and ideals, including the Mathematical Components library in Coq [20],
the algebraic library for Isabelle/HOL [3], the set.mm database for MetaMath [21] and
the Mizar Mathematical Library [16]. The field of algebraic numbers, or more generally
algebraic closures of arbitrary fields, are also available in many provers. For example, Blot [4]
formalized algebraic numbers in Coq, Cohen [8] constructed the subfield of real algebraic
numbers in Coq, Thiemann, Yamada and Joosten [27] formalized algebraic numbers in
Isabelle/HOL, Carneiro [6] in MetaMath, and Watase [29] in Mizar. To our knowledge, the
Coq Mathematical Components library is the only formal development beside ours specifically
dealing with number fields [20, field/algnum.v].

Apart from the general theory of algebraic numbers, there are formalizations of specific
rings of integers. For instance, the Gaussian integers Z[i] have been formalized in Isabelle/HOL
by Eberl [13], in MetaMath by Carneiro [7] and in Mizar by Futa, Mizushima, and Okazaki [15].
Eberl’s Isabelle/HOL formalization deserves special mention in this context since it introduces
techniques from algebraic number theory, defining the integer-valued norm on Z[i] and
classifying the prime elements of Z[i].
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8.2 Future directions

Having formalized various basic results of algebraic number theory, there are several natural
directions for future work, including formalizing some of the following results.

The group of units of the ring of integers in a number field is finitely generated, or slightly
stronger, Dirichlet’s unit theorem [22, Theorem 7.4] (and the function field analogue).

Other finiteness results in algebraic number theory, most notably Hermite’s theorem
about the existence of finitely many number fields, up to isomorphism, with bounded
discriminant [22, Theorem 2.16] (and the function field analogue).

Class number computations, say of quadratic number fields. This could be part of verifying
correctness of number theoretic software, such as KASH/KANT [23] and PARI/GP [26].

Applications of algebraic number theory to solving Diophantine equations, such as
determining all pairs of integers (x, y) such that y2 = x3 + D for given nonzero D ∈ Z.

8.3 Conclusion

In this project, we confirmed the rule that the hardest part of formalization is to get the
definitions right. Once this is accomplished, the paper proof (sometimes first adapted with
formalization in mind) almost always translates into a formal proof without too much effort.
In particular, we regularly had to invent abstractions to treat instances of the “same” situation
uniformly. Instead of fixing a canonical representation, be it F ⊆ K ⊆ L as subfields or
the field of fractions Frac R, or the monogenic K(α), we found that making the essence of
the situation an explicit parameter, as in is_scalar_tower, fraction_map or power_basis,
allows to treat equivalent viewpoints uniformly without the need for transferring results.

The formalization efforts described in this paper cannot be cleanly separated from the
development of mathlib as a whole. The decentralized organization and highly integrated
design of mathlib meant that we could contribute our formalizations as we completed them,
resulting in a quick integration into the rest of the library. Other contributors building on
these results often extended them to meet our requirements, before we could identify that
we needed them, as the anecdote in Section 3.4 illustrates. In other words, the low barriers
for contributions ensured mutually beneficial collaboration.

Quantifying the ratio between the length of our formal proofs and their paper counterparts
in an accurrate and meanifngful way will be very difficult as background assumptions and
levels of detail varied significantly. We actually did not always literally follow some written
text, but deviated from the paper mathematics (often discussed orally, on blackboards,
through Zulip, etc.) on many occasions. An important aspect we had to take into account
was to consistently combine different descriptions of mathematical objects from different
sources. The formalization project described in this paper resulted in the contribution
of thousands of lines of Lean code involving hundreds of declarations. A rough estimate
concerning the former would be that about five thousand lines of project specific code
were added, and about half of that number of lines of more generic background code. We
validated existing design choices used in mathlib, refactored those that did not scale well and
contributed our own set of designs. The real achievement was not to complete each proof,
but to build a better foundation for formal mathematics.

ITP 2021
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Abstract
The Verified TESC Verifier (VTV) is a formally verified checker for the new Theory-Extensible
Sequent Calculus (TESC) proof format for first-order ATPs. VTV accepts a TPTP problem and
a TESC proof as input, and uses the latter to verify the unsatisfiability of the former. VTV is
written in Agda, and the soundness of its proof-checking kernel is verified in respect to a first-order
semantics formalized in Agda. VTV shows robust performance in a comprehensive test using all
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1 Introduction

Modern automated reasoning tools are highly complex pieces of software, and it is generally
no simple matter to establish their correctness. Bugs have been discovered in them in the
past [18, 11], and more are presumably hidden in systems used today. One popular strategy
for coping with the possibility of errors in automated reasoning is the De Bruijn criterion
[2], which states that automated reasoning software should produce “proof objects” which
can be independently verified by simple checkers that users can easily understand and trust.
In addition to reducing the trust base of theorem provers, the De Bruijn criterion comes
with the additional benefit that the small trusted core is often simple enough to be formally
verified itself. Such thoroughgoing verification is far from universal, but there has been
notable progress toward this goal in various subfields of automated reasoning, including
interactive theorem provers, SAT solvers, and SMT solvers.

One area in which similar developments have been conspicuously absent is first-order
automated theorem provers (ATPs), where the lack of a machine-checkable proof format [17]
precluded the use of simple independent verifiers. The Theory-Extensible Sequent Calculus
(TESC) 1 is a new proof format for first-order ATPs designed to fill this gap. In particular,
the format’s small set of fined-grained inference rules makes it relatively easy to implement
and verify its proof checker.

This paper presents the Verified TESC Verifier (VTV), a proof checker for the TESC
format written and verified in Agda [3]. The aim of the paper is twofold. Its immediate

1 TESC is a new proof format developed by the author, and there is a separate paper awaiting submission
to other venues that provides details of its specification and comprehensive test results using the TPTP
problem library. For more details, please refer to https://github.com/skbaek/tesc/tree/itp for a
draft of the format paper, as well as the source code of the TESC toolchain.
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purpose is to demonstrate the reliability of TESC proofs by showing precisely what is
established by their successful verification using VTV. Many of the implementation issues we
shall discuss, however, are relevant to any formalization of first-order logic and not limited
to either VTV or Agda. Therefore, the techniques VTV uses to solve them may be useful
for other projects that reason about and perform computations with first-order logic data
structures.

Speaking of applicability to other systems, one may also ask: why Agda? This choice
was motivated more by subjective preference and convenience (especially the ease of code
extraction) than any meticulous comparison of the strengths of its alternatives. No serious
effort was made to replace it with other systems (e.g. Coq or Isabelle/HOL), but it is entirely
possible that they would have been just as suitable.

The rest of the paper is organized as follows: Section 2 gives a brief survey of similar
works and how VTV relates to them. Section 3 describes the syntax and inference rules of
the TESC proof calculus. Section 4 presents the main TESC verifier kernel, and Section
5 gives a detailed specification of the verifier’s soundness property. Sections 3, 4, and 5
also include code excerpts and discuss how their respective contents are formalized in Agda.
Section 6 shows the results of empirical tests measuring VTV’s performance. Section 7 gives
a summary and touches on potential future work.

2 Related Works

SAT solving is arguably the most developed subfield of automated reasoning in terms of
verified proof checkers. A non-exhaustive list of SAT proof formats with verified checkers
include RAT [13], RUP and IORUP [14], LRAT [6], and GRIT [7]. In the related field of
SMT solving, the SMTCoq project [1] also uses a proof checker implemented and verified in
the Coq proof assistant.

Despite the limitations imposed by Gödel’s second incompleteness theorem [10], there
has been interesting work toward verification of interactive theorem provers. All of HOL
Light except the axiom of infinity has been proven consistent in HOL Light itself [11], which
was further extended later to include definitional principles for new types and constants [15].
There are also recent projects that go beyond the operational semantics of programming
languages and verifies interactive theorem provers closer to the hardware, such as the Milawa
theorem prover which runs on a Lisp runtime verified against x86 machine code [8], and the
Metamath Zero [4] theorem prover which targets x84-64 instruction set architecture.

VTV is designed to serve a role similar to these verified checkers for first-order ATPs and
the TESC format. There has been several different approaches [22, 5] to verifying the output
of first-order ATPs, but the only example the author is aware of which uses independent
proof objects with a verified checker is the Ivy system [16]. The main difference between
Ivy and VTV is that Ivy’s proof objects only record resolution and paramodulation steps,
so all input problems have to be normalized by a separate preprocessor written in ACL2.
In contrast, the TESC format supports preprocessing steps like Skolemization and CNF
normalization, and allows ATPs to work directly on input problems with their optimized
preprocessing strategies.
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3 Proof Calculus

The syntax of the TESC calculus is as follows:

f ::= σ | #k

t ::= xk | f (⃗t)
t⃗ ::= · | t⃗, t
ϕ ::= ⊤ | ⊥ | f (⃗t) | ¬ϕ | ϕ ∨ χ | ϕ ∧ χ | ϕ → χ | ϕ ↔ χ | ∀ϕ | ∃ϕ
Γ ::= · | Γ, ϕ

We let f range over functors, which are usually called “non-logical symbols” in other
presentations of first-order logic. The TESC calculus makes no distinction between function
and relation symbols, and relies on the context to determine whether a symbol applied to
arguments is a term or an atomic formula. For brevity, we borrow the umbrella term “functor”
from the TPTP syntax and use it to refer to any non-logical symbol.

There are two types of functors: σ ranges over plain functors, which you can think of as
the usual relation or function symbols. We assume that there is a suitable set of symbols Σ,
and let σ ∈ Σ. Symbols of the form #k are indexed functors, and the number k is called
the functor index of #k. Indexed functors are used to reduce the cost of introducing fresh
functors: if you keep track of the largest functor index k that occurs in the environment,
you may safely use #k+1 as a fresh functor without costly searches over a large number of
terms and formulas. 2 This is similar to the indexing tricks used in other systems (e.g. HOL
theorem provers) which use the maximum variable indices of theorems to make sure that
two theorems have disjoint sets of variables.

We use t to range over terms, t⃗ over lists of terms, ϕ over formulas, and Γ over sequents.
Quantified formulas are written without variables thanks to the use of De Bruijn indices [9];
the number k in variable xk is its De Bruijn index. As usual, parentheses may be inserted
for scope disambiguation, and the empty list operator “·” may be omitted when it appears
as part of a complex expression. E.g., the sequent ·, ϕ, ψ and term f(·) may be abbreviated
to ϕ, ψ and f .

Formalization of TESC syntax in Agda is mostly straightforward, but with one small
caveat. Consider the following definition of the type of terms:

data Term : Set where
var : Nat → Term
fun : Functor → List Term → Term

The constructor fun builds a complex term out of a functor and a list of arguments. Since
these arguments are behind a List, they are not immediate subterms of the complex term,
and Agda cannot automatically prove termination for recursive calls that use them. For
instance, term-vars<? : Nat → Term → Bool is a function such that term-vars<? k t evaluates
to true iff all variables in t have indices smaller than k. It would be natural to define this
function as

term-vars<? : Nat → Term → Bool
term-vars<? k (var m) = m <b k
term-vars<? k (fun _ ts) = all (term-vars<? k) ts

2 Thanks to Marijn Heule for suggesting this idea.
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Table 1 TESC inference rules. size(Γ) is the number of formulas in Γ, and Γ[i] denotes the
(0-based) ith formula of sequent Γ, where Γ[i] = ⊤ if the index i is out-of-bounds. lfi(x) is the largest
functor index (lfi) occurring in x. If x incudes no functor indices, lfi(x) = −1. adm(k, ϕ) asserts
that ϕ is an admissable formula in respect to the target theory and sequent size k.

Rule Conditions Example

Γ, A(b,Γ[i])
AΓ

ϕ ↔ ψ, ϕ → ψ
A

ϕ ↔ ψ

Γ, B(0,Γ[i]) Γ, B(1,Γ[i])
BΓ

ϕ ∨ ψ, ϕ ϕ ∨ ψ,ψ
B

ϕ ∨ ψ

Γ, C(t,Γ[i])
CΓ

lfi(t) ≤ size(Γ)
¬∃f(x0),¬f(g)

C¬∃f(x0)

Γ, D(size(Γ),Γ[i])
DΓ

∃f(x0), f(#1)
D∃f(x0)

Γ, N(Γ[i])
NΓ

¬¬ϕ, ϕ
N¬¬ϕ

Γ,¬ϕ Γ, ϕ
SΓ

lfi(ϕ) ≤ size(Γ) ¬f(#0) f(#0)
S·

Γ, ϕ
TΓ

lfi(ϕ) ≤ size(Γ),
adm(size(Γ), ϕ)

= (f, f)
T·

XΓ
For some i and j,

Γ[i] = ¬Γ[j]
X¬ϕ, ϕ

where m <b k evaluates to true iff m is less than k. But Agda rejects this definition because
it cannot prove that the recursive calls terminate. We can get around this problem by a
mutual recursion between a pair of functions, one for terms and one for lists of terms:

term-vars<? : Nat → Term → Bool
terms-vars<? : Nat → List Term → Bool
term-vars<? k (var m) = m <b k
term-vars<? k (fun _ ts) = terms-vars<? k ts
terms-vars<? _ [] = true
terms-vars<? k (t :: ts) = term-vars<? k t ∧ terms-vars<? k ts

All other functions that recurse on terms are also defined using similar mutual recursion.
The inference rules of the TESC calculus are shown in Table 1. The TESC calculus is a

one-sided first-order sequent calculus, so having a valid TESC proof of a sequent Γ shows that
Γ is collectively unsatisfiable. The A,B,C,D, and N rules are the analytic rules. Analytic
rules are similar to the usual one-sided sequent calculus rules, except that each analytic rule
is overloaded to handle several connectives at once. For example, consider the formulas ϕ∧ψ,
¬(ϕ∨ψ), ¬(ϕ → ψ), and ϕ ↔ ψ. In usual sequent calculi, you would need a different rule for
each of the connectives ∧, ∨, →, and ↔ to break down these formulas. But all four formulas
are “essentially conjunctive” in the sense that the latter three are equivalent to ¬ϕ ∧ ¬ψ,
ϕ ∧ ¬ψ, and (ϕ → ψ) ∧ (ψ → ϕ). So it is more convenient to handle all four of them with a
single rule that analyzes a formula into its left and right conjuncts, which is the analytic
A rule. Similarly, the B, C, D rules are used to analyze essentially disjunctive, universal,
existential formulas, and the N rule performs double-negation elimination. For a complete
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list of formula analysis functions that show how each analytic rule breaks down formulas, see
Appendix A. The analytic rules are a slightly modified adaptation of Smullyan’s uniform
notation for analytic tableaux [21], which is where they get their names from.

All rules are designed to preserve the invariant lfi(Γ) < size(Γ) for every sequent Γ. We
say that a sequent Γ is good if it satisfies this invariant. It is important that all sequents are
good, because this is what ensures that the indexed functor #size(Γ) is fresh in respect to a
sequent Γ.

Of the three remaining rules, S is the usual cut rule, and X is the axiom or init rule. The
T rule may be used to add admissable formulas. A formula ϕ is admissable in respect to a
target theory T and sequent size k if it satisfies the following condition:

For any good sequent Γ that is satisfiable modulo T and size(Γ) = k, the sequent Γ, ϕ is
also satisfiable modulo T .

More intuitively, the T rule allows you to add formulas that preserve satisfiability. Notice
that the definition of admissability, and hence the definition of well-formed TESC proofs,
depends on the implicit target theory. This is the “theory-extensible” part of TESC. The
current version of VTV verifies basic TESC proofs that target the theory of equality, so it
allows T rules to introduce equality axioms, fresh relation symbol definitions, and choice
axioms. But VTV can be easily modified in a modular way to target other theories as well.

TESC proofs are formalized in Agda as an inductive type Proof, which has a separate
constructor for each TESC inference rule:

data Proof : Set where
rule-a : Nat → Bool → Proof → Proof
rule-b : Nat → Proof → Proof → Proof
rule-c : Nat → Term → Proof → Proof
rule-d : Nat → Proof → Proof
rule-n : Nat → Proof → Proof
rule-s : Formula → Proof → Proof → Proof
rule-t : Formula → Proof → Proof
rule-x : Nat → Nat → Proof

For example, the constructor rule-a takes Nat and Bool arguments because this is the
information necessary to specify an application of the A rule. I.e., rule-a i b p is a proof
whose last inference rule adds the formula A(b,Γ[i]). Notice that sequents are completely
absent from the definition of Proof. This is a design choice made in favor of efficient space
usage. Since TESC proofs are uniquely determined by their root sequents together with
complete information of the inference rules used, TESC files conserve space by omitting
any components that can be constructed on the fly during verification, which includes all
intermediate sequents and formulas introduced by analytic rules. Proof is designed to only
record information included in TESC files, since terms of the type Proof are constructed by
parsing input TESC files.

4 The Verifier

The checker function verify for Proof performs two tasks: (1) it constructs the omitted
intermediate sequents as it recurses down a Proof, and (2) it checks that the conditions are
satisfied for each inference rule used. For instance, consider the definition of verify for the C
rule case, together with its type signature:
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verify : Sequent → Proof → Bool
verify Γ (rule-c i t p) =

term-lfi<? (suc (size Γ )) t ∧
verify (add Γ (analyze-c t (nth i Γ ))) p

The terms (nth i Γ ), (analyze-c t (nth i Γ )), and (add Γ (analyze-c t (nth i Γ ))) each
corresponds to Γ[i], C(t,Γ[i]), and Γ, C(t,Γ[i]). The conjunct term-lfi<? (suc (size Γ )) t
ensures the side condition lfi(t) ≤ size(Γ) is satisfied, and the recursive call to verify checks
that the subproof p is a valid proof of the sequent Γ, C(t,Γ[i]). The cases for other rules are
also defined similarly.

The argument type Sequent for verify presents some interesting design choices. What
kind of data structures should be used to encode sequents? The first version of VTV used
lists, but lists immediately become a bottleneck with practically-sized problems due to their
poor random access speeds. The default TESC verifier included in the TPTP-TSTP-TESC
Processor (T3P, the main tool for generating and verifying TESC files) uses arrays, but arrays
are hard to come by and even more difficult to reason about in dependently typed languages
like Agda. Self-balancing trees like AVL or red-black trees come somewhere between lists
and arrays in terms of convenience and performance, but it can still be tedious to prove basic
facts about them if those proofs are not available in your language of choice, as is the case
for Agda’s standard library.

For VTV, we cut corners by taking advantage of the fact that (1) formulas are never
deleted from sequents, and (2) new formulas are always added to the right end of sequents.
(1) and (2) allow us to use a simple balancing algorithm. In order to use the algorithm, we
first define the type of trees in a way that allows each tree to efficiently keep track of its own
size:

data Tree (A : Set) : Set where
empty : Tree A
fork : Nat → A → Tree A → Tree A → Tree A

For any non-leaf tree fork k a t s, the number k is the size of fork k a t s. This property is not
guaranteed to hold by construction, but it is easy to ensure that it always holds in practice.
Since sizes of trees are stored as Nat, the function size : Tree → Nat can always report the
size of trees in constant time. New elements can be added to trees in a balanced way as
follows: when adding an element to a non-leaf tree, compare its subtree sizes. If the right
subtree is smaller, make a recursive call and add to the right subtree. If the sizes are equal,
make a new tree that contains the current tree as its left subtree, an empty tree as its right
subtree, and stores the new element in the root node. The definition of the add function for
trees implements this algorithm precisely:

add : {A : Set} → Tree A → A → Tree A
add empty a = fork 1 a empty empty
add (fork k b t s) a =

if (size s <b size t)
then (fork (k + 1) b t (add s a))
else (fork (k + 1) a (fork k b t s) empty)

This addition algorithm does not keep the tree maximally balanced, but it provides reasonable
performance and does away with complex ordering and balancing mechanisms, which makes
reasoning about trees considerably easier. Given the type Tree, the type Sequent can be
simply defined as Tree Formula.



S. Baek 6:7

5 Soundness

In order to prove the soundness of verify, we first need to formalize a first-order semantics
that it can be sound in respect to. Most of the formalization is routine, but it also includes
some oddities particular to VTV.

One awkward issue that recurs in formalization of first-order semantics is the handling of
arities. Given that each functor has a unique arity, what do you do with ill-formed terms and
atomic formulas with the wrong number of arguments? You must either tweak the syntax
definition to preclude such possibilities, or deal with ill-formed terms and formulas as edge
cases, both of which can lead to bloated definitions and proofs.

For VTV, we avoid this issue by assuming that every functor has infinite arities. Or
rather, for each functor f with arity k, there are an infinite number of other functors that
share the name f and have arities 0, 1, ..., k − 1, k + 1, k + 2, ... ad infinitum. With this
assumption, the denotation of functors can be defined as

Rels : Set
Rels = List D → Bool

Funs : Set
Funs = List D → D

where D is the type of the domain of discourse that the soundness proof is parametrized
over. A Rels (resp. Funs) can be thought of as a collection of an infinite number of relations
(resp. functions), one for each arity. An interpretation is a pair of a relation assignment and
a function assignment, which assign Rels and Funs to functors.

RA : Set
RA = Functor → Rels

FA : Set
FA = Functor → Funs

Variable assignments assign denotations to Nat, since variables are identified by their Bruijn
indices.

VA : Set
VA = Nat → D

For reasons we’ve discussed in Section 3, term valuation requires a pair of mutually recursive
functions in order to recurse on terms:

term-val : FA → VA → Term → D
terms-val : FA → VA → List Term → List D
term-val _ V (var k) = V k
term-val F V (fun f ts) = F f (terms-val F V ts)
terms-val F V [] = []
terms-val F V (t :: ts) = (term-val F V t) :: (terms-val F V ts)

Formula valuation is mostly straightforward, but some care needs to be taken in the handling
of variable assignments and quantified formulas. The function qtf : Bool → Formula →
Formula is a constructor of Formula for quantified formulas, where qtf false and qtf true
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encode the universal and existential quantifiers, respectively. Given a relation assignment R,
function assignment F, and variable assignment V, the values of formulas qtf false ϕ and qtf
true ϕ under R, F, and V are defined as

R , F , V ⊨ (qtf false ϕ) = ∀ x → (R , F , (V / 0 7→ x) ⊨ ϕ)
R , F , V ⊨ (qtf true ϕ) = ∃ λ x → (R , F , (V / 0 7→ x) ⊨ ϕ)

The notations ∀ x → A and ∃ λ x → A may seem strange, but they are just Agda’s way
of writing ∀ x A and ∃ x A. For any V, k, and d, (V / k 7→ d) is an updated variable
assignment obtained from V by assigning d to the variable xk, and pushing the assignments
of all variables larger than xk by one. E.g., (V / 0 7→ x) 0 = x and (V / 0 7→ x) (suc m) = V
m.

Now we can define (un)satisfiability of sequents in terms of formula valuations:

satisfies : RA → FA → VA → Sequent → Set
satisfies R F V Γ = ∀ ϕ → ϕ ∈ Γ → R , F , V ⊨ ϕ

sat : Sequent → Set
sat Γ = ∃ λ R → ∃ λ F → ∃ λ V → (respects-eq R × satisfies R F V Γ )

unsat : Sequent → Set
unsat Γ = ¬ (sat Γ )

Note that × is the constructor for product types, which serves the same role as a logical
conjunction here. The respects-eq R clause asserts that the relation assignment R respects
equality. This condition is necessary because we are targeting first-order logic with equality,
and we are only interested in interpretations that satisfy all equality axioms.

VTV’s formalization of first-order semantics is atypical in that (1) every functor doubles as
both relation and function symbols with infinite arities, and (2) the definition of satisfiability
involves variable assignments, thereby applying to open as well as closed formulas. These
idiosyncracies, however, are harmless for our purposes: whenever a traditional interpretation
(with unique arities for each functor and no variable assignment) M satisfies a set of sentences
Γ, M can be easily extended to an interpretation in the above sense that still satisfies Γ,
since the truths of sentences in Γ are unaffected by functors or variables that do not occur
in them. Conversely, any satisfying interpretation in the above sense can be pruned into
a traditinal one without changing truth values of sentences. Therefore, both definitions of
satisfiability agree completely on input sequents that consist of sentences. Furthermore, we
may also assume that all formulas in an input sequent are sentences, because the TPTP
parser will reject any open formula as it cannot assign a De Brujin index to an unbound
variable. There remains, however, one small catch: the impossibility of parsing an open
formula is the property of an unverified preprocessor written in Rust, so you must trust that
it has been correctly implemented.

Now we finally come to the soundness statement for verify:

verify-sound : ∀ (S : Sequent) (p : Proof) → good S → T (verify S p) → unsat S

T : Bool → Set maps Boolean values true and false to the trivial and empty sets ⊤ and ⊥,
respectively. The condition good S is necessary, because the soundness of TESC proofs is
dependent on the invariant that all sequents are good (in the sense we defined in Section
3). But we can do better than merely assuming that the input sequent is good, because the
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parser which converts the input character list into the initial (i.e., root) sequent is designed to
fail if the parsed sequent is not good. Therefore, we can prove this fact and use the success of
the parser as confirmation that the parsed sequent is good. parse-verify is the outer function
which accepts two character lists as argument, parses them into a Sequent and a Proof, and
calls verify on them. The soundness statement for parse-verify is as follows:

parse-verify-sound : ∀ (seq-chars prf-chars : List Char) →
T (parse-verify seq-chars prf-chars) →
∃ λ (S : Sequent) → returns parse-sequent seq-chars S × unsat S

In other words, if parse-verify succeeds on two input character lists, then the sequent parser
successfully parses the first character list into some unsatisfiable sequent S. parse-verify-sound
is an improvement over verify-sound, but it also shows the limitation of the current setup.
It only asserts that there is some unsatisfiable sequent parsed from the input characters,
but provides no guarantees that this sequent is actually equivalent to the original TPTP
problem. This means that the formal verification of VTV is limited to the soundness of its
proof-checking kernel, and the correctness its TPTP parsing phase has to be taken on faith.

6 Test Results

The performance of VTV was tested by running it on all eligible problems in the TPTP
[23] problem library. A TPTP problem is eligible if it satisfies all of the following conditions
(parenthesized numbers indicate the total number of problems that satisfy all of the preceding
conditions).

It is in the CNF or FOF language (17053).
Its status is “theorem” or “unsatisfiable” (13636).
It conforms to the official TPTP syntax. More precisely, it does not have any occurrences
of the character “%” in the sq_char syntactic class, as required by the TPTP syntax.
This is important because T3P assumes that the input TPTP problem is syntactically
correct and uses “%” as an endmarker (13389).
All of its formulas have unique names. T3P requires this in order to unambiguously
identify formulas by their names during proof compilation (13119).
It can be solved by Vampire [19] or E [20] in one minute using default settings (Vampire
= 7885, E = 4853 3).
The TSTP solution produced by Vampire or E can be compiled to a TESC proof by T3P
(Vampire = 7792, E = 4504).

The resulting 7792 + 4504 = 12296 proofs were used for testing VTV. All tests were performed
on Amazon EC2 r5a.large instances, running Ubuntu Server 20.04 LTS on 2.5 GHz AMD
EPYC 7000 processors with 16 GB RAM. 4

Out of the 12296 proofs, there were 5 proofs that VTV failed to verify due to exhausting
the 16 GB available memory. A cactus plot of verification times for the remaining 12291
proofs are shown in Fig. 1. As a reference point, we also show the plot for the default TESC

3 It should be noted that the default setting is actually not optimal for E. When used with the –auto or
–auto-schedule options, E’s success rates are comparable to that of Vampire. But the TSTP solutions
produced by E under these higher-performance modes are much more difficult to compile down to a
TESC proof, so they could not be used for these tests.

4 The aforementioned TESC repository (https://github.com/skbaek/tesc/tree/itp) also includes
detailed information on the testing setup and a complete CSV of test results.
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Figure 1 Verification times of VTV and OTV. The datapoints show the number of TESC proofs
that each verifier could check within the given time limit. The plots look more “jumpy” toward the
lower end due to the limited time measurement resolution (10 ms) of the unix time command.

verifier included in T3P running on the same proofs. The default TESC verifier is written in
Rust, and is optimized for performance with no regard to verification. For convenience, we
refer to it as the Optimized TESC Verifier (OTV).

VTV is slower than OTV as expected, but the difference is unlikely to be noticed in
actual use since the absolute times for most proofs are very short, and the total times are
dominated by a few outliers. VTV verified >97.4% of proofs under 1 second, and >99.3%
under 5 seconds. Also, the median time for VTV is 40 ms, a mere 10 ms behind the OTV’s
30 ms. But OTV’s mean time (54.54 ms) is still much shorter than that of VTV (218.93
ms), so users may prefer to use it for verifying one of the hard outliers or processing a large
batch of proofs at once.

The main drawback of VTV is its high memory consumption. Fig. 2 shows the peak
memory usages of the two verifiers. For a large majority of proofs, memory usages of both
verifiers are stable and stay within the 14-20 MB range, but VTV’s memory usage spikes
earlier and higher than OTV. Due to the limit of the system used, memory usage could only
be measured up to 16 GB, but the actual peak for VTV would be higher if we included the
5 failed verifications. A separate test running VTV on an EC2 instance with 64 GB ram
(r5a.2xlarge) still failed for 3 of the 5 problematic proofs, so the memory requirement for
verifying all 12296 proofs with VTV is at least >64 GB. In contrast, OTV could verify all
12296 proofs with less than 3.2 GB of memory.

It’s not completely clear where the memory usage difference comes from, but it is most
likely caused by the different ways in which OTV and VTV keep track of subgoal sequents.
OTV uses a single main array to store the current goal sequent, and destructively updates
this array whenever the goal sequent is changed. Consider, for instance, the application of
the S rule to a sequent Γ, which creates subgoal sequents Γ,¬ϕ and Γ, ϕ. Before the rule
application, OTV’s main array holds Γ. Then it proceeds by:

1. Storing ϕ on a secondary array for later use
2. Pushing ¬ϕ onto the main array to change the goal sequent to Γ,¬ϕ
3. Verifying that the left subproof is a valid proof of the sequent Γ,¬ϕ
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Figure 2 Peak memory usages of VTV and OTV. The datapoints show the number of TESC
proofs that each verifier could check within the given peak memory usage.

4. Truncating the main array back to Γ
5. Pushing ϕ onto the main array to change the goal sequent to Γ, ϕ
6. Verifying that the right subproof is a valid proof of the sequent Γ, ϕ

This means that OTV never allocates any memory to subgoal sequents that are already
closed. On the other hand, VTV is an Agda program that gets compiled to Haskell, so it
is almost certain that new memory will be allocated for both Γ,¬ϕ and Γ, ϕ for this step.
Furthermore, Γ,¬ϕ will stay in memory even after it has been closed until the garbage
collector deallocates it. Therefore, it is expected that VTV will use more memory than
OTV, especially when verifying proofs that branch many times and create large numbers of
subgoals.

7 Conclusion

The robust test results show that VTV can serve as a fallback option when extra rigour is
required in verification, thereby increasing our confidence in the correctness of TESC proofs.
It can also help the design of other TESC verifiers by providing a reference implementation
that is guaranteed to be correct. On a more general note, VTV is an example of a first-order
logic formalization that strikes a practical balance between ease of proofs and efficient
computation while avoiding some common pitfalls like non-termination and complex arity
checking. Therefore, it can provide a useful starting point for other verified programming
projects that use first-order logic.

There are two main ways in which VTV could be further improved. Curbing its memory
usage would be the most important prerequisite for making it the default verifier in T3P.
This may require porting VTV to a verified programming language with more efficient data
structures (especially arrays) and finer-grained control over memory usage. The upcoming
Lean 4 seems a promising candidate for this, considering its heavy emphasis on practical
programming.

VTV could also benefit from a more reliable TPTP parser. A formally verified parser
would be ideal, but the complexity of TPTP’s syntax makes it difficult to even specify the
correctness of a parser, let alone prove it. A more realistic approach would be imitating the
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technique used by verified LRAT checkers [12], making VTV print the parsed problem and
textually comparing its output with the original problem. Due to TPTP’s flexible syntax,
however, the mapping from input files to printed outputs will necessarily be non-injective
(e.g., there is no way to infer the positions of line breaks from a parsed formula). This means
that the original problem will have to be normalized before comparison, and we must either
verify or trust an additional TPTP normalizer.
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A Formula analysis functions

A

A(0,¬(ϕ ∨ ψ)) = ¬ϕ
A(0, ϕ ∧ ψ) = ϕ

A(0,¬(ϕ → ψ)) = ϕ

A(0, ϕ ↔ ψ) = ϕ → ψ

A(1,¬(ϕ ∨ ψ)) = ¬ψ
A(1, ϕ ∧ ψ) = ψ

A(1,¬(ϕ → ψ)) = ¬ψ
A(1, ϕ ↔ ψ) = ψ → ϕ

B

B(0, ϕ ∨ ψ) = ϕ

B(0,¬(ϕ ∧ ψ)) = ¬ϕ
B(0, ϕ → ψ) = ¬ϕ

B(0,¬(ϕ ↔ ψ)) = ¬ϕ → ψ

B(1, ϕ ∨ ψ) = ψ

B(1,¬(ϕ ∧ ψ)) = ¬ψ
B(1, ϕ → ψ) = ψ

B(1,¬(ϕ ↔ ψ)) = ¬ψ → ϕ

C C(t, ∀ϕ) = ϕ[0 7→ t] C(t,¬∃ϕ) = ¬ϕ[0 7→ t]
D D(k, ∃ϕ) = ϕ[0 7→ #k]) D(k,¬∀ϕ) = ¬ϕ[0 7→ #k]
N N(¬¬ϕ) = ϕ

The Formula analysis functions used by analytic rules. For any argument not explicitly
defined above, the functions all return ⊤. E.g., A(0, ϕ ∨ ψ) = ⊤. ϕ[k 7→ t] denotes the result
of replacing all variables in ϕ bound to the kth quantifier with term t.
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Abstract
Literature in AI & Law contemplates argumentation in legal cases as an instance of theory con-
struction. The task of a lawyer in a legal case is to construct a theory containing: (a) relevant
generic facts about the world, (b) relevant legal rules such as precedents and statutes, and (c)
contingent facts describing or interpreting the situation at hand. Lawyers then elaborate convincing
arguments starting from these facts and rules, deriving into a positive decision in favour of their
client, often employing sophisticated argumentation techniques involving such notions as burden
of proof, stare decisis, legal balancing, etc. In this paper we exemplarily show how to harness
Isabelle/HOL to model lawyer’s argumentation using value-oriented legal balancing, while drawing
upon shallow embeddings of combinations of expressive modal logics in HOL. We highlight the
essential role of model finders (Nitpick) and “hammers” (Sledgehammer) in assisting the task of
legal theory construction and share some thoughts on the practicability of extending the catalogue
of ITP applications towards legal informatics.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning

Keywords and phrases Higher order logic, preference logic, shallow embedding, legal reasoning

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.7

Supplementary Material Isabelle/HOL formalisation sources are available online at GitHub [1].
Software (Isabelle/HOL formalisation sources): https://github.com/cbenzmueller/LogiKEy [1]

archived at swh:1:dir:88ab2e30ba1f4807b3dad6abaf1fc1738e809706

Acknowledgements We thank Bertram Lomfeld for encouraging us to take on this challenge; we
also thank the anonymous reviewers for their valuable feedback.

1 Introduction

In this paper we explore (value-oriented) legal reasoning as a new application area for
higher-order proof assistants. More specifically, we employ Isabelle/HOL [33] to formalise,
verify, and enhance legal arguments as presented in the context of a legal case between two
parties: a plaintiff and a defendant. In the spirit of previous work in the AI & Law tradition,
we tackle the formal reconstruction of legal cases as a task of theory construction, namely,
“building, evaluating and using theories” [5]. Thus, “the task for a lawyer or a judge in
a “hard case” is to construct a theory of the disputed rules that produces the desired legal
result, and then to persuade the relevant audience that this theory is preferable to any theories
offered by an opponent” [32].

We utilise the framework of shallow semantical embeddings (SSE; cf. [7, 15]) of (combina-
tions of) non-classical logics in classical higher-order logic (HOL). HOL, which is instantiated
here as Isabelle/HOL, thereby serves as a meta-logic, rich enough to support the encoding of
combinations of object logics (modal, conditional, deontic, etc. [6, 8, 9, 10]) allowing for the
modelling of adaptable value systems. For this sake, we also integrate some basic notions
from formal concept analysis (FCA) [22] to exemplarily illustrate the encoding of a theory of
legal values as proposed by Lomfeld [30].
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This paper improves an unpublished workshop paper [11]; Paper structure: In §2 we
outline our object logic of choice, a modal logic of preferences [37], and we then present
a SSE of this logic in the Isabelle/HOL proof assistant. Subsequently we depict in §3 the
encoding of a logic of legal values by drawing upon FCA notions and Lomfeld’s value theory.
In §4 we demonstrate how the formalisation of relevant legal and world knowledge can be
used for formally reconstructing value-oriented arguments for an exemplary property law
case. We conclude in §5 with some comments on related work and further reflections and
ideas for the prospective application of ITP in the legal domain.

2 Shallow Embedding of the Object Logic

2.1 Modal Preference Logic PL
As will become evident later on, our object logic needs to provide the means for representing
(conditional) preferences between propositions. For this sake we have chosen the modal logic
of ceteris paribus preferences as introduced by van Benthem et al. [37], which we abbreviate
by PL in the remainder. For the purpose of this present paper we will focus our discussion
on PL’s basic preference language, disregarding the mechanism of ceteris paribus clauses.
Nevertheless, we have provided a complete encoding and assessment of PL in the associated
Isabelle/HOL sources [1]. We will briefly outline below some relevant syntactic and semantic
notions of PL and refer the reader to [37] for a complete exposition.

PL is composed of normal S4 and K4 modal operators, together with a global existential
modality E. Combinations of these modalities enable us to capture a wide variety of proposi-
tional preference statements of the form A ≺ B (for different, indexed ≺-relations as shown
below). The formulas of PL are inductively defined as follows (where p ranges over a set
Prop of propositional constant symbols):

φ,ψ ::= p | φ∧ ψ | ¬φ | ♢⪯φ | ♢≺φ | Eφ

♢⪯φ is to be read as “φ is true in a state that is considered to be at least as good as
the current state”, ♢≺φ as “φ is true in a state that is considered to be strictly better than
the current state”, and Eφ as “there is a state where φ is true”. □⪯φ, □≺φ and Aφ can
be introduced to abbreviate ¬♢⪯¬φ, ¬♢≺¬φ and ¬E¬φ, respectively. Further, standard
logical connectives such as ∨, → and ↔ can be defined as usual. We use boldface fonts to
distinguish standard logical connectives of PL from their counterparts in HOL.

A preference model M is a triple M = ⟨W,⪯, V ⟩ where: (i) W is a set of states; (ii) ⪯
is a so-called “betterness relation” that is reflexive and transitive (i.e. a preorder), where
its strict subrelation ≺ is defined as: w ≺ v iff w ⪯ v ∧ v ̸⪯ w for all v and w (totality of ⪯,
i.e. v ⪯ w or w ⪯ v, is generally not assumed); (iii) V is a standard modal valuation. Below
we show the truth conditions for PL’s modal connectives (the rest are standard):

M, w ⊨ ♢⪯φ iff ∃v ∈ W such that w ⪯ v and M, v ⊨ φ

M, w ⊨ ♢≺φ iff ∃v ∈ W such that w ≺ v and M, v ⊨ φ

M, w ⊨ Eφ iff ∃v ∈ W such that M, v ⊨ φ

A formula φ is true at world w ∈ W in model M if M, w ⊨ φ. φ is globally true in M,
denoted M ⊨ φ, if φ is true at every w ∈ W . Moreover, φ is valid (in a class of models K) if
globally true in every M (∈ K), denoted ⊨PL φ (⊨K φ).

Quite relevant to our purposes is the fact that PL introduces eight semantical definitions
for binary preference operations on propositions (⪯EE ,⪯AE ,⪯EA,⪯AA, and their strict
variants). They correspond, roughly speaking, to the four different ways of combining a pair
of universal and existential quantifiers when “lifting” an ordering on worlds to an ordering
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on sets of worlds (i.e. propositions). In this respect PL can be seen as a family of preference
logics encompassing, in particular, the proposals by von Wright [38] and Halpern [24]. PL
appears well suited for effective automation using the SSE approach, which has been an
important selection criterion. This judgment is based on good prior experience with the SSE
of related (monadic) modal logics [14, 15] whose semantics employs Kripke-style relational
semantics.

2.2 Encoding PL in Meta-logic HOL

We employ the shallow semantical embeddings (SSE) technique [7, 15] to encode (a semantical
characterisation of) the logical connectives of an object logic as λ-expressions in HOL. This
essentially shows that the object logic can be unraveled as a fragment of HOL and hence
automated as such. For (multi-)modal normal logics, like PL, the relevant semantical
structures are Kripke-style relational frames. PL formulas can thus be encoded as predicates
in HOL taking worlds as arguments.1

As a result, we obtain a combined, interactive and automated, theorem prover and
model finder for (an extended variant of) PL realised within Isabelle/HOL. This is a new
contribution, since we are not aware of any other existing implementation and automation of
such a logic. Moreover, the SSE technique supports the automated assessment of meta-logical
properties of the embedded logic at a semantical level, which in turn provides practical
evidence for the correctness of our encoding.

We now give a succinct overview of the SSE of PL [1]. The embedding starts with
declaring the HOL base type ι, corresponding to the domain of possible worlds/states in
our formalisation. PL propositions are modelled as predicates on objects of type ι (i.e. as
truth-sets of worlds) and, hence, they are given the type (ι � o), which is abbreviated as σ in
the remainder. The “betterness relation” ⪯ of PL is introduced as an uninterpreted constant
symbol ⪯(ι�ι�o) in HOL, and its strict variant ≺ is introduced as an abbreviation ≺(ι�ι�o)
standing for the HOL term λvλw(v ≤ w ∧ ¬(w ≤ v)); see Fig. 1. ⪯-accessible worlds are
interpreted as those that are at least as good as the present one, and we hence postulate that
⪯ is a preorder, i.e. reflexive and transitive. In a next step the σ-type lifted logical connectives
of PL are introduced as abbreviations for λ-terms in the meta-logic HOL. The conjunction
operator ∧ of PL, for example, is introduced as an abbreviation ∧σ�σ�σ which stands
for the HOL term λφσλψσλwι(φ w ∧ ψ w), so that φσ ∧ ψσ reduces to λwι(φ w ∧ ψ w),
denoting the set2 of all worlds w in which both φ and ψ hold. Analogously, for negation, we
introduce an abbreviation ¬σ�σ, which stands for λφσλwι¬(φ w).

The operators ♢⪯ and ♢≺ use ⪯ and ≺ as guards in their definitions. These
operators are introduced as shorthands ♢⪯

σ�σ and ♢≺
σ�σ abbreviating the HOL terms

λφσλwι∃vι(w ⪯ v ∧ φ v) and λφσλwι∃vι(w ≺ v ∧ φ v), respectively. ♢⪯
σ�σφσ thus reduces

to λwι∃vι(w ⪯ v ∧ φ v), denoting the set of all worlds w so that φ holds in some world
v that is at least as good as w; analogous for ♢≺

σ�σ. Additionally, the global existential
modality Eσ�σ is introduced as shorthand for the HOL term λφσλwι∃vι(φ v). The duals
□⪯

σ�σφσ, □≺
σ�σφσ and Aσ�σφ can easily be added so that they are equivalent to ¬♢⪯

σ�σ¬φσ,
¬♢≺

σ�σ¬φσ and ¬Eσ�σ¬φ respectively. A special predicate ⌊φσ⌋ (read φσ is valid) for
σ-type lifted PL formulas in HOL is defined as an abbreviation for ∀wι(φσ w).

1 This corresponds to the well-known standard translation to first-order logic. Observe, however, that the
additional expressivity of HOL allows us to also encode and flexibly combine non-normal modal logics
(conditional, deontic, etc.) and to encode also different kinds of quantifiers; see e.g. [6, 8, 9, 10].

2 In HOL (with Henkin semantics) sets are associated with their characteristic functions.
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Figure 1 SSE of basic PL in Isabelle/HOL (extract).

⪯ is now “lifted” to a preference relation between PL propositions (sets of worlds).3

(φσ ⪯EE ψσ) uι iff ∃sι φσs ∧ (∃tι ψσt ∧ s ⪯ t) (uι arbitrary)
(φσ ⪯EA ψσ) uι iff ∃tι ψσt ∧ (∀sι φσs → s ⪯ t) (uι arbitrary)
(φσ ⪯AE ψσ) uι iff ∀sι φσs → (∃tι ψσt ∧ s ⪯ t) (uι arbitrary)
(φσ ⪯AA ψσ) uι iff ∀sι φσs → (∀tι ψσt → s ⪯ t) (uι arbitrary)

As an illustration, we can read φ ≺AA ψ as “every ψ-state being better than every
φ-state”, and read φ ≺AE ψ as “every φ-state having a better ψ-state” (similarly for others).
Each of these non-trivial variants can be argued for [37, 27]. However, as we will reveal in
§3, only the EA- and AE-variants satisfy the minimal conditions required for a logic of value
aggregation. Moreover, they are the only ones that satisfy transitivity.

As shown in [37], the binary preference operators above are complemented by “syntactic”
counterparts defined as derived operators using the language of PL. In fact, both sets of
definitions (“semantic” and “syntactic”) coincide in general only for the EE- and AE-variants
(other variants coincide only if ⪯ is a total/linear ordering). The “syntactic” variants are
encoded below in HOL employing the σ-type lifted logic PL (using boldface to differentiate
them).

(φσ ⪯EE ψσ) := E(φσ ∧ ♢⪯ψσ) and (φσ ≺EE ψσ) := E(φσ ∧ ♢≺ψσ)
(φσ ⪯EA ψσ) := E(ψσ ∧ □≺¬φσ) and (φσ ≺EA ψσ) := E(ψσ ∧ □⪯¬φσ)
(φσ ⪯AE ψσ) := A(φσ → ♢⪯ψσ) and (φσ ≺AE ψσ) := A(φσ → ♢≺ψσ)
(φσ ⪯AA ψσ) := A(ψσ → □≺¬φσ) and (φσ ≺AA ψσ) := A(ψσ → □⪯¬φσ)

3 The variant ⪯EA as originally presented in [37] was in fact wrongly formulated. This mistake has been
uncovered during the (iterative) formalisation process thanks to Isabelle/HOL.
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We further extend the lifted logic PL by adding quantifiers. This can be done by
identifying ∀xαsσ with the HOL term λwι∀xα(sσw) and ∃xαsσ with λwι∃xα(sσw). This
way quantified expressions can be seamlessly employed, e.g., for the representation of legal
and world knowledge in §4.

A note on the heavy use of abbreviations as opposed to definitions is in order. One
motivation is to show by the simplest possible means that the logic PL (and also our
subsequent encodings in this paper) can be understood as a genuine fragment of HOL, and
the introduction of the connectives of PL as syntactic sugar (abbreviations) for λ-terms in
HOL does just that. No specific concepts, in particular no Isabelle/HOL specific ones, are
needed to achieve our goals, making our work easily transferrable to other higher-order proof
assistant systems. Another motivation is to show that proof automation with Sledgehammer
already works very well using only abbreviations. Of course, by using definitions we could
support, e.g., selective expansions of definitions, which could be a useful option for further
proof optimisation. However, this was not yet necessary for the proof automation results
obtained in this work. This, and related issues, are worth considering in further work.

2.3 Faithfulness of the SSE
The faithfulness (soundness & completeness) of the present SSE of PL in HOL follows
from previous results for SSEs of propositional multi-modal logics [14] and their quantified
extensions [15]. Soundness of the SSE states that our modelling does not give any “false
positives”, i.e., if ⊨HOL(Γ) ⌊φσ⌋ then ⊨PL φ, and therefore ⊢PL φ in the (complete) calculus
axiomatised by [37]; here HOL(Γ) corresponds to HOL extended with the relevant types
and constants plus a set Γ of axioms encoding PL semantic conditions, i.e., reflexivity
and transitivity of ⪯(ι�ι�o). Completeness of the SSE means that our modelling does not
give “false negatives”, i.e., if ⊨PL φ then ⊨HOL(Γ) ⌊φσ⌋. Moreover, SSE completeness can
be mechanically verified by deriving the σ-type lifted PL axioms and inference rules in
HOL(Γ).4

3 A Logic for Value-oriented Legal Reasoning

On top of object logic PL we define a domain-specific logic for reasoning with values in the
context of legal cases. We subsequently encode this logic of legal values in Isabelle/HOL and
put it to the test.

Setting the Stage: Plaintiff vs. Defendant

In a preliminary step, the contending parties in a legal case, the “plaintiff” (p) and the
“defendant” (d), are introduced as an (extensible) two-valued datatype c (for “contender”)
together with a function (·)−1 used to obtain for a given party the other one; i.e. p−1 = d and
d−1 = p. Moreover, we add a predicate For to model the ruling for a party and postulate:
For x ↔ ¬For x−1.

4 See the corresponding sources in [1], where we conducted numerous experiments mechanically verifying
meta-theoretical results on PL.
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Abstract Values and Value Principles

Figure 2 Value theory of Lomfeld [30].

Our approach to value-oriented legal reasoning draws upon recent work in legal theory by
Lomfeld [30, 29] who considers a four-quadrant value space generated by two axes featuring
antagonistic abstract values (FREEDOM vs. SECURITY & UTILITY vs. EQUALITY) at
the extremes (Fig. 2).

A set of eight value principles are allocated to the four quadrants (two for each quadrant)
as shown in Fig. 2. Additionally, Lomfeld’s theory contemplates the encoding of legal rules as
conditional preferences between conflicting value principles of the form: R : (E1 ∧· · ·∧En) ⇒
A ≺ B. Hence, application of rule R involves balancing value principles A and B in context
(i.e. under the conditions E1 . . . En).

To provide a concrete modelling of this theory in Isabelle/HOL, we have chosen to model
value principles as sets of abstract values.5 For the latter we have introduced a four-valued
datatype (‘t VAL). Observe that this datatype is parameterised with a type variable ‘t.
In the remainder we take ‘t as being c. In doing this, we allow for the encoding of value
principles w.r.t. a particular (favoured) legal party. In the remainder value principles are
thus encoded as functions taking objects of type c (p or d) to sets of abstract values:

We have also introduced some convenient type-aliases; v for the type of sets of abstract
values, and cv for its corresponding functional version (taking a legal party as parameter).

Instances of value principles (w.r.t. a legal party) are next introduced as sets of abstract
values (w.r.t. a legal party), i.e., as objects of type cv. For this we introduce set-constructor
operators for values (depicted as ⦃. . .⦄).

Recalling Fig. 2, we have, e.g., that the principle of STABility favouring the plaintiff
(STABp) is encoded as a two-element set of abstract values (favouring the plaintiff), i.e.,
⦃SECURITY p, UTILITY p⦄. We do analogously for the other value principles.

5 Here we suitably simplify Lomfeld’s value theory to the effect that, e.g., STABility becomes identified
with EFFIciency. This is enough for our modelling work in §4. A more granular encoding of value
principles is possible by adding a third axis to the value space in Fig. 2.
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From a modal logic point of view it is, alternatively, convenient to conceive value principles
as truth-bearers, i.e., propositions (as sets of worlds or situations). To overcome this apparent
dichotomy in the modelling of value principles (sets of abstract values vs. sets of worlds) we
make use of the mathematical notion of a Galois connection as exemplified by the notion
of derivation operators from the theory of formal concept analysis (FCA), a mathematical
theory of concepts and concept hierarchies as formal ontologies. Below we succinctly discuss
a couple of FCA notions relevant to our work. We refer the interested reader to [22] for an
actual introduction to FCA.

Some FCA Notions

A formal context is a triple K = ⟨G,M, I⟩ where G is a set of objects, M is a set of attributes,
and I is a relation between G and M (so-called incidence relation), i.e., I ⊆ G × M . We
read ⟨g,m⟩ ∈ I as “the object g has the attribute m”. We define two so-called derivation
operators ↑ and ↓ as follows:

A↑ := {m ∈ M | ⟨g,m⟩ ∈ I for all g ∈ A} for A ⊆ G

B↓ := {g ∈ G | ⟨g,m⟩ ∈ I for all m ∈ B} for B ⊆ M

A↑ is the set of all attributes shared by all objects from A, called the intent of A. Dually,
B↓ is the set of all objects sharing all attributes from B, called the extent of B. This pair of
derivation operators thus forms an antitone Galois connection between (the powersets of) G
and M , i.e. we always have that B ⊆ A↑ iff A ⊆ B↓.

A formal concept (in a context K) is defined as a pair ⟨A,B⟩ such that A ⊆ G, B ⊆ M ,
A↑ = B, and B↓ = A. We call A and B the extent and the intent of the concept ⟨A,B⟩,
respectively. Indeed ⟨A↑↓, A↑⟩ and ⟨B↓, B↓↑⟩ are always concepts.

The set of concepts in a formal context is partially ordered by set inclusion of their
extents, or, dually, by the (reversing) inclusion of their intents. In fact, for a given formal
context this ordering forms a complete lattice: its concept lattice. Conversely, it can be
shown that every complete lattice is isomorphic to the concept lattice of some formal context.
We can thus define lattice-theoretical meet and join operations on FCA concepts in order to
obtain an algebra of concepts:6

⟨A1, B1⟩ ∧ ⟨A2, B2⟩ := ⟨(A1 ∩A2) , (B1 ∪B2)↓↑⟩
⟨A1, B1⟩ ∨ ⟨A2, B2⟩ := ⟨(A1 ∪A2)↑↓ , (B1 ∩B2)⟩

6 This result can be seamlessly stated for infinite meets and joins (infima and suprema) in the usual way.
It corresponds to the first part of the so-called basic theorem on concept lattices [22].
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Value Principles

We now extend the encoding (SSE) of our object logic PL, exploiting the high expressivity
of our meta-logic HOL. We define two FCA derivation operators ↑ and ↓ employing the
corresponding definitions from above. For this we take G as the domain set of worlds
corresponding to the type ι and M as a domain set of abstract values, corresponding in
the current modelling approach to the type VAL. In doing this, each value principle (set
of abstract values) becomes associated with a proposition (set of worlds) by means of the
operator ↓ (conversely for ↑). We encode this by defining a binary incidence relation I
between worlds/states (type ι) and abstract values (type VAL). We define ↓ so that V ↓
denotes the set of all worlds that are I-related to every value in V (analogously for V ↑).

We introduce an alternative notation: [V ] := V ↓ which may enhance readability in some
cases.

Recalling the semantics of the object logic PL from our discussion in §2.1, we can give
an intuitive reading for truth at a world in a preference model to terms of the form P↓;
namely, we can read M, w ⊨ P↓ as “principle P provides a reason for (state of affairs) w to
obtain”. In the same vein, we can read M ⊨ A → P↓ as “principle P provides a reason for
proposition A being the case”.

Transferring these insights to our current modelling in Isabelle/HOL, we can intuitively
read, e.g., the formula STABd↓ w (of type bool) as: “the legal principle of stability is
justifiably promoted in favour of the defendant (in situation w)”. In a similar vein, we can
read ⌊For d → STABd↓⌋ as “promoting (legal) stability in favour of the defendant justifies
deciding for him/her (in any situation)”.

Value Aggregation and Preference

As discussed above, our logic of legal values must provide means for expressing conditional
preferences between principles of the form: (E1 ∧ · · · ∧ En) ⇒ A ≺ B. The conditional ⇒
is modelled in this work using PL’s material conditional →, while noting that a defeasible
conditional operator can indeed be defined and added by employing PL’s modal operators
[20, 28]. We can also define a binary preference connective ≺ for propositions by reusing
any of the eight preference “lifting” variants in PL as discussed in §2. However, this choice
cannot be arbitrary, since it needs to interact with value aggregation in an appropriate way.

Lomfeld’s theory also contemplates a mechanism for expressing aggregation of value
principles (as reasons). We thus define a binary value aggregation connective ⊕, observing
that it should satisfy particular logical constraints in interaction with a (suitably selected)
value preference relation ≺:

(A ≺ B) → (A ≺ B ⊕ C) but not (A ≺ B ⊕ C) → (A ≺ B) aggregation on the right
(A⊕ C ≺ B) → (A ≺ B) but not (A ≺ B) → (A⊕ C ≺ B) aggregation on the left

(B ≺ A) ∧ (C ≺ A) → (B ⊕ C ≺ A) union property (optional)

The aggregation connectives are most conveniently defined using join (resp. set union)
operators, which gives us commutativity. As it happens, only the ≺AE/⪯AE and ≺EA/⪯EA

variants from §2 satisfy the first two conditions. They are also the only variants satisfying
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transitivity. Moreover, if we choose to enforce the third aggregation principle (union property),
then we are left with only one variant to consider, namely ≺AE/⪯AE . This variant also
offers several benefits for our current modelling purposes: it can be faithfully encoded in the
language of PL [37] and its behaviour is well documented in the literature [24] [27, Ch. 4].

After extensive computer-supported experiments in Isabelle/HOL (see [1]) we have
identified the following candidate definitions satisfying all desiderata. First, for value
aggregation ⊕:7

A⊕(1) B := (A ∩B)↓ and A⊕(2) B := (A↓ ∨B↓)

Then, for a binary preference connective ≺ between propositions we have:

φ ≺(1) ψ := φ ⪯AE ψ and φ ≺(2) ψ := φ ≺AE ψ

For the rest of this work we will illustratively employ the second set of definitions indexed by
(2).

Promoting Values

We still need to consider the mechanism by which we can link legal decisions, together
with other legally relevant facts, to legal values. We conceive of such a mechanism as a
sentence schema, which reads intuitively as: “Taking decision D in the presence of facts F
promotes/advances legal (value) principle V”. The formalisation of this schema corresponds
to a new predicate Promotes(F,D,V), where F is a conjunction of facts relevant to the case
(a proposition), D is the legal decision, and V is the value principle thereby promoted.8

Promotes(F,D, V ) := F → □≺(D ↔ ♢≺V ↓)

Promotes(F,D,V) can be given an intuitive reading: “in every F -situation we have that, in all
better states, the admissibility of promoting value V both entails and justifies (as a reason)
taking decision D”.

Value Conflict

Another important idea inspired from Lomfeld’s value theory [29, 30] is the notion of value
conflict. Recalling Fig. 2, values are disposed around two axis of value coordinates, with
values lying at contrary poles playing antagonistic roles. For our modelling purposes it makes
thus sense to consider a predicate Conflict on worlds (i.e. a proposition) signalling situations
where value conflicts appear.

7 Observe that ⊕1 is based upon the join operation on the corresponding FCA formal concepts. ⊕2 is a
strengthening of the first, since (A ⊕2 B) ⊆ (A ⊕1 B).

8 We adopt the terminology of advancing or promoting a value from the literature [16, 34, 5] understanding
it in a teleological sense: a decision promoting a value principle means taking that decision for the sake
of honouring the principle; thus seeing the value principle as a reason for taking that decision.
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Figure 3 Testing the logic of legal values.

Testing the Encoding

In order to test the adequacy of our modelling, some implied and non-implied knowledge is
studied. We briefly discuss some of the conducted tests as shown in Fig. 3.

Among others, we verify that the pair of operators for extension (↓) and intension (↑),
cf. formal concept analysis [22], constitute indeed a Galois connection (Lines 6–18), and we
carry out some further tests on the value theory concerning value aggregation and consistency
(Lines 20ff.).

In our modelling of the notion of value conflict, promoting values (for the same party)
from two opposing value quadrants, say RELI & WILL, should entail a value conflict; theorem
provers quickly confirm this as shown in Fig. 3 (Line 20). However, promoting values from
two non-opposed quadrants, such as WILL & STAB (Line 29) should not imply conflict:
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Figure 4 Satisfying model for the statement in Line 22 of Fig. 3.

the model finder Nitpick9 computes and reports a countermodel (not shown here) to the
stated conjecture. A value conflict is also not implied if values from opposing quadrants are
promoted for different parties (Lines 36-37).

Note that the notion of value conflict has deliberately not been aligned with inconsistency
in meta-logic HOL. This way we can represent conflict situations in which, for instance, RELI
and WILL (being conflicting values, see Line 20 in Fig. 3) are promoted for the plaintiff
(p), without leading to a logical inconsistency in Isabelle/HOL (thus avoiding “explosion”).
In Line 22 of Fig. 3, for example, Nitpick is called simultaneously in both modes in order
to confirm the contingency of the statement; as expected both a model (cf. Fig. 4) and
countermodel (not displayed here) for the statement are returned. This value conflict (w.r.t. p)
can also be spotted by inspecting the satisfying models generated by Nitpick. One of such
models is depicted in Fig. 4, where it is shown that (in the given possible world ι1) all of the
abstract values (EQUALITY, SECURITY, UTILITY, and FREEDOM) are simultaneously
promoted for p, which implies a value conflict according to our definition.

Analysing the model structures returned by Nitpick has indeed been very helpful to gain
a deeper insight into PL semantic structures. This becomes particularly relevant for complex
modelling tasks where a clear understanding is often initially lacking.

Further tests in Fig. 3 (Lines 39-48) assess the behaviour of the aggregation operator ⊕
in combination with value preferences. We test for a correct behaviour when “strengthening”,
resp. “weakening”, the right-hand side (Lines 39-43). As an illustration, in line 41, if STAB
is preferred over WILL, then STAB combined with, say, RELI is also preferred over WILL
alone. Similar test are conducted for “strengthening”, resp. “weakening”, the left-hand side
(Lines 44-48).

Finally, we verify (lines 50–52) basic properties of the preference relation.

4 A Case Study in Property Law

To illustrate our approach, we formalise and assess, employing Isabelle/HOL, a well-known
benchmark case in AI & Law involving the appropriation of wild animals: Pierson vs. Post.
In a nutshell: Pierson killed and carried off a fox which Post already was hunting with hounds
on public land. The Court found for Pierson (cf. [2, 34, 16], and also [23] for the significance
of this case as a benchmark).

We start with some words on the modelling of background (legal & world) knowledge.

9 Nitpick [19] searches for, respectively enumerates, finite models or countermodels to a conjectured
statement/lemma. By default Nitpick searches for countermodels, and model finding is enforced by
stating the parameter keyword “satisfy”. These models are given as concrete interpretations of relevant
terms in the given context so that the conjectured statement is satisfied or falsified.
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4.1 Legal & World Knowledge
The realistic modelling of concrete legal cases requires further legal & world knowledge
(LWK) to be taken into account. For the sake of illustration, we introduce here only a small
and monolithic Isabelle/HOL theory10 called “GeneralKnowledge”. This includes a small
excerpt of a much simplified “animal appropriation taxonomy”, where we associate “animal
appropriation” kinds of situations with the value preferences they imply (as conditional
preference relations).

In a realistic setting this knowledge base would be further split and structured similarly
to other legal or general ontologies, e.g., in the Semantic Web. Note, however, that the
expressiveness in our approach, unlike in many other legal ontologies or taxonomies, is by
no means limited to definite underlying (but fixed) logical language foundations. We could
thus easily decide for a more realistic modelling, e.g., avoiding simplifying propositional
abstractions. For instance, the proposition “appWildAnimal”, representing the appropriation
of one or more wild animals, can anytime be replaced by a more complex formula (featuring,
e.g., quantifiers, modalities or defeasible conditionals).

We now briefly outline the encoding of our example LWK (see [1] for the full details).
First, some non-logical constants that stand for kinds of legally relevant situations (here:

of appropriation) are introduced, and their meaning is constrained by some postulates:

Then the “default” legal rules for several situations (here: appropriation of animals) are
formulated as conditional preference relations:

For example, rule R2 could be read as: “In a wild-animals-appropriation kind of situation,
promoting STABility in favour of a party (say, the plaintiff) is preferred over promoting
WILL in favour of the other party (defendant)”. If there is no more specific legal rule from
a precedent or a codified statute then these “default’11 preference relations determine the
result. Moreover, we can have rules conditioned on more concrete legal factors.12 As a

10 Isabelle documents are suggestively called “theories”. They correspond to top-level modules bundling
together related definitions, theories, proofs, etc.

11 We use of the term “default” in the colloquial sense, noting however, that there exist in fact several (non-
monotonic) logical systems aimed at modelling such a kind of defeasible behaviour for rules/conditionals
(i.e., meaning that they can be “overruled”). One of them has been suggestively called “default logic”.
We refer to [25] for a discussion.

12 The introduction of legal factors is an established practice in the implementation of case-based legal
systems (cf. [3] for an overview). They can be conceived –as we do– as propositions abstracted from the
facts of a case by the analyst/modeller in order to allow for assessing and comparing cases at a higher
level of abstraction. Factors are typically either pro-plaintiff or pro-defendant, and their being true or
false (resp. present or absent) in a concrete case can serve to invoke relevant precedents or statutes.
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didactic example, the legal rule R4 states that the Ownership (say, the plaintiff’s) of the
land on which the appropriation took place, together with the fact that the opposing party
(defendant) acted out of Malice implies a value preference of RELIance and RESPonsibility
over STABility. This last rule has indeed been chosen to reflect the famous common law
precedent of Keeble vs. Hickeringill [16, 2].

As already discussed, for ease of illustration, terms like “appWildAnimal” are modelled
here as simple propositional constants. In practice, however, they may later be replaced,
or logically implied, by a more realistic modelling of the relevant situational facts, utilising
suitably complex (even higher-order, if needed) formulas depicting states of affairs to some
desired level of granularity.

For the sake of modelling the appropriation of objects, we have introduced an additional
type e (for “entities”) that can be employed for terms denoting individuals (things, animals,
etc.) when modelling legally relevant situations. Some simple vocabulary and taxonomic
relationships (here for wild and domestic animals) are specified to illustrate this.

As mentioned before, we have introduced some convenient legal factors into our example
LWK to allow for the encoding of legal knowledge originating from precedents or statutes at
a more abstract level. In our approach these factors are to be logically implied (as deductive
arguments) from the concrete facts of the case (as exemplified in §4 below). Observe that
our framework also allows us to introduce definitions for those factors for which clear legal
specifications exist. At the present stage, we will provide some simple postulates constraining
factors’ interpretation.

Recalling §3 we relate the introduced factors to value principles and outcomes by means of
the Promotes predicate. Finally, the consistency of all axioms and rules provided is confirmed
by Nitpick.
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4.2 Pierson vs. Post
We illustrate our reasoning framework by encoding the classic property law case Pierson
vs. Post.

Ruling for Pierson

The formal modelling of an argument in favour of Pierson is outlined next (the entire
formalisation of this argument is presented in the sources [1]).

First we introduce some minimal vocabulary: a constant α of type e (denoting the
appropriated animal), and the relations pursue and capture between the animal and one of
the parties (of type c). A background (generic) theory as well as the (contingent) case facts
as suitably interpreted by Pierson’s party are then stipulated:

The aforementioned decision of the court for Pierson was justified by the majority opinion.
The essential preference relation in the case is implied in the idea that appropriation of
(free-roaming) wild animals requires actual corporal possession. The manifest corporal link
to the possessor creates legal certainty, which is represented by the value stability (STAB)
and outweighs the mere will to possess (WILL) by the plaintiff; cf. the arguments of classic
lawyers cited by the majority opinion [23]: “pursuit alone vests no property” (Justinian
institutes), and “corporal possession creates legal certainty” (Pufendorf). Recalling Fig. 2 in
§3, this corresponds to a preference for the abstract value SECURITY over FREEDOM.

We can see that this legal rule R2, as introduced in the previous section (§4.1) is indeed
employed by Isabelle/HOL’s automated tools to prove that, given a suitable defendant’s
theory, the (contingent) facts imply a decision in favour of Pierson in all “better’ worlds
(which we could read deontically as a sort of obligation):
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The previous “one-liner” proof has indeed been suggested by Sledgehammer [17, 18]
which we credit, together with Nitpick [19], for doing the heavy lifting in our work. A proof
argument in favour of Pierson that uses the same dependencies can also be constructed
interactively using Isabelle’s human-readable proof language Isar [39]. The individual steps
of the proof are this time formulated with respect to an explicit world/situation parameter
w. The argument goes roughly as follows:
1. From Pierson’s facts and theory we infer that in the disputed situation w a wild animal

has been appropriated: appWildAnimal w.
2. In this context, by applying the value preference rule R2, we get that promoting STAB

in favour of Pierson is preferred over promoting WILL in favour of Post: ⌊[WILLp] ≺
[STABd]⌋.

3. The admissibility of promoting WILL in favour of Post thus entails the admissibility of
promoting STAB in favour of Pierson: ⌊♢≺[WILLp] → ♢≺[STABd]⌋.

4. Moreover, after instantiating the value promotion schema F1 (§4.1) for Post (p), and
acknowledging that his pursuing of the animal (Pursue p α) entails his intention to
possess (Intent p), we obtain (for the given situation w) an obligation/recommendation
to “align” any ruling for Post with the admissibility of promoting WILL in his favour:
□≺(For p ↔ ♢≺[WILLp]) w.

5. Analogously, in view of Pierson’s (d) capture of the animal (Capture d α), thus having
taken possession of it (Poss d), we infer from the instantiation of value promotion schema
F3 (for Pierson) an obligation/recommendation to align a ruling for Pierson with the
admissibility of promoting the value principle STAB (in his favour): □≺(For d ↔
♢≺[STABd]) w.

6. From (4) and (5) in combination with the courts duty to find a ruling for one of both parties
(ForAx) we infer, for the given situation w, that either the admissibility of promoting
WILL in favour of Post or the admissibility of promoting STAB in favour of Pierson (or
both) hold in every “better” world/situation (thus becoming a recommended/obligatory
condition): □≺(♢≺[WILLp] ∨ ♢≺[STABd]) w.

7. From this and (3) we thus get that the admissibility of promoting STAB in favour of
Pierson is recommended/obligatory in the given context w: □≺(♢≺[STABd]) w.

8. And this together with (5) finally implies the recomendation/obligation to rule in favour
of Pierson in the given context w: □≺(For d v).

The consistency of Pierson’s assumptions (theory and facts) together with the other
postulates from the previously introduced Isabelle theories “GeneralKnowledge” and “Value-
Ontology” is verified by generating a (non-trivial) model using Nitpick (Line 38). Further
tests confirm that the decision for Pierson (and analogously for Post) is compatible with the
premises and, moreover, that for neither party value conflicts are implied.
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Finally, observe that an analogous (deductively valid) argument for Post cannot follow
from the given theory and situational facts. This is not surprising given that they have
been deliberately chosen to suit Pierson’s case. We show next, how it is indeed possible to
construct a case (theory) suiting Post using our approach.

Ruling for Post

We model a possible counterargument by Post claiming an interpretation (i.e. a distinction
in case law methodology) in that the animal, being vigorously pursued (with large dogs
and hounds) by a professional hunter, is not “free-roaming”. In doing this, the value
preference ⌊[WILLp] ≺ [STABd]⌋ (for appropriation of wild animals) as in the previous
Pierson’s argument does not obtain. Furthermore, Post’s party postulates an alternative
(suitable) value preference for hunting situations.

Note that an alternative legal rule (i.e. a possible argument for overruling in case law meth-
odology) is presented in Line 16 above, entailing a value preference of the value combination
efficiency (EFFI) and will (WILL) over stability (STAB): ⌊[STABd] ≺ [EFFIp ⊕ WILLp]⌋.
Following the argument put forward by the dissenting opinion in the original case, we might
justify this new rule (inverting the initial value preference in the presence of EFFI) by
pointing to the alleged public benefit of hunters getting rid of foxes, since the latter cause
depredations in farms.

Accepting these modified assumptions the deductive validity of a decision for Post can in
fact be proved and confirmed automatically, again, thanks to Sledgehammer :
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Similar to above, a detailed, interactive proof for the argument in favour of Post has been
encoded and verified in Isabelle/Isar. We have also conducted further tests confirming the
consistency of the assumptions and the absence of value conflicts (see sources in [1]).

5 Conclusion

Supporting interactive and automated value-oriented legal argumentation on the computer is
a non-trivial challenge which we address, for reasons as defended e.g. by Bench-Capon [4],
with symbolic AI techniques and formal methods. Motivated by recent pleas for explainable
and trustworthy AI, our primary goal is to work towards the development of ethico-legal
governors for future generations of intelligent system, or more generally, towards some form of
(legally and ethically) reasonable machines [12], capable of exchanging rational justifications
for the actions they take. While building up a capacity to engage in value-oriented legal
argumentation is just one of a multitude of challenges this vision is faced with, it would
clearly constitute an important stepping stone.

Custom software systems for legal case-based reasoning have been developed in the AI
& law community, beginning with the influential HYPO system in the 1980s [36] (cf. also
the review paper [3]). In later years, there was a gradual shift of interest from rule-based
non-monotonic reasoning (e.g., logic programming) to argumentation-based approaches
(see [35] for an overview); however, we are not aware of any other work that uses higher-order
theorem proving and proof assistants (the argumentation logic of [26] is an early related
effort that is worth mentioning). Another important aspect of our work concerns value-based
legal reasoning and deliberation, where a considerable amount of work has been presented in
response to the challenge posed by Berman and Hafner [16]. Our approach, based mainly
on Lomfeld’s theory [30, 29], has also been influenced by some of this work, in particular
[34, 2, 5]. We think that some of the recent work that uses expressive deontic logics for value
balancing (cf. [31] and the references therein) can be integrated into our approach.

The approach presented and illustrated in this work adapts and implements the multi-
layered LogiKEy knowledge engineering methodology [13] to enable the application of
off-the-shelf interactive and automated theorem proving technology for classical higher-order
logic in ethical-legal reasoning. LogiKEy has been extended in this work to include an
additional modeling layer, the value ontology. The value ontology forms a bridge between the
legal and general world knowledge layer and the object logic layer in LogiKEy. Isabelle/HOL
has proven to be an excellent base technology to support the presented formalization work
and the conducted experiments. We are particularly pleased with the good performance
of the Nitpick model finder and the integrated automated theorem provers (provided by
Sledgehammer), which provided very useful feedback at all modeling layers, including fully
automated proofs for formal justification of the discussed judgments.

Further work includes refining the modelling of Lomfeld’s value theory in combination with
providing more expressive (combinations of) object logics. With respect to the latter, the use of
material implication to model defeasible or “default” rules (among others) has proven sufficient
for the illustrative purposes of this paper, but it is important to note that more realistic
modeling of legal cases must also provide mechanisms to deal with the inevitable emergence
of conflicts and contradictions in normative reasoning (overruling, conflict resolution, etc.). In
line with the LogiKEy approach, we can indeed introduce a defeasible conditional operator
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by reusing the modal operators of PL(as discussed, e.g., in [20, 28]), or alternatively by the
SSE of a suitable conditional logic in HOL [6]. Various kinds of paraconsistent negations could
also be considered for the non-explosive representation of (and recovery from) contradictions
by purely object-logical means (cf. [21] for an appropriate SSE). It is the pluralistic nature
of our approach, realised within a dynamic modelling framework, that enables and supports
such improvements without requiring technical adjustments to the underlying base reasoning
technology.
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Abstract
In this paper, we describe an axiom-free Coq formalization that there does not exists a general
method for solving by radicals polynomial equations of degree greater than 4. This development
includes a proof of Galois’ Theorem of the equivalence between solvable extensions and extensions
solvable by radicals. The unsolvability of the general quintic follows from applying this theorem to a
well chosen polynomial with unsolvable Galois group.
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1 Introduction

This article presents a formal study of the existence of solutions by radicals of polynomial
equations. Solutions by radicals are the ones that can be expressed from the coefficients of a
polynomial using operations of addition, multiplication, subtraction, division, and extraction
of roots. More precisely we study the case of polynomial equations of degree greater than 4.
As opposed to the case of lower degree, there is no solution by radicals to general polynomial
equations of degree five or higher with arbitrary coefficients. This theorem, also known as the
Abel-Ruffini theorem, is attributed to Abel for his work [14, volume 1, chapter III] published
in 1826. Ruffini is credited for a first formulation and proof [21] from 1799. Abel writes
about Ruffini: “[. . . ]; but his memoir is so complicated that it is very hard to assess the
correctness of his reasoning. It seems to me that his reasoning is not always satisfactory.” [14,
volume 2, chapter XVIII]

In fact, we developed a formal proof of the more general theorem – attributed to Galois [8]
in his memoir from 1830 – which provides an explicit necessary and sufficient condition
for the existence of solutions by radical, and we also formalize an example of non-solvable
quintic, obtained as a corollary of the latter. This Galois theorem is an emblematic result of
Galois theory, which studies field extensions of commutative fields via a correspondence with
groups of permutations of roots of polynomials.
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This formalization endeavor builds on an existing library covering elementary results in
Galois theory, developed by Georges Gonthier and Russell O’Connor in the Mathematical
Components library [25], for the purpose of the formal proof of the Odd Order theorem [11].
As there is no published description of this material, we provide where needed a description
of the material from this contribution that we rely on.

The formalized proof is constructive, and relies on nothing but the axioms and rules of
the foundational framework implemented by Coq. The code of this formalization is available
on https://github.com/math-comp/Abel version 1.1.2. Every numbered definition, lemma
or theorem in this paper is our contribution, and we hyperlinked red underlined definitions.

2 Background and outline

Throughout this section, we consider a field K of characteristic 0 and a polynomial P ∈ K[X].
We study the solvability by radicals of the equation P (X) = 0, also termed the solvability by
radicals of P . An easy case is when all the roots of P are in K, i.e., when F splits P . In the
general case, the idea is to consider successive field extensions F over K, i.e., fields F such
that K ⊂ F . These extensions are built so as to gradually encompass all the roots of P .

In the rest of the paper, we write F/K to denote that F is a field extension over K. Given
such an extension, the larger field F is a K-vector space and we can consider its dimension –
called the degree of the extension and written [F : K]. A field extension is said to be finite
when its degree is finite. In the present paper, all the field extensions under consideration are
finite and we sometimes simply refer to them as “field extensions”. If x0, . . . , xn are elements
of F , we denote by K(x1, . . . , xn) the smallest field which contains K and xi for all i ≤ n.
Note that both K(x1, . . . , xn)/K and F/K(x1, . . . , xn) are field extensions. The splitting
field of P ∈ F [X] is the smallest field extension of F which splits P .

Let F/K be a field extension. An element x of F is said to be algebraic over K if it
is a root of some nonzero polynomial with coefficients in K. The field extension F/K is
called algebraic when all its elements are algebraic over K. Moreover if F is a splitting field
for some polynomial in K[X], the extension F/K is said to be normal. Last, the minimal
polynomial of an element x of F is the monic polynomial of minimal degree among all the
nonzero polynomials with coefficients in K and having x as a root.

▶ Definition 1 (radical, solvable by radicals). Let F/K be a field extension. F/K is called a
simple radical extension if there exists x ∈ F and a positive integer n ∈ N∗ such that xn ∈ K

and F = K(x). A radical series is a tower F0 ⊂ · · · ⊂ Fn where Fk/Fk−1 is a simple radical
extension for k ∈ {1, . . . , n}. A field extension F/K is a radical extension if there is a radical
series K = F0 ⊂ · · · ⊂ Fn = F . It is a solvable by radicals extension if there is a radical
extension E/K such that F ⊂ E.

A polynomial P ∈ K[X] is solvable by radicals if it splits in a radical extension of K.

The crux of the method is, given a splitting field F of a polynomial P over K, to study
the field automorphisms of F that fix K point-wise, thereby permuting the roots P .

More generally, given a field (finite) extension F/K, the set of automorphisms of F that
fix K point-wise is always a group. We call it Gal(F/K), the Galois group of the extension
F/K. Moreover, if Gal(F/K) fixes exactly K, the extension F/K is then said to be a Galois
extension. In this case, the order of the Galois group Gal(F/K) is equal to the degree of
the extension [F : K]. Some properties of Gal(F/K) hold without F/K being Galois, e.g.,
the inclusion Gal(F/M) ⊂ Gal(F/K) when K ⊂ M . Every Galois extension is a normal
extension and since we assumed K has characteristic zero, every normal extension F/K is a
Galois extension.

https://github.com/math-comp/Abel
https://github.com/math-comp/Abel/tree/1.1.2
https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L53-L99
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The first theorem that has been formally proven in this paper states that the Galois group
of a polynomial P contains all the information about the solvability of the corresponding
polynomial equation:

▶ Theorem 2 (Galois). A polynomial P ∈ F [X] is solvable by radicals if and only if its
Galois group is solvable.

We recall that a group G is solvable if it is close to being abelian, in the sense that there
exists a normal series {e} = G0 ◁ · · · ◁ Gn = G of G, whose factors Gk+1/Gk are all abelian.

Proof. Lemma 11 from Section 4 addresses the right to left direction. Lemma 19 from
Section 5 shows the converse direction. Section 6.1 proves the theorem for F = Q. Finally
Section 8.3 explains how to generalize this both in constructive and classical logic contexts. ◀

In other words, Theorem 2 reduces the problem of the solvability by radicals of a
polynomial to the analysis of the solvability of its Galois group and allows us to deduce the
following one:

▶ Theorem 3 (Abel-Ruffini). There is no solution by radicals to general polynomial equations
of degree five or higher.

Proof. It suffices to show that there is a polynomial over Q which is not solvable by radicals
because otherwise the general solution would apply. Theorem 22 in Section 6.3 shows that
the polynomial X5 − 4X + 2 is not solvable by radicals. ◀

For the sake of clarity, and unless otherwise stated, in the rest of the paper we focus on
the specific case where the base field K has characteristic zero. For instance, the base field of
Theorem 3 is simply Q, the field of rational numbers. However, in the formal development,
we have striven to provide definitions that are general enough to also apply to the positive
characteristic case. Typically, in the case of nonzero characteristic, a normal (hence algebraic)
extension F/E is Galois only in the case where it is also separable – i.e. if for any x ∈ F , the
minimal polynomial of x is separable, i.e., has only simple roots. A substantial amount of
our formal development thus applies to the case of positive characteristic as well. We discuss
this more in details in Section 9.

3 Formal definitions

Throughout this paper, and unless explicitly mentioned, we consider a (finite) field extension
L/F0, which will serve as an ambient larger locus, fixing a common type for the elements of
the various fields at stake. As discussed in Section 2, the reader can safely assume that L

has characteristic zero.
In fact, we also assume this extension to be normal, that is, that L is the splitting field

of a certain polynomial in F0[X]. We will thus use letters E, F, K for sub-fields of L that are
themselves extensions over F0. This formalization choice can be compared to the use of an
ambient finGroupType in the formalization of finite group theory [11, 16].

In Coq, these assumptions amount to opening a section sharing variables F0 and L, as
well as implicit type declarations for letters E,F,K:

Variables (F0 : fieldType) (L : splittingFieldType F0).
Implicit Types (E F K : {subfield L}).
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Considering a normal ambient field extension L/F0 ensures, without loss of generality, that
the ambient L is large enough so that for each subfield E of L, it is possible to find a Galois
extension F/E, where F is a subfield of L.

Of course, when F/E is itself a field extension, it remains possible to see F as a vector
space over E: for instance \dim_E F refers to the dimension of F as a vector space over E, i.e.,
to the degree [F : E] of the extension. Note that as a rule of thumb, notations are designed
so as to be well-formed as often as possible. For example, \dim_E F is actually defined as
the Euclidean quotient of [F : F0] by [E : F0], and thus does not require E to be included
in F. These formalization choices, inherited from the design of the Mathematical Components
library for linear algebra [10], significantly contribute to reduce the bureaucratic workload in
proofs.

In this work, we benefit from the formalized basic concepts and results in Galois theory
available in the Mathematical Components library [11], notably from the available proof of the
fundamental theorem of Galois theory. The corresponding libraries actually introduce the
vocabulary related to field extensions and Galois groups. In particular, ’Gal(F/E) refers to
the Galois group of a field extension F/E. Here as well, this notation is well formed for any
E,F : {subfield L}, regardless of any inclusion property, and actually refers to Gal(F/E ∩F )
and is a group, regardless of whether F/E is a Galois extension.

We lack space to further comment on all the Coq definitions involved in the present
formal proof, but we provide in Figure 1 a correspondence table between the Mathematical
Components syntax and the related mathematical objects.

4 From solvable Galois groups to solvable extensions

In this section, we consider E and F two sub-fields of an ambient common normal extension
L and we study sufficient conditions for the field extension F/E to be solvable by radical.
As these conditions may involve assumptions of primitive roots of unity, we thus enrich the
formal context given in Section 3 with the following declarations:

Implicit Types (w : L) (n : nat).

First, we prove the result in the case of an abelian Galois extension, that is, a Galois
extension which Galois group is abelian. In this case, we can prove that the extension is
radical.

▶ Lemma 4. An abelian Galois extension F/E of degree n is radical as soon as E contains
a primitive nth root of unity.

Lemma abelian_radical_ext w E F (n := \dim_E F) : n.-primitive_root w →
w \in E → galois E F → abelian ’Gal(F / E) → radical.-ext E F.

Proof. The proof goes by exhibiting a basis (ri) of F , seen as a vector space over E, such
that for any u in G = Gal(F/E) and for any i ∈ {1, . . . , n}, u(ri) = λri, where λ is some nth

root of unity. Indeed, as in this case u(rn
i ) = rn

i , we have rn
i ∈ E for any i, which concludes

the proof.
Let u be an element of G. Since |G| = [F : E] = n, by Lagrange’s theorem of finite group

theory, we have un = id. Therefore the minimal polynomial of u in E divides the polynomial
Xn − 1. But since the latter is square-free and splits over E (for E contains a primitive nth

root of unity), so is the minimal polynomial of u, and u is thus diagonalizable. Moreover,

https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L293-L295
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R : ringType R is a ring, whose elements are the terms x : R
p %= q the polynomials P and Q are equal up to a unit of R

’X X ∈ R[X] the indeterminate
x *: p the polynomial xP with x ∈ R and P ∈ R[X]
x%:P the constant polynomial x ∈ R[X]
p ^^ f the image of P ∈ R[X] by a ring morphism f : R → R′

F0 : fieldType F0 is a field, whose elements are the terms x : L
prime n the natural number n ∈ N is prime
n != 0 :> F0 n is nonzero in F0

has_char0 F0 F0 has characteristic 0
n.-primitive_root w ω is a primitive nth root of unity

(we use the ASCII character w for the greek letter ω)
x : L x is an element of the field L

E, F, K : {subfield L} E, F, K are subfields of L, with base field F0

\dim_E F the dimension of F over E, i.e., the degree [F : E]
x \in E x is in the subset E of L

E ≤ F E ⊂ F , i.e., E is a subfield of F

1 : {subfield L} F0, seen as a subfield of L

{:L} : {subfield L} L, seen as a subfield of L

by definition we always have x \in {: L} for x : L
<<E ; x>> : {subfield L} E(x), the smallest field generated by E and x ∈ L

<<E & s>> : {subfield L} E(s), the smallest field generated by E and the sequence s

E :&: F : {subfield L} E ∩ F , the field {x | x ∈ E ∧ x ∈ F }
E * F : {subfield L} the compositum EF , the field {xy | x ∈ E, y ∈ F }
iota : ’AHom(L,L’) ι : L → L′ is an F0-algebra morphism
iota @: E ι(E), the image of E by ι, a subfield of L′

splittingFieldFor E p F F = E(x⃗) where p ∈ L[X] has roots x⃗ and coefficients in E

L : splittingFieldType F0 L is a splitting field extension of the field F0, as a type;
this is equivalent to the existence of p with coefficients
in L, such that splittingFieldFor 1 p {:L}

minPoly E x : {poly L} the minimal polynomial of x over E

normalField E F : {subfield L} the subfield extension F/E is normal
separable E F : {subfield L} the subfield extension F/E is separable
galois E F : {subfield L} the subfield extension F/E is Galois
radical E x n xn ∈ E with n > 0, i.e., the element x is radical in E

pradical E x p xp ∈ E and p is prime
r.-ext E F F/E is r, where r is either radical or pradical
solvable_by r E F F/E is solvable by r, where r is either radical or pradical
’Gal(F/E) the Galois group of the subfield extension F/E

phi @* G the image of the group G by the morphism φ

abelian G G is abelian
solvable G G is solvable

Figure 1 Correspondence between Coq syntax and mathematical vocabulary.
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since G is abelian, all its elements are co-diagonalizable. As a consequence, there exists a
common basis (ri) of eigenvectors for all elements of G, i.e., a basis (ri) such that for all u in
G, u(ri) = λri for some eigenvalue λ in E. Since these eigenvalues are roots of the minimal
polynomial Xn − 1 of u, we have λn = 1. ◀

Lemma 4 illustrates the role of linear algebra in Galois theory. However, at the start of
this project, the corresponding chapter, about standard results on the diagonalization of
matrices, was completely missing from the Mathematical Components library. Formalizing
this chapter is one of the spin-off contributions of the present work.

The next step is to generalize the result to the case of a solvable Galois group: in this case
the corresponding field extension is called a solvable extension. The proof goes by applying
Lemma 4 to each of the (abelian) quotients involved in the corresponding normal series, and
concludes by gluing radical extensions.

▶ Lemma 5. A solvable Galois extension F/E of degree n is radical, as soon as E contains
a primitive nth root of unity.

Lemma solvableWradical_ext w E F (n := \dim_E F) : n.-primitive_root w →
w \in E → galois E F → solvable ’Gal(F / E) → radical.-ext E F.

Proof. We proceed by strong induction on n, the degree of the field extension. Let F/E be
a Galois extension of degree n, and suppose that its Galois group G is solvable. If n = 1, the
extension is trivial, hence G is solvable. Otherwise, by definition, G has a normal and solvable
subgroup H of prime index. In particular H ̸= G and the quotient G/H is abelian. Let F H

be the field fixed by H (point-wise). Then, the extension F/F H is Galois and solvable, of
degree strictly smaller than n, and F H/E is an abelian Galois extension. We conclude that
F/E is radical by combining the induction hypothesis with Lemma 4. ◀

The main ingredient in the proof of Lemma 5 is the properties of the field extensions F/F H

and F H/E. These were obtained from the theory of F H , for H subgroup of a Galois group,
already present in the Mathematical Components library.

We can relax the hypothesis that E should contain the nth roots of unity, and transfer
it to the ambient field, to the price of weakening the conclusion: in this case, F is only
solvable by radicals. This crux of the proof relies on the properties of the Galois group of a
compositum extension, which were not present in the Mathematical Components library. In
particular, we use the following fact:

▶ Lemma 6. Let E/K be a Galois extension and F a sub-field of E. Then:

Gal(KF/F ) ≃ Gal(K/K ∩ F )

Lemma galois_isog (k K F : {subfield L}) : galois k K → k ≤ F →
’Gal((K * F) / F) \isog ’Gal (K / K :&: F)

Proof. See for instance Lang’s proof [15, VI, §1, Theorem 1.12]. ◀

▶ Lemma 7. A solvable Galois extension F/E of degree n is solvable by radicals, as soon
as E and F are sub-fields of a common normal extension L, which contains a primitive nth

root of unity in L.

https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L374-L376
https://github.com/math-comp/Abel/blob/1.1.2/theories/xmathcomp/map_gal.v#L230-L231
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Lemma galois_solvable_by_radical w E F (n := \dim_E F) : n.-primitive_root w →
galois E F → solvable ’Gal(F / E) → solvable_by radical E F.

Proof. Let F/E a Galois extension of degree n, with E, F sub-fields of F . Let ω ∈ L be a
primitive nth root of unity. The proof goes by showing that the extension FE(ω)/E is radical.
Since E(ω)/E is a simple radical extension, it suffices to show FE(ω)/E(ω) is radical.

Since F/E is a Galois extension, then so is FE(ω)/E(ω). Let m be the degree of
FE(ω)/E(ω). By Lemma 6, Gal(FE(ω)/E(ω)) is isomorphic to Gal(F/F ∩ E(ω)), which is
thus of order m as well. But since Gal(F/F ∩ E(ω)) is a subgroup of Gal(F/E), its order m

divides n, the order of Gal(F/E). Consider ω′ = ω
n
m . It is an element of E(ω), and thus of

FE(ω), and a primitive root of unity. We can apply Lemma 5 on the extension FE(ω)/E(ω),
and the mth primitive root of unity ω′ as soon as we show that Gal(FE(ω)/E(ω)) is solvable.
Which is the case because it is isomorphic to Gal(F/F ∩ E(ω)), itself solvable as a subgroup
of Gal(F/E). ◀

The final result of the section trades the assumption on the solvability of the Galois group
for the solvability of the extension itself, i.e., for the solvability of the Galois group of the
extension by the normal closure.

▶ Definition 8. The normal closure NClE (F ) /E of F/E is the smallest (for field inclusion)
field extension of F that is normal over E.

▶ Definition 9. An extension F/E is solvable if F/E (is separable) and Gal(NClE (F ) /E)
is solvable.

▶ Remark 10. Note that in the case of zero characteristic, the separability requirement
vanishes. A Galois extension F/E is solvable if and only if Gal(F/E) is solvable (as a group).

By definition of the normal closure, if an extension F/E is solvable, then NClE (F ) /E is
Galois. Therefore, solvability by radicals follows from the solvability of an extension, as an
immediate corollary of Lemma 7.

▶ Lemma 11. Let F/E be a solvable extension, and n the degree of the extension NClE (F ) /E.
F/E is solvable by radicals as soon as L contains a primitive nth root of unity.

Lemma ext_solvable_by_radical w E F (n := \dim_E (normalClosure E F)) :
n.-primitive_root w → solvable_ext E F → solvable_by radical E F.

Proof. Since F/E is solvable, Gal(NClE (F ) /E) is solvable. Thus Lemma 7 applies and
proves that NClE (F ) /E is solvable by radicals. Since F ⊂ NClE (F ), then F/E is solvable
by radical as well. ◀

5 From solvable by radicals extensions to solvable extensions

Recall that L/F0 is an ambient normal field extension. We first establish two useful results
on simple radical extensions E(x)/E for E a sub-field of L. When x is a root of unity, the
extension E(x)/E is called a cyclotomic extension. A cyclotomic extension is a Galois and
solvable extension.
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▶ Lemma 12. Suppose that L contains ω, an nth primitive root of unity for n a positive
integer. Consider E a sub-field of L and x ∈ L such that xn ∈ E. Then, the extension
E(ω, x)/E is Galois. In particular if ω ∈ E, then E(x)/E is Galois.

Lemma galois_cyclo_radical (n : nat) (w x : L) (E : {subfield L}):
p.-primitive_root w → p > 0 → x ^+ p \in E → galois E << <<E; w>> ; x >>.

Proof. If x ∈ E, the conclusion is immediate. We can thus suppose that x ̸= 0 and n > 1.
In this case, the polynomial P = Xp − xn ∈ E[X] is separable, since it has n distinct roots,
of the form xωi, for i = 0 . . . n − 1. Moreover,

E(x, xω, . . . , xωn−1) = E(x, xω)(xω2, . . . , xωn−1) since n > 0
= E(ω, x)(xω2, . . . , xωn−1) since x ̸= 0
= E(ω, x) since xωi ∈ E(ω, x)

It follows that E(ω, x) is a splitting field of P , and therefore that E(ω, x)/E is Galois. ◀

▶ Lemma 13. Suppose that L contains ω, a pth primitive root of unity for p a prime number.
Consider E a subfield of L and x ∈ L such that xp ∈ E, but x /∈ E. Then, the minimal
polynomial of x over E is Xp − xp.

As a consequence, Gal(E(x)/E) is of prime order and is thus cyclic, hence abelian (and
solvable).

Lemma minPoly_pradical (p : nat) (w x : L) (E : {subfield L}):
p.-primitive_root w → prime p → w \in E → x \notin E → x ^+ p \in E →

minPoly E x = ’X^p - (x ^+ p)%:P.

Proof. Let P ∈ E[X] be the minimal polynomial of x over E. By minimality, P divides
any polynomial over E that cancels x. In particular, P divides Xp − xp =

∏
i<p(X − xωi).

Hence there is a subset S of Ip = {i | i < p} such that P =
∏

i∈S(X − xωi). Since P cancels
x, S contains x, therefore |S| is positive. It suffices to show |S| ≥ p, because then S = Ip

and P = Xp − xp. Since |S| is positive, it is sufficient to prove that p divides |S|.
First, note that p divides any k such that xk ∈ E. Indeed, if k and p were coprime,

Bézout’s identity would provide m, n ∈ Z such that km + pn = 1. As a consequence, we
would have x = (xk)m + (xp)n ∈ E, contradicting our assumption that x /∈ E.

Now the constant coefficient of P is x|S|Ω, where Ω =
∏

i∈S ωi is a nonzero element of E,
hence x|S| ∈ E and p divides |S|. ◀

In order to get rid of the assumption that the ambient L contains a suitable root of the
unity, we prove that the normal closure of a subfield of L, as well as the Galois group of
an extension in L, are preserved up to isomorphism when L is extended with some roots of
unity.

Consider L/F0 and L′/F0 two normal extensions, ι : L → L′ an F0-algebra morphism,
and F/E a field extension in L.

▶ Lemma 14. There is a group isomorphism Gal(F/E) → Gal(ι(F )/ι(E)), which we also
denote ι.

In Coq the group (iso)morphism corresponding to ι is called map_gal.

https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L483-L484
https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L520
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Lemma map_gal_inj : ’injm (map_gal iota).
Lemma img_map_gal : map_gal iota @* ’Gal(F / E) = ’Gal(iota @: F / iota @: E).

The properties of this morphism are key to the preservation of normal extensions, separable
extensions, Galois extensions, normal closures and solvable extensions under the associated
algebra isomorphism.

▶ Lemma 15. The extension ι(F )/ι(E) is normal (resp. separable, Galois, solvable) if and
only if F/E is normal (resp. separable, Galois, solvable), and ι(NClE (F )) = NClι(E) (ι(F )).

Lemma normalField_aimg : normalField (iota @: E) (iota @: F) = normalField E F.
Lemma separable_aimg : separable (iota @: E) (iota @: F) = separable E F.
Lemma galois_aimg : galois (iota @: E) (iota @: F) = galois E F.
Lemma solvable_ext_aimg : solvable_ext (iota @: E) (iota @: F) = solvable_ext E F.
Lemma aimg_normalClosure :

iota @: normalClosure E F = normalClosure (iota @: E) (iota @: F).

The combination of Lemma 15 with Lemma 16 makes possible to extend, if needed, the
ambient field with a primitive root of unity so as to prove that a certain extension is normal
(resp. separable, Galois, or solvable).

▶ Lemma 16. Let L/F0 be an ambient normal field extension and n a natural number
coprime with the characteristic of F0. There is an ambient normal field extension L′/F0,
a primitive nth root of unity ω ∈ L′ and an F0-algebra morphism ι : L → L′, such that
ι(L)(ω) = L′.

We can now state and prove properties of simple (prime) radical extensions which do not
require any assumption on the presence of a root of unity.

▶ Lemma 17. Let p be prime number such that p ̸= 0 in F0. Let x ∈ L and E a subfield
of L such that xp ∈ E. The extension E(x)/E is solvable.

Note that because of the definition of a solvable extension, E(x)/E need not be Galois.

Lemma pradical_solvable_ext (p : nat) (x : L) (E : {subfield L}) :
prime p → p != 0 :> F0 → x ^+ p \in E → solvable_ext E <<E; x>>.

Proof. Without loss of generality, we can assume the existence of ω ∈ L a primitive pth root
of unity. Indeed, Lemma 16 gives the existence of a field extension L′ and an embedding
ι : L → L′, where L′ contains a pth primitive root of unity (since p ̸= 0 in F0). Now we may
prove ι(E(x))/ι(E) is Galois and “transfer” the result to E(x)/E using Lemma 15.

In order to prove E(x)/E is solvable, it suffices to find a Galois extension of E(x) that is
solvable. Because of Lemma 12, E(ω, x)/E is Galois. Now both E(ω)/E (because it is cyclo-
tomic) and E(ω, x)/E(ω) (by Lemma 13) are Galois and solvable. Hence, Gal(E(ω, x)/E(ω))
is a normal subgroup of Gal(E(ω)/E), therefore E(ω, x)/E is solvable. ◀

The final lemma of this section is often stated in the literature in the following way: “If
F/E is Galois and solvable by radicals then Gal(F/E) is solvable”. While this is true, this
does not allow for a proof by induction as such since intermediate extensions of the radical
series of F/E need not be Galois over E. Rigorous proofs must strengthen the induction.
One way to do so is by introducing the notion of solvable extension which, contrarily to the
notion of Galois extension, is transitive:
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▶ Lemma 18 (solvability of extensions is transitive). If F/E and K/F are solvable extensions,
then K/E is solvable.

Proof. We essentially follow the proof from Lang [15, VI, §7, Proposition 7.1], except that
instead of in-lining the definition of the normal closure in a particular case, we define and
study normal closures for their own interest, which eventually results in a shorter proof. ◀

We are now ready to state the final and main result of this section, and to avoid assuming
that the extension F/E is Galois, in addition to being solvable by radicals. The proof is a
straightforward induction on the height of the radical series.

▶ Lemma 19. If F/E is solvable by radicals then F/E is a solvable extension.

Lemma radical_ext_solvable_ext (E F : {subfield L}) : has_char0 L → E ≤ F →
solvable_by radical E F → solvable_ext E F.

Proof. Let F/E be a solvable by radicals extension, it is also solvable by prime radicals, so
there exists a prime radical extension tower E = E0 ⊂ E1 ⊂ . . . ⊂ En such that F ⊂ En.
Since every intermediate extension Ei+1/Ei is solvable, by Lemma 17, we conclude by
induction and by Lemma 18 that En/E0 is solvable. Since F ⊂ En, F/E is also solvable. ◀

Note that this proof goes by induction on the length of the tower. Curiously, some
references (such as the French wikipedia page on the Abel-Ruffini Theorem as of 2021-04-20)
do not rely on solvable extensions, or define it as “being Galois and solvable” instead of
“having a Galois field extension that is solvable”. Unfortunately, under such variations, we
lack a transitivity property analogue to Lemma 18, which dooms to failure any attempt
of a similar proof by induction. Actually, we conjecture1 that there is a tower of cyclic
extensions of height two Qab ⊂ K ⊂ L where both K/Qab and L/K are simple radical
Galois extensions, but where L/Qab is not Galois (even though Qab contains all roots of
unity). Such a counterexample would imply that any proof by induction where the induction
hypothesis has the form “En/E0 is Galois and [. . .]” is bound to fail.

Hence, some references end up applying Galois’ fundamental theorem in a context where
a premise – that some extension is Galois – does not hold. And those who exhibit a correct
proof without relying on solvable extensions must reconstruct a radical series gradually, by
adding all possible conjugates over the smallest field of the tower, at each step, which is
exactly what is factored out in the definition of a solvable extension and in Lemma 18.

Moreover, all the proofs we found in the literature – including the ones relying on solvable
extensions, such as in Algebra, Lang [15, VI, §7, Theorem 7.2] – delve into details about
picking an appropriate primitive root of unity ω (e.g., using the least common multiple of all
the prime exponents involved in the radical series) and reconstruct the full radical extension
starting with the cyclotomic field extension E(ω)/E before starting an induction. We observe
here that this detour is completely unnecessary when using solvable extensions.

6 Galois and Abel-Ruffini theorems

In this section we specialize results to Q, which is sufficient to obtain the unsolvability of
the general quintic. For possible generalizations of the results stated here, we refer to the
discussions in Sections 8 and 9.

1 https://mathoverflow.net/questions/381824

https://github.com/math-comp/Abel/blob/1.1.2/theories/xmathcomp/map_gal.v#L799-L800
https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L592-L594
https://mathoverflow.net/questions/381824
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6.1 Galois’ theorem
For a given polynomial in P ∈ Q[X], splitting fields for P over Q always exist, are isomorphic
to each other and embed in the algebraic numbers (noted Q̄ in math style and algC in Coq)
and though this embedding can be seen as a number field. We pick such a splitting field and
call it Q(P ), the splitting field of P . We pose the convention Q(0) = Q.

We write numfield p for Q(P ) in Coq, it has type splittingFieldType rat, and there is
a morphism numfield_inC : {rmorphism numfield p → algC} embedding Q(P ) in Q̄. There
is also a function numfield_roots : {poly rat} → seq (numfield p) which lists the roots of
P .

A polynomial P is solvable by radical if there is a field L that splits P , and such that
L/K is solvable by radical. Note that L need not be Q(P ), indeed the radicals involved in
the decomposition of L may not belong to Q(P ).

▶ Definition 20. A nonzero polynomial P ∈ Q[X] is solvable by radicals if there is a field
extension L and a subfield K of L which is a splitting field for P , and such that the extension
K/Q is solvable by radicals.

In Coq we use a slightly different definition (see Section 8) which we prove equivalent to
the mathematical one.

Lemma solvable_poly_ratP (p : {poly rat}) : p != 0 →
solvable_by_radical_poly p ↔
∃ L : splittingFieldType rat, ∃ K : {subfield L},

splittingFieldFor 1 (p ^^ in_alg L) K ∧ solvable_by radical 1 K.

We can now recall Theorem 2 (Galois) and prove it formally for F = Q:

▶ Theorem 2 (Galois). A polynomial P ∈ F [X] is solvable by radicals if and only if its
Galois group is solvable.

Theorem AbelGaloisPolyRat (p : {poly rat}) :
solvable_by_radical_poly p ↔ solvable ’Gal({: numfield p} / 1).

Proof. First notice that by Remark 10 the right hand side of the equivalence “Gal(Q(P )/Q)
is solvable”, is the same as Q(P )/Q is a solvable extension. The left to right side is then a
trivial application of Lemmas 19. And the right to left side consists in first extending Q(P )
with a [Q(P ) : Q]th primitive root of unity before applying Lemma 11. ◀

Now, in order to prove the Abel-Ruffini theorem, it suffices to exhibit a polynomial of
degree 5 which Galois group is unsolvable. As in the literature, we pick S5 and prove a
certain class of polynomials has Galois group S5: the irreducible rational polynomials with
Prime Degree and Two Non Real Roots.

6.2 Irreducible rational polynomials of Prime Degree with exactly Two
Non Real Roots

▶ Lemma 21. Irreducible polynomials P ∈ Q[X] of prime degree p with exactly two non real
roots have a Galois group over Q isomorphic to Sp.
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https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L861-L863
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https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L887-L888
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Lemma PDTNRR.isog_gal (p : {poly rat}) :
irreducible_poly p → prime (size p).-1 →
count [pred x | numfield_inC p x \isn’t Creal] (numfield_roots p) = 2 →

’Gal({: numfield p} / 1) \isog ’Sym_(’I_(size p).-1)

Proof. Let P ∈ Q[X] be an irreducible polynomial of prime degree p, a sequence s = (si)i of
its roots, and G = Gal(Q(P )/Q) its Galois group. We define a group morphism φ : G → Sp,
so that ∀i < p, ∀u ∈ G, sφ(u)(i) = u(si). In other words φ maps an element u of the Galois
group of P to a permutation of the indices of the sequence s that is compatible with the
action of u on the roots s of P . Now, it suffices to show that φ is injective and surjective to
conclude.

φ is injective: let u be such that φ(u) = id, it suffices to show that u = id. Let x ∈ Q(P ),
x can be decomposed as a multivariate polynomial µ over Q applied to the sequence s,
i.e., x = µ(s). Then u(x) = u(µ(s)) = µ ((u(si))i) = µ

(
(sφ(u)(i))i

)
= µ(s) = x.

φ is surjective: it suffices to show that there is a transposition τ and an element of order
p in φ(G). Indeed, since p is prime number we have Sp = ⟨τ, c⟩.

Since P has exactly two non real roots, there are i < j < p such that, si = s⋆
j and

sk = s⋆
k if k /∈ {i, j}. The complex conjugation (·⋆) belongs to G and φ(·⋆) = (i j) = τ .

The natural number p divides [Q(P ) : Q)] because P is irreducible. Since p is prime
and divides G, by Cauchy’s theorem, there is an element of order p in G. ◀

In Coq we did not link the theory of multivariate polynomials with the theory of field
automorphism yet, instead we simply iterate on the sequence s and use univariate polynomials
in each si.

6.3 X5 − 4X + 2 is not solvable by radicals
There is no general formula for solving equations of degree greater than four (Theorem 3)
because if there were, the equation x5 − 4x + 2 = 0 would be solvable.

▶ Theorem 22 (Insolvability of the quintic). X5 − 4X + 2 is not solvable by radicals.

Theorem example_not_solvable_by_radicals :
¬ solvable_by_radical_poly (’X^5 - 4 *: ’X + 2 : {poly rat}).

Proof. By Theorem 2, it suffices to thow the galois group of Q(Q)/Q is not solvable, where
Q = X5 − 4X + 2.

By Lemma 21, it suffices to show Q is irreducible and has exactly two non real roots.
Irreducibility is directly given by Eisenstein criterion. Q has at least three real roots
in Q̄ because there are at least three sign changes: Q(−2)Q(−1) < 0, Q(−1)Q(1) < 0,
and Q(1)Q(2) < 0. Finally since the derivative Q′ = 5X4 − 4 has exactly two real roots
(±

√
2√
5 ), it means Q has at most three real roots, hence exactly three.

To show S5 is not solvable it suffices to show its normal subgroup A5 is not solvable
either. We conclude by contradiction with the fact that A5 is simple of order 5 × 4 × 3
and a simple solvable group must have prime order. ◀

https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L922
https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L922
https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L1199
https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v#L1367-L1368
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7 Solvability by radicals is what you think

We now link the solvability by radical, as defined above, to the existence or not of analytic
expressions for computing the roots of a given polynomial. Most of the time, this last step is
considered mundane and is left to the reader. Here we give a formal treatment to it, both for
intellectual satisfaction but also as a hint that our definition of a radical extension is correct.

More formally, for a field F , we define the grammar of radical expressions EF over F as
the set of terms that can be recursively defined from the symbols 0, 1, x ∈ F , +, −, ∗, ·−1,
n
√

· and ωn where n
√

e (resp. ωn) stands for a nth-root of e (resp. a nth-primitive root of
unity):

e ∈ E ::= 0 | 1 | e1 + e2 | −e | e1 ∗ e2 | e−1 | n
√

e | ωn (n ∈ N∗)

In Coq, as expected, we encode this set using an algebraic datatype. We then give an
interpretation for terms in E in terms of algebraic numbers and w.r.t. an evaluation function
(iota : F → algC):

Variables (F : fieldType) (iota : F → algC).
Fixpoint algT_eval (f : algterm F) : algC :=

match f with
| Base x => iota x
| 0 => 0
| 1 => 1
| f1 + f2 => algT_eval f1 + algT_eval f2
| - f => - algT_eval f
| f1 * f2 => algT_eval f1 * algT_eval f2
| f ^-1 => (algT_eval f)^-1
| f ^+ n => (algT_eval f) ^+ n
| n.+1-root f => n.+1.-root (algT_eval f)
| j.+1-prim1root => prim1root j.+1
end.

It is worth mentioning that, in the listing above, the expressions on the left of => are
syntax whereas the ones on the right of => are semantic, i.e., values in the type algC of
algebraic numbers.

We now have all the necessary ingredients to state and prove the equivalence between
being a solvable by radical polynomials and having roots expressible as a radical expression,
as defined above:

Lemma solvable_formula (p : {poly rat}) : p != 0 →
solvable_by_radical_poly p ↔
{in root (p ^^ ratr), ∀ x, ∃ f : algterm rat, algR_eval ratr f = x}.

8 Classical reasoning in a constructive setting

8.1 Boolean reflection and effective Galois theory
The present contribution takes over the main design choices deployed in Mathematical
Components library, and in particular its use of boolean reflection [18] for formalizing effective
mathematics. Notably, the defining signature of algebraic structures, like rings or fields,
involve boolean predicates, e.g., for comparison or discrimination of units. More generally,
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decidable predicates, that is predicates for which excluded-middle holds constructively,
are formalized as boolean predicates. Consequently, equivalences between such boolean
propositions are stated as equalities, as for instance in Lemma 15. Besides often saving the
user from the technicalities of setoid rewriting, boolean specifications are provably proof-
irrelevant, by Hedberg’s theorem [13], and this feature is extensively used for defining and
using proof-irrelevant dependent pairs.

The present development heavily relies on the effective perspective provided by the
underlying linear algebra component [10]. In this library, vector spaces of finite dimension
and their sub-spaces, always come with an explicit basis, and are in fact internally represented
as matrices. This way, most properties of linear algebra in finite dimension are effective,
thanks to variants of Gaussian elimination: computing the dimension of a sub-space, testing
whether a family of vectors is free, whether it generates a given sub-space, testing the inclusion
or the equality between sub-spaces, etc. When a larger vector space is in fact an algebra
(resp. a field extension) over a given base field, it is decidable whether a given subspace is in
fact a sub-algebra U (resp. a sub-field U): it suffices to test whether pairwise products of
elements of the basis of U belong to U . Note however that effectivity does not mean that
the computations are necessarily tractable in practice: turning these effective definition into
formally verified algebra that can be executed on concrete entries would require a non-trivial
additional effort [7, 24].

The main effect of this effective take on linear algebra in the case of (finite) field extensions
is the definition of boolean functions for testing whether a (finite) field extension is normal,
separable or Galois. In addition, the construction of normal closure is effective, as well
as that of the Galois group of an extension. As the finite group theory component of the
Mathematical Components library provides a boolean test for the solvability of finite group,
solvability of an extension is decidable as well.

8.2 Non-effective results
However, important properties in commutative algebra, such as testing a polynomial in
F [X] for irreducibility for F an arbitrary field, remain non-effective, even in the case of a
field F with a decidable equality. As a consequence, in a constructive setting, some facts
like Lemma 16 cannot be proved as such. The way out is to change their statement for a
classically equivalent one, typically, a double-negated version, so as to restore constructive
provability. For this purpose, we use the classically monadic predicate [11]: for any P : Prop
, classically P is equivalent to the double-negation ¬(¬P). For instance, the construction
of a larger normal field extension performed in Lemma 16 is not effective in general. Here is
a typical example of non-effective statement:

Lemma classic_baseCycloExt F n : (n%:R != 0 :> F) → classically
{ L’ : splittingFieldType F & { w : L’ &

<<1; w>> = {: L’} & n.-primitive_root w }}.

The classically monad thus seals the sigma-type, which is itself an effective existential
statement. However thanks to the formal definition of the classically predicate, a hypothesis
of the form classically P can be used directly as if it were of the form P in particular for
proving a boolean statement (and because ¬(¬b) ↔ b holds constructively).

Continuing our example, Lemma classic_baseCycloExt is used in the proof of Lemma 17,
in order to establish that a simple extension E(x)/E is solvable, which is stated formally as
solvable_ext E <<E; x>>. Since the solvable predicate is boolean (see Section 8.1), lemma
classic_baseCycloExt can be used without propagating the classically monad to the final
formal statement of Lemma 17.

https://github.com/math-comp/Abel/blob/1.1.2/theories/xmathcomp/classic_ext.v#L173-L176
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8.3 Stating Galois’ theorem in characteristic zero
In a constructive setting, it is not possible to rely on the existence of an algebraic closure
when needed, as is commonly assumed in the standard literature, and this even in the case
of a base field F0 with zero characteristic. Our current formal statement of Galois’ theorem
for arbitrary field extensions in zero characteristic thus reads:

▶ Theorem 23. Let L/F0 be a normal extension of characteristic zero and F/E a field
extension in L. Suppose that ω ∈ L is a primitive [NClE (F ) : E]th root of unity. Then F/E

is solvable by radicals if and only if it is solvable.

Theorem AbelGalois (F0 : fieldType) (L : splittingFieldType F0) (w : L)
(E F : {subfield L}) : (E ≤ F) → has_char0 L →
(\dim_E (normalClosure E F)).-primitive_root w →

solvable_by radical E F ↔ solvable_ext E F.

In the literature “F solvable by radicals” is defined as the existence of a certain radical
extension containing F . This definition actually allows us to get rid of the assumption on
the existence of a root of unity, as in the above theorem. This assumption, which is only
needed for the right-to-left implication (see Lemma 19), would indeed be encompassed by
the definition of “solvable by” in the right-to-left implication.

Alas, strengthening the definition of “solvable by radicals” in order to match the variant
found in the literature – and thus dropping the assumption on the existence of a root of
unity – would not make the right-to-left implication a direct consequence of Lemma 11 in
the current state of the formalization. It is actually not clear to us whether this would be
provable at all constructively. Indeed, we know no constructive way to test the presence of a
primitive root of unity in L, or to extend L with such a hypothetical primitive root of unity.

We could however use classical axioms, or the classically monad of Section 8.2, to
recover the standard wording found in the literature. Another option would be to construct,
effectively, extensions of number fields with an arbitrary algebraic element, e.g.,with a
primitive root of unity. This way, results from Section 6 that have been specialized to Q
could in principle be generalized to any number field, or, even to factorial fields [20], i.e.,
fields equipped with an effective irreducibility test for polynomials.

9 Conclusion

Comparison to related formalization in Coq
This work represents a significant extension of the Mathematical Components library, both in
size and in contents. This background proved to be sufficiently mature so that we didn’t
need to change the definitions and formalization choices. This work is grounded on the three
main algebraic hierarchies which are the backbone of the Mathematical Components library:
hierarchies of structures (from additive groups to field extensions, and real closed fields),
hierarchies of morphisms (of additive groups, rings, algebra, and fields), and hierarchies of
predicates (sub-groups, vector sub-spaces, sub-algebras, sub-fields).

These hierarchies are designed using Coq’s canonical structures mechanism [22], more
precisely with the packed class methodology [9], in order to achieve ad-hoc polymorphism [12,
17]. This inference mechanism is crucial to combine the different components of the library:
finite group theory, linear algebra, theory of field extensions and Galois theory. Inference of
structures is used at almost every single line of code and its efficiency is crucial for making
amenable such a development.
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Comparison to related formalization in other systems
The only formalization of Galois theory we are aware of has been carried in Lean/mathlib.
This work is at an early stage of development as only the Galois correspondence is currently
proven. This development relies on previously defined algebraic structures by the Lean/mathlib
community [19], such as fields, vector spaces, algebras and their morphisms.

A formalization of field extensions and algebraic closure [6] was carried out in the
Isabelle/HOL theorem prover. Despite the lack of dependent types, this library comes with a
definition of the algebraic closure of an abstract field as opposed to the a more elementary
construction for a fixed field such as Q. However, it is unclear whether the methodology used
there can be further extended for the formalization of Galois theory. At least, dependent
types play a central role in the design choices at stake in the present development.

The Mizar library contains core definitions and results related to field extensions [23].
Last, there exists an unfinished development related to the formalization of Galois theory

and unsolvability of the quintic in LEGO [1]. However, only the unsolvability of the symmetric
group [3] has been formally addressed.

Comparison to the pen and paper literature
In this paper, we give a comprehensive outline of the Abel-Ruffini theorem. This outline
serves as a basis to our formal development and has only been made possible by a careful
synthesis work of the numerous definitions and proofs from the literature.

We noticed several variations in the definitions of “radical extensions” and “solvable
by radical” (extension), which are the same but may denote two different things: one
corresponding to our definition of “radical extension” and the other corresponding to our
definition “solvable by radical”. Indeed both definitions are useful and we must give a precise
name to each. Perhaps the most surprising takeaways from this synthesis work are the
remarks that follow the proof of Lemma 19. Many references give a fine-grained description
of a modification of the radical series which would give the right induction hypothesis, which
can be avoided by the definition of a solvable extension.

The proof of unsolvability of X5−4X+2 involves counting its real roots. The most common
way of doing this relies on building sign tables. However, the Mathematical Components
library does not give any formal treatment of sign tables and we had to roll out our own
solution. Fortunately, the MathComp-Real-Closed [5] library provides results related to the
study of the variations of a polynomial with coefficients in an algebraically closed field. This
allowed us to give lower and upper bounds on the number of reals without having to formalize
sign tables. However, we expect that a formal treatment of sign tables to be a useful addition
to the Mathematical Components library.

On the same subject, the library MathComp-Real-Closed contains a quantifier elimination
procedure and a root counting procedure. In theory, in order to obtain the number of real
roots, it would have been possible to simply run this procedure on the targeted polynomial.
However, in practice, due to the very inefficient nature of the involved datatypes (starting
from the use of unary natural numbers), the methodology proved to be too inefficient. A
possible future work would be to extend CoqEAL [7, 4] to make effective these procedures.

The case of positive characteristic
Even if a large part of our development is independent from the characteristic of the fields
under consideration, for the sake of simplifying, we sometime restricted ourselves to the case
of characteristic zero – as this is the case in the file abel.v for example. For instance, we

https://github.com/math-comp/Abel/blob/1.1.2/theories/abel.v
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specialized the notion of radical extension to fields of characteristic zero, which is enough to
show the unsolvability of a polynomial over Q. However, we expect that the zero-characteristic
assumption could be dropped in the near future. For example, the definition of radical
extensions in a field of an arbitrary characteristic p could be generalized by following the
definition from Lang [15, VI, §7, Remark], thus adding a second kind of radical extensions
K(a)/K such that ap − a ∈ K. The proof that cyclic extensions of degree p are of that form
would then rely on the additive version of Hilbert Theorem 90. (The multiplicative version
is already formalized – it could be used in place of Lemma 4 – and we do not expect any
difficulty in formalizing its additive counterpart.)

Reasoning up to isomorphisms
A substantial amount of proof scripts is devoted to the transfer of properties from one object
to an isomorphic one (See Lemma 15 for an example). This part is largely left implicit on
paper and it is indeed quite mundane. It would be interesting to see if the ongoing work
around Homotopy Type Theory [26, 24, 2] could apply here.
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Abstract
We present the design and implementation of itauto, a Coq reflexive tactic for intuitionistic
propositional logic. The tactic inherits features found in modern SAT solvers: definitional conjunctive
normal form; lazy unit propagation and conflict driven backjumping. Formulae are hash-consed
using native integers thus enabling a fast equality test and a pervasive use of Patricia Trees. We also
propose a hybrid proof by reflection scheme whereby the extracted solver calls user-defined tactics
on the leaves of the propositional proof search thus enabling theory reasoning and the generation
of conflict clauses. The solver has decent efficiency and is more scalable than existing tactics on
synthetic benchmarks and preliminary experiments are encouraging for existing developments.
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1 Introduction

Using an ideal proof-assistant, proofs would be written at high-level and mundane proof
tasks would be discharged by automated procedures. However, automated reasoning is hard;
even more so for sceptical [17] proof-assistants: generating and verifying proofs at scale,
even for decidable logic fragments, is a challenge requiring sophisticated implementation
strategies [7, 4, 2]. For the Coq proof-assistant, the situation is made slightly worse because
intuitionistic logic is not mainstream for automated provers. Thus, the Satisfiability Modulo
Theory (SMT) approach that is based on a classical SAT solver needs to be revisited.

1.1 Propositional Reasoning and Theory Reasoning in Coq
There are a variety of Coq tactics which perform intuitionistic propositional and theory
reasoning. We describe here their main features and explain some limitations, thus motivating
the need for a novel (extensible) solver for intuitionistic propositional logic (IPL). We defer
to Section 6 the discussion of related approaches rooted in a classical setting and interfacing
with external provers.

tauto 1 is a complete decision procedure for IPL based on the LJT* calculus [14]. rtauto 2

is another decision procedure for IPL verifying proof certificates using proof by reflection.
These decision procedures are usually efficient enough for interactive use but do not perform
theory reasoning. lia3 is a decision procedure for linear arithmetic. It has a classical

1 https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.tauto
2 https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.rtauto
3 https://coq.inria.fr/refman/addendum/micromega.html#coq:tacn.lia
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understanding of propositional connectives but abstracts away non-arithmetic propositions.
congruence4 [11] does not perform propositional reasoning but decides the theory of equality
with constructors. Another tactic that is worth mentioning is intuition tac5; it first
performs propositional reasoning and calls the leaf tactic tac when it gets stuck. (tauto is
actually intuition fail.)

In a classical setting, calling a theory solver on the leaves of a propositional proof search
is the basis of the DPLL(T ) algorithm [16]. Unfortunately, in an intuitionistic setting,
completeness is lost. Example 1 illustrates the issue.

▶ Example 1 (Incomplete Combination). Consider the following goals.

Lemma Ex1:∀(p:Prop)(x:Z), x=0 → (x>=0 → p) → p.
Lemma Ex2:∀(A:Type)(p:Prop)(a b c:A),a=b → b=c → (a=c → p) → p.

For Ex1 and Ex2, intuition lia (resp. intuition congruence) fail whereas the goal can
be decided using a combination of propositional logic with the theory of linear arithmetic
and the theory of equality, respectively. The reason is that the intuition part does nothing
and therefore calls the leaf tactic on the unmodified goal. For Ex1, lia abstracts away
non-arithmetic propositions6 and is left with the non-theorem x=0→(x>=0→True)→False.
For Ex2, congruence abstracts away propositions and is also left with a non-theorem:
a=b→b=c→False.

Besides completeness, intuition tac may also call the leaf tactic tac more often than
necessary. This is illustrated by Example 2.

▶ Example 2 (Spurious Leaf Tactic Call). Consider the following goal.

Lemma Ex3:∀(A:Type)(x y t:A)(p q:Prop),x=y→p∨q→(p→y=t)→(q→y=t)→x=t.

In this case, intuition congruence performs a case-split over p\/q, and derives y=t by
modus-ponens. Eventually, it calls the leaf tactic congruence twice. However, in both
branches, congruence solves the same theory problem i.e., x=y → y=t → x=t.

1.2 Contribution
A first contribution is the design and implementation of a reflexive intuitionistic SAT solver
in Coq. The SAT solver obtains decent performances using features found in state-of-the-art
SAT solvers such as hash-consing, lazy unit propagation, backjumping and theory learning.
It also makes a pervasive use of native machine integers7 and Patricia Trees [22].

Another contribution is a variation of the proof by reflection approach whereby the verified
extracted SAT solver is first run inside the proof engine. Theory reasoning is then performs
by calling user-defined tactics on the leaves of the propositional proof search. Following the
DPLL(T ) approach, minimal conflict clauses obtained from the tactic proof-terms are passed
back to the SAT solver. Eventually, a proof is obtained by asserting the conflict clauses and
re-running the reflexive SAT solver with an empty theory module. To our knowledge, this
design combining reflexive code with tactics is original.

4 https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.congruence
5 https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.intuition
6 The propositional variable p is replaced by True or False depending on its polarity.
7 https://coq.inria.fr/refman/language/core/primitive.html#primitive-integers

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.congruence
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.intuition
https://coq.inria.fr/refman/language/core/primitive.html#primitive-integers
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The rest of the paper is organised as follows. In Section 2, we present the main features
of our SAT solver and its implementation in Coq. The structure of the soundness proof is
detailed in Section 3. In Section 4, we explain how to interface the SAT solver with the proof
engine and user-defined tactics. We show experimental results in Section 5. Related work is
presented in Section 6 and Section 7 concludes.

Note that the code snippets in the paper have been edited and idealised for clarity.

2 Design of an Intuitionistic SAT solver

Our algorithm is reusing several key components of modern SAT solvers. Fortunately, they
are only slightly adapted to the intuitionistic setting.

2.1 Syntax and Semantics of Formulae
Our SAT solver takes as input hash-consed [1] formulae defined by the inductive type LForm.

Inductive LForm : Type :=
| LFF | LAT : int → LForm | LOP : lop → list (HCons.t LForm) → LForm
| LIMPL : list (HCons.t LForm) → (HCons.t LForm) → LForm.

The syntax is mostly standard and models n-ary propositional operators. LFF represents
the proposition False. LAT i represents the propositional variable pi. LOP o [f1; . . . ; fn]
where o ∈{AND, OR} represents a n-ary conjunction or disjunction. LIMPL [f1; . . . ; fn] f

represents a n-ary implication with f1, . . . , fn being the premisses and f the conclusion.
The negation of a formula f is encoded by LIMPL [f ] LFF. All sub-formulae are hash-consed
i.e. f:HCons.t LForm is a pair made of a formula and a unique index. Because it enables a
fast equality test of formulae in O(1), hash-consing is essential for efficiency. N-ary operators
allow for a sparser conjunctive normal form (see e.g. [20]).

The interpretation of a formula f:LFORM is given by structural recursion with respect to an
environment e:int → Prop mapping indexes i.e., propositional variables, to propositions.

JLFFKe = False
JLAT iKe = e i

JLOP AND [f1; . . . ; fn]Ke = Jf1Ke ∧ · · · ∧ JfnKe

JLOP OR [f1; . . . ; fn]Ke = Jf1Ke ∨ · · · ∨ JfnKe

JLIMPL [f1; . . . ; fn] fKe = Jf1Ke → · · · → JfnKe → JfKe

In the following, as the environment e is fixed, we drop the subscript and write JfK for JfKe.

2.2 Intuitionistic Clausal Form
In a classical setting, to prove that a formula f is a tautology, a modern SAT solver proves
that the conjunctive normal form (CNF) of the negation of f is unsatisfiable. In other words,
a SAT solver exploits the fact that ¬(¬f) is equivalent to f and that the CNF conversion
preserves provability. In an intuitionistic setting, this approach is not feasible because reductio
ad adsurdum is not logically sound and the usual CNF conversion requires De Morgan laws
which are not admissible. Yet, Claessen and Rosén [10] show that it is possible to transform
an intuitionistic formula f into an equi-provable formula of the form

∧
F ∧

∧
I → q where q

is a variable ; f ∈ F is a so-called flat clause of the form p1 → . . . pn → q1 ∨ · · · ∨ qm where
the pi and qi are variables and i ∈ I is a so-called implication clause of the form (a → b) → c

where a, b and c are variables. The transformation is based on Tseitin definitional CNF [26]

ITP 2021
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with the modification that a clause is written p1 → · · · → pn → q1 ∨ · · · ∨ qn instead of
¬p1 ∨ · · · ∨ ¬pn ∨ q1 · · · ∨ qn. The implication clauses are reminiscent of the fact that double
arrows (e.g., in the LJT proof system) need a treatment that is specific to intuitionistic logic.

Our implementation is along these lines but optimises the transformation in order to
reduce both the set of flat clauses and implication clauses. To reduce the set of flat clauses,
our definitional CNF is based on Plaisted and Greenbaum CNF [24] which exploits the
polarity of formulae and uses memoization thus avoiding recomputing the CNF of identical
sub-formulae. In order to reduce the set of implication clauses, we exploit the fact that,
if the conclusion q is decidable, intuitionistic logic reduces to classical logic. In that case,
it is therefore admissible to replace an implication clause (a → b) → c by the equivalent
flat clauses {a ∨ c; b → c}. Moreover, before performing CNF conversion, formulae are
flattened using the associativity of ∧ and ∨. This has the advantage of augmenting the arity
of the operators, reducing the depth of the formulae, and therefore reducing the number of
intermediate propositional variables.

2.2.1 Pre-processing
The input formula is only using binary operators. To obtain n-ary operators, we recursively
apply the following equivalences (the operator ++ is the concatenation of lists):

LOP OR (LOP OR l1) :: l2 = LOP OR (l1 ++ l2)
LOP AND (LOP AND l1) :: l2 = LOP AND (l1 ++ l2)
LIMPL (LOP AND l1) :: l2 r = LIMPL (l1 ++ l2) r

LIMPL l1(LIMPLl2 r) = LIMPL (l1 ++ l2) r

2.2.2 Literals
Tseitin style CNF [26] consists in introducing fresh propositional variables. In a proof-
assistant, modelling freshness may incur some proof overhead. Fortunately, in our case, the
new propositional variables are not arbitrary but correspond to sub-formulae. As a result, we
represent a propositional variable by a hash-consed formula (HFormula = HCons.t LForm)
and a literal is a positive or negative hash-consed formula.

Inductive literal : Type := | POS (f: HFormula) | NEG (f: HFormula)

As usual, a clause is a list of positive and negative literals but with the following interpretation.

JNEGf :: lKe = JfKe → JlKe JPOSf :: lKe = JfKe ∨ JlKe J[]Ke = False

For readability, we will write ⌊f⌋ for POSf and ⌊f⌋ → for NEGf . A singleton clause
[NEGf ] will be written ⌊f⌋ → ⊥. In the remaining, we have the invariant that the
negative literals are always before the positive literals. As a result, a general clause
[NEGf1; . . . ; NEGfi; POSg1; . . . ; POSgj ] will be written ⌊f1⌋ → · · · → ⌊fi⌋ → ⌊g1⌋ ∨ · · · ∨ ⌊gj⌋ or
more compactly

∧
i⌊fi⌋ →

∨
j⌊gj⌋. Moreover, we define the negation of a literal l: ¬l is such

that ¬⌊f⌋ = ⌊f⌋ → and ¬⌊f →⌋ = ⌊f⌋.

2.2.3 Introduction Rule
Before running the CNF conversion per se, we inspect the formula and perform reductio
ad adsurdum if possible. The function intro_impl performs the introduction rule for im-
plication with the twist that the conclusion is double negated if it is decidable. Therefore,
intro_impl: HFormula → (list literal * HFormula) takes as input a hash-consed for-
mula and returns a pair (l, c) where l are hypotheses and c is the conclusion.
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intro_impl (LIMPL l r) = if is_dec r then ((NEG r):: map POS l , HLFF)
else (map POS l, r)

intro_impl f = if is_dec f then ([NEG f] , HLFF) else ([], f)

The constant HLFF is the hash-consed formula LFF i.e., the syntax for the proposition False.
The is_dec predicate is implemented by a boolean flag stored together with the hash-cons
of the formula. It is recursively propagated from atomic propositions that are known to be
classical i.e., we have r ∨ ¬r.

2.2.4 Construction of the CNF
The next step consists in computing the CNF of the literals and of the formula in the
conclusion. We recursively compute for a positive literal CNF- i.e., a set of clauses modelling
the elimination rule; and for a negative literal (or the conclusion) CNF+ i.e., a set of clauses
modelling the introduction rule.

f = (f1 ∧ · · · ∧ fn)
AND-(f) = {⌊f⌋ → ⌊f1⌋; . . . ; ⌊f⌋ → ⌊fn⌋}
AND+(f) = {⌊f1⌋ → · · · → ⌊fn⌋ → ⌊f⌋}

f = (f1 ∨ · · · ∨ fn)
OR-(f) = {⌊f⌋ → ⌊f1⌋ ∨ · · · ∨ ⌊fn⌋}
OR+(f) = {⌊f1⌋ → ⌊f⌋; . . . ; ⌊fn⌋ → ⌊f⌋}

f = (f1 → · · · → fn → r)
IMPL-(f) = {⌊f⌋ → ⌊f1⌋ → · · · → ⌊fn⌋ → ⌊r⌋}
IMPL+(f) = {⌊r⌋ → ⌊f⌋} ∪

⋃
is_dec fi

{⌊fi⌋ ∨ ⌊f⌋}

This clausal encoding is correct and the generated clauses are both classical and intuitionistic
tautologies. Except for IMPL+, the clausal encoding is also complete e.g., we have

CNF+(f1 ∧ · · · ∧ fn) ∪ {⌊f1⌋ ∧ · · · ∧ ⌊fn⌋} ⊢ ⌊f1 ∧ · · · ∧ fn⌋
CNF-(f1 ∧ · · · ∧ fn) ∪ {⌊f1 ∧ · · · ∧ fn⌋} ⊢ ⌊f1⌋ ∧ · · · ∧ ⌊fn⌋

For IMPL+, if not all the fi are classical propositions, the clausal encoding is partial and we
also keep the implication clause (⌊f1⌋ → · · · → ⌊r⌋) → ⌊f⌋ for later processing. An exception
is when we intend to prove False. In that case, the IMPL+ rule may drop the requirement on
the decidability of the fi thus providing a complete clausal encoding. This is sound because
for any f = (f1 → · · · → fn → r), (⌊r⌋ → ⌊f⌋) ∧

∧
fi

(⌊fi⌋ ∨ ⌊f⌋) → False is an intuitionistic
tautology.

▶ Example 3. Suppose that we intend to prove the tautology (a → (b ∧ c)) → (b ∨ (a → c))
where a, b and c are intuitionistic propositional variables. After running the introduction
rule, we obtain the following hypothesis and conclusion

{⌊a → (b ∧ c)⌋} ⊢ b ∨ (a → c)

We compute CNF- for the hypothesis i.e. IMPL-(⌊a → (b ∧ c)⌋), and CNF+ for the conclusion
i.e., OR+(⌊d∨(a → c)⌋). Recursively, we compute AND-(b∧c) and IMPL+(a → c) and eventually
obtain

⌊a → (b ∧ c)⌋, ⌊a → (b ∧ c)⌋ → ⌊a⌋ → ⌊b ∧ c⌋,

⌊b ∧ c⌋ → ⌊b⌋, ⌊b ∧ c⌋ → ⌊c⌋,

⌊b⌋ → ⌊b ∨ (a → c)⌋, ⌊a → c⌋ → ⌊b ∨ (a → c)⌋
⌊c⌋ → ⌊a → c⌋, (⌊a⌋ → ⌊c⌋) → ⌊a → c⌋

 ⊢ b ∨ (a → c)

Note that because a is an intuitionistic proposition, we keep the implication clause (⌊a⌋ →
⌊c⌋) → ⌊a → c⌋.

ITP 2021
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2.3 Lazy Unit Propagation
Once a clause is reduced to a single literal, say l, unit propagation simplifies all the remaining
clauses using l. There are three cases to consider. If a clause c does not mention l, it is left
unchanged. If the literal l belongs to the clause c, the clause is redundant and it is removed
(see R1 and R2). If the negation of the literal l belongs to the clause, we deduce the simplified
clause c \ ¬l (see M1 and M2). In logic terms, we have the following inferences:

R1
p

p ∨ r
R2

p → ⊥
p → r

M1
p p → r

r
M2

p → ⊥ p ∨ r

r

In the following, a literal l is said to be watched if neither [l] nor [¬l] is a unit clause. We
also say that a literal l is assigned if it is not watched.

A naive unit propagation algorithm linearly traverses every clause and is therefore
inefficient. A key observation is that the purpose of unit propagation is to produce new
unit clauses. Said otherwise, it not necessary to traverse clauses where at least 2 literals
are watched. As a result, a clause that is neither the empty clause nor the unit clause is
represented by the type watched_clause given below.

Record watched_clause:={
watch1 : literal; watch2 : literal; unwatched : list literal }.

This is purely functional variant of so called head/tail lists8 [28, 29] that is simpler than
the 2-watched literals optimisation [21]. Watched clauses are indexed on their watched
literals but also on whether the watched literals are positive or negative. To get an efficient
representation of sets of clauses, each clause is given a unique identifier and is stored in
a Patricia Tree [22]. In order to implement so-called non-chronological backtracking (see
Section 2.4), we also track the set of literals that are needed to deduce a clause. As a result,
each clause is annotated with a set of literals LitSet.t.

Record Annot (A: Type) := { elt := A ; deps := LitSet.t }

Therefore, unit propagation operates on the following watch_map data-structure.

Definition clause_set := ptrie (Annot watched_clause).
Definition watch_map := ptrie (clause_set * clause_set).

A watch_map m maps a propositional variable f i.e., a hash-consed formula, to two sets
(n, s) of clauses where clauses in n are watched by ⌊f⌋ → and clauses in p are watched by
⌊f⌋. More precisely, we have

c ∈ n iff c.watch1 = (⌊f⌋ →) ∨ (c.watch2 = ⌊f⌋ →)
c ∈ p iff c.watch1 = ⌊f⌋ ∨ c.watch2 = ⌊f⌋

Suppose that we perform unit propagation for the literal ⌊f⌋ for a watched_map m such that
m[f ] = (n, p). The clauses in p are redundant and can be dropped; the clauses in n need
to be processed and reduced. The reduction takes as argument the set of literals that are
currently assigned, a watched clause c and returns an annotated clause Annot clause where
the type clause is given below

Inductive clause:=|EMPTY |TRUE |UNIT (l:literal)|CLAUSE (wc:watched_clause)

8 Head/tail lists give access to the first and last element of a list in O(1).
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EMPTY represents the empty clause, i.e. a contradiction. In that case, unit propagation
concludes the proof. TRUE represents a redundant clause that will be dropped. UNIT l is a
unit clause to be propagated and CLAUSE wc is a watched clause.

Without loss of generality, suppose that ⌊f⌋ belongs to the set of assigned literals s and
that we have a clause c of the form:

c = {|watch1 := ¬⌊f⌋; watch2 := x; unwatched := [y1; . . . ; yn; ]|}

The reduce function takes as input the watched literal x and aims at finding in the list
[y1; yn; . . . ; yn] a watched literal yi (i.e., yi is not assigned in s) and return as clause the rest
of the list.

reduce s d x [] = {| elt := UNIT x ; deps := d |}
reduce s d x (y::l) = {| elt := TRUE ; deps := d |} when y ∈ s
reduce s d x (y::l) = reduce s ((deps (s y)) ∪ d) l when ¬ y ∈ s
reduce s d x (y::l) =

let wc := {| watch1 := x ; watch2 := y ; unwatched := l |} in
{| elt := CLAUSE wc ; deps := d |} when y /∈ s

If the list is empty, we produce the unit clause UNIT x and unit propagation will be recursively
called for x. Let y be the head of the list l. If y is not assigned in s, we return a novel clause
where the watched literals are x and y. If y is already assigned with the same polarity in s

(y ∈ s), the clause is redundant and can be dropped. If y is already assigned but with opposite
polarity (¬y ∈ s), the reduction is recursively called threading along the dependencies of the
literal y.

▶ Example 4. Suppose that the set of assigned literals is given by s = {f ; ¬y1; ¬yn} and we
perform unit propagation over the clause c. By construction, we know that neither x nor
¬x are assigned in s. To get a well-defined watched clause with 2 watched literals, we need
to find a replacement for the literal ¬⌊f⌋ in the list [y1; y2; . . . ; yn]. As {¬y1, ¬yn} ⊆ s, a
greedy unit propagation would deduce that y1 and yn can be removed but as the prohibitive
cost of a linear scan of the whole clause. The idea of lazy unit propagation is to stop at the
first unassigned literal i.e. y2. Therefore, we generate the watched clause

{watche1 := x; watche2 := y2; unwatched := [y3; . . . ; yn]}

2.4 Case Splitting and Backjumping

When all the unit clauses are propagated, the solver performs a case-split over a clause.
The clause needs to represent a disjunction. If the conclusion is False, any clause may be
selected. Otherwise, the clause may only contain either positive literals or negative classical
literals. The soundness of this argument is expressed by the following inferences.∧

i
Γ ∪ (pi → ⊥) ⊢ ⊥

∧
j

Γ ∪ qj ⊢ ⊥
Γ ∪

∧
i
pi →

∨
j

qj ⊢ ⊥

∧
i
(pi ∨ ¬pi)

∧
i
Γ ∪ (pi → ⊥) ⊢ g

∧
j

Γ ∪ qj ⊢ g

Γ ∪
∧

i
pi →

∨
j

qj ⊢ g

A naive algorithm consists in doing a recursive call for each literal, say li, of the clause.
However, if for one of the cases, the proof does not depend on the literal li, it is sound to
ignore the other cases and immediately return (backjump) to a previous case-split. This is
illustrated by Example 5.
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▶ Example 5 (Backjumping). Consider the following goal where each clause Hi is tagged with
a set of dependencies di where the di are disjoint and do not contain the literals {l, m, n, o}.

{H1 : (l ∨ m)d1 , H2 : (n ∨ o)d2 , H3 : (n → ⊥)d3 , H4 : (o → ⊥)d4} ⊢ ⊥

Suppose that we first perform a case-split over H1. For the first case, we introduce the unit
clause H5 : l{l} with a singleton dependency i.e., the literal only depends on itself. As no
unit propagation is possible, we perform another case split over H2 : (n ∨ o)d2 . For the case
n, using H3, we derive the empty clause ⊥d3∪{n} and for the case o, we derive the empty
clause ⊥d4∪{o}. Therefore, gathering both sub-cases, we have ⊥d2∪d3∪d4 . As l /∈ d2 ∪ d3 ∪ d4,
the case-split over H1 is irrelevant for the proof and, therefore, there is no need to explore
the second case of the case-split over H2.

A propositional prover has the idealised type ProverT defined below.

ProverT := state → HFormula → option LitSet.t

It takes as input the prover state st, and the formula to prove g and returns, upon success, the
set of literals that are needed for the proof. Details about the components of state are given
in Section 2.7. The case_split algorithm is parametrised by a prover Prover:ProverT. It
takes as input a clause cl and returns a prover performing a case-analysis over all the literals
of the input clause cl. In addition to a set of literals, it returns a boolean indicating whether
backjumping is possible.

Fixpoint case_split cl st g :=
match cl with
| [] => Some (false, LitSet.empty)
| f::cl => match Prover (st ∪ f) g with

| None => None
| Some d =>

if f/∈ d && st ⊢ d then Some (true,d)
else match case_split cl st g with

| None => None
| Some(b, d') => if b then Some(b,d')

else Some(false, d' ∪ (d \ {f}))
end end end.

If the clause is empty i.e., it denotes False, the proof is finished. Suppose that f is the first
literal of the clause cl, the prover is recursively called with the state st augmented with the
unit clause f . If the proof d does not require f and all the literals in d are assigned in the
current state (st ⊢ d), the whole case-split is spurious and the prover returns immediately.
Otherwise, we recursively call case_split and return the updated set of literals needed
by the proof. The literal f is momentarily removed from the dependencies of d but the
dependencies are adjusted just after the case_split call by adding the dependencies of the
clause cl.

2.5 Implication clauses

When there is no clause to branch over, the prover considers implication clauses and tries to
(recursively) prove one of them.
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Fixpoint prover_arrows (l : list literal) (st: state) (g: HFormula) :=
match l with
| [] => None
| f :: l => match Prover st f with

| Some _ => Prover (st ∪ f) g | None => prover_arrows l st g
end end.

The function prover_arrows takes as argument a list l of literals. A literal f in the list
is of the form POS(LIMPL [a1; ...; an] b) which encodes an implication clause ⌊a1⌋ → · · · →
⌊an⌋ → (⌊a1 → · · · → an → b⌋) which was left aside during the CNF conversion. The prover
is recursively called with, as goal, the formula

∧
i ai → b. If the proof succeeds, the literal f

holds and the proof continues with a state augmented with f. Otherwise, the prover tries
another literal.

2.6 Theory Reasoning
At leaves of the proof search, the solver has assigned a set of literals that do not lead to
a propositional conflict. At this stage, a SAT solver reports that a model is found. Yet,
this propositional model may be invalidated by performing theory reasoning. Our solver is
parametrised by a theory reasoner. Essentially, it takes as input a list of literals and returns
(upon success) a clause. The clause is a tautology of the theory that is added to the clauses
of the SAT solver. The interface of a theory reasoner is given below.

Record Thy := {
thy_prover : hmap → list literal → option (hmap * clause);
thy_prover_sound : ∀ hm hm' cl cl', thy_prover hm cl = Some (hm',cl')

→ Jcl'K ∧ hm ⊑ hm' ∧ ∀ l ∈ cl', l ∈ hm' }

A thy_prover takes as input a hash-cons map hm and a list of literals cl. The hash-cons
map hm contains the currently hash-consed terms. The literals in the list cl are obtained
from the current state of the SAT solver and are restricted to atomic formulae i.e., LAT i for
some i. The theory prover may either fail to make progress or return an updated hash-cons
map hm' and a clause cl' such that

i) the clause cl' holds;
ii) the literals in cl' are correctly hash-consed in hm';
iii) the updated hash-cons map hm' contains more hash-consed formulae than hm.

Typically, the clause cl' is a conflict clause and therefore the literals of cl' are including in
those of cl. However, we open the possibility to perform theory propagation and generate a
clause made of new literals.

2.7 Solver State and Main Loop
Using the previous components, we are ready to detail the proof state.

Record state := {
fresh_clause_id : int; hconsmap : hmap; arrows : list literal;
wneg : iSet; defs : iSet * iSet;
units : ptrie (Annot bool); unit_stack : list (Annot literal);
clauses : watch_map }.

The field fresh_clause_id is a fresh index that is incremented each time a novel clause
is created.
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The field hconsmap is only updated by the theory prover and is used to ensure well-
formedness conditions about hash-consing.
The field arrows contains a list of literals. Each literal is of the form IMPL[a1; . . . ; an]b and
represent an implication clauses i.e., (⌊a1⌋ → · · · → ⌊ai⌋ → ⌊b⌋) → Lita1 → · · · → ai → b

which could not be turned into a proper flat clause during CNF conversion.
The field wneg contains a set of hash-cons indexes corresponding to watched negative
literals. These literals are added to the list of literals sent to the theory prover.
The field defs is a pair of sets of hash-cons indexes. These are used for memoizing the
CNF+ and CNF- computations.
The field units encodes using a Patricia Tree the set of assigned literals. The boolean
indicates whether the literal is positive or negative and the annotation tells which sets of
initial literals were needed for the deduction.
The field unit_stack is the stack of literals for which unit propagation needs to be run.
The field clauses contains the indexed watched_clauses.

The type of the implemented prover is slightly more complicated that what we explained
in the Section 2.4. In addition to a set of literals, it also threads along a hmap and a list
of clauses learnt by theory reasoning. Theory reasoning is only running if the boolean
use_prover is set. Termination is ensured by provided some fuel computed (without proof)
from the size of the formula.

Fixpoint prover thy use_prover fuel st g :=
match n with
| O => Fail OutOfFuel
| S n => let ProverRec := prover thy use_prover n in

(prover_unit n ; prover_case_split ProverRec ;
prover_impl_arrows ProverRec ; prover_thy ProverRec thy use_prover) st g

end.

If the prover does not run out of fuel, it calls in sequence the different provers described
in the previous sections. After performing unit propagation, it performs a case-split and
recursively calls the prover. If no case-split is possible, it tries to prove one of the implication
clause by recursively calling the prover. Eventually, if no implication clause can be derived,
theory reasoning is called.

▶ Example 6 (Example 3 continued). Suppose that we have the proof state obtained after
constructed the CNF for a → (b∧c) → (d∨(a → c)) (see Example 3). The literal ⌊a → (b∧c)⌋
triggers unit propagation and generates the clause ⌊a⌋ → ⌊b ∧ c⌋. At this stage, neither
unit propagation nor case-splitting is possible. Yet, we have a single implication clause
(⌊a⌋ → ⌊c⌋) → ⌊a → c⌋. Hence, we call prover_arrows with the singleton list [⌊a → c⌋]. To
prove ⌊a → c⌋, we introduce ⌊a⌋ and attempt to prove c. By unit propagation, we derive
first ⌊b ∧ c⌋ and then ⌊b⌋ and ⌊c⌋; thus concluding the sub-proof. As a result, we augment
the context with ⌊a → c⌋ and conclude the goal by unit propagation.

3 Soundness Proof

In this part, we give some insights about the soundness proof that is based on three main
properties: well-formedness, soundness of dependencies and soundness of provers. The only
axioms of the development are those of the Int63 standard library which define native
machine integers.
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3.1 Well-formedness
Hash-consing has the advantage that the equality of terms can be decided by an equality
of native integers without in-depth inspection of terms. However, this requires ensuring
that the initial formula is correctly hash-consed and that the prover always operates with
hash-consed literals. Fortunately, most of the generated literals are sub-formulae that are
obtained by the CNF. The only exception is theory reasoning. The hash-consed formulae are
stored in a map m : hmap := ptrie (bool*LForm). The keys of the map are the hash-cons
indexes and the boolean indicates whether the formula is a classical proposition. The set of
hash-consed formulae has_form m is inductively defined below.

m(i) = (true, LFF)
LFFtrue

i ∈ has_form m

m(i) = (b, LAT i) b ↔ JLAT iK ∨ ¬JLAT iK
(LAT i)b

i ∈ has_form m

m(i) = (b, LOP o [_b1
i1

; . . . ; _bn
in

])
(f1)b1

i1
∈ has_form m . . . (fn)bn

in
∈ has_form m

b ↔ b1 ∧ · · · ∧ bn

(LOP o [(f1)b1
i1

; . . . ; (fn)bn
in

])b
i ∈ has_form m

m(i) = (b, LIMPL[_b1
i1

; . . . ; _bn
in

] _b0
i0

)
(f0)b0

i0
∈ has_form m . . . (fn)bn

in
∈ has_form m

b ↔ b0 ∧ · · · ∧ bn

(LIMP[(f1)b1
i1

; . . . ; (fn)bn
in

] (f0)b0
i0

)b
i ∈ has_form m

Essentially, this consists in checking that all the sub-formulae are stored within the hmap m
when only considering the top constructor and the hash-cons index of the sub-formulae. The
advantage of this formulation is that f b

i ∈ hash_form m can be checked algorithmically by
a linear pass over the formula f . This definition also entails that formulae with the same
hash-cons index are the same.

f b1
i ∈ has_form m ∧ gb2

i ∈ has_form m → f b1
i = gb2

i

Our well-formedness conditions state that a solver state st:state only contains hash-
consed formulae. In particular, all the literals in the clauses are hash-consed formulae. As
Patricia Trees come with structural invariants, every Patricia Tree needs to be well-formed.
In the prover state, the set of assigned literals (see the units field) is represented by a
Patricia Tree ptrie (Annot.t bool) where the keys are hash-consed indexes. In this case,
the well-formedness conditions requires that there exists a hash-consed formula corresponding
to this index. As all the formulae with the same hash-cons index are equal this identifies a
unique formula.

wf_units_lit u m = ∀i, v, u(i) = v → ∃f b
i , has_form m f b

i

The proofs of preservation are compositional and do not pose any particular issue.

3.2 Soundness of Dependencies
The logical objects in the proof state are the set of indexed watched clauses (clauses) , the
set of assigned literals (units) and the stack of literals that are yet to be unit-propagated
(unit_stack). Each clause (or literal) is also annotated by the set of literals needed for the
deduction. These sets are represented by Patricia Trees using hash-consed indexes as keys.
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We write cd (resp. ld) for a (watched) clause (resp. literal) annotated with a set of
literals d. For each operation, we prove that the annotation is sound i.e. the conjunction of
the literals in d entails the clause c (resp. the literal l). The interpretation is indexed by a
hash-cons map m linking indexes to hash-consed formulae.

Jc{l1,...,ln}Km = Jl1Km ∧ . . . JlnKm → JcK

A literal l is introduced by either the introduction rule or a case-split. In that case, the
set d is the singleton {l} and Jl{l}K holds. New clauses are obtained by unit propagation and
the soundness of the deduced clauses is obtained from the following deduction rules:

d1 → p d2 → (p → p1 → . . . pn → q1 ∨ . . . qn)
d1 ∧ d2 → (p1 → . . . pn → q1 ∨ . . . qn)

d1 → ¬q d2 → (q ∨ q1 ∨ . . . qn)
d1 ∧ d2 → (q1 ∨ . . . qn)

Syntactically, the conjunction d1 ∧ d2 is modelled by the union d1 ∪ d2.

Jd1 ∪ d2Km = Jd1Km ∧ Jd1Km

Given a prover state st, JstKdep holds if all the clauses (resp. literals) in the state have
correct dependencies. The proofs that the dependencies are correct are also compositional
but require well-formedness conditions to hold.

3.3 Soundness of Provers
Upon success, a prover p:ProverT returns a set of valid learnt clause, an updated hash-cons
map but also a set of literals that are sufficient to entail a conflict. The soundness of provers
is then stated by the following definition.

Definition sound_prover (prover: ProverT) (st: state) :=
∀ g hm lc d, wf_state st → gb

i ∈ hconsmap st →
prover st g = Success (m,lc,d) →
(JstK → JstKdep → JgK) ∧ (JstKdep → JdKm → JgK) ∧

∧
c∈lc JcK

Therefore, soundness requires to prove that the goal formula g is entailed by either the
clauses in the state and their dependencies or the dependencies alone and the set of literals
d. Both properties are needed in order to prove that backjumping is correct. We also have to
prove that the clauses lc obtained by theory reasoning are sound. Sometimes, the fact that
we use classical reasoning in an intuitionistic context is a source of complication for the proof
because this prevents a direct forward reasoning. For instance, in a pure classical context,
the CNF of a formula f generates tautologies and the correctness can be directly stated by

∀cl, cl ∈ cnf f → JclK

The correctness of our CNF depends on the goal formula. For instance, if the conclusion is
False, De Morgan laws are admissible. Therefore, our formulation is the following.

((∀cl, cl ∈ cnf f → JclK) → JgK) → JgK

Note that if g = False, we get a double negation. For most of our proof state transformation,
say T, a simplified correctness lemma has the form

wf_state st → (JT stK → JgK) → (JstK → JgK)
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4 Proof by Hybrid Reflection

Having a SAT solver for deciding propositional logic, one option is to directly perform proof
by reflection [9, Chap. 16]. Using this mode, we get a tactic that is similar to the existing
tauto with the advantage that our reification process detects decidable propositions declared
using the type-class mechanism [25].

In order to perform theory reasoning, the proof by reflection approach demands that
we implement the interface of Section 2.6. However, a closer look shows that the interface
does not expose a syntax for atoms: they are only represented by indexes. In a nutshell, the
interface is purposely an empty shell. A fully reflexive approach would require to enrich the
interface with an environment mapping atoms to theory-specific syntactic terms. Here, we
follow a different path and implement theory reasoning using classic user-defined tactics. The
advantages are that existing decision procedures can be readily reused and that user-defined
tactics are more flexible. Yet, user-defined tactics and proof by reflection do not operate at
the same level and embedding a powerful reflective tactic language would be a challenge by
itself.

To reach our goal, we take the opposite approach and leverage the Coq extraction
mechanism, thus allowing to run our SAT solver inside the Coq proof engine, i.e., at the level
of tactics. There, the theory reasoning interface may be implemented by calling user-defined
tactics. The theory prover thy_prover (see Section 2.6) takes a list of literals and attempts
to produce a clause. Therefore, to interface with tactics, the followings tasks need to be
performed:
1. Construct a goal from the literals provided by the SAT solver.
2. (Optionally) perform theory propagation
3. Run the tactic and obtain a proof-term.
4. Return a reduced clause.
Within the proof engine, we maintain a mapping from literals to actual Coq terms. We
interpret the list of literal as a clause to be discharged by the user-provided tactic. We
obtain a goal G of the general form: G:=∀i∈I(xi : pi),

∨
j∈J qj . Actually, the pi and the qj

do not depend on the xi. Yet, this dependent product notation is convenient to explain our
minimisation procedure.

The fact that the conclusion is a disjunction
∨

j∈J qj may trigger, for some tactics, a
costly case-analysis which would be more efficiently performed at the level of the SAT solver.
For this purpose, we leverage the type-class mechanism to perform theory propagation at
the level of individual propositions. For instance, if one of the qj is an equality over Z, say
x=y, we directly return to the SAT solver the tautology clause x<y ∨ x=y ∨ y<x.

If the tactic fails, the unsuccessful goal G is a potential counter-example and is returned
to the user for inspection. If the tactic proves the goal, the clause G holds and is therefore
a conflict clause. A sound, but naive, approach is to return this clause containing all the
input literals. Yet, to improve the efficiency of the SAT solver, it is desirable to reduce the
clause and produce a minimal unsatisfiable core. In other words, we search for sets I ′ ⊆ I

and J ′ ⊆ J such that G′:=∀i∈I′(xi : pi),
∨

j∈J ′ qj is still a tautology. In our context, if the
tactic succeeds, it also produces a proof-term. Using a syntactic analysis, we track the subset
of the xi that are used in the proof-term and therefore obtain a set I ′ ⊆ I containing the
needed hypotheses. To minimise the set J , a finer grained analysis of the proof term may be
possible. However, there is a sweet spot when the positive literals are classical propositions.
In that case, the goal G is equivalent to G′

G′:=∀i∈I(xi : pi), ∀j∈J (yj : ¬pj), False
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Using this formulation, the same syntactic analysis extracts both a subset I ′ ⊆ I of the
negative literals and a subset J ′ ⊆ J of the positive literals. When the propositions are not
classical, we perform some partial iterative proof-search and try to prove each of the qi, one
at a time. Once the minimisation is done, we adjust the proof-term for the minimised conflict
clause: this consists in recomputing the correct De Bruijn indexes to accommodate for the
removed hypotheses.

If the extracted SAT solver succeeds, we have the guarantee that the goal is provable but
the proof elements still need to be pieced together. The SAT solver returns the set of needed
literals. We exploit this information to remove from the context the propositions that are
irrelevant for the proof. Now, we enrich the context with all the conflict clauses that were
generated during the SAT solver run, re-using the cached proof terms. At this stage, we have
a goal that is a propositional tautology. It is solved by re-running the SAT solver, without
theory reasoning, by a classic proof by reflection.

Using the extracted SAT solver has the advantage that the possible bugs are limited
to the interface with user-provided tactic. Another possible design would be to rely on an
external untrusted (intuitionistic) SAT solver. This would have some speed advantage for
the generation of conflict clauses but would increase the code base. In our case, we reuse the
same verified component both in the Coq proof engine and to perform proof by reflection.

5 Experiments

Before showing some larger scale experiments, we come back to the motivating examples
(see Section 1.1) and explain how they are solved by our tactic.

5.1 Back to Motivating Examples
Consider again the goals in Example 1. For Ex1, the SAT solver has knowledge that x>=0
is a classical proposition and therefore performs a case-split over x>=0→ p. The first sub-
case is solved by theory reasoning (x=0 → ~ x>= 0 → False holds); and the second by
propositional reasoning (p → p). For Ex2, the SAT solver does not make progress. However,
it asks the leaf tactic congruence whether a watched negative literal (i.e., a=c) may be
deduced from the assigned literal (i.e., a=b and b=c). As a=b → b=c → a=c can be proved
by congruence, the clause is asserted by theory reasoning. The proof follows by propositional
reasoning.

For Example 2, the goal is solved by intuition congruence using two identical calls
to the leaf tactic congruence. Because our SAT solver threads learnt clauses along the
computation, the same goal is solved by itauto congruence by calling congruence only
once.

5.2 Pigeon Hole
The Pigeon Hole Principle, stating that there is no way to fit n+1 pigeons in n holes, is a hard
problem for resolution based SAT solvers. The algorithm presented here is no exception and
the running time will be exponential in n. This is however a useful benchmark for assessing
scalability. We have benchmarked our itauto tactic against the existing tauto and rtauto
tactics using a timeout of 3600s and a memory limit of 15GB on a laptop (Intel Core i7 at
1.8GHz with 32GB of RAM). The results are shown in Fig. 1. For itauto, the running time
of the tactic and the type-checking time (Qed time) are similar. As we perform a pure proof
by reflection, this is not surprising. Though itauto scales slightly better, the running time
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Figure 1 Pigeon Hole for itauto, tauto and rtauto.

are similar to rtauto which only performs proof by reflection to check certificates. tauto is
the least scalable and the proof search reaches timeout for 5 pigeons. rtauto exhausts its
memory quota when checking its certificate for 7 pigeons. itauto reaches the time limit of
3600s for 10 pigeons.

5.3 On existing developments
We have benchmarked itauto against the existing Coq tactics tauto and intuition for the
Bedrock29 and CompCert10 developments using Coq 8.14+alpha. We have replaced calls to
tauto and intuition tac for tac ∈ {idtac, assumption, discriminate, congruence, lia,
auto, eauto }. We have ruled out calls to intuition when they generate sub-goals. In terms
of completeness, itauto is able to solve the vast majority of the goals. One representative
case of failure is given in Example 7.

▶ Example 7. The following goal is solved by intuition congruence.

Goal true = true ↔ (Z → (False ↔ False)).

Yet, itauto congruence fails because Z (i.e., the type of integers) has type Set and therefore
the whole expression Z → (False ↔ False) is reified as an opaque atomic proposition.
Our solution is to call itauto recursively i.e., itauto (itauto congruence) so that an
hypothesis x:Z is explicitly introduced. The same approach works for goals with inner
universal quantifiers.

For a few instances, we also strengthen the leaf tactic replacing e.g., idtac by reflexivity,
and, discriminate by congruence. This is due to the fact that intuition implicitly calls
reflexivity and that our handling of theory reasoning sometimes introduces negations
which fool the discriminate tactic.

After modification, Bedrock2 performs 1621 calls to itauto. For 40% of the goals, the
running time differs by less than 1ms and itauto outperforms the historic tactics for 40% of
the cases. Overall, itauto is faster and there is an slight speedup of 1.07. Yet, all the calls
are quickly solved; the slowest goal is solved in 0.18s.

CompCert performs 924 calls to itauto. For 76% of the goals, the running time also
differs by less than 1ms. itauto outperforms the historic tactics for 19% percent of the goals.

9 https://github.com/mit-plv/bedrock2
10 https://github.com/AbsInt/CompCert
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Yet, when itauto is faster it can be by several orders of magnitudes: the 19% percent of
goals are solved more than 20 times faster by itauto. For instance, the maximum running
time of tauto is 5.26s to be compared to 0.81s for itauto. Overall, itauto performs better
with a speedup of 2.8 for solving all the goals.

In summary, the results are rather positive though the advantage may be slim. It seems
that itauto shows a decisive advantage for goals that are very slow with the existing tactics.
As shown by the Pigeon Hole experiment, this would indicate a better scalability. It would
not be surprising for itauto to be slower on simple goals where the overhead of setting up
the proof by reflection cannot be amortised. itauto spends time in different proof tasks:
SAT solver, theory reasoning and proof by reflection. We are confident that the SAT solver is
scalable and reasonably fast. Yet, this is not always the bottleneck, and, the positive results
reported here were only made possible by fine tuning other tasks e.g., the reification code.

6 Related Work

For propositional logic, Weber and Amjad [27] for HOL theorem provers and Armand et
al. [3] for Coq show how to efficiently validate resolution proofs that can be generated by
modern SAT solvers using Conflict Driven Clause Learning (e.g. zChaff [21]). Satisfiability
Modulo Theory (SMT) solvers (e.g., veriT [8], Z3 [12] , CVC4 [13]) produce proof artefacts.
Böhme and Weber [7] show how to efficiently perform proof reconstruction for HOL provers.
Armand et al. [2] and Besson et al. [4] extract proof certificates from SMT proofs that
are validated in Coq. Sledgehammer [5] interfaces Isabelle/HOL with a variety of provers;
Metis [18, 23] is in charge of performing proof reconstruction. We follow a different approach
and verify a SAT solver interfaced with the tactics of Coq. What we loose in efficiency, we
gain in flexibility because the user might use her own fine-tuned domain specific tactics.

Claessen and Rosén [10] build a prover for intuitionistic logic on top of a black-box
SAT solver. Their implementation is more efficient than ours but is not integrated inside a
proof-assistant. Lescuyer and Conchon [19, 20] formalise a reflexive SAT solver for classical
logic. Their implementation features a lazy definitional CNF that is not fully exploited
because of the lack of hash-consing. Compared to ours, their SAT solver performs neither lazy
unit propagation nor backjumping. Blanchette et al. [6] formalise a Conflict Driven Clause
Learning (CDCL) SAT solver and derive a verified implementation. Using this framework,
Fleury, Blanchette and Lamich [15] derive an imperative implementation using watched
literals. Our implementation has less sophisticated features but is integrating as a reflective
proof procedure and allows to perform theory reasoning.

7 Conclusion and Future Work

We have presented itauto a reflexive tactic for intuitionistic propositional logic which
can be parametrised by user-provided tactics. The SAT solver is optimised to leverage
classical reasoning thus limiting, when possible, costly intuitionistic reasoning. Our SAT
solver has several features found in modern SAT solver. Yet, the implementation could
be improved further. A first improvement would be to generate more sophisticated learnt
clauses. This could be done by attaching to each clause, not only the needed literals, but
also the performed unit propagations. Another improvement would be to use primitive
persistent arrays (available since Coq 8.13) allowing to implement efficiently more imperative
algorithms e.g., 2-watched literals.
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Abstract
Large-scale stream processing systems often follow the dataflow paradigm, which enforces a

program structure that exposes a high degree of parallelism. The Timely Dataflow distributed system
supports expressive cyclic dataflows for which it offers low-latency data- and pipeline-parallel stream
processing. To achieve high expressiveness and performance, Timely Dataflow uses an intricate
distributed protocol for tracking the computation’s progress. We modeled the progress tracking
protocol as a combination of two independent transition systems in the Isabelle/HOL proof assistant.
We specified and verified the safety of the two components and of the combined protocol. To this
end, we identified abstract assumptions on dataflow programs that are sufficient for safety and were
not previously formalized.
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1 Introduction

The dataflow programming model represents a program as a directed graph of interconnected
operators that perform per-tuple data transformations. A message (an incoming datum)
arrives at an input (a root of the dataflow) and flows along the graph’s edges into operators.
Each operator takes the message, processes it, and emits any resulting derived messages.

This model enables automatic and seamless parallelization of tasks on large multiprocessor
systems and cluster-scale deployments. Many research-oriented and industry-grade systems
have employed this model to describe a variety of large scale data analytics and processing
tasks. Dataflow programming models with timestamp-based, fine-grained coordination, also
called time-aware dataflow [24], incur significantly less intrinsic overhead [26].
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In a time-aware dataflow system, all messages are associated with a timestamp, and
operator instances need to know up-to-date (timestamp) frontiers – lower bounds on what
timestamps may still appear as their inputs. When informed that all data for a range of
timestamps has been delivered, an operator instance can complete the computation on input
data for that range of timestamps, produce the resulting output, and retire those timestamps.

A progress tracking mechanism is a core component of the dataflow system. It receives
information on outstanding timestamps from operator instances, exchanges this information
with other system workers (cores, nodes) and disseminates up-to-date approximations of the
frontiers to all operator instances.

The progress tracking mechanism must be correct. Incorrect approximations of the
frontiers can result in subtle concurrency errors, which may only appear under certain load
and deployment circumstances. In this work, we formally model in Isabelle/HOL and prove
the safety of the progress tracking protocol of Timely Dataflow [1, 26, 27] (Section 2), a
time-aware dataflow programming model and a state-of-the-art streaming, data-parallel,
distributed data processor.

In Timely Dataflow’s progress tracking, worker-local and distributed coordination are
intertwined, and the formal model must account for this asymmetry. Individual agents
(operator instances) on a worker generate coordination updates that have to be asynchronously
exchanged with all other workers, and then propagated locally on the dataflow structure to
provide local coordination information to all other operator instances.

This is an additional (worker-local) dimension in the specification when compared to
well-known distributed coordination protocols, such as Paxos [21] and Raft [28], which focus
on the interaction between symmetric communicating parties on different nodes. In contrast
our environment model can be simpler, as progress tracking is designed to handle but not
recover from fail-stop failures or unbounded pauses: upon crashes, unbounded stalls, or reset
of a channel, the system stops without violating safety.

Abadi et al. [4] formalize and prove safety of the distributed exchange component of
progress tracking in the TLA+ Proof System. We present their clocks protocol through the lens
of our Isabelle re-formalization (Section 3) and show that it subtly fails to capture behaviors
supported by Timely Dataflow [26, 27]. We then significantly extend the formalized protocol
(Section 4) to faithfully model Timely Dataflow’s modern reference implementation [1].

The above distributed protocol does not model the dataflow graph, operators, and
timestamps within a worker. Thus, on its own it is insufficient to ensure that up-to-date
frontiers are delivered to all operator instances. To this end, we formalize and prove the
safety of the local propagation component (Section 5) of progress tracking, which computes
and updates frontiers for all operator instances. Local propagation happens on a single
worker, but operator instances act as independent asynchronous actors. For this reason, we
also employ a state machine model for this component. Along the way, we identify sufficient
criteria on dataflow graphs, that were previously not explicitly (or only partially) formulated
for Timely Dataflow.

Finally, we combine the distributed component with local propagation (Section 6) and
formalize the global safety property that connects initial timestamps to their effect on the op-
erator frontier. Specifically, we prove that our combined protocol ensures that frontiers always
constitute safe lower bounds on what timestamps may still appear on the operator inputs.

Related Work
Data management systems verification. Timely Dataflow is a system that supports low-
latency, high-throughput data-processing applications. Higher level libraries [24, 25] and
SQL abstractions [2] built on Timely Dataflow support high performance incremental view
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maintenance for complex queries over large datasets. Verification and formal methods efforts
in the data management and processing space have focused on SQL and query-language
semantics [6, 11,13] and on query runtimes in database management systems [7, 23].

Distributed systems verification. Timely Dataflow is a distributed, concurrent system:
our modeling and proof techniques are based on the widely accepted state machine model
and refinement approach as used, e.g., in the TLA+ Proof System [10] and Ironfleet [16].
Recent work focuses on proving consistency and safety properties of distributed storage
systems [14, 15, 22] and providing tools for the implementation and verification of general
distributed protocols [20, 31] leveraging domain-specific languages [30, 33] and advanced
type systems [17].

Model of Timely Dataflow. Abadi and Isard [3] define abstractly the semantics of a Timely
Dataflow programming model [26]. Our work is complementary; we concretely compute their
could-result-in relation (Section 6) and formally model the implementation’s core component.

2 Timely Dataflow and Progress Tracking

Our formal model follows the progress tracking protocol of the modern Rust implementation
of Timely Dataflow [1]. The protocol has evolved from the one reported as part of the classic
implementation Naiad [26]. Here, we provide an informal overview of the basic notions, for
the purpose of supporting the presentation of our formal model and proofs.

Dataflow graph. A Timely Dataflow computation is represented by a graph of operators,
connected by channels. Each worker in the system runs an instance of the entire dataflow
graph. Each instance of an operator is responsible for a subset, or shard, of the data being
processed. Workers run independently and only communicate through reliable message
queues – they act as communicating sequential processes [18]. Each worker alternately
executes the progress tracking protocol and the operator’s processing logic. Figure 1 shows a
Timely Dataflow operator and the related concepts described in this section.

target

target
source

summaries

ports

incoming channel

incoming channel
outgoing channel

Figure 1 A Timely Dataflow operator.

Pointstamps. A pointstamp represents a datum at rest at an operator, or in motion on one
of the channels. A pointstamp pl, tq refers to a location l in the dataflow and a timestamp t.
Timestamps encode a semantic (causal) grouping of the data. For example, all data resulting
from a single transaction can be associated with the same timestamp. Timestamps are usually
tuples of positive integers, but can be of any type for which a partial order ⪯ is defined.

Locations and summaries. Each operator has an arbitrary number of input and output
ports, which are locations. An operator instance receives new data through its input
ports, or target locations, performs processing, and produces data through its output ports,
or source locations. A dataflow channel is an edge from a source to a target. Internal
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b.1

b.2

b.3

b: labelprop

c.1c.2

c: feedback

a: input

a.1

+(0,1) B

C

A

Figure 2 A timely dataflow that computes weakly connected components.

operator connections are edges from a target to a source, which are additionally described by
one or more summaries: the minimal increment to timestamps applied to data processed
by the operator.

Frontiers. Operator instances must be informed of which timestamps they may still receive
from their incoming channels, to determine when they have a complete view of data associated
with a certain timestamp. The progress tracking protocol tracks the system’s pointstamps
and summarizes them to one frontier per operator port. A frontier is a lower bound on the
timestamps that may appear at the operator instance inputs. It is represented by an antichain
F indicating that the operator may still receive any timestamp t for which Dt1 P F. t1 ⪯ t.

Progress tracking. Progress tracking computes frontiers in two steps. A distributed
component exchanges pointstamp changes (Sections 3 and 4) to construct an approximate,
conservative view of all the pointstamps present in the system. Workers use this global view
to locally propagate changes on the dataflow graph (Section 5) and update the frontiers at
the operator input ports. The combined protocol (Section 6) asynchronously executes these
two components.

▶ Running Example (Weakly Connected Components by Propagating Labels). Figure 2 shows
a dataflow that computes weakly connected components (WCC) by assigning integer labels
to vertices in a graph, and propagating the lowest label seen so far by each vertex to
all its neighbors. The input graph is initially sent by operator a as a stream of edges
(s,d) with timestamp (0,0). Each input port has an associated sharding function to
determine which data should be sent to which operator instance: port b.2 shards the
incoming edges (s,d) by s.

The input operator a will continue sending additional edges in the graph as they appear,
using increasing timestamps by incrementing one coordinate: (1,0), (2,0), etc. The compu-
tation is tasked with reacting to these changes and performing incremental re-computation to
produce correct output for each of these input graph versions. The first timestamp coordinate
represents logical consistency boundaries for the input and output of the program. We will use
the second timestamp coordinate to track the progress of the unbounded iterative algorithm.

The operator a starts with a pointstamp (a.1, (0,0)) on port a.1, representing its intent
to send data with that timestamp through the connected channel. When it sends messages
on channel A, these are represented by pointstamps on the port b.2 ; e.g., (b.2, (0,0)) for the
initial timestamp (0,0). When it ceases sending data for a certain timestamp, e.g., (0,0),
operator a drops the corresponding pointstamp on port a.1. The frontier at b.2 reflects
whether pointstamps with a certain timestamp are present at either a.1 or b.2 : when they
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both become absent (when all messages are delivered) each instance of b notices that its
frontier has advanced and determines it has received its entire share of the input (the graph)
for a timestamp.

Each instance of b starts with a pointstamp on b.3 at timestamp (0,0); when it has
received its entire share of the input, for each vertex with label x and each of its neighbors n,
it sends (n,x) at timestamp (0,0). This stream then traverses operator c, that increases
the timestamp associated to each message by (0,1), and reaches port b.1, which shards the
incoming tuples (n,x) by n. Operator b inspects the frontier on b.1 to determine when it
has received all messages with timestamp (0,1). These messages left b.3 with timestamp
(0,0). The progress tracking mechanism will correctly report the frontier at b.1 by taking
into consideration the summary between c.1 and c.2.

Operator b collects all label updates from b.1 and, for those vertices that received a value
that is smaller than the current label, it updates internal state and sends a new update via b.3
with timestamp (0,1). This process then repeats with increasing timestamps, (0,2), (0,3),
etc., for each trip around the loop, until ultimately no new update message is generated on
port b.3 by any of the operator instances, for a certain family of timestamps (t1,t2) with a
fixed t1 corresponding to the input version being considered. Operator b determines it has
correctly labeled all connected components for a given t1 when the frontier at b.1 does not
contain a pt1, t2q such that t2 ⪯ the graph’s diameter. In practice, once operator b determines
it has computed the output for a given t1, the operator would also send the output on an
additional outgoing channel to deliver it to the user. Later, operator b continues processing
for further input versions, indicated by increasing t1, with timestamps (t1,0), (t1,1), etc. ◀

3 The Clocks Protocol

In this section, we present Abadi et al.’s approach to modeling the distributed component
of progress tracking [4], termed the clocks protocol. Instead of showing their TLA+ Proof
System formalization, we present our re-formalization of the protocol in Isabelle. Thereby,
this section serves as an introduction to both the protocol and the relevant Isabelle constructs.

The clocks protocol is a distributed algorithm to track existing pointstamps in a dataflow.
It models a finite set of workers. Each worker stores a (finite) multiset of pointstamps as
seen from its perspective and shares updates to this information with all other workers.
The protocol considers workers as black boxes, i.e., it does not model their dataflow graph,
locations, and timestamps. We extend the protocol to take these components into account in
Section 5.

In Isabelle, we use the type variable 'w :: finite to represent workers. We assume that
'w belongs to the finite type class, which assures that 'w’s universe is finite. Similarly, we
model pointstamps abstractly by 'p :: order . The order type class assumes the existence of a
partial order ď :: 'p ñ 'p ñ bool (and the corresponding strict order ă).

We model the protocol as a transition system that acts on configurations given as follows:

record p'w :: finite, 'p :: orderq conf “
rec :: 'p zmset
msg :: 'w ñ 'w ñ 'p zmset list
temp :: 'w ñ 'p zmset
glob :: 'w ñ 'p zmset

Here, rec c denotes the global multiset of pointstamps (or records) that are present in
a system’s configuration c. We use the type 'p zmset of signed multisets [8]. An element
M :: 'p zmset can be thought of as a function of type 'p ñ int, which is non-zero only
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for finitely many values. (In contrast, an unsigned multiset M :: 'p mset corresponds to a
function of type 'p ñ nat.) Signed multisets enjoy nice algebraic properties; in particular,
they form a group. This significantly simplifies the reasoning about subtraction. However,
rec c will always store only non-negative pointstamp counts. The other components of a
configuration c are

the progress message queues msg c w w1, which denote the progress update messages sent
from worker w to worker w1 (not to be confused with data messages, which are accounted
for in rec c but do not participate in the protocol otherwise);
the temporary changes temp c w in which worker w stores changes to pointstamps that it
might need to communicate to other workers; and
the local approximation glob c w of rec c from the perspective of worker w (we use Abadi
et al. [4]’s slightly misleading term glob for the worker’s local view on the global state).

In contrast to rec, these components may contain a negative count ´i for a pointstamp p,
which denotes that i occurrences of p have been discarded.

The following predicate characterizes the protocol’s initial configurations. We write
t#uz for the empty signed multiset and M #z p for the count of pointstamp p in a signed
multiset M.

definition Init :: p'w, 'pq conf ñ bool where
Init c “ p@p. rec c #z p ě 0q ^ p@w w1. msg c w w1 “ r sq ^

p@w. temp c w “ t#uzq ^ p@w. glob c w “ rec cq

In words: all global pointstamp counts in rec must be non-negative and equal to each worker’s
local view glob; all message queues and temporary changes must be empty.

Referencing our WCC example described in Section 2, the clocks protocol is the component
in charge of distributing pointstamp changes to other workers. When one instance of the
input operator a ceases sending data for a certain family of timestamps (t1,0) it drops the
corresponding pointstamp: the clocks protocol is in charge of exchanging this information
with other workers, so that they can determine when all instances of a have ceased producing
messages for a certain timestamp. This happens for all pointstamp changes in the system,
including pointstamps that represent messages in-flight on channels.

The configurations evolve via one of three actions:
perf_op: A worker may perform an operation that causes a change in pointstamps. Changes

may remove certain pointstamps and add others. They are recorded in rec and temp.
send_upd: A worker may broadcast some of its changes stored in temp to all other workers.
recv_upd: A worker may receive an earlier broadcast and update its local view glob.

Overall, the clocks protocol aims to establish that glob is a safe approximation for rec.
Safe means here that no pointstamp in rec is less than any of glob’s minimal pointstamps.
To achieve this property, the protocol imposes a restriction on which new pointstamps may
be introduced in rec and which progress updates may be broadcast. This restriction is the
uprightness property that ensures that a pointstamp can only be introduced if simultaneously
a smaller (supporting) pointstamp is removed. Formally, a signed multiset of pointstamps is
upright if every positive entry is accompanied by a smaller negative entry:

definition supp :: 'p zmset ñ 'p ñ bool where supp M p “ pDp1 ă p. M #z p1 ă 0q
definition upright :: 'p zmset ñ bool where upright M “ p@p. M #z p ą 0 ÝÑ supp M pq

Abadi et al. [4] additionally require that the pointstamp p1 in supp’s definition satisfies
@p2 ď p1. M #z p2 ď 0. The two variants of upright are equivalent in our formalization
because signed multisets are finite and thus minimal elements exist even without ď being
well-founded. The extra assumption on p1 is occasionally useful in proofs.
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definition perf_op ::'w ñ 'p mset ñ 'p mset ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
perf_op w ∆neg ∆pos c c1 “ let ∆ “ ∆pos´∆neg in p@p. ∆neg #p ď rec c#z pq^upright ∆^

c1 “ cLrec “ rec c`∆, temp “ ptemp cqpw :“ temp c w`∆qM
definition send_upd :: 'w ñ 'p set ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where

send_upd w P c c1 “ let γ “ t#p P#z temp c w. p P P#u in
γ ‰ t#uz ^ upright ptemp c w´ γq ^
c1 “ cLmsg “ pmsg cqpw :“ λw1. msg c w w1 ¨ rγsq, temp “ ptemp cqpw :“ temp c w´ γqM

definition recv_upd :: 'w ñ 'w ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
recv_upd w w1 c c1 “ msg c w w1 ‰ rs ^

c1 “ cLmsg “ pmsg cqpw :“ pmsg c wqpw1 :“ tl pmsg c w w1qqq,

glob “ pglob cqpw1 :“ glob c w1 ` hd pmsg c w w1qqM
definition Next :: p'w, 'pq conf ñ p'w, 'pq conf ñ bool where

Next c c1 “ pc “ c1q _ pDw ∆neg ∆pos. perf_op w ∆neg ∆pos c c1q _

pDw P. send_upd w P c c1q _ pDw w1. recv_upd w w1 c c1q

Figure 3 Transition relation of Abadi et al.’s clocks protocol.

In practice, uprightness means that operators are only allowed to transition to pointstamps
forward in time, and cannot re-introduce pointstamps that they relinquished. This is necessary
to ensure that the frontiers always move to later timestamps and remain a conservative
approximation of the pointstamps still present in the system. An advancing frontier triggers
computation in some of the dataflow operators, for example to output the result of a time-
based aggregation: this should only happen once all the relevant incoming data has been
processed. This is the intuition behind the safety property of the protocol, Safe, discussed
later in this section.

Figure 3 defines the three protocol actions formally as transition relations between an old
configuration c and a new configuration c1 along with the definition of the overall transition
relation Next, which in addition to performing one of the actions may stutter, i.e., leave c1 “ c
unchanged. The three actions take further parameters as arguments, which we explain next.

The action perf_op is parameterized by a worker w and two (unsigned) multisets ∆neg
and ∆pos, corresponding to negative and positive pointstamp changes. The action’s overall
effect on the pointstamps is thus ∆ “ ∆pos ´∆neg. Here and elsewhere, subtraction expects
signed multisets as arguments and we omit the type conversions from unsigned to signed
multisets (which are included in our Isabelle formalization). The action is only enabled if its
parameters satisfy two requirements. First, only pointstamps present in rec may be dropped,
and thus the counts from ∆neg must be bounded by the ones from rec. (Arguably, accessing
rec is problematic for distributed workers. We rectify this modeling deficiency in Section 4.)
Second, ∆ must be upright, which ensures that we will never introduce a pointstamp that is
lower than any pointstamp in rec. If these requirements are met, the action can be performed
and will update both rec and temp with ∆ (expressed using Isabelle’s record and function
update syntax).

The action send_upd is parameterized by a worker (sender w) and a set of pointstamps
P, the outstanding changes to which, called γ, we want to broadcast. The key requirement
is that the still unsent changes remain upright. Note that it is always possible to send all
changes or all positive changes in temp, because any multiset without a positive change is
upright. The operation enqueues γ in all message queues that have w as the sender. We
model first-in-first-out queues as lists, where enqueuing means appending at the end (_ ¨ r_s).
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Finally, the action recv_upd is parameterized by two workers (sender w and receiver w1).
Given a non-empty queue msg c w w1, the action dequeues the first message (head hd gives
the message, tail tl the queue’s remainder) and adds it to the receiver’s glob.

An execution of the clocks protocol is an infinite sequence of configurations. Infinite
sequences of elements of type 'a are expressed in Isabelle using the coinductive datatype
(short codatatype) of streams defined as codatatype 'a stream “ Stream 'a p'a streamq.
We can inspect a stream’s head and tail using the functions shd :: 'a stream ñ 'a and
stl :: 'a stream ñ 'a stream. Valid protocol executions satisfy the predicate Spec, i.e., they
start in an initial configuration and all neighboring configurations are related by Next:

definition Spec :: p'w, 'pq conf stream ñ bool where
Spec s “ now Init s^ alw prelates Nextq s

The operators now and relates lift unary and binary predicates over configurations to exe-
cutions by evaluating them on the first one or two configurations respectively: now P s “
P pshd sq and relates R s “ R pshd sq pshd pstl sqq. The coinductive operator alw resembles a
temporal logic operator: alw P s holds if P holds for all suffixes of s.

coinductive alw :: p'a stream ñ boolq ñ 'a stream ñ bool where
P s ÝÑ alw P pstl sq ÝÑ alw P s

We use the operators now, relates, and alw not only to specify valid execution, but also
to state the main safety property. Moreover, we use the predicate vacant to express that a
pointstamp (and all smaller pointstamps) are not present in a signed multiset:

definition vacant :: 'p zmset ñ 'p ñ bool where vacant M p “ p@p1 ď p. M #z p1 “ 0q

Safety states that if any worker’s glob becomes vacant up to some pointstamp, then that
pointstamp and any lesser ones do not exist in the system, i.e., are not present in rec (and
will remain so). Thus, safety allows workers to learn locally, via glob, something about the
system’s global state rec, namely that they will never encounter certain pointstamps again.
Formally:

definition Safe :: p'w, 'pq conf stream ñ bool where
Safe s “ p@w p. now pλc. vacant pglob c wq pq s ÝÑ alw pnow pλc. vacant prec cq pq sqq

lemma safe: Spec s ÝÑ alw Safe s

Our extended report [9] provides informal proof sketches for this and other safety properties.
Overall, we have replicated the formalization of Abadi et al.’s clocks protocol and the

proof of its safety. Their protocol accurately models the implementation of the progress
tracking protocol’s distributed component in Timely Dataflow’s original implementation
Naiad with one subtle exception. The Naiad API (OnNotify, SendBy) allows an operator
to repeatedly send data messages through its output port, which generates pointstamps at
the receiver, without requiring that a pointstamp on the output port is decremented. This
can result in a perf_op transition that is not upright. Additionally, the modern reference
implementation of Timely Dataflow in Rust is more expressive than Naiad, and permits
multiple operations that result in non-upright changes. We address and correct this limitation
of the clocks protocol in Section 4.

One example of an operator that expresses behavior that results in non-upright changes
is the input operator a in the WCC example. This operator may be reading data from an
external source, and as soon as it receives new edges, it can forward them with the current
pointstamp (a.1, (t1,0)). This operator may be invoked multiple times, and perform this
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action repeatedly, until it determines from the external source that it should mark a certain
timestamp as complete by dropping the pointstamp. All of these intermediate actions that
send data at (t1,0) are not upright, as sending messages creates new pointstamps on the
message targets, without dropping a smaller pointstamp that can support the postive change.

4 Exchanging Progress

As outlined in the previous section, the clocks protocol is not flexible enough to capture
executions with non-upright changes, which are desired and supported by concrete implemen-
tations of Timely Dataflow. At the same time, the protocol captures behaviors that are not
reasonable in practice. Specifically, the clocks protocol does not separate the worker-local
state from the system’s global state. The perf_op transition, which is meant to be executed
by a single worker, uses the global state to check whether the transition is enabled and
simultaneously updates the global state rec as part of the transition. In particular, a single
perf_op transition allows a worker to drop a pointstamp that in the real system “belongs”
to a different worker w and simultaneously consistently updates w’s state. In concrete
implementations of Timely Dataflow, workers execute perf_op’s asynchronously, and thus
can only base the transition on information that is locally available to them.

Our modified model of the protocol, called exchange, resolves both issues. As the first step,
we split the rec field into worker-local signed multisets caps of pointstamps, which we call
capabilities as they indicate the possibility for the respective worker to emit these pointstamps.
Workers may transfer capabilities to other workers. To do so, they asynchronously send
capabilities as data messages to a central multiset data of pairs of workers (receivers) and
pointstamps. We arrive at the following updated type of configurations:

record p'w :: finite, 'p :: orderq conf “
caps :: 'w ñ 'p zmset
data :: p'w ˆ 'pq mset
msg :: 'w ñ 'w ñ 'p zmset list
temp :: 'w ñ 'p zmset
glob :: 'w ñ 'p zmset

Including this fine-grained view on pointstamps will allow workers to make transitions based
on worker-local information. The entirety of the system’s pointstamps, rec, which was
previously part of the configuration and which the protocol aims to track, can be computed
as the sum of all the workers’ capabilities and data’s in-flight pointstamps.

definition rec :: p'w, 'pq conf ñ 'p zmset where rec c “ p
ÿ

w
caps c wq ` snd ‘# data c

Here, the infix operator ‘# denotes the image of a function over a multiset with resulting
counts given by p f ‘# Mq# x “

ř

yPtyP#M| f y“xu M # y.
The exchange protocol’s initial state allows workers to start with some positive capabilities.

Each worker’s glob must correctly reflect all initially present capabilities.

definition Init :: p'w, 'pq conf ñ bool where
Init c “ p@w p. caps c w #z p ě 0q ^ data c “ t#u ^
p@w w1. msg c w w1 “ r sq ^ p@w. temp c w “ t#uzq ^ p@w. glob c w “ rec cq

The transition relation of the exchange protocol, shown in Figure 4, is similar to that of the
clocks protocol. We focus on the differences between the two protocols. First, the exchange
protocol has an additional transition recv_cap to receive a previously sent capability. The
transition removes a pointstamp from data and adds it to the receiving worker’s capabilities.
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definition recv_cap :: 'w ñ 'p ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
recv_cap w p c c1 “ pw, pq P# data c^

c1 “ cLcaps “ pcaps cqpw :“ caps c w` t#p#uzq, data “ data c´ t#pw, pq#uM
definition perf_op :: 'w ñ 'p mset ñ p'w ˆ 'pq mset ñ 'p mset ñ

p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
perf_op w ∆neg ∆data ∆self c c1 “

p∆data ‰ t#u _∆self ´∆neg ‰ t#uzq ^ p@p. ∆neg # p ď caps c w #z pq ^
p@pw1, pq P# ∆data . Dp1 ă p. caps c w #z p1 ą 0q ^
p@p P# ∆self . Dp1 ď p. caps c w #z p1 ą 0q ^
c1 “ cLcaps “ pcaps cqpw :“ caps c w`∆self ´∆negq, data “ data c`∆data ,

temp “ ptemp cqpw :“ temp c w` psnd ‘# ∆data `∆self ´∆negqqM

definition send_upd :: 'w ñ 'p set ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
send_upd w P c c1 “ let γ “ t#p P#z temp c w. p P P#u in
γ ‰ t#uz ^ justified pcaps c wq ptemp c w´ γq ^
c1 “ cLmsg “ pmsg cqpw :“ λw1. msg c w w1 ¨ rγsq, temp “ ptemp cqpw :“ temp c w´ γqM

definition recv_upd :: 'w ñ 'w ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
recv_upd w w1 c c1 “ msg c w w1 ‰ rs ^

c1 “ cLmsg “ pmsg cqpw :“ pmsg c wqpw1 :“ tl pmsg c w w1qqq,

glob “ pglob cqpw1 :“ glob c w1 ` hd pmsg c w w1qqM
definition Next :: p'w, 'pq conf ñ p'w, 'pq conf ñ bool where

Next c c1 “ pc “ c1q _ pDw p. recv_cap w p c c1q _

pDw ∆neg ∆data ∆self . perf_op w ∆neg ∆data ∆self c c1q _

pDw P. send_upd w P c c1q _ pDw w1. recv_upd w w1 c c1q

Figure 4 Transition relation of the exchange protocol.

The perf_op transition resembles its homonymous counterpart from the clocks protocol.
Yet, the information flow is more fine grained. In particular, the transition is parameterized
by a worker w and three multisets of pointstamps. As in the clocks protocol, the multiset
∆neg represents negative changes to pointstamps. Only pointstamps for which w owns a
capability in caps may be dropped in this way. The other two multisets ∆data and ∆self
represent positive changes. The multiset ∆data represents positive changes to other workers’
capabilities – the receiving worker is stored in ∆data. These changes are not immediately
applied to the other worker’s caps, but are sent via the data field. The multiset ∆self
represents positive changes to w’s capabilities, which are applied immediately applied to
w’s caps. The separation between ∆data and ∆self is motivated by different requirements
on these positive changes to pointstamps that we prove to be sufficient for safety. To send
a positive capability to another worker, w is required to hold a positive capability for a
strictly smaller pointstamp. In contrast, w can create a new capability for itself, if it is
already holding a capability for the very same (or a smaller) pointstamp. In other words, w
can arbitrarily increase the multiset counts of its own capabilities. Note that, unlike in the
clocks protocol, there is no requirement of uprightness and, in fact, workers are not required
to perform negative changes at all. Of course, it is useful for workers to perform negative
changes every now and then so that the overall system can make progress.

The first condition in perf_op, namely ∆data ‰ t#u _∆self ´∆neg ‰ t#uz, ensures that
the transition changes the configuration. In the exchange protocol, we also include explicit
stutter steps in the Next relation (c “ c1) but avoid them in the individual transitions.
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locale graph “
fixes weights :: p'vtx :: finiteq ñ 'vtx ñ p'lbl :: torder , monoid_adduq antichain
assumes pl :: 'lblq ě 0 and pl1 :: 'lblq ď l3 ÝÑ l2 ď l4 ÝÑ l1 ` l2 ď l3 ` l4
and weights l l “ tu

locale dataflow “ graph summary
for summary :: p'l :: finiteq ñ 'l ñ p'sum :: torder , monoid_adduq antichain `
fixes h :: p't :: orderq ñ 'sum ñ 't
assumes th 0 “ t and pth sqh s1 “ thps` s1q and t ď t1 ÝÑ s ď s1 ÝÑ th s ď t1h s1

and path l l xs ÝÑ xs ‰ r s ÝÑ t ă t h p
ÿ

xsq

Figure 5 Locales for graphs and dataflows.

Sending (send_upd) and receiving (recv_upd) progress updates works precisely as in the
clocks protocol except for the condition on what remains in the sender’s temp highlighted
in gray in Figure 4. Because we allowed perf_op to perform non-upright changes, we can
no longer expect the contents of temp to be upright. Instead, we use the predicate justified,
which offers three possible justifications for positive entries in the signed multiset M (in
contrast to upright’s sole justification of being supported in M):

definition justified :: 'p zmset ñ 'p zmset ñ bool where
justified C M “ p@p. M#z p ą 0 ÝÑ supp M p_pDp1 ă p. C#z p1 ą 0q_M#z p ă C#z pq

Thus, a positive count for pointstamp p in M may be either
supported in M, i.e., in particular every upright change is justified, or
justified by a smaller pointstamp in C, which we think of as the sender’s capabilities, or
justified by p in C, with the requirement that p’s count in M is smaller than p’s count in
C.

The definitions of valid executions Spec and the safety predicate Safe are unchanged
compared to the clocks protocol. Also, we prove precisely the same safety property safe
following a similar proof structure.

We also derive the following additional property of glob, which shows that any in-flight
progress updates to a pointstamp p, positive or negative, have a corresponding positive count
for some pointstamp less or equal than p in the receiver’s glob.

lemma glob: Spec s ÝÑ alw pnow pλc. @w w1 p.
pDM P set pmsg c w w1q. p P#z Mq ÝÑ pDp1 ď p. glob c w1 #z p1 ą 0qqq s

5 Locally Propagating Progress

The previous sections focused on the progress-relevant communication between workers and
abstracted over the actual dataflow that is evaluated by each worker. Next, we refine this
abstraction: we model the actual dataflow graph as a weighted directed graph with vertices
representing operator input and output ports, termed locations. We do not distinguish
between source and target locations and thus also not between internal and dataflow edges.
Each weight denotes a minimum increment that is performed to a timestamp when it
conceptually travels along the corresponding edge from one location to another. On a single
worker, progress updates can be communicated locally, so that every operator learns which
timestamps it may still receive in the future. We formalize Timely Dataflow’s approach for
this local communication: the algorithm gradually propagates learned pointstamp changes
along dataflow edges to update downstream frontiers.
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Figure 5 details our modeling of graphs and dataflows, which uses locales [5] to capture
our abstract assumptions on dataflows and timestamps. A locale lets us fix parameters (types
and constants) and assume properties about them. In our setting, a weighted directed graph
is given by a finite (class finite) type 'vtx of vertices and a weights function that assigns each
pair of vertices a weight. To express weights, we fix a type of labels 'lbl, which we assume
to be partially ordered (class order) and to form a monoid (class monoid_add) with the
monoid operation ` and the neutral element 0. We assume that labels are non-negative
and that ` on labels is monotone with respect to the partial order ď. A weight is then an
antichain of labels, that is a set of incomparable (with respect to ď) labels, which we model
as follows:

typedef p't :: orderq antichain “ tA :: 't set. finite A^ p@a P A. @b P A. a ă b^ b ă aqu

We use standard set notation for antichains and omit type conversions from antichains to
(signed) multisets. The empty antichain tu is a valid weight, too, in which case we think of
the involved vertices as not being connected to each other. Thus, the graph locale’s final
assumption expresses the non-existence of self-edges in a graph.

Within the graph locale, we can define the predicate path :: 'vtx ñ 'vtx ñ 'lbl list ñ bool.
Intuitively, path v w xs expresses that the list of labels xs is a valid path from v to w (the
empty list being a valid path only if v “ w and any weight l P weights u v can extend a valid
path from v to w to a path from u to w). We omit path’s formal straightforward inductive
definition. Note that even though self-edges are disallowed, cycles in graphs are possible
(and desired). In other words, path v v xs can be true for a non-empty list xs.

The second locale, dataflow, has two purposes. First, it refines the generic graph ter-
minology from vertices and labels to locations ('l) and summaries ('sum), which is the
corresponding terminology used in Timely Dataflow. Second, it introduces the type for
timestamps 't, which is partially ordered (class order) and an operation h (read as “results
in”) that applies a summary to a timestamp to obtain a new timestamp. We chose the
asymmetric symbol for the operation to remind the reader that its two arguments have
different types, timestamps and summaries. The locale requires the operation h to be
well-behaved with respect to the available vocabulary on summaries (0, `, and ď). Moreover,
it requires that proper cycles xs have a path summary

ř

xs (defined by iterating `) that
strictly increments any timestamp t.

Now, consider a function P :: 'l ñ 't zmset that assigns each location a set of timestamps
that it currently holds. We are interested in computing a lower bound of timestamps (with
respect to the order ď) that may arrive at any location for a given P. Timely Dataflow calls
antichains that constitute such a lower bound frontiers. Formally, a frontier is the set of
minimal incomparable elements that have a positive count in a signed multiset of timestamps.

definition antichain_of :: 't set ñ 't set where antichain_of A “ tx P A. ␣Dy P A. y ă xu
lift_definition frontier :: 't zmset ñ 't antichain is λM. antichain_of tt. M #z t ą 0u

Our frontier of interest, called the implied frontier, at location l can be computed directly
for a given function P by adding, for every location l 1, every (minimal) possible path summary
between l 1 and l, denoted by the antichain path_summary l 1 l, to every timestamp present at
l 1 and computing the frontier of the result. Formally, we first lift h to signed multisets and
antichains. Then, we use the lifted operator

È

to define the implied frontier.
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definition change_multiplicity :: 'l ñ 't ñ int ñ p'l , 'tq conf ñ p'l , 'tq conf ñ bool where
change_multiplicity l t n c c1 “ n ‰ 0^ pDt1 P frontier pimplications c lq. t1 ď tq ^

c1 “ cLpts “ ppts cqpl :“ pts c l ` replicate n tq,
work “ pwork cqpl :“ work c l ` frontier ppts c1 lq ´ frontier ppts c lqqM

definition propagate :: 'l ñ 't ñ p'l , 'tq conf ñ p'l , 'tq conf ñ bool where
propagate l t c c1 “ t P#z work c l ^ p@l 1. @t1 P#z work c l 1. ␣t1 ă tq ^

c1 “ cLimp “ pimp cqpl :“ imp c l ` replicate pwork c l #z tq t,
work “ λl 1. if l “ l 1 then t#t1 P#z work c l . t1 ‰ t#u

else work c l 1 ` ppfrontier pimp c1 lq ´ frontier pimp c lqq
è

summary l l 1qM

definition Next :: p'l , 'tq conf ñ p'l , 'tq conf ñ bool where
Next c c1 “ pc “ c1q _ pDl t n. change_multiplicity l t n c c1q _ pDl t. propagate l t c c1q

Figure 6 Transition relation of the local progress propagation.

definition
è

:: 't zmset ñ 'sum antichain ñ 't zmset where
M

è

A “
ÿ

sPA
pλt. t h sq ‘#z M

definition implied_frontier :: p'l ñ 't zmsetq ñ 'l ñ 't antichain where
implied_frontier P l “ frontier p

ÿ

l1
pposz pP l1q

è

path_summary l1 lqq

Above and elsewhere, given a signed multiset M, we write f ‘#z M for the image (as a signed
multiset) of f over M and posz M for the signed multiset of M’s positive entries.

Computing the implied frontier for each location in this way (quadratic in the number of
locations) would be too inefficient, especially because we want to frequently supply operators
with up-to-date progress information. Instead, we follow the optimized approach implemented
in Timely Dataflow: after performing some work and making some progress, operators start
pushing relevant updates only to their immediate successors in the dataflow graph. The
information gradually propagates and eventually converges to the implied frontier. Despite
this local propagation not being a distributed protocol as such, we formalize it for a fixed
dataflow in a similar state-machine style as the earlier exchange protocol.

Local propagation uses a configuration consisting of three signed multiset components.

record p'l :: finite, 't :: tmonoid_add , orderuq conf “
pts :: 'l ñ 't zmset
imp :: 'l ñ 't zmset
work :: 'l ñ 't zmset

Following Timely Dataflow terminology, pointstamps pts are the present timestamps
grouped by location (the P function from above). The implications imp are the output of
the local propagation and contain an over-approximation of the implied frontier (as we will
show). Finally, the worklist work is an auxiliary data structure to store not-yet propagated
timestamps.

Initially, all implications are empty and worklists consist of the frontiers of the pointstamps.

definition Init :: p'l , 'tq conf ñ bool where
Init c “ p@l . imp c l “ t#uz ^ work c l “ frontier ppts c lqq

The propagation proceeds by executing one of two actions shown in Figure 6. The action
change_multiplicity constitutes the algorithm’s information input: The system may have
changed the multiplicity of some timestamp t at location l and can use this action to notify
the propagation algorithm of the change. The change value n is required to be non-zero and
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the affected timestamp t must be witnessed by some timestamp in the implications. Note
that the latter requirement prohibits executing this action in the initial state. The action
updates the pointstamps according to the declared change. It also updates the worklist,
but only if the update of the pointstamps affects the frontier of the pointstamps at l and
moreover the worklists are updated merely by the change to the frontier.

The second action, propagate, applies the information for the timestamp t stored in the
worklist at a given location l, to the location’s implications (thus potentially enabling the first
action). It also updates the worklists at the location’s immediate successors in the dataflow
graph. Again the worklist updates are filtered by whether they affect the frontier (of the
implications) and are adjusted by the summary between l and each successor. Importantly,
only minimal timestamps (with respect to timestamps in worklists at all locations) may be
propagated, which ensures that any timestamp will eventually disappear from all worklists.

The overall transition relation Next allows us to choose between these two actions and a
stutter step. Together with Init, it gives rise to the predicate describing valid executions in
the standard way: Spec s “ now Init s^ alw prelates Nextq s.

We show that valid executions satisfy a safety invariant. Ideally, we would like to show
that for any t with a positive count in pts at location l and for any path summary s between
l and some location l1, there is a timestamp in the (frontier of the) implications at l1 that is
less than or equal to th s. In other words, the location l1 is aware that it may still encounter
timestamp th s. Stated as above, the invariant does not hold, due to the not-yet-propagated
progress information stored in the worklists. If some timestamp, however, does not occur
in any worklist (formalized by the below work_vacant predicate), we obtain our desired
invariant Safe.

definition work_vacant :: p'l , 'tq conf ñ 't ñ bool where
work_vacant c t “ p@l l1 s t1. t1 P#z work c l ÝÑ s P path_summary l l1 ÝÑ t1 h s ę tq

definition Safe :: p'l , 'tq conf stream ñ bool where
Safe c “ p@l l1 t s. pts c l #z t ą 0^ s P path_summary l l1 ^ work_vacant c pt h sq ÝÑ
pDt1 P frontier pimp c l1q. t1 ď t h sqq

lemma safe: Spec s ÝÑ alw pnow Safeq s

In our running WCC example, Safe is for example necessary to determine once operator b
has received all incoming updates for a certain round of label propagation, which is encoded
as a timestamp (t1,t2). If a pointstamp at port b.3 was not correctly reflected in the frontier
at b.1 the operator may incorrectly determine that it has seen all incoming labels for a
certain graph node and proceed to the next round of propagation. Safe states, that this
cannot happen and all pointstamps are correctly reflected in relevant downstream frontiers.

The safety proof relies on two auxiliary invariants. First, implications have only positive
entries. Second, the sum of the implication and the worklist at a given location l is equal to the
sum of the frontier of the pointstamps at l and the sum of all frontiers of the implications of
all immediate predecessor locations l1 (adjusted by the corresponding summary summary l1 l).

While the above safety property is sufficient to prove safety of the combination of the
local propagation and the exchange protocol in the next section, we also establish that the
computed frontier of the implications converges to the implied frontier. Specifically, the two
frontiers coincide for timestamps which are not contained in any of the worklists.

lemma implied_frontier: Spec s ÝÑ alw pnow pλc. work_vacant c t ÝÑ
p@l. t P frontier pimp c lq ÐÑ t P implied_frontier ppts cq lqqq s
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6 Progress Tracking

We are now ready to combine the two parts presented so far: the between-worker exchange
of progress updates (Section 4) and the worker-local progress propagation (Section 5).
The combined protocol takes pointstamp changes and determines per-location frontiers
at each operator on each worker. It operates on configurations consisting of a single
exchange protocol configuration (referred to with the prefix E) and for each worker a local
propagation configuration (prefix P) and a Boolean flag indicating whether the worker has
been properly initialized.

record p'w :: finite, 'l :: finite, 't :: tmonoid_add , orderuq conf “
exch :: p'w, 'l ˆ 'tq E .conf
prop :: 'w ñ p'l , 'tq P .conf
init :: 'w ñ bool

As pointstamps in the exchange protocol, we use pairs of locations and timestamps. To order
pointstamps, we use the following could-result-in relation, inspired by Abadi and Isard [3].

definition ďcri where pl, tq ďcri pl1, t1q “ pDs P path_summary l l1. t h s ď t1q

As required by the exchange protocol, this definition yields a partial order. In particular,
antisymmetry follows from the assumption that proper cycles have a non-zero summary and
transitivity relies on the operation h being monotone. Intuitively, ďcri captures a notion of
reachability in the dataflow graph: as timestamp t traverses the graph starting at location l, it
could arrive at location l1, being incremented to timestamp t1. (In Timely Dataflow, an edge’s
summary represents the minimal increment to a timestamp when it traverses that edge.)

In an initial combined configuration, all workers are not initialized and all involved
configurations are initial. Moreover, the local propagation’s pointstamps coincide with
exchange protocol’s glob, which is kept invariant in the combined protocol.

definition Init :: p'w, 'l , 'tq conf ñ bool where
Init c “ p@w. init c w “ Falseq ^ E.Init pexch cq ^ p@w. P.Init pprop c wqq ^

p@w l t. P.pts pprop c wq l #z t “ E.glob pexch cq w #z pl, tqq

Figure 7 shows the combined protocol’s transition relation Next. Most actions have
identical names as the exchange protocol’s actions and they mostly perform the corresponding
actions on the exchange part of the configuration. In addition, the recv_upd action also
performs several change_multiplicity local propagation actions: the receiver updates the
state of its local propagation configuration for all received timestamp updates. The action
propagate does not have a counterpart in the exchange protocol. It iterates, using the
while_option combinator from Isabelle’s library, propagation on a single worker until all
worklists are empty. The term while_option b c s repeatedly applies c starting from the initial
state s, until the predicate b is satisfied. Overall, it evaluates to Some s1 satisfying ␣b s1 and
s1 “ c p¨ ¨ ¨ pc sqq with the least possible number of repetitions of c and to None if no such
state exists. Thus, it is only possible to take the propagate action, if the repeated propagation
terminates for the considered configuration. We believe that repeated propagation terminates
for any configuration, but we do not prove this non-obvious1 fact formally. Timely Dataflow

1 Because propagation must operate on a globally minimal timestamp and because loops in the dataflow
graph have a non-zero summary, repeated propagation will eventually forever remove any timestamp
from any worklist. However, it is not as obvious why it eventually will stop introducing larger and
larger timestamps in worklists. The termination argument must rely on the fact that only timestamps
that modify the frontier of the implications are ever added to worklists.
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definition recv_cap :: 'w ñ 'l ˆ 't ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
recv_cap w p c c1 “ E.recv_cap w p pexch cq pexch c1q ^ prop c1 “ prop c^ init c1 “ init c

definition perf_op :: 'w ñ p'l ˆ 'tq mset ñ p'w ˆ p'l ˆ 'tqq mset ñ p'l ˆ 'tq mset ñ
p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where

perf_op w ∆neg ∆data ∆self c c1 “ E.perf_op w ∆neg ∆data ∆self pexch cq pexch c1q ^

prop c1 “ prop c^ init c1 “ init c

definition send_upd :: 'w ñ p'l ˆ 'tq set ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
send_upd w P c c1 “ E.send_upd pexch cq pexch c1q w P^ prop c1 “ prop c^ init c1 “ init c

definition cm_all :: p'l , 'tq P .conf ñ p'l ˆ 'tq zmset ñ p'l , 'tq P .conf where
cm_all c ∆ “ Set.fold pλpl, tq c. SOME c1. P.change_multiplicity c c1 l t p∆ #z pl, tqqq c
tpl, tq. pl, tq P#z ∆u

definition recv_upd :: 'w ñ 'w ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
recv_upd w w1 c c1 “ init c w1 ^ E.recv_upd w t pexch cq pexch c1q ^

prop c1 “ pprop cqpw1 :“ cm_all pprop c w1q phd pE.msg pexch cqqqq ^ init c1 “ init c

definition propagate :: 'w ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
propagate w c c1 “ exch c1 “ exch c^ init c1 “ pinit cqpw :“ Trueq ^
pSome ˝ prop c1q “ pSome ˝ prop cqpw :“ while_option
pλc. Dl. P.work c l ‰ t#uzq pλc. SOME c1. Dl t. P.propagate l t c c1q pprop c wqq

definition Next :: p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
Next c c1 “ pc “ c1q _ pDw p. recv_cap w p c c1q _

pDw ∆neg ∆data ∆self . perf_op w ∆neg ∆data ∆self c c1q _

pDw P. send_upd w P c c1q _ pDw w1. recv_upd w w1 c c1q _ pDw. propagate w c c1q

Figure 7 Transition relation of the combined progress tracker.

also iterates propagation until all worklists of a worker become empty. This gives us additional
empirical evidence that the iteration terminates on practical dataflows. Moreover, even
if the iteration were to not terminate for some worker on some dataflow (both in Timely
Dataflow and in our model), our combined protocol can faithfully capture this behavior by
not executing the propagate action, but also not any other action involving the looping worker,
thus retaining safety for the rest of the workers. Finally, any worker that has completed at
least one propagation action is considered to be initialized (by setting its init flag to True).

The Init predicate and the Next relation give rise to the familiar specification of valid
executions Spec s “ now Init s ^ alw prelates Nextq s. Safety of the combined protocol can
be described informally as follows: Every initialized worker w has some evidence for the
existence of a timestamp t at location l at any worker w1 in the frontier of its (i.e., w’s)
implications at all locations l1 reachable from l. Formally, E.rec contains the timestamps that
exist in the system:

definition Safe :: p'w, 'l , 'tq conf stream ñ bool where
Safe c “ p@w l l1 t s. init c w^ E.rec pexch cq#z pl, tq ą 0^ s P path_summary l l1 ÝÑ

pDt1 P frontier pP.imp pprop c wq l1q. t1 ď t h sq

Our main formalized result is the statement that the above predicate is an invariant.

lemma safe: Spec s ÝÑ alw pnow Safeq s

In the combined progress tracking protocol, safety guarantees that if a pointstamp is
present at an operator’s port, it is correctly reflected at every downstream port. In the
WCC example, when deployed on two workers, each operator is instantiated twice, once on
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each worker. If a pointstamp (b.3, (3,0)) is present on port b.3 of one of the instances of
operator b, the frontier at c.1 on all workers must contain a t such that t ⪯ p3, 0q. Due to the
summary between c.1 and c.2, frontiers at c.2 and b.1 must contain a t such that t ⪯ p3, 1q.
As an example, this ensures that operator b waits for each of its instances to complete the
first round propagation of all labels before it chooses the lowest label for the next round.

7 Discussion

We have presented an Isabelle/HOL formalization of Timely Dataflow’s progress tracking
protocol, including the verification of its safety. Compared to an earlier formalization by
Abadi et al. [4], our protocol is both more general, which allows it to capture behaviors
present in the implementations of Timely Dataflow and absent in Abadi et al.’s model, and
more detailed in that it explicitly models the local propagation of progress information.

Our formalization spans about 7 000 lines of Isabelle definitions and proofs. These are
roughly distributed as follows over the components we presented: basic properties of graphs
and signed multisets (1 000), exchange protocol (3 100), local propagation (1 700), combined
protocol (1 200). This is comparable in size to the TLA+ Proof System formalization by
Abadi et al., even though we formalized a significantly more detailed, complex, and realistic
variant of the progress tracking protocol. Ground to this claim is the fact that we had
actually started our formalization by porting significant parts of the TLA+ Proof System
formalization to Isabelle. We completed the proofs of their two main safety statement within
one person-week in about 1 000 lines of Isabelle (not included above). Our use of Isabelle’s
library for linear temporal logic on streams (in particular, the coinductive predicate alw)
allowed us to copy directly a vast majority of the TLA+ definitions. Additionally, Isabelle’s
mature proof automation allowed us to apply a fairly mechanical porting process to many of
the proofs. Most ported lemmas could be proved either directly by Sledgehammer [29] or by
sketching an Isar [32] proof skeleton of the main proof steps and discharging most of the
resulting subgoals with Sledgehammer.

In the subsequent development of the combined protocol, Isabelle’s locales [5] were an
important asset. By confining the exchange protocol and the local propagation each to their
own local assumptions, we were able to develop them in parallel and in their full generality.
Thus, we obtain formal models not only of the combined protocol itself but also of these
two subsystems in a generality that goes beyond what is needed for the concrete combined
instance. For example, although the combined protocol uses the could-result-in order, the
exchange protocol works for any partial order on pointstamps. Moreover, the combined
protocol always propagates until all worklists are empty, even though the local propagation’s
safety supports small-step propagation, resulting in a more fine-grained safety property via
work_vacant.

In our formalization, we make extensive use of signed multisets [8]. The alternative
(used in the TLA+ Proof System formalization), would be to use integer-valued functions
instead. The signed multiset type additionally captures a finite domain assumption, which it
was convenient not to carry around explicitly and in particular simplified reasoning about
summations. The expected downside of having separate types for function-like (mset) and
set-like (antichain) objects was the need to insert explicit type conversions and to transfer
properties across these conversions. Both complications were to some extent alleviated by
Lifting and Transfer [19].

Progress tracking is only a small, albeit arguably the most intricate part of Timely
Dataflow. Verifying its safety is an important first step towards our long-term goal of
developing a verified, executable variant of Timely Dataflow and using it as a framework
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for the verification of efficient and scalable stream processing algorithms. More modest
next steps are to prove the local propagation algorithm’s termination and to make our
formalization executable. We have made first steps towards the latter goal, by creating a
functional, executable variant of the local propagation’s transition relation [12]. This allowed
us to compare our formalized propagation algorithm to the one implemented in Rust. We
found that their input–output behavior coincides on all example dataflows accompanying
the Rust implementation, confirming our model’s faithfulness. We are working on including
the exchange protocol in this comparative testing, which poses a challenge because of the
protocol’s distributed nature.
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Abstract
Mizar Mathematical Library is most appreciated for the wealth of mathematical knowledge it contains.
However, accessing this publicly available huge corpus of formalized data is not straightforward
due to the complexity of the underlying Mizar language, which has been designed to resemble
informal mathematical papers. For this reason, most systems exploring the library are based on an
internal XML representation format used by semantic modules of Mizar. This representation is easily
accessible, but it lacks certain syntactic information available only in the original human-readable
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1 Introduction

Since the beginning of the Mizar project [5], the verifier has been the main computer program
of the whole system. Its function is to check user-provided input files (called “Mizar articles”)
in terms of syntactic correctness and logical validity of mathematical content encoded in
the Mizar language. The application has been designed analogously to building compilers,
so it has a lexical and syntactic analysis modules as well as a module for performing the
semantic analysis of the source text. But of course the Mizar verifier does not generate any
executable code. Instead, the last module confirms that a given article does not contain
errors, or otherwise reports a list of errors found in the text. Hence, the absence of errors in
the result of text analysis means the correctness of the text in terms of syntactic, semantic
and logical content. In the initial Mizar implementations, this was the sole result of running
the verifier, i.e. the tool provided only the information about encountered errors in the form
of a text listing file.

The development of the Mizar language conducted under constant leadership of Andrzej
Trybulec was reinforced by the experience related to the creation of new Mizar texts as well
as experiments with various limited versions of Mizar (e.g. Mizar MSE, Mizar HPF) [12]. At
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the same time, the source code of Mizar verifiers evolved as a result of implementations on
subsequent computers. Notably, Mizar 2 (the predecessor of current Mizar) was implemented
on one of Polish third-generation computers, Odra 1305, using the Pascal compiler available
for ICL 1900 machines. This version of the compiler was a port of Pascal P2 from the CDC
6000 machine to ICL 1900. At that time, the Mizar language was designed in such a way, so
that the parsing, semantic analysis, and logical correctness procedures could be implemented
as a one-pass program on the mainframe computer. The coding made use of the “top-down”
approach with main algorithms based on recursive procedures. Then, Mizar 2 code was
transferred from Odra 1305 to IBM 360 using Pascal P8000 with small code changes and later
formed the base of implementing Mizar on the PDP-11 minicomputer. Due to the memory
limitations of that machine, a one-pass implementation was not possible and therefore the
verifier was divided into a series of passes implementing the subsequent stages of Mizar text
processing and analysis. This change has become a permanent feature of the system since
then. Initially there were seven passes which covered tokenization, syntax analysis, identifier
analysis, semantic analysis of Mizar’s linguistic structures, checking proof structure, inference
correctness and schematization. The division into the passes was due to both content-related
and technical reasons. The information about subsequent results of the analysis between the
passes was transmitted via text files. The syntax of these files was strictly technical, it was
only about providing information necessary for further analysis. The communication files
were treated as temporary working files, generated only for the duration of the verifier’s work.
The final result of the text analysis was realized a bit differently than in Mizar 2. Namely,
one error file was created, to which specific errors detected by individual passes were added.
When the Mizar verifier was ported from PDP-11 to the IBM PC machines using the Turbo
Pascal compiler, the number of passes was limited to four. At that time, the Mizar script
still contained an axiomatic part describing the mathematical theory necessary to formulate
new definitions and prove theorems.

A next significant change in the Mizar implementation was related to the creation of
the Mizar Mathematical Library (MML) [4]. The Mizar script took the modern form of
current Mizar articles, containing the so-called environment part (MML references) and the
actual text. The verifier, or actually additional programs based on the code of the verifier,
have been used to create library files describing all the notions, definitions and theorems
introduced and proven in a given article. Current MML provides an interrelated library built
from axiomatic foundations (Tarski-Grothendieck set theory) in which all derived facts are
positively checked by the Mizar verifier and can be included in the MML only under this
condition. Further development of Mizar software and the MML are now closely inter-related.
Each new version of the Mizar software must be MML compliant. And on the other hand,
after any language changes, MML must be refactored to be compatible with the new Mizar
system.

At some stage of work on the implementation of the Mizar verifier (around 2004) and,
more broadly, the Mizar system, the structure of MML database files and intermediate
files transmitting information between the verifier’s modules was changed. Instead of
specific internal formats available only from within the Pascal (Delphi and Free Pascal)
implementation of the system, a new XML-based form was introduced [17]. Initially it was
only a technical change, but soon the more easily accessible information about Mizar articles
started to be used by several external applications (c.f. [8, 18, 7]). Most of these applications
have utilized the XML file carrying the information passed to the Mizar inference checker
and schematizer modules. However, the disadvantage of these files is that they contain
already pre-processed semantic information needed for the checker, which only partially



C. Byliński, A. Korniłowicz, and A. Naumowicz 11:3

allows reconstructing the original content of the article needed for some applications. As
such they are not always suitable for use independently of the Mizar system, e.g. for the
needs of formal systems other than Mizar. In recent years, several attempts have been made
to use the MML for other proof systems (c.f. [9, 20, 10]). So there emerged a need to provide
readily-available information about the content of the MML without the necessity of analyzing
Mizar articles. The idea was to develop a format describing Mizar articles in which the
formalizations contained in the MML could become accessible by any semantic mathematics
databases or other formal systems. Consequently, the current versions of the Mizar verifier,
in addition to the basic user feedback, i.e. the confirmation that a processed article is correct,
also generate the description of the article in a syntactic form with the associated semantics
as XML files. In 2012, the creation of files describing the syntactic form of Mizar articles was
re-organized. The corresponding files are generated by the two initial modules of the Mizar
verifier: the parser which creates a description of the syntactic tree of the analyzed article in
a file technically named WSM (Weakly Strict Mizar) [7, 14], and an identification module
which creates an MSM file (More Strict Mizar). MSM files are descriptions of the syntax
of the Mizar article with additional information about the identifiers used: sentence and
variable identifiers. However, they do not contain information about the exact constructors
used and being defined. Moreover, they do not provide unambiguous information that the
Mizar system uses to process the whole MML.

Recently (2020), a new variant of the Mizar verifier’s Analyzer module has been im-
plemented. This module is responsible for the semantic analysis of the Mizar language
structure. Now it is possible to generate semantic information, while preserving the syntactic
information used in the original Mizar source text. In previous versions of the Analyzer
module, all expressions were at that point transformed into the form of so called “semantic
correlates” used by the Checker module. This resulted in the loss of information about
their syntactic form and rendered the exact reconstruction of the original syntax impossible,
because the transformation is irreversible [15]. The most recent implementation of the Ana-
lyzer preserves enough information to create an article description in the form of a syntactic
tree extended with associated semantic data. The new data format was named ESM (Even
more Strict Mizar). The corresponding file generated by the Mizar verifier contains an
exact description of the syntactic structure of the article in connection with the resolved
semantic information. The disambiguation concerns all entered symbols and the semantics of
definitions, expressions and theorems introduced and used in the article. Moreover, unlike the
previously available data formats storing only the information necessary for proof checking by
the Mizar verifier, the ESM representation is enriched with absolute references to database
items (within a particular MML version), which can be understood regardless of the local
environment of a given article. This information is eventually suitable for direct use by any
formal systems independently of the Mizar software.

2 Even more Strict Mizar (ESM)

In this section we present the extension of previously available WSM and MSM data repres-
entation formats (generated by the Mizar verifier as intermediate files with corresponding
.wsx and .msx filename extensions). Although the ESM new data format gives access to
information currently stored in the XML (.xml) files generated by the Mizar analyzer module,
it does not replace the old representation completely, since the latter is still used as the main
input for the checker pass. The advantage of ESM, however, is that this representation of
Mizar texts can be used independently from the dedicated Mizar proof checking software.

ITP 2021



11:4 Syntactic-Semantic Form of Mizar Articles

Table 1 Constructors (C) and patterns (P): + means introduction of a new constructor/pattern.

Predicate Attribute Mode Functor
C P C P C P C P

definition + + + + + + + +
redefinition of definiens + + + +

redefinition of result type n/a n/a n/a n/a + + + +
redefinition with properties + + n/a n/a n/a n/a + +

synonym + + + +
antonym + + n/a n/a n/a n/a

2.1 Mizar definitions
The Mizar language allows users to define mathematical notions of several basic categories:
predicates, adjectives, types, operations and structures. Using the Mizar terminology, various
aspects of all these definitions are internally represented either as formats, constructors,
or patterns. Formats represent syntactic information about the kind of symbol used in
the definition together with the number and position of arguments. Constructors, on the
other hand, provide a numbering system for representing the semantics of mathematical
objects. The unique numbering scheme is provided independently within each category of
defined notions. And finally patterns represent joint information about the used format,
constructor, types of all arguments, and positions of visible arguments for a given definition.
The distinction between constructors and patterns is necessary to accommodate various
linguistic features like synonyms or redefinitions available in the Mizar language which offer
different contextual ways of representing semantically equal objects. In principle, there are
more patterns than constructors since not all definitions introduce new constructors, see
Table 1. In the current Mizar implementation, the information about all available and newly
defined notions is scattered across multiple intermediate XML-based resource files. The next
section presents basic technical details concerning these files (identified by their respective
filename extensions by Mizar utilities) necessary for developing software which makes use of
all definition-related information.

2.2 Intermediate file types
First of all, new symbols introduced to denote concepts defined in a Mizar article are collected
in the .dcx file, which also includes information about all Mizar reserved words used in
the processed article. Each symbol is represented by its category (kind), number (nr),
and spelling (name). It should be noted that symbols of different categories are numbered
separately.

After the article is parsed, the formats are collected in .frx files. Each format is
represented by kind, format number (nr), symbol number (symbolnr, computable from .dcx),
number of visible arguments (argnr), including the number of left arguments (leftargnr).
The number of right arguments can obviously be computed as the difference between the
values of argnr and leftargnr. Notably, the numbering is continuous here, i.e. it is common
to all kinds of definitions introducing the formats. Moreover, it should be noted that not all
definitions introduce new formats – if the notation signatures are repeated, only one copy
of the format is collected. Specific binding force of operations (if different from the default
value) is also included in the format files, but it is not used to distinguish between formats.

The internal constructor descriptions are scattered across two files. Firstly, constructors
imported from the database are collected in .aco files which consist of two sections. The first
section, marked with the <SignatureWithCounts> element, contains incremental sums of
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constructors added by successive files imported from the database. By performing appropriate
calculations on these sums, it is possible to reconstruct the name of the article and the number
of the definition introducing a given constructor in later procedures. That section is followed
by a list with descriptions of all imported constructors. Such a description contains a number
of attributes representing the constructor’s category (kind), the name of the article (aid)
in which the constructor was introduced, the number (nr) in this article, and the relative
number (relnr) of a given constructor in relation to all constructors available in a given
article, the types of arguments, result types, and the indication whether a given constructor
introduces any property. Constructors are numbered in their respective categories, i.e., mode
constructors separately from predicate constructors, and so on. Constructors of concepts
introduced in a given article are collected in .xml files. Their descriptions are consistent
with those of imported constructors.

The most extensive description of defined objects is represented by patterns. Patterns
imported from the database are stored in .eno files and their content is based on the following
attributes:

kind – category of the pattern
nr – number within one imported file
aid – imported article file name
formatnr – number of used format
constrkind – kind of used constructor
constrnr – number of used constructor
relnr – relative number w.r.t. a category

With the new ESM language representation, newly defined patterns are stored by the verifier
in .esx files (in previous releases of the Mizar system, they were stored in .xml files). Their
extended description is based on the following attributes:

spelling – spelling of the token (retrieved from the format)
position – position of the token
formatdes – description of used format (retrieved from the format)
formatnr – number of used format
patternnr – number of the pattern within a category w.r.t. the environment
absolutepatternMMLId – unique identifier of the pattern w.r.t. the whole MML, but
within a pattern category, e.g., “FUNCT_2:4” where FUNCT_2 is an MML article
identifier
origpatternnr – number of the original (being redefined) pattern within a category
w.r.t. the environment in redefinitions
absoluteorigpatternMMLId – unique identifier of the original (being redefined) pattern
w.r.t. the whole MML, but within groups, in redefinitions
constr – category (kind) and number of the constructor w.r.t. the environment, e.g.,
“V4” where V represents the category of adjectives
absoluteconstrMMLId – unique identifier of the constructor w.r.t. the whole MML, but
within a given category
origconstrnr – number of the original (being redefined) constructor w.r.t. the environ-
ment in redefinitions
absoluteorigconstrMMLId – unique identifier of the original (being redefined) con-
structor w.r.t. the whole MML, but within a given category, in redefinitions.

To summarize, Table 2 shows the location of definition-related data in Mizar resource files.
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Table 2 Location of definitional data in resource files.

Resource Imported Defined
symbol .dcx .dcx
format .frx .frx
constructor .aco .xml
pattern .eno .xml (also .esx)

Below we present a series of snippets of Mizar code and corresponding ESM representations
(underlined attributes with values in bold face extend the information inherited from WSM
and MSM formats). We start with a definition of the first projection (selecting first elements
of contained pairs). This operation defined for an arbitrary set in the MML article XTUPLE_0
is presented in Listing 1.

Listing 1 Definition of the first projection

definition
let X be set;
func proj1 X −> set means

:: XTUPLE_0:def 12
x in it iff ex y st [x,y] in X;
correctness;

end;

The underlying ESM representation of the definition is given in Listing 2. The Standard-
Type element within Loci-Declaration corresponds to the type of the argument, i.e. “set”
introduced in the MML article HIDDEN. Moreover, the Type-Specification element indicates
that in this general context the result type of the operation is also a set.

Listing 2 ESM representation of the first projection (definiens is elided)

<Block kind="Definitional−Block" position="192\10" endposition="202\3">
<Item kind="Loci−Declaration" position="193\5" endposition="193\14">
<Loci−Declaration>
<Qualified−Segments>
<Explicitly−Qualified−Segment position="193\7">
<Variables>
<Variable idnr="25" spelling="X" position="193\7" kind="Constant"
serialnr="54" varnr="1"/>

</Variables>
<Standard−Type nr="1" formatnr="3" patternnr="2" absolutepatternMMLId="HIDDEN:2"

spelling="set" sort="Mode" constrnr="2" absoluteconstrMMLId="HIDDEN:2"
originalnr="0" position="193\14">

<Arguments/>
</Standard−Type>

</Explicitly−Qualified−Segment>
</Qualified−Segments>

</Loci−Declaration>
</Item>
<Item kind="Functor−Definition" position="194\6" endposition="197\32">
<Functor−Definition MMLId="XTUPLE_0:12">
<Redefine occurs="false"/>
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<InfixFunctor−Pattern formatdes="O43[0(1)1]" formatnr="37" spelling="proj1"
position="194\12" patternnr="21" absolutepatternMMLId="XTUPLE_0:12" constr="K18"
absoluteconstrMMLId="XTUPLE_0:9" origconstrnr="0">
<Loci/>
<Loci>
<Locus idnr="25" varidkind="Identifier" spelling="X" position="193\7" origin="Constant"
kind="Constant" serialnr="54" varnr="1"/>

</Loci>
</InfixFunctor−Pattern>
<Type−Specification>
<Standard−Type nr="1" formatnr="3" patternnr="2" absolutepatternMMLId="HIDDEN:2"
spelling="set" sort="Mode" constrnr="2" absoluteconstrMMLId="HIDDEN:2" originalnr="0"
position="198\21">
<Arguments/>

</Standard−Type>
</Type−Specification>
<Definiens>...</Definiens>

</Block>

Then, if we consider a relation, then it is more natural to call this projection the domain
of the relation. Hence, as in the article RELAT_1, we can introduce a convenient synonym for
this operation (for the same constructor) under the assumption that the argument is of the
relation type:

Listing 3 Domain as a synonym for the first projection

notation :: RELAT_1
let R be Relation;
synonym dom R for proj1 R;

end;

Listing 4 ESM representation of the domain

<Block kind="Notation−Block" position="103\8" endposition="106\3">
<Item kind="Loci−Declaration" position="104\5" endposition="104\19">
<Loci−Declaration>
<Qualified−Segments>
<Explicitly−Qualified−Segment position="104\7">
<Variables>
<Variable idnr="29" spelling="R" position="104\7"

kind="Constant" serialnr="31" varnr="1"/>
</Variables>
<Standard−Type nr="5" formatnr="44" patternnr="6" position="104\19"
spelling="Relation" sort="Expandable−Type" absolutepatternMMLId="RELAT_1:1">
<Arguments/>

</Standard−Type>
</Explicitly−Qualified−Segment>

</Qualified−Segments>
</Loci−Declaration>
</Item>
<Item kind="Func−Synonym" position="105\13" endposition="105\27">
<Func−Synonym>
<InfixFunctor−Pattern formatdes="O12[0(1)1]" formatnr="45" spelling="dom"
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origpatternnr="16" absoluteorigpatternMMLId="XTUPLE_0:12" patternnr="27"
absolutepatternMMLId="RELAT_1:1" constr="K32"
absoluteconstrMMLId="XTUPLE_0:9" origconstrnr="0" position="105\13">
<Loci/>
<Loci>
<Locus idnr="29" varidkind="Identifier" spelling="R" position="104\7" origin="Constant"
kind="Constant" serialnr="31" varnr="1"/>

</Loci>
</InfixFunctor−Pattern>

Finally, when the relation happens to be defined on a given set X, we may use this
information as in the article RELSET_1 to redefine the domain with a more specific result
type, i.e. a subset of X (this creates a new constructor):

Listing 5 Redefinition of the domain

definition :: RELSET_1
let X be set;
let R be X−defined Relation;
redefine func dom R −> Subset of X;

end;

Listing 6 Excerpt from ESM representation of the redefinition

<Functor−Definition>
<Redefine occurs="true"/>
<InfixFunctor−Pattern formatdes="O2[0(1)1]" formatnr="45" spelling="dom" position="113\18"
origpatternnr="23" absoluteorigpatternMMLId="RELAT_1:1" patternnr="35"
absolutepatternMMLId="RELSET_1:1" constr="K48"
absoluteconstrMMLId="RELSET_1:1" origconstrnr="42"
absoluteorigconstrMMLId="XTUPLE_0:9">
<Loci/>
<Loci>
<Locus idnr="22" varidkind="Identifier" spelling="R" position="112\23" origin="Constant"
kind="Constant" serialnr="40" varnr="2"/>

</Loci>
</InfixFunctor−Pattern>
<Type−Specification>
<Standard−Type nr="5" formatnr="34" patternnr="4" position="113\30"
spelling="Subset" sort="Expandable−Type" absolutepatternMMLId="SUBSET_1:2">
<Arguments>
<Simple−Term idnr="11" spelling="X" position="113\35" origin="ReservedVar"
sort="Constant" serialnr="3" varnr="1"/>

</Arguments>
</Standard−Type>

</Type−Specification>

Thanks to the absolute references provided within the ESM format it is possible to easily
distinguish the two notions represented by different constructors (absoluteconstrMMLId =
"XTUPLE_0:9" and absoluteconstrMMLId = "RELSET_1:1”) and three different patterns
(absolutepatternMMLId = "XTUPLE_0:12", absolutepatternMMLId = "RELAT_1:1" and
absolutepatternMMLId = "RELSET_1:1") used when applying this operation in various
contexts.
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2.3 Decoding Mizar definitions
All the available internal formats may still be used for specific tasks related to processing
Mizar articles. However, in many cases the implementation may significantly benefit from
utilizing the ESM format. The potential transition requires understanding both the formerly
used data structures and the new ESM capabilities. For example, in order to demonstrate
how the use of ESM facilitates the unique identification of all components of formulas, let us
first analyze the formula A c= A \/ B using only its XML representation:

.xml file .aco file

<Pred kind="R" nr="3" pid="4">
<Var nr="1"/>
<Func kind="K" nr="6" pid="16">
<Var nr="1"/>
<Var nr="2"/>
</Func>
</Pred>

<SignatureWithCounts>
<ConstrCounts name="HIDDEN">
<ConstrCount kind="M" nr="2"/>
<ConstrCount kind="R" nr="2"/>
</ConstrCounts>
<ConstrCounts name="TARSKI">
<ConstrCount kind="M" nr="2"/>
<ConstrCount kind="R" nr="5"/>
<ConstrCount kind="K" nr="4"/>
</ConstrCounts>
<ConstrCounts name="XBOOLE_0">
<ConstrCount kind="M" nr="2"/>
<ConstrCount kind="V" nr="1"/>
<ConstrCount kind="R" nr="8"/>
<ConstrCount kind="K" nr="9"/>
</ConstrCounts>

To identify which inclusion and which union are used in the formula, the following steps
should be done:

1. From values kind="R" and constructor number nr="3" and content of .aco file we
can conclude that the inclusion is the first predicate in TARSKI article (numeral 3 is
bigger than 2 in the line <ConstrCount kind="R" nr="2"/> and lower than 5 in the line
<ConstrCount kind="R" nr="5"/>).

2. From values kind="R" and pattern number pid="4" and the line:
<Pattern kind="R" nr="1" aid="TARSKI" formatnr="7"

constrkind="R" constrnr="3" relnr="4">
of .eno file (pid="4" = relnr="4") we know the format number formatnr="7".

3. From values kind="R" and formatnr="7" and the line:
<Format kind="R" nr="7" symbolnr="4" argnr="2" leftargnr="1"/>
of .frx file (formatnr="7" = nr="7") we know the number of used symbol symbolnr="4",
and we know that the predicate has two arguments (argnr="2") and arguments are
placed as one on the left side of the symbol (leftargnr="1") and one on the right side
of the symbol.

4. From kind="R" and symbolnr="4" and the line:
<Symbol kind="R" nr="4" name="c="/> of .dcx file (symbolnr="4" = nr="4") we con-
clude that c= is used as a symbol of the relation (name="c=").

5. Similar reasoning can be done about the operation coded as kind="K" and nr="6" .

And when we look at the corresponding piece of the .esx file:
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Table 3 XML elements of basic concepts.

Terms Types Formulas
Aggregate-Term Clustered-Type Biconditional-Formula
Circumfix-Term ReservedDscr-Type Conditional-Formula

Forgetful-Functor-Term Standard-Type Conjunctive-Formula
Fraenkel-Term Struct-Type Disjunctive-Formula

Global-Choice-Term Existential-Quantifier-Formula
Infix-Term FlexaryConjunctive-Formula

Internal-Selector-Term FlexaryDisjunctive-Formula
Numeral-Term Multi-Attributive-Formula

Placeholder-Term Multi-Relation-Formula
Private-Functor-Term Negated-Formula

Qualification-Term Private-Predicate-Formula
Selector-Term Qualifying-Formula

Simple-Fraenkel-Term Relation-Formula
Simple-Term RightSideOf-Relation-Formula

it-Term Universal-Quantifier-Formula

Listing 7

<Relation−Formula nr="4" formatnr="7" patternnr="4" absolutepatternMMLId="TARSKI:1"
leftargscount="1" spelling="c=" sort="Relation−Formula" constrnr="3"
absoluteconstrMMLId="TARSKI:1" originalnr="0" position="11\4">

<Arguments>
<Simple−Term idnr="4" spelling="A" position="11\1" origin="ReservedVar"

sort="BoundVar" serialnr="1" varnr="1"/>
<Infix−Term nr="17" formatnr="37" patternnr="16" absolutepatternMMLId="XBOOLE_0:2"

leftargscount="1" spelling="\/" sort="Functor−Term" constrnr="6"
absoluteconstrMMLId="XBOOLE_0:2" originalnr="0" position="11\9">

<Arguments>
<Simple−Term idnr="4" spelling="A" position="11\6" origin="ReservedVar"

sort="BoundVar" serialnr="1" varnr="1"/>
<Simple−Term idnr="5" spelling="B" position="11\11" origin="ReservedVar"

sort="BoundVar" serialnr="2" varnr="2"/>
</Arguments>

</Infix−Term>
</Arguments>

</Relation−Formula>

we can see that all this information is accessible in one place and no extra computations are
required to identify used notions.

3 Main ESM grammar items

In this section we show a selection of ESM grammar items and examples of corresponding
Mizar code. Presented data types are specifically related to the extension with respect to
earlier WSM and MSM representations. Table 3 lists the names of all possible basic formula,
type and term kinds now shared by all strict Mizar formats.

All various Mizar term categories are presented in Table 4 with examples of their
applicability. Four possible basic Mizar type variants are represented as elements listed in
Table 5, while Table 6 presents available formula categories, respectively.
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Table 4 XML elements of terms with examples.

Term Description Example
Aggregate-Term tuple structure ZeroStr(#A,a#)
Circumfix-Term bracketed term [:A,B:]

Forgetful-Functor-Term sub-tuple structure the ZeroStr of Gr
Fraenkel-Term Fraenkel operator {n where n is Nat:

n is odd}
Global-Choice-Term global-choice operator the set

Infix-Term standard term A \/ B
Internal-Selector-Term structure selector (inside its definition) the carrier

Numeral-Term numeral 1
Placeholder-Term argument of private definitions $1

Private-Functor-Term private functor (deffunc) F(1)
Qualification-Term type-cast operator 1 qua Element of REAL

Selector-Term structure selector (with argument) the carrier of Gr
Simple-Fraenkel-Term Fraenkel operator the set of all n

where n is Nat
Simple-Term constant a

it-Term definiendum representation it

Table 5 XML elements of types with examples.

Types Description Example
Clustered-Type type with adjectives finite set

ReservedDscr-Type dependent type in reservations Element of V
Standard-Type standard type object

Struct-Type structural type 1-sorted

3.1 Structures
Comparing to the information previously stored in WSM, the description of defined structures
is significantly extended. Let us consider the following structure definition as an example.

reserve S1,S2 for 1-sorted;

definition
let S1;
let S2 be 1-sorted;
struct (ModuleStr over S1, RightModStr over S2) BiModStr over S1,S2
(#

carrier -> set,
addF, multF -> BinOp of the carrier,
ZeroF, OneF -> Element of the carrier,
lmult -> Function of [:the carrier of S1, the carrier:], the carrier,
rmult -> Function of [:the carrier, the carrier of S2:], the carrier

#);
end;

The same definition with annotations from corresponding pieces of .esx file may look
like this:

ITP 2021
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Table 6 XML elements of formulas with examples.

Formulas Description Example
Biconditional-Formula equivalence iff
Conditional-Formula implication implies
Conjunctive-Formula conjunction &
Disjunctive-Formula disjunction or

Existential-Quantifier-Formula existentially quantified formula ex x st P[x]
FlexaryConjunctive-Formula flexary conjunctive & ... &
FlexaryDisjunctive-Formula flexary disjunction or ... or
Multi-Attributive-Formula attributive formula {} is empty

Multi-Relation-Formula chain formula A c= B c= C
Negated-Formula negation not

Private-Predicate-Formula private predicate (defpred) P[set,Nat]
Qualifying-Formula explicit type qualification 1 is object
Relation-Formula standard formula 1 <= 2

RightSideOf-Relation-Formula tail of chain formula c= C
Universal-Quantifier-Formula universally quantified formula for x holds P[x]

definition
let S1;

:: <Loci-Declaration> / <Qualified-Segments> / <Implicitly-Qualified-Segment>
let S2 be 1-sorted;

:: <Loci-Declaration> / <Qualified-Segments> / <Explicitly-Qualified-Segment>
struct
(ModuleStr over S1, RightModStr over S2) :: <Structure-Definition> / <Ancestors>
BiModStr :: <Structure-Pattern>
over S1,S2 :: <Structure-Pattern> / <Loci>
(# :: <Field-Segments>
carrier :: <Field-Segment> / <Selectors>
->
set, :: <Field-Segment> / <Standard-Type>
addF, multF :: <Field-Segment> / <Selectors>
->
BinOp of the carrier, :: <Field-Segment> / <Standard-Type>
ZeroF, OneF -> Element of the carrier,
lmult -> Function of [:the carrier of S1, the carrier:], the carrier,
rmult -> Function of [:the carrier, the carrier of S2:], the carrier
#);

end;

Apart from the representation of visible syntactic elements, the XML data structure of
ESM now contains the following extra elements enclosed within the <Structure-Patterns-
Rendering> container.

1. <AggregateFunctor-Pattern> representing the patterns for tuple terms encoded as
<Aggregate-Term>. Aggregates represent concrete full structures. For example rings of
integers with addition and multiplication as ring operations.

2. <ForgetfulFunctor-Pattern> representing the patterns for substructure terms
<Forgetful-Functor-Term>. Forgetful terms can represent full structures or substruc-
tures which are ancestors (direct or indirect) of the structure, for example the 1-sorted
of B is an indirect and the ModuleStr of B is a direct ancestor of some B of type
BiModStr.
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3. <Strict-Pattern> defining a special adjective strict. For example a ring is not a strict
group, because it contains more selectors than those of a group. strict is generated
automatically when a definition of a structure occurs. Regular adjectives, like empty,
finite, etc. must be defined within regular definitional blocks.

4. <Selectors-List> / <SelectorFunctor-Pattern> representing the patterns of terms
of the category encoded as <Selector-Term> Selector terms represent one field of a given
structure, for example the carrier of B.

4 Applications

The proposed representation format is intended to facilitate various applications based on
Mizar formalizations. Its validity and completeness has been initially tested and demonstrated
with a collection of HTML files generated from Mizar source files allowing precise browsing
through the library and exploring semantic links between notions. Another natural applica-
tion of the extended ESM representation is in the system used by the journal Formalized
Mathematics (FM)2.

4.1 Linked Mizar Mathematical Library
As Mizar articles in the MML library had been continuously revised while Formalized
Mathematics published their state at the time of the publication, an electronic counterpart
of FM, called Journal of Formalized Mathematics (JFM), was developed in 1995 with the
intention of representing the updated MML. The project initially funded by the ONR
Grant N00014-95-1-1336 Automated hyper-linking in an electronic mathematical proof-check
journal 3 continued till 2004. A central part of the project was a collection of HTML files
generated from Mizar source files which offered users intuitive browsing through the library
and exploring the inter-linked notions. After introducing in 2004 the internal XML-based
format (.xml files) representing the result of the Mizar verifier’s analyser pass, J. Urban used
it to re-implement the HTML4 linking part of JFM using XSL and extending the original
format with useful extra functionality, e.g. rendering of complete proofs. Since then, the
technology was frequently used by various external systems based on the MML semantic
connections and linking (c.f. [3, 19, 16, 1, 11, 13]).

It should be noted that Urban’s HTML rendering of Mizar articles is enriched with
various elements invisible in the content of the original Mizar texts, and generated during the
verification, such as: definitional theorems (the internal representation of definitions in the
form of equivalence theorems) or expanded attribute clusters (sets of attributes appearing in
the text extended with automatically calculated consequences based on registrations available
in the environment). The representation thus realized is therefore richer than the content
of the article seen at the level of the Mizar text. However, generating HTML documents
on the basis of .xml files involves the necessity of multiple “recalculations” of numerical
representations of objects (formats, patterns or constructors). It also loses the original
structure of logical formulas as a result of translating these formulas into semantic correlates
needed by the checker or expanding local variables introduced with the set construct).

2 ISSN 1426-2630 (Print), eISSN 1898-9934 (Online), http://fm.mizar.org
3 https://apps.dtic.mil/dtic/tr/fulltext/u2/a322951.pdf
4 Available on-line at http://mizar.uwb.edu.pl/version/current/html/
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Table 7 Examples of link anchor names.

kind name
attribute #articlename_V1_P1
predicate #articlename_R1_P1
functor #articlename_K1_P1

expandable mode #articlename_ME1_P1
regular mode #articlename_M1_P1

selector #articlename_U1_P1
aggregate #articlename_G1_P1
structure #articlename_L1_P1

theorem #ARTICLENAME:1
definition #ARTICLENAME:def1
scheme #ARTICLENAME:sch1

local reference #Lab_S1_L1
local predicate #PrP_S1_V1
local functor #PrF_S1_V1

The potential utility of our new ESM syntactic-semantic format (.esx files) can also
be demonstrated by a similar collection of hyper-linked Mizar articles (see Supplementary
Material). In comparison to the representation generated and partially reconstructed from
the .xml files, it is now possible to render the semantic connections between linked notions
and at the same preserve the original syntactic structure of the underlying Mizar text.

The ready-available information was used to implement a system of links (anchor names)
for the definitions of:

all basic concepts, i.e. predicates, adjectives, types, operations and structures
local predicates and local functors,
local labels and references to external statements, definitions, and schemas.

The links from concepts to their definitions consist of: the ID of the article in which the
term was defined, concept type (V, R, M, K, O, L, G, U), constructor number of a given
concept and the pattern number of a given concept preceded by the letter P. Table 7 presents
the details of the link naming convention used.

As an example, let us look at the representation of the adjective odd defined as the
antonym of even in the article abian.miz. odd is represented as abian_V1_P2. We can see
the difference between the constructor number (1) and the pattern number (2). It results
from the fact that antonyms generate a new pattern, and do not generate a new constructor
(antonyms inherit the constructor numbers of the originals).

Links to local predicates consist of the PrP prefix, a serial number preceded by S and
the current predicate number available in the given reasoning block preceded by V. Links to
local functors have the same structure but with the PrF prefix. Finally, links to local labels
use the prefix Lab.

References to theorems, definitions, and schemes consist of the article identifier from
which the item is derived and the corresponding number preceded by def for a definition or
sch for a scheme.

Considering the redefinition of a relation’s domain described in Section 2.1, we may
see its rendering at http://alioth.uwb.edu.pl/~artur/mmlesx/relset_1.html#relset_
1_K1_P1 with a link to the synonymous notion being redefined at http://alioth.uwb.

http://alioth.uwb.edu.pl/~artur/mmlesx/relset_1.html#relset_1_K1_P1
http://alioth.uwb.edu.pl/~artur/mmlesx/relset_1.html#relset_1_K1_P1
http://alioth.uwb.edu.pl/~artur/mmlesx/relat_1.html#xtuple_0_K9_P1
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edu.pl/~artur/mmlesx/relat_1.html#xtuple_0_K9_P1. The internal XML-based HTML
representation at http://mizar.uwb.edu.pl/version/current/html/relset_1.html#K1
lacks this syntactic information and offers only a link to the original constructor (http:
//mizar.uwb.edu.pl/version/current/html/xtuple_0.html#K9).

The system of links can be further extended e.g. with references to the origin of constants,
quantified variables, scheme variables etc. Please note that although the aim of the project
was to reproduce the text of the Mizar articles as faithfully as possible, the differences in the
use of spaces, line breaks or brackets are currently disregarded. Accurate reproduction of
these aspects would require more purely textual information generated by the Mizar parser
to be recorded and stored in .wsx files.

4.2 Formalized Mathematics
Formalized Mathematics (FM) publishes papers based on regular Mizar formalizations
accepted for inclusion into the Mizar Mathematical Library following a round of human
peer-review. After acceptance, the underlying Mizar scripts are automatically translated
into a LATEX format [2] and the resulting generated natural language (English) texts become
available as traditional mathematical papers downloadable as PDF files. The current
implementation the of software responsible for the translation is based on a number of XSLT
style-sheets which convert .wsx files representing parse-trees of given Mizar articles into
a series of XML files containing human readable meta-text with increasing level of semantic
detail [6]. As the original Mizar scripts are plain text files encoded with standard ASCII,
traditional mathematical symbols like ∪, Σ, or

∫
cannot be directly used in Mizar texts.

To render them in the LATEX documents, authors of Mizar formalizations can propose their
preferred translation patterns to FM editors. These patterns allow changing formal and often
technical-looking Mizar statements into more natural representation resembling standard
mathematical notation using traditional symbols or a fixed placement and order of arguments.
Sometimes these patterns become more complex, e.g. in the case of matrices, where the
translation needs a special language construct rather than a simple symbolic replacement.

The current FM translation method based primarily on the .wsx files has the downside
that some different notions introduced in the Mizar script are indistinguishable without special
processing by more advanced modules of the Mizar verifier. For example, the multiplication
of complex numbers and the multiplication of elements of a ring, when they both are written
as infix operations utilizing the same symbol. Such shortcomings are overcome by the
richer information present in the new proposed ESM format. The corresponding new .esx
representations look like this:

Listing 8

<Functor−Definition MMLId="E1:1">
<InfixFunctor−Pattern formatdes="O43[1(2)1]" formatnr="80" spelling="∗"

position="24\9" patternnr="224" absolutepatternMMLId="E1:2" constr="K465"
absoluteconstrMMLId="E1:1" origconstrnr="0">

Listing 9

<Functor−Definition MMLId="E1:2">
<InfixFunctor−Pattern formatdes="O43[1(2)1]" formatnr="80" spelling="∗"

position="33\9" patternnr="225" absolutepatternMMLId="E1:3" constr="K466"
absoluteconstrMMLId="E1:2" origconstrnr="0">
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We can observe that both operations have the same formatnr="80", but they can now
be uniquely identified by values of the patternnr and constr attributes. Consequently, the
future FM representations of Mizar articles can be improved accordingly once the translation
is based on patterns rather than formats.

5 Conclusions

In this paper we announced the existence of an extended XML-based data format simplifying
the access to mathematical notions formalized in Mizar and available as part of the Mizar
Mathematical Library, called Even more Strict Mizar (ESM). It is designed to combine and
provide an easy access to both syntactic and semantic data of the underlying Mizar scripts.
The extra information should allow creating various applications of the Mizar library requiring
fullest possible information to be retrieved from the formalization files, especially using
external general-purpose XML processing libraries (e.g. dom4j5 or RapidXml6). Additionally,
the work on the new language helped to analyze and improve the structure of already existing
Mizar XML file formats (WSM and MSM).
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Abstract
This paper introduces Isabelle/HoTT, the first development of homotopy type theory in the Isabelle
proof assistant. Building on earlier work by Paulson, I use Isabelle’s existing logical framework
infrastructure to implement essential automation, such as type checking and term elaboration, that
is usually handled on the source code level of dependently typed systems. I also integrate the
propositions-as-types paradigm with the declarative Isar proof language, providing an alternative to
the tactic-based proofs of Coq and the proof terms of Agda. The infrastructure developed is then
used to formalize foundational results from the Homotopy Type Theory book.
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1 Introduction

Isabelle [15] is a simply typed proof assistant and logical framework. Of its multiple object
logics Isabelle/HOL [12] is arguably the best known, however many other logics have been
created since Isabelle’s inception and are still bundled along with its distribution. Among
these early logics is Isabelle/CTT (constructive type theory) [13], which is based on extensional
Martin-Löf type theory but which has not been further developed. In light of considerable
recent progress in the field of dependent type theory, it seems appropriate to revive support
for this in Isabelle. This paper aims to do this by introducing Isabelle/HoTT, the first
development of homotopy type theory in Isabelle.

Widely accepted folklore in the theorem proving community holds that a sufficiently
strong logical framework can in principle be used to encode and work in any foundational
theory of equal or lesser strength. However, a drawback to this approach is that one then
has to implement the foundation-specific infrastructure on one’s own, while working within
the additional constraints imposed by the framework. This becomes particularly clear when
the formalism of the framework logic is sufficiently different from that of the object logic, as
in our current case.

The Isabelle/HoTT project may thus be viewed in three distinct but related ways:
As the beginnings of an Isabelle formalization of homotopy type theory.
As a dependently typed Isabelle object logic which improves on Isabelle/CTT with
necessary supporting infrastructure for type checking, term elaboration, proof term
abstraction and tactics.
As a practical case study on the implementation issues discussed in the previous paragraph.
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This is a short paper on ongoing work. Isabelle/HoTT currently lacks automation for
function definitions, datatypes, and advanced features like higher inductive types (although
these may be manually defined or postulated). Despite this, it is already able to formalize
nontrivial results from the Homotopy Type Theory book [14]. In addition, although the
logic presented here is formulated in the axiomatic style of the HoTT book, one could use
the same approach to develop two-level type theory [1, 3] and cubical type theory [2, 8] in
Isabelle.

Isabelle/HoTT is implemented as a library of Standard ML and Isabelle theory files.
References to specific files are given as footnotes throughout this paper, and the source code
is available online at https://github.com/jaycech3n/Isabelle-HoTT/tree/ITP2021.

Related Work

One of the earliest object logics for Isabelle was Paulson’s Isabelle/CTT [13] for constructive
type theory with extensional equality. Indeed, the fundamental ideas of using resolution
to perform type checking and inference, and of discharging subgoals in order of increasing
flexibility, already appear here. Isabelle/HoTT improves on this work by implementing
universes, an intensional equality type, as well as better integration of type inference and
implicit elaboration into the proof process.

Another recent study in developing homotopy type theory in a logical framework appears
in work by Barras and Maestracci [5], where they present a partial embedding of de Morgan
cubical type theory [8] using rewrite rules in the λΠ-calculus modulo logic of Dedukti [4].
Our encoding of axiomatic HoTT in simple type theory is more straightforward, allowing
us to focus instead on issues arising from integrating the simply and dependently typed
paradigms of the meta and object logics.

The largest computer developments of homotopy type theory are well known and use the
Coq and Agda proof assistants [6, 7]. In these settings the theory is developed synthetically,
and in the case of Coq the source code was directly modified in order to implement new
features required by the theory. In our case the trusted prover code is untouched, and we
simply extend Isabelle/Pure with new features using its existing logical framework facilities.

2 Logical Foundations

Judgments. We begin1, as usual, by declaring a meta type o of terms of the object logic,
and a constructor has_type :: o → o → prop (written as usual with an infix colon) to encode
the typing assertion. Since we implement Russell-style universes, types are themselves terms
and must have the same meta type, and in this way we will effectively have a set of untyped
terms in higher order abstract syntax. Working with Tarski-style universes would allow us to
maintain the syntactic type/term distinction with separate meta types, at the cost of having
to introduce interpretation operators everywhere.

Judgmental equality of the type theory is shallowly embedded using the Isabelle/Pure
equality ≡. This forgets type information, but allows us to more easily reuse the simplifier
to compute terms.

Universes. We postulate a set of levels isomorphic to the standard natural numbers with
their usual order, by declaring a meta type lvl and constants O, S and <. Universes are
formed by a constructor U :: lvl → o, and we axiomatize rules governing the ordering of levels,
as well as the hierarchy and cumulativity of universes.

1 mltt/core/MLTT.thy

https://github.com/jaycech3n/Isabelle-HoTT/tree/ITP2021
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Types and Terms. The constants for formers, constructors and eliminators for the Π,
Σ and identity types are postulated using Church-style typing. Type families as well as
function arguments to dependent eliminators are encoded using meta instead of object
lambda terms. For example, in theoretical presentations the Σ-eliminator might be given
by a term SigInd(A, B, C, f) whose third and fourth arguments are, respectively, a type
family C : (Σ A B) → U and a function f : Π(x : A)(y : B(x)). C(x, y) defining the value of
C on all pairs (a, b) : Σ A B. In the encoding, these are instead given as the simply typed
meta functions C :: o → o and f :: o → o → o. However, after the Π-type has been encoded,
Isabelle’s implicit coercion mechanism (Section 12.3 of [17]) is used to coerce object functions
into meta functions, which allows users to ignore this distinction most of the time.

Inference Rules. Following Jacobs and Melham [11], we define an encoding ε from the
judgments of dependent type theory into Isabelle/Pure by sending x1 : A1, . . . , xn : An ⊢ I
to the universally-quantified implication∧

x1, . . . , xn. x1 : A1 =⇒ · · · =⇒ xn : An =⇒ ε(I),

where ε(t : T ) := t : T and ε(a ≡ b : T ) := a ≡ b are the encodings of typing and equality
discussed above. This encoding is recursively extended to inference rules by defining

ε

(
J1 · · · Jk

J

)
:=

(
ε(J1) =⇒ · · · =⇒ ε(Jk) =⇒ ε(J )

)
.

Note that entailment and derivability are both translated to Pure implication. The usual
rules for formation, introduction, elimination, computation and congruence of Π, Σ and
equality types (see e.g. [14]) can then be axiomatized.

More generally, a statement∧
x⃗. P1(x⃗) =⇒ · · · =⇒ Pk(x⃗) =⇒ Q(x⃗) (1)

in Isabelle/HoTT may be viewed as an extended form of type-theoretic judgment

Γ ⊢ t : T or Γ ⊢ t ≡ s : T (where T is implicit),

where contexts Γ =
(
P1(x⃗), . . . , Pk(x⃗)

)
are also allowed to contain equality judgments, and

where the metavariables x⃗ = {x1, . . . , xm} may appear throughout. In particular, the xi need
not be explicitly typed by the context Γ. Such occurrences typically appear as unification
variables in type checking and elaboration problems.

3 Proof Infrastructure

Implicits and Elaboration. Implicit arguments and term elaboration are crucial to working
in a dependently typed system. We declare constants ? and {} representing, respectively,
holes and implicit arguments, together with a theorem attribute implicit and an Isabelle
syntax phase operation make_holes.2 We can then use the usual definitional facilities
together with the implicit attribute in the usual manner, e.g.

definition Id_i ( infix "=" 110) where [ implicit ]: "x = y ≡ x ={} y"

2 mltt/core/implicits.ML

ITP 2021
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where x =A y is the fully explicit notation for the equality type. The implicits {} in such
definitions will be parsed by make_holes into holes ?, which are then further converted into
schematic variables (i.e. Isabelle/Pure metavariables) in goal statements.

The implementation of implicit arguments as schematic variables means that a general
goal statement in Isabelle/HoTT is schematic. Such goals are not very well supported by
the existing Isar commands, so we define new goal keywords Lemma, Theorem, etc. (replacing
lemma, theorem etc.)3 as well as a command assuming (replacing assume).4 These call
the type checker on assumptions to infer their implicit arguments and thus instantiate all
metavariables before passing them to the regular context assumption mechanism.5

Proof Terms. Consider the task of automatically abstracting proof terms into definitions.
A theorem stated in a dependently typed system is given by a single type à la Curry-Howard.
In contrast, in the LCF-style setting of Isabelle the assumptions of a theorem statement are
typically available as facts in an Isabelle/Isar proof context, which are lifted to premises
after the conclusion has been proved. In particular, these premises are not bound by the
type of the theorem’s conclusion. This distinction is exactly the isomorphism – given by the
Π-introduction rule – between open terms with variables typed by a nonempty (type-theoretic)
context, and closed terms of a Π-type (i.e. lambda terms).

Hence, in Isabelle, the proof term in a theorem’s conclusion must be abstracted over all
variables typed by the premises, in order to form a meta lambda term. This is then wrapped
up into a definition. This functionality is available as a modifier (def) to the goal statement
keywords discussed previously.

Induction/Elimination Rules. In dependent type theory, given a predicate C : A → U , the
elimination rule for A is used to prove C(a) for all a : A. Crucially, this requires that C

encodes all the assumptions needed to prove its conclusion. As previously noted, in Isabelle
these assumptions may instead appear out in the Isar context, and thus in order to be able
to apply elimination rules correctly we must ensure that such “free-floating” assumptions are
pushed into the type of the goal.

Concretely, this involves checking the conclusion Q of a goal (1) for variables that are typed
by premises or Isar context facts Pi, and then using Π-formation to push these assumptions
into the object logic predicate C. Furthermore, since the Isar context is unordered and there
may be typing dependencies among these assumptions, we first topologically sort them by ≲,
where ti : Ti ≲ tj : Tj if ti is a subterm of Tj . This process is automated by infrastructure
introducing the elim attribute and proof method.6

Propositional Equality and Calculational Reasoning. The identity type x =A y is presented
as an inductive family over its endpoints x, y. Its induction principle is subject to the same
general considerations for elimination rules discussed above, and the proof method eq for
reasoning with path induction is essentially a special case of the elim method.

Rewriting (aka transport) along propositional equalities is given by a method rewr.7 We
additionally adapt Isar’s calculational reasoning (Sections 1.2 and 2.2.4 of [17]) to so-called
calculational types, which are types T : A → A → U that have a notion of composition

3 mltt/core/goals.ML
4 mltt/core/elaborated_statement.ML
5 mltt/core/elaboration.ML
6 mltt/core/elimination.ML, mltt/core/tactics.ML
7 hott/Identity.thy
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⋄ : Π{x, y, z : A}. T (x, y) → T (y, z) → T (x, z) expressing transitivity of T . After declaring a
calculational type and its transitivity rule with the calc keyword8 and trans attribute we can
then use the familiar idiom “have...also have...finally show” to construct transitive
chains in proofs. By design, this technology is also general enough to support reasoning with
chains of homotopies f ∼ g.

4 Type Checking

The type checker9 is a key component integrated throughout the infrastructure described
above. It is used by goal commands to perform implicit elaboration, hooked in to proof
methods to automatically discharge ancillary typing conditions that arise throughout the
course of a proof, and installed as an Isabelle simp-solver10 to enable typed term reduction.
It is also available as a standalone method typechk.

At its core is a tactic that recursively resolves goals against the type inference (i.e.
formation, introduction and elimination) rules, suitable facts from the local Isar context, any
additional rules declared with the type attribute, and the conversion rule. It is restricted
to judgments t : T where t is rigid (i.e. where the head of t is a constant) and T may be
schematic. Combined with unification this yields a bidirectional type checking/inference
algorithm, which is syntax-directed on the collection of type inference rules since every rule in
this collection types a term with unique head. Nondeterminism is introduced when resolving
against context facts and rules from the user-modifiable type theorem collection, and here
backtracking allows the checker to try all possible options. If it fails to completely solve an
inference problem, the type checker will return the goals on which it failed to the user for
further refinement.

The conversion rule
∧

a A A′. a : A =⇒ A ≡ A′ =⇒ a : A′ introduces normalization
into the type checker; the simplifier is used to solve the second proof obligation. This is
currently somewhat rudimentary since definitional unfolding is not yet implemented, but
this is expected to be relatively straightforward to add.

As already noted by Paulson, the order in which subgoals are tackled in a type inference
problem matters greatly, as the large number of metavariables – especially with implicit
arguments – creates potentially many unification candidates and too large a search space if
not resolved against the correct rule. He mitigates this by using a filter-and-repeat technique
to attempt the subgoals with the fewest metavariables first; we achieve a similar effect by
carefully ordering the premises of inference rules according to the criteria for bidirectional
type systems set out by Dunfield and Krishnaswami [9].

5 Formalization

The object logic developed is used to formalize material from the first chapters of the
Homotopy Type Theory book in Isabelle2020 [15], including results on equality, homotopies
and equivalences, and more.11 Figure 1 shows an example proof that the two ways one can
define horizontal composition of equalities on a type A are equal12, which is an intermediate
result en route to the proof of the Eckmann-Hilton argument for Ω2(A) (Theorem 2.1.6

8 mltt/core/calc.ML
9 mltt/core/types.ML
10 An Isabelle simplifier component that solves subgoals arising from conditional simplification rules.
11 hott/*.thy
12 hott/Identity.thy.
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Figure 1 Example: Horizontal composition.

of [14], also formalized in this work). This example demonstrates all the functionality
described above in action: implicit elaboration of assumptions throughout all goal and proof
statements, automatic definitions for the terms horiz_pathcomp and horiz_pathcomp’
from their constructions via proofs, as well as path induction and calculational reasoning on
equalities in the proof of the final lemma.

6 Discussion and Future Work

Isabelle/HoTT and its accompanying formalization show that Isabelle’s simply typed logical
framework infrastructure is feasibly able to provide strong support for modern-day develop-
ments of dependent type theory. However, many improvements are still possible, and future
work aims to implement inductive and higher inductive types, as well as to explore how the
techniques presented in this paper may be used to implement cubical type theory [2, 8] and
two-level type theory [3, 16].

It would be productive to attempt to formalize the notion of a semisimplicial type [10] in
Isabelle/HoTT. Internalizing the full definition of such an object in homotopy type theory
is a well known open problem, with the current state-of-the-art requiring a two-level type
theory in order to have a strict equality and natural number type on the outer level [1]. In
principle, Isabelle’s logical framework can easily provide these. The main hurdles would
again be in implementing enough features on the object logic level, for example to support
mutually inductive datatypes. In this way, the goal of formalizing semisimplicial types could
provide further impetus to the development of homotopy type theory in Isabelle.
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Abstract
We provide an Agda library for inference systems, also supporting their recent generalization allowing
flexible coinduction, that is, interpretations which are neither inductive, nor purely coinductive. A
specific inference system can be obtained as an instance by writing a set of meta-rules, in an Agda
format which closely resembles the usual one. In this way, the user gets for free the related properties,
notably the inductive and coinductive intepretation and the corresponding proof principles. Moreover,
a significant modularity is achieved. Indeed, rather than being defined from scratch and with a
built-in interpretation, an inference system can also be obtained by composition operators, such as
union and restriction to a smaller universe, and its semantics can be modularly chosen as well. In
particular, flexible coinduction is obtained by composing in a certain way the interpretations of two
inference systems. We illustrate the use of the library by several examples. The most significant
one is a big-step semantics for the λ-calculus, where flexible coinduction allows to obtain a special
result (∞) for all and only the diverging computations, and the proof of equivalence with small-step
semantics is carried out by relying on the proof principles offered by the library.

2012 ACM Subject Classification Theory of computation → Semantics and reasoning

Keywords and phrases inference systems, induction, coinduction

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.13

Supplementary Material The complete code of the library with all the examples discussed in the
paper is available at
Software (Source Code): https://github.com/LcicC/inference-systems-agda

archived at swh:1:dir:955d11416c46a1ee1b0b913f0bc5f30bf3de9e97

Acknowledgements We warmly thank the anonymous ITP reviewers and Andreas Abel for the
suggestions which greatly improved the paper, in particular for pointing out the relation with indexed
containers.

1 Introduction

An inference system [5, 19, 21], that is, a set of (meta-)rules stating that a consequence can be
derived from a set of premises, is a simple, general and widely-used way to express and reason
about a recursive definition. In most cases such recursive definition is seen as inductive, that
is, the denoted set consists of the elements with a finite derivation. This enables inductive
reasoning, that is, to prove that the elements an inductively defined set satisfy a property, it
is enough to show that, for each (meta-)rule, the property holds for the consequence assuming
that it holds for the premises. In other cases, the recursive definition is seen as coinductive,
that is, the denoted set consists of the elements with a possibly infinite derivation. This
enables coinductive reasoning, that is, to prove that all the elements satisfying a property
belong to the coinductively defined set, it is enough to show that, when the property holds for
an element, it can be derived from premises for which the property holds as well. Recently, a
generalization of inference systems has been proposed [8, 13, 15] which handles cases where
neither the inductive, nor the purely coinductive intepretation provides the desired meaning.
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13:2 Flexible Coinduction in Agda

This approach is called flexible coinduction, and, correspondingly, coinductive reasoning is
generalized as well by a principle which is called bounded coinduction.

The Agda proof assistant [23] offers language constructs to inductively/coinductively
define predicates, and correspondingly built-in proof principles. However, in this way the
recursive definition is monolithic, and hard-wired with its chosen interpretation. Our aim,
instead, is to provide an Agda library allowing the user to express a recursive definition as an
instance of a parametric type of inference systems. In this way, the user is not committed from
the beginning to a given interpretation but, rather, gets for free a bunch of properties which
have been proved once and for all, including the inductive and coinductive intepretation and
the corresponding proof principles. Moreover, it is possible to define composition operators on
inference systems, for instance union and restriction. Finally, flexible coinduction is modularly
obtained as well, by composing in a certain way the interpretations of two inference systems.

Indexed containers [6] provide a way to specify possibly recursive definitions of predicates
independently from their interpretation and are supported in the Agda standard library.
An Agda implementation of inference systems can be provided by seeing them as indexed
containers. However, this approach requires to structure definitions in an unusual way.
Indeed, inference systems are usually presented through a (finite) set of meta-rules, denoting
all the rules which can be obtained by instantiating meta-variables with values satisfying the
side condition. Hence, we provide a different implementation following this schema, to allow
users to write their own inference system in an Agda format which closely resembles that
“on paper”. We then prove that the two implementations are equivalent, showing that every
indexed container can be encoded in terms of meta-rules and viceversa.

In Sect. 2 we recall basic notions on inference systems, and in Sect. 3 the generalization
supporting flexible coinduction. In Sect. 4 we describe how to implement (generalized)
inference systems in Agda. Notably, in Sect. 4.1 we present the approach mimicking meta-
rules, showing step-by-step the correspondence with the previous definitions. In Sect. 4.2,
instead, we explain the view of inference systems as indexed containers, and prove the
equivalence. Then, we illustrate the use of the library by several examples. In Sect. 5 we
consider three different predicates on possibily infinite lists (colists in Agda terminology)
defined by induction, coinduction, and flexible coinduction, respectively. In Sect. 6 we provide
a more significant and elaborated example: a big-step semantics for the λ-calculus where
flexible coinduction allows to obtain a special result (∞) for all and only the diverging
computations, and the proof of equivalence with small-step semantics is carried out by relying
on the proof principles offered by the library. Finally, we summarize the contribution and
outline further work in Sect. 7.

2 Inference systems

We recall basic definitions on inference systems [5, 19, 21, 15]. Throughout this section and
the following we assume a set U , named universe, whose elements j are called judgments. An
inference system I is a set of rules, which are pairs ⟨pr , j⟩, with pr ⊆ U the set of premises,
and j ∈ U the conclusion (a.k.a. consequence). A rule with an empty set of premises is an
axiom. A rule ⟨pr , j⟩ is often written as a fraction pr

j .

In practice, inference systems are described by a (finite) set of meta-rules, written in
some meta-language. For instance, taking as universe the set N∞ of finite and infinite lists
of natural numbers, and denoting Λ the empty list, and x:u the list with head x and tail u,
the following two sets of meta-rules describe inference systems for the predicates holding
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when an element belongs to the list, and all elements are positive, respectively.

(mem-h) member(x , x :xs) (mem-t)
member(x , xs)

member(x , y:xs)

(allP-Λ) allPos(Λ) (allP-t)
allPos(xs)

allPos(x :xs) x > 0

The aim of an inference system is to define, in a way which provides canonical techniques
to prove properties, a subset of the universe. There are several ways to choose this set,
depending on the interpretation given to the inference system.

To define an interpretation in a model-theoretic way, the basis is the inference operator
associated with I, which is the function FI : ℘(U) → ℘(U) defined by

FI(X) = {j ∈ U | pr ⊆ X, ⟨pr , j⟩ ∈ I, for some pr ∈ ℘(U)}.

A subset X of the universe is I-closed if, for all rules ⟨pr , j⟩ ∈ I, if pr ⊆ X then j ∈ X, it is
I-consistent if, for all j ∈ X, there is a rule ⟨pr , j⟩ ∈ I and pr ⊆ X.

The inductive interpretation IndJIK is the least fixed point of FI , which, by the Knaster-
Tarski theorem, coincides with the least pre-fixed point of FI and so with the least I-closed
set. As an immediate consequence, when we define a set inductively, that is, as IndJIK for
some I, we can prove that such definition is sound with respect to a given specification,
namely, a subset S ⊆ U , by the induction principle:

(ind) If a set S ⊆ U is I-closed, then IndJIK ⊆ S.

Proving that S is I-closed amounts to show that, for each (meta-)rule, if the premises satisfy
S then the consequence satisfies S as well.

The coinductive interpretation CoIndJIK is the greatest fixed point of FI , which, by the
Knaster-Tarski theorem, coincides with the largest post-fixed point of FI and so with the
largest I-consistent set. As an immediate consequence, when we define a set coinductively,
that is, as CoIndJIK for some I, we can prove that such definition is complete with respect
to a given specification S ⊆ U by the coinduction principle:

(coind) If a subset S ⊆ U is I-consistent, then S ⊆ CoIndJIK.

Proving that S is I-consistent amounts to show that, for each j satisfying S, there is a rule
with consequence j and premises satisfying S as well.

To prove completeness of the inductive interpretation, and soundness of the coinductive
interpretation, instead, there is no canonical technique, so some ad-hoc proof is needed.

Alternatively, the interpretation can also be specified proof-theoretically, that is, through
the notion of proof tree. For the aim of this paper a semi-formal definition is enough, we
refer to [13, 15] for a rigorous treatment. Set T the set of trees with nodes (labeled by)
judgments. Given τ ∈ T , r(τ) is the (label of the) root, dst(τ) the set of direct subtrees, and
chl(τ) the set of (the labels of) their roots. The inference operator can be naturally extended
to a function TI : ℘(T ) → ℘(T ) as follows:

TI(Y ) = {τ ∈ T | dst(τ) ⊆ Y, ⟨chl(τ ), r(τ)⟩ ∈ I}

Then, a proof tree (a.k.a. derivation) is a tree such that, for each subtree τ , ⟨chl(τ ), r(τ)⟩ ∈ I,
that is, there is a node (labelled by) j with set of children (labelled by) pr only if the rule
⟨pr , j⟩ belongs to I. A proof tree for j is a proof tree τ such that r(τ) = j.
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Then, IndJIK and CoIndJIK can be equivalently defined as the sets of judgments with
respectively a finite and a possibly infinite proof tree. Moreover, the sets of finite and
possibly infinite proof trees turn out to be the least fixed point and the greatest fixed point,
respectively, of the inference operator extended to trees. See [13, 14] for detailed proofs
carried out with a rigorous definition of trees.

Coming back to the two examples above, it is easy to see that, in order to obtain the
desired meaning, the inference system for member should be interpreted inductively, while
that for allPos coinductively. Indeed, the fact that an element belongs to the list can be
shown by a finite proof tree, even for an infinite list, whereas, for such a list, to show that all
elements are positive an infinite proof tree is needed.

3 Corules

We recall the notion of inference systems with corules, which mixes induction and coinduction
in a flexible way [8, 13, 15]. For X ⊆ U , we write I|X for the restriction of I to X, that is,
the inference system {⟨pr , j⟩ ∈ I | j ∈ X}.

▶ Definition 1. A generalized inference system, or inference system with corules, is a
pair ⟨I, Ico⟩ where I and Ico are inference systems. Elements in I and Ico are called
rules and corules, respectively. The interpretation of ⟨I, Ico⟩ is defined by FCoIndJI, IcoK =
CoIndJI|IndJI∪IcoKK.

Thus, the interpretation FCoIndJI, IcoK is basically coinductive, but restricted to a universe
of judgements which is inductively defined by the (potentially) larger system I ∪ Ico.

In [8, 13, 15] the following results are proved:
FCoIndJI, IcoK is the largest post-fixed point of FI included in IndJI ∪ IcoK
in proof-theoretic terms, FCoIndJI, IcoK is the set of judgments which have a possibly
infinite proof tree in I whose nodes all have a finite proof tree in I ∪ Ico, that is, the
(standard) inference system consisting of rules and corules.

As an immediate consequence, when we define a set by flexible coinduction, that is, as
FCoIndJI, IcoK for some ⟨I, Ico⟩, we can prove that such definition is complete with respect
to a given specification S ⊆ U by the bounded coinduction principle, which generalizes the
coinduction principle:

(b-coind) If a subset S ⊆ U is bounded, that is, S ⊆ IndJI ∪ IcoK, and I-consistent, then
S ⊆ FCoIndJI, IcoK.

Proving that S is bounded means proving completeness of the inference system extended
by corules, interpreted inductively, with respect to S. Hence, there is no canonical technique,
and for each concrete case we must find an ad-hoc proof. Proving that S is I-consistent,
as for the standard coinduction principle, amounts to show that, for each j satisfying S,
there is a rule with consequence j and premises satisfying S as well. As for the purely
coinductive interpretation, an ad-hoc proof is also needed for soundness. However, as shown
in the examples in Sect. 5 and Sect. 6, in many cases we can take advantage of the fact that
FCoIndJI, IcoK is a subset of IndJI ∪ IcoK, and reason by induction on the latter.

We illustrate the role of corules by a simple example: defining the maximal element of a
list. A (meta-)corule is written as a fraction with a thicker line.

(max-Λ) maxElem(x :Λ, x) (max-t)
maxElem(u, y)

maxElem(x :u, z) z = max(x, y) (max-co)
maxElem(x :u, x)
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Considering the standard inference system consisting of the two rules, its inductive interpreta-
tion only provides the desired meaning on finite lists, since for infinite lists an infinite proof is
needed. However, the coinductive interpretation allows also wrong judgements. For instance,
let L = 1:2:1:2:1:2: . . .. Then any judgment maxElem(L, x) with x ≥ 2 can be derived, as
illustrated by the following examples.

. . .

maxElem(L, 2)
maxElem(2:L, 2)

maxElem(1:2:L, 2)

. . .

maxElem(L, 5)
maxElem(2:L, 5)

maxElem(1:2:L, 5)

By adding the coaxiom, we force the element to belong to the list, so that wrong results
are “filtered out”. Indeed, the judgment maxElem(1:2:L, 2) has the infinite proof tree shown
above, and each node has a finite proof tree in the inference system extended by the corule:

. . .

maxElem(L, 2)
maxElem(2:L, 2)

maxElem(1:2:L, 2)
maxElem(2:L, 2)

maxElem(1:2:L, 2)

On the other hand, the judgment maxElem(1:2:L, 5) has the infinite proof tree shown above,
but has no finite proof tree in the inference system extended by the corule. Indeed, since 5
does not belong to the list, the corule can never be applied. Hence, this judgment cannot be
derived in the inference system with corules. We refer to [8, 13, 15] for other examples.

Note that the inductive and coinductive interpretation of I are special cases, notably:
the inductive interpretation of I is the interpretation of ⟨I, ∅⟩
the coinductive interpretation of I is the interpretation of ⟨I, {⟨∅, j⟩ | j ∈ U}⟩.

4 Generalized inference systems in Agda

We describe how to implement (generalized) inference systems in Agda. Notably, in Section 4.1
we present an approach mimicking meta-rules, showing step-by-step the correspondence with
the definitions of the previous sections. In Sect. 4.2, instead, we explain the view of inference
systems as indexed containers, and prove the equivalence.

4.1 An Agda library for writing meta-rules
In this section and the following we report the most interesting parts of the Agda code.

As anticipated, the aim of the Agda library is to allow a user to write meta-rules as “on
paper”. To illustrate this format, let us consider, e.g., the previous example:

(allP-t)
allPos(xs)

allPos(x :xs) x > 0

In a meta-rule, we have meta-variables, which range over certain sets, in a way possibly
restricted by a side condition. We call context the set of the instantiations of meta-variables
which satisfy the side-condition, hence produce a rule of the inference system. In the example,
there are two meta-variables, x and xs, which range over N and N∞, respectively, with the
restriction that x should be positive. Hence the context is {⟨x, l⟩ ∈ N × N∞ | x > 0}, see
Sect. 5 for the Agda version of this meta-rule.

Correspondingly, the following Agda declaration defines a meta-rule as a record, parametric
on the universe U. The first two components are the context and a set of positions for premises.
For each element of the context (instantiation of meta-variables satisfying the side condition),
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the last two components produce the premises, one for each position, and the conclusion of
the rule obtained by this instantiation.

record MetaRule {ℓc ℓp : Level } (U : Set ℓu) : Set _ where
f i e l d

Ctx : Set ℓc
Pos : Set ℓp
prems : Ctx → Pos → U
conclu : Ctx → U

RF[_] : ∀{ℓ} → (U → Set ℓ) → (U → Set _)
RF[_] P u = Σ [ c ∈ Ctx ] (u ≡ conclu c × (∀ p → P (prems c p )) )

RClosed : ∀{ℓ} → (U → Set ℓ) → Set _
RClosed P = ∀ c → (∀ p → P (prems c p)) → P ( conclu c )

Recall that in Agda the declaration U : Set introduces the type (set) U, and P : U → Set
the dependent type (predicate on U) P. For each element u of U, P u is the type of the
proofs that u satifies P, hence P u inhabited means that u satisfies P. To avoid paradoxes,
not every Agda type is in Set ; there is an infinite sequence Set 0, Set 1, . . . , Set ℓ, . . .
such that Set ℓ : Set ( suc ℓ), where ℓ is a level, and Set is an abbreviation for Set 0.
The programmer can write a wildcard for a level which can be inferred; to make the Agda
code reported in the paper lighter, we sometimes use a wildcard even for a level which is
explicit in the real code.

In the Agda code in this section, predicates P : U → Set encode subsets of the universe
as in Sect. 2 and Sect. 3, so we speak of subsets and membership, rather than of predicates
and satisfaction, to closely follow the previous formulation.

The function RF [ _] encodes the inference operator associated with the meta-rule. Given
a subset P of the universe, u belongs to the resulting subset if we can find an instantiation
c of meta-variables satisfying the side condition, producing u as conclusion, and, for each
position, a premise in P. Note the use of existential quantification Σ[ x ∈ A ] B where B
depends on x.

The predicate RClosed encodes the property of being closed with respect to the meta-rule.
A subset P of the universe is closed if, for each instantiation c of the meta-variables satisfying
the side-condition, if all the premises are in P then the conclusion is in P as well. Note the
use of universal quantification ∀ ( x : A) → B, where B depends on x.

Since in practical cases meta-rules are very often finitary, that is, premises are a finite
set, the library also offers an interface to write a (finitary) meta-rule, by providing, besides
the context, two components which are the vector of premises, with fixed length n, and the
conclusion. The injection from transforms this more concrete format in the generic one for
meta-rules, by specifying that the set of positions is Fin n (the set of indexes from 0 to
n − 1).

record FinMetaRule {ℓc n} (U : Set ℓu) : Set _ where
f i e l d

Ctx : Set ℓc
comp : C → Vec U n × U

from : MetaRule {ℓc} {zero} U
from . MetaRule . Ctx = Ctx
from . MetaRule . Pos = Fin n
from . MetaRule . prems c i = get ( pro j 1 (comp c )) i
from . MetaRule . conclu c = pro j 2 (comp c)
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An inference system is defined as a record, parametric on the universe U, consisting of a
set of meta-rule names and a family of meta-rules. The function ISF [ _] and the predicate

ISClosed are defined composing those given for a single meta-rule.
record IS {ℓc ℓp ℓn : Level } (U : Set ℓu) : Set _ where

f i e l d
Names : Set ℓn
r u l e s : Names → MetaRule {ℓc} {ℓp} U

ISF [_] : ∀{ℓ} → (U → Set ℓ) → (U → Set _)
ISF [_] P u = Σ [ rn ∈ Names ] RF[ r u l e s rn ] P u

ISClosed : ∀{ℓ} → (U → Set ℓ) → Set _
ISClosed P = ∀ rn → RClosed ( r u l e s rn ) P

Recall that the inductive interpretation IndJIK of an inference system I is the set of
elements of the universe which have a finite proof tree, and finite proof trees are, in turn,
inductively defined, that is, by a least fixed point operator. In Agda, inductive structures
are encoded as datatypes, which specify their constructors.
data IndJ_K {ℓc ℓp ℓn : Level }
( i s : IS {ℓc} {ℓp} {ℓn} U) : U → Set _ where

f o l d : ∀ {u} → ISF [ i s ] IndJ i s K u → IndJ i s K u

For each u, Ind J is K u is the type of the proofs that u satisfies Ind J is K, which are
essentially the finite proof trees1 for u. Indeed, the fold constructor, given a proof that u
can be derived by applying a rule from premises belonging to Ind J is K, which essentially
consists of a rule with conclusion u and finite proof trees for its premises, builds a finite proof
tree for u.

The coinductive interpretation CoIndJIK, instead, is the set of elements of the universe
which have a possibly infinite proof tree, and possibly infinite proof trees are, in turn,
coinductively defined, that is, by a greatest fixed point operator. In Agda, coinductive
structures can be encoded in two different ways: either as coinductive records [3], or as
datatypes by using the mechanism of thunks (suspended computations) together with sized
types [1, 2, 4] to ensure termination. To allow compatibility with existing code implemented
in either way, both versions are supported by the library.
record CoIndJ_K {ℓc ℓp ℓn : Level }

( i s : IS {ℓc} {ℓp} {ℓn} U) (u : U) : Set _ where
coinductive
constructor cofold_
f i e l d

unfold : ISF [ i s ] CoIndJ i s K u

data SCoIndJ_K {ℓc ℓp ℓn : Level }
( i s : IS {ℓc} {ℓp} {ℓn} U) : U → Size → Set _ where

s f o l d : ∀ {u i } → ISF [ i s ] (λ u → Thunk (SCoIndJ i s K u) i ) u
→ SCoIndJ i s K u i

For each u, CoInd J u K is the type of the proofs that u satisfies CoInd J is K, which are
essentially the possibly infinite proof trees for u, and analogously for SCoInd J is K.

In the first version, a possibly infinite proof tree for u is a record with only one field
unfold containing an element of ISF [ is ] CoInd J is K u, that is, a proof that u can be

derived by applying a rule from premises belonging to CoInd J is K, which essentially consists
of a rule with conclusion u and possibly infinite proof trees for its premises.

1 With some more structure, since the Agda proofs keep trace of the applied meta-rules.
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In the second version, a possibly infinite proof tree is obtained by a data constructor,
analogously to a finite one in the inductive interpretation; however, since proof trees are
encoded as thunks, hence evaluated lazily, this encoding represents infinite trees as well. In
other words, coinduction is “hidden” in the library type Thunk , which is a coinductive record
with only one field force , intuitively representing the suspended computation.

The interpretation of a generalized inference system can then be encoded following exactly
the definition in Sect. 3: it is the coinductive interpretation of I , restricted to rules whose
conclusion is in the inductive interpretation of the (standard) inference system consisting of
both rules I and corules C.

FCoIndJ_,_K : ∀{ℓc ℓp ℓn ℓn ’} → ( I : IS {ℓc} {ℓp} {ℓn} U)
→ (C : IS {ℓc} {ℓp} {ℓn ’} U) → U → Set _

FCoIndJ I , C K = CoIndJ I ⊓ IndJ I ∪ C K K

SFCoIndJ_,_K : ∀{ℓc ℓp ℓn ℓn ’} → ( I : IS {ℓc} {ℓp} {ℓn} U)
→ (C : IS {ℓc} {ℓp} {ℓn ’} U) → U → Size → Set _

SFCoIndJ I , C K = SCoIndJ I ⊓ IndJ I ∪ C K K

The definition is provided in two flavours where the coinductive interpretation is encoded
by coinductive records and thunks, respectively, and uses two operators on inference systems,
restriction ⊓ and union ∪. We report the former, which adds to each rule the side condition
that the conclusion should satisfy P, as specified by the function addSideCond , omitted.

_⊓_ : ∀ {ℓc ℓp ℓn ℓ}{U : Set ℓu} → IS {ℓc} {ℓp} {ℓn} U
→ (U → Set ℓ) → IS {ℓc ⊔ ℓ} {_} {_} U

( i s ⊓ P) .Names = i s .Names
( i s ⊓ P) . r u l e s rn = addSideCond ( i s . r u l e s rn ) P

The library also provides the proofs of relevant properties, e.g., that closed sets coincide
with pre-fixed points, and consistent sets coincide with post-fixed points. Moreover, it is
shown that the two versions of encoding of the coinductive interpretation (by coinductive
records and thunks) are equivalent. Finally, the library provides the induction, coinduction,
and bounded coinduction principles. We only report here the statements.

ind [_] : ∀{ℓc ℓp ℓn ℓ}
→ ( i s : IS {ℓc} {ℓp} {ℓn} U) −− IS
→ (S : U → Set ℓ) −− s p e c i f i c a t i o n
→ ISClosed i s S −− S i s c losed
→ IndJ i s K ⊆ S

If S is closed, then each element of the inductively defined set Ind J is K satisfies S.

coind [_] : ∀{ℓc ℓp ℓn ℓ}
→ ( i s : IS {ℓc} {ℓp} {ℓn} U)
→ (S : U → Set ℓ)
→ (S ⊆ ISF [ i s ] S) −− S i s cons i s t en t
→ S ⊆ CoIndJ i s K

If S is consistent, then each element satisfying S is in the coinductively defined set CoInd J is K.

bounded−coind [_,_] : ∀{ℓc ℓp ℓn ℓn ’ ℓ}
→ ( I : IS {ℓc} {ℓp} {ℓn} U)
→ (C : IS {ℓc} {ℓp} {ℓn ’} U)
→ (S : U → Set ℓ)
→ S ⊆ IndJ I ∪ C K −− S i s bounded w. r . t . I ∪ C
→ S ⊆ ISF [ I ] S −− S i s cons i s t en t w. r . t . I
→ S ⊆ FCoIndJ I , C K
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If S is bounded, and consistent with respect to I , then each element which satisfies S belongs
to the set FCoInd J I , C K defined by flexible coinduction.

Another easy theorem useful in proofs is that FCoIndJI, IcoK ⊆ IndJI ∪ IcoK:

fcoind−to−ind : ∀{ℓc ℓp ℓn ℓn ’}
{ i s : IS {ℓc} {ℓp} {ℓn} U}{ co i s : IS {ℓc} {ℓp} {ℓn ’} U}
→ FCoIndJ i s , co i s K ⊆ IndJ i s ∪ co i s K

4.2 Inference systems as indexed containers
Indexed containers [6] are a rather general notion, meant to capture families of datatypes
with some form of indexing. They are part of the Agda standard library. We report below
the definition, simplified and adapted a little for presentation purpose. Notably, we use
ad-hoc field names, chosen to reflect the explanation provided below.

record Container {ℓ i ℓo}
( I : Set ℓ i ) (O : Set ℓo) (ℓc ℓp : Level ) : Set _ where

constructor _ ◁ _/_
f i e l d

Cons : (o : O) → Set ℓc
Pos : ∀ {o} → Cons o → Set ℓp
input : ∀ {o} ( c : Cons o) → Pos c → I

J_K : ∀ {ℓ i ℓo ℓc ℓp ℓ} { I : Set ℓ i } {O : Set ℓo} → Container I O ℓc ℓp →
( I → Set ℓ) → (O → Set _)

J C ◁ P / inp K X o = Σ [ c ∈ C o ] ((p : P c ) → X ( inp c p))

To explain the view of an inference system as an indexed container, we can think of the
latter as describing a family of datatype constructors where I and O are input and output
sorts, respectively. Then, Cons specifies, for each output sort o, the set of its constructors;
for each constructor for o, Pos specifies a set of positions to store inputs to the constructor;
finally, input specifies the input sort for each position in a constructor.

The function J_K models the “semantics” of an indexed container, that is, given a family of
inputs X indexed by I , it returns the family of outputs indexed by O which can be constructed
by providing to some constructor inputs from P of correct sorts.

Then, inference systems can be defined as indexed containers where input and output
sorts coincide, and are the elements of the universe, as follows.

ISCont : {ℓc ℓp : Level } → (U : Set ℓu) → Set _
ISCont {ℓc} {ℓp} U = Container U U ℓc ℓp

In this way, for each u : U:
Cons u is the set of (indexes for) all the rules which have consequence u
Pos c is the set of (indexes for) the premises of the c-th rule
input c p is the p-th premise of the c-th rule.

This view comes out quite naturally observing that an inference system is an element
of ℘(℘(U) × U); equivalently, a function which, for each j ∈ U , returns the set of the sets
of premises of all the rules with consequence j. In a constructive setting such as Agda, the
powerset construction is not available, hence we have to use functions. So, for each element
u, we need a type to index all rules with consequence u, and, for each rule, a type to index
its premises, which are exactly the data of an indexed container. In other words, this view of
inference systems as indexed containers explicitly interprets rules as constructors for proofs.

ITP 2021



13:10 Flexible Coinduction in Agda

Moreover, definitions in Sect. 2 can be easily obtained as instances of analogous definitions
for indexed containers, building on the fact that the inference operator associated with an
inference system turns out to be the semantics J_K of the corresponding container.

Whereas this encoding allows reuse of notions and code, a drawback is that information
is structured in a rather different way from that “on paper”; notably, we group together rules
with the same consequence, rather than those obtained as instances of the same “schema”,
that is, meta-rule. For instance, the inference system for allPos would be as follows:

al lPosCont : ISCont ( Co l i s t N ∞)
al lPosCont . Cons [ ] = ⊤
al lPosCont . Cons (x : : xs ) = x > 0
allPosCont . Pos { [ ]} c = ⊥
al lPosCont . Pos {x : : xs} c = Fin 1
al lPosCont . input {x : : xs} c zero = xs . fo rce

For this reason we developed the Agda library mimicking meta-rules described in Sect. 4.1,
and we use this library for the examples in the following sections.

However, we can prove that the two notions are equivalent, as shown below. To this end,
we define a translation C[_] from inference systems as in Sect. 4.1 to indexed containers,
and a converse translation IS [ _ ] . Note that in the translation C[_] each meta-rule is
transformed in all its instantiations; more precisely, for each u : C, Cons u gives all the
instantiations of meta-rules having u as consequence. Conversely, in the translation IS [ _ ] ,
each rule is transformed in a meta-rule with trivial context.

C[_] : ∀{ℓc ℓp ℓn} → IS {ℓc} {ℓp} {ℓn} U → Container U U _ ℓp
C[ i s ] . Cons u = Σ [ rn ∈ i s .Names ] Σ [ c ∈ i s . r u l e s rn . Ctx ]

u ≡ i s . r u l e s rn . conclu c
C[ i s ] . Pos ( rn , _ , r e f l ) = i s . r u l e s rn . Pos
C[ i s ] . input ( rn , c , r e f l ) p = i s . r u l e s rn . prems c p

IS [_] : ∀{ℓc ℓp} → Container U U ℓc ℓp → IS {zero} {ℓp} { l ⊔ ℓc} U
IS [ C ] .Names = Σ [ u ∈ U ] C . Cons u
IS [ C ] . r u l e s (u , c ) =

record {
Ctx = ⊤ ;
Pos = C . Pos c ;
prems = λ _ r → C . input c r ;
conclu = λ _ → u }

i s f −to−c : ∀{ℓc ℓp ℓn ℓp} { i s : IS {ℓc} {ℓp} {ℓn} U}{P : U → Set ℓp}
→ ISF [ i s ] P ⊆ J C[ i s ] K P

i s f −to−c ( rn , c , r e f l , pr ) = ( rn , c , r e f l ) , pr

c−to−i s f : ∀{ l ’ ℓp ℓp} {C : Container U U l ’ ℓp}{P : U → Set ℓp}
→ J C K P ⊆ ISF [ IS [ C ] ] P

c−to−i s f ( c , pr ) = (_ , c ) , t t , r e f l , pr

5 Using the library

We show how to use the library to define specific inference systems and prove their properties.
Consider the examples in Sect. 2 and Sect. 3. For member , the universe are pairs of elements
and possibly infinite lists, implemented by the Agda library Colist which uses thunks:

U = A × Co l i s t A ∞
data memberRN : Set where mem-h mem-t : memberRN
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mem-h- r : FinMetaRule U
mem-h- r . Ctx = A × Thunk ( Co l i s t A) ∞
mem-h- r . comp (x , xs ) =

[ ] ,
−−−−−−−−−−−−−−−−
(x , x : : xs )

mem-t- r : FinMetaRule U
mem-t- r . Ctx = A × A × Thunk ( Co l i s t A) ∞
mem-t- r . comp (x , y , xs ) =

(( x , xs . fo rce ) : : [ ] ) ,
−−−−−−−−−−−−−−−−
(x , y : : xs )

memberIS : IS U
memberIS .Names = memberRN
memberIS . r u l e s mem-h = from mem-h- r
memberIS . r u l e s mem-t = from mem-t- r

Here memberRN are the rule names, and each rule name has an associated element of
FinMetaRule U, which exactly encodes the meta-rule in Sect. 2. Note, in mem-t-r, the use

of the force field of Thunk to actually obtain the tail colist.
This inference system is expected to define exactly the pairs ( x , xs ) such that x

belongs to xs , that is, those satisfying the following specification

memSpec : U → Set
memSpec (x , xs ) = Σ [ i ∈ N ] ( Co l i s t . lookup i xs = ju s t x )

where the library function lookup : N → Colist A ∞ → Maybe A returns the i -th ele-
ment of xs , if any.

As said in Sect. 2, to obtain the desired meaning this inference system has to be interpreted
inductively, and soundness can be proved by the induction principle, that is, by providing a
proof that the specification is closed with respect to the two meta-rules, as shown below.

_member_ : A → Co l i s t A ∞ → Set
x member xs = IndJ memberIS K (x , xs )

memSpecClosed : ISClosed memberIS memSpec
memSpecClosed mem-h _ _ = zero , r e f l
memSpecClosed mem-t _ pr =

l e t ( i , proof ) = pr Fin . zero in ( suc i ) , proof

memberSound : ∀ {x xs} → x member xs → memSpec (x , xs )
memberSound = ind [ memberIS ] memSpec memSpecClosed

For completeness there is no canonical technique; in this example, it can be proved by
induction on the position (the index i in the specification).

For allPos , the universe are possibly infinite lists.

U : Set
U = Co l i s t N ∞
data allPosRN : Set where a l lP -Λ a l lP -t : allPosRN

a l lP -Λ- r : FinMetaRule U
a l lP -Λ- r . Ctx = ⊤
a l lP -Λ- r . comp c =

[ ] ,
−−−−−−−−−−−−−−−−−
[ ]
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a l lP -t- r : FinMetaRule U
a l lP -t- r . Ctx = Σ [ ( x , _) ∈ N × Thunk ( Co l i s t N) ∞ ] x > 0
a l lP -t- r . comp (( x , xs ) , _) =

(( xs . fo rce ) : : [ ] ) ,
−−−−−−−−−−−−−−−−−
x : : xs )

a l lPos IS : IS U
a l lPos IS .Names = allPosRN
a l lPos IS . r u l e s a l lP -Λ = from a l lP -Λ- r
a l lPos IS . r u l e s a l lP -t = from a l lP -t- r

This inference system is expected to define exactly the lists such that all elements are
positive, that is, those satisfying the following specification (where for simplicity, we use the
predicate ∈, omitted, directly defined inductively).
al lPosSpec : U → Set
al lPosSpec xs = ∀ {x} → x ∈ xs → x > 0

As said in Sect. 2, to obtain the desired meaning this inference system has to be
interpreted coinductively, and completeness can be proved by the coinduction principle, that
is, by providing a proof that the specification is consistent with respect to the inference
system, as shown below.
a l lPos : U → Set
a l lPos = CoIndJ a l lPos IS K

allPosSpecCons : ∀ {xs} → al lPosSpec xs → ISF [ a l lPos IS ] al lPosSpec xs
allPosSpecCons { [ ]} _ = al lP -Λ , ( t t , ( r e f l , t t , λ ( ) ) )
allPosSpecCons {(x : : xs )} Sxs =

a l lP -t ,
(( x , xs ) , ( r e f l , ( Sxs here , λ {Fin . zero → λ mem → Sxs ( there mem)})))

allPosComplete : al lPosSpec ⊆ a l lPos
allPosComplete = coind [ a l lPos IS ] al lPosSpec allPosSpecCons

For soundness there is no canonical technique; in this example, when the colist is empty
the proof that the specification holds is trivial. If the colist is not empty, then the proof
proceeds by induction on the position of the element to be proved to be positive.

Finally, for maxElem , the universe are pairs of natural numbers and possibly infinite lists.
U : Set
U = N × Co l i s t N ∞
data maxElemRN : Set where max-h max-t : maxElemRN
data maxElemCoRN : Set where co-max-h : maxElemCoRN

max-h- r : FinMetaRule U
max-h- r . Ctx = Σ [ (_ , xs ) ∈ N × Thunk ( Co l i s t N) ∞ ] xs . fo rce ≡ [ ]
max-h- r . comp (( x , xs ) , _) =

[ ] ,
−−−−−−−−−−−−−−
x , x : : xs

max-t- r : FinMetaRule U
max-t- r . Ctx =

Σ [ ( x , y , z , _) ∈ N × N × N × Thunk ( Co l i s t N) ∞ ] z ≡ max x y
max-t- r . comp (( x , y , z , xs ) , _) =

(x , xs . fo rce ) : : [ ] ,
−−−−−−−−−−−−−−
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z , y : : xs

co-max-h- r : FinMetaRule U
co-max-h- r . Ctx = N × Thunk ( Co l i s t N) ∞
co-max-h- r . comp (x , xs ) =

[ ] ,
−−−−−−−−−−−−−−
(x , x : : xs )

maxElemIS : IS U
maxElemIS .Names = maxElemRN
maxElemIS . r u l e s max-h = from max-h- r
maxElemIS . r u l e s max-t = from max-t- r

maxElemCoIS : IS U
maxElemCoIS .Names = maxElemCoRN
maxElemCoIS . r u l e s co-max-h = from co-max-h- r

Note that in this example we have defined two inference systems, the rules and the corules.
This generalized inference system is expected to define exactly the pairs ( x , xs ) such that
x is the maximal element of xs , that is, those satisfying the following specification, where to
be the maximal element x should belong to xs , and be greater or equal than any n in xs .
maxSpec inSpec geqSpec : U → Set
inSpec (x , xs ) = x ∈ xs
geqSpec (x , xs ) = ∀{n} → n ∈ xs → x ≡ max x n
maxSpec u = inSpec u × geqSpec u

As said in Sect. 3, the desired meaning is provided by the interpretation of the generalized
inference system.
_maxElem_ : N → Co l i s t N ∞ → Set
x maxElem xs = FCoIndJ maxElemIS , maxElemCoIS K (x , xs )

and completeness can be proved by the bounded coinduction principle, see (bcoind) at page 4.
maxElemComplete : ∀{x xs} → maxSpec (x , xs ) → x maxElem xs
maxElemComplete =

bounded-coind [ maxElemIS , maxElemCoIS ] maxSpec
(λ{(x , xs ) → maxSpecBounded x xs }) λ{(x , xs ) → maxSpecCons x xs}

Notably, we have to prove that the specification is:
bounded, that is, contained in _maxElem i_ , the inductive interpretation of the standard
inference system consisting of both rules and corules, as shown below:
_maxElemi_ : N → Co l i s t N ∞ → Set
x maxElemi xs = IndJ maxElemIS ∪ maxElemCoIS K (x , xs )

maxSpecBounded : ∀{x xs} → inSpec (x , xs )
→ geqSpec (x , xs ) → x maxElemi xs

consistent with respect to the inference system consisting of only rules, as shown below:
maxSpecCons : ∀{x xs} → inSpec (x , xs ) →

geqSpec (x , xs ) → ISF [ maxElemIS ] maxSpec (x , xs )

These proofs are omitted.
For soundness there is no canonical technique. The proof can be split for the two

components of the specification. It is worth noting that, for soundness with respect to inSpec ,
we first use fcoind -to- ind at page 9, and then define maxElemSound -in- ind , omitted, by

ITP 2021



13:14 Flexible Coinduction in Agda

induction on the inference system consisting of rules and corules. The use of fcoind -to- ind in
the proof corresponds to the fact that without corules unsound judgments could be derived,
see Sect. 3.

maxElemSound- i n : ∀ {x xs} → x maxElem xs → inSpec (x , xs )
maxElem-sound- i n max = maxElemSound- i n - ind ( fco ind -to- ind max)

Soundness with respect to geqSpec is proved by induction on the position, that is, the
proof of membership, of the element that must be proved to be less or equal. In this case,
soundness would hold even in the purely coinductive case.

6 A worked example

We describe a more significant example of instantiation: an inference system with corules
providing a big-step semantics of lambda-calculus including divergence among the possible
results [9], reported in Fig. 1. In this example, corules play a key role: indeed , considering,
e.g., the divergent term Ω = (λx .x) (λx .x), in the standard inductive big-step semantics no
result can be derived (an infinite proof tree is needed), as for a stuck term; in the purely
coinductive interpretation, any judgment Ω ⇓ v∞ would be obtained [19]. Since each node of
the infinite proof tree for a judgment should also have a finite proof tree using the corules,
the coaxiom (coa) forces to obtain only ∞ as result, see [9] for a more detailed explanation.2

t ::= v | x | t1 t2 | . . . term
v ::= λx.t | . . . value

v∞ ::= v | ∞ result

(coa)
e ⇓ ∞

(val) v ⇓ v

(app)
t1 ⇓ λx.t t2 ⇓ v t[x/v] ⇓ v∞

t1 t2 ⇓ v∞

(l-div)
t1 ⇓ ∞

t1 t2 ⇓ ∞ (r-div)
t1 ⇓ v t2 ⇓ ∞

t1 t2 ⇓ ∞

Figure 1 λ-calculus: syntax and big-step semantics.

In rule (app), v∞ is used for the result, so the rule also covers the case when the evaluation
of the body of the lambda abstraction diverges. As usual, t[x/v] denotes capture-avoiding
substitution. Rules (l-div) and (r-div) cover the cases when either t1 or t2 diverges, assuming a
left-to-right evaluation strategy.

Terms, values, and results are inductively defined, hence encoded by Agda datatypes. As
customary in implementations of lambda-calculus, we use the De Bruijn notation: notably,
Term n is the set of terms with n free variables.

data Term (n : N) : Set where
var : Fin n → Term n
lambda : Term ( suc n) → Term n
app : Term n → Term n → Term n

data Value : Set where lambda : Term 1 → Value

term : Value → Term 0
term ( lambda x) = lambda x

data Value∞ : Set where

2 Other examples of big-step semantic definitions with more sophisticated corules are given in [10, 7].
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r e s : Value → Value∞

∞ : Value∞

The universe consists of big-step judgments (pairs consisting of a term and a result).
U : Set
U = Term 0 × Value∞

The two inference systems of rules and corules are encoded below:
data BigStepRN : Set where va l app l−div r−div : BigStepRN
data BigStepCoRN : Set where COA : BigStepCoRN

BigStepIS : IS U
BigStepIS .Names = BigStepRN
BigStepIS . r u l e s va l = from va l - r
BigStepIS . r u l e s app = from app- r
BigStepIS . r u l e s L-DIV = from l -div - r
BigStepIS . r u l e s R-DIV = from r -div - r

BigStepCoIS : IS U
BigStepCoIS .Names = BigStepCoRN
BigStepCoIS . r u l e s COA = from coa- r

where BigStepRN are the rule names, and each rule name has an associated element of
FinMetaRule U. For instance, app -r is given below. The auxiliary function subst , omitted,

implements capture-avoiding substitution.
app- r : FinMetaRule U
app- r . Ctx = Term 0 × Term 1 × Term 0 × Value × Value∞

app- r . comp ( t1 , t , t2 , v , v∞ ) =
( t1 , r e s ( lambda t )) : : ( t2 , r e s v ) : : ( subst t ( term v) , v∞ ) : : [ ] ,
−−−−−−−−−−−−−−−−−−−−−−−−−
(app t1 t2 , v∞ )

The big-step semantics can be obtained as the interpretation of the generalized inference
system, as shown below. We use the flavour with thunks.
_⇓_ : Term 0 → Value∞ → Size → Set
( t ⇓ v∞ ) i = SFCoIndJ BigStepIS , BigStepCoIS K ( t , v∞ ) i

_⇓i_ : Term 0 → Value∞ → Set
t ⇓i v∞ = IndJ BigStepIS ∪ BigStepCoIS K ( t , v∞ )

The second predicate (i stands for “inductive”) models that a judgment has a finite proof
tree in the inference system consisting of rules and coaxiom, and will be used in proofs.

Small-step semantics, reported in Fig. 2, can also be obtained appropriately instantiating

(β) (λx.t) v ⇒ t[x/v] (l-app)
t1 ⇒ t′

1
t1 t2 ⇒ t′

1 t2
(r-app)

t2 ⇒ t′
2

v t2 ⇒ v t′
2

Figure 2 λ-calculus: small-step semantics.

the library. In this case, the universe consists of small-step judgments, which are pairs of
terms. There is only one inference system, where SmallStepRN are the rule names, and each
rule name has an associated element of FinMetaRule U.
U : Set
U = Term 0 × Term 0
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data SmallStepRN : Set where β L-app R-app : SmallStepRN

SmallStepIS : IS U
SmallStepIS .Names = SmallStepRN
SmallStepIS . r u l e s β = from β- r
SmallStepIS . r u l e s L-app = from l -app- r
SmallStepIS . r u l e s R-app = from r -app- r

For instance, β-r is given below.
β- r : FinMetaRule U
β- r . Ctx = Term 1 × Value
β- r . comp ( t , v ) =

[ ] ,
−−−−−−−−−−−−−−−−−−−−−−−−−
(app ( lambda t ) ( term v) , subst t ( term v ))

The one-step relation ⇒ is obtained as the inductive interpretation of the (standard)
inference system. Then, finite computations are modeled by its reflexive and transitive
closure ⇒⋆, defined using Star in the Agda library, as shown below.
_⇒_ : Term 0 → Term 0 → Set
t ⇒ t ’ = IndJ SmallStepIS K ( t , t ’ )

_⇒⋆_ : Term 0 → Term 0 → Set
_⇒⋆_ = Star _⇒_

Infinite computations, instead, are modeled by the relation ⇒∞, coinductively defined by

the meta-rule t′ ⇒∞

t ⇒∞ t ⇒ t′, encoded in Agda by thunks.
data _⇒∞ : Term 0 → Size → Set where

step : ∀ {t t ’ i } → t ⇒ t ’ → Thunk ( t ’ ⇒∞ ) i → t ⇒∞ i

The proof of equivalence between big-step and small-step semantics is structured as
follows, where S = {⟨t, v⟩ | t ⇒⋆ v} ∪ {⟨t, ∞⟩ | t ⇒∞}.
Soundness

t ⇓ v implies t ⇒⋆ v We use fcoind -to-ind at page 9, and then reason by induction on
the judgment t⇓iv. That is, we show that t ⇒⋆ v is closed w.r.t. the inference system
consisting of rules and corules. As already pointed out for the maxElem example, the
use of fcoind -to- ind in the proof corresponds to the fact that, without the coaxiom
(coa), unsound judgments would be derived, e.g., Ω ⇓ v for v ∈ Val.

t ⇓ ∞ implies t ⇒∞ This implication, instead, would hold even in the purely coinductive
case. It can be proved from progress and subject reduction properties:
Progress t ⇓ ∞ implies that there exists t′ such that t ⇒ t′.
Subject reduction t ⇓ ∞ and t ⇒ t′ implies t′ ⇓ ∞.

Completeness By bounded coinduction, see (bcoind) at page 4.
Boundedness

t ⇒⋆ v implies t⇓iv By induction on the number of steps.
t ⇒∞ implies t⇓i∞ Trivial, since the coaxiom coa can be applied.

Consistency We have to show that, for each ⟨t, v∞⟩ ∈ S, ⟨t, v∞⟩ is the consequence of a
big-step rule where the premises are in S as well. We distinguish two cases.
t ⇒⋆ v By induction on the number of steps. If it is 0, then t is a value, hence we

can use rule (val). Otherwise, t is an application, and we can use rule (app).
t ⇒∞ The term t is an application t1 t2. We distinguish the following cases:

t1 diverges, hence we can use rule (l-div)



L. Ciccone, F. Dagnino, and E. Zucca 13:17

t1 converges and t2 diverges, hence we can use rule (r-div)

both t1 and t2 converge, hence we can use rule (app).
Note that in this proof by cases we need to use the excluded middle principle, which
is defined in the standard library, and postulated in our proof.

7 Conclusion

We have presented an Agda implementation of inference systems which, besides the standard
inductive and coinductive interpretations, supports also flexible coinduction and the associated
proof principle. The key feature is that the library allows the separation of the definitions
from their semantics, thus enabling modular composition and reasoning. This is particularly
useful for flexible coinduction, because the interpretation of a generalized inference system
is just defined by mixing the inductive and the coinductive interpretations of two inference
systems built from rules and corules.

Of course, as Agda supports both inductive and coinductive dependent types, one could
directly write Agda code for inductive, coinductive and even flexible coinductive definitions
of concrete examples. We have explored this possibility in [12]. However, in this way, the
definition is hard-wired with its semantics, and, for flexible coinduction, one has to manually
construct the interpretation by combining in the correct way an inductive and a coinductive
type and to prove the bounded coinduction principle for each example. For instance, the
definition of maxElem will look as follows:

data _maxElem_ : N → CoList N ∞ → Size → Set where
max-h : ∀ {x xs i } → fo rce xs ≡ [ ] → x maxElem (x : : xs ) i
max-t : ∀ {x y xs i } → Thunk (x maxElem ( force xs )) i

→ z ≡ max x y
→ z maxElemi (y : : xs )
→ z maxElem (y : : xs ) i

data _maxElemi_ : N → CoList N ∞ → Set where
imax-h : ∀ {x xs} → fo rce xs ≡ [ ] → x maxElemi (x : : xs )
imax-t : ∀ {x y xs} → x maxElemi ( fo rce xs )) → z ≡ max x y

→ z maxElemi (y : : xs )
co-max-h : ∀ {x xs} → x maxElemi (x : : xs )

Clearly, this approach causes duplication of rules and code, as rules of the coinductive type
have to be duplicated in the inductive one, making things rather complex. Our library
instead hides all these details, exposing interfaces for interpretations and proof principles, so
that the user only has to write code describing rules.

For future work we plan to extend the library in several directions. The first one is to
support other interpretations of inference systems, such as the regular one [14], which is
basically coinductive but allows only proof trees with finitely many distinct subtrees.To this
end, useful starting points are works on regular terms and streams [22, 24] and on finite sets
[17] in dependent type theories. The challenging part is the finiteness constraint, which is not
trivial in a type-theoretic setting. A second direction is to implement other proof techniques
for (flexible) coinduction, as parametrized coinduction [18] and up-to techniques [20, 16].
Finally, another direction could be the development of a full framework for composition of
inference systems, along the lines of seminal work on module systems [11]. On the more
practical side, a further development is to transform the methodology in an automatic
translation. That is, a user should be allowed to write an inference system (with corules)
in a natural syntax, and the corresponding Agda types should be generated automatically,
either by an external tool, or, more interestingly, using reflection, recently added in Agda.
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1 Introduction

Formally verified arithmetic has important applications in formalized mathematics and
rigorous engineering domains. For example, real arithmetic questions (first-order formulas
in the theory of real closed fields) often arise as part of formal proofs for safety-critical
cyber-physical systems (CPS) [29], the formal proof of the Kepler conjecture involves the
verification of more than 23, 000 real inequalities [13], and the verification of floating-point
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algorithms also involves real arithmetic reasoning [14]. Some real arithmetic questions involve
∀ and ∃ quantifiers; these quantified real arithmetic questions arise in, e.g., CPS proofs,
geometric theorem proving, and stability analysis of models of biological systems [35].

Quantifier elimination (QE) is the process by which a quantified formula is transformed
into a logically equivalent quantifier-free formula. Tarski famously proved that the theory of
first-order real arithmetic (FOLR) admits QE; FOLR validity and satisfiability are therefore
decidable by QE and evaluation [36]. Thus, in theory, all it takes to rigorously answer
any real arithmetic question is to verify a QE procedure for FOLR. However, in practice,
QE algorithms for FOLR are complicated and the fastest known QE algorithm, cylindrical
algebraic decomposition (CAD) [6] is, in the worst case, doubly exponential in the number of
variables. The multivariate CAD algorithm is highly complicated and has yet to be fully
formally verified in a theorem prover [18], although various specialized approaches have been
used to successfully tackle restricted subsets of real arithmetic questions in proof assistants,
e.g., quantifier elimination for linear real arithmetic [25], sum-of-squares witnesses [15] or
real Nullstellensatz witnesses [30] for the universal fragment, and interval arithmetic when
the quantified variables range over bounded domains [16, 33].

There are few general-purpose formally verified decision procedures for FOLR. Mahboubi
and Cohen [5] formally verified an algorithm for QE based on Tarski’s proof but their
formalization is primarily a theoretical decidability result [5, Section 1] owing to the non-
elementary complexity of Tarski’s algorithm. The proof-producing procedure by McLaughlin
and Harrison [22] can solve a number of small multivariate examples but suffers similarly from
the complexity of the underlying Cohen-Hörmander procedure. The situation for univariate
real arithmetic (i.e., problems that involve only a single variable) is better. In Isabelle/HOL,
Li, Passmore, and Paulson [18] formalized an efficient univariate decision procedure based
on univariate CAD. There are additionally some univariate decision procedures in PVS,
including hutch [23] (based on CAD) and tarski [24] (based on the Sturm-Tarski theorem).

This paper adds to the latter body of work by formalizing the univariate case of Ben-Or,
Kozen, and Reif’s (BKR) decision procedure [2] in Isabelle/HOL [26, 27]. Our formalization
of univariate BKR is ≈7000 lines [8]. Our main contributions are:

In Section 2, we present an algorithmic blueprint for implementing BKR’s procedure that
blends insights from Renegar’s [32] later variation of BKR. Compared to the original
abstract presentations [2, 32], our blueprint is phrased concretely in terms of matrix
operations which facilitates its implementation and identifies its correctness properties.
Our blueprint is designed for formalization by judiciously combining and fleshing out
BKR’s and Renegar’s proofs. In Section 3, we outline key aspects of our proof, its use of
existing Isabelle/HOL libraries, and our contributions to those libraries.

It is desirable to have a variety of formally verified decision procedures for arithmetic since
different strategies can have different efficiency tradeoffs on different classes of problems [7, 30].
For example, in PVS, hutch is usually significantly faster than tarski [23] but there are a
number of adversarial problems for hutch on which tarski performs better [7]. BKR has a
fundamentally different working principle than CAD; like the Cohen-Hörmander procedure,
it represents roots and sign-invariant regions abstractly, instead of via computationally
expensive, real algebraic numbers required in CAD. Further, unlike Cohen-Hörmander, BKR
was designed to be used in practice: when its inherent parallelism is exploited, an optimized
version of univariate BKR is an NC algorithm (that is, it runs in parallel polylogarithmic
time). Our formalization is not yet optimized and parallelized, so we do not yet achieve such
efficiency. However, we do export our Isabelle/HOL formalization to Standard ML (SML)
and are able to solve some examples with the exported code (Section 3.3).
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Additionally, our formalization is a significant stepping stone towards the multivariate
case, which builds inductively on the univariate case. We give some (informal) mathematical
intuition for multivariate BKR in Appendix A – since multivariate BKR seems to rely fairly
directly on the univariate version, we hope that it will be significantly easier to formally
verify than multivariate CAD, which is highly complicated. However, it is unlikely that
multivariate BKR will be as efficient as CAD in the average case. While BKR states that
their multivariate algorithm is computable in parallel exponential time (or in NC for fixed
dimension), Canny later found an error in BKR’s analysis of the multivariate case [3], which
highlights the subtlety of the algorithm and the role for formal verification. Notwithstanding
this, multivariate BKR is almost certain to outperform methods such as Tarski’s algorithm
and Cohen-Hörmander and can supplement an eventual formalization of multivariate CAD.

2 Mathematical Underpinnings

This section provides an outline of our decision procedure for univariate real arithmetic and its
verification in Isabelle/HOL [26]. The goal is to provide an accessible mathematical blueprint
that explains our construction and its blend of ideas from BKR [2] and Renegar [32]; in-depth
technical discussion of the formal proofs is largely deferred to Section 3. Our procedure starts
with two transformation steps (Sections 2.1 and 2.2) that simplify an input decision problem
into a so-called restricted sign determination format. An algorithm for the latter problem
is then presented in Section 2.3. Throughout this paper, unless explicitly specified, we are
working with univariate polynomials, which we assume to have variable x. Our decision
procedure works for polynomials with rational coefficients (rat poly in Isabelle), though
some lemmas are proved more generally for univariate polynomials with real coefficients
(real poly in Isabelle).

2.1 From Univariate Problems to Sign Determination

Formulas of univariate real arithmetic are generated by the following grammar, where p is a
univariate polynomial with rational coefficients:

ϕ, ψ ::= p > 0 | p ≥ 0 | p = 0 | ϕ ∨ ψ | ϕ ∧ ψ

In Isabelle/HOL, we define this grammar in fml, which is our type for formulas.
For formula ϕ, the universal decision problem is to decide if ϕ is true for all real values of

x, i.e., validity of the quantified formula ∀xϕ. The existential decision problem is to decide
if ϕ is true for some real value of x, i.e., validity of the quantified formula ∃xϕ. For example,
a decision procedure should return false for formula (1) and true for formula (2) below (left).

∀x (x2 − 2 = 0 ∧ 3x > 0) (1)
∃x (x2 − 2 = 0 ∧ 3x > 0) (2)

Formula Structure: A = 0 ∧ B > 0

Polynomials: A : x2 − 2, B : 3x

The first observation is that both univariate decision problems can be transformed to
the problem of finding the set of consistent sign assignments (also known as realizable sign
assignments [1, Definition 2.34]) of the set of polynomials appearing in the formula ϕ.

▶ Definition 1. A sign assignment for a set G of polynomials is a mapping σ that assigns
each g ∈ G to either +1, −1, or 0. A sign assignment σ for G is consistent if there exists
an x ∈ R where, for all g ∈ G, the sign of g(x) matches the sign of σ(g).
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For the polynomials x2 − 2 and 3x appearing in formulas (1) and (2), the set of all
consistent sign assignments (written as ordered pairs) is:

{(+1,−1), (0,−1), (−1,−1), (−1, 0), (−1,+1), (0,+1), (+1,+1)}

Formula (1) is not valid because consistency of sign assignment (0,−1) implies there
exists a real value x ∈ R such that conjunct x2 −2 = 0 is satisfied but not 3x > 0. Conversely,
formula (2) is valid because the consistent sign assignment (0,+1) demonstrates the existence
of an x ∈ R satisfying x2 − 2 = 0 and 3x > 0. The truth-value of formula ϕ at a given sign
assignment is computed by evaluating the formula after replacing all of its polynomials by
their respective assigned signs. For example, for the sign assignment (0,−1), replacing A
by 0 and B by −1 in the formula structure underlying (1) and (2) shown above (right)
yields 0 = 0 ∧ −1 > 0, which evaluates to false. Validity of ∀xϕ is decided by checking that
ϕ evaluates to true at each of its consistent sign assignments. Similarly, validity of ∃xϕ is
decided by checking that ϕ evaluates to true at at least one consistent sign assignment.

Our top-level formalized algorithms are called decide_universal and decide_existential,
both with type rat poly fml ⇒ bool. The definition of decide_existential is as follows
(the omitted definition of decide_universal is similar):

definition decide_existential :: "rat poly fml ⇒ bool"
where "decide_existential fml = (
let (fml_struct,polys) = convert fml in

find (lookup_sem fml_struct) (find_consistent_signs polys) ̸= None)"

Here, convert extracts the list of constituent polynomials polys from the input formula
fml along with the formula structure fml_struct, find_consistent_signs returns the list of
all consistent sign assignments conds for polys, and find checks that predicate lookup_sem
fml_struct is true at one of those sign assignments. Given a sign assignment σ, lookup_sem
fml_struct σ evaluates the truth value of fml at σ by recursively evaluating the truth of
its subformulas after replacing polynomials by their sign according to σ using the formula
structure fml_struct. Thus, decide_existential returns true iff fml evaluates to true for at
least one of the consistent sign assignments of its constituent polynomials.

The correctness theorem for decide_universal and decide_existential is shown below,
where fml_sem fml x evaluates the truth of formula fml at the real value x.

theorem decision_procedure:
"(∀ x::real. fml_sem fml x) ←→ decide_universal fml"
"(∃ x::real. fml_sem fml x) ←→ decide_existential fml"

This theorem depends crucially on find_consistent_signs correctly finding all consistent
sign assignments for polys, i.e., solving the sign determination problem.

2.2 From Sign Determination to Restricted Sign Determination
The next step restricts the sign determination problem to the following more concrete format:
Find all consistent sign assignments σ for a set of polynomials q1, . . . , qn at the roots of a
nonzero polynomial p, i.e., the signs of q1(x), . . . , qn(x) that occur at the (finitely many) real
values x ∈ R with p(x) = 0. The key insight of BKR is that this restricted problem can be
solved efficiently (in parallel) using purely algebraic tools (Section 2.3). Following BKR’s
procedure, we also normalize the qi’s to be coprime with (i.e. share no common factors with)
p, which simplifies the subsequent construction for the key step and its formal proof.
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▶ Remark 2. The normalization of qi’s to be coprime with p can be avoided using a slightly
more intricate construction due to Renegar [32]. We have also formalized this construction
but omit full details in this paper as the formalization was completed after acceptance for
publication. Its overall structure is quite similar to Section 2.3, and it is available in the AFP
alongside our formalization of BKR [8].

Consider as input a set of polynomials (with rational coefficients) G = {g1, . . . , gk} for
which we need to find all consistent sign assignments. The transformation proceeds as follows:
(1) Factorize the input polynomials G into a set of pairwise coprime factors (with rational

coefficients) Q = {q1, . . . , qn}. This also removes redundant/duplicate polynomials.
Each input polynomial g ∈ G can be expressed in the form g = c

∏n
i=1 q

di
i for some

rational coefficient c and natural number exponents di ≥ 1 so the sign of g is directly
recovered from the signs of the factors q ∈ Q. For example, if g1 = q1q2 and in a consistent
sign assignment q1 is positive while q2 is negative, then g1 is negative according to that
assignment, and so on. Accordingly, to determine the set of all consistent sign assignments
for G it suffices to determine the same for Q.

(2) Because the qi’s are pairwise coprime, there is no consistent sign assignment where two
or more qi’s are set to zero. So, in any given sign assignment, there is either exactly one
qi set to zero, or the qi’s are all assigned to nonzero (i.e., +1, -1) signs.
Now, for each 1 ≤ i ≤ n, solve the restricted sign determination problem for all consistent
sign assignments of {q1, . . . , qn} \ {qi} at the roots of qi. This yields all consistent sign
assignments of Q where exactly one qi is assigned to zero.

(3) This step and the next step focus on finding all consistent sign assignments where all
qi’s are nonzero. Compute a polynomial p that satisfies the following properties:

i) p is pairwise coprime with all of the qi’s,
ii) p has a root in every interval between any two roots of the qi’s,
iii) p has a root that is greater than all of the roots of the qi’s, and
iv) p has a root that is smaller than all of the roots of the qi’s.

An explicit choice of p satisfying these properties when qi ∈ Q are squarefree and pairwise
coprime is shown in Section 3.1.2. The relationship between the roots of p and the roots of
qi ∈ Q is visualized in Fig. 1. Intuitively, the roots of p (red points) provide representative
sample points between the roots of the qi’s (black squares).

The roots of all the qi’s

Some root of p is 
greater than all the 
roots of the qi’s

p has a root in 
between any two 
roots of the qi’s

Some root of p is 
less than all the 
roots of the qi’s

Figure 1 The relation between the roots of the added polynomial p and the roots of the qi’s.

(4) Solve the restricted sign determination problem for all consistent sign assignments of
{q1, . . . , qn} at the roots of p.
Returning to Fig. 1, the qi’s are sign-invariant in the intervals between any two roots of
the qi’s (black squares) and to the left and right beyond all roots of the qi’s. Intuitively,
this is true because moving along the blue real number line in Fig. 1, no qi can change
sign without first passing through a black square. Thus, all consistent sign assignments
of qi that only have nonzero signs must occur in one of these intervals and therefore, by
sign-invariance, also at one of the roots of p (red points).
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(5) The combined set of sign assignments where some qi is zero, as found in (2), and where
no qi is zero, as found in (4), solves the sign determination problem for Q, and therefore
also for G, as argued in (1).

Our algorithm to solve the restricted sign determination problem using BKR’s key insight
is called find_consistent_signs_at_roots; we now turn to the details of this method.

2.3 Restricted Sign Determination
The restricted sign determination problem for polynomials q1, . . . , qn at the roots of a
polynomial p ̸= 0, where each q1, . . . , qn is coprime with p, can be tackled naively by
setting up and solving a matrix equation. The idea of using a matrix equation for sign
determination dates back to Tarski [36] [1, Section 10.3], and accordingly our formalization
shares some similarity to Cohen and Mahboubi’s formalization [5] of Tarski’s algorithm
(see [4, Section 11.2]). BKR’s additional insight is to avoid the prohibitive complexity of
enumerating exponentially many possible sign assignments for q1, . . . , qn by computing the
matrix equation recursively and performing a reduction that retains only the consistent sign
assignments at each recursive step. This reduction keeps intermediate data sizes manageable
because the number of consistent sign assignments is bounded by the number of roots of
p throughout. We first explain the technical underpinnings of the matrix equation before
returning to our implementation of BKR’s recursive procedure. For brevity, references to
sign assignments for q1, . . . , qn in this section are always at the roots of p.

2.3.1 Matrix Equation
The inputs to the matrix equation are a set of candidate (i.e., not necessarily consistent)
sign assignments Σ̃ = {σ̃1, . . . , σ̃m} for the polynomials q1, . . . , qn and a set of subsets
S = {I1, . . . , Il}, Ii ⊆ {1, . . . , n} of indices selecting among those polynomials. The set of all
consistent sign assignments Σ for q1, . . . , qn is assumed to be a subset of Σ̃, i.e., Σ ⊆ Σ̃.

For example, consider p = x3 − x and q1 = 3x3 + 2. The set of all possible candidate sign
assignments Σ̃ = {(+1), (−1)} must contain the consistent sign assignments for q1 (sign (0)
is impossible as p, q1 are coprime). The possible subsets of indices are I1 = {} and I2 = {1}.

The main algebraic tool underlying the matrix equation is the Tarski query which provides
semantic information about the number of roots of p with respect to another polynomial q.

▶ Definition 3. Given univariate polynomials p, q with p ̸= 0, the Tarski query N(p, q) is:

N(p, q) = #{x ∈ R | p(x) = 0, q(x) > 0} − #{x ∈ R | p(x) = 0, q(x) < 0}.

Importantly, the Tarski query N(p, q) can be computed from input polynomials p, q using
Euclidean remainder sequences without explicitly finding the roots of p. This is a consequence
of the Sturm-Tarski theorem which has been formalized in Isabelle/HOL by Li [17]. The
theoretical complexity for computing N(p, q) is O(deg p (deg p + deg q)) [1, Sections 2.2.2
and 8.3]. However, this complexity analysis does not take into account the growth in bitsizes
of coefficients in the remainder sequences [1, Section 8.3], so it will not be not achieved by
the current Isabelle/HOL formalization of Tarski queries [17] without further optimization.

For the matrix equation, we lift Tarski queries to a subset of the input polynomials:

▶ Definition 4. Given a univariate polynomial p ̸= 0, univariate polynomials q1, . . . , qn, and
a subset I ⊆ {1, . . . , n}, the Tarski query N(I) with respect to p is:

N(I) = N(p,Πi∈Iqi) = #{x ∈ R | p(x) = 0,Πi∈Iqi(x) > 0}
− #{x ∈ R | p(x) = 0,Πi∈Iqi(x) < 0}.
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The matrix equation is the relationship M · w = v between the following three entities:
M , the l-by-m matrix with entries Mi,j = Πk∈Ii

σ̃j(qk) ∈ {−1, 1} for Ii ∈ S and σ̃j ∈ Σ̃,
w, the length m vector whose entries count the number of roots of p where q1, . . . , qn has
sign assignment σ̃, i.e., wi = #{x ∈ R | p(x) = 0, sgn(qj(x)) = σ̃i(qj) for all 1 ≤ j ≤ n},
v, the length l vector consisting of Tarski queries for the subsets, i.e., vi = N(Ii).

Observe that the vector w is such that the sign assignment σ̃i is consistent (at a root of
p) iff its corresponding entry wi is nonzero. Thus, the matrix equation can be used to solve
the sign determination problem by solving for w. In particular, the matrix M and the vector
v are both computable from the input (candidate) sign assignments and subsets. Further,
since the subsets will be chosen such that the constructed matrix M is invertible, the matrix
equation uniquely determines w and the nonzero entries of w = M−1 · v.

The following Isabelle/HOL theorem summarizes sufficient conditions on the list of
sign assignments signs and the list of index subsets subsets for the matrix equation to
hold for polynomial list qs at the roots of polynomial p. Note the switch from set-based
representation to list-based representation in the theorem. This formally provides an ordering
to the polynomials, sign assignments, and subsets, which is useful for computations.

theorem matrix_equation:
assumes "p ̸=0"
assumes "

∧
q. q ∈ set qs =⇒ coprime p q"

assumes "distinct signs"
assumes "consistent_signs_at_roots p qs ⊆ set signs"
assumes "

∧
l i. l ∈ set subsets =⇒ i ∈ set l =⇒ i < length qs"

shows "M_mat signs subsets *v w_vec p qs signs = v_vec p qs subsets"

Here, M_mat, w_vec, and v_vec construct the matrix M and vectors w, v respectively; *v

denotes the matrix-vector product in Isabelle/HOL. The switch into list notation necessitates
some consistency assumptions, e.g., that the signs list contains distinct sign assignments
and that the index i occurring in each list of indices l in subsets points to a valid element of
the list qs. The proof of matrix_equation uses a counting argument: intuitively, Mi,j is the
contribution of any real value x that has the sign assignment σ̃j towards N(Ii), so multiplying
these contributions by the actual counts of those real values in w gives Mi · w = vi.

Note that the theorem does not ensure that the constructed matrix M is invertible (or
even square). This must be ensured separately when solving the matrix equation for w. We
now discuss BKR’s inductive construction and its usage of the matrix equation.

2.3.2 Base Case

The simplest (base) case of the algorithm is when there is a single polynomial [q1]. Here, it
suffices to set up a matrix equation M ·w = v from which we can compute all consistent sign
assignments. As hinted at earlier, this can be done with the list of index subsets [{}, {1}]
and the candidate sign assignment list [(+1), (−1)].2 Further, as illustrated in Fig. 2, the
matrix M is invertible for these choices of subsets and candidate sign assignments, so the
matrix equation can be explicitly solved for w.

2 In the Isabelle/HOL formalization, we use 0-indexed lists to represent sets and sign assignments, so the
subsets list is represented as [[],[0]] and the signs list is [[1],[-1]].
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. =1     1
1    -1

2
1

# of roots of p where 
qs realizes the sign 
assignment [+1]

# of roots of p where 
qs realizes the sign 
assignment [-1]

3
1

Tarski query 
N({})

Tarski query 
N({1})  

Key information

Signs list:

[[+1], [-1]]

Subsets list:

[{}, {1}]

INPUTS:
p = x3 - x
qs = [q1]

Figure 2 Matrix equation for p = x3 − x, q1 = 3x3 + 2.

2.3.3 Inductive Case: Combination Step

The matrix equation can be similarly used to determine the consistent sign assignments for an
arbitrary list of polynomials [q1, . . . , qn]. The driving idea for BKR is that, given two solutions
of the sign determination problem at the roots of p for two input lists of polynomials, say,
ℓ1 = [r1, . . . , rk] and ℓ2 = [rk+1, . . . , rk+l], one can combine them to yield a solution for the list
of polynomials [r1, . . . , rk+l]. This yields a recursive method for solving the sign determination
problem by solving the base case at the single polynomials [q1], [q2], . . . , [qn], and then
recursively combining those solutions, i.e., solving [q1, q2], [q3, q4], . . . , then [q1, q2, q3, q4], . . . ,
and so on until a solution for [q1, . . . , qn] is obtained. Importantly, BKR performs a reduction
(Section 2.3.4) after each combination step to bound the size of the intermediate data.

More precisely, assume for ℓ1, we have a list of index subsets S1 and a list of sign
assignments Σ̃1 such that Σ̃1 contains all of the consistent sign assignments for ℓ1 and the
matrix M1 constructed from S1 and Σ̃1 is invertible. Accordingly, for ℓ2, we have the list
of subsets S2, list of sign assignments Σ̃2 containing all consistent sign assignments for ℓ2,
and M2 constructed from S2, Σ̃2 is invertible. In essence, we are assuming that S1, Σ̃1 and
S2, Σ̃2 satisfy the hypotheses for the matrix equation to hold, so that they contain all the
information needed to solve for the consistent sign assignments of ℓ1 and ℓ2 respectively.

Observe that any consistent sign assignment for ℓ = [r1, . . . , rk+l] must have a prefix that
is itself a consistent sign assignment to ℓ1 and a suffix that is itself a consistent sign assignment
to ℓ2. Thus, the combined list of sign assignments Σ̃ obtained by concatenating every entry
of Σ̃1 with every entry of Σ̃2 necessarily contains all consistent sign assignments for ℓ. The
combined subsets list S is obtained in an analogous way from S1, S2 (where concatenation is
now set union), with a slight modification: the subset list S2 indexes polynomials from ℓ2,
but those polynomials now have different indices in ℓ, so everything in S2 is shifted by the
length of ℓ1 before combination. Once we have the combined subsets list, we can calculate
the RHS vector v with Tarski queries as explained in Section 2.3.1.

The matrix M constructed from S, Σ̃ is exactly the Kronecker product of M1 and M2.
Further, the Kronecker product of invertible matrices is invertible, so the matrix equation
can be solved for the LHS vector w using M and the vector v computed from the subsets
list S. Then the nonzero entries of w correspond to the consistent sign assignments of ℓ.
Taking a concrete example, suppose we want to find the list of consistent sign assignments
for ℓ = [3x3 + 2, 2x2 − 1] at the zeros of p = x3 − x. The combination step for ℓ1 = [3x3 + 2]
and ℓ2 = [2x2 − 1] is visualized in Fig. 3.
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Combine subsets lists, 
calculate RHS vector
{}
{1}

{}
{2}

{} U {}
{} U {2}
{1} U {}
{1} U {2}

v =

p = x3 – x
q_list = [3x3 + 2, 2x2 – 1]

Combine the 
signs lists

[1] 
[-1] 

[1, 1]
[1, -1]
[-1, 1]
[-1, -1]
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[-1] 

Calculate matrix, solve for LHS vector, 
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1    -1
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1    -1

1     1
1    -1

-1   -1
-1    1
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Consistent sign assignments:
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N({2})= 1
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Figure 3 Combining two systems.
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Figure 4 Reducing a system.

2.3.4 Reduction Step

The reduction step takes an input list of index subsets S and candidate sign assignments
Σ̃. It removes the inconsistent sign assignments and then unnecessary index subsets, which
keeps the size of the intermediate data tracked for the matrix equation as small as possible.

The reduction step is best explained in terms of the matrix equation M ·w = v constructed
from the inputs S, Σ̃. After solving for w, the reduction starts by deleting all indexes of wi

that are 0 and the corresponding i-th sign assignments in Σ̃ which are now known to be
inconsistent (recall that wi counts the number of zeros of p where the i-th sign assignment is
realized). This corresponds to deleting the i-th columns of matrix M . If any columns are
deleted, the resulting matrix is no longer square (nor invertible). Thus, the next step finds a
basis among the remaining rows of the matrix to make it invertible again (deleting any rows
that do not belong to the chosen basis). Deleting the j-th row in this matrix corresponds to
deleting the j-th index subset in S.

The reduction step for the matrix equation with p = x3 − x and ℓ = [3x3 + 2, 2x2 − 1] is
visualized in Fig. 4. Naively using the matrix equation for restricted sign determination would
require 2|ℓ| = 4 Tarski queries for this example, whereas 2 + 2 + 4 = 8 queries are required
using BKR (2 for each base case, 4 for the combination step). However, for longer lists ℓ, the
naive approach requires 2|ℓ| queries while BKR’s reduction step ensures that the number of
intermediate consistent sign assignments is bounded by the number of roots of p (and hence
deg p) throughout. This difference is shown in Section 3.3 and is also illustrated by Fig. 4,
where p has degree 3 and there are 3 consistent sign assignments for ℓ after reduction.
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3 Formalization

Now that we have set up the theory behind the BKR algorithm, we turn to some details of
our formalization: the proofs, extensions to the existing matrix libraries, and the exported
code. Our proof builds significantly on existing proof developments in the Archive of Formal
Proofs [17, 38, 39]. Isabelle/HOL’s builtin search tool and Sledgehammer [28] provided
invaluable automation for discovering existing theorems and for finishing (easy) subgoals in
proofs. The most challenging part of the formalization, in our opinion, is the reduction step,
in no small part because it involves significant linear algebra (further details in Section 3.2.2).

3.1 Formalizing the Decision Procedure
In this section, we discuss the proofs for our decision procedure in reverse order compared
to Section 2; that is, we first discuss the formalization of our algorithm for restricted
sign determination find_consistent_signs_at_roots before discussing the top-level decision
procedures for univariate real arithmetic, decide_{universal|existential}. The reader may
wish to revisit Section 2 for informal intuition behind the procedure while reading this section.

3.1.1 Sign Determination at Roots
We combine BKR’s base case (Section 2.3.2), combination step (Section 2.3.3), and reduction
step (Section 2.3.4) to form our core algorithm calc_data for the restricted sign determination
problem at the roots of a polynomial. The calc_data algorithm takes a real polynomial
p and a list of polynomials qs and produces a 3-tuple (M, S, Σ), consisting of the matrix
M from the matrix equation, the list of index subsets S, and the list of all consistent sign
assignments Σ for qs at the roots of p. Although M can be calculated directly from S and
Σ, it is returned (as part of the algorithm), to avoid redundantly recomputing it at every
recursive call.

fun calc_data ::
"real poly ⇒ real poly list ⇒ (rat mat × (nat list list × rat list list))"

where "calc_data p qs = (let len = length qs in
if len = 0 then

(λ(a,b,c).(a,b,map (drop 1) c)) (reduce_system p ([1],base_case_info))
else if len ≤ 1 then reduce_system p (qs,base_case_info)
else (let qs1 = take (len div 2) qs; left = calc_data p qs1;

qs2 = drop (len div 2) qs; right = calc_data p qs2 in
reduce_system p (combine_systems p (qs1,left) (qs2,right))))"

definition find_consistent_signs_at_roots ::
"real poly ⇒ real poly list ⇒ rat list list"

where "find_consistent_signs_at_roots p qs = (let (M,S,Σ) = calc_data p qs in Σ)"

The base case where qs has length ≤ 1 is handled3 using the fixed choice of matrix, index
subsets, and sign assignments (defined as the constant base_case_info) from Section 2.3.2.
Otherwise, when length qs > 1, the list is partitioned into two sublists qs1, qs2 and the
algorithm recurses on those sublists. The outputs for both sublists are combined using
combine_systems which takes the Kronecker product of the output matrices and concatenates

3 The trivial case where length qs = 0 is also handled for completeness; in this case, the list of consistent
sign assignments is empty if p has no real roots, otherwise, it is the singleton list [[]].
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the index subsets and sign assignments as explained in Section 2.3.3. Finally, reduce_system
performs the reduction according to Section 2.3.4, removing inconsistent sign assignments and
redundant subsets of indices. The top-level procedure is find_consistent_signs_at_roots,
which returns only Σ (the third component of calc_data). The following Isabelle/HOL
snippets show its main correctness theorem and important relevant definitions.
definition roots :: "real poly ⇒ real set" where "roots p = {x. poly p x = 0}"

definition consistent_signs_at_roots ::
"real poly ⇒ real poly list ⇒ rat list set"

where "consistent_signs_at_roots p qs = (sgn_vec qs) ‘ (roots p)"

theorem find_consistent_signs_at_roots:
assumes "p ̸= 0"
assumes "

∧
q. q ∈ set qs =⇒ coprime p q"

shows "set (find_consistent_signs_at_roots p qs) = consistent_signs_at_roots p qs"

Here, roots defines the set of roots of a polynomial p (non-constructively), i.e., real values
x where the polynomial evaluates to 0 (poly p x = 0). Similarly, consistent_signs_at_roots
returns the set of all sign vectors for the list of polynomials qs at the roots of p ; sgn_vec
returns the sign vector for input qs at a real value and ‘ is Isabelle/HOL notation for the image
of a function on a set. These definitions are not meant to be computational. Rather, they are
used to state the correctness theorem that the algorithm find_consistent_signs_at_roots
(and hence calc_data) computes exactly all consistent sign assignments for p and qs for
input polynomial p ̸= 0 and polynomial list qs, where every entry in qs is coprime to p.

The proof of find_consistent_signs_at_roots is by induction on calc_data. Specifically,
we prove that the following properties (our inductive invariant) are satisfied by the base case
and maintained by both the combination step and the reduction step:
1. The signs list is well-defined, i.e., the length of every entry in the signs list is the same as

the length of the corresponding qs. Additionally, all assumptions on S and Σ from the
matrix_equation theorem from Section 2.3.1 hold. (In particular, the algorithm always
maintains a distinct list of sign assignments that, when viewed as a set, is a superset of
all consistent sign assignments for qs.)

2. The matrix M matches the matrix calculated from S and Σ. (Since we do not directly
compute the matrix from S and Σ, as defined in Section 2.3.1, we need to verify that our
computations keep track of M correctly.)

3. The matrix M is invertible (so M · w = v can be uniquely solved for w).

Some of these properties are easier to verify than others. The well-definedness properties,
for example, are quite straightforward. In contrast, matrix invertibility is more complicated
to verify, especially after the reduction step; we will discuss this in more detail in Section 3.2.
The inductive invariant establishes that we have a superset of the consistent sign assignments
throughout the construction. This is because the base case and the combination step may
include extraneous sign assignments. Only the reduction step is guaranteed to produce exactly
the set of consistent sign assignments. Thus the other main ingredient in our formalization,
besides the inductive invariant, is a proof that the reduction step deletes all inconsistent
sign assignments. As calc_data always calls the reduction step before returning output,
calc_data returns exactly the set of all consistent sign assignments, as desired.

3.1.2 Building the Univariate Decision Procedure
To prove the decision_procedure theorem from Section 2.1, we need to establish correctness of
find_consistent_signs. The most interesting part is formalizing the transformation described
in Section 2.2. We discuss the steps from Section 2.2 enumerated (1)–(5) below.

ITP 2021



14:12 Verified Univariate BKR

(1) Our procedure takes an input list of rational polynomials G = [g1, . . . , gk] and computes
a list of their pairwise coprime and squarefree factors4 Q = [q1, . . . , qn]. An efficient
method to factor a single rational polynomial is formalized in Isabelle/HOL by Divasón
et al. [9]; we slightly modified their proof to find factors for a list of polynomials while
ensuring that the resulting factors are pairwise coprime, which implies that their product∏

i qi is squarefree.
(2) This step makes n calls to find_consistent_signs_at_roots, one for each Q \ {qi}.
(3) We choose the polynomial p = (x− crb(

∏
i qi))(x+ crb(

∏
i qi))(

∏
i qi)′, where (

∏
i qi)′ is

the formal polynomial derivative of
∏

i qi and crb(
∏

i qi) is a computable positive integer
with larger magnitude than any real root of

∏
i qi. The choice of crb(

∏
i qi) uses a proof

of the Cauchy root bound [1, Section 10.1] by Thiemann and Yamada [39]. We prove
that p satisfies the four properties of step (3) from Section 2.2:

i) Since
∏

i qi is squarefree, (
∏

i qi)′ is coprime with
∏

i qi and, thus, also coprime with
each of the qi’s. Because crb(

∏
i qi) is strictly larger in magnitude than all of the

roots of the roots of the qi’s, it follows that p is also coprime with all of the qi’s.
ii) By Rolle’s theorem5 (which is already formalized in Isabelle/HOL’s standard library),

(
∏

i qi)′ has a root between every two roots of
∏

i qi and therefore p also has a root
in every interval between any two roots of the qi’s.

iii) and iv) This choice of p has roots at −crb(
∏

i qi) and crb(
∏

i qi), which are respect-
ively smaller and greater than all roots of the qi’s.

(4) Each polynomial qi is sign invariant between its roots.6 Accordingly, the qi’s are sign
invariant between the roots of

∏
i qi (and to the left/right of all roots of the qi’s).

(5) We use the find_consistent_signs_at_roots algorithm with Q and our chosen p.

Putting the pieces together, we verify that find_consistent_signs finds exactly the
consistent sign assignments for its input polynomials. The decision_procedure theorem
follows by induction over the fml type representing formulas of univariate real arithmetic
and our formalized semantics for those formulas.

3.2 Matrix Library
Matrices feature prominently in our algorithm: the combination step uses the Kronecker
product, while the reduction step requires matrix inversion and an algorithm for finding a
basis from the rows (or, equivalently, columns) of a matrix. There are a number of linear
algebra libraries available in Isabelle/HOL [10, 34, 38], each building on a different underlying
representation of matrices. We use the formalization by Thiemann and Yamada [38] as it
provides most of the matrix algorithms required by our decision procedure and supports
efficient code extraction [38, Section 1]. Naturally, any such choice leads to tradeoffs; we now
detail some challenges of working with the library and some new results we prove.

3.2.1 Combination Step: Kronecker Product
We define the Kronecker product for matrices A, B over a ring as follows:

4 This is actually overkill: we do not necessarily need to completely factor every polynomial in G to
transform G into a set of pairwise coprime factors. BKR suggest a parallel algorithm based in part on
the literature [40] to find a “basis set” of squarefree and pairwise coprime polynomials.

5 For differentiable function f : R 7→ R with f(a) = f(b), a < b, there exists a < z < b where f ′(z) = 0.
6 By the intermediate value theorem (which is already formalized in Isabelle/HOL’s standard library), if

qi changes sign, e.g., from positive to negative, between two adjacent roots, then there exists a third
root in between those adjacent roots, which is a contradiction.
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definition kronecker_product :: "’a :: ring mat ⇒ ’a mat ⇒ ’a mat"
where "kronecker_product A B = (
let ra = dim_row A; ca = dim_col A; rb = dim_row B; cb = dim_col B in

mat (ra * rb) (ca * cb)
(λ(i,j). A $$ (i div rb, j div cb) * B $$ (i mod rb, j mod cb)))"

Matrices with entries of type ’a are constructed with mat m n f, where m, n :: nat are
the number of rows and columns of the matrix respectively, and f :: nat × nat ⇒ ’a is
such that f i j gives the matrix entry at position i, j. Accordingly, M $$ (i,j) extracts the
(i,j) -th entry of matrix M, and dim_row, dim_col return the number of rows and columns of
a matrix respectively.

We prove basic properties of our definition of the Kronecker product: it is associative,
distributes over addition, and satisfies the mixed-product identity for matrices A, B, C, D
with compatible dimensions (for A * C and B * D): kronecker_product (A * C) (B * D) =
(kronecker_product A B) * (kronecker_product C D). The mixed-product identity implies
that the Kronecker product of invertible matrices is invertible. Briefly, for invertible matrices
A, B with respective inverses A−1, B−1, the mixed product identity gives: (kronecker_product A
B) * (kronecker_product A−1 B−1) = kronecker_product (A * A−1) (B * B−1) = I where I
is the identity matrix. In other words, kronecker_product A B and kronecker_product A−1

B−1 are inverses. We use this to prove that the matrix obtained by the combination step is
invertible (part of the inductive hypothesis from Section 3.1.1).
▶ Remark 5. Prathamesh [31] formalized Kronecker products for Isabelle/HOL’s default
matrix type. For computational purposes, we provide a new formalization that is compatible
with the matrix representation of Thiemann and Yamada [38].

3.2.2 Reduction Step: Gauss–Jordan and Matrix Rank
Our reduction step makes extensive use of the Gauss–Jordan elimination algorithm by
Thiemann and Yamada [37]. First, we use matrix inversion based on Gauss–Jordan elimination
to invert the matrix M in the matrix equation (Section 2.3.1 and Step 1 in Fig. 4). We also
contribute new proofs surrounding their Gauss–Jordan elimination algorithm in order to use
it to extract a basis from the rows (equivalently columns) of a matrix (Step 3 in Fig. 4).

Suppose that an input matrix A has more rows than columns, e.g., the matrix in Step 2
of Fig. 4. The following definition of rows_to_keep returns a list of (distinct) row indices of A.

definition rows_to_keep:: "(’a::field) mat ⇒ nat list"
where "rows_to_keep A = map snd (pivot_positions (gauss_jordan_single (A T )))"

Here, gauss_jordan_single returns the row-reduced echelon form (RREF) of A after
Gauss–Jordan elimination and pivot_positions finds the positions, i.e., (row, col) pairs,
of the first nonzero entry in each row of the matrix; both are existing definitions from the
library by Thiemann and Yamada [37]. Our main new result for rows_to_keep is:

lemma rows_to_keep_rank:
assumes "dim_col A ≤ dim_row A"
shows "vec_space.rank (length (rows_to_keep A)) (take_rows A (rows_to_keep A)) =

vec_space.rank (dim_row A) A"

Here vec_space.rank n M (defined by Bentkamp [38]) is the finite dimension of the vector
space spanned by the columns of M. Thus, the lemma says that keeping only the pivot rows
of matrix A (with take_rows A (rows_to_keep A)) preserves the rank of A. At a high level,
the proof of rows_to_keep_rank is in three steps:
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1. First, we prove a version of rows_to_keep_rank for the pivot columns of a matrix and
where A is assumed to be a matrix in RREF. The RREF assumption for A enables direct
analysis of the shape of its pivot columns.

2. Next, we lift the result to an arbitrary matrix A, which can always be put into RREF
form by gauss_jordan_single.

3. Finally, we formalize the following classical result that column rank is equal to row
rank: vec_space.rank (dim_row A) A = vec_space.rank (dim_col A) (AT ). We lift the
preceding results for pivot columns to also work for pivot rows by matrix transposition
(pivot rows of matrix A are the pivot columns of the transpose matrix AT ).

To complete the proof of the reduction step, recall that the matrix in Step 2 of Fig. 4 is
obtained by dropping columns of an invertible matrix. The resulting matrix has full column
rank but more rows than columns. We show that when A in rows_to_keep_rank has full
column rank (its rank is dim_col A) then length (rows_to_keep A) = dim_col A and so the
matrix consisting of pivot rows of A is square, has full rank, and is therefore invertible.

▶ Remark 6. Divasón and Aransay formalized the equivalence of row and column rank
for Isabelle/HOL’s default matrix type [11] while we have formalized the same result for
Bentkamp’s definition of matrix rank [38]. Another technical drawback of our choice of
libraries is the locale argument n for vec_space. Intuitively (for real matrices) this carves
out subsets of Rn to form the vector space spanned by the columns of M. Whereas one would
usually work with n fixed and implicit within an Isabelle/HOL locale, we pass the argument
explicitly here because our theorems often need to relate the rank of vector spaces in Rm and
Rn for m ≠ n. This negates some of the automation benefits of Isabelle/HOL’s locale system.

3.3 Code Export

We export our decision procedure to Standard ML, compile with mlton, and test it on 10
microbenchmarks from [18, Section 8]. While we leave extensive experiments for future work
since our implementation is unoptimized, we compare the performance of our procedure using
BKR sign determination (Sections 2.3.2–2.3.4) versus an unverified implementation that
naively uses the matrix equation (Section 2.3.1). We also ran Li et al.’s univ_rcf decision
procedure [18] which can be directly executed as a proof tactic in Isabelle/HOL (code kindly
provided by Wenda Li). The benchmarks were ran on an Ubuntu 18.04 laptop with 16GB
RAM and 2.70 GHz Intel Core i7-6820HQ CPU. Results are in Table 1.

The most significant bottleneck in our current implementation is the computation of Tarski
queries N(p, q) when solving the matrix equation. Recall for our algorithm (Section 2.3.1) the
input q to N(p, q) is a product of (subsets of) polynomials appearing in the inputs. Indeed,
Table 1 shows that the algorithm performs well when the factors have low degrees, e.g., ex1,
ex2, ex4, and ex5. Conversely, it performs poorly on problems with many factors and higher
degrees, e.g., ex3, ex6, and ex7. Further, as noted in experiments by Li and Paulson [20],
the Sturm-Tarski theorem in Isabelle/HOL currently uses a straightforward method for
computing remainder sequences which can also lead to significant (exponential) blowup in
the bitsizes of rational coefficients of the involved polynomials. This is especially apparent
for ex6 and ex7, which have large polynomial degrees and high coefficient complexity; these
time out without completing even a single Tarski query. From Table 1, the BKR approach
successfully reduces the number of Tarski queries as the number of input factors grows –
the number of queries for BKR is dependent on the polynomial degrees and the number
of consistent sign assignments, while the naive approach always requires exactly ( n

2 + 1)2n
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Table 1 Comparison of decision procedures using naive and BKR sign determination and Li
et al.’s univ_rcf tactic in Isabelle/HOL [18]. All formulas are labeled following [18, Section 8];
formulas with ∧ indicate conjunctions of the listed examples. Columns: #Poly counts the number of
distinct polynomials appearing in the formula (maximum degree among polynomials in parentheses),
#Factor counts the number of distinct factors from (1) in Section 2.2 (maximum degree among
factors in parentheses), #N(p, q) counts the number of Tarski queries made by each approach, and
Time reports time taken (seconds, 3 d.p.) for each decision procedure to run to completion. Cells
with - indicate a timeout after 1 hour.

Formula #Poly #Factor #N(p, q)
(Naive)

#N(p, q)
(BKR)

Time
(Naive)

Time
(BKR)

Time
([18])

ex1 4 (12) 3 (1) 20 31 0.003 0.006 3.020
ex2 5 (6) 7 (1) 576 180 5.780 0.442 3.407
ex3 4 (22) 5 (22) 112 120 1794.843 1865.313 3.580
ex4 5 (3) 5 (2) 112 95 0.461 0.261 3.828
ex5 8 (3) 7 (3) 576 219 28.608 8.333 3.806
ex6 22 (9) 22 (8) 50331648 - - - 6.187
ex7 10 (12) 10 (11) 6144 - - - -
ex1 ∧ 2 9 (12) 9 (1) 2816 298 317.432 3.027 3.033
ex1 ∧ 2 ∧ 4 13 (12) 12 (2) 28672 555 - 51.347 3.848
ex1 ∧ 2 ∧ 5 16 (12) 14 (3) 131072 826 - 436.575 3.711

queries for n factors7 (which are reported in Table 1 whether completed or not). On the
other hand, there is some overhead for smaller problems, e.g., ex1, ex3, that arises from the
recursion in BKR.

The univ_rcf tactic relies on an external solver (we used Mathematica 12.1.1) to produce
untrusted certificates which are then formally checked (by reflection) in Isabelle/HOL [18].
This procedure is optimized and efficient: except for ex7 where the tactic timed out, most
of the time (roughly 3 seconds per example) is actually spent to start an instance of the
external solver.

An important future step, e.g., to enable use of our procedure as a tactic in Isabelle/HOL,
is to avoid coefficient growth by using pseudo-division [24, Section 3] or more advanced
techniques: for example, using subresultants to compute polynomial GCDs (and thereby
build the remainder sequences) [12]. Pseudo-division is also important in the multivariate
generalization of BKR (discussed in Appendix A), where the polynomial coefficients of concern
are themselves (multivariate) polynomials rather than rational numbers. The pseudo-division
method has been formalized in Isabelle/HOL [18], but it is not yet available on the AFP.

4 Related Work

Our work fits into the larger body of formalized univariate decision procedures. Most closely
related are Li et al.’s formalization of a CAD-based univariate QE procedure in Isabelle/HOL
[18] and the tarski univariate QE strategy formalized in PVS [24]. We discuss each in turn.

7 For n factors, Section 2.2’s transformation yields n restricted sign determination subproblems involving
n− 1 polynomials each and one subproblem involving n polynomials. Using naive sign determination to
solve all of these subproblems requires n(2n−1) + 2n = ( n

2 + 1)2n Tarski queries in total.
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The univariate CAD algorithm underlying Li et al.’s approach [18] decomposes R into a
set of sign-invariant regions, so that every polynomial of interest has constant sign within each
region. A real algebraic sample point is chosen from every region, so the set of sample points
captures all of the relevant information about the signs of the polynomials of interest for the
entirety of R. BKR (and Renegar) take a more indirect approach, relying on consistent sign
assignments which merely indicate the existence of points with such signs. Consequently,
although CAD will be faster in the average case, BKR and CAD have different strengths
and weaknesses. For example, CAD works best on full-dimensional decision problems [21],
where only rational sample points are needed (this allows faster computation than the
computationally expensive real algebraic numbers that general CAD depends on). The
Sturm-Tarski theorem is also invoked in Li et al’s procedure to decide the sign of a univariate
polynomial at a point (using only rational arithmetic) [18, Section 5]. (This was later
extended to bivariate polynomials by Li and Paulson [19].) This is theoretically similar to
our procedure to find the consistent sign assignments for q1, . . . , qn at the roots of p, as
both rely on the mathematical properties of Tarski queries; however, for example, we do
not require isolating the real roots of p within intervals, whereas such isolation predicates
their computations. This difference reflects our different goals: theirs is to encode algebraic
numbers in Isabelle/HOL, ours is to perform full sign determination with BKR.

PVS’s tarski uses Tarski queries and a version of the matrix equation to solve univariate
decision problems [24]. Unlike our work, tarski has already been optimized in significant
ways; for example, tarski computes Tarski queries with pseudo-divisions. However, tarski
does not maintain a reduced matrix equation as our work does. Further, tarski was designed
to solve existential conjunctive formulas, requiring DNF transformations otherwise [7].

In addition, as previously mentioned, our work is somewhat similar in flavor to Cohen
and Mahboubi’s (multivariate) formalization of Tarski’s algorithm [5]. In particular, the
characterization of the matrix equation and the parts of the construction that do not involve
reduction share considerable overlap, as BKR derives the idea of the matrix equation from
Tarski [2]. However, the reduction step is only present in BKR and is a distinguishing feature
of our work.

5 Conclusion and Future Work

This paper describes how we have verified the correctness of a decision procedure for univariate
real arithmetic in Isabelle/HOL. To the best of our knowledge, this is the first formalization
of BKR’s key insight [2, 32] for recursively exploiting the matrix equation. Our formalization
lays the groundwork for several future directions, including:

1. Optimizing the current formalization and adding parallelism.

2. Proving that the univariate sign determination problem is decidable in NC [2, 32] and
other complexity-theoretic results. This (ambitious) project would require developing a
complexity framework that is compatible with all of the libraries we use.

3. Verifying a multivariate sign determination algorithm and decision procedure based on
BKR. As mentioned previously, multivariate BKR has an error in its complexity analysis;
variants of decision procedures for FOLR based on BKR’s insight that attempt to mitigate
this error could eventually be formalized for useful points of comparison. Two of particular
interest are that of Renegar [32], who develops a full QE algorithm, and that of Canny [3],
in which coefficients can involve some more general terms, like transcendental functions.
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A Comments on Multivariate BKR

The ultimate intent is for the univariate formalization to serve as the basis for an extension
to the multivariate case. The main part of the univariate construction that must be adapted
for multivariate polynomials is the computation of Tarski queries. In the univariate case,
this is accomplished with remainder sequences per the following (standard) result:

▶ Theorem 7 (Generalized Sturm’s theorem [32, Proposition 8.1]). Given coprime univariate
polynomials p, q with p ̸= 0, form the Euclidean remainder sequence p1 = p, p2 = p′q, and
pi is the negated remainder of pi−2 divided by pi−1 for i ≥ 3. This terminates at some
pk+1 = 0 because the remainder has lower degree than the divisor at every step. Let ai

be the leading coefficient of pi for 1 ≤ i ≤ k. Consider the two sequences a1, . . . , ak and
(−1)deg p1a1, · · · , (−1)deg pkak. If S+(p, q) is the number of sign changes in a1, . . . , ak and
S−(p, q) is the number of sign changes in (−1)deg p1a1, · · · , (−1)deg pkak, then N(p, q) =
S−(p, q) − S+(p, q).

Following the idea of BKR, we intend to treat multivariate polynomials in n variables as
univariate polynomials (whose coefficients are polynomials in n− 1 variables) and so compute
remainder sequences of polynomials with attention to a single variable. These remainder
sequences will be sequences of polynomials in n− 1 variables rather than integers, but we
only need to know the signs of those polynomials (rather than their values). That reduces
the problem of sign determination for polynomials in n variables to a sign determination
problem for polynomials in n − 1 variables. In this way we intend to successively reduce
multivariate computations to a series of (already formalized) univariate computations.

This intuition can be captured by the following concrete example. Consider p = x2y + 1
and q = xy + 1. Suppose we choose to first eliminate y. If x is 0, then the analysis for the
remaining p = q = 1 is simple. Otherwise, both x and x2 are nonzero. Now, we calculate the
remainder sequence from Theorem 7: p1 = x2y + 1, p2 = x3y + x2, and p3 = −(1 − x). To
find p3, we calculate x2y + 1 = 1

x (x3y + x2) + (1 − x), where 1
x is well-defined since x ̸= 0.

The leading coefficients of p1, p2, and p3 as polynomials in y are a1 = x2, a2 = x3, and
a3 = −(1 − x). Here, we must use our univariate algorithm to fix some consistent sign
assignment in x on the ai’s, taking into account our earlier stipulation that x and x2 are
nonzero. Say that we choose, for example, x positive, x3 positive, and −(1 − x) negative. (A
full QE procedure would need to consider all possible consistent sign assignments.) Because
of our chosen sign assignment, a1 is positive, a2 is positive, and a3 is negative. Still following
Theorem 7, S+(p, q) = 1 and S−(p, q) = 0. The Tarski query N({1}) is then computed as
N({1}) = N(p, q) = S−(p, q) − S+(p, q) = −1.

If we wish to find the signs of q at the roots of p, we can use this way of computing Tarski
queries to build the matrix equation for p and q. Computing N({}) = 1, and following the
method of the base case (in which the candidate signs list is [[+1], [−1]]), we find:(

1 1
1 −1

) (
0
1

)
=

(
1

−1

)
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Looking at the LHS vector, we see that only its second entry is nonzero. This means that
−1 is the only consistent sign assignment for q at the zeros of p, given our assumptions that
x is positive and −(1 − x) is negative.

We can check this as follows: Given our assumption that x ̸= 0, the only root of p is − 1
x2 .

Plugging this into q, we obtain x(− 1
x2 ) + 1 = − 1

x + 1. Because x is assumed to be positive,
the sign of − 1

x + 1 is the same as the sign of x(− 1
x + 1) = −1 + x = −(1 − x), which we have

assumed to be negative.
Thus, −1 is a consistent sign assignment for q at the roots of p. To find the other

consistent sign assignments, we repeat this process with all other consistent choices for the
signs of x and a1, a2, a3.
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1 Introduction

Background. In the setting of concurrent and distributed systems, choreographic languages
are used to define interaction protocols that communicating processes should abide to [20, 30,
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inherit the key idea of making movement of data manifest in programs [29]. This is usually
obtained through a linguistic primitive like Alice.e → Bob.x, read “Alice communicates the
result of evaluating expression e to Bob, which stores it in its local variable x”.

In recent years, the communities of concurrency theory and programming languages
have been prolific in developing methodologies based on choreographies, yielding results in
program verification, monitoring, and program synthesis [1, 19]. For example, in multiparty
session types, types are choreographies used for checking statically that a system of processes
implements protocols correctly [18]. Further, in choreographic programming, choreographic
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should be pre- and post-processed by processes (encryption, validation, anonymisation, etc.).
Choreographic programming languages showed promise in a number of contexts, including
parallel algorithms [6], cyber-physical systems [25, 24, 16], self-adaptive systems [11], system
integration [15], information flow [22], and the implementation of security protocols [16].

The problem. Proofs in the field of choreographic languages are extremely technical. They
have to cover many cases, and they typically involve translations from/to other languages that
come with their own structures and semantics. The level of complexity makes peer-reviewing
challenging. For example, it has recently been discovered that a significant number (at least
5) of key results published in peer-reviewed articles on multiparty session types actually do
not hold, and that their statements require modification [31].

This article. The aim of this article is to show that computer-aided verification – in partic-
ular, interactive theorem proving – can be successfully applied to the study of choreographies
and to provide solid foundations for future developments. Before presenting our scientific
contributions, it is interesting to look at the story behind this article, as it tells us that
interactive theorem proving is not just a tool to check what we already know.

Our development started in late 2018. Its starting point was the theory of Core Cho-
reographies (CC), a minimalistic language that we previously proposed for the study of
choreographic programming [7]. CC is designed to include only the essential features of
choreographic languages and minimal computational capabilities at processes (computing the
successor of a natural number and deciding equality of two natural numbers). Nevertheless, it
is expressive enough to be Turing complete, which is proven by developing a provably-correct
translation of Kleene’s partial recursive functions [21] into choreographies that implement
the source functions by means of communication [7].

At the TYPES conference in 2019, we gave an informal progress report on the formalisation
of CC using the Coq theorem prover [8]. Our effort revealed soon a crux of unparsimonious
complexity in the theory: a set of term-rewriting rules for a precongruence relation used in the
semantics of the language for (i) expanding procedure calls with the bodies of their respective
procedures and (ii) reshuffling independent communications in choreographies to represent
correctly concurrent execution. This relation is closed under context and transitivity, and it
can always be involved in the derivation of reductions, which led to tedious induction on
the derivation of these term rewritings in almost all cases of proofs that had to do with the
semantics of choreographies. In addition to being time consuming, formalising this aspect
makes the theory presented in [7] much more complicated (we discuss this in Section 2.4).

At the time, the second author had been teaching a few editions of a course that includes
theory of choreographies. Interestingly, the same technical aspects that made the formalisation
of CC much more intricate than its original theory were all found to be subtly complicated
by students. Motivated by this observation and our early efforts in formalising [7], this
author developed a revisited theory of CC for his course material that dispenses with the
problematic notions and shows that they are actually unnecessary [28]. The choreography
theory in [28] is the one that we deal with in this article.

Thus, besides its scientific contributions, this article also shows that theorem proving
can be used in research: the insights that we got doing this formalisation led to changes in
the original theory. We show that this did not come at the cost of expressive power: the
translation of Kleene’s partial recursive functions from [7] still works as-is for the theory
in [28]. Furthermore, while formalising the theory we realised that some assumptions in some
results were actually not necessary, yielding stronger results.
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Contributions. This article presents the first formalised theory of a full-fledged choreographic
language, including its syntax and semantics, and the main properties of determinism,
confluence, and deadlock-freedom by design. This theory is formalised in Coq, using its
module system to make it parametric. We show that the choreographic language is Turing
complete, by encoding Kleene’s partial recursive functions as choreographies and proving
this encoding sound. The full development can be downloaded at [10].

Structure. For compactness we state our definitions and results in Coq syntax. In Section 2,
we present the syntax and semantics of our choreographic language, based on its formalisation
in Coq, and establish the main theoretical properties of this language. Section 3 presents
the theory and formalisation of Kleene’s partial recursive functions, and Section 4 describes
their encoding as choreographies and the proof of Turing completeness of the choreographic
language. We discuss the relevance of our results and future work in Section 5.

2 Choreographies

In this section, we introduce the choreographic language of Core Choreographies (CC),
together with the corresponding formalisation.

A choreography specifies a protocol involving different participants (processes) that can
communicate among themselves and possess local computational capabilities. Each process
also has storage, which is accessible through variables. There are two kinds of communications:
value communications, where the sender process locally evaluates an expression and sends
the result to the receiver process, who stores it in one of its variables; and label selection,
where the sender selects one among some alternative behaviours (tagged by labels) offered
by the receiver. A choreography can also define (recursive) procedures, which can be invoked
by their name anywhere. The formal syntax of choreographies is given in Section 2.2.

2.1 Preliminaries
We define the type of choreographies as a parametric Coq Module, taking eight parameters:
the types of process identifiers (processes for short) Pid, local variables Var (used to access
the processes’ storage), values Val, expressions Expr, Boolean expressions BExpr, procedure
names RecVar (from recursion variables), and the evaluation functions mapping expressions
to values and Boolean expressions to Booleans.

The first six parameters are datatypes that are equipped with a decidable equality. Due
to difficulties with using the definitions in Coq’s standard libraries, we reimplemented this as
a Module Type DecType, and defined a functor DecidableType providing the usual lemmas to
simplify function definitions by case analysis on equality of two objects.

Evaluation requires a local state, mapping process variables to actual values. We model
states as functors, taking Var and Val as parameters and returning a Module containing this
function type together with an operator to update the state (by changing the value assigned
to one variable) and lemmas characterising it. For the semantics of choreographies, we also
need global states, which take Pid as an additional parameter and map each process to a
local state. This type is again enriched with operations to update a global state.

Both modules include a definition of extensional equality: for two local states s and
s' , eq_state s s' holds iff ∀ x, s x = s' x, and for global states eq_state_ext s s' holds iff
∀ p, eq_state (s p) (s' p).

An evaluation function is a function mapping expressions to values, given a local state.
Evaluation must be compatible with extensional equality on states.

ITP 2021
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Module Type Eval (Expression Vars Input Output : DecType).

Parameter eval : Expression.t → (Vars.t → Input.t) → Output.t.
Parameter eval_wd : ∀ f f', (∀ x, f x = f' x) → ∀ e, eval e f = eval e f'.

This module is instantiated twice in the choreography type: with arguments Expr, Var, Val
and Val, evaluating expressions to values, and with arguments BExpr, Var, Val and bool,
evaluating Boolean expressions to Booleans.

2.2 Syntax

We present the Coq definition of the type of choreographies, and afterwards briefly explain
each constructor and its pretty-printing.

Inductive Label : Type :=
| left : Label
| right : Label.

Inductive Eta : Type :=
| Com : Pid → Expr → Pid → Var → Eta
| Sel : Pid → Pid → Label → Eta.

Inductive Choreography : Type :=
| Interaction : Eta → Choreography → Choreography
| Cond : Pid → BExpr → Choreography → Choreography → Choreography
| Call : RecVar → Choreography
| RT_Call : RecVar → (list Pid) → Choreography → Choreography
| End : Choreography.

Definition DefSet := RecVar → (list Pid)∗Choreography.

Record Program : Type :=
{ Procedures : DefSet;

Main : Choreography }.

Constructor Interaction builds a choreography that starts with a communication (Eta), which
can be either a value communication (Com) or a label selection (Sel). These choreographies
are written as p#e−→ q$x;;C or p−→ q[l ];;C, respectively (in general, eta;; C is a choreography
whenever eta:Eta). Label selections were inherited by choreographies from linear logic and
behavioural types: they are used to communicate a choice made by the sender to the receiver.
In minimalistic theories of choreographies and behavioural types, it is common to restrict
the set of labels that can be communicated (Label) to two elements, generically called left
and right [7, 3]. These labels are typically used to propagate information about the local
evaluation of a conditional expression, which generates two possible execution branches.

A choreography that starts by locally evaluating an expression is built using Cond, written
If p??b Then C1 Else C2, while invoking procedure X is built as Call X. A procedure may
involve several processes; the auxiliary term RT_Call X ps C represents a procedure that has
already started executing, but the processes in ps have not yet entered it – the term C is
obtained from the actions of procedure that have been executed (see the semantics below).
We remark that ps has type list Pid, but it is interpreted as a set (in particular, it is always
manipulated by means of set operations). End denotes the terminated choreography.
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A DefSet (set of procedure definitions) is a mapping assigning to each RecVar a list of
processes and a choreography; intuitively, the list of processes contains the processes that
are used in the procedure. A Program is a pair containing a set of procedure definitions and
the choreography to be executed at the start.

Terms built using RT_Call are meant to be runtime terms, generated while executing a
choreography; therefore, programs written by programmers should not contain such terms.
We call such a choreography initial, and define it inductively in the natural way.

Well-formedness. There are a number of well-formedness requirements on choreographies.
Some of these come from practical motivations and are typically explicitly required, while
others are more technical and not always written down in other articles. We summarise these
conditions.

A choreography is well-formed if its processes do not self-communicate: the two arguments
of type Pid to Com and Sel in all its subterms are always distinct. Furthermore, the list of
process names in the argument of RT_Call is never empty. These conditions are defined
separately by recursion in the natural way.

For a program P to be well-formed, there are more requirements on procedure definitions
and the annotations of the runtime terms. First, both Main P and all choreographies in
Procedures P must be well-formed, and furthermore the latter must all be initial choreograph-
ies. In Main P, all runtime terms must be consistently annotated: the set ps in RT_Call X ps C
should only contain processes that occur in the definition of X (as specified in Procedures P).

Second, a program must be finitely specifiable. Instead of requiring the type RecVar to
be finite, which would significantly complicate the formalisation, we require that there exist
Xs:list RecVar such that every procedure in Xs, as well as Main P, only calls procedures in Xs.
Hence, it becomes irrelevant what the remaining procedure definitions are. Well-formedness is
thus parameterised on Xs. (Vars P X and Procs P X denote the first and second components of
Procedures P X, respectively, and within_Xs Xs C holds if choreography C only uses procedure
names in Xs.)

Definition Program_WF (Xs:list RecVar) (P:Program) : Prop :=
Choreography_WF (Main P) ∧ within_Xs Xs (Main P) ∧ consistent (Vars P) (Main P) ∧
∀ X, In X Xs → Choreography_WF (Procs P X) ∧ initial (Procs P X) ∧

(Vars P X) ̸= nil ∧ within_Xs Xs (Procs P X).

The third and last condition is that the set of procedure definitions in a program must be
well-annotated: if Procedures P X=(ps,C), then the set of processes used in C must be included
in ps. The set of processes used in C is in turn recursively defined using the information
in Procedures P, so computing an annotation is not straightforward. For this reason, it
can be convenient in practice to over-annotate a program – which is why well-annotation
only requires a set inclusion. (Function CCC_pn computes the set of processes occurring in a
choreography, given the set of processes used in each procedure.)

Definition well_ann (P:Program) : Prop :=
∀ X, set_incl _ (CCC_pn (Procs P X) (Vars P)) (Vars P X).

Definition CCP_WF (P:Program) := well_ann P ∧ ∃ Xs, Program_WF Xs P.

While Program_WF is decidable, well_ann and CCP_WF (for CC program) are not, due to the
quantifications in their definitions. This motivates defining Program_WF separately.
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Formalising well-formedness requires some auxiliary definitions (the sets of processes and
procedure names used in a choreography) and several inductive definitions. Most of them are
straightforward, if sometimes cumbersome; the complexity of the final definition can make
proofs of well-formedness quickly grow in size and number of cases, so we provide a number
of inversion results such as the following to make subsequent proofs easier.

Lemma CCP_WF_eta : ∀ Defs C eta,
CCP_WF (Build_Program Defs (eta;;C)) → CCP_WF (Build_Program Defs C).

2.3 Semantics
The semantics of CC is defined by means of labelled transition systems, in several layers.
At the lowest layer, we define the transitions that a choreography can make (CCC_To),
parameterised on a set of procedure definitions; then we pack these transitions into the more
usual presentation – as a labelled relation CCP_To on configurations (pairs program/state).
Finally, we define multi-step transitions CCP_ToStar as the transitive and reflexive closure of
the transition relation. This layered approach makes proofs about transitions cleaner, since
the different levels of induction are separated.

Transition labels. We have two types of transition labels. The first one is a simple inductive
type with constructors corresponding to the possible actions a choreography can take: value
communications, label selections, local conditional, or local procedure call. This type is called
RichLabel: rich labels are not present in the informal theory [28], but they are needed to
obtain strong enough induction hypotheses in proofs of results about CC that we will need in
Section 4 for Turing completeness. The labels in the informal theory correspond to observable
actions; they are formalised as TransitionLabel, and they forget the internal details of actions.
The two types are connected by a function forget:RichLabel → TransitionLabel.

Inductive RichLabel : Type :=
| R_Com (p:Pid) (v:Value) (q:Pid) (x:Var) : RichLabel
| R_Sel (p:Pid) (q:Pid) (l:Label) : RichLabel
| R_Cond (p:Pid) : RichLabel
| R_Call (X:RecVar) (p:Pid) : RichLabel.

Inductive TransitionLabel : Type :=
| L_Com (p:Pid) (v:Value) (q:Pid) : TransitionLabel
| L_Sel (p:Pid) (q:Pid) (l:Label) : TransitionLabel
| L_Tau (p:Pid) : TransitionLabel.

Transition relations. CCC_To is defined inductively by a total of 11 clauses, corresponding
to the 11 rules in the informal presentation. We include some of them below, with some
proof terms omitted.

Inductive CCC_To (Defs : DefSet) :
Choreography → State → RichLabel → Choreography → State → Prop :=

| C_Com p e q x C s s' : let v := (eval_on_state e s p) in
eq_state_ext s' (update s q x v) →
CCC_To Defs (p #e −→ q$x;; C) s (R_Com p v q x) C s'

| C_Delay_Eta eta C C' s s' t: disjoint_eta_rl eta t →
CCC_To Defs C s t C' s' →
CCC_To Defs (eta;; C) s t (eta;; C') s'
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| C_Call_Start p X s s':
eq_state_ext s s' →
set_size _ (fst (Defs X)) > 1 → In p (fst (Defs X)) →
CCC_To Defs

(Call X) s
(R_Call X p)
(RT_Call X (set_remove _ p (fst (Defs X))) (snd (Defs X))) s'

| C_Call_Enter p ps X C s s':
eq_state_ext s s' → set_size _ ps > 1 → In p ps →
CCC_To Defs

(RT_Call X ps C) s
(R_Call X p)
(RT_Call X (set_remove _ p ps) C) s'

| C_Call_Finish p ps X C s s':
eq_state_ext s s' → set_size _ ps = 1 → In p ps →
CCC_To Defs

(RT_Call X ps C) s (R_Call X p) C s'.

The first constructor defines a transition for a value communication, with the state being
updated with the value received at the receiver. Since states are functions, we do not want
to require that the resulting state be update s q x v – the state obtained directly from s by
updating the value at q’s variable x with v – but only that it be extensionally equal to it (the
values of variables at all processes are the same). (The stronger requirement would break,
e.g., confluence, since updating two different variables in a different order does not yield the
same state.)

The original informal theory allows for out-of-order execution of independent inter-
actions [7, 28], a well-established feature of choreographic languages [5, 18]. For ex-
ample, given a choreography that consists of two independent communications such as
p#e−→ q$x;;r#e'−→ s$y;;End (“p communicates e to q and r communicates e' to s”) where p,
q, r, and s are distinct processes, we should be able to observe the first and the second value
communication in whichever order. Out-of-order execution is modelled by three rules, of
which the second constructor shown is an example. Here, a choreography is allowed to reduce
under a prefix eta if its label does not share any processes with eta. This side-condition is
checked by disjoint_eta_rl eta t; several auxiliary predicates named disjoint_type1_type2
are defined to simplify writing these conditions.

Procedure calls are managed by four rules, of which the main three are shown. A
procedure call is expanded when the first process involved in it enters it (rule C_Call_Start).
The remaining processes and the procedure’s definition are stored in a runtime term, from
which we can observe transitions either by more processes entering the procedure (rule
C_Call_Enter) or by out-of-order execution of internal transitions of the procedure (rule
C_Delay_Call, not shown). When the last process enters the procedure, the runtime term is
consumed (rule C_Call_Finish). The missing rule addresses the edge case when a procedure
only uses one process.

In order to prove results about transitions, it is often useful to infer the resulting
choreography and state. The constructors of CCC_To cannot be used for this purpose, since
the resulting state is not uniquely determined. Therefore, we prove a number of lemmas
stating restricted forms of transitions that are useful for forward reasoning.

Lemma C_Com' : ∀ Defs p e q x C s, let v := (eval_on_state e s p) in
CCC_To Defs (p #e −→ q$x;; C) s (R_Com p v q x) C (update s q x v).

Afterwards, we formalise the transition relations as defined in [28].
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Definition Configuration : Type := Program ∗State.

Inductive CCP_To : Configuration → TransitionLabel → Configuration → Prop :=
| CCP_To_intro Defs C s t C' s' : CCC_To Defs C s t C' s' →

CCP_To (Build_Program Defs C,s) (forget t) (Build_Program Defs C',s').

Inductive CCP_ToStar : Configuration → list TransitionLabel → Configuration → Prop :=
| CCT_Refl c : CCP_ToStar c nil c
| CCT_Step c1 t c2 l c3 : CCP_To c1 t c2 → CCP_ToStar c2 l c3 → CCP_ToStar c1 (t::l) c3.

We also define the suggestive notations c —[tl ]−→ c' for CCP_To c tl c' and c —[ts ]−→ ∗c'
for CCP_To_Star c ts c'.

2.4 Progress, Determinism, and Confluence
The challenging – and interesting – part of formalising CC is establishing the basic properties
of the language, which are essential for more advanced results and typically not proven in
detail in publications. We discuss some of the issues encountered, as these were the driving
force behind the changes relative to [7].

The first key property of choreographies is that they are deadlock-free by design: any
choreography that is not terminated can reduce. Since the only terminated choreography in
CC is End, this property also implies that any choreography either eventually reaches the
terminated choreography End or runs infinitely. These properties depend on the basic result
that transitions preserve well-formedness.

Lemma CCC_ToStar_CCP_WF : ∀ P s l P' s', CCP_WF P → (P,s) —[l ]−→ ∗ (P',s') → CCP_WF P'.

Theorem progress : ∀ P, Main P ̸= End → CCP_WF P → ∀ s, ∃ tl c', (P,s) —[tl ]−→ c'.

Theorem deadlock_freedom : ∀ P, CCP_WF P →
∀ s ts c' , (P,s) —[ts ]−→ ∗ c' → {Main (fst c') = End} + {∃ tl c'', c' —[tl ]−→ c''}.

This is the first place where we benefit from the change in both the syntax and semantics of
choreographies from [7] to [28], which removes idiosyncrasies that required clarifications in the
reviewing process of [7]. In the language of [7], procedures are defined inside choreographies
by means of a def X = CX in C constructor in choreographies. This makes the definition of
terminated choreography much more complicated, since End could occur inside some of these
terms. Furthermore, procedure calls were expanded by structural precongruence, so that a
choreography as def X = End in X would also be terminated. Separating procedure definitions
from the main choreography in a program and promoting procedure calls to transitions
makes stating and proving progress much simpler. The direct syntactic characterisation of
termination also has advantages, since it is intuitive and easily verifiable.

The second key property is confluence, which is an essential ingredient of the proof of
Turing completeness below: if a choreography has two different transition paths, then these
paths either end at the same configuration, or both resulting configurations can reach the
same one. This is proved by first showing the diamond property for choreography transitions,
then lifting it to one-step transitions, and finally applying induction.

Lemma diamond_Chor : ∀ Defs C s tl1 tl2 C1 C2 s1 s2,
CCC_To Defs C s tl1 C1 s1 → CCC_To Defs C s tl2 C2 s2 →
tl1 ̸= tl2 → ∃ C' s', CCC_To Defs C1 s1 tl2 C' s' ∧ CCC_To Defs C2 s2 tl1 C' s'.
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Lemma diamond_1 : ∀ c tl1 tl2 c1 c2,
c —[tl1 ]−→ c1 → c —[tl2 ]−→ c2 →
tl1 ̸= tl2 → ∃ c', c1 —[tl2 ]−→ c' ∧ c2 —[tl1 ]−→ c'.

Lemma diamond_4 : ∀ P s tl1 tl2 P1 s1 P2 s2,
(P,s) —[tl1 ]−→ ∗(P1,s1) → (P,s) —[tl2 ]−→ ∗(P2,s2) →
(∃ P' tl1' tl2' s1' s2',

(P1,s1) —[tl1' ]−→ ∗(P',s1') ∧ (P2,s2) —[tl2' ]−→ ∗(P',s2') ∧ eq_state_ext s1' s2').

As an important consequence, we get that any two executions of a choreography that
end in a terminated choreography must yield the same state.

Lemma termination_unique : ∀ c tl1 c1 tl2 c2,
c —[tl1 ]−→ ∗ c1 → c —[tl2 ]−→ ∗ c2 →
Main (fst c1) = End → Main (fst c2) = End → eq_state_ext (snd c1) (snd c2).

The complexity of the proof of confluence was the determining factor for deciding to start
our work from the variation of the choreographic language presented in [28] instead of that
in [7]. The current proof of confluence takes about 300 lines of Coq code, including a total of
11 lemmas. This is in stark contrast with the previous attempt, which already included over
30 lemmas with extremely long proofs. The reason for this complexity lay, again, in both
inlined procedure definitions and structural precongruence. Inlined procedure definitions
forced us to deal with all the usual problems regarding bound variables and renaming
(e.g. dealing with capture-avoiding substitutions, working up to α-renaming); structural
precongruence introduced an absurd level of complexity because it allowed choreographies to
be rewritten arbitrarily.

To understand this issue, consider again the choreography p#e−→ q$x;; r#e'−→ s$y;; End.
As we have previously discussed, this choreography can execute first either the communication
between p and q or the one between r and s. In our framework, the first transition is modelled
by rule C_Com, while the second is obtained by applying rule C_Delay_Eta followed by C_Com.
In a framework with reductions and structural precongruence, instead, the second transition
is modelled by first rewriting the choreography as r#e'−→ s$y;; p#e−→ q$x;; End and then
applying rule C_Com [7]. The set of legal rewritings is formally defined by the structural
precongruence relation ⪯, and there is a rule in the semantics allowing C1 to reduce to C2
whenever C1 ⪯ C ′

1, C ′
2 ⪯ C2, and C ′

1 reduces to C2. Thus, the proof of confluence also needs
to take into account all the possible ways into which choreographies may be rewritten in a
reduction. In a proof of confluence, where there are two reductions, there are four possible
places where choreographies are rewritten; given the high number of rules defining structural
precongruence, this led to an explosion of the number of cases. Furthermore, induction
hypotheses typically were not strong enough, and we were forced to resort to complicated
auxiliary notions such as explicitly measuring the size of the derivation of transitions, and
proving that transitions could be normalised. This process led to a seemingly ever-growing
number of auxiliary lemmas that needed to be proved, and after several months of work with
little progress it became evident that the problem lay in the formalism.

With the current definitions, the theory of CC is formalised in two files. The first file,
which defines the preliminaries, contains 40 definitions, 58 lemmas and around 700 lines of
code. The second file, which defines CC-specific results, contains 48 definitions, 106 lemmas,
2 theorems and around 2100 lines of code.

ITP 2021



15:10 Formalising a Turing-Complete Choreographic Language in Coq

3 Partial Recursive Functions

In order to formalise Turing completeness of our choreographic language, we need a model
of computation. In [7], the model chosen was Kleene’s partial recursive functions [21], and
the proof proceeds by showing that these can all be implemented as a choreography, for a
suitable definition of implementation. This proof structure closely follows that of the original
proof of computational completeness for Turing machines [32].

In this section, we describe our formalisation of partial recursive functions, and the main
challenges and design options that it involved. Following standard pratice, we routinely use
lambda notation for denoting these functions.

3.1 Syntax
The class of partial recursive functions is defined inductively as the smallest class containing
the constant unary zero function Z = λx.0, the unary successor function S = λx.x + 1 and
the n-ary projection functions P n

k = λx1 . . . xn.xk (base functions), and closed under the
operations of composition, primitive recursion, and minimisation. All functions have an arity
(natural number); the arity of Z and S is 1, and the arity of P n

k is n. Given a function g of
arity m and m functions f1, . . . , fm of arity k, then the composition C(g, f⃗) has arity k; if g

has arity k and h has arity k + 2, then function R(g, h) defined by primitive recursion from
g and h has arity k + 1; and if h has arity k + 1, then its minimisation M(h) has arity k.

We formalise this class as a dependent inductive type PRFunction taking the arity of the
function as a parameter. In order to ensure the correct number of arguments in composition,
we require f1, . . . , fm to be given as a vector of length m (the type of vectors of length m

whose elements have type A is written in Coq as t A m).

Inductive PRFunction : nat → Set :=
| Zero : PRFunction 1
| Successor : PRFunction 1
| Projection : ∀ {m k:nat}, k < m → PRFunction m
| Composition : ∀ {k m:nat} (g:PRFunction m) (fs:t (PRFunction k) m), PRFunction k
| Recursion : ∀ {k:nat} (g:PRFunction k) (h:PRFunction (2+k)), PRFunction (1+k)
| Minimisation : ∀ {k:nat} (h:PRFunction (1+k)), PRFunction k.

Note the required proof term on the constructor for projections. The parameter k is one unit
lower than the parameter k in the mathematical definition, since Coq’s natural numbers
start at 0 – this choice simplifies the development.

3.2 Semantics
A partial recursive function of arity m is meant to denote a partial function of type Nm → N.
The denotation of Z, S and P n

k was already given above; the remaining operators are
interpreted as follows, where we write x⃗ for x1, . . . , xk.

C(g, f⃗)(x⃗) = g(f1(x⃗), . . . , fm(x⃗))
R(g, h)(0, x⃗) = g(x⃗)

R(g, h)(n + 1, x⃗) = h(n, R(g, h)(n, x⃗), x⃗)
M(h)(x⃗) = n if h(x⃗, n) = 0 and h(x⃗, i) > 0 for all 0 ≤ i < n

Minimisation can lead to partiality, since there may be no n satisfying the conditions
given in its definition. This partiality propagates, since any value depending on an undefined
value is also undefined. Kleene’s original work does not completely specify this mechanism:
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for example, if f is a unary function that is undefined everywhere, should C(Z, f) be also
everywhere undefined, or constantly zero? It is common practice to follow a call-by-value
semantics and assume that a function is undefined whenever any of its arguments is undefined,
even in the case where those arguments are not used for computing the result; we take this
approach in this work.

Since Coq does not allow for defining partial functions, we take an operational approach to
the semantics of partial recursive functions, and interactively define the bounded evaluation
of an m-ary function f on a vector of length m in n steps, which has type option nat. This
construction proceeds in three steps. First, we deal with minimisation by defining

Fixpoint find_zero_from {k} (h:t (option nat) (1+k) → option nat)
(ns:t (option nat) k) (init:nat) (steps:nat) : option nat :=
match steps with
| O ⇒ None
| S m ⇒ match h (shiftin (Some init) ns) with

| None ⇒ None
| Some O ⇒ Some init
| Some (S _) ⇒ find_zero_from h ns (S init) m end end.

which tries to find the smallest zero of h starting at init using a bound of steps steps for the
first value, steps−1 for the next value, etc. (The type t T n is the type of vectors containing
exactly n elements of type T.) With this, we recursively define the evaluation function

Fixpoint eval_opt {m} (f:PRFunction m) : ∀ (steps:nat) (ns:t (option nat) m), option nat.

Defining this function directly is complex due to the dependent type PRFunction m – one
needs to do induction on m and then reason about the possible cases for f in each case, which
is not easy to write directly. Instead, we define eval_opt directly. Finally, we define

Definition eval {m} (f:PRFunction m) (steps:nat) (ns:t nat m) : option nat
:= eval_opt f steps (map Some ns)

as our intended evaluation function.
Evaluation starts by checking that all arguments are defined. If this is the case, then the

base functions always return their value; composition and recursion call the functions that
they depend upon with the same number of steps; and minimisation initiates a search from 0
with the bounds explained above.

In order to ensure that the interactive definitions are correct, we prove a number of
lemmas stating that the defining equations for each class of functions hold. For example, for
recursion we have the following three lemmas.

Lemma Recursion_correct_base : ∀ k (g:PRFunction k) (h:PRFunction (2+k)) (ns:t nat (1+k)),
∀ steps, hd ns = 0 → eval (Recursion g h) steps ns = eval g steps (tl ns).

Lemma Recursion_correct_step : ∀ k (g:PRFunction k) (h:PRFunction (2+k)) (ns:t nat (1+k)),
∀ steps x y, hd ns = S x → (eval (Recursion g h) steps (x :: tl ns)) = Some y →
eval (Recursion g h) steps ns = eval h steps (x :: y :: tl ns).

Lemma Recursion_correct_step' : ∀ k (g:PRFunction k) (h:PRFunction (2+k)) (ns:t nat (1+k)),
∀ steps x, hd ns = S x → (eval (Recursion g h) steps (x :: tl ns)) = None →
eval (Recursion g h) steps ns = None.

These results rely on a number of auxiliary results, notably about the function find_zero_from.
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3.3 Examples
For further proof of correctness, we chose some functions that typically are used as examples
in textbooks on the topic – addition, multiplication, sign – and some relations – greater
than, smaller than, equals – and showed that the usual definitions are correct. For example,
sum is defined as R(P 1

1 , C(S, P 3
2 )) (this is also used as an example in [7]). Our formalisation

defines PR_add as Recursion (Projection aux11) (Composition Successor [Projection aux23 ]),
and includes

Lemma add_correct : ∀ m n steps, eval PR_add steps [m; n ] = Some (m + n).

(The parameters m and k are implicit in the constructor for projections; the proof terms are
named to correspond to the informal usage, so that aux11:0<1. Thus P 1

1 is represented by
@Projection 0 1 aux11.)

3.4 Convergence and Uniqueness
The next step is to show that the value by eval is unique and stable (augmenting the number
of steps can only change it from None to Some n, and not conversely).

This is the first place where we have to do induction over PRFunction. The induction
principle automatically generated by Coq from the type definition is not strong enough for
our purposes: the constructor for composition includes elements of type PRFunction inside a
vector argument, and these functions are not available on inductive proofs. We use a standard
technique to overcome this limitation: we assign a depth to every element of PRFunction
(corresponding to the depth of its abstract syntax tree), and prove results by induction over
the depth of functions. In particular, this allows us to prove the following general induction
principle.

Theorem PRFunction_induction : ∀ (P:∀ (n:nat) (f:PRFunction n), Prop),
P _ Zero → P _ Successor →
(∀ i j (Hp:i<j), P _ (Projection Hp)) →
(∀ m k g fs, (∀ H, P m fs[@H ]) → P k g → P _ (Composition g fs)) →
(∀ k g h, P _ g → P _ h → P (1+k) (Recursion g h)) →
(∀ k h, P _ h → P k (Minimisation h)) →
∀ n f, P n f.

(The notation v[@H ] denotes the k-th element of vector v, where H is a proof that k is smaller
than the length of v.)

Using this principle (and sometimes directly induction over depth), we can prove all
mentioned properties of evaluation. We then define convergence and divergence in the natural
way.

Definition converges {k} (f:PRFunction k) ns y := ∃ steps, eval f steps ns = Some y.
Definition diverges {k} (f:PRFunction k) ns := ∀ steps, eval f steps ns = None.
Lemma converges_inj : ∀ {k} f ns y y', converges (k:=k) f ns y → converges f ns y' → y = y'.
Lemma converges_diverges : ∀ {k} f ns, (diverges (k:=k) f ns ↔ ∀ y, ~converges f ns y).

Finally, we prove a number of results for establishing convergence of each class of
functions. These results are used later, when proving Turing completeness of choreographies.
For example, for recursion we have:

Lemma Recursion_converges_base : ∀ k g h ns y,
converges g (tl ns) y → converges (@Recursion k g h) (0::tl ns) y.
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Lemma Recursion_converges_step : ∀ k g h ns x y z,
converges (@Recursion k g h) (x::ns) y →
converges h (x::y:: ns) z → converges (Recursion g h) (S x::ns) z.

Conversely, if recursion converges, then all intermediate computations must also converge.

Lemma converges_Recursion_base : ∀ {m} (g:PRFunction m) h ns y,
converges (Recursion g h) ns y → hd ns = 0 → converges g (tl ns) y.

Lemma converges_Recursion_step : ∀ {m} (g:PRFunction m) h ns x y,
converges (Recursion g h) ns y → hd ns = (S x) →
∃ z, converges (Recursion g h) (x :: tl ns) z ∧ converges h (x :: z :: tl ns) y.

Lemma converges_Recursion_full : ∀ {m} (g:PRFunction m) h ns y,
converges (Recursion g h) ns y →
∀ x, x ≤ hd ns → ∃ z, converges (Recursion g h) (x :: tl ns) z.

For completeness, the formalisation also includes corresponding results for divergence;
these are currently unused.

This part of the development contains 22 definitions and 84 lemmas, with a total of 1388
lines of code. (This excludes some results on basic data structures that we could not find in
the standard library.)

4 Turing Completeness of Choreographies

We are now ready to show that the choreographic language is Turing complete, in the sense
that every partial recursive function can be implemented as a choreography (for a suitable
definition of implementation). The construction is very similar to that in [7]: a significant
part of the formalisation amounted to transcribing all the relevant definitions to Coq syntax.
This contributes to confirming that the simplifications introduced in [28] and the additional
notions and properties (rich labels, well-formedness, etc.) introduced by our formalisation
are mostly internal and aimed at simplifying metatheoretical reasoning on choreographies.

4.1 Concrete Language
The first step is to instantiate the parameters in the definition of CC with the right types.
Process identifiers, values and procedure names are natural numbers. Each process contains
two variables; we use Bool for this type, and alias its elements to xx and yy for clarity.
Expressions are an inductive type with three elements: this (evaluating to the process’s
value at xx), zero (evaluating to 0) and succ_this (evaluating to the successor of the value
at xx). Boolean expressions are a singleton type with one element compare, which evaluates
to true exactly when the process’s two variables store the same element.

We restrict the syntax of choreographies to mimic the operators from the original
development in [7], where processes only had one storage variable. Thus, incoming value
communications are always stored at variable xx. However, in that calculus the conditional
compared the value stored in two processes. We model this as a communication whose result
is stored at yy, followed by a call to compare. We define these operations as macros.

Definition Send p e q := p#e −→ q$xx.
Definition IfEq p q C1 C2 := q#this −→ p$yy;; If p ? compare Then C1 Else C2.
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4.2 Encoding
The most complex step of the formalisation is formalising the encoding of partial recursive
functions as choreographies. This is naturally a recursive construction, but there are
some challenges. First, non-base functions need to store intermediate computation results
in auxiliary processes; second, recursion and minimisation use procedure definitions to
implement loops. The strategy in [7] was to use auxiliary processes sequentially: since we
can statically determine how many processes are needed from the definition of the function
to encode, we can always determine the first unused process. The language used therein did
not have the problem with recursion variables, but the same technique applies.

The key definition is the following: a choreography C implements function f : Nm → N
with input processes p1, . . . , pm and output process q iff: for any state s where p1, . . . , pm

contain the values n1, . . . , nm in their variable xx, (i) if f(n1, . . . , nm) = n, then all executions
of C from s terminate, and do so in a state where q stores n in its variable xx; and (ii) if
f(n1, . . . , nm) is undefined, then execution of C from s never terminates. This is captured in
the following Coq definition.

Definition implements (P:Program) {n} (f:PRFunction n) (ps:t Pid n) (q:Pid) :=
∀ (xs:t nat n) (s:State), (∀ Hi, s (ps[@Hi ]) xx = xs[@Hi ]) →
(∀ y, converges f xs y ↔ ∃ s' ts P',

(P,s) —[ts ]−→ ∗ (P',s') ∧ s' q xx = y ∧ Main P' = End) ∧
(diverges f xs ↔ ∀ s' ts P', (P,s) —[ts ]−→ ∗ (P',s') → Main P' ̸= End).

The idea is that we recursively define the set of procedure definitions needed to encode
f : Nm → N, taking as parameters not only the processes p1, . . . , pm and q, but also the
indices of the first unused process and the first unused procedure. The encoding of f

is a program whose set of procedure definitions is obtained by instantiating the last two
values to max(p1, . . . , pm, q) + 1 and 0, respectively, and whose main choreography is Call 0.
Furthermore, we also ensure that the choreography terminates by calling the first unused
procedure (which by default is defined as the terminated choreography). This makes it easy
to ensure that procedure calls compose nicely in the recursive steps of the construction.

We start by defining two auxiliary functions Pi and Gamma, which given a function in
PRFunction return the number of processes and procedures needed to encode it, respectively.
(Function Pi is exactly the function Π from [7].) No results about these functions are needed
– their definition suffices to prove all needed results, namely that no process (resp. procedure)
higher than Pi f (resp. Gamma f) is used when encoding f.

Ironically, the most challenging part of the definition is composition (which is straightfor-
ward in the informal presentation), and not minimisation (which is responsible for introducing
partiality). The base cases are directly encoded by suitably adapting the definitions from [7],
and those of recursion and minimisation have a recursive structure very close to the informal
textbook definition. However, the definition of composition needs to be recursive (due to the
variable number of argument functions), and working with vectors adds a layer of complexity.
As such, a number of auxiliary functions were defined to deal with composition, defining
a choreography that encodes a vector of functions all with the same inputs and returning
outputs in consecutive processes.

The recursive definition of encoding Encoding_rec is again written interactively, and
afterwards a number of lemmas prove that it behaves as expected, e.g.:

Lemma Zero_Procs : ∀ d Hd ps q n X,
Encoding_rec Zero d Hd ps q n X X = Send (hd ps) zero q;; Call (S X).
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Lemma Recursion_Procs_g : ∀ k (g:PRFunction k) h d (Hd:depth (Recursion g h) < S d) ps q n,
∀ X Y, X ≤ Y < X + Gamma g → let Hg := (...) in
Encoding_rec (Recursion g h) _ Hd ps q n X Y =

Encoding_rec _ _ Hg (tl ps) n (n+3) X Y.

where we omit the definition of the proof term Hg. Note that Encoding_rec has the com-
plex type ∀ (m:nat) (f:PRFunction m) (d:nat), depth f<d → t Pid m → Pid → nat → RecVar →
RecVar → Choreography – it receives a function of depth smaller than d, the set of input
processes, the output process, the index of the first unused process and the index of the first
unused procedure definition, and returns a mapping of procedure definitions to choreographies
(where all previously defined procedures are unchanged).

Finally, we prove that encoding always returns a well-formed choreography. This is
implicit in [7], but it is an essential property that should hold. For convenience, each
condition of well-formedness is proved separately, capitalising on the fact that the encoding
returns an initial choreography. The proof follows the recursive structure of the definition of
Encoding_rec, and is relatively automatic once the relevant splitting in cases is done.

Lemma Encoding_WF : ∀ {n} (f:PRFunction n) ps q, ~In q ps → CCP_WF (Encoding f ps q).

4.3 Soundness
Soundness of the encoding – the property that the encoding of f implements f – is proven by
analysing the execution path obtained by always reducing the first action in the choreography,
and invoking confluence. We split the proof into a number of lemmas, stating the obvious
reductions from each procedure definition to the procedure call at its end. We give some
examples of these results.

Lemma Zero_reduce : ∀ Defs (ps: t Pid 1) q X s,
∃ t, (Build_Program Defs (Send (hd ps) zero q;; Call X),s)

—[t ]−→ (Build_Program Defs (Call X), update s q xx 0).

Lemma Recursion_reduce_0 : ∀ Defs X n s,
∃ t, (Build_Program Defs (Send (n + 2) zero (S n);; Call X),s)

—[t ]−→ (Build_Program Defs (Call X),update s (S n) xx 0).

Lemma Recursion_reduce_1_true : ∀ m Defs X Y n (ps:t Pid (S m)) q s,
s (S n) xx = s (hd ps) xx → ∃ t s',
(Build_Program Defs (IfEq (S n) (hd ps) (Send n this q;; Call X) (Call Y)),s)

—[t ]−→ ∗ (Build_Program Defs (Call X), s')
∧ s' q xx = s n xx ∧ ∀ p, p ̸= q → s' p xx = s p xx.

Lemma Recursion_reduce_1_false : ∀ m Defs X Y n (ps:t Pid (S m)) q s,
s (S n) xx ̸= s (hd ps) xx → ∃ t,
(Build_Program Defs (IfEq (S n) (hd ps) (Send n this q;; Call X) (Call Y)),s)

—[t ]−→ ∗ (Build_Program Defs (Call Y), update s (S n) yy (s (hd ps) xx)).

We briefly explain the lemmas about recursion. Encoding R(g, h) uses three auxiliary
procedures. The first one initializes the recursion by placing a zero on the first auxiliary
process (Lemma Recursion_reduce_0), and calls the first procedure in the encoding of g. The
second one, placed immediately after the procedures used for encoding g, checks whether the
value in the auxiliary process is the value where we want to stop, and in this case places
the result in the return process (Lemma Recursion_reduce_1_true). Otherwise, it calls the

ITP 2021



15:16 Formalising a Turing-Complete Choreographic Language in Coq

first procedure in the encoding of h (Lemma Recursion_reduce_1_true). (This explanation
assumes the values of X and Y to be instantiated in the right way, but the lemmas do not
depend on this.) The third procedure, invoked when h terminates, increases the value of
the auxiliary process controlling the loop (Lemma Recursion_reduce_2, omitted). All these
lemmas also include characterisations of the resulting state that are needed for applying the
induction hypothesis in the main proof.

Using these results, we can prove by induction that, if s is a state where n1, . . . , nm

are stored in the appropriate processes, (i) if f(n1, . . . , nk) converges, then there is some
execution path of the encoding of f from s that terminates with the expected result; (ii) using
confluence, all execution paths from s must terminate in the same state; and (iii) that if
f(n1, . . . , nk) diverges, then no execution of the encoding of f from s terminates. These
three results are combined in a single theorem, stating that the default encoding of f (where
n1, . . . , nm are stored in processes 1, . . . , m, and the result is returned in process 0) is sound.

Theorem encoding_sound : ∀ n (f:PRFunction n), implements (Encoding' f) f (vec_1_to_n n) 0.

This part of the development contains 28 definitions and 65 lemmas, with a total of 2352
lines of code.

5 Discussion

We presented a formalisation of a choreographic language and proved it Turing complete.
To the best of our knowledge, this is the first time that such a task has been achieved –
the only comparable work in progress consists of a preliminary presentation on a certified
compiler from choreographies to CakeML [17], which however does not deal with the major
challenge of recursion (the choreography language used therein is simplistic and can only
express finite behaviour) [23]. Moreover, we showed how formalising proofs unveiled subtle
problems in definitions and can influence the development of the theory, making a case for a
more systematic use of theorem provers in research in the field. The number of choreographic
languages proposed in the literature is increasing rapidly, to include features of practical
value such as asynchronous communication, non-determinism, broadcast, dynamic network
topologies, and more [1, 14, 19]. Hopefully, our work can contribute a solid foundation for
the development of these features. This recalls the situation found in the field of process
calculi, and indeed similar conclusions are drawn in an article that presents the formalisation
of a higher-order process calculus in Coq [26].

Our formalisation of Kleene’s partial recursive functions is similar to the one in [34], of
which we were not aware when we started this project. The library of proofs of undecidability
formalised in Coq, being developed at the University of Saarbrücken, also includes definitions
and results related to ours [12, 13].

It is interesting that the proof of Turing completeness – both construction and proofs –
still closely follows the original theory [7], despite the significant changes to the lowest layers
that we had to make. This suggests that the major formalisation challenge currently lies in
the foundational work.

Our formalisation includes some design options. The most significant one, in our opinion,
is the restriction to only two labels in selections. However, as is well known in the field of
session types, this is not a serious restriction [3]. Labels are typically used to communicate
choices based on a conditional; more complex decisions are expressed as nested conditionals,
and can be communicated by sending multiple label selections.

Restricting the set of labels to two elements also has a strong impact on the formalisation
of realisability [2, 4], which we do not discuss in this article. Choreography realisability
deals with identifying sufficient conditions for a choreography to be implementable in a
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distributed setting, and generating an implementation in a process calculus automatically.
The formalisation of this construction, described in [9], was completed after the current work,
and heavily relies on the set of labels being fixed. An important result is that any choreography
can be amended into a realisable one, so that in particular our Turing-completeness result
immediately implies Turing-completeness of the process calculus used for implementations.

We aimed at making our development reusable, so that it can readily be extended to more
expressive choreographic languages. In the future, we plan to look at interesting extensions
(such as those mentioned above) and explore how easy it is to extend the current formalisation
to those frameworks. We conjecture that this will prove much simpler than the current effort,
thanks to the structures established in this work.
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Abstract
Naproche is an emerging natural proof assistant that accepts input in a controlled natural language for
mathematics, which we have integrated with LATEX for ease of learning and to quickly produce high-
quality typeset documents. We present a self-contained formalization of the Mutilated Checkerboard
Problem in Naproche, following a proof sketch by John McCarthy. The formalization is embedded
in detailed literate style comments. We also briefly describe the Naproche approach.
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1 Introduction

We illustrate the potential of natural interactive theorem proving by a formalization of
the Mutilated Checkerboard Problem in the interactive proof assistant Naproche (Natural
Proof Checking). The formalization employs the (controlled) natural mathematical language
ForTheL (Formula Theory Language), which is immediately readable by mathematicians and
has obvious first-order semantics. ForTheL allows familiar definition-axiom-theorem-proof
text structures. The language is integrated into LATEX (see also [10]) so that the formalization
document can be viewed and printed in high-quality mathematical typesetting. In the spirit
of literate programming [8], the actual formalization, indicated with a grey background, is
embedded into ample commentary for the benefit of human readers. Thus the whole article
is a valid proof-checked ForTheL document.

The Mutilated Checkerboard Problem, which will be explained in detail in the formalization
in Section 3, was proposed by John McCarthy as a challenge (“tough nut”) [12] to automatic
and interactive theorem proving. By now there are many formalizations of the problem
(see the survey article A Tough Nut for Mathematical Knowledge Management by Manfred
Kerber and Martin Pollet [7]).

Mathematically, our formalization follows McCarthy’s sketch The mutilated checkerboard
in set theory [13]. Our formalization is fully self-contained and includes definitions and axioms
about finite sets, functions and cardinalities. Since Naproche is based on a weakly typed
first-order logic, modelling the checkerboard employs first-order relations, functions and
constants. Our axioms are evidently true in a “standard model” of a checkerboard and finite
sets. In a stronger foundational theory like Zermelo-Fraenkel set theory, our axioms are
provable when one replaces “set” by “finite set”.
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In Section 2 we briefly describe the Naproche system and its input language ForTheL.
Section 3 contains the actual formalization of the Mutilated Checkerboard Problem; the
text includes explanations of axiomatic and mathematical details of the argument. Further
technical remarks about the formalization are elaborated in Section 4. In the final Section 5
we propose further improvements to the Naproche system.

We think that naturalness of interaction will be a crucial factor for the acceptance of
proof assistants by the mathematical community.

2 The Natural Proof Assistant Naproche

While state-of-the-art interactive theorem provers have been used to prove and certify highly
non-trivial research mathematics, they are still, according to Lawrence Paulson, “unsuitable
for mathematics. Their formal proofs are unreadable.” [17]. Natural proof assistants intend
to bridge the wide gap between intuitive mathematical texts and the formal rigour of logical
calculi. This requires in particular

input languages close to the mathematical vernacular, including symbolic expressions;
text structurings like the axiom-definition-theorem-proof schema;
natural argumentative phrases for various proof tactics;
familiar logics and mathematical ontologies;
strong automatic theorem proving to fill in obvious proof details;
an intuitive editor for text and theory development which interactively integrates the
checking process and guides formalization.

The Naproche proof assistant stems from two long-term efforts devoted to these goals:
the Evidence Algorithm (EA) / System for Automated Deduction (SAD) projects at the
universities of Kiev and Paris [15, 16, 19, 20], and the Naproche project at Bonn [11, 3,
4, 9]. The ForTheL input language of SAD has been extended and embedded in LATEX,
allowing mathematical typesetting; the original proof-checking mechanisms have been made
more efficient and varied. Moreover, Naproche has been integrated into the Isabelle Proof
Interactive Development Environment (Isabelle/PIDE) [21] which supports interactive editing
and checking of mathematical texts. Naproche, however, is not connected to the standard
logics implemented in Isabelle. Some comprehensive readable formalizations at the level of
undergraduate mathematics have been undertaken in Naproche and are available online [2].
Naproche uses classical first-order logic as its underlying logic (following the SAD

approach), giving direct access to strong ATPs like E [18]. The input language ForTheL has
been carefully designed to approximate the weakly typed natural language of mathematics
whilst being efficiently translatable to the language of first-order logic. In ForTheL, standard
mathematical types are called notions, and these are internally represented as unary predicates
with first-order definitions. This leads to a flexible type system where number systems can
be cumulative (N ⊆ R), and notions can depend on parameters (subsets of N, divisors of n).

The first-order language of notions, constants, relations, and functions is introduced and
extended by signature and definition commands as in this example which is unrelated to the
checkerboard formalization:

Signature. A real number is a notion.
Definition. R is the set of real numbers.
Signature. 0 is a real number.
Definition. A nonzero number is a real number that is not equal to 0.
Signature. Let x, y be real numbers. Let y be a nonzero number. x

y is a real number.
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ForTheL requires that all variables and terms have some type in the declared system of
notions. As part of proof-checking, Naproche will first check the type-correctness of all terms
in a ForTheL statement before proceeding to the further processing of the statement. This
type-checking phase is called ontological checking. Due to the first-order dependent definition
of types, type-checking is more involved than in static type systems. On the other hand this
approach naturally supports standard partial functions like x

y for reals x, y. The guard y ̸= 0
will only be checked after the checking process has gone through all the text preceding the
term x

y in question.
Our formalization of the Mutilated Checkerboard Problem in the next section can be read

as a gentle introduction to ForTheL, which declares a language of checkerboards, dominoes
and tilings, postulates some axioms, and proceeds to show simple propositions which result
in the final non-tileability.

The formalization is carried out in the Isabelle 2021 PIDE which includes a Naproche
component. Further mathematical and logical particulars are contained in the literate
comments in the formalization; technical information on the use of Naproche and Isabelle is
given in Section 4.

3 The Mutilated Checkerboard Problem Formalized in Naproche

3.1 Introduction

The Mutilated Checkerboard Problem asks the following:

Consider an 8×8 checkerboard with two diametrically
opposed corners removed, leaving 62 squares.

Is it possible to place 31 dominoes of size 2×1 so as to
cover all 62 remaining squares?

a bb c d e

8
7
6
5
4
3
2
1

f g h

Max Black proposed this problem in his book Critical Thinking (1946). It was later discussed
by Martin Gardner in his Scientific American column, Mathematical Games. John McCarthy,
one of the founders of Artificial Intelligence, described it as a Tough Nut for Proof Procedures
and discussed fully automatic or interactive proofs of the solution.

3.2 Setting up the checkerboard
We introduce types (or notions) and constants to model checkerboards as a Cartesian product
of ranks 1, 2, . . . , 8 and files a, b, . . . , h, where we follow standard checkerboard notation.
In future versions of Naproche these signature declarations should be grouped as a single
declaration of an inductively defined set, allowing phrasings such as 1, 2, 3, 4, 5, 6, 7, 8 are
ranks. Note that the effect of signature declarations is to extend the underlying first-order
language. Naproche treats 1, 2, . . . as new constant symbols which have no connection to
the homonymous integers and in particular do not carry assumptions about distinctness.
Here our approach diverges from McCarthy’s who employs integers modulo 8, but this would
require us to formalize part of the theory of Z/8Z.
Naproche allows to group elements into classes and sets as long as they are setsized

(informally also called small).
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Signature 1. A rank is a notion.
Let r, s denote ranks.

Axiom 2. r is setsized.
Signature 3. 1 is a rank.
Signature 4. 2 is a rank.
Signature 5. 3 is a rank.
Signature 6. 4 is a rank.
Signature 7. 5 is a rank.
Signature 8. 6 is a rank.
Signature 9. 7 is a rank.
Signature 10. 8 is a rank.
Definition 11. R = {1, 2, 3, 4, 5, 6, 7, 8}.
Signature 12. A file is a notion.
Let f, g denote files.
Axiom 13. f is setsized.
Signature 14. a is a file.
Signature 15. b is a file.
Signature 16. c is a file.
Signature 17. d is a file.
Signature 18. e is a file.
Signature 19. f is a file.
Signature 20. g is a file.
Signature 21. h is a file.
Definition 22. F = {a, b, c, d, e, f, g, h}.
Signature 23. A square is a notion.
Axiom 24. (f, r) is a square.
Let v, w, x, y, z denote squares.

Is there a set of all squares? This may not be true for an arbitrary notion, but it is true
for squares, so we assume it as an axiom. Note that we can always form the class C of all
inhabitants of a notion as long as x ∈ C can only be true for setsized x. Morse and Kelley
[6, 14] use the same approach in their axiomatization of set theory.

Definition 25. C is the class of squares x such that x = (f, r) for some element f of F
and some element r of R.
Axiom 26. C is a set.

3.3 Preliminaries about sets and functions
We enrich the small built-in set theory with further properties and axioms that will be used
in the course of our argument. To keep the document fully self-contained we formulate the
necessary definitions and axioms ourselves. Note that there are many degrees of freedom in
picking an axiomatic setting.
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In Definition 27, we do not define the relation A ⊆ B, but rather the type of subsets
of a given set B. The type is parametrized by a member of the type set. This is a kind
of dependent type, depending on B, in the sense of dependent type theory. Therefore the
wording A [...] is a [...] is used in Definition 27 as well as in Definition 29. More specifically,
we use a form with an argument prefixed by of, a so-called of -notion. This allows certain
grammatical variants and constructs like B has a subset A or every subset of A satisfies
[...]. Note that an element similarly is an of -notion so that one could write phrases like x

is an element of B or even more complicated ones like for all nonequal elements A, B of C.
One could also have defined the relation A ⊆ B by a statement of the form: A ⊆ B iff [...].
Definition 30 defines disjointness in that format.

Let A, B, C denote sets.
Definition 27. A subset of B is a set A such that every element of A is an element of
B.
Axiom 28 (Extensionality). If A is a subset of B and B is a subset of A then A = B.
Definition 29. A proper subset of B is a subset A of B such that A ̸= B.
Definition 30. A is disjoint from B iff there is no element of A that is an element of B.
Definition 31. A family is a set F such that every element of F is a set.
Definition 32. A disjoint family is a family F such that A is disjoint from B for all
nonequal elements A, B of F .
Definition 33. B ∩ C = {x ∈ B | x ∈ C}.
Definition 34. B \ C = {x ∈ B | x /∈ C}.

The notion of object is the built-in largest notion, containing all other notions. Also note
that the proof of the lemma below really is omitted and not merely hidden: with its internal
“reasoner” and in non-trivial cases with the help of automated theorem provers such as E,
Naproche can accept some theorems without any additional argumentation.

Lemma 35. Every set is an object.

The built-in ordered pair notation that we already used in the first subsection does not
include the universal property of ordered pairs, so we postulate it as an axiom.

Axiom 36. Let α, β, γ, δ be objects. If (α, β) = (γ, δ) then α = γ and β = δ.

(Unary) functions are built into Naproche; F (t) denotes the application of a function F

to an argument t and Dom(F ) stands for the domain of F . In our exposition we shall use
functions to compare cardinalities of black and white squares. As with sets, we introduce
some further properties of functions.

Let F, G denote functions.
Definition 37. F : A → B iff Dom(F ) = A and F (x) is an element of B for all elements
x of A.

Bijective functions are the basis of the modern theory of cardinalities; sets have the same
cardinality iff there is a bijection between them.
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Definition 38. F : A ↔ B iff F : A → B and there exists G such that G : B → A and
(for all elements x of A we have G(F (x)) = x) and (for all elements y of B we have
F (G(y)) = y).

3.4 Cardinalities of Finite Sets

Definition 39. A is equinumerous with B iff there is F such that F : A ↔ B.
Lemma 40. Assume that A is equinumerous with B. Then B is equinumerous with A.
Lemma 41. Assume that A is equinumerous with B and B is equinumerous with C.
Then A is equinumerous with C.

Proof. Take a function F such that F : A ↔ B. Take a function G such that G : B → A

and (for all elements x of A we have G(F (x)) = x) and (for all elements y of B we have
F (G(y)) = y). Take a function H such that H : B ↔ C. Take a function I such that
I : C → B and (for all elements x of B we have I(H(x)) = x) and (for all elements y of
C we have H(I(y)) = y). Define J(x) = H(F (x)) for x in A. J : A ↔ C. Indeed define
K(y) = G(I(y)) for y in C. ◀

For the finite checkerboard problem we only need to consider finite sets. We can thus
assume that all sets considered are finite, and then we have the following finiteness axiom:

Axiom 42. If A is a proper subset of B then A is not equinumerous with B.

3.5 The Mutilated Checkerboard
Defining the mutilated checkerboard is straightforward: we simply remove the two corners.

Definition 43. C′ = {(a, 1), (h, 8)}.
Definition 44. M = C \ C′.

Let the mutilated checkerboard stand for M.

3.6 Dominoes
To define dominoes, we introduce concepts of adjacency by first declaring new relations and
then axiomatizing them. As usual, chaining of relation symbols indicates a conjunction.

Signature 45. r is vertically adjacent to s is a relation.
Let r ∼ s stand for r is vertically adjacent to s.

Axiom 46. If r ∼ s then s ∼ r.
Axiom 47. 1 ∼ 2 ∼ 3 ∼ 4 ∼ 5 ∼ 6 ∼ 7 ∼ 8.
Signature 48. f is horizontally adjacent to g is a relation.
Let f ∼′ g stand for f is horizontally adjacent to g.
Axiom 49. If f ∼′ g then g ∼′ f .
Axiom 50. a ∼′ b ∼′ c ∼′ d ∼′ e ∼′ f ∼′ g ∼′ h.
Definition 51. x is adjacent to y iff there exist f, r, g, s such that x = (f, r) and
y = (g, s) and ((f = g and r is vertically adjacent to s) or (r = s and f is horizontally
adjacent to g)).
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Definition 52. A domino is a set D such that D = {x, y} for some adjacent squares
x, y.

3.7 Domino Tilings

Definition 53. A domino tiling is a disjoint family T such that every element of T is a
domino.

Let A denote a subset of C.
Definition 54. A domino tiling of A is a domino tiling T such that for every square x

x is an element of A iff x is an element of some element of T .

We shall prove:
Theorem. The mutilated checkerboard has no domino tiling.

3.8 Colours
We shall solve the mutilated checkerboard problem by a cardinality argument. Squares on
an actual checkerboard are coloured black and white and we can count colours on dominoes
and on the mutilated checkerboard M.

The introduction of colours can be viewed as a creative move typical of mathematics:
changing perspectives and introducing aspects that are not part of the original problem. The
mutilated checkerboard was first discussed under a cognition-theoretic perspective: can one
solve the problem without inventing new concepts and completely stay within the realm of
squares, subsets of the checkerboard and dominoes.

Signature 55. x is black is a relation.
Signature 56. x is white is a relation.
Axiom 57. x is black iff x is not white.
Axiom 58. If x is adjacent to y then x is black iff y is white.
Axiom 59. (a, 1) is black.
Axiom 60. (h, 8) is black.
Definition 61. B is the class of black elements of C.
Definition 62. W is the class of white elements of C.
Lemma 63. B is a set.
Lemma 64. W is a set.

3.9 Counting Colours on Checkerboards
The original checkerboard has an equal number of black and white squares. Since our setup
does not include numbers for counting, we rather work with equinumerosity. The following
argument formalizes that we can invert the colours of a checkerboard by swapping the files a
and b, c and d, and so on. We formalize swapping by a first-order function symbol Swap.

Signature 65. Let x be an element of C. Swap x is an element of C.
Let t denote an element of R.
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Axiom 66. Swap(a, t) = (b, t) and Swap(b, t) = (a, t).
Axiom 67. Swap(c, t) = (d, t) and Swap(d, t) = (c, t).
Axiom 68. Swap(e, t) = (f , t) and Swap(f, t) = (e, t).
Axiom 69. Swap(g, t) = (h, t) and Swap(h, t) = (g, t).

The somewhat unsightly case-splits in the following lemmas are necessary to guide
the prover, since Naproche as yet has no concept of finite data types and only features
well-ordered induction. As a consolation price, we can omit the last case.

Lemma 70. Let x be an element of C. Swap x is adjacent to x.

Proof. Take f , r such that x = (f, r). r is an element of R. Case f = a. End. Case
f = b. End. Case f = c. End. Case f = d. End. Case f = e. End. Case f = f. End.
Case f = g. End. ◀

Swap is an involution.

Lemma 71. Let x be an element of C. Swap(Swap x) = x.

Proof. Take f, r such that x = (f, r). r is an element of R. Case f = a. End. Case
f = b. End. Case f = c. End. Case f = d. End. Case f = e. End. Case f = f. End.
Case f = g. End. ◀

Lemma 72. Let x be an element of C. x is black iff Swap x is white.

Using Swap we can define a witness of B ↔ W.

Lemma 73. B is equinumerous with W.

Proof. Define F (x) = Swap x for x in B. Define G(x) = Swap x for x in W. Then
F : B → W and G : W → B. For all elements x of B we have G(F (x)) = x. For all
elements x of W we have F (G(x)) = x. F : B ↔ W. ◀

Given a domino tiling one can also swap the squares of each domino, leading to similar
properties.

Signature 74. Assume that T is a domino tiling of A. Let x be an element of A.
SwapA

T (x) is a square y such that there is an element D of T such that D = {x, y}.
Lemma 75. Assume that T is a domino tiling of A. Let x be an element of A. Then
SwapA

T (x) is an element of A.

Proof. Let y = SwapA
T (x). Take an element D of T such that D = {x, y}. ◀

Swapping dominoes is also an involution.

Lemma 76. Assume that T is a domino tiling of A. Let x be an element of A. Then
SwapA

T (SwapA
T (x)) = x.

Proof. Let y = SwapA
T (x). Take an element Y of T such that Y = {x, y}. Let

z = SwapA
T (y). Take an element Z of T such that Z = {y, z}. Then x = z. ◀

Lemma 77. Assume that T is a domino tiling of A. Let x be a black element of A.
Then SwapA

T (x) is white.
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Proof. Let y = SwapA
T (x). Take an element Y of T such that Y = {x, y}. ◀

3.10 The Theorem
We can easily show that a domino tiling involves as many black as white squares.

Lemma 78. Let T be a domino tiling of A. Then A ∩ B is equinumerous with A ∩ W.

Proof. Define F (x) = SwapA
T (x) for x in A ∩ B. Define G(x) = SwapA

T (x) for x in
A ∩ W. Then F : A ∩ B → A ∩ W and G : A ∩ W → A ∩ B. For all elements x

of A ∩ B we have G(F (x)) = x. For all elements x of A ∩ W we have F (G(x)) = x.
F : A ∩ B ↔ A ∩ W. ◀

In mutilating the checkerboard, one only removes black squares

Lemma 79. M ∩ W = W.

Proof. M ∩ W is a subset of W. W is a subset of M. Proof. Let x be an element of
W. x ̸= (a, 1) and x ̸= (h, 8). Indeed (h, 8) is black. End. ◀

Now the theorem follows by putting together the previous cardinality properties. Note that
the phrasing [...] has no domino tiling in the theorem is automatically derived from the
definition of a domino tiling of [...].

Theorem 80. The mutilated checkerboard has no domino tiling.

Proof. Proof by contradiction. Assume T is a domino tiling of M. M∩B is equinumerous
with M ∩ W. Indeed M is a subset of C. M ∩ B is equinumerous with W. M ∩ B is
equinumerous with B. Contradiction. Indeed M ∩ B is a proper subset of B. ◀

4 Comments on the Formalization

We useNaproche within the current release of the Proof Interactive Development Environment
(PIDE) Isabelle 2021 [5]. Isabelle 2021 is available for the operating systems Linux, Windows,
and macOS. The distribution can be unpacked somewhere in one’s home folder and started
by clicking on the Isabelle executable in the Isabelle folder. The Documentation panel
contains a tutorial on Naproche, which links to a standalone version of our formalization
called checkerboard.ftl.tex. Opening a .ftl or .ftl.tex file in Isabelle/PIDE will
automatically activate its parsing and checking. Files in .ftl.tex format can be typeset by
LATEX provided that text like the above Signatures or Definitions are entered in a simple
LATEX format. Only text in a \begin{forthel} ... \end{forthel} environment is let
through to the checking process. Everything else is treated as a comment by Naproche, but
may be relevant for LATEX typesetting.

\section{Example of a Signature Command}
\begin{forthel}

\begin{signature}
Let $x,y$ be real numbers. Let $y$ be a nonzero number.
$\frac{x}{y}$ is a real number.

\end{signature}
\end{forthel}
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Isabelle/PIDE can show pop-up first-order translations of statements while hovering
above them and indicates checking progress with coloured backgrounds. Results of checking
and error messages are shown in an output window.

Checking the formalization takes roughly one to two minutes, assuming somewhat up-to-
date hardware. Omitting proofs (as in Lemma 40) is convenient and concise, but significantly
increases the checking time, since E has to perform a considerable number of sledgehammer-
like proof searches. Lemma 40 also shows that automated theorem provers and humans
have different strengths. The result is immediate from the definitions to human readers.
Conversely, sometimes it is be better to continue spelling out the details of a proof even after
the computer accepts it, to help the human reader understand the rest of the proof.

5 Perspectives

The readability and naturalness of non-trivial texts which proof-check in the current, still
modest Naproche system call for a significant extension of this project. For Naproche to
become a true assistant in mathematical research and teaching, ad hoc methods have to be
replaced by professional approaches and tools:

the input language ForTheL has to be extended for wide mathematical coverage, informed
by typical mathematical texts; ForTheL needs a formal grammar and vocabulary to be
processed by strong linguistic methods; the vocabulary may also encompass standard
(LATEX) symbols and possibly contain semantic information;
logical processing has to be geared to the strengths of current automated theorem provers;
Sledgehammer-like methods should provide efficient premise selection in large texts and
theories (see also [1] for a discussion of hammers);
the creation of libraries of ForTheL documents requires import and export mechanisms
corresponding to quoting and referencing in the mathematical literature;
proof-checking of documents should be organized as an enrichment of ForTheL texts by
the generated translations and derivations; these should be stored as auxiliary files to
minimize re-checking or to assemble derivations into a correctness certificate for the text;
the natural text processing of Naproche should be interfaced with other proof assistants
to leverage their strengths and libraries; we have begun work on a Naproche → Lean
translation;
the use and user experience of natural proof checking in teaching and research have to be
studied and taken care of in the further development.

References
1 Jasmin C. Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Hammering

towards QED. Journal of Formalized Reasoning, 9(1):101–148, January 2016. doi:10.6092/
issn.1972-5787/4593.

2 Naproche contributors. FLib. URL: https://github.com/naproche-community/FLib.
3 Marcos Cramer. Proof-checking mathematical texts in controlled natural language. PhD thesis,

University of Bonn, 2013.
4 Steffen Frerix and Peter Koepke. Automatic proof-checking of ordinary mathematical texts.

Proceedings of the Workshop Formal Mathematics for Mathematicians, 2018.
5 Isabelle contributors. The Isabelle2021 release, February 2021. URL: https://isabelle.in.

tum.de.
6 John L. Kelley. General Topology. Springer-Verlag New York, 1975.

https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://github.com/naproche-community/FLib
https://isabelle.in.tum.de
https://isabelle.in.tum.de


A. De Lon, P. Koepke, and A. Lorenzen 16:11

7 Manfred Kerber and Martin Pollet. A tough nut for mathematical knowledge management.
In Michael Kohlhase, editor, Mathematical Knowledge Management, pages 81–95, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. doi:10.1007/11618027_6.

8 Donald E. Knuth. Literate Programming. Center for the Study of Language and Information,
1992.

9 Peter Koepke. Textbook mathematics in the Naproche-SAD system. Joint Proceedings of the
FMM and LML Workshops, 2019.

10 Peter Koepke, Anton Lorenzen, and Adrian De Lon. Interpreting mathematical texts in
Naproche-SAD. In Intelligent Computer Mathematics: 13th International Conference, CICM
2020, pages 284–289. Springer, 2020.

11 Daniel Kühlwein, Marcos Cramer, Peter Koepke, and Bernhard Schröder. The Naproche
system, January 2009.

12 John McCarthy. Tough nut for proof procedures, 1964. Stanford AI Memo.
13 John McCarthy. The mutilated checkerboard in set theory, 2001.
14 Anthony Perry Morse; Trevor J McMinn. A theory of sets. New York ; London : Academic

press, 1965.
15 Andrei Paskevich. Méthodes de formalisation des connaissances et des raisonnements math-

ématiques: aspects appliqués et théoriques. PhD thesis, Université Paris 12, 2007.
16 Andrei Paskevich. The syntax and semantics of the ForTheL language, 2007.
17 Lawrence C. Paulson. ALEXANDRIA: Large-scale formal proof for the working mathematician.

URL: https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/.
18 Stephan Schulz. The E theorem prover. URL: https://eprover.org.
19 Konstantin Verchinine, Alexander Lyaletski, and Andrei Paskevich. System for automated

deduction (SAD): a tool for proof verification. Automated Deduction–CADE-21, pages 398–403,
2007. doi:10.1007/978-3-540-73595-3_29.

20 Konstantin Verchinine, Alexander Lyaletski, Andrei Paskevich, and Anatoly Anisimov. On
correctness of mathematical texts from a logical and practical point of view. In International
Conference on Intelligent Computer Mathematics, pages 583–598. Springer, 2008. doi:10.
1007/978-3-540-85110-3_47.

21 Makarius Wenzel. Interaction with formal mathematical documents in Isabelle/PIDE, 2019.
arXiv:1905.01735.

ITP 2021

https://doi.org/10.1007/11618027_6
https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/
https://eprover.org
https://doi.org/10.1007/978-3-540-73595-3_29
https://doi.org/10.1007/978-3-540-85110-3_47
https://doi.org/10.1007/978-3-540-85110-3_47
http://arxiv.org/abs/1905.01735




A Variant of Wagner’s Theorem Based on
Combinatorial Hypermaps
Christian Doczkal #

Université Côte d’Azur, Inria Sophia Antipolis Méditerranée (STAMP), France

Abstract
Wagner’s theorem states that a graph is planar (i.e., it can be embedded in the real plane without
crossing edges) iff it contains neither K5 nor K3,3 as a minor. We provide a combinatorial represen-
tation of embeddings in the plane that abstracts from topological properties of plane embeddings
(e.g., angles or distances), representing only the combinatorial properties (e.g., arities of faces or
the clockwise order of the outgoing edges of a vertex). The representation employs combinatorial
hypermaps as used by Gonthier in the proof of the four-color theorem. We then give a formal
proof that for every simple graph containing neither K5 nor K3,3 as a minor, there exists such a
combinatorial plane embedding. Together with the formal proof of the four-color theorem, we obtain
a formal proof that all graphs without K5 and K3,3 minors are four-colorable. The development
is carried out in Coq, building on the mathematical components library, the formal proof of the
four-color theorem, and a general-purpose graph library developed previously.
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1 Introduction

Despite the importance of graph theory in mathematics and computer science, formalizations
of graph theory results, as opposed to verified graph algorithms, remain few and spread
between different systems. This includes early works in HOL4 [3, 2] and Mizar [12], as well
as some landmark results such as the formalization of the four-color theorem [10] in Coq
or the formal proof of the Kepler conjecture [11] in HOL Light and Isabelle. Unfortunately,
none of these has lead to the development of a widely-used general-purpose graph theory
library. Since we started to develop such a general-purpose library in 2017 [6, 7, 8], there has
been some renewed interest in the formalization of graph theory [14, 15]. In [8], one of the
main results is a formal proof that the graphs of treewidth at most two are precisely those
that do not include K4, the complete graph with four vertices, as a minor. Other classes of
graphs can also be described in terms of excluded minors, and this paper is concerned with
the characterization of planar graphs as those that contain neither K5 nor K3,3 (cf. Figure 1)
as a minor. This is known as Wagner’s theorem.

The textbook definition (e.g. in [5]) of a graph being planar is that there exists a drawing
(or embedding) in the real plane without crossing edges. However, much of the information
provided by such a drawing (e.g., the precise location of vertices or the angles at which
an edge leaves a vertex) are irrelevant for most proofs about planar graphs as they can be
changed almost at will by shifting or deforming the drawing. A more abstract alternative
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would be to take the characterization in terms of excluded minors as the definition of planarity.
However, this would not provide any geometric information at all. In particular, a graph
can have multiple embeddings that differ in their combinatorial properties. For instance,
consider the following two drawings of the same graph:

5 3 3 3 44

On the left, the (inner) faces have arities 5, 3, and 3, while the arities on the right are 4,
3, and 4. Some proofs about planar graphs crucially rely on these kinds of combinatorial
properties of a given plane embedding. For instance, this is the case for the proof of the
four-color theorem (FCT), and the formal proof of the FCT in Coq [9, 10] represents drawings
of graphs using a structure called combinatorial hypermaps [4, 17]. This representation is
quite far away from the ordinary representations of graphs as a collection of vertices and
edges, instead representing vertices and edges as permutations on more primitive objects
called “darts”.

In this paper, we use combinatorial hypermaps to represent embeddings of simple graphs,
and then give a formal and constructive proof that every simple graph containing neither K5
nor K3,3 as a minor can be represented by a planar hypermap.1 This corresponds to one
direction of Wagner’s theorem, the direction that’s mathematically more interesting.2 In
particular, we bridge the gap between the hypermap representation of graphs used in [9, 10]
and the more standard representation of simple graphs as a finite type of vertices with an
edge relation. The latter representation is used pervasively in the graph theory library we
developed previously [8] and on which we base the parts of the argument that deal with
structural properties like minors and separators. As it comes to hypermaps, we build on the
formalization used in the proof of the four color theorem [9, 10]. Thus, as a corollary of this
work, we obtain a formal proof of a “structural” four-color theorem, i.e., a proof that every
graph not containing the aforementioned minors is four-colorable. This theorem does not
mention hypermaps in its statement. Hence, the question whether planar hypermaps are
a faithful representation of plane embeddings is secondary. What is important is that this
representation allows for machine-checked proofs of interesting properties.

2 Graph Theory Preliminaries

In this section we review some standard notions from graph theory that are used in the
proof of Wagner’s theorem. We mostly use the conventions and terminology from previous
work [8].

A (simple) graph is a pair (G, −) where G is a finite type of objects called vertices and “−”
is an irreflexive and symmetric relation on G. We use single capital letters F, G, . . . to denote
graphs as well as their underlying type of vertices. That is, we write x, y : G to denote that
x and y are vertices of G. We also write x−y to say that x and y are linked by an edge and
N(x) := {y | x−y} for the open neighborhood of x. If x, y : G, we write G + xy for G with
an additional xy-edge. For a set of vertices V , we write G[V ] for the subgraph induced by V ,
G − V := G[V ] for the subgraph induced by the complement of V , and G − x := G[{x}] for
the graph that results from deleting the vertex x (and any incident edges) from G.3

1 For technical reasons, we also exclude graphs with isolated vertices (cf. Remark 21).
2 We briefly comment on what would be required to prove the converse direction in Section 10.
3 Technically, the vertices of G[V ] are dependent pairs of vertices x : G and proofs x ∈ V , but we will

ignore this in the mathematical presentation (cf. [8]).



C. Doczkal 17:3

Figure 1 K4 (left), K5 (middle), and K3,3 (right).

We write |G| for the size of G, i.e. the number of vertices of G. We write G/xy for the
graph that results from merging the vertices x and y in G, which is implemented by removing
the vertex y and attaching its neighbors to x. We write Kn for the complete graph with n

vertices and K3,3 for the complete bipartite graph with two times three vertices (cf. Figure 1).
A path (in some graph G) is a nonempty sequence of vertices with subsequent vertices

linked by the edge relation, and an xy-path is a path starting at x and ending at y. A cycle
is an xy-path for some x, y : G such that x−y. If π1 and π2 are paths, we write π1 ++ π2 for
their concatenation. A set of vertices A is connected, if any two vertices in A are connected
by a path contained in A. Two sets of vertices A and B are neighboring, if there exist vertices
x ∈ A and y ∈ B such that x−y.

A set of vertices S separates x and y, if x, y /∈ S and every xy-path contains a vertex
from S. A set that separates any two vertices, i.e. whose removal would disconnect the graph,
is called a (vertex) separator. In particular, ∅ is a separator iff G has multiple disconnected
components. A graph G is k-connected if k < |G| and every separator has size at least k.
In particular, Kk+1 is k-connected, since there are no separators in a complete graph. A
separation of G is a pair (V1, V2) of sets of vertices such that V1 ∪ V2 covers G and there is
no edge from V1 to V2. A separation (V1, V2) is proper, if both V1 and V2 are nonempty.

▶ Fact 1. Let G be a simple graph. Every separator S of G can be extended into a proper
separation (V1, V2) of G such that S = V1 ∩ V2.

We are interested in the characterization of planar graphs through excluded minors.
Intuitively, a minor of a graph is a graph that can be obtained from the original graph
through a series of edge deletions, vertex deletions, and edge contractions. Following our
previous work [8], we define the minor relation using functions we call minor maps:

▶ Definition 2. Let G and H be simple graphs. A function ϕ : H → 2G is called a minor
map if:
M1. ϕ(x) is nonempty and connected for all x : H,
M2. ϕ(x) ∩ ϕ(y) = ∅ whenever x ̸= y for all x, y : H.
M3. ϕ(x) neighbors ϕ(y) for all x, y : H such that x−y.
H is a minor of G, written H ≺ G if there exists a minor map ϕ : H → 2G.

If ϕ : H → 2G is a minor map, then ϕ(x) is the set of vertices being collapsed to x (by
contracting all the edges in ϕ(x)) when exhibiting H as a minor of G.

▶ Fact 3. ≺ is transitive.

▶ Definition 4. A graph G is called H-free, if H is not a minor of G.

Note that if G is H-free, then, by transitivity, so is every minor of G. Also note that if x−y,
then G/xy corresponds to an edge contraction. Hence, we have the following lemma.

▶ Lemma 5. If x−y, then G/xy ≺ G
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It is easy to see that G[V ] ≺ G, for any set V of vertices of G, and thus G[V ] is H-free
whenever G is. However, when V is one of the two sides of a separation arising from a
separator {x, y}, we can even add an xy-edge, as shown below.

▶ Lemma 6. Let (V1, V2) be a proper separation of G with V1 ∩ V2 = {x, y} with x ̸= y and
{x, y} a smallest separator. Then every minor of (G + xy)[V1] is also a minor of G.

Proof. If the xy-edge is used to justify H ≺ (G+xy)[V1] for some H , the xy-edge can always
be replaced by a path through V2 \ V1, which is not otherwise needed to establish H ≺ G. ◀

3 Wagner’s Theorem

Before we turn to the formal proof of Wagner’s theorem using combinatorial hypermaps, we
first sketch the proof relying on an informal notion of plane embedding (i.e., drawings of the
graph without crossing edges), leaving the technical details of the modeling to Section 6.

The proof of Wagner’s theorem consists of two parts. The main induction deals with the
case for 3-connected graphs. This is then extended to the general case though a number of
comparatively straightforward combinations of plane embeddings for subgraphs. Below, we
sketch the two arguments, including forward references to two types of lemmas: those that
are interesting from a mathematical point of view (marked with “⋆”) and those that depend
on the modeling of plane embeddings using hypermaps (marked with “†”). The proofs are
inspired by those in [1, 5].

▶ Proposition 7. Let G be 3-connected, K5-free, and K3,3-free. Then G can be embedded in
the plane.

Proof sketch. The proof proceeds by induction on |G|.
1. Since G is 3-connected, we have 4 ≤ |G|. If |G| = 4, then G is K4, which can easily be

embedded in the plane (Figure 1, Proposition 22†). Hence, we can assume 5 ≤ |G|.
2. Thus, we obtain x, y : G such that x−y and G/xy is again 3-connected (Theorem 11⋆).
3. Since |G/xy| < |G|, we obtain a plane embedding for G/xy by induction (Lemma 5). Let

vxy be the vertex resulting from the contraction of the xy-edge and set H := G/xy − vxy.
Let X (resp. Y ) be the set of vertices in H that are neighbors of x (resp. y) in G.

4. Since G/xy is 3-connected and since all vertices in X∪Y are neighbors of vxy, removing vxy

and all incident edges form the plane embedding of G/xy yields a plane embedding Ĥ

of H with a face whose boundary contains all vertices from X and Y (Lemma 28⋆†).
5. Since G/xy is 3-connected, we have that H is 2-connected. Hence, the face of Ĥ whose

boundary contains X and Y is bounded by a (duplicate-free) cycle C (Theorem 25⋆†).
6. Splitting C at the elements of X yields a number of segments where every segment

overlaps with each of its two neighboring segments in exactly one element of X (unless
there are only two segments). Since K5 ̸≺ G and K3,3 ̸≺ G, all elements of Y must be
contained in one of the segments of C; call this segment Cy (Lemma 12⋆)

7. Adding a vertex x′ to Ĥ inside C and making it adjacent to all vertices in X yields a
graph with an embedding that has a face containing x′ and Cy. Thus, we can place a
vertex y′ within this face and add edges to x′ and all vertices in Y as shown below:

x′ y′
Cy

This yields a plane embedding of G. ◀
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It remains to take care of the cases where G is not 3-connected.

▶ Theorem 8. Let G be K5-free, and K3,3-free. Then G can be embedded in the real plane.

Proof. By induction on |G|. By Propositions 7 and 22, we can assume that 5 ≤ |G| and
that G has a smallest separator S with |S| ≤ 2. We obtain a proper separation (V1, V2) with
V1 ∩ V2 = S. If S = {x, y}, we set H := G + xy and have that neither H[V1] nor H[V2]
contains K5 or K3,3 as a minor (Lemma 6), allowing us to obtain plane embeddings of H[V1]
and H[V2] by induction. Due to the added xy-edge, both embeddings must have a face with
x and y adjacent on the boundary of some face. Without loss of generality, we can assume
that this is the (unbounded) outer face. By stretching and scaling, we can “glue” together
the two embeddings along these outer edges, obtaining a plane embedding of H (Lemma 30∗).
Removing the xy edge (or keeping it if it was present in G), provides a plane embedding of
G. The cases for S = ∅ and S = {x} are similar, but do not require the use of a “marker”
edge. ◀

Note that the proof of Theorem 8 makes reference to intuitive operations such as stretching
and scaling. In particular, the fact that one can turn an arbitrary face into the outer face is
usually argued using a stereographic projection to the sphere and back to the plane [1]. All
of these will be no-ops for our representation of plane embeddings using hypermaps.

4 The Combinatorial Part

This section is concerned with the purely combinatorial part of the proof of Proposition 7,
justifying steps (2) and (6). The former amounts to locating an edge in a 3-connected graph
such that contracting this edge yields a smaller 3-connected graph. The latter is about
justifying (using the names from the proof of Proposition 7) that in the cycle C all the
neighbors of y are contained in a segment spanned by two successive neighbors of x. This
is the part of the proof where assumptions of K5-freeness and K3,3-freeness are used. Both
arguments are combinatorial in the sense that neither argument makes any reference to plane
embeddings.

For step (2), the argument is based on smallest separators, and we repeatedly use the
following property:

▶ Proposition 9. If S is a smallest separator of G, then S neighbors every maximal component
of G − S.

Recall that G/xy is implemented by removing y and updating the edge relation accordingly.

▶ Lemma 10. Let G be 3-connected with 5 ≤ |G|, and let x, y : G such that x−y and G/xy

is not 3-connected. Then there exists some z : G such that {x, y, z} is a separator.

Proof. Since G is 3-connected, we have that G/xy is 2-connected. Moreover, G/xy is not
3-connected by assumption. Hence, G/xy has a smallest separator S with |S| = 2. We have
that x ∈ S, because otherwise S would be a 2-separator of G. Thus, S = {x, z} for some z,
and {x, y, z} is a separator of G. ◀

▶ Theorem 11. If G is 3-connected and 5 ≤ |G|, then there exists an xy-edge such that
G/xy is 3-connected.
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z u

H

Figure 2 Objects from the proof of Theorem 11 (cf. [1, Theorem 9.10]).

Proof. Assume the theorem does not hold, i.e., assume that G/xy is not 3-connected for all
x, y : G such that x−y. We obtain a contradiction as follows:

By Lemma 10, every xy-edge can be extended to a separator {x, y, z}. Choose x, y, z,
and F such that x−y, {x, y, z} is a separator, F is connected and disjoint from {x, y, z}, and
with |F | maximal for all possible choices of x, y, z and F . Now set H := F ∪ {x, y}. Since G

is 3-connected, {x, y, z} is indeed a smallest separator of G. Thus, x, y, and z are pairwise
distinct and by Proposition 9 there exists some vertex u /∈ H such that z−u (cf. Figure 2).
Let v such that {z, u, v} is a separator (Lemma 10). Now it suffices to show that H \ {v}
is connected, because this yields a component larger than F , contradicting the choice of F .
If v /∈ H this is trivial and if v ∈ {x, y}, this follows since {x, y, z} is a smallest separator.
(Proposition 9 ensures that both x and y have neighbors in F .) Hence, we can assume v ∈ F .
Now if H \{v} was disconnected, then there would be some vertex w such that every xw-path
in H passes through v. However, since F is maximal and therefore has no outgoing edges
other than those to x, y, and z, this would entail that {v, z} is a separator (separating x

from w), contradicting the assumption that G is 3-connected. ◀

We remark that, just like all the other results presented in this paper, the proof of
Theorem 11 does not require any classical axioms. The conclusion of the theorem involves
only decidable predicates and quantifiers over finite domains (i.e., the vertices of G), and
these behave classically. Similarly, there are only finitely many choices for x, y, z, and F , so
we can easily obtain a combination where |F | is maximal among all possible choices.

In order to formally state the lemma justifying step (6) of Proposition 7, we need to
introduce some operations on duplicate-free lists viewed as cycles. Let T be some type and
let C be a duplicate free list over T . For x ∈ C, we write next C x for the element following
x in C or the first element of C if x is at the very end. For x, y ∈ C with x ≠ y, we write
arc C x y for the part of C (seen as a cycle) that starts at x and ends right before y. In
particular, the results of next C x and arc C x y are invariant under cyclic shifts of C.

▶ Lemma 12. Let G be a simple, K5-free, and K3,3-free graph, let x, y : G such that x−y

and let C be a duplicate-free cycle in G containing neither x nor y. Let X be the sub-
sequence of C containing N(x) and let Y be the sub-sequence of C containing N(y). If X

and Y each contain at least two vertices, then there exists some vertex z ∈ X such that
Y ⊆ arc C z (next X z) ∪ {next X z}.

Proof. We first show that there are at most two vertices in X ∩ Y . Assume, for the sake of
contradiction, three distinct vertices u, v, w ∈ X ∩ Y . W.l.o.g., we can assume that [u, v, w]
is a sub-cycle of C. Hence, we obtain K5 as a minor of G by collapsing by mapping the
vertices of K5 to the sets {x}, {y}, arc C u v, arc C v w, and arc C w u as shown in Figure 3(a),
contradicting the assumption that G is K5-free.
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a)

x y

u

v w
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x y
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x2 y2

y1

Figure 3 Obtaining K5 (left) and K3,3 (right) as minors in Lemma 12.

Next, we show that there cannot be a sub-cycle [x1, y1, x2, y2] of C such that {x1, x2} ⊆ X

and {y1, y2} ⊆ Y . If such a sub-cycle were to exist, we could exhibit K3,3 as a minor
of G by mapping the three pairwise-independent left-hand-side vertices to {x}, arc C y1 x2,
and arc C y2 x1 and the three right hand side vertices to {y}, arc C x1 y1, and arc C x2 y2,
contradicting K3,3-freeness of G (cf. Figure 3(b)).

Now, assume that the theorem does not hold, i.e., assume that for every x′ ∈ X, there
exists some y′ ∈ Y such that y′ /∈ arc C x ′(next X x′) ∪ {next X x′}. We consider two cases:

If Y ⊆ X, we have that Y = [y1, y2] for two distinct vertices y1 and y2. Now arc C y1 y2
must contain some vertex x2 ∈ X \{y1, y2}, for otherwise next X y1 = y2 and both y1 and
y2 are contained in arc C y1 y2 ∪ {y2}. By symmetry, we also have that arc C y2 y1 must
contain some x1 ∈ X \ {y1, y2}. However, then [x1, y1, x2, y2] is an alternating subcycle,
whose existence we excluded above. Contradiction.
Otherwise, there exists some y1 ∈ Y \X. Let x1 such that y1 ∈ arc C x1 (next X x1) and set
x2 := next X x1. By assumption, there must be some y2 ∈ Y with y2 /∈ arc C x1 x2 ∪ {x2}.
Hence, [x1, y1, x2, y2] is again an excluded alternating subcycle. Contradiction. ◀

Lemma 12 can be considered to be the combinatorial core argument underlying Wagner’s
theorem. It is the place where absence of certain substructures (i.e., the minors K5 and K3,3)
is turned into a positive statement that allows reversing the contraction of the xy-edge. We
remark that while the arc construction was already present in mathcomp, splitting a cycle
along a subcycle required a plethora of additional lemmas about arcs and cycles.

5 Combinatorial Hypermaps

We now turn towards the modeling of embeddings in the plane using combinatorial hypermaps.
In this section we briefly review hypermaps and their most important properties. The
presentation follows [9], because the formal development underpinning this part is based on
the formal proof of the four-color theorem presented there. Consequently, none of the results
in this section are new.

▶ Definition 13. A (combinatorial) hypermap is a tuple ⟨D, e, n, f⟩ where D is a finite type,
and e, n, f : D → D such that n ◦ f ◦ e ≡ idD. The elements of D are referred to as darts.

The condition n ◦ f ◦ e ≡ idD ensures that the functions e, n, and f are bijective (i.e.
permutations on D). In particular, any two of the permutations determine the third. Each
of the permutations partitions the type D into a number of cycles and these cycles are used
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Figure 4 A hypermap. (Reprinted with permission from [9], ©2005 Georges Gonthier).

to represent the edges, nodes4, and faces of graphs. That is, a hypermap ⟨D, e, n, f⟩ can be
seen as describing a graph embedded on a surface (not necessarily the plane) as follows (cf.
Figure 4):

every n-cycle represents a node of the graph, listing incident edges in counterclockwise
order.
every e-cycle represents an edge of the graph, linking the nodes (i.e., n-cycles) it intersects.
every f -cycle represents a face, listing in counterclockwise order one dart from every node
on the boundary of the face.

Even though one of the three permutations is technically redundant, keeping it makes
the definition completely symmetric and facilitates symmetry reasoning. In particular, if
⟨D, e, n, f⟩ is a hypermap, then so are ⟨D, f, e, n⟩ and ⟨D, n, f, e⟩. As we do for graphs, we
will usually use the same letter for a hypermap and its underlying type of darts.

▶ Definition 14. Let ⟨D, e, n, f⟩ be a hypermap.
D is called plain if every e-cycle has size 2.
D is called loopless if x and e(x) belong to different n-cycles for all x : D.
D is called simple if two n-cycles are linked by at most one e-cycle.

Plain hypermaps correspond to graphs where every edge is adjacent to two vertices, i.e.
graphs without hyperedges. As we will make precise later, plain loopless simple hypermaps
correspond to simple graphs, i.e., graphs without self loops and with at most one edge
between two vertices. The (partial) hypermap in Figure 4 satisfies all three properties, as
will most of the hypermaps we will be dealing with.

We fix a hypermap ⟨D, e, n, f⟩ for the rest of the section. Moreover, we will use the same
letter D for the hypermap as a whole as well as the underlying type of darts.

The number of “holes” that would be needed in a surface in order to embed a given
hypermap in it can be computed using the Euler characteristic.

▶ Definition 15 (Genus). The genus of D is ((2C + |D|) − (E + N + F ))/2 where C is
the number of connected components of e ∪ n ∪ f (interpreting the functions as functional
relations) and E, N , and F are the number of cycles of e, n, and f respectively. A map of
genus 0, i.e., a map satisfying the equation E + N + F = 2C + |D| is called planar.

4 In line with the terminology of [9, 10], we say “node” when referring to an n-cycle of a hypermap. In
line with [8], we continue to use “vertex” when referring to vertices of simple graphs.
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The following general properties of hypermaps are established in [9].

▶ Proposition 16. E + N + F ≤ 2C + |D|.

▶ Proposition 17. (2C + |D|) − (E + N + F ) is even.

Proposition 16 implies that the (natural number) subtraction in Definition 15 is never
truncating and Proposition 17 implies that the division in the genus formula is always an
integer division without remainder.

For our use of hypermaps as representations of embeddings in the plane, we will need to
modify hypermaps and prove that these modifications preserve planarity. Directly proving that
an operation such as adding an edge across a face preserves the genus of the hypermap can be
cumbersome. It is often simpler to express the operation in terms of more atomic planarity-
preserving operations. The most important of these operations are the Walkup [16, 18]
operations.

▶ Definition 18. For x : D, WalkupE x is the hypermap where x has been removed by skipping
over x in the n and f permutations and adapting e as necessary. Similarly, WalkupN x

(resp. WalkupF x) are the hypermaps where n (resp. f) is the permutation being adapted
after suppressing x from the other two.

As shown in [9], the Walkup operations never increase the genus of a hypermap and, in
particular, always preserve planarity. In addition, the Walkup operations can be shown to
preserve the genus in many circumstances, allowing us to prove preservation of planarity
for operations that extend the hypermap by expressing them as inverse Walkup operations.
Thus, the characterization of planarity in terms of Euler’s formula combined with expressing
operations as combinations of Walkup operations provides for an easy means of proving that
various operations on hypermaps preserve planarity.

In addition to showing that certain operations preserve planarity, we also need to establish
some properties of planar hypermaps in general. For instance, we need to show that in every
two-connected plane graph, all faces are bounded by (duplicate free) cycles (step (5)). For
the topological model of plane graphs, this property is established using the Jordan curve
theorem (JCT), which states that every closed simple curve divides the plain into an “inside”
and an “outside”. Since hypermaps make no reference to the real plane, we could not use
this theorem, even if it was available in Coq. However, the essence of the application of the
JCT to plane graphs is captured by the following theorem on hypermaps:

▶ Theorem 19 (Jordan curve theorem for hypermaps [9, 10]). Let ⟨D, e, n, f⟩ be a hypermap.
Then D is planar iff there do not exist distinct darts x, y and a duplicate-free (n−1 ∪ f)-path
from x to n(y) visiting y before n(x) (with y = n(x) being allowed).

Note that when talking about hypermaps, an (n−1 ∪f)-path is a path in the relation (n−1 ∪f).
This is to be contrasted with the notion of an xy-path in a simple graph, where we mention
the endpoints and leave the relation implicit. Paths in the relation (n−1 ∪ f) are called
contour paths, because they go around the outside of a group of faces (cf. Figure 4). Thus, a
contour cycle in a planar map corresponds to a closed curve. The Jordan curve theorem for
hypermaps establishes that in a planar hypermap there cannot be a contour path starting at
the inside of a contour cycle and finishing on the outside without otherwise intersecting the
cycle. In the theorem above, the contour cycle and the contour path are spliced together in
order to obtain a simpler statement (cf. [9, 10]).
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6 Combinatorial Embeddings

In this section, we make precise what it means for a hypermap to represent an embedding
of a graph on some surface. We first introduce some additional notation. For a relation
r : D → D → B over a finite type D (e.g., the darts of a hypermap) we write r∗ for the
reflexive transitive closure of r and r∗(x) for the set {y | r∗ x y}. In particular, we write f∗

for the transitive closure of a function f : D → D seen as the relation λx y. fx = y. Note
that, because D is finite, f∗ is symmetric if f is injective, as is the case for the permutations
comprising hypermaps. For a hypermap ⟨D, e, n, f⟩, we call two darts x and y adjacent,
written adjn x y, if their respective n-cycles are linked by an e-cycle (i.e., if there exists some
dart z such that n∗ x z and n∗ y (e z)).

▶ Definition 20. Let G be a simple graph and let ⟨D, e, n, f⟩ be a plain hypermap. We call a
function g : D → G a (combinatorial) embedding of G if it satisfies the following properties:
1. g is surjective
2. n∗ x y iff g(x) = g(y).
3. adjn x y iff g(x)−g(y).
An embedding where D is planar, is called a plane embedding, and an embedding where D is
simple is called a simple embedding. A graph together with a plane embedding is called a
plane graph.

Note that, even though we refer to g as an embedding of a graph, the function maps darts of
the hypermap to vertices of the graph. This makes it easier to state the required properties.
Surjectivity of g ensures that D represents the whole graph. Condition (2) ensures that the
node cycles of D are in one-to-one correspondence to the vertices of G, and condition (3)
ensures that adjacent node cycles correspond to adjacent vertices of G. Note that we do
not require that the hypermap underlying an embedding is simple, i.e., we permit multiple
parallel edges. This reduces the number of conditions to check when constructing plane
embeddings. Parallel edges can always be removed, obtaining a simple embedding where
needed.
▶ Remark 21. Definition 20 abstracts not only from properties that can be changed by
continuously deforming the plane, it also does not single out a face as the “outer” face or
specify the relationships between the embeddings of disconnected components of a graph, i.e.,
we do not embed one component in a particular face of the embedding of another component.
Consequently, Definition 20 corresponds more to embedding every component of the graph
on its own sphere rather then embedding all components together in the plane. Moreover, the
degenerate case of a component consisting of a single isolated vertex cannot be represented
by hypermaps, because every dart of an n-cycle must also be part of an e-cycle. This is not
really an issue: isolated vertices are components without internal structure, and there would
be nothing to learn about such vertices from a combinatorial embedding.

With Definition 20 in place, we can now justify step (1) of the proof of Proposition 7,
i.e., obtain a plane embedding for K4. The graph K4 has 6 edges, so we take the 12-element
type I12 := Σn : N. n < 12 as the type of darts and provide the three permutations as well
as a mapping from I12 to the vertices of K4. Since both K4 and its embedding are concrete
objects, we can use the depth-first search algorithm from mathcomp to compute the genus of
the map and check the correctness of the embedding. This requires brute-forcing various
quantifiers, which causes no problems due to the small size of their domain (i.e. 4 or 12).
Thus, we obtain:

▶ Proposition 22. There exists a plane embedding for K4.
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Figure 5 Moebious path from the proof of Lemma 26.

We also show that K3,3 does not have a plane embedding. While this result does not
contribute to the main result of this paper, it serves as an example of how Definition 20 and
some of the properties described in Section 5 fit together.

▶ Proposition 23. There exists no plane embedding for K3,3.

Proof. Assume there was an embedding g : D → K3,3 with D of genus 0. Without loss of
generality, we can assume that D is simple. Thus, we have N = 6, E = 9, |D| = 2 ∗ E = 18,
and C = 1. By the definition of genus, it suffices to show (5 − F )/2 > 0 to obtain a
contradiction. Since every vertex of K3,3 has at least two neighbors and since D is simple,
every face-cycle must use at least 3 darts. Moreover, K3,3 has no odd-length cycles, so every
face-cycle of D must indeed use at last 4 darts. Thus F ≤ 4, since |D| = 18. Finally, F ̸= 4
since the division in the genus formula is always without remainder (Proposition 17). ◀

We now come to the main result of this section, namely that the faces of 2-connected
plane graphs are bounded by irredundant cycles. In order to state this property precisely, we
define a notion of face for simple graphs relative to an embedding.

▶ Definition 24. If g : ⟨D, e, n, f⟩ → G is an embedding, a face of G under g is a cycle in G

that can be obtained as the image of an f -cycle of D of under g.

The theorem we want to prove is the following.

▶ Theorem 25. Let g be a plane embedding of a 2-connected graph G. Then all the faces
under g are duplicate-free cycles.

Before we can prove this theorem, we first need to prove the underlying property on hypermaps.
This is where the Jordan curve theorem for hypermaps (Theorem 19) is used.

▶ Lemma 26. Let ⟨D, e, n, f⟩ be a plain loopless planar hypermap such that for all darts
x, y, z with x, y /∈ n∗(z) there exists an (n−1 ∪ f)-path from x to y not containing any dart
in n∗(z). Then there do not exist distinct darts x, y such that n∗ x y and f∗ x y.

Proof. Assume there exist x ̸= y such that n∗ x y and f∗ x y. We show that this contradicts
the planarity of G. Without loss of generality, we obtain a duplicate-free n−1-path from y to
x whose interior π is disjoint from f∗(x) (We make n−1-steps starting at y and replace x

with the first encountered dart in f∗(y)). Now we can split the f -cycle containing x and y

into two semi-cycles, one from x to y and another from y to x. We call their respective
interiors (which are both disjoint from π ∪ {x, y}) σx,y and σy,x. By assumption, we can
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obtain (n−1 ∪ f)-paths avoiding n∗(x) and connecting any two darts outside of n∗(x). Thus,
we obtain darts u ∈ σy,x and v ∈ σx,y and a duplicate-free (n−1 ∪f)-path from u to v disjoint
from the n-cycle containing both x and y whose interior we call ρ. Without loss of generality,
we can assume that ρ is also disjoint from σx,y and σy,x (otherwise we shorten ρ, possibly
changing the choice of u and v). Finally set σy,u to be the part of σy,x before u. Thus,
we have that m := π ++[x] ++ σx,y ++[y] ++ σy,u ++ u ++ ρ is a duplicate-free (n−1 ∪ f)-path.
Moreover, the fist dart in m is n−1(y) (which could be x) and (since σx,y is an f -path) the
last dart is n(v) (cf. Figure 5). Since m visits v (which is in σx,y) before y, m is a “Moebius
contour” and Theorem 19 applies, contradicting the planarity of D. ◀

Now we can prove Theorem 25, justifying step (5) of the proof of Proposition 7.

Proof of Theorem 25. Let G be 2-connected and let g : ⟨D, e, n, f⟩ → G be a plane embed-
ding. Thus D is plain, loopless, and planar. Let s be a face of G under g arising as the
image of some f -cycle in D. It suffices to show that all the darts in this f -cycle belong to
different n-cycles. Since G is 2-connected, all vertices different from z can be connected using
paths that avoid z. These paths can be mapped to (n−1 ∪ f)-paths in D. Hence, Lemma 26
applies, finishing the proof. ◀

The proof of Theorem 25 exhibits a pattern that is repeated for various lemmas about plane
embeddings: we first show the underlying lemma for hypermaps and then lift the property
to the language of simple graphs and plane embeddings in order to use them in the proofs of
Proposition 7 and Theorem 8.

7 Modifying Plane Embeddings

We now describe the operations on plane embeddings and their underlying hypermaps that
are required to carry out steps (4) and (7) of the proof of Proposition 7. That is, we show
how to remove a vertex from a plane embedding, obtaining a face containing all neighbors
of the removed vertex, and we show how to add a vertex, connecting it to an arbitrary
subsequence of a face-cycle.

We begin by showing that every subgraph of a plane graph has a plane embedding. While
this is intuitively obvious, the precise argument deserves some mention. Again, we need some
notation to express the underlying lemma about hypermaps:

Let T be a finite type and let f : T → T be an injective function and let P be a subset of T .
We write ΣP for the type of elements of P , i.e., the type of dependent pairs Σx : T. x ∈ P .
We define skipP f : T → T to be the function which for every x : T returns fn+1(x) for the
least n such that fn+1(x) ∈ P if such an n exists and x otherwise. Such an n always exists
when x ∈ P , so skipP f can also be seen as a function ΣP → ΣP . Finally, we write f ≡ g, to
denote that two functions agree on all arguments.

▶ Lemma 27. Let ⟨D, e, n, f⟩ be a hypermap, let P ⊆ D, and let ⟨ΣP, e′, n′, f ′⟩ be another hy-
permap such that e′ ≡ skipP e and n′ ≡ skipP n. Then genus ⟨ΣP, e′, n′, f ′⟩≤ genus ⟨D, e, n, f⟩.

Proof. By induction on |D|. If P is the full set, then the two hypermaps are isomorphic
and therefore have the same genus. Thus, we can assume there exists some z /∈ P . Let
H := WalkupF z. Since the Walkup operation does not increase the genus, it suffices to show
genus ⟨ΣP, e′, n′, f ′⟩ ≤ genus H. This follows by induction hypothesis since H is defined
by skipping over z in the edge and node permutations and, therefore, ⟨ΣP, e′, n′, f ′⟩ can
be obtained from H, again up to isomorphism, by skipping over the remaining elements
of P . ◀
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a) x b) x c)

Figure 6 Removing a vertex from a 2-connected plane graph.

Note that Lemma 27 applies to any hypermap, not just plain ones. This small general-
ization allows us to prove the lemma by induction, removing a single dart at a time. This
would not work with plain maps, which always have an even number of darts. Also note
that the proof of the lemma above makes extensive use of isomorphisms for hypermaps, a
notion that is not defined in the formal development of the four-color theorem, where only an
equivalence for hypermaps with the same type of darts is defined. This turned out to be too
restrictive for our purposes. As we do for other types of graphs [8], we define isomorphisms
between hypermaps as bijections on the underlying type of darts that preserve the three
permutations.

▶ Lemma 28. Let G be a 2-connected graph with vertex x and let g be a plane embedding.
Then there exists a plane embedding g′ for G − x and a face of g′ containing all vertices in
N(x).

Proof. Let D = ⟨D, e, n, f⟩ be the hypermap underlying g, and dx : D such that g(dx) = x.
Without loss of generality, we can assume that D is a simple hypermap. We set P :=
e∗(n∗(dx)) and set D′ = ⟨ΣP, skipP e, skipP n, f ′⟩ for some suitable f ′, which amounts to
removing all e-cycles intersecting n∗(dx). D′ is clearly plain, and by Lemma 27 D′ is also
planar. Since x /∈ g(P ), the restriction of g to D′ yields a plane embedding g′ : D′ → (G − x).
It remains to show that g′ has a face containing N(x). First, 2-connectedness of G rules
out the scenario depicted in Figure 6(a), where removing x would disconnect the graph.
Moreover, it ensures that every n-cycle (in D) has at least size two. Together with D being
simple, this ensures that no n-cycle other than the one for x vanishes and that f ′ needs to
skip over at most one removed dart at a time (Figure 6(b-c)), allowing us to give a simple
explicit definition of f ′: f ′(z) := if f(z) ∈ P then f(z) else n−1(f(z))

Moreover, we have that for all d ∈ n∗(dx), f(d) is in P and on the same (original)
n-cycle as e(d), meaning every dart f(d) represents a neighbor of x. Thus, it suffices to show
f ′∗ (fd1)(fd2) for d1, d2 ∈ n∗(dx). We prove this claim by induction on the n-path from d1
to d2, reducing the problem to showing f ′∗ (f d)(f(n d)) for d ∈ n∗(dx). Since D is simple,
the f -orbit of f(d) as length at least 3 and therefore the shape [f(d)] ++ o ++[(e(n(d)), d].
Moreover, since D is an embedding for a 2-connected graph, we can use Lemma 26 to show
that e(n(d)) and d are the only darts from the f -orbit of f(d) that are not in P . Thus, the
claim follows from the definition of f ′ since n−1(e(n(d)) = f(n(d)). ◀

Note that the proof above uses Lemma 26 for the second time. When we use the lemma in
step (4) of the proof of Proposition 7, we apply it to the 3-connected graph G/xy, exploiting
that G/xy − vxy is still 2-connected, which in turn allows us to argue that the obtained
face containing all the neighbors is bounded by a duplicate-free cycle (cf. step (5) and
Theorem 25).

Finally, we justify step (7) of Proposition 7, which amounts to two applications of the
lemma below, where G + (z, A) is a the simple graph G extended with a new vertex z which
is made adjacent to all vertices in the set A.
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▶ Lemma 29. Let g : D → G be a plane embedding, let [x] ++ p ++[y] ++ q be a face of g, and
let {x, y} ⊆ A ⊆ {x, y} ∪ p. Then there exists a plane embedding of G + (z, A) with a face
[x, z, y] ++ q.

Proof. We first show that for every face [u] ++ s under some embedding, one can add a
single vertex v and obtain an embedding of G + (v, {u}) with face [u, v, u] ++ s. Moreover,
one can always add an edge across a face, splitting a face [u] ++ s1 ++[v] ++ s2 into two faces
[v, u] ++ s1 and [u, v] ++ s2. In each case, we show that the operation can be reversed by
a genus-preserving double Walkup operation, showing that the initial addition preserves
the genus. The claim then follows by first adding z and the xz-edge and then adding the
remaining edges in the order in which they appear in p ++[y]. ◀

This finishes the justification for the individual steps of the proof of Proposition 7. We
remark that Lemmas 28 and 29 are “lossy” in that we do not prove that the untouched
part of the embedding remains the same. This would only clutter the statements and is
not needed for our purposes. Should the need arise, it would be straightforward to turn
the underlying constructions into definitions and provide multiple lemmas, as we do with
isomorphisms [8].

8 Combining Plane Embeddings

It remains to give a formal account of the combinations of plane embeddings performed in
the proof of Theorem 8. That is, we need to be able to glue two plane embeddings together,
either along a shared vertex or along a shared edge, the latter being used in the case outlined
in the informal proof sketch of Theorem 8 given in Section 3.

It is straightforward to show that disjoint unions of planar hypermaps are again planar.
As a consequence, both gluing operations can be reduced to obtaining a plane embedding
for G/xy from a plane embedding for G. Here, gluing along an edge amounts to merging
the respective ends of the two edges one by one. On hypermaps, merging two nodes only
changes the node and face permutations, leaving the type of darts and the edge permutation
unchanged. Moreover, both the change to the node permutation and the change for the face
permutation can be expressed in terms of a singe successor-swapping operation.

Let f : T → T be an injective function over a finite type T and let x ̸= y.

switch[x, y, f ](z) :=


fy if z = x

fx if z = y

fz otherwise
x

fx y

fy

The behavior of switch[x, y, f ] is to either link two f -cycles (if x and y are on different
f -cycles, as in the drawing above) or to separate an f -cycle into two cycles (if x and y are
on the same f -cycle). Further, we have that

merge ⟨D, e, n, f⟩ d1 d2 := ⟨D, e, switch[d1, d2, n], switch[f−1d2, f−1d1, f ]⟩

is a hypermap. If d1 and d2 are darts from different node cycles, merge D d1 d2 merges said
node cycles, adapting the face cycles accordingly. In particular, merge D d1 d2 preserves the
genus of D if either d1 and d2 lie on a common face cycle or if d1 and d2 are from separate
components of D. In the first case, N is decreased by one while F increases by one; in the
second case, both N and F are decreased by one, but so is C.
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If g : D → G is an embedding of some graph G, then for all x, y : G that are not adjacent,
and for all dx and dy such that g dx = x and g dy = y, merge D d1 d2 can be used to embed
G/xy. If x and y lie common face of g, then x and y are the images of two darts dx and dy

that lie on a common face cycle in D, and merge D dx dy yields and embedding of G/xy.
If x and y are not connected in G, any choice of preimages of x and y will yield a plane
embedding of G/xy. Hence, for gluing two embeddings together on a single vertex, we can
make an arbitrary choice. For gluing along two edges x−x′ and y−y′ we know that there
must be two faces [x, x′] ++ s1 and [y′, y] ++ s1] Choosing dx and dy to be the preimages of
x and y on the respective face cycles ensures that merge D dx dy has an f -cycle containing
preimages for x′ and y′, allowing us to obtain a plane embedding for (G/xy)/x′y′, which
corresponds to gluing together two components of G along the edges x−x′ and y−y′. Note
that, due to Definition 20 allowing parallel edges, we do not need to remove darts when
gluing along an edge. Putting everything together, we obtain the lemma used in the proof of
Theorem 8:

▶ Lemma 30. Let G be a simple graph, and let (V1, V2) be a separation, such that V1 ∩ V2 =
{x, y} and x−y. If there are plane embeddings for G[V1] and G[V2], then there is also a plane
embedding for G.

9 Main Results

Putting everything together, we obtain the following theorem, which corresponds exactly to
the theorem formalized in Coq.

▶ Theorem 31. Let G be a K5-free and K3,3-free simple graph without isolated vertices. Then
there exists a (combinatorial) plane embedding for G.

Theorem Wagner (G : sgraph) : no_isolated G ->
~ minor G ’K_3,3 /\ ~ minor G ’K_5 -> inhabited (plane_embedding G).

Note that, compared with Theorem 8, we have the additional technical side condition that
G may not have isolated vertices. As mentioned in Remark 21, this is necessary, because
hypermaps cannot represent isolated vertices. However, isolated vertices can often be treated
separately without too much effort as exemplified below.

▶ Definition 32. A (loopless) hypermap ⟨D, e, n, f⟩ is k-colorable if there is a coloring of its
darts using at most k colors, such that for all d : D, the color of e(d) is different from the
color of d and the color of n(d) is the same as the color of d. A simple graph is k-colorable,
if there is a coloring of its vertices using at most k colors such that adjacent vertices have
different colors.

▶ Theorem 33 ([9, 10]). Every planar loopless hypermap is 4-colorable

▶ Theorem 34. Let G be a K5-free and K3,3-free simple graph. Then G is four-colorable.

Proof. Let V be the set of vertices with nonempty neighborhood. We obtain a 4-coloring of
G[V ] using Theorems 31 and 33. This coloring extends to a 4-coloring of G by picking an
arbitrary color for the isolated vertices. ◀
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10 Conclusion and Future Work

We have introduced a combinatorial approximation of embeddings of graphs in the plane
and proved that, with respect to this notion of plane embedding, every K5-free and K3,3-free
graph without isolated vertices is planar. This corresponds to proving the mathematically
interesting direction of Wagner’s theorem and allows proving a structural variant of the
four-color theorem that, unlike the formulations in [10], mentions neither hypermaps nor
regions of the real plane. Instead, we bridge the gap between simple graphs and hypermaps,
making the four-color theorem available to the setting of a more standard representation of
graphs.

The main focus of this work was to bridge the aforementioned gap rather than provide a
faithful proof of the usual formulation of Wagner’s theorem. Nevertheless, we argue that
Theorem 8 and its proof are actually quite faithful to the usual formulation. First, it seems
plausible that the notion of plane embedding can be adapted to allow for isolated vertices by
relaxing the surjectivity requirement, allowing isolated vertices to not have a dart mapped
to them. However, this would come at the cost of some (minor) complications, as one could
no longer define a partial inverse for every embedding. More importantly, key arguments
of the proof (e.g., Theorems 11 and 25 and Lemmas 12 and 28) closely correspond to what
one would find in a detailed paper proof [1, 5]. The main difference is that arguments about
modifications of plane embeddings, many of which are normally handled informally, either
vanish completely or are replaced by rigorous machine-checked proofs on hypermaps. It
should be said that finding these proofs took considerable effort. Hypermaps are complex
objects and, apart from the work of Gonthier [9, 10], there is little material in the literature
on how to reason efficiently using hypermaps on paper and in an interactive theorem prover.
Combined with the fact that some of the proofs are quite technical (e.g. Lemma 26), the
learning curve is fairly steep. I hope that this work will contribute to making hypermaps
more accessible.

Standing at around 7000 lines (counting additions to the preexisting graph-theory library),
the Coq development accompanying this paper is substantial, increasing the total size of
the library by more than a third. Around half of these additions deal with operations
on hypermaps and plane embeddings. Both the total size and the fraction dealing with
hypermaps are bigger than originally envisioned, and I hope that both can still be improved.

As mentioned in Section 1, we have only proved one direction of Wagner’s theorem. It
remains to show that graphs that can be represented using planar hypermaps have neither K5
nor K3,3 as a minor. It is relatively straightforward to show that a graph contains K5 or K3,3
as minor iff it contains an edge subdivision of K5 or K3,3 as a subgraph [5, Proposition 4.4.2].
This leads to a variant of Wagner’s theorem known as Kuratowski’s theorem. We have
already proved that K5 and K3,3 do not have plane embeddings (cf. Proposition 23), and
that planar graphs are closed under taking subgraphs (Lemma 27). Hence, Kuratowski’s
theorem and the converse direction of Wagner’s theorem could be obtained by proving that
planar graphs are closed under removing edge-subdivisions. This direction has already been
formalized in Isabelle/HOL [13], and the main obstacle is that reasoning about contained
subdivisions (i.e., topological minors) is more cumbersome than reasoning about (normal)
minors.

Besides the converse direction of Wagner’s theorem, there are many other related theorems
that would make for interesting future work. It is well known that in the case of 3-connected
planar graphs, all plane embeddings have the same structure [1, Theorem 10.28]. In our
setting, this means that the embedding is unique up to isomorphisms of hypermaps. Further,
a common strengthening of Proposition 7 is to show that one can obtain a plane embedding
in which all inner faces are convex. This strengthening is not expressible using the hypermap
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model of plane embeddings, and this raises the question whether one could introduce an
abstract notion of plane embedding and instantiate it with hypermaps as well as models
based on axiomatic geometry or embeddings in the real plane. On the other hand, given that
the (combinatorial) plane embedding of a 3-connected planar graph is unique, it should also
be possible to directly construct a convex embedding in the real plane for this hypermap,
separating the existence and convexity parts of the proof.
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Abstract
We describe the formalization of the existence and uniqueness of the Haar measure in the Lean
theorem prover. The Haar measure is an invariant regular measure on locally compact groups, and it
has not been formalized in a proof assistant before. We will also discuss the measure theory library
in Lean’s mathematical library mathlib, and discuss the construction of product measures and the
proof of Fubini’s theorem for the Bochner integral.

2012 ACM Subject Classification Theory of computation → Type theory; Mathematics of computing
→ Mathematical analysis

Keywords and phrases Haar measure, measure theory, Bochner integral, Lean, interactive theorem
proving, formalized mathematics

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.18

Related Version Full Version: https://arxiv.org/abs/2102.07636

Supplementary Material Software (Source Code): https://github.com/leanprover-community/
mathlib/tree/master/src/measure_theory

archived at swh:1:dir:4b232212fa94778af7c966340636fd0e061d9598

Funding This paper is supported by the Sloan Foundation (grant G-2018-10067).

Acknowledgements I want to thank Jeremy Avigad, Tom Hales, the Leanprover community and the
anonymous reviewers for proofreading this paper.

1 Introduction

Measure theory is an important part of mathematics, providing a rigorous basis for integration
and probability theory. The main object of study in this part is the concept of a measure,
which assigns a size to the measurable subsets of the space in question. The most widely used
measure is the Lebesgue measure λ on R (or Rn) with the property that λ([a, b]) = b − a.
The Lebesgue measure is translation invariant, meaning that translating a measurable set
does not change its measure.

An important generalization of the Lebesgue measure is the Haar measure, which provides
a measure on locally compact groups. This measure is also invariant under translations,
i.e. applying the group operation. For non-abelian groups we have to distinguish between
left and right Haar measures, which are invariant when applying the group operation on the
left and right, respectively. A Haar measure is essentially unique, which means that any
invariant measure is a constant multiple of a chosen Haar measure. The Haar measure is
vital in various areas of mathematics, including harmonic analysis, representation theory,
probability theory and ergodic theory.

In this paper we describe the formal definition of the Haar measure in the Lean theorem
prover [5], and prove its uniqueness. We build on top of the Lean mathematical library
mathlib [4]. We heavily use the library for measure theory in mathlib, improving it in the
process. As part of this formalization we expanded the library with product measures and
Fubini’s theorem, along with many other contributions to existing libraries. The results in
this paper have been fully integrated into mathlib.
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Many proof assistants have a library of measure theory and integration, including Isa-
belle [17, 12], HOL/HOL4 [13, 2, 15], HOL Light [11], Mizar [7], PVS [14] and Coq [19].
Most of these libraries focus on the Lebesgue measure and the Lebesgue integral, and on
applications to probability theory or analysis in Euclidean spaces.

The Isabelle/HOL library has an especially good development of measure theory, including
product measures and the Bochner integral [1]. The Lean library also has these concepts,
and the development of them was heavily inspired by the Isabelle/HOL library (and partially
written by Johannes Hölzl, who also wrote parts of the Isabelle/HOL library). However, to
my knowledge, the Haar measure has not been formalized in any proof assistant other than
Lean.

In this paper we will discuss the measure theory library in Lean (in Section 3), which
was already in place before this formalization started, and was developed by Johannes Hölzl,
Mario Carneiro, Zhouhang Zhou and Yury Kudryashov, among others. The other sections
describe contributions that are new as of this formalization: product measures (in Section 4),
the definition of the Haar measure (in Section 5), and the uniqueness of the Haar measure
(in Section 6).

We will link to specific results in mathlib using the icon W. To ensure that these links
will work while mathlib is updated, we link to the version of mathlib as of writing this
paper. Readers of this paper are also encouraged to use the search function of the mathlib
documentation pages W but we do not link to specific pages of the documentation, as these
links are prone to break as the library evolves.

We used different sources for this formalization. We started out using the notes by
Jonathan Gleason [8] that gave a construction of the Haar measure in detail. However, one
of the main claims in that paper was incorrect, as described in Section 5. We then used the
books by Halmos and Cohn [10, 3] to fill in various details. For product measures we followed
Cohn [3]. For Fubini’s theorem for the Bochner integral we followed the formalization in
Isabelle. We couldn’t find a good source for this proof in the literature, so we will provide
detailed proofs of this result in Section 4. A different proof can be found in [16]. For the
uniqueness of the Haar measure we followed Halmos [10]. While we define the Haar measure
for any locally compact group, we prove the uniqueness only for second-countable locally
compact groups. The reason is that Halmos gives a uniqueness proof using measurable
groups, and only second-countable topological groups form measurable groups. In the proof
of a key theorem of Halmos there was a gap, which we fixed in the formalization by changing
the statement of that theorem (see Section 6).

2 Preliminaries

2.1 Lean and mathlib
Lean [5] is a dependently typed proof assistant with a strong metaprogramming framework [6].
Its logic contains dependent function types denoted Π i : ι, X i, universes Type∗ (the star
denotes an arbitrary universe level) and inductive types. It has a large community-driven
mathematical library, called mathlib. We use results from various areas in this library,
including topology, analysis and algebra. In particular the existing library for topological
groups was very helpful for this formalization. The fact that Lean provides a very expressive
type theory was convenient in the definition of the Bochner integral, as we will discuss in
Section 3.

mathlib uses type-classes [20, 18] to organize the mathematical structures associated to
various types, using the partially bundled approach. For example, when G is a type, the
statement [group G] states that G has the structure of a group, and [topological_space

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/haar_measure.lean#L537
https://leanprover-community.github.io/mathlib_docs/
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G] states that G has the structure of a topological space. The square brackets mean that the
argument will be implicitly inserted in definitions and theorems using type-class inference.
Some type-classes are mixins, and take other type-classes as arguments. For example,
the class topological_group takes as (implicit) argument the structure of a group and a
topological_space. This means that we need to write [group G] [topological_space
G] [topological_group G] to state that G is a topological group. Similarly, predicates on
topological spaces – such as t2_space, locally_compact_space or compact_space – take
the topological space structure as argument. This design decision makes it somewhat verbose
to get the right structure on a type, but has the advantage that these components can be
freely mixed as needed.

Lean distinguishes groups written multiplicatively (group) from groups written additively
(add_group). This is convenient since it automatically establishes multiplicative notation
(1 ∗ x−1) or additive notation (0 + -x or 0 - x) when declaring a group structure. Also,
most theorems exist for both versions; the property x ∗ y = y ∗ x is called mul_comm and
the property x + y = y + x is add_comm. To avoid code duplication, there is an attribute
@[to_additive] that, when applied to a definition or theorem for multiplicative groups,
automatically generates the corresponding declaration for additive groups by replacing all
multiplicative notions with the corresponding additive ones.

Some code snippets in this paper have been edited slightly for the sake of readability.

2.2 Mathematics in mathlib
The notation for the image of a set A : set X under a function f : X → Y is f ′′ A = {y :
Y | ∃ x ∈ A, f x = y} and the preimage of B : set Y is f −1′ B = {x : X | f x ∈ B}.
The notation λ x, f x is used for the function x 7→ f(x). We write (x : X) for the element
x with its type X given explicitly. This can also be used to coerce x to the type X.

mathlib has a large topology library, where many concepts are defined in terms of filters.
The following code snippet contains some notions in topology used in this paper.

class t2_space (X : Type∗) [topological_space X] : Prop :=
(t2 : ∀ x y, x ̸= y → ∃ U V : set X, is_open U ∧ is_open V ∧

x ∈ U ∧ y ∈ V ∧ U ∩ V = ∅)

def is_compact {X : Type∗} [topological_space X] (K : set X) :=
∀ {f : filter X} [ne_bot f], f ≤ P K → ∃ x ∈ K, cluster_pt x f

class locally_compact_space (X : Type∗) [topological_space X] : Prop :=
(local_compact_nhds : ∀ (x : X) (U ∈ N x), ∃ K ∈ N x, K ⊆ U ∧

is_compact K)

class second_countable_topology (X : Type∗) [t : topological_space X] :
Prop :=

(is_open_generated_countable : ∃ C : set (set X), countable C ∧
t = generate_from C)

class complete_space (X : Type∗) [uniform_space X] : Prop :=
(complete : ∀ {f : filter X}, cauchy f → ∃ x, f ≤ N x)

class topological_group (G : Type∗) [topological_space G] [group G] :=
(continuous_mul : continuous (λ p : G × G, p.1 ∗ p.2))
(continuous_inv : continuous (inv : G → G))

ITP 2021



18:4 Formalized Haar Measure

Some of these definitions might look unfamiliar, formulated in terms of filters, using in
particular the principal filter P and the neighborhood filter N . For example, the second
definition states that a set K is compact W if any filter f ̸= ⊥ (i.e. f doesn’t contain every
subset of X) containing K has a cluster point x in K, which means that N x ⊓ f ̸= ⊥. It
is equivalent to the usual notion of compactness that every open cover of K has a finite
subcover. W A complete space is a space where every Cauchy sequence converges, W which is
formulated in the general setting of uniform spaces, which simultaneously generalize metric
spaces and topological groups. We define a locally compact group to be a topological group
in which the topology is both locally compact and Hausdorff (T2)

Lean’s notion of infinite sums is defined for absolutely convergent series as the limit of all
finite partial sums: W

def has_sum {I M : Type∗} [add_comm_monoid M] [topological_space M]
(f : I → M) (x : M) : Prop :=

tendsto (λ s : finset I,
∑

i in s, f i) at_top (N x)

If M is Hausdorff, then the sum is unique if it exists, and we denote it by
∑′ i, f i. If the

series does not have a sum, it is defined to be 0.
The type ennreal W is the type of nonnegative real numbers extended by a new element

∞, which we will also denote [0, ∞] in this paper.
A normed space W X is a vector space over a normed field F equipped with a norm

∥·∥ : X → R satisfying
(X, d) is a metric space, with the distance function given by d(x, y) := ∥x − y∥.
for r ∈ F and x ∈ X we have ∥r · x∥ = ∥r∥ · ∥x∥.

In this paper, we will only consider normed spaces over R, which is a normed field with its
norm given by the absolute value. A Banach space is a complete normed space. In Lean we
do not explicitly define Banach spaces, but instead talk about complete normed spaces.

3 Measure Theory in mathlib

In this section we describe the background measure theory library used in this formalization.
A basic notion in measure theory is a σ-algebra on X, which is a nonempty collection

of subsets of X that is closed under complements and countable unions. In mathlib this is
formulated as a type-class, with name measurable_space: W

class measurable_space (X : Type∗) :=
(is_measurable : set X → Prop)
(is_measurable_empty : is_measurable ∅)
(is_measurable_compl : ∀ A, is_measurable A → is_measurable Ac)
(is_measurable_Union : ∀ A : N → set X, (∀ i, is_measurable (A i)) →

is_measurable (
⋃

i, A i))

We say that a function is measurable if the preimage of every measurable set is measurable: W

def measurable [measurable_space X] [measurable_space Y] (f : X → Y) :=
∀ {B : set Y}, is_measurable B → is_measurable (f −1′ B)

Note that we use is_measurable for sets and measurable for functions.
In mathlib, measures are defined as special case of outer measures. An outer measure

on X is a monotone function m : P(X) → [0, ∞] such that m(∅) = 0 and m is countably
subadditive: W

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/topology/subset_properties.lean#L64
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/topology/subset_properties.lean#L300
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/topology/uniform_space/cauchy.lean#L209
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/topology/algebra/infinite_sum.lean#L57
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/data/real/ennreal.lean#L80
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/analysis/normed_space/basic.lean#L911
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measurable_space.lean#L78
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measurable_space.lean#L478
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/outer_measure.lean#L60
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structure outer_measure (X : Type∗) :=
(measure_of : set X → ennreal)
(empty : measure_of ∅ = 0)
(mono : ∀ {A1 A2}, A1 ⊆ A2 → measure_of A1 ≤ measure_of A2)
(Union_nat : ∀ (A : N → set X),

measure_of (
⋃

i, A i) ≤ (
∑′ i, measure_of (A i)))

A measure on a measurable space is an outer measure with two extra properties: it is
countably additive on measurable sets, and given the value on measurable sets, the outer
measure is the maximal one that is compatible with these values (which is called trim in the
snippet below). W

structure measure (X : Type∗) [measurable_space X]
extends outer_measure X :=

(m_Union : ∀ {A : N → set X},
(∀ i, is_measurable (A i)) → pairwise (disjoint on A) →
measure_of (

⋃
i, A i) =

∑′ i, measure_of (A i))
(trimmed : to_outer_measure.trim = to_outer_measure)

This definition has two very convenient properties:
1. We can apply measures to any set, without having to provide a proof that the set is

measurable.
2. Two measures are equal when they are equal on measurable sets. W

Given a measure µ on X and a measurable map f : X → Y , we can define the pushforward
f∗µ, W which is a measure on Y , defined on measurable sets A by (f∗µ)(A) = µ(f−1(A)). W

We proceed to define lower Lebesgue integration
∫ − for functions f : X → [0, ∞], where

X is a measurable space. We annotate this integral with a minus sign to distinguish it from
the Bochner integral. This is done first for simple functions, i.e. functions with finite range
with the property that the preimage of all singletons are measurable. The integral of a simple
function g is simply W∫ −

g dµ =
∫ −

g(x) dµ(x) =
∑

y∈g(X)

µ(g−1{y}) · y ∈ [0, ∞].

If f : X → [0, ∞] is any function, we can define the (lower) Lebesgue integral of f to be the
supremum of

∫ −
g dµ(x) for all simple functions g that satisfy g ≤ f (pointwise). W In mathlib

we denote the Lebesgue integral of f by
∫ − x, f x ∂µ. We prove the standard properties of

the Lebesgue integral for nonnegative functions, such as the monotone convergence theorem: W

theorem lintegral_supr {f : N → X → ennreal}
(hf : ∀ n, measurable (f n)) (h_mono : monotone f) :
(
∫ − x,

⊔
n, f n x ∂µ) = (

⊔
n,

∫ − x, f n x ∂µ)

After defining the Lebesgue integral for nonnegative functions, most books and formal
libraries continue to define the Lebesgue integral for (signed) functions f : X → R. This is
defined as the difference of the integrals of the positive and negative parts of f . However, this
is not very general: separate definitions are needed for integrals for functions with codomain
C or Rn. Instead, we opt for the more general definition of the Bochner integral, which is
defined for functions that map into any second-countable real Banach space.

If X is a topological space, we equip it with the Borel σ-algebra, which is the smallest
σ-algebra that contains all open sets (or equivalently, all closed sets). W The fact that X is
equipped with the Borel σ-algebra is a mixin, and is specified by providing the arguments
[topological_space X] [measurable_space X] [borel_space X].
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https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measure_space.lean#L97
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measure_space.lean#L149
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measure_space.lean#L710
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measure_space.lean#L718
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/integration.lean#L541
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/integration.lean#L850
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/integration.lean#L997
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/borel_space.lean#L151
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Let X be a measurable space and E be a second-countable real Banach space. We define
two quotients on functions from X to E.

Let X →µ E be the measurable maps X → E modulo µ-a.e. (almost everywhere)
equivalence, i.e. modulo the relation

f =µ g ⇐⇒ µ({x | f(x) ̸= g(x)}) = 0. W

Note that we are using the fact that Lean is based on dependent type theory here, since
X →µ E is a type that depends on µ. Here our formalization differs from the one in Isabelle,
since in Isabelle this type cannot be formed. Instead, a similar argument is given purely on
functions, without passing to the quotient.

If f : X → E we say that f is integrable if W

f is µ-a.e. measurable, i.e. there is a measurable function g : X → E with f =µ g;1 and∫ − ∥f(x)∥ dµ(x) < ∞.

Being integrable is preserved by µ-a.e. equivalence, and we define the L1-space L1(X, µ; E)
as those equivalence classes of functions in X →µ E that are integrable. W L1(X, µ; E) is a
normed space, W with the norm given by

∥f∥ :=
∫ −

∥f(x)∥ dµ(x).

We define the Bochner integral first for simple functions, similar to the definition for the
Lebesgue integral. If g : X → E is a simple function then its Bochner integral is W∫

g dµ =
∫

g(x) dµ(x) =
∑

y∈g(X) s.t.
µ(g−1{y})<∞

µ(g−1{y}) · y ∈ E.

The symbol · denotes the scalar multiplication in the Banach space E. Since this defini-
tion respects µ-a.e. equivalence, we can also define the Bochner integral on the simple L1

functions. W On the simple L1 functions this definition is continuous W and the simple L1

functions are dense in all L1 functions, W and E is complete, so we can extend the Bochner
integral to all L1 functions. W

Finally, for an arbitrary function f : X → E we define its Bochner integral to be 0 if f is
not integrable and the integral of [f ] ∈ L1(X, µ; E) otherwise, where [f ] is the equivalence
class of f . W The two notions of integrals agree on integrable functions f : X → R≥0: W

∫ −
f dµ =

∫
f dµ.

However, when f is has infinite Lebesgue integral, then the equality does not hold: the LHS
is ∞, while the RHS is 0. We then prove useful properties about the Bochner integral, such
as the dominated convergence theorem: W

1 Until recently, the definition of “integrable” in mathlib required f to be measurable. The definition
was modified to increase generality. The motivating reason was that we would regularly take integrals
of a function f with a measure µ|A defined by µ|A(B) = µ(A ∩ B). A function that is (for example)
continuous on A is also µ|A-a.e. measurable, and we usually do not need any information about the
behavior of f outside A. In the previous definition of “integrable” we required f to be measurable
everywhere, which would be an unnecessary additional assumption.

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/ae_eq_fun.lean#L93
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/l1_space.lean#L383
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/l1_space.lean#L633
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/l1_space.lean#L713
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L211
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L756
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L791
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L710
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L885
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L960
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L1250
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L1120
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theorem tendsto_integral_of_dominated_convergence
{F : N → X → E} {f : X → E} (bound : X → R)
(F_measurable : ∀ n, ae_measurable (F n) µ)
(f_measurable : ae_measurable f µ)
(bound_integrable : integrable bound µ)
(h_bound : ∀ n, ∀m x ∂µ, ∥F n x∥ ≤ bound x)
(h_lim : ∀m x ∂µ, tendsto (λ n, F n x) at_top (N (f x))) :
tendsto (λ n,

∫
x, F n x ∂µ) at_top (N (

∫
x, f x ∂µ))

In this statement, ∀m x ∂µ, P x means that P x holds for µ-almost all x, in other words that
µ { x | ¬ P x } = 0, and tendsto (λ n, g n) at_top (N x) means that g n tends
to x as n tends to ∞.

Other results about integration include part 1 W and 2 W of the fundamental theorem of
calculus, but we will not use these results in this paper.

4 Products of Measures

To prove that the Haar measure is essentially unique, we need to work with product measures
and iterated integrals. In this section we will define the product measure and prove Tonelli’s
and Fubini’s theorem. (Sometimes both theorems are called Fubini’s theorem, but in this
paper we will distinguish them.) Tonelli’s theorem characterizes the Lebesgue integral for
nonnegative functions in the product space, and Fubini’s theorem does the same (under
stronger conditions) for the Bochner integral. By symmetry, both theorems also give sufficient
conditions for swapping the order of integration when working with iterated integrals.

The contents of this section have been formalized before in Isabelle. Product measures,
Tonelli’s theorem and Fubini’s theorem for the Lebesgue integral are discussed in the paper [12].
Fubini’s theorem for the Bochner integral is significantly harder to prove, but has also been
formalized in Isabelle after the appearance of that paper. W We read through the proof in
the Isabelle formalization for key ideas in various intermediate lemmas.

In this section we will restrict our attention to σ-finite measures, since product measures
are much nicer for σ-finite measures, and most of the results do not hold without this
condition. We say that a measure µ on a space X is σ-finite if X can be written as a union
of countably many subsets (Ai)i with µ(Ai) < ∞ for all i. W

First we need to know that limits of measurable functions are measurable.

▶ Lemma 1. Let X be a measurable space.
1. Given a sequence of measurable functions fn : X → [0, ∞] for n ∈ N, the pointwise

suprema and infima f(x) := sup{fn(x)}n and g(x) := inf{fn(x)}n are measurable. W

2. If a sequence of measurable functions fn : X → [0, ∞] for n ∈ N converges pointwise to a
function f , then f is measurable. W

3. Let Y be a metric space equipped with the Borel σ-algebra. If a sequence of measur-
able functions fn : X → Y for n ∈ N converges pointwise to a function f , then f is
measurable. W

Proof. For part 1, note that the collection of intervals [0, x) generate the σ-algebra on
[0, ∞], as do the intervals (x, ∞]. The conclusion follows from the fact that measurable
sets are closed under countable unions and observing that f−1([0, x)) =

⋃
n f−1

n ([0, x)) and
g−1((x, ∞]) =

⋃
n f−1

n ((x, ∞]).
Part 2 follows by observing that f(x) = lim infn fn(x) = supn infm≥n fm(x), and applying

both claims in part 1.
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https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/set_integral.lean#L501
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/interval_integral.lean#L1302
https://isabelle.in.tum.de/library/HOL/HOL-Analysis/Bochner_Integration.html
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measure_space.lean#L1570
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https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/borel_space.lean#L1259
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/borel_space.lean#L1282
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For part 3, let C be a closed set in Y . The function d(−, C) : Y → [0, ∞] that
assigns to each point the (minimal) distance to C is continuous. Therefore, we know that
h(x) := d(f(x), C) is the limit of the measurable functions d(fn(x), C) as n → ∞. By part 2
we know that h is measurable. Therefore f−1(C) = h−1({0}) is measurable (the equality
holds because C is closed). ◀

If X and Y are measurable spaces, the σ-algebra on X × Y is the smallest σ-algebra that
makes the projection X × Y → X and X × Y → Y measurable. W Alternatively, it can be
characterized as the σ-algebra generated by sets of the form A × B for measurable A ⊆ X

and B ⊆ Y . W

For the rest of this section, µ is a σ-finite measure on X and ν is a σ-finite measure on
Y . For a set A ⊆ X × Y we write Ax = {y ∈ Y | (x, y) ∈ A} for a slice of Y . In Lean, this is
written as prod.mk x −1′ A. We want to define the product measure evaluated at A as an
integral over the volume of the slices of A. To make sure that this makes sense, we need to
prove that this is a measurable function. W

lemma measurable_measure_prod_mk_left [sigma_finite ν] {A : set (X × Y)}
(hA : is_measurable A) : measurable (λ x, ν (prod.mk x −1′ A))

This lemma crucially depends on the fact that ν is σ-finite, but we omit the proof here. We
can now define the product measure µ × ν on X × Y as W

(µ × ν)(A) =
∫ −

ν(Ax) dµ(x). (1)

It is not hard to see that (µ×ν)(A×B) = µ(A)ν(B) for measurable A ⊆ X and B ⊆ Y W

and that µ × ν is itself σ-finite. W When we pushforward the measure µ × ν across the map
X × Y → Y × X that swaps the coordinates, we get the measure ν × µ W (this equality is
easily checked because both measures are equal on rectangles). This immediately gives the
symmetric version of (1), using the notation Ay = {x ∈ X | (x, y) ∈ A}: W

(µ × ν)(A) =
∫ −

µ(Ay) dν(y).

For a function f : X × Y → Z define fx : Y → Z by fx(y) := f(x, y). If Z = [0, ∞] let
I−

f : X → [0, ∞] be defined by I−
f (x) :=

∫ −
Y

fx dν =
∫ −

Y
f(x, y) dν(y).

We can now formulate Tonelli’s theorem.

▶ Theorem 2 (Tonelli’s theorem). Let f : X×Y → [0, ∞] be a measurable function. Then W W∫ −

X×Y

f d(µ × ν) =
∫ −

X

∫ −

Y

f(x, y) dν(y)dµ(x) =
∫ −

Y

∫ −

X

f(x, y) dµ(x)dν(y),

and all the functions in the integrals above are measurable. W W

Proof. We check the first equality and the measurability of I−
f . The other claims follow

by symmetry. For both these statements we use induction on measurable functions into
[0, ∞], W which states that to prove a statement P (f) for all measurable functions f into
[0, ∞], it is sufficient to show
1. if χA is the characteristic function of a measurable set and c ∈ [0, ∞], we have P (cχA);
2. if f1 and f2 are measurable functions with P (f1) and P (f2), then P (f1 + f2);
3. if (fi)i is a monotone sequence of measurable functions such that P (fi) for all i, we have

P (supi fi).

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/measurable_space.lean#L661
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L135
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L167
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L317
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L330
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L421
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L452
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L459
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L573
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L610
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L200
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L226
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/integration.lean#L1711
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We first prove that I−
f is measurable by induction on f .

In the induction base, if f = cχA, then
∫ −

Y
f(x, y) dν(y) = cν(Ax), so the measurability

follows from measurable_measure_prod_mk_left. The two induction steps follow from the
additivity of the integral and the monotone convergence theorem.

We now prove the first equality in Theorem 2, also by induction on f . In the induction
base, if f = cχA, then it is not hard to see that both sides reduce to c(µ × ν)(A). The first
induction step follows by applying additivity thrice, and the second induction step follows by
applying the monotone convergence theorem thrice. ◀

Fubini’s theorem (sometimes called Fubini–Tonelli’s theorem) states something similar
for the Bochner integral. However, it is a bit harder to state and much harder to prove. For
a function f : X × Y → E define If : X → E by If (x) :=

∫
Y

fx dν =
∫

Y
f(x, y) dν(y).

▶ Theorem 3 (Fubini’s theorem for the Bochner integral). Let E be a second-countable Banach
space and f : X × Y → E be a function.
1. If f is µ × ν-a.e. measurable then f is integrable iff the following two conditions hold: W

for almost all x ∈ X the function fx is ν-integrable;
the function I∥f∥ is µ-integrable.

2. If f is integrable, then W W∫
X×Y

f d(µ × ν) =
∫

X

∫
Y

f(x, y) dν(y)dµ(x) =
∫

Y

∫
X

f(x, y) dµ(x)dν(y).

Moreover, all the functions in the integrals above are a.e. measurable. W W

Note that Part 1 also has a symmetric counterpart, W which we omit here. Note that the
middle term in Part 2 is just

∫
X

If dµ(x).

Proof.

Measurability. First suppose that f is measurable. In this case, we show that the function
If is measurable. We can approximate any measurable function f into E by a sequence (sn)n

of simple functions W such that for all z we have ∥sn(z)∥ ≤ 2∥f(z)∥ W and sn(z) → f(z) as
n → ∞. W Now define gn : X → E by

gn(x) =
{

Isn
(x) if fx is ν-integrable

0 otherwise.

Note that gn is similar to Isn
, except that we set it to 0 whenever fx is not integrable. This is

required to ensure that gn converges to If (see below). We first check that gn is measurable.
Note that the set

{x | fx is ν-integrable} = {x |
∫

Y
∥f(x, y)∥ dν(y) < ∞}

is measurable, using Theorem 2. Therefore, to show that gn is measurable, it suffices to
show that Isn is measurable, which is true since it is a finite sum of functions of the form
x 7→ cν(Ax) (using that sn is simple).

Secondly, we check that gn converges to If pointwise. Let x ∈ X. If fx is not integrable,
it is trivially true, so assume that fx is integrable. Then (sn)x is integrable for all n, and by
the dominated convergence theorem Isn

(x) converges to If (x).
We conclude that If is measurable by Lemma 1.
Finally, if f is µ×ν-a.e. measurable, then it is not hard to show that If is µ-a.e. measurable.

ITP 2021

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L699
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L846
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L870
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L290
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L303
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L707
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/simple_func_dense.lean#L106
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/simple_func_dense.lean#L162
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/simple_func_dense.lean#L132


18:10 Formalized Haar Measure

Integrability. We now prove Part 1, so suppose that f is µ × ν-a.e. measurable. By Tonelli’s
theorem, we know that f is µ × ν-integrable iff I−

∥f∥ is µ-integrable. Note that I−
∥f∥ is similar

to I∥f∥. The difference is that when fx is not integrable, I∥f∥(x) = 0 but I−
∥f∥ = ∞. This

means that if I−
∥f∥ is µ-integrable, then fx must almost always be ν-integrable (otherwise

the integrand is infinite on a set of positive measure) and I∥f∥ must be µ-integrable. For
the other direction in Part 1, if fx is almost always integrable, then I∥f∥ = I−

∥f∥ almost
everywhere, so if the former is µ-integrable, then so is the latter.

Equality. To prove the first equality in Part 2, we use the following induction principle for
integrable functions. W It states that to prove a statement P (f) for all τ -integrable functions
f : Z → E, it is sufficient to show

if A is measurable with τ(A) < ∞ and c ∈ E, then P (cχA);
if f1 and f2 are τ -integrable functions with P (f1) and P (f2), then P (f1 + f2);
If f1 is integrable with P (f1) and f1 = f2 τ -a.e. then P (f2).
The set {f ∈ L1(Z, τ ; E) | P (f)} is closed.

We now prove by induction on f that∫
X×Y

f d(µ × ν) =
∫

X

∫
Y

f(x, y) dν(y)dµ(x). (2)

If f = cχA then it is easy to see that both sides of (2) reduce to c · (µ × ν)(A).
It is clear that if (2) holds for f1 and f2, then it also holds for f1 + f2.
Suppose that (2) holds for f1 and that f1 = f2 almost everywhere. Since integrals are
defined up to a.e. equality, we know that∫

X×Y

f1 d(µ × ν) =
∫

X×Y

f2 d(µ × ν).

It therefore suffices to show that∫
X

∫
Y

f1(x, y) dν(y)dµ(x) =
∫

X

∫
Y

f2(x, y) dν(y)dµ(x).

For this it is sufficient to show that If1(x) = If2(x) for almost all x. Since f1(z) = f2(z)
for almost all z, it is not hard to see W that for almost all x we have that for almost all y

the equality f1(x, y) = f2(x, y) holds. From this we easily get that If1(x) = If2(x) for
almost all x.
We need to show that the set of f ∈ L1(Z, τ ; E) for which (2) holds is closed. We know
that taking the integral of an L1 function is a continuous operation, W which means that
both sides of (2) are continuous in f , which means that the set where these functions are
equal is closed. ◀

5 Existence of the Haar Measure

In this section, we define the left Haar measure, and discuss some design decisions when
formalizing these definitions. We also discuss how to obtain a right Haar measure.

Throughout this section, we assume that G is a locally compact group, equipped with
the Borel σ-algebra. We will write the group operation multiplicatively. We will define the
Haar measure and show that it is a left invariant regular measure on G. In the formalization,
all intermediate definitions and results are given with weaker conditions on G, following the
design in mathlib that all results should be in the most general form (within reason).

In Lean, the precise conditions on G are written as follows.

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/set_integral.lean#L338
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/prod.lean#L401
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/bochner_integration.lean#L1062
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{G : Type∗} [topological_space G] [t2_space G] [locally_compact_space G]
[group G] [measurable_space G] [borel_space G] [topological_group G]

The concept of a left invariant measure is defined as follows in mathlib. W

def is_left_invariant (µ : set G → ennreal) : Prop :=
∀ (g : G) {A : set G} (h : is_measurable A), µ ((λ h, g ∗ h) −1′ A) = µ A

Note that the preimage (λ h, g ∗ h) −1′ A is equal to the image (λ h, g−1 ∗ h) ′′ A.
We use preimages for translations, since preimages are nicer to work with. For example, the
fact that (λ h, g ∗ h) −1′ A is measurable follows directly from the fact that multiplication
(on the left) is a measurable function.

Next we give the definition of a regular measure W

structure regular (µ : measure X) : Prop :=
(lt_top_of_is_compact : ∀ {K : set X}, is_compact K → µ K < ⊤)
(outer_regular : ∀ {A : set X}, is_measurable A →

( ⊔(U : set X) (h : is_open U) (h2 : A ⊆ U), µ U) ≤ µ A)
(inner_regular : ∀ {U : set X}, is_open U →

µ U ≤
⊔

(K : set X) (h : is_compact K) (h2 : K ⊆ U), µ K)

If µ is a regular measure, then the inequalities in the last two fields are always equalities. This
means that a measure µ is regular if it is finite on compact sets, its value on a measurable
set A is equal to the infimum ( ⊔) of its value on all open sets containing A, and finally its
value on an open set U is the supremum (

⊔
) of its values on all compacts subsets of U.

We are now ready to start the definition of the Haar measure. Given a compact set
K in G, we start by giving a rough approximation of the “size” of K by comparing it to a
reference set V, which is an open neighborhood of (1 : G). We can consider all left translates
(λ h, g ∗ h) −1′ V of V, which is an open covering of K. Since K is compact, we only need
finitely many left translates of V to cover K. W Let index K V be the smallest number of
left-translates of V needed to cover K. This is often denoted (K : V ). We did not use this
in Lean code, since it conflicts with the typing-notation in Lean. In Lean, this notion is
defined for arbitrary sets K and V, and it is defined to be 0 if there is no finite number of left
translates covering K: W

def index (K V : set G) : N :=
Inf (finset.card ′′ {t : finset G | K ⊆

⋃
g ∈ t, (λ h, g ∗ h) −1′ V })

For the rest of this section, we fix K0 as an arbitrary compact set with nonempty interior (in
mathlib this is denoted K0 : positive_compacts G). We then define a weighted version of
the index: W

def prehaar (K0 U : set G) (K : compacts G) : R :=
(index K U : R) / index K0 U

This definition satisfies the following properties.

▶ Lemma 4. Denote prehaar K0 U K by hU (K) (recall that K0 is fixed). Then we have
(K : U) ≤ (K : K0) · (K0 : U); W

0 ≤ hU (K) ≤ (K : K0); W

hU (K0) = 1; W

hU (xK) = hU (K); W

if K ⊆ K ′ then hU (K) ≤ hU (K ′); W

hU (K ∪ K ′) ≤ hU (K) + hU (K ′) W and equality holds if KU−1 ∩ K ′U−1 = ∅. W
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To define the left Haar measure, we next want to define the “limit” of this quotient as U
becomes a smaller and smaller open neighborhood of 1. This is not an actual limit, but we
will emulate it by constructing a product space that contains all these functions, and then
use a compactness argument to find a “limit” in a large product space.

Consider the product of closed intervals∏
K⊆G compact

[0, (K : K0)].

In Lean this is defined as a subspace of the topological space compacts G → R: W

def haar_product (K0 : set G) : set (compacts G → R) :=
pi univ (λ K : compacts G, Icc 0 (index K K0))

Here pi univ is the product of sets and Icc is an interval that is closed on both sides.
Note that by Tychonoff’s theorem W haar_product K0 is compact, and that every function

prehaar K0 U : compacts G → R determines a point in haar_product K0. W

Given an open neighborhood V of 1, we can define the collection of points determined by
prehaar K0 U for all U ⊆ V and take its closure:

def cl_prehaar (K0 : set G) (V : open_nhds_of (1 : G)) :
set (compacts G → R) :=

closure (prehaar K0
′′ { U : set G | U ⊆ V ∧ is_open U ∧ (1 : G) ∈ U })

Now we claim that the intersection of cl_prehaar K0 V is nonempty for all open neighbor-
hoods V of 1.

lemma nonempty_Inter_cl_prehaar (K0 : positive_compacts G) : nonempty
(haar_product K0 ∩

⋂
(V : open_nhds_of (1 : G)), cl_prehaar K0 V)

Proof. Since haar_product K0 is compact, it is sufficient to show that if we have a finite
collection of open neighborhoods t : finset (open_nhds_of 1) the set haar_product
K0 ∩

⋂
(V ∈ t), cl_prehaar K0 V is non-empty. W In this case we can explicitly give an

element, namely prehaar K0 V0, where V0 =
⋂

(V ∈ t), V. ◀

Finally, we can choose an arbitrary element in the set of the previous lemma, which we
call chaar K0, since it measures the size of the compact sets of G: W

def chaar (K0 : positive_compacts G) (K : compacts G) : R :=
classical.some (nonempty_Inter_cl_prehaar K0) K

▶ Lemma 5. Denote chaar K0 K by h(K). Then we have
0 ≤ h(K) W and h(∅) = 0 W and h(K0) = 1; W

h(xK) = h(K); W

if K ⊆ K ′ then h(K) ≤ h(K ′) (monotonicity); W

h(K∪K ′) ≤ h(K)+h(K ′) (subadditivity) W and equality holds if K∩K ′ = ∅ (additivity). W

The idea in the proof is that the projections f 7→ f(K) are continuous functions. Since these
statements in this lemma hold for all hU by Lemma 4, they also hold for each point in each
set cl_prehaar K0 V, and therefore for h.

This function chaar K0 measures the size of the compact sets of G. It has the properties
of a content on the compact sets, which is an additive, subadditive and monotone function
into the nonnegative reals [10, §53]. From this we can define the Haar measure in three steps.

First, given a content, we can obtain its associated inner content on the open sets, W

https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/haar_measure.lean#L100
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/topology/subset_properties.lean#L603
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/haar_measure.lean#L273
https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/topology/subset_properties.lean#L182
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https://github.com/leanprover-community/mathlib/blob/2cbaa9cc29bc44812b679810352ed383f35dcf75/src/measure_theory/haar_measure.lean#L314
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def inner_content (h : compacts G → ennreal) (U : opens G) : ennreal :=⊔
(K : compacts G) (hK : K ⊆ U), h K

This inner content is monotone W and countably subadditive. W Also note that for every set
K that is both compact and open, we have inner_content h K = h K. W

Second, given an arbitrary inner content ν, we can obtain its associated outer measure
µ W which is given by µ A = ⊔(U : set G) (hU : is_open U) (h : A ⊆ U), ν U. W

For open sets U we have that µ U = ν U. W Suppose that the inner content ν comes
from the content h. We have observed that µ agrees with ν on their common domain (the
open sets), and that ν agrees with h on their common domain (the compact open sets). One
might be tempted to conclude that µ agrees with h on their common domain (the compact
sets). This is implicitly claimed in Gleason [8], since the same name is used for these three
functions. However, this is not necessarily the case [10, p. 233]. The best we can say in
general is that for compact K we have µ (interior K) ≤ h K ≤ µ K W W

If we apply these two steps to the function h = chaar K0 we obtain the Haar outer
measure haar_outer_measure K0 on G. W Next, we show that all Borel measurable sets on
G are Carathéodory measurable w.r.t. haar_outer_measure K0. W This gives the left Haar
measure. W We also scale the Haar measure so that it assigns measure 1 to K0.

▶ Theorem 6. Let µ be the left Haar measure on G, defined above. Then µ is a left
invariant W and regular W measure satisfying µ(K0) = 1. W

We will show in Section 6 that the Haar measure is unique, up to multiplication determined
by a constant. The following theorem states some properties of left invariant regular measures.

▶ Theorem 7. Let µ be a nonzero left invariant regular measure on G.
If U is a nonempty open set, then µ(U) > 0 W

If f : G → R is a nonnegative continuous function, not identically equal to 0, then∫ −
f dµ > 0. W

In this section we have only discussed the left Haar measure, which is left invariant. One
can similarly define the notion of right invariance for a measure. We can easily translate
between these two notions. For a measure µ define the measure µ̌ by µ̌(A) = µ(A−1). W The
following Theorem shows that if µ is the left Haar measure on G, then µ̌ is a right Haar
measure on G (i.e. a nonzero regular right invariant measure).

▶ Theorem 8.
The operation µ 7→ µ̌ is involutive. W

µ is left invariant iff µ̌ is right invariant. W

µ is regular iff µ̌ is regular. W

6 Uniqueness of the Haar measure

In this section we will show that the Haar measure is unique, up to multiplication by a
constant. For this proof, we followed the proof in Halmos [10, §59-60] up to some differences
given at the end of the section.

Let G be a second-countable locally compact group. The main ingredient in the proof
is that if we have two left invariant measures µ and ν on G, we can transform expressions
involving µ into expressions involving ν by applying a transformation to G×G that preserves
the measure µ × ν. We need Tonelli’s theorem to compute the integrals in this product.
Because G is second countable, the product σ-algebra on G × G coincides with the Borel
σ-algebra. W
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Suppose µ and ν are left invariant and regular measures on G. Since G is second-
countable, this also means that µ and ν are σ-finite. W We first show that (x, y) 7→ (x, xy)
and (x, y) 7→ (yx, x−1) are measure-preserving transformations.

▶ Lemma 9. Let µ and ν be left invariant regular measures on G, then the transformations
S, T : G × G → G × G given by S(x, y) := (x, xy) and T (x, y) := (yx, x−1) preserve the
measure µ × ν, i.e. S∗(µ × ν) = µ × ν = T∗(µ × ν). W W

Proof. It suffices to show that the measures are equal on measurable rectangles, since these
generate the σ-algebra on G × G. Let A × B ⊆ G × G be a measurable rectangle. For S we
compute:

S∗(µ × ν)(A × B) = (µ × ν)(S−1(A × B))

=
∫ −

ν(S(x, −)−1(A × B)) dµ(x) =
∫ −

χA(x)ν(x−1B) dµ(x)

=
∫ −

χA(x)ν(B) dµ(x) = µ(A)ν(B) = (µ × ν)(A × B).

Note that S is an equivalence with inverse S−1(x, y) = (x, x−1y). If we define R(x, y) := (y, x),
we saw in Section 4 that R∗(µ × ν) = ν × µ. The claim that T preserves measure now follows
from the observation that T = S−1RSR, which is easy to check. ◀

For measurable sets A its left translates have the same measure: µ(xA) = µ(A). This
might not be true for right translates µ(Ax), but we can say the following [10, §59, Th. D].

▶ Lemma 10. Let µ be a left invariant regular measure on G and suppose that µ(A) > 0 for
a measurable set A ⊆ G. Then µ(A−1) > 0 W and µ(Ax) > 0 W for x ∈ G. Furthermore, the
map f(x) := µ(Ax) is measurable. W

Proof. Let S and T be as in Lemma 9. For the first claim, we will show that µ(A−1) = 0
implies that µ(A) = 0. It suffices to show that (µ × µ)(A × A) = 0, which we can compute
using Lemma 9:

(µ × µ)(A × A) = (µ × µ)(T −1(A × A)) =
∫ −

µ((T −1(A × A))y) dµ(y)

=
∫ −

µ(y−1A ∩ A−1) dµ(y) ≤
∫ −

µ(A−1) dµ(y) = 0.

The second claim now easily follows, since µ(A) > 0 implies that µ(Ax) = µ((x−1A−1)−1) >

0.
For the final claim, we can see that µ(Ax) = µ((S−1(G × A))x), which is measurable by

the symmetric version of measurable_measure_prod_mk_left from Section 4. ◀

The following is a technical lemma that allows us to rewrite ν-integrals into µ-integrals.
This is the key lemma to show the uniqueness of the Haar measure. [10, §60, Th. A].

▶ Lemma 11. Let µ and ν be left invariant regular measures on G, let K ⊆ G be compact
with ν(K) > 0, and suppose that f : G → [0, ∞] is measurable. Then W

µ(K) ·
∫ − f(y−1)

ν(Ky) dν(y) =
∫ −

f dµ.
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Proof. First note that 0 < ν(Ky) < ∞ for any y. The first inequality follows from
Lemma 10 and the second inequality from the fact that ν is regular and Ky is compact. Let
g(y) := f(y−1)

ν(Ky) , then by Lemma 10, g is measurable. Now we compute

µ(K) ·
∫ −

g(y) dν(y) =
∫ −

χK(x) dµ(x) ·
∫ −

g(y) dν(y)

=
∫ −∫ −

χK(x)g(y) dν(y) dµ(x) =
∫ −∫ −

χK(yx)g(x−1) dν(y) dµ(x) (by Lemma 9)

=
∫ −

ν(Kx−1)g(x−1) dµ(x) =
∫ −

f(x) dµ(x).

Note that in the third step we also use Tonelli’s theorem, since Lemma 9 shows that the
corresponding integrals over the product are equal. ◀

As a consequence, we get the uniqueness of the Haar measure: every left invariant measure
is a multiple of the Haar measure.

▶ Theorem 12. Let ν be a left invariant regular measure and K0 be a compact set with
non-empty interior. If µ is the Haar measure on G with µ(K0) = 1, then ν = ν(K0) · µ. W

Proof. Let A be any measurable set. The result follows from the following computation,
where we apply Lemma 11 twice, once with measures (ν, µ) and once with measures (µ, µ):

ν(A) =
∫ −

χA dν = ν(K0) ·
∫ − χA(y−1)

µ(K0y) dµ(y)

= ν(K0) · µ(K0) ·
∫ − χA(y−1)

µ(K0y) dµ(y) = ν(K0) ·
∫ −

χA dµ = ν(K0) · µ(A). ◀

For this proof we followed Halmos [10, §59-60], but there are some differences. Halmos
gives a more general version of Lemma 11, for an arbitrary measurable group, while we did
it for a second-countable locally compact group equipped with the Borel σ-algebra (which
forms a measurable group). There are other proofs, like in Cohn [3, Theorem 9.2.6], that do
not require G to be second countable. Another difference between our and Halmos’ proof
is that we assume that K is compact, while Halmos assumes that K is measurable with
ν(K) < ∞. However, in the proof he implicitly uses that also ν(Ky) < ∞, a fact that is not
justified in the text, and that I was unable to prove from the assumption that ν(K) < ∞.
At this point I do not know whether this claim is true or not. I asked this question on
Stack Exchange, which has not been answered as of writing this paper. W Lemma 10 claims
something similar, namely that if ν(K) > 0 then ν(Ky) > 0, but the proof of this claim does
not work to show finiteness of ν(Ky). We patched this gap by assuming that K is compact
and ν is regular, which implies that ν(Ky) < ∞ because Ky is also compact.

7 Concluding Thoughts

The formalization of product measures (and their basic properties) is about 900 lines of code,
and the formalization of Haar measure (and its basic properties) is about 1300 lines of code
(including blank lines and comments). The development integrates smoothly into mathlib,
and preliminaries of this work are placed in their appropriate files. The formalization was
integrated into mathlib via more than a dozen pull requests W W W W W W W W W W W W W W W

that added new material or modified and expanded existing developments. Each pull request
was carefully reviewed by one of mathlib’s maintainers.
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The proofs in this formalization use a wide variety of techniques, from the reasoning in
Banach spaces for Fubini’s theorem, to topological compactness arguments in the existence
proof of the Haar measure, to the calculational proofs in the uniqueness of the Haar measure.
This formalization shows that these different proof techniques can be used and combined
effectively in mathlib to formalize graduate level mathematics.

This work can be extended in various ways. One interesting project would be to prove the
uniqueness for groups that need not be second countable. This should not be too difficult, but
requires a version of Fubini’s theorem for compactly supported functions on locally compact
Hausdorff spaces. Another project would be to explore the modular function, which describes
how the left and the right Haar measures differ on a locally compact group. Furthermore,
the Haar measure is used as a tool in many areas of mathematics, some of which would now
be feasible to formalize with the Haar measure as a new tool in our toolkit.

One such area is abstract harmonic analysis. Abstract harmonic analysis is the area
of analysis on topological groups, usually locally compact groups. One of the core ideas
is to generalize the Fourier transform to an arbitrary locally compact abelian group. The
special case of the continuous Fourier transform has been formalized in HOL4 [9], but the
abstract Fourier transform has never been formalized. One specific goal could be to formalize
Pontryagin duality. For a locally compact abelian group G we can define the Pontryagin
dual Ĝ := Hom(G, T ) consisting of the continuous group homomorphisms from G to the
circle group T . Then Pontryagin duality states that the canonical map G → ̂̂

G (given by
the evaluation function) is an isomorphism. Other targets include Peter–Weyl theorem and
more ambitiously the representation theory of compact groups and Weyl’s integral formula
for compact Lie groups.

In mathlib we have not just defined binary product measures, but also finitary product
measures, W which can be used to define integrals over Rn. In mathlib this is done by defining
a measure on the product space Π i : ι, X i.
def measure.pi {ι : Type∗} [fintype ι] {X : ι → Type∗}

[∀ i, measurable_space (X i)] (µ : ∀ i, measure (X i)) :
measure (Π i, X i)

The definition is conceptually very simple, since you just iterate the construction of binary
product measures, but in practice it is quite tricky to do it in a way that is convenient to
use. For example, in a complicated proof, you do not want to worry about the fact that
the spaces X × (Y × Z) and (X × Y ) × Z are not exactly the same, just equivalent. One
open question is whether we can formulate Fubini’s theorem for finitary product measures
in a way that is convenient to use. It would be inconvenient to rewrite a finitary product
of measures into a binary product in the desired way, and then apply Fubini’s theorem for
binary product measures. We have an idea that we expect to be more promising, which is to
define a “marginal integral” that only integrates some variables in the input of a function,
corresponding to the marginal distribution of a random variable in probability theory. It
takes a function f : (Π i, X i) → E and integrates away the variables in a subset I. The
result is another function (Π i, X i) → E that is constant on all variables in I:
def marginal (µ : ∀ i, measure (X i)) (I : finset ι)

(f : (Π i, X i) → E) : (Π i, X i) → E

This has not been incorporated in mathlib, but it is a promising experiment on a separate
branch. W If we denote marginal µ I f as

∫
· · ·

∫
_I, f ∂µ, then the following is a convenient

way to state Fubini’s theorem for finitary product measures.
lemma marginal_union (f : (Π i, X i) → E) (I J : finset ι) :

disjoint I J →
∫

· · ·
∫

_I ∪ J, f ∂µ =
∫

· · ·
∫

_ I,
∫

· · ·
∫

_J, f ∂µ ∂µ
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Abstract

The weak call-by-value λ-calculus L and Turing machines can simulate each other with a polynomial
overhead in time. This time invariance thesis for L, where the number of β-reductions of a computation
is taken as its time complexity, is the culmination of a 25-years line of research, combining work by
Blelloch, Greiner, Dal Lago, Martini, Accattoli, Forster, Kunze, Roth, and Smolka. The present
paper presents a mechanised proof of the time invariance thesis for L, constituting the first mechanised
equivalence proof between two standard models of computation covering time complexity.

The mechanisation builds on an existing framework for the extraction of Coq functions to L and
contributes a novel Hoare logic framework for the verification of Turing machines.

The mechanised proof of the time invariance thesis establishes L as model for future developments
of mechanised computational complexity theory regarding time. It can also be seen as a non-trivial
but elementary case study of time-complexity-preserving translations between a functional language
and a sequential machine model. As a by-product, we obtain a mechanised many-one equivalence
proof of the halting problems for L and Turing machines, which we contribute to the Coq Library of
Undecidability Proofs.
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1 Introduction

Computability theory – i.e. the study of which problems can be solved computationally –
is invariant under the chosen model of computation: Any Turing-complete model does the
job. Similarly, but less generally, computational complexity theory – i.e. the study of how
efficiently problems can be solved computationally – is invariant under the chosen model:
Both Turing machines and RAM machines are used and can be exchanged as long as only
complexity classes closed under polynomial time reductions are of interest. This practice is
based on the invariance thesis, introduced by Slot and van Emde Boas as “all reasonable
models of computation simulate each other with a polynomially bounded overhead in time
and a constant factor overhead in space” [23]. For the present paper, we dub the first half
concerning time complexity the time invariance thesis.
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19:2 Mechanised Time Invariance Thesis for L

While RAM machines and Turing machines are reasonable in this sense, the question how
and whether the (untyped) λ-calculus [4] is reasonable was a long-standing open question.
This may sound especially surprising given the fact that the λ-calculus was one of the first
models for computability to be proven Turing-complete, by Turing himself [27]. On the other
hand, the λ-calculus is indeed more complicated than sequential models: Terms are trees
and contain binders, computation is non-local, multiple potentially non-equivalent reduction
strategies can be chosen, etc. Maybe most crucially, it is not obvious what a reasonable
time complexity measure is: The number of β-steps in a computation? Or does one have to
account for (the size of) β-redexes? And even more unclear: What is the space complexity
of a λ-calculus computation?

More or less independently of these questions, one direction of the time invariance thesis
is easy to prove: The λ-calculus can simulate Turing machines.

In this paper, we focus on the weak call-by-value λ-calculus introduced by Plotkin [21],
in the concrete variant L introduced by Forster and Smolka [12]. In L, only abstractions are
values, and we take the number of β-steps as time complexity measure of a computation [7].
L is similar to an ML-like functional programming language: Reductions in abstractions are
not allowed, and a β-reduction only applies when both sides of an application are a value.

A short timeline of time complexity for L and the full λ-calculus looks as follows:

1995 Blelloch and Greiner [3] prove the time invariance thesis for the weak call-by-value
λ-calculus w.r.t. RAM machines, with the number of β-steps as time complexity measure.

2008 Dal Lago and Martini [17] prove the time invariance thesis for the weak call-by-value
λ-calculus w.r.t. Turing machines, with the sum over all differences of the size of the
redex and the size of the reduct as time complexity measure.

2015 Accattoli and Dal Lago [1] prove the time invariance thesis for the full λ-calculus w.r.t.
RAM machines, with the number of β-steps as time complexity measure.

2020 Forster, Kunze, and Roth [7] prove the invariance thesis for L w.r.t. Turing machines,
with the number of β-steps as time complexity measure and the maximum of the sizes of
all intermediate terms as space complexity measure.

All of these results come with different levels of formality in their proofs. Blelloch and
Greiner [3] only state their result, but do not give any details of a proof, much less provide
details how the (RAM)-machine carrying out the simulation might look like. Dal Lago and
Martini [17] give a proof sketch: They informally describe what a Turing machine simulating
L has to do, and for instance how many tapes it has, but do not give invariants for inductions.
The other, easier simulation direction is discussed in similar detail. In a later note, Dal
Lago and Accattoli [16] give a formal proof on paper that the λ-calculus – independent from
the concrete variant used – can simulate Turing machines with linear overhead. The proof
of the time invariance thesis for the full λ-calculus by Accattoli and Dal Lago [1] is based
on a careful and formal study of explicit sharing, but again the implementation in terms
of machines is left out. This technique is omnipresent in theoretical computer science and
mathematics: The folklore parts of results are only sketched or are entirely left out, while
the interesting parts are formalised and detailed proofs are given.

When mechanising a result in an interactive theorem prover, both aspects form their
own challenges: For folklore results, first a proof has to be found, then formalised, then
mechanised, and each individual step can prove challenging. For a formal proof, only missing
details of an argument have to be recovered, which can still impose challenges.

The proof of the invariance thesis for L [7] is accompanied by a mechanisation for one
part of the novel contribution, namely two stack machine semantics for L. Since it is folklore
that concrete algorithms can be implemented on Turing machines, this part is only sketched.
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In the present paper, we give a mechanised proof of the time invariance thesis for L in
Coq [26], providing all details left out in existing proofs. We mechanise two variants of the
time invariance thesis for L. The first provides a Turing machine Msim, simulating L based
on a stack machine for L with a heap, and vice versa a term ssim simulating Turing machines:

▶ Theorem 1 (Time Invariance Thesis for L w.r.t. Simulation). There are a Turing machine
Msim, an L-term ssim, and encoding relations of L-terms and heaps on tapes, and Turing
machines and tapes as L-terms s.t.
1. Msim simulates L with polynomial overhead, i.e. there is a polynomial p s.t. for all closed s:

a. Whenever s terminates in i steps with value v, Msim run on an input tape encoding s

terminates in p(i, ||s||) steps with an encoding of a heap containing v on its output tape,
where ||s|| is the size of s.

b. If Msim terminates on the encoding s, then s terminates.
2. ssim simulates TMs with linear overhead, i.e. there is a constant c s.t. for all M :

a. Whenever M : TMn
Σ terminates on tapes t in i steps with result tapes t′, ssim run on

an encoding of both M and t evaluates to the encoding of t′ in c · i · ||M || + c steps.
b. If ssim terminates on the encodings M and t, then M terminates on t.

As a by-product, this theorem yields the first mechanised proof that the halting problems
for L and Turing machines are many-one equivalent, which we contribute as a corner stone
to the Coq Library of Undecidability Proofs [11].

Two subtleties are important to point out: First, an L-computation does not have explicit
input and output. Any L-term s0 can compute on its own. Input can be realised by
application to an (encoded) value (s0n) and the result of the computation can be considered
its output. In contrast, a Turing machine M can not compute without the value of its tapes
specified, unless one explicitly defines the canonical value of tapes to be e.g. empty. Secondly,
the theorem depends on notions of encoding an L-term on a tape, of encoding heaps on a
tape, and of encoding a Turing machine and tapes as L-terms. The choice of such encodings
is not canonical, and they have to fulfil certain properties for the theorem to be meaningful.
For instance, the unfolding of a heap to an L-term on a Turing machine has to be (at most)
polynomial in time, otherwise the theorem is meaningless.

As is well-known, computation in L and the λ-calculus in general is potentially subject
to so-called “size explosion”, i.e. the size of a result of a computation can be exponentially
larger than both the size of the input and the number of steps. Thus, in the above theorem,
unfolding the heap containing v will be polynomial in the size of v and i, but the size of v

might be exponential in both the size of s and i. The following version of the time invariance
thesis abstracts away from such subtleties by only considering the computability of k-ary
relations on boolean strings, while still being as transparent as possible:

▶ Theorem 2 (Time Invariance Thesis for L w.r.t Computability). Let R ⊆ (LB)k × LB. Then
1. If R is L-computable with time complexity function τR, then there is

a polynomial p s.t. R is TM-computable with time complexity func-
tion (m, n1, . . . , nk) 7→ p(m, n1, . . . , nk, τR(n1, . . . , nk)).

2. If R is TM-computable with time complexity function τR, then there is a constant c

s.t. R is L-computable with time complexity function (m, n1, . . . , nk) 7→ c · m · n1 · · · nk ·
τR(n1, . . . , nk) + c.

We accomodate for size explosion by making the time complexity function of a relation
R also depend on the size m of the output. Of course, for Turing machines m is always
bounded linearly by n1, . . . , nk and i.
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Two corollaries are immediate: If the output of a relation R is polynomially bounded by
its input, R is polynomially TM-computable if and only if it is polynomially L-computable.
In particular, the complexity class P (i.e. PTIME) agrees for both L and Turing machines.

Note that the theorem still depends on encodings, namely on the precise definitions
of a relation R being TM- and L-computable. However, the two notions can be assessed
independently: L-computability only depends on how to encode boolean strings (LB), and
similar for TM-computability. Unsurprisingly, both encodings are very simple, and it is
obvious that e.g. equality checking works in linear time.

The theorems are furthermore equivalent, in the sense that one can prove one from the
other without additional complex simulations: We obtain our mechanised proof of the time
invariance thesis w.r.t. computability from the time invariance thesis w.r.t. simulation, by
defining terms and machines dynamically exchanging between the encodings of LB on Turing
machines, LB in L, L-terms on Turing machines, and Turing machines as L-terms. The
other direction would be possible by verifying a universal Turing machine with polynomial
overhead in time for Turing machine computation, and similarly a universal L-term.

We avoid non-polynomial overhead for terms exhibiting size explosion by relying on heaps.
However, this means that the space overhead is linear-logarithmic rather than constant
factor, due to terms exhibiting pointer explosion. A mechanised proof of the time and space
invariance thesis for L is left for future work.

The present work is based on the certifying extraction framework for L by Forster and
Kunze [6] and the Turing machine verification framework by Forster, Kunze, and Wuttke [9].

The certifying extraction framework allows extracting (by definition total) Coq functions
on first-order types to L and automatically proves correctness. The user can provide a time
complexity function, which is then automatically verified as well. We use an L-computability
proof of Turing machine transitions, which is already a case study of the framework.

The Turing machine verification framework allows giving algorithms in the style of a
register-based while-language, and a corresponding machine is automatically constructed
behind the scenes. Separate correctness and verification proofs are then inclusion proofs
between the automatically derived and the user-given relations for the constructed machine.

Contribution. The main contribution of the paper are mechanised proofs of the time
invariance thesis for L w.r.t. both simulation and computability. As a by-product, we obtain
that the halting problems for Turing machines and L are many-one equivalent, a result we
contribute to the Coq Library of Undecidability Proofs [11]. We also contribute a Hoare logic
framework for the verification of correctness, time, and space complexity of Turing machines.

Outline. The paper is split into four parts: First, Section 3 introduces the weak call-by-value
λ-calculus L with small-step, big-step, and stack machine semantics, and Section 4 introduces
Turing machines and the Turing machine verification framework from [9]. Secondly, we
explain the simulation of L computations on Turing machines with polynomial overhead in
Section 5, and how to obtain a simulator ssim from the L-computability of Turing machine
steps [6] in Section 6, which yields a mechanised proof of the time invariance thesis for L w.r.t.
simulation. Thirdly, we explain how to prove that TM-computable relations R ⊆ (LB)k ×LB
are L-computable with polynomial overhead in Section 7. Lastly, we introduce a novel Hoare
logic verification framework for Turing machines in Section 8, which we use to prove that
L-computable relations R ⊆ (LB)k × LB are TM-computable with polynomial overhead
in Section 9, which yields a mechanised proof of the time invariance thesis for L w.r.t.
computability.
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Related work. Considering only the simulation of models of computation without time
complexity, we are aware of Xu et al. [29] mechanising the equivalence of register machines
and Turing machines, Forster and Larchey-Wendling [10] with a mechanised compilation of
register machines to binary stack machines, and Larchey-Wendling and Forster [18], proving
that the halting problems of register machines and µ-recursive functions, and the solvability
of diophantine equations are many-one equivalent. In unpublished work, Pous [22] mechanises
an equivalence proof between counter machines and partial recursive functions in Coq.

2 Notations and Definitions

We use the following inductive types:

1 ::= () (unit)
n : N ::= 0

∣∣ S n (natural numbers)
b : B ::= true

∣∣ false (booleans)

o : OA ::= None
∣∣ Some a (options)

l : LA ::= []
∣∣ a :: l (lists)

A + B := inl a
∣∣ inr b (sums)

A × B := (a, b) (pairs)
We use the notation if a is s then b1 else b2 for inline case analysis, which evaluates to

b1 if a is of the shape s (e.g. for a non-zero number s := Sn or for a list s := [] or s := x :: l),
and to b2 otherwise.

We use the functions map : (A → B) → LA → LB and map2 : (A → B → C) → LA →
LB → LC, defined as follows

map f (a :: l) := fa :: map f l map2 f (a :: l1) (b :: l2) := fab :: map2 f l1 l2

map f [] := [] map2 f l1 l2 := []

We use i, n, k, and m as letters for numbers, but try to be consistent in there use:
numbers of steps are i, number of tapes are n, the arity of input and relations is k, the size
of inputs are n1, . . . , nk and the size of the output is m.

We write P for the type of propositions. R ⊆ A × B is short for R : A → B → P, and
P ⊆ B is short for P : B → P. In particular, if R ⊆ A × B and a : A, then Ra ⊆ B.

Ak is the type of vectors of length k with elements in A. We use bold letters (t, u, . . . )
for vectors and reuse list functions such as map2 for vectors. The type Finn is inductively
defined to have exactly n elements. We write the elements of the type FinSn as 0, . . . , n.

A retraction X ↪→ Y consists of a function I : X → Y and an inverse function R : Y →
OX s.t. ∀x. R(Ix) = Some x.

3 The call-by-value λ-calculus L

The call-by-value λ-calculus was introduced by Plotkin [21] as variant of Church’s λ-
calculus [5]. The concrete variant of the call-by-value λ-calculus we present here is called
L [12]. We define syntax and semantics for L in Section 3.1 and introduce a stack machine
with a heap in 3.2.

3.1 Syntax, small-step, and big-step semantics
We define the syntax of L using de Bruijn indices as the syntax of the full λ-calculus, i.e. as
variables, applications, or abstractions. The size ||s|| counts the number of constructors in s

with unary encoded de Bruijn indices.

s, t, u : tmL ::= n : N
∣∣ st

∣∣ λs ||n|| := n + 1 ||st|| := ||s|| + ||t|| + 1 ||λs|| := 1 + ||s||

We use names for concrete terms on paper, e.g. write (λxy.xx)(λz.z) for (λλ11)(λ0).
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19:6 Mechanised Time Invariance Thesis for L

We define a simple substitution operation sn
t , agreeing with a more standard parallel

substitution operation when the term substituted with is closed:

nm
u := if n = m then u else n (st)n

u := sn
utn

u (λs)n
u := λ(sSn

u )

Formally, we say that a term s is a closed term if ∀nu. sn
u = s.

We now define a small-step relation ≻, its n-step repetition ≻n, and an inductive
characterisation of weak, call-by-value big-step evaluation s ▷ v:

(λs)(λt) ≻ s0
λt

s ≻ s′

st ≻ s′t

t ≻ t′

st ≻ st′ s ≻0 s

s ≻ s′ s′ ≻n t

s ≻Si t λs ▷0 λs

s ▷i1 λu t ▷i2 t′ u0
t′ ▷i3 v

st ▷1+i1+i2+i3 v

Note that we have for example (λxy.xx)(λz.z) ▷1 λy.(λz.z)(λz.z). Evaluation is called
weak because the bodies of abstractions are not evaluated and call-by-value because arguments
are evaluated before a function is called. Evaluation agrees with evaluation in Plotkin’s
calculus [21] on closed terms, but does not treat variables as values.

▶ Lemma 3. If s is closed, s ▷i t if and only if s ≻i t and t is an abstraction.

Weak call-by-value reduction is uniformly confluent [20], meaning for a terminating term
s, we can talk about the time complexity of s without fixing a reduction path.

▶ Fact 4. If s ≻ t1 and s ≻ t2, then t1 = t2 or ∃u.t1 ≻ u ∧ t2 ≻ u.

▶ Corollary 5. If s ▷n1 t1 and s ▷n2 t2, then n1 = n2 and t1 = t2.

The L halting problem is defined as HaltL(s : tmL, H : closeds) := ∃t. s ▷ t.
To define L-computability we introduce so-called Scott encodings [14, 19] for B, N, and L,

which internalise the case-analysis behaviour of the respective types.

true := λxy.x 0 := λxy.x [] := λxy.x

false := λxy.y Sn := λxy.yn b :: l := λxy.y b l

A relation R ⊆ LBk × LB is L-computable with time complexity relation τ ⊆ N1+k × N if

∃s : tmL.∀l1 . . . lk.(∀l. R(l1, . . . , lk)l → ∃c ≤ τ(|l|, |l1|, . . . , |lk|). s l1 . . . lk ▷c l)∧
∀t. sl1 . . . lk ▷ t → ∃l. R(l1, . . . , lk)l

Note that time complexity is a relation rather than a function. We will only consider
functional time complexity relations, and write them on paper as if they were functions.
However, for undecidable relations R (e.g. expressing halting problems necessary for deducing
a proof of the time invariance thesis w.r.t. simulation from the one w.r.t. computability), it
is crucial that τ is a relation: one could use a complexity function τ : N1+k → N to write a
Coq decision function checking whether ∃l. R(l1, . . . , lk)l. Since we know that such a decision
is impossible in the constructive type theory of Coq, time complexity functions can not be
defined for undecidable problems.

3.2 Stack machine semantics
The big-step semantics allows for a compact definition, but is not ideal for implementations
of L. To prepare for a simulation of L on Turing machines we introduce a stack machine for L,
utilising references to a heap instead of substitution, similar to the heap machine by Kunze
et al. [15]. In contrast to the results there, we give a direct correctness proof instead of a
step-wise refinement via several machines. Our machine is also similar to the heap machine
by Forster et al. [7], but with fewer reduction rules simplifying verification.
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Instead of terms, we will work with programs P, Q : Pro := LCom, which are lists of
commands. Commands are reference, application, abstraction, or return tokens:

c : Com ::= ref n
∣∣ app

∣∣ lam
∣∣ ret

The compilation function γ : Ter → Pro compiles terms to programs:

γn := [ref n] γ(st) := γs ++ γt ++ [app] γ(λs) := lam :: γs ++ [ret ]

We have γ((λxy.xx)(λz.z)) = [lam; lam; ref 1; ref 1; app; ret ; ret ; lam; ref 0; ret ; app].
Compiled abstractions start with the token lam and end with ret . We can thus define a

function ϕP : O(Pro × Pro) that extracts the body of an abstraction by matching the tokens
like parentheses. We define ϕP := ϕ0,[] P , where ϕk,Q P is an auxiliary function storing the
number k of unmatched lam and the processed prefix Q:

ϕk,Q [] := None ϕ0,Q (ret :: P ) := Some (Q, P ) ϕSk,Q (ret :: P ) := ϕk,Q++[ret ] P

ϕk,Q (lam :: P ) := ϕSk,Q++[lam] P ϕk,Q (c :: P ) := ϕk,Q++[c] P if c = ref n or app

The states of the heap machine are tuples T, V, H. The control stack T and the value
stack V are lists of closures g : Clos := Pro × N. A closure (P, a) denotes an open program,
where the reference 0 in P has to be looked up at address a : N in the heap when evaluating.

The heap H is a linked list of heap entries e : Entry := O(Clos × N), i.e. an entry is either
empty, or contains the head of the list and the address of its tail. Given a heap H and an
address a, H[a] : OEntry denotes the a-th element of H. We define H[a, n] to be the n-th
entry on the heap starting at address a as follows:

H[a, n] := if H[a] is Some (Some (g, b)) then if n is Sn then H[b, n] else Some g else None

We can now define the small-step semantics of the stack machine for L:

(lam :: P, a) :: T, V, H ⇝ (P ′, a) ::tc T, (Q, a) :: V, H if ϕP = Some (Q, P ′)
(ref n :: P, a) :: T, V, H ⇝ (P, a) ::tc T, g :: V, H if H[a, n] = Some g

(app :: P, a) :: T, g :: (Q, b) :: V, H ⇝ (Q, |H|) :: (P, a) ::tc T, V, H ++ [Some (g, b)]

Here, (P, a) ::tc T := if P is [] then T else (P, a) :: T .
In the abstraction rule, the complete abstraction is parsed via ϕ and its body put on the

value stack. In principle :: instead of ::tc could be used to obtain a correct machine, however
the time complexity of this machine is easier to verify using this optimising operation.

Similarly, in the reference rule, the body of the abstraction corresponding to the variable
n is looked up in the heap starting at address a and the result is put on the value stack.

In the application rule, the machine takes the closure of the called function (Q, b) and its
argument g from the value stack. The address b is bound to g in the heap, the entry being
appended to H, thus obtaining address |H|. The machine continues evaluating the body Q,
where the value for reference 0 can be looked up at address |H|, where it was just placed.

Given a closed term s, the initial state of the machine is ([(γs, 0)], [], []), i.e. an empty
value stack, an empty heap, and the closure (γs, 0) on the task stack. In fact, for a closed
term, 0 can be replaced by any address since there are no free references. An example run of
the machine for (λxy.xx)(λz.z) can be found in Figure 1, using a as start address.

To state the correctness of the stack machine we need to define an unfolding operation
unfH(P, a). We will use functional notation for unfolding on paper, but define it as a
functional relation in Coq, since the function is not structurally recursive, and not even
terminating on cyclic heaps. The function unf : Pro → tmL unfolds programs from the value
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[([lam; lam; ref 1; ref 1; app; ret ; ret ; lam; ref 0; ret ; app], a)], [], []
⇝ [([lam; ref 0; ret ; app], a)], [([lam; ref 1; ref 1; app; ret ], a)], []
⇝ [([app], a)], [([ref 0], a), ([lam; ref 1; ref 1; app; ret ], a)], []
⇝ [([lam; ref 1; ref 1; app; ret ], 0)], [], [Some (([ref 0], a), a)]
⇝ [], [([ref 1; ref 1; app], 0)], [Some (([ref 0], a), a)]

unf[Some (([ref 0],a),a)]([ref 1; ref 1; app], 0)

= unf[Some (([ref 0],a),a)],0,0(unf[ref 1; ref 1; app])

= unf[Some (([ref 0],a),a)],0,0(λ11)

= λunf[Some (([ref 0],a),a)],0,1(11)

= λ(unf[Some(([ref 0],a),a)],0,11)(unf[Some(([ref 0],a),a)],0,11)

= λ(unf[Some (([ref 0],a),a)],0,0

(unf[ref 0])) (unf[Some (([ref 0],a),a)],0,0(unf[ref 0]))

= λ(λ0)(λ0) = λy.(λz.z)(λz.z)

Figure 1 Example of the execution for term (λxy. xx) (λz.z).

stack into a term by inversing γ. It adds λ to the result, since only the bodies of abstractions
are saved on the value stack. The function unfH,a,k : tmL → tmL substitutes free variables
n ≥ k in a term by H[a, n − k]. Finally, unfH : Pro × N → tmL unfolds a result using the
two previous functions. The example from above is continued in Figure 1.

unfP := λt (if γt = P ) unfH,a,kn := n (if n < k)

unfH,a,kn := unfH,b,0(unfP ) (if n ≥ k and H[a, n − k] = Some (P, b))

unfH,a,k(st) := (unfH,a,ks)(unfH,a,ks) unfH,a,k(λs) := λ(unfH,a,Sks) unfH(P, a) := unfH,a,0(unfP )

We define the size of the components of a stack machine as follows:

||ref n|| := ||n|| + 1 ||app|| := ||lam|| := ||ret || := 1 ||n : N|| := n + 1

||(a, b)|| := ||a|| + ||b|| + 1 ||[]|| := 1 ||x :: l|| := ||x|| + ||l||

The final correctness theorem then reads:

▶ Theorem 6. Let s be closed.
1. If s ▷i v then ([(γs, 0)], [], []) ⇝3·i+1 ([], [(P, a)], H) for some P , a and H s.t.

unfH(P, a) = v.
2. If ([(γs, 0)], [], [])⇝i (T, V, H) then ||(T, V, H)|| ≤ c · (i + 1) · (i + ||s|| + 1) for some c and

if furthermore ¬∃σ.(T, V, H)⇝ σ, then T = [], V = [(P, a)], and s ▷ v for some P , a, and
v s.t. unfH(P, a) = v is defined.

3.3 Mechanisation in Coq
The weak call-by-value λ-calculus L is a sweet spot for the mechanisation of computability
and complexity theory – but only since it is engineered to be one. In principle, there is an
abundance of options which λ-calculus to choose: call-by-value or call-by-name, weak or
strong, variables are values or not, de Bruijn encoding with simple substitution, or with
parallel substitution, or locally nameless, or parametric higher-order abstract syntax.

For the implementation of L on Turing machines it is mainly the choice of a simple
substitution operation based on de Bruijn indices that is crucial. Parallel substitution is
considerably more complicated to define, since it is not structurally recursive and a priori uses
functions, i.e. uncountable types, to represent substitutions. In contrast, simple substitutions
are structurally recursive and only require natural numbers for their definition.

To simulate Turing machines in L, it is crucial that also a small step semantics is available:
the non-determinism of ≻, i.e. that it applies to both sides of an application, allows (directed)
equational reasoning in correctness proofs without any overhead.
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4 Turing machines

Turing machines [27] are widely used in books on computability theory, are the standard
model of computation for complexity theory, and are still considered by many to be the model
of computation most convincincly capturing all “effectively calculable” functions. Despite
their universal use, there is however no consensus on how to formally define Turing machines
in the literature. There are a multitude of definitions which can all be proved equivalent. In
Appendix A, we compare the definition we use [9] to the one by Hopcroft et al. [13].1

In Section 4.2, we give an overview of the Turing machine verification framework from [9].

4.1 Definition
We start by defining a tape over type Σ inductively using four constructors [2]:

tpΣ ::= niltp
∣∣ leftof r rs

∣∣ midtp ls m rs
∣∣ rightof l ls where m, l, r : Σ and ls, rs : LΣ

The representation does enforce that a tape contains a continous sequence of symbols,
and that either a symbol or one of the ends of the tape is distinguished as head position.
There are no explicit blank symbols, which allows for a unique representation of every tape
and no well-formedness predicate is needed.

We define a type of moves Move, a function mv : Move → tp → tp applying a move to
a tape, a function wr : OΣ → tp → tp writing to a tape, and a function curr : tp → OΣ
obtaining the current symbol of a tape in Figure 2.

We define multi-tape Turing machines M :TMn
Σ, where n : N is the number of tapes and

the finite type Σ is the alphabet, as dependent pairs (Q, δ, q0, halt) where Q is a finite type,
δ : Q × (OΣ)n → Q × (OΣ × Move)n, q0 : Q is the starting state, and halt : Q → B indicates
halting states. The definition of Turing machine evaluation M(q, t) ▷ (q′, t′) and the Turing
machine halting problem HaltTM are defined in Figure 2.

A relation R ⊆ (LB)k × (LB) is TM-computable with time-complexity τ ⊆ N1+k × N if

∃n : N. ∃Σ. ∃s bl : Σ. s ̸= bl ∧ ∃M : TM1+k+n
Σ .∀l1 . . . lk.

(∀l.R (l1, . . . , lk) l → ∃i ≤ τ(|l|, |l1|, . . . , |lk|). ∃q t. M(q0, [niltp, l1, . . . , lk, niltp, . . . , niltp]) ▷i (q, t) ∧ t[0] = l) ∧
∀q t i. M(q0, [niltp, n1, . . . , nk, niltp, . . . , niltp]) ▷i (q, t) → ∃l. R (l1, . . . , lk) l

with [x1, . . . , xn] := midtp [] bl [x1, . . . , xn] and true := s, false := bl.

4.2 Verified programming of Turing machines
As presented, Turing machines are not compositional: There is no canonical way how to
execute a 5-tape machine over alphabet B after a 3-tape machine over O(B × B).

To allow for the composition of Turing machines and their verification, we first introduce
labellings in order to abstract away from the state space. A labelled Turing machine over a
type L, written M : TMn

Σ(L), is a dependent pair (M ′, labM ) of a machine M ′ : TMn
Σ and a

labelling function labM : QM ′ → L.
To prove the soundness of machines, we introduce realisation. A Turing machine M :

TMn
Σ(L) realises a relation R ⊆ tpn

Σ × (L × tpn
Σ) if

M ⊨ R := ∀t q t′. M(q0, t) ▷ (q, t′) → R t (labM q, t′)

1 chosen for instance by Wikipedia as reference definition
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Move ::= L
∣∣ N

∣∣ R

mv : Move → tp → tp
mv L (rightof l ls) := midtp ls l [] mv R (leftof r rs) := midtp [] r rs

mv L (midtp [] m rs) := leftof m rs mv R (midtp ls a []) := rightof a ls
mv L (midtp (l :: ls) a rs) := midtp ls l (a :: rs) mv R (midtp ls a (r :: rs)) := midtp (a :: ls) r rs

mv m t := t in all other cases

wr : OΣ → tp → tp

wr None t := t wr (Some a) niltp := midtp [] a [] wr (Some a) (midtp ls b rs) := midtp ls a rs

wr (Some a) (leftof r rs) := midtp [] a (r :: rs) wr (Some a) (rightof l ls) := midtp (l :: ls) a []

curr : tp → OΣ

curr(midtp ls a rs) := Some a currt := None otherwise

halt q = true
M(q, t) ▷i (q, t)

halt q = false δ(q, map curr t) = (q′, a)
M(q′, map2(λ(c, m) t.mv m (wr c t)) a t) ▷i (q′′, t′)

M(q, t) ▷Si (q′′, t′)

HaltTMn
Σ

(M : TMn
Σ, t : tpn

Σ) := ∃iq′ t′. M(q0, t) ▷i (q′, t′)

HaltTM(n : N, Σ, M : TMn
Σ, t : tpn

Σ) := HaltTMn
Σ

(M, t)

Figure 2 Definitions for Turing machines.

Dually, we introduce termination. M : TMn
Σ(L) terminates in T ⊆ tpn

Σ × N if

M ↓ T := ∀t i. T t i → ∃q t′. M(t) ▷i (q, t′).

We call a machine total if ∃c. M ↓ λti.i ≥ c, i.e. if it halts on any tape in at most c steps.

▶ Fact 7. The introduced predicates are (anti-)monotonic:
1. If M ⊨ R′ and ∀t ℓ t′. R′ t (ℓ, t′) → R t (ℓ, t′), then M ⊨ R.
2. If M ↓ T ′ and ∀ti. T t i → T ′ t i, then M ↓ T .

We will use the following total machines we call primitive machines:
Read : TM1

Σ(O(Σ)) ⊨ λ t (ℓ, t′). ℓ = curr t[0] ∧ t′ = t Write s : TM1
Σ(1) ⊨ λ t t′. t′[0] = wr s t[0]

Move d : TM1
Σ(1) ⊨ λ t t′. t′[0] = mv d t[0] Return ℓ : TMn

Σ(L) ⊨ λ t (ℓ′, t′). t′ = t ∧ ℓ′ = ℓ

The last necessary tool now are combinators to compose machines. Given M : TMn
Σ(L)

and M ′
ℓ : TMn

Σ(L′) (for ℓ : L), we introduce the combinator Switch M M ′ : TMn
Σ(L′), which

executes M and, depending on the label ℓ returned by M , executes M ′
ℓ.

M ⊨ R ∀(ℓ : L). M ′
ℓ ⊨ R′

ℓ

Switch M M ′ ⊨ λt0 (ℓ′, t′). ∃t (ℓ : L).
R t0 (ℓ, t) ∧ R′

ℓ t (ℓ′, t′)

M ↓ T M ⊨ R ∀(ℓ : L).M ′
ℓ ↓ T ′

ℓ

Switch M M ′ ↓ λ t k. ∃ k1 k2. T t k1 ∧ 1 + k1 + k2 ≤ k
∧ ∀ ℓ t′. R t (ℓ, t′) → T ′

ℓ t′ k2

Given a machine M : TMn
Σ(O(L)), we introduce the combinator While M : TMn

Σ(L),
which loops M until the result label is Some ℓ. The realisation relation for While is defined
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inductively, whereas the termination relation is the co-inductively defined accessibility relation
(the dashed line indicates coinduction).

M ⊨ R

While M ⊨WhileR R

R t (Some ℓ, t′)
WhileR R t (ℓ, t′)

R t (None, t′) WhileR R t′ (ℓ, t′′)
WhileR R t (ℓ, t′′)

M ↓ T M ⊨ R

While M ↓ WhileT R T

T t k1 ∀t′ l. R t (Some l, t′) → k1 ≤ k
∀t′. R t (None, t′) → ∃k2. WhileT R T t′ k2 ∧ 1 + k1 + k2 ≤ k

WhileT R T t k
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Composing machines with the operator Switch only works for machines over the same
alphabet and the same number of tapes. To remedy this situation we introduce lifting
operations for alphabets and tapes, and also a relabelling operation Relabel.

Given a retraction f : Σ → Γ, a default symbol d : Σ, and a machine M : TMn
Σ, the

alphabet lift ⇑(f,d) M : TMn
Γ translates every read symbol via f−1, passes it to M , and

translates the symbol M writes via f . In case f−1 returns None, d is passed to M .
Given a retraction I : Finm → Finn and a machine M : TMm

Σ , the tape lift ⇑I M : TMn
Σ

replicates the behavior of M on tape i on tape Ii, and leaves all other tapes untouched.
We only show the canonical realisation and termination relations for the tape lift here:

⇑I R := λt (ℓ, t′). R (select I t) (ℓ, select I t′) ∧ ∀(i : Finn). i /∈ I → t′[i] = t[i]
⇑I T := λt k. T (select I t) k where select I t := map (λi. t[I(i)]) [0, . . . , m − 1]

M : TMm
Σ (L) ⊨ R I : Finm ↪→ Finn

⇑I M : TMn
Σ ⊨ ⇑I R

M ↓ T I : Finm ↪→ Finn

⇑I M ↓ ⇑I T

Given a function r : L1 → L2 and a machine M : TMn
Σ(L1), Relabel M r : TMn

Σ(L2)
behaves like M , but returns label rℓ where M returned ℓ.

The last important layer of abstraction introduces the treatment of tapes as registers,
based on the notion t[i] ≃ v expressing that tape t[i] contains an encoded value v : V . A
type V is a TM-encodable type on alphabet Σ if there is a (designated) injective function
ε : V → LΣ. We define such designated encoding functions for several data types, e.g.
booleans, tuples, and lists of encodable types. In Coq, the implementation of encodable
types relies on type classes, such that users can define their own encoding functions.

We then define tape containment t ≃f v, where V is TM-encodable on alphabet Σ, v : V ,
t : tpΓ+ , and f : Σ → Γ.

Γ+ ::= START
∣∣ STOP

∣∣ UNKNOWN
∣∣ (s : Γ)

t ≃f v := ∃ls.t = midtp ls START (map f (εv) ++ [STOP])

Note that the position of the head is fixed in the definition of tape containment: The head
must be located on the start symbol. By extending the alphabet Σ with the delimiting
symbols START and END, values can effectively be copied from one tape to another tape.
The symbol UNKNOWN is used as the canonical default symbol for the alphabet lift. Let
M : TMn

Σ+ and f : Σ → Γ. Then ⇑f+ M : TMn
Γ+ (with the canonically inferrable injection

f+ : Σ+ → Γ+) is an alphabet lift of M . In case the lifted machine reads a symbol that is
not in the image of f , ⇑f+ M behaves like if M reads UNKNOWN. However, this will by
design not happen if the head is under a symbol of the encoding of a value.

Void tapes (written isVoid t) do not contain values. The head of the tape is located at
the right-most symbol:

isVoid t := ∃m ls. t = midtp ls m []

A void tape can be initialised with a value by writing the encoding of a value delimited
by START and END.

ITP 2021



19:12 Mechanised Time Invariance Thesis for L

5 Simulating L on Turing machines

To simulate L on Turing machines, we use the stack machine semantics, meaning we have to
implement the relation ⇝ from Section 3.2 as multi-tape Turing machine Step : TMn

Σ. The
central components of Step are machines implementing the heap lookup operation H [a, n] and
the parsing operation ϕ. We will omit concrete implementations, but show the correctness
and termination relations and briefly discuss the proof goals for such verifications. The
machines will share an alphabet Σ consisting of 30 symbols, allowing to encode commands,
programs, addresses, closures, task and value stack, heap entries, and heap.

The relations we display here are simplified in comparison to the actual relations in Coq
w.r.t. two aspects: First, we omit the retractions fX : ΣX → Σ when writing ≃. Since as long
as concrete fX are fixed for every type X encodable on type ΣX , their concrete definitions
do not matter. Secondly, we omit the condition isVoid t both in the premise and conclusion
of rules: Any unspecified tape is always implicitly void.

▶ Fact 8. There is a machine Lookup : TM5
Σ(B) and a c : N s.t.

1. Lookup ⊨ λt(ℓ, t′). ∀H a n. t[0] ≃ H → t[1] ≃ a → t[2] ≃ n →
if ℓ then ∃g. H[a, b] = Some g ∧ t′[0] ≃ H ∧ t′[3] ≃ g else H[a, b] = None

2. Lookup ↓ λti. ∃H a n. t[0] ≃ H ∧ t[1] ≃ a ∧ t[2] ≃ n ∧ i ≥ c · (n + 1) · (||H|| + max ||H||||a||)

Proof. The machine Lookup can be defined by using building blocks like While and Switch.
Once the machine is defined, an inductive relation R s.t. Lookup ⊨ R can be automatically
inferred from the relations of the building blocks.

By Fact 7 it then suffices to prove R t (ℓ, t′) → ∀H a n. t[0] ≃ H → t[1] ≃ a → t[2] ≃ n →
if ℓ then ∃g. H [a, b] = Some g ∧ t′[0] ≃ H ∧ t′[3] ≃ g else H [a, b] = None by induction on R.

The termination proof is dual. ◀

▶ Fact 9. There is a machine Parse : TM5
Σ(B) and a c : N s.t.

1. Parse ⊨ λt (ℓ, t′).∀P.t[0] ≃ P →
if ℓ then ∃Q P ′. ϕP = (Q, P ′) ∧ t′[0] ≃ P ′ ∧ t′[1] ≃ Q else ϕP = None

2. Parse ↓ λti. ∃P. t[0] ≃ P ∧ i ≥ ||c|| · P 2

▶ Fact 10. There is a machine Step : TM11
Σ (B) and a c : N s.t.

1. Step ⊨ λt (ℓ, t′). ∀T V H. t[0] ≃ T → t[1] ≃ V → t[2] ≃ H →
if ℓ then ∃T ′ V ′ H ′. (T, V, H)⇝ (T ′, V ′, H ′) ∧ t′[0] ≃ T ′ ∧ t′[1] ≃ V ′ ∧ t′[2] ≃ H ′

else (¬∃σ. (T, V, H)⇝ σ) ∧ T = [] → t′[0] ≃ [] ∧ t′[1] ≃ V ∧ t′[2] ≃ H

2. Step ⊨ λt i. t[0] ≃ T ∧ t[1] ≃ V ∧ t[2] ≃ H ∧ i ≥ 1 + c · if T is (a, P ) :: _ then
||a|| + ||H || + ||V || + ||P || · (1 + ||H || + max a ||H ||addr + ||P ||) else 0

This suffices to prove one direction of the time invariance thesis w.r.t. simulation:

▶ Theorem 11. There is Msim : TM11
Σ and a polynomial p : N → N s.t. for closed terms s

1. If s ▷i v, then there exist t, H, P , and a s.t. Msim([(γs, 0)], niltp, . . . , niltp) ▷p(i,||s||) t with
t[1] = [], t[2] = (P, a), t[3] = H, and unfH(P, a) = v.

2. If Msim([(γs, 0)], niltp, . . . , niltp) terminates, so does s.

Proof. Define Msim := While Step and p i m := c · (3i + 2)2 · (3i + 1 + m) · m for some c. ◀

▶ Corollary 12. HaltL ⪯ HaltTM

A first version of the Coq verification of Msim was also discussed in Wuttke’s bachelor’s
thesis [28].
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6 Simulating Turing machines in L

To simulate Turing machines in L, we first give an alternative, executable semantics for
Turing machines based on iteration of a step-function. We then recap the central ingredients
of the certifying extraction framework [6], which we use to extract the step-function to L.
And lastly, we implement a (potentially non-terminating) iteration combinator in L.

We define a function nxtM : QM × tpn
Σ → QM × tpn

Σ + tpn
Σ and a polymorphic function

loop : (X → X + Y ) → X → N → OY as follows:

nxtM (q, t) := if haltq then t else let (q′, a) := δM (q, curr t) in (q′, map2(λ(c, m)t.mv m (wr c t)) a t)

loop f x 0 := None loop f x (Sn) := loop f x′ n (if fx = inl x′)

loop f x (Sn) := Some y (if fx = inr y)

▶ Fact 13. loop nxtM (q0, t) (Si) = Some t′ ↔ ∃q′. M(q, t) ▷i (q′, t′)

The certifying extraction framework [6] automatically extracts L-terms sf for functions
f and proves that sf computes f . Additionally, one can pass a time complexity function
τf and is then presented with proving certain recurrence equations for τf . Since we do not
implement higher-order functions, we can give a simplified account of the framework here.

Central in the framework are Scott encodings, which are used to encode elements of
arbitrary, first-order types as L-terms. The idea behind Scott encodings is that case analysis
is by application: For instance, if b then a1 else a2 corresponds to the L-term b sa1 sa2 ,
where sa1 and sa2 compute a1 and a2 respectively.

In general, for types A1, . . . , An, B with a Scott encoding, a function f : A1 → . . . An → B,
is computed by a term sf with time complexity function τf : A1 → · · · → An → N if

∀a1, . . . , an. ∃k ≤ τf a1 . . . an. sf a1 . . . an ▷k f a1 . . . an

The framework also supports higher-order functions and currying, but we omit those
features complicating e.g. the definition of time complexity since we do not rely on them.

The certifying extraction framework comes with a library of computability proofs including
time complexity, covering natural numbers, list, and vectors. Furthermore, one can give a
general computability proof for functions with listable domain. I.e. if there is [x1, . . . , xn] : LX

s.t. ∀x : X. x ∈ [x1, . . . , xn] and f : X → Y , then there is sf and a constant c s.t.
∀x.∃i ≤ c · n.sf x ▷i fx.

Since δM has a listable domain, we can use the certifying extraction framework to extract
nxt for every M :

▶ Fact 14. Let M : TMn
Σ. There is nxtM : tmL and Cnxt : N s.t. snxtM

(q, t) ▷Cnxt nxt(q, t).

Proof. The framework generates the proof obligations 52 · |QM |2 +56 ≤ Cnxt, and 52 · |QM |2 +
130 · n + 216 ≤ Cnxt, where |QM | is the number of states of M . If C is picked large enough
before running extraction, the obligations can be discharged automatically by the tactic
solverec provided by the framework. ◀

We now define a term sloop which expects f and x and loops f until a value y is found,
or indefinitely if not. Since the extraction framework only covers total functions, we have to
manually implement sloop. To do so, we rely on a recursion combinator ρ [12], also employed
by the framework to use recursion:
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▶ Fact 15. If s and s′ are closed abstractions, ρss′ ≻3 s(ρs)s′.

We then define sloop with time complexity function τloop : (X → N) → X → N → N:

sloop := ρ(λrfx. fx(λx′z.rfx′)(λyz.y)(λz. z))
τloop τf x 0 := 0 τloop τf x (Si) := τf x + 11 + if fx is inl x′ then τloop τf x i else 0

▶ Lemma 16. Let f be computable by sf with time complexity function τf , i.e. ∀x.∃i ≤
τf x. sf x ▷i fx. Then
1. If loop f x i = Some y, then ∃k ≤ τloop τf x i. sloop sf x i ▷k y.
2. If sloop sf x terminates, there exist i and y s.t. loop f x i = Some y.

This suffices to prove one direction of the time invariance thesis w.r.t. simulation:

▶ Theorem 17. There is ssim : tmL s.t. for all M : TMn
Σ there is C : N s.t. for all t : tpn

Σ
1. If M(q0, t) ▷i (q, t′), then ∃j ≤ C · i + C. ssim snxtM

t ▷j t′.
2. If ssim snxtM

t ▷ v, then ∃qt′. M(q0, t) ▷ (q, t′).

7 TM-computable relations over LB are L-computable

Let R ⊆ (LB)k × LB be computable by M : TMn
Σ. We define an L-term computing R by

taking l1, . . . , lk as input, converting them to their respective TM-encoding, and then running
M with the help of ssim. Step-by-step, s has to:
1. Expect input in the form s l1 . . . lk,
2. for every 1 ≤ i ≤ k compute midtp [] bl li, i.e. the L-encoding of the TM-encoding of li.
3. run the simulation ssim snxtM

[niltp, t1, . . . , tk, niltp, . . . , niltp].
4. this computation will (if it terminates) terminate with a value (midtp [] b l, t′

2 . . . , t′
n),

5. meaning s has to output l.

Three challenges arise: the term s has to be defined parametric in k, the L-encoding of
the lists l1, . . . , lk has to be converted to the L-encoding [niltp, t1, . . . , tk, niltp, . . . , niltp], and
the L encoding of a result t′ has to be analysed, and the TM-encoding of a list l contained
t′[0] has to be converted to the L-encoding of l.

For the first task, we implement k-ary substitutions and combinators.

▶ Fact 18. One can define functions sn
u : tmLwhere s : tmL, n : N, u : tmk

L and

λk : tmL → tmL appk : tmL → tmk
L → tmL varsk : tmk

L

such that the following hold:
1. varsSk = k :: varsk,
2. (appks(s1, . . . , sk))n

u = appk(sn
u)((t1)n

u, . . . , (tk)n
u),

3. if all elements of u are closed abstractions, then appk(λks)u ≻k s0
u.

The second and third tasks can again be done by extraction.

▶ Fact 19. There is a closed abstraction sprep s.t. sprep (l1, . . . , lk)▷[niltp, t1, . . . , tk, niltp, . . . , niltp],
where ti := midtp [] bl [x1, . . . , xn] for li = [x1, . . . , xn].

▶ Fact 20. There is a closed abstraction sunencTM s.t. if t[0] = midtp [] bl [x1, . . . , xm] and
l = [x1, . . . , xn] we have sunencTMt ▷ Some l and sunencTMt ▷ None otherwise.

▶ Theorem 21. If R ⊆ (LB)k ×LB is TM-computable by a machine M with time complexity
relation τ there are a term sM and a constant c s.t. sM computes R with time complexity
relation (m, n1, . . . , nk) 7→ c · m · n1 · · · · nk · τ(m, n1, . . . , nk) + c.

Proof. Define sM := λk.sunencTM(ssim snxtM
(sprep(sconsk(. . . (scons 0 []))))) (λx.x) []. ◀
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8 Hoare logic verification framework for Turing machines

Although the relational verification approach is quite powerful, it suffers from two crucial
problems. First, realisation and termination are inherently separated proof goals, even for
total machines, which form the majority of machines we are interested in. The premises of
the correctness and termination relations are usually almost the same, thus manipulation of
premises is duplicated. Secondly, in an interactive proof the proof context can grow very
large. When two machines with say 9 tapes are sequentially composed, the proof context
contains 9 assumptions on the initial tapes, 9 assumptions for the intermediate tapes between
the two machines, and 9 final propositions on the tapes. Many of these assumptions are
equalities. The Turing machine verification framework has naive tactics to simplify such
proof goals by substitution and rewriting, which becomes quadratically slower the longer a
realisation proofs takes.

We propose a verification framework based on Hoare logic, solving both problems.
Correctness and termination can be proved at once, eliminating the need for repeated
manipulation of premises. Furthermore, at each step in the verification of an n tape TM,
the user sees exactly n specifications S for the n tapes, plus optionally a custom invariant
depending on both the tapes and the label.

We here give a high-level overview. More details are in the separate Appendix B [8].
The Hoare logic is built as a new layer of abstraction for the relational framework. Given

M : TMn
Σ(L), a predicate P ⊆ tpn

Σ and a relation Q ⊆ L × tpn
Σ, we write weak Hoare triples:

⊨ {P} M {Q} := M ⊨ (λt (ℓ, t′). P t → Q (ℓ, t′))

To state that the machine is functionally correct and terminates in a certain time, we use
total Hoare triples. In addition to the relation of the weak Hoare triple, a total Hoare triple
asserts that the machine terminates in (at most) i steps if the precondition is satisfied. Thus,
we avoid spelling out the precondition again.

⊨ {P}i M {Q} := (⊨ {P} M {Q}) ∧ M ↓ (λt i′. P t ∧ i ≤ i′)

Similar to the old verification framework, every building block like While and Switch
comes with an associated Hoare triple, shown in Figure 1 in the separate Appendix B [8].
Using these rules, an interactive verification is akin to a symbolic execution of machines with
explicitly annotated invariants.

The Hoare triples of user-defined machines M : TMn
Σ exclusively have triples with both

pre and post conditions of the form S1 ∧ . . . Sn ∧ I where Si for 1 ≤ i ≤ n are either t[i] ≃ x

for some x, isVoid t[i], or t[i] = t0 for some fixed t0, and I is a custom, user-chosen invariant.
Thus, the following specification for a binary machine

M ⊨ λt (ℓ, t′). ∀(x : X) (y : Y ). PXx → PY y →
t[0] ≃ x → t[1] ≃ y → t′[0] ≃ f(x, y) ∧ t′[1] ≃ g(x, y)

M ↓ λt i. ∃(x : X) (y : Y ). PXx ∧ PY y ∧ t[0] ≃ x ∧ t[1] ≃ y ∧ i ≥ τxy

can be compactly restated using the following triple:

∀xy. PXx → PY x → ⊨ {λt. t[0] ≃ x ∧ t[1] ≃ y}τxy M {λ(ℓ, t′). t′[0] ≃ f(x, y) ∧ t′[1] ≃ g(x, y)}

A typical workflow for the verification of total machines then looks as follows: First, the
user defines Hoare triples for their machines, following the shape S1 ∧ · · · ∧ Sn ∧ I. Secondly,
they perform the correctness proof. Thirdly, they define the time complexity function of the
machine, and add the running time to the triple in the proved lemma. Fourthly, they replay
the proof script and in the very last step of the verification, show that the accumulated
running time is indeed bounded by the time complexity function.
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9 L-computable relations over LB are TM-computable

To convert a term s computing a relation R, we follow the same strategy as in Section 7. We
exemplarily show the specification of the machine Mconv corresponding to sunencTM:

▶ Fact 22. There is a machine MunencL : TM4
Σ and a constant c s.t. for all l : LB we have

⊨ {Pl}c·|l|MunencL{Ql} where Pl := λt. t[0] ≃ l ∧ t[1] = niltp ∧ isVoid t[2] ∧ isVoid t[3] and
Ql := λ(_, t′). t[1] = midtp [] bl l ∧ isVoid t[2] ∧ isVoid t[3].

▶ Theorem 23. If R ⊆ (LB)k × LB is L-computable by a closed term s with time complexity
relation τ there is a polynomial p and a Turing machine Ms s.t. Ms computes R with time
complexity relation (m, n1, . . . , nk) 7→ p(m, n1, . . . , nk, τR(m, n1, . . . , nk)).

Proof. The machine Ms is defined parametric in s and by recursion on k, i.e. we define a
different machine for each k. First, Ms reads its input and writes the task stack [(γ(s n1 nk), 0)]
to an auxiliary tape. As a total subroutine, we verify this part using the Hoare framework.
Then Ms runs Msim. If the computation terminates, the resulting heap will contain a term l

for a list l : LB. Thus, Ms runs a machine implementing unf and lastly runs MunencL.
The size of the heap after i steps is in O(i · (i + N)), where N := n1 + · · · + nk. For

one reduction step, N variables might have to be looked up, resulting in a runtime of
O(i · (i + N + 1) · (N + 1)) per step. Unfolding a heap takes O((m + 1) · (H + N + 1)), where
H is the size of the heap. In total, we can thus define the polynomial p cubic in the number
of steps i, quadratic in N and linear in the size of the output m as follows, where c is a
constant:

(m, n1, . . . , nk, i) 7→ c · (i + 1) · (i + n1 + · · · + nk + 1) · ((n1 + · · · + nk + 1) · (i + 1) + m). ◀

10 Discussion

We have presented the first mechanised proof of an instance of the time invariance thesis,
connecting L with Turing machines with a polynomial overhead in time. We prove two
variants, respectively concerned with simulation of one model of computation on the other,
and with the computability of relations on boolean strings. In total, including dependencies,
our development consists of 30.000 LoC and takes about 18 minutes to compile on an Intel
Core i7-6600U CPU @ 2.60GHz machine. The novel code for this paper still constitutes 7800
LoC, with about 40% specification and 60% proofs.

It is folklore that the two variants are equivalent. For instance, in [1,7,23] more emphasis
is put on the simulation variant. In the interactive theorem proving community it is however
well-known that “folklore” is not equivalent to “easy to mechanise”. In the setting of
computability and complexity theory, where one has to deal with models of computation,
this fact is amplified: proofs on paper virtually never provide concrete implementations in a
model of computation, but focus on the high-level invariants of a proof. This is based on the
(again folklore) fact that algorithms can be implemented in models of computation provided
enough time and strength to sustain the tedium to do so. However, the proof engineering
time needed to show the correctness of an algorithm (as e.g. a Coq function) and to show
the correctness of its implementation (as e.g. a Turing machine) are completely independent.
Correctness proofs of algorithms depend on the intricacy of invariants. Correctness proofs of
implementations depend on the length of the code of a Turing machine, and the size of the
gap between specification language and Turing machines. If the specification is a first-order,
tail-recursive Coq function, the length of the Turing machine is the main factor.

We however hope that future mechanised proofs of results in complexity theory and of
the time invariance thesis for other models of computation can profit from our development.
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For us, simulating Turing machines on L and simulating L on Turing machines was the only
possible way. Now that L is shown reasonable for time complexity, future proofs of the time
invariance thesis can choose which reasonable model to use for each direction of the proof.
For the time invariance thesis for a model of computability C, one can show that C can
simulate Turing machines, which are structurally simple and where computation is local. In
the other direction, one can show that C can be simulated in L, which has rich structure and
supports non-local computation on almost arbitrary (first-order) data-structures.

For our concrete cases of Turing machines and L, powerful abstraction layers and veri-
fication frameworks are necessary for mechanisation. We would assess that a “manual”
approach to any invariance thesis involving Turing machines is completely unfeasible. The
Turing machine verification framework [9] and the certifying extraction framework [6] proved
very valuable in this regard. While having similar goals, they use different mathematical
approaches to both verification and time complexity analysis.

First, the certifying L-extraction framework gives support to automatically prove the
computability of a large subset of Coq functions. For time complexity, a user has to give a
time complexity function as input, and the framework automatically generates equations the
function has to fulfil and furthermore provides tactics to solve these equations. Finding a
time complexity function can prove challenging, but an interactive approach where a wrong
function is picked and a correct function is reverse-engineered from the equations works
well. A priori, the framework does not support partial terms. The Lsimpl tactic used in the
framework however can be used to normalise terms in manual verification.

Secondly, the Turing machine verification framework provides tools to verify the correct-
ness, time and even space complexity of Turing machines, but the user has to implement
those machines manually. For the implementation, the user can write Turing machines in the
style of a register based while-language, for which a canonical realisation and termination
relation are inferred automatically. Correctness and time complexity proofs w.r.t. user-defined
relations are now simply inclusion proofs between the canonical and the user-defined relations.
Due to the split of correctness and termination, the framework works well for the verification
of partial machines. However, for total machines, termination and correctness are distinct
proof goals and have to be proved separately, which leads to a mathematical duplication of
similar proof goals, sometimes even to actual proof code duplication.

The novel Hoare logic verification framework we present remedies this situation: For total
machines, only one proof subsuming both correctness and time complexity has to be carried
out, while it still supports separate proof goals for partial machines. No canonical relations
are used. The verification of Hoare triples is carried out directly on the implementation of
the machine, using the proof rules for the used combinators and user-defined machines. We
conjecture that the Hoare logic framework scales further and possibly far. Our simulation
of L on Turing machines is reasonable on time, but if terms exhibit pointer explosion [7],
the space overhead might not be constant factor. The proof of this stronger time and space
invariance thesis for L [7] is considerably more complicated, but might now be in reach.

However, the assessment that “Turing machines as model of computation are inherently
infeasible for the formalisation of any computability or complexity theoretic result” [9] still
stands. Future developments of mechanised results in complexity theory can and should be
based on L or similarly well-suited models. Our certifying extraction framework provides
valuable help in doing so, but there are interesting extensions worth exploring in the future.

First, this framework does not cover space complexity, which would however be needed
for a proof of the full invariance thesis for L. Secondly, exploring an automatic generation
of time-complexity functions, where the user can then provide a (polynomial) upper bound
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for the function in a second step might be interesting. Lastly, the framework requires user
input for every single recursive function used, also for auxiliary functions, and the automatic
verification of these is based on Ltac tactics which sometimes fail, and sometimes are slow.
Here, an automatic generation of correctness proofs based on a meta-programming tool for
Coq like MetaCoq [24,25] might be a possible solution.
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A Definition of Turing machines

We compare the definition of Turing machines we use [9] to the one by Hopcroft, Motwani,
and Ullman [13].

1. The logical system in [13] is classical set theory, whereas we work in constructive type
theory. We discuss the impact of this foundational choice below.

2. The alphabet in [13] is separated into a set of input symbols Σ and a superset of tape
symbols Γ, where we unify both into a single type.
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3. The blank symbol in [13] is an explicit part of Turing machines as an element of Γ, but
not of Σ. We do not specify blank symbols explicitly and instead leave it to a user to
specify a blank symbol or even various blank symbols.

4. Tapes in [13] are not formally defined. It is only stated that tapes ‘extend infinitely to
the left and right, initially hold[ing] [...] the input’. Instantaneous descriptions of Turing
machines are formally defined as strings over Γ and Q, which contain ‘the portion of the
tape between the leftmost and the rightmost non-blank, unless the head is to the left of
the leftmost non-blank or to the right of the rightmost non-blank.’ In the latter case, the
blanks between the head and the non-blank content are part of the string.

5. The transition function in [13] is a partial function, whereas ours is total. If the transition
function is unspecified, the computation of the machine halts, whereas we have an explicit
boolean halting function. In Coq’s type theory one requires classical logic and AUCN,N to
compile Turing machines with a partial transition function into an equivalent definition
with total transition functions. In general, any compilation of partial functions on finite
types to total functions is non-computable and thus not definable in Coq’s type theory
without axioms.

6. A machine in [13] always writes a symbol and always moves to the left or right. We allow
to not write a symbol and to not move the head. The first is important regarding our
definition of tapes (otherwise a fully empty niltp can never stay fully empty), whereas the
second is a relatively arbitrary choice to allow more freedom in the definition of concrete
machines.

7. Turing machines have an explicit set of accepting states in [13]. We do not add one,
because our definition is not aimed at formalising computability theory directly. Instead,
our more flexible definition of labels subsumes the binary notion of accepting states, but
allows for more interesting constructions like the Switch and MemWhile machines.

Subtle difficulties might arise when defining notions of computability theory in classical
set theory. For instance, defining Turing machines with a transition function which takes as
input the whole tape is problematic: Nothing permits non-computable transition functions
then, making arbitrary problems decidable by encoding the decision into the transition
function. When imposing the transition function to be computable one obtains a circular
dependency: The notion of computability is needed to define transition functions, transition
functions are needed to define Turing machines, but Turing machines are needed to define
the notion of computability. The well-known solution here is to define Turing machines as
finite objects, i.e. let the transition function, although partial, work on a finite domain and
codomain. In classical set theory one can then always show afterwards that this transition
function is computable, since every function with finite domain and codomain is. In our
type-theoretic setting, we can also show that the transition function is computable, provided
it is, as we defined it, a total function. We did so in Section 6.



Mechanising Complexity Theory: The Cook-Levin
Theorem in Coq
Lennard Gäher #

Universität des Saarlandes, Saarland Informatics Campus, Saarbrücken, Germany

Fabian Kunze #

Universität des Saarlandes, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
We mechanise the Cook-Levin theorem, i.e. the NP-completeness of SAT, in the proof assistant
Coq. We use the call-by-value λ-calculus L as the model of computation to formalise time com-
plexity, the class NP, and polynomial-time reductions. The latter two notions agree with the usual
characterisations via Turing machines (TMs), as L and TMs are polynomial-time equivalent.

The use of L as the computational model, as opposed to TMs, significantly eases program
verification and the derivation of resource bounds. However, for showing the NP-hardness of
SAT, computations of L need to be encoded in SAT, which is complicated by L’s more complex
computational structure. Thus, the polynomial-time reduction chain to SAT employs TMs as an
intermediate problem, for which we neatly factor out a known textbook reduction from TMs to SAT.
Still, all reduction functions are implemented and analysed in L.

To the best of our knowledge, this is the first result in computational complexity theory that has
been mechanised with respect to any concrete computational model.

We discuss what makes this area of computer science hard to mechanise and highlight the design
choices which enable our mechanisations.
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1 Introduction

Computational complexity theory studies how efficiently problems can be solved. This
subsumes the mere analysis of the resource usage of specific algorithms: Problems are
classified according to their inherent (time and space) resource requirement, revealing a
rich structure of relations between these complexity classes. Even practitioners make use
of NP, the class of problems for which solution candidates can be verified in polynomial
time: Showing that a problem p is NP-hard, i.e. at least as hard as the hardest problem in
NP, is an established criterion for the infeasibility of solving p efficiently in the general case.
And NP is even known outside the area of computer science due to one of the most famous1

open questions of modern mathematics, whether P ?= NP, i.e. whether every problem whose
solutions can be verified efficiently can also be solved efficiently.

1 https://www.claymath.org/millennium-problems/p-vs-np-problem
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Despite their relevance, complexity-theoretic results are seldom if ever proven in all detail,
e.g. relying on the reader’s intuition for the exact implementation or resource bounds of
algorithms. While computability-theoretic results have been successfully mechanised in proof
assistants [15, 6, 23], few mechanisations of even basic complexity theory are available. For
computability theory, synthetic approaches [9, 4] have proved successful, by avoiding the use
of an explicit computational model and relying on the fact that all functions definable in
constructive theories such as Coq’s are computable. Many results in computational complexity
theory, on the other hand, inherently require proofs with respect to a concrete model of
computation, for two reasons: First, the resource analysis of “programs” needs to be carried
out with a reasonable resource model that is connected to the definitions of complexity
classes, which rules out a synthetic approach. Secondly, many structural results involve
universal quantifications over problems in certain complexity classes, necessitating the use of
properties of an underlying computational model. For instance, showing that a problem p is
NP-complete requires proving that all problems q verifiable in polynomial-time reduce to p

in polynomial time. Thus, the essential requirements for mechanising complexity theory are
to be able to program in a model of computation and to use properties of it.

Related Work. Past mechanisations of computational complexity theory have usually either
assumed an abstract computational model satisfying certain conditions, but have not proved
the existence of such a model, or have focused on merely proving functional correctness of
constructions from complexity theory, without connecting the result to a cost model proved
reasonable.

Asperti [2, 1] axiomatically proves the hierarchy theorems and Borodin’s gap theorem
in the setting of reverse complexity theory using the proof assistant Matita, in an effort to
determine the minimal assumptions on a computational model needed to obtain the theorems.

Gamboa and Cowles [16] verify the construction of the Cook-Levin theorem for Turing
machines in ACL2. They define functions counting the steps taken by their implementation,
and, without any computational model, cannot establish any connection to the class NP.

Other attempts [12] have been made at mechanising basic complexity theory using Turing
machines (TMs) as the computational model. Forster et al. [12] implement a multi-tape to
single-tape Turing machine compiler and a universal Turing machine, both with polynomial
time overhead and constant-factor space overhead. They conclude, after implementing a
framework for programming TMs consisting of 19K lines of Coq code, that “TMs as model of
computation are inherently infeasible for the formalisation of any computability or complexity
theoretic result”, owing to the non-compositionality and low-level structure of TMs. Instead,
they conjecture that using a λ-calculus as model of computation may prove more successful.

Key Idea: L for Complexity Theory. We follow the idea of using a λ-calculus and choose
the call-by-value λ-calculus L [15] as our model of computation. One big overhead of
mechanised complexity theory is the verification and resources analysis of algorithms in
the model of computation. It is simple to compositionally program in L since inductive
datatypes and recursive functions can be encoded systematically, similar to functional
programming languages. We use the certifying extraction mechanism from Coq to L by
Forster and Kunze [10] to prove computability and semi-interactively deduce the running
time of algorithms. This allows us to program and verify algorithms using the usual comforts
of Coq, automatically establish computability in L, and derive resource bounds in Coq almost
completely without descending into the computational model.
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L has been shown to be a reasonable computational model [11], in the sense of the
invariance thesis of Slot and van Emde Boas [26]: TMs and L can simulate each other with a
polynomial overhead in time and a constant-factor overhead in space for decision problems.
Thus, one obtains the same polynomial-time complexity classes for L as for TMs, which
justifies using L for the mechanisation of complexity theory. The two key requirements for
mechanising structural results are thus elegantly satisfied by L.

Overview. In this paper, we formalise the basics of polynomial-time complexity theory for
L, namely the classes P and NP, as well as the notions of NP-hardness and NP-completeness.

As a first example of using L for complexity theory, we mechanise the popular Cook-Levin
theorem in Coq. This theorem essentially founded the class of NP-complete problems when
it was independently discovered by Cook [7] and Levin [21] in 1971. In the formulation by
Cook, the satisfiability problem of Boolean formulas SAT is shown NP-complete.

The importance of the Cook-Levin theorem lies not in proving that specifically SAT is
NP-complete, but that a natural, machine-independent problem is NP-complete. Once such a
problem p has been shown to be NP-complete, it is relatively easy to derive NP-completeness
of other problems by reduction from p.

In contrast, in any machine model one can usually define a generic NP-complete problem
which is machine-dependent and usually straightforward to prove NP-complete. Essentially,
the existence of an input accepted by a polynomial-time-verifier is reformulated as a problem
on triples of a program (the verifier), a size bound, and a time bound.

Usually, the proof of the Cook-Levin theorem proceeds by reduction from a generic
problem. Specifically, for L this would require us to encode the computation of L-terms using
Boolean formulas. As λ-calculi have a very much non-local computational structure due to
variable binding, formally verifying a direct encoding seems intractable.

On the other hand, encodings of TMs are conceptually simple (though still technically
challenging): single-tape TMs can only locally change a constant amount of data in each
step of computation. Therefore, we use TMs as an intermediate problem: L is encoded using
TMs (employing previous related mechanisations [12, 13]) and in turn TMs are encoded as
Boolean formulas. The expressivity of TMs seems better-suited than Boolean formulas for
an encoding of L-computations. The full reduction is still computed and analysed in L. TMs
serve only as an intermediate construct.

Definitions, lemmas, and theorems in this document are hyperlinked with the documenta-
tion of the Coq development; the links are marked by the symbol .

Contribution. In summary, our contributions are as follows:
1. We mechanise the theory of polynomial-time complexity for L, in particular the notions

of polynomial-time computability, NP, NP-hardness, and NP-completeness,
2. and provide the first mechanisation of a structural result in complexity theory, namely the

Cook-Levin theorem, that includes a running time analysis with respect to the reasonable
computational model L, without any axioms.

3. Our reduction from Turing machines to SAT neatly factorises and formalises a textbook
proof by Sipser [25].

4. We have developed techniques and automation to make time resource analyses on top of
the L extraction framework [10] more feasible.

Structure. Section 2 introduces notation and type-theoretic preliminaries, as well as the
most important aspects of TMs. We then continue with a detailed account of our basic
complexity definitions in Section 3. Section 4 contains a high-level overview of the reduction
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and the involved problems. Section 5 and Section 6 elaborate on some details of the reductions.
Section 7 gives a general overview of the mechanisation and in particular the mechanisation
of resource analyses. Finally, we discuss our results and future work in Section 8.

2 Preliminaries

We work in a constructive type theory with inductive types and an impredicative universe of
propositions P as implemented in Coq.

The basic inductive types we use are the Booleans B ::= true | false, the unit type 1 ::= (),
the natural numbers N ::= 0 | S n for n : N, product types X × Y , and sum types X + Y .
π1 and π2 denote the projections out of the product type. Given a type X, we further
define options O (X) ::= ∅ | ⌊x⌋ and lists (or strings) X∗ ::= [] | x :: A for x : X and
A : X∗. On lists we employ the standard notation for membership x ∈ A, inclusion A ⊆ B,
concatenation A ++ B, and length |A|. The notation A[i, j] is used to denote the sublist of A

from positions i to j (inclusive), possibly having less than j − i + 1 elements if the indices
are (partially) invalid. [a, b] denotes the list of numbers between a and b (inclusive, possibly
empty). [ f a | a ∈ A ] is the list obtained by mapping f over A.

We say that a type X is discrete if there is a function X → X → B deciding equality.
We say that a type X is finite if it is discrete and there is an exhaustive list of elements
[x0, . . . , xn]. In this case, we may write {x1, . . . , xn} for X. In particular, we will use the
letters Σ, Γ to denote finite types representing alphabets.

Turing Machines. We use the formalisation of deterministic, two-sided infinite TMs by [3]
and the mechanisation by [12]. Unlike standard presentations, the tape alphabet Σ does
not feature a distinguished blank symbol, so a tape contains one continuous sequence of
non-blank symbols. Although we make use of multi-tape machines, for this exposition we
restrict our attention to single-tape machines. We assume a type of tapes TapeΣ with
operations left , right : TapeΣ → Σ∗ giving the parts of the tape left and right of the head,
as well as current : TapeΣ → O (Σ) yielding an optional symbol under the head. |tp|
denotes the number of symbols on a tape tp.

A Turing Machine M : TMΣ is a tuple (Q, q0, δ, halt) consisting of a finite type of
states Q, an initial state q0, a transition function δ : Q × O(Σ) → Q × O(Σ) × Move,
where Move ::= L | N | R, and a function determining the halting states. A
configuration is a pair (q, tp) of a state and a tape. We use the notation (q, tp) ≻ (q′, tp′)
for configuration changes according to δ and write (q, tp) ▷≤t (q′, tp′) for ≤ t steps where
additionally halt(q′) = true.

3 Polynomial-Time Complexity Theory in L

L [15], the underlying model of computation in this work, is a standard untyped λ-calculus
with weak call-by-value reduction ≻. This section presents the relevant definitions for L and
the definitions of standard notions of polynomial-time complexity theory, adapted to L as
the computational model.

Its terms s, t : Ter ::= x | λx.t | s t feature lambda abstractions and applications (the
formalisation uses de-Bruijn indices instead of named variables). We use ∥s∥ to denote the
(syntactic) size of a term s. The reduction relation ≻ is uniformly confluent [15], meaning that

https://uds-psl.github.io/cook-levin/website/Undecidability.TM.TM.html#tape
https://uds-psl.github.io/cook-levin/website/Undecidability.TM.Util.TM_facts.html#left
https://uds-psl.github.io/cook-levin/website/Undecidability.TM.Util.TM_facts.html#right
https://uds-psl.github.io/cook-levin/website/Undecidability.TM.TM.html#current
https://uds-psl.github.io/cook-levin/website/Undecidability.TM.Util.TM_facts.html#sizeOfTape
https://uds-psl.github.io/cook-levin/website/Undecidability.TM.TM.html#TM
https://uds-psl.github.io/cook-levin/website/Undecidability.TM.TM.html#move
https://uds-psl.github.io/cook-levin/website/Complexity.NP.SAT.CookLevin.Subproblems.TM_single.html#sconfig
https://uds-psl.github.io/cook-levin/website/Complexity.NP.SAT.CookLevin.Subproblems.TM_single.html#sstepRel
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each reduction path to a normal form has the same length2. This allows us to speak about
the number of steps that a terminating term takes. Many types X can be encoded as L-terms
by defining an encoding function ⌜·⌝ : X → L. Inductive first-order datatypes (like Peano
numbers and lists) can be represented systematically using the Scott encoding [15, 22, 19],
to which we will default from now on.

The following definitions that are parametric over types X, Y have the implicit requirement
that these types are L-encodable. Note that whenever using a notion from this section, the
precise encoding used is an important part of the statement, e.g. the addition of binary
numbers can be performed more efficiently than the addition on a unary encoding.

As the time measure, we use the number of β-reduction steps to a normal form, which
has been shown to be a reasonable computational model [5]. Forster and Kunze [10] have
mechanised a notion of L-computability with running time for meta-level functions that can
be encoded as L-terms. We refer to this work, and use this notion slightly informally here.

▶ Definition 1 (Polynomial Boundedness). We say that a function f : N→ N is polynomial
if there exists k : N such that for sufficiently large n, we have fn ≤ k · nk. We say that a
function g : N→ N is polynomially bounded if there exists a monotonic, polynomial function
f with ∀x.g(x) ≤ f(x).

The monotonicity requirement in the definition eases formal reasoning by allowing rewriting
in the function argument.

Definition 2 (Polynomial-time Computability). A function f : X → Y is polynomial-time
computable, if there exists t : N→ N such that

f is L-computable in time λx.t ∥⌜x⌝∥,
t is polynomially bounded, and
the result size is polynomially bounded by the input size, i.e. there is a polynomial p with
∥⌜f x⌝∥ ≤ p∥⌜x⌝∥.

We use the term size of the (Scott) encoding, ∥⌜·⌝∥, as the input size of computations.
Note that the last requirement of Definition 2 is non-standard: For TMs, this condition
holds automatically due to the known “time-bounds-space” lemma of TMs, while for L, a
computation can produce terms of a size exponential in the number of reduction steps [11].

Definition 3 (P). A decision problem p : X → P can be decided in polynomial time, written
p ∈ P, if there exists f : X → B such that f is polynomial-time computable and f decides p,
i.e. p x↔ f x = true for all x.

We define NP using the well-known characterisation via deterministic certificate veri-
fiers [24, p. 181], instead of e.g. extending L to support non-deterministic computations.

Definition 4 (NP). A decision problem can be verified in polynomial time, written p ∈ NP,
if there exists a verifier relation R : X → Ter → P and a certificate size bound f : N → N
such that
1. λ(x, y).R x y is polynomial-time decidable (we call this decider verifier),
2. R x y implies p x,
3. p x implies R x y for some y with ∥⌜y⌝∥ ≤ f∥⌜y⌝∥, and
4. f is polynomially bounded.

2 A single reduction step is not deterministic as there is no enforced order of evaluation in applications.
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Generic Problem for L (GenNP)

Abstract Heap Machine (LMGenNP)

Turing Machines (mTMGenNP)

1-tape Turing Machines (TMGenNP) Covering Cards (CC) on arbitrary Σ

Binary Covering Cards (BCC) on {0, 1}

Formula SAT (FSAT)

CNF SAT (SAT)
compile term to abstract program

interpret using TM

multi-tape to single-tape compiler

tableau construction

string homomorphism

encode bits using Boolean variables

Tseitin transformation

Figure 1 Chain of reductions from GenNP to SAT.

Note that this definition (unlike [24]) does not require the verifier to reject certificates which
are too large, i.e. exceed the polynomial bound. This simplifies the verifier relation and
implementation in formalised NP-containment proofs, as properties on the logical level of
R are less tedious than implementing more tests in the function. Moreover, this definition
only allows L-terms as certificates. This simplifies the formalisation in places where NP-
containment is an assumption (e.g. when proving NP-hardness), as otherwise one would need
to spell out requirements on the certificate type, like efficient enumerability, of the definition
of NP.

In the other direction, when establishing NP-containment, a generalisation allows any
type Y for certificates, as long as its encoding is injective and decodable in polynomial time.

Finally, the notion of polynomial-time reducibility enables us to define the two crucial
notions relating problems to NP.

Definition 5 (Polynomial-time Many-one Reductions). A problem p : X → P reduces to
q : Y → P in polynomial-time, written p ⪯p q, if there exists a polynomial-time computable
function f : X → Y such that p x↔ q(fx).

Definition 6 (Hardness and Completeness). A problem p : X → P is NP-hard if for all
problems q ∈ NP, q ⪯p p. If additionally p ∈ NP, then p is NP-complete .

The standard closure properties hold, enabling reductions as a useful tool:

▶ Lemma 7.
1. If p ∈ NP and q ⪯p p, then q ∈ NP.
2. If p is NP-hard and p ⪯p q, then q is NP-hard.
3. ⪯p is a pre-order.

4 Overview of the Reduction

The hard part of proving the Cook-Levin theorem is the NP-hardness proof of SAT, on which
we focus in this paper. For this, we construct a polynomial-time many-one reduction from
a generic problem, which can be easily shown NP-hard, to SAT. Our reduction factorises
in several intermediate problems, of which we give a brief overview in this section. For the
most interesting parts, we give more technical details in Sections 5 and 6.

It turns out that for different models of computation, so-called generic NP-hard problems
are of interest in this reduction chain: They ask the question whether, for the input triple
(P, k, t) : Prog×N×N, there is a certificate c such that the program P halts on input c in no

https://uds-psl.github.io/cook-levin/website/Complexity.Complexity.NP.html#inNP_intro
https://uds-psl.github.io/cook-levin/website/Complexity.Complexity.NP.html#reducesPolyMO
https://uds-psl.github.io/cook-levin/website/Complexity.Complexity.NP.html#reducesPolyMO
https://uds-psl.github.io/cook-levin/website/Complexity.Complexity.NP.html#NPComplete
https://uds-psl.github.io/cook-levin/website/Complexity.Complexity.NP.html#NPComplete
https://uds-psl.github.io/cook-levin/website/Complexity.Complexity.NP.html#NPhard
https://uds-psl.github.io/cook-levin/website/Complexity.Complexity.NP.html#NPcomplete
https://uds-psl.github.io/cook-levin/website/Complexity.Complexity.NP.html#red_inNP
https://uds-psl.github.io/cook-levin/website/Complexity.Complexity.NP.html#red_NPhard
https://uds-psl.github.io/cook-levin/website/Complexity.Complexity.NP.html#reducesPolyMO_transitive
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more than t time steps and such that k bounds the size of c. The exact notions of programs,
inputs, size, and time differ per concrete model of computation. The generic problem for L
can be shown NP-hard quite easily, as its definition lines up nicely with NP.

Our full reduction chain can be divided into two segments (Figure 1): First we reduce
the generic NP-hard problem for L to a generic NP-hard problem for (single-tape) TMs. In
a second step, single-tape TMs are encoded as Boolean formulas. While this second step
closely follows the idea of a common textbook construction [25], our proof neatly separates
different aspects of the construction into different reductions. One important detail is that L
is used to implement all the reduction functions, as mentioned earlier. The reason for still
having TMs as an intermediate problem is that their computational structure is much more
local than that of L, simplifying the encoding as a formula.

Generic Problem for L. The generic problem for L, GenNP, asks, for the input triple (s, k, t),
whether there exists a list of Booleans bs, the certificate, such that (1) the term s applied to
the encoding ⌜bs⌝ halts in no more than t steps and (2) the encoding of bs is smaller than k.
The definition of NP allows to easily establish NP-hardness of this problem, see Section 5.

Instead of directly reducing the generic problem for L to TMs, we employ an abstract
heap machine as an intermediate step: It is a stack machine for L that has built-in structure
sharing due to the use of closures and an explicitly modelled heap, similar to the one used
by Forster et al. [11]. The reduction from GenNP to the generic problem for this abstract
machine, LMGenNP, uses the fact that the abstract machine implements L with a linear
factor overhead in time.

Reducing to Turing Machines. The next step is to encode the heap machine using a
multi-tape TM, for which we use the interpreter by Forster et al. [13]. The TM (i.e. state
space and transition function) produced by the translation is fixed, i.e. this is an interpreter,
not a compiler.

The most difficult part here is that the generic problem for multi-tape TMs, mTMGenNP,
uses an arbitrary tape as certificates, while the L-problems use a list of Booleans. Therefore,
we need to define and verify a TM that performs some preprocessing: Each possible TM-
encoding of an L-encoding of a list of Booleans must be the result of this TM on some tape,
and this TM never produces something that does not encode a Boolean list.

We now use an existing translation from multi-tape to single-tape TMs [12] to reduce
from mTMGenNP to the generic problem for single-tape TMs, TMGenNP: Instances are
dependent tuples (Σ, M : TM, in : Σ∗, k : N, t : N), where Σ is a finite tape alphabet and M

is a (two-sided) single-tape machine over Σ. An instance is a yes-instance if there exists a
certificate cert : Σ∗ with |cert| ≤ k such that M halts on in ++ cert in ≤ t steps.

Reducing to SAT using Covering Cards. For the reduction from TMGenNP to a Boolean
formula, we follow the textbook proof by Sipser [25] at a high level. The key idea is to make
use of the well-known “time-bounds-space” fact for TMs. From the fixed input part in, the
maximum certificate size k, and the time bound t we can determine a maximum amount of
space s the TM may use. All of the machine’s computation can be layed out in a tableau of
t + 1 lines and width s, with each line representing one configuration of the machine and
each cell containing an encoding of a tape symbol or the state, see Figure 2. We need a
special blank symbol ␣ filling the space not currently in use by the TM. The state symbol,
initially q␣0 , not only contains the state q0 but also marks the head’s position and contains
the current symbol under the head. Eventually, this tableau determines the layout of the
Boolean formula.
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#
#
#

#

#
#
#

#

␣ . . . ␣ q␣0 σ1 . . . σl ␣ . . . ␣

...
...

t + 1

s = O(k + |in| + t)

1st config
2nd config
3rd config

Figure 2 The tableau of configurations. Each line is delimited by #.

Exploiting the local computational structure of TMs, we constrain succeeding lines of
the tableau locally with covering cards of 3 by 2 symbols to enforce valid configuration
changes. At each possible offset of two succeeding lines, a card matching the symbols at that
position needs to exist. Importantly, the cards need to overlap, which allows to express global
constraints using only local cards. The set of cards available encodes the valid transitions
the TM can take. Cards can be re-used.

Instead of directly encoding this tableau as a formula, as is done by Sipser, we introduce
a string-based intermediate problem called Covering Cards ( CC) making the tableau
of configurations and covering cards explicit. This allows us to separately deal with the
construction of the tableau and the TM encoding, reducing the special symbols introduced
by the tableau encoding to a binary alphabet, and finally constructing a Boolean formula.

CC may use arbitrary finite alphabets for the contents of the tableau. This expressivity is
needed for the reduction even if the original TM only uses a binary alphabet, as the tableau
construction needs “control symbols”. As a first step towards encoding this as a Boolean
formula, we reduce to a binary alphabet {0, 1} by replacing every element σ of the alphabet Σ
by a unique binary string of length |Σ|. We call this variant Binary Covering Cards ( BCC).

The next step of the reduction are general Boolean formulas φ featuring conjunction,
disjunction, and negation. The general formula satisfiability problem ( FSAT) has as
instances formulas φ and asks whether there exists an assignment a such that φ is true under
this assignment. BCC can be encoded as a Boolean formula φinit ∧ φcards ∧ φfinal of three
gadgets for the first line of the tableau, the covering cards, and the final substring constraint.
For these formulas, each cell of the tableau can be represented as one Boolean variable due
to the binary alphabet.

However, usual statements of the Cook-Levin theorem reduce to the satisfiability problem
of conjunctive normal forms ( SAT). The formulas produced by the reduction to FSAT are
not yet in CNF and so we transform formulas φ into their normal form. Since the naive way
of implementing this transformation can incur an exponential blowup in the formula size, we
use the well-known Tseitin transformation [27] to obtain a polynomial-time reduction.

5 From L to Turing Machines

In this section, we give some of the details of showing the generic problem for Turing machines
TMGenNP NP-hard. We first show the problem GenNP to be NP-hard. We then give a path
of polynomial-time reductions to TMGenNP.

The generic problem for L, GenNP, asks whether, for a triple consisting of a L-term s,
and two unarily encoded natural numbers k (the size bound for certificates) and t (the time

https://uds-psl.github.io/cook-levin/website/Complexity.NP.SAT.CookLevin.Subproblems.CC.html#PRLang
https://uds-psl.github.io/cook-levin/website/Complexity.NP.SAT.CookLevin.Subproblems.BinaryCC.html#BinaryPRLang
https://uds-psl.github.io/cook-levin/website/Complexity.NP.SAT.FSAT.FSAT.html#formula
https://uds-psl.github.io/cook-levin/website/Complexity.NP.SAT.FSAT.FSAT.html#FSAT
https://uds-psl.github.io/cook-levin/website/Complexity.NP.SAT.SAT.html#SAT
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bound), there exists a list of Booleans bs with size no greater than k such that s, on the
encoding of bs, halts in no more than k steps3.

Instead of allowing all triples as possible input, we restrict the definition to a subset of
admissible triples. Formally, the type of GenNP is a subtype, i.e. {x : Ter×N×N | adm x} → P
for some restriction adm : Ter×N×N→ P. The reason for this is that later, when reducing
from multi to single-tape TMs, this restriction simplifies the proof.

Definition 8 (Generic NP-complete problem for L). A triple (s, k, t) : Ter × N × N is a
yes-instance for GenNP if there exists a certificate bs : B∗ with ∥⌜bs⌝∥ ≤ k such that s ⌜bs⌝

halts in no more than t steps.
For GenNP, the subtype of admissible input triples is restricted to closed abstractions s

satisfying two constraints: If s halts when applied to some certificate, then there is a certificate
of size ≤ k on which s halts. If s halts on a certificate, then it halts in no more than t steps.

Theorem 9. GenNP is NP-hard

Proof. Assume a problem p : Y → P is in NP with verifier v : Y × Ter → B. Let f be a
polynomial-time surjection from B∗ to Ter that in addition is non-wasteful, i.e. can produce
each c : Ter from a boolean list that is not significantly larger than c.

The reduction function to GenNP now maps y : Y to a triple: The first component is
the term s := λx.HaltOnTrue(s′x), where s′ is the term computing (in polynomial time) the
function λx.v(y, fx), and HaltOnTrue is a combinator that, applied to an encoded Boolean
⌜b⌝, halts only on true.

The second component, the size bound k, is chosen large enough so that there is a smaller
certificate x iff the verifier v accepts some fx as certificate for y. This can be achieved by
concatenating the size bound for certificates (from the definition of NP) with the size-bound
for f (from f being non-wasteful). The third component, the time bound, can be chosen
large enough by determining the running time function of s′, and then plugging in k and the
size of y.

We skip over the actual correctness proof, which does not only have to account for two
directions, but also the side conditions. We also skip over the polynomial-time computability
proof in this presentation. ◀

We now reduce from GenNP to mTMGenNPM , a generic problem on multi-tape TMs 4.
Syntactically, for a fixed n + 1 tape TM M , the inputs to mTMGenNPM are triples consisting
of a n-vector v of tapes, and two unarily encoded natural numbers k (the size bound for
certificates) and t (the time bound). As for GenNP, only a subtype of those are admissible.

Definition 10 (mTMGenNPM ). A triple (v, k, t) : tapen × N × N is a yes-instance for
mTMGenNPM if there exists a tape tc with |tc| ≤ k such that M on input tc :: v halts in no
more than t steps.

For mTMGenNPM , the subtype of admissible input triples is restricted by two constraints:
(1) If M on tc :: v halts when applied to some certificate v, then there is a certificate shorter
than k on which it halts. (2) If M halts on tc :: v, then it halts in no more than t steps.

3 The mechanisation generalizes certificates to any type X that is polynomial-time surjectable to Ter .
4 The mechanisation uses an abstract machine for L as intermediate step, which in hindsight is not the

optimal factorisation, as nothing of interest happens in the first reduction . The better factorisation
is to explicitly separate out a TM evaluating L. Since this focuses on the more interesting parts, we
explain that approach here.
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Compared to the definition of GenNP, we separate the program into two parts: A fixed
n + 1 tape TM M and, as part of the actual input, all-but-the-first tapes v. The reduction
now needs two TMs as key ingredients: A TM CheckCert that transforms the guessed
first tape, containing arbitrary symbols, into all possible encodings of Boolean lists, and a
polynomial-time L-evaluator EvalL, mechanised by Forster et al. [13].

Theorem 11. GenNP reduces to mTMGenNPM in polynomial time for some M .

Proof. For a triple (s, k, t) : Ter × N× N, the reduction function produces a triple (v, k′, t′) :
tapen×N×N such that v contains an encoding of s. Then, k′ and t′ are chosen large enough
such that the M we now construct satisfies all side conditions, which is tedious to mechanise
and would be even more tedious to describe here.

The machine M is constructed as follows: It tests if the first tape contains a Boolean
list and runs the simulator EvalL on the application of s (read from v) to the encoding of the
Boolean list. Otherwise, it diverges. ◀

The last step now is a reduction to the generic problem TMGenNP for single-tape TMs,
for which we use the multi-to-single-tape translation by Forster et al. [12].

Definition 12 (TMGenNP). A tuple (Σ, M : TM, in : Σ∗, k : N, t : N) is a yes-instance for
TMGenNP if there exists a tape tc with |tc| ≤ k such that M halts on in ++ tc in ≤ t steps.

Note that the used tape is a combination of in from the input and the “guessed” certificate.

Theorem 13. For every M , mTMGenNPM reduces to TMGenNP in polynomial time.

Proof. Given a n+1 tape machine M and an instance (v, k, t) of mTMGenNPM , we construct
the instance (Σ, M ′, in, k′, t′) for TMGenNP as follows:

M ′ is a single tape machine that basically is the single-tape compilation of M , but we
prepend an auxiliary machine that checks that the tape is the encoding of some n + 1-vector
of tapes, according to the single-to-multi-tape construction we use. M ′ can be hard-coded
and does not have to be computed in L, as M is a parameter5. in is the proper encoding of
v, for use by M ′. k′ is k plus some small constant due to overhead in the encoding of tapes.
t′ is chosen so that M ′ terminates, according to the running time analysis, and polynomial
in k, t and v.

The two restrictions for admissible inputs to mTMGenNPM are crucial for the direction
where one obtains a multi-tape certificate from a terminating run of M ′: The construction
we use only gives an upper bound for the running time of M ′ in terms of the running time
of M . Therefore, we cannot be sure that only because M ′ halts in no more than k′ steps,
the multi-tape machine halts in k steps. Using the side conditions, just by the fact that
the multi-to-single tape compiler preserves the halting behaviour, we get the existence of a
certificate with the right bounds. ◀

We omit more details6 and only note that the actual running time analysis of M ′, and the
poly-time computability proofs of the reduction function are at least an order of magnitude
larger than the parts sketched in this proof.

5 A weaker definition of TMGenNP that is parameterised over Σ and M would suffice for our purposes,
but our construction in Section 6 works for the actual, more general definition.

6 For example that for technical reasons, we have another version of TMGenNP as intermediate step .
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6 Reducing TMGenNP to SAT

In this section, we focus on the remaining steps to show SAT to be NP-complete, starting
from the NP-hardness of TMGenNP.

6.1 Encoding of Turing Machines using Covering Cards
First, we present a more detailed account of encoding TMs using Covering Cards. The
key steps of this proof are to find an encoding of configurations which is essentially unique
and to construct the covering cards for the TM simulation, such that there is a one-to-one
correspondence between valid CC-steps and TM steps, and to construct a prelude which,
before the TM simulation runs, “guesses” a certificate string in a single CC-step.

Definition of CC. First, we specialise CC to a specific case we call 3-CC. 3-CC instances
are dependent tuples (Γ, in, C , fin, t), where Γ is the finite alphabet for the cells of the
tableau, in : Γ∗ is the first line of the tableau, and t + 1 is the number of lines. C : CΓ

∗

is a list of covering cards consisting of a premise and a conclusion, where CΓ := Γ3 × Γ3.
Finally, fin : Γ∗ is a constraint on the tableau’s final line st+1 used for encoding that
the TM has halted. An instance is a Yes-instance if there exists a sequence of strings
s0 = in, . . . , st+1 such that s ∈ st+1 for an s ∈ fin, denoting that one of the symbols of
the last line signals halting, and such that si⇝C si+1, denoting that every succeeding line
follows validly, at all positions, from the previous one according to the cards C . Formally ,
s⇝C t := ∀i ∈ [0, w − 3].∃a ∈ C .s[i, i + 2] = π1a ∧ t[i, i + 2] = π2a, where w := |in|. Note
that CC does enforce that there is a matching rule for every position, in contrast to rewriting
systems, which would apply a rule at a single position and leave other parts unchanged. We
call this a CC-step from s to t.

The generalisation of 3-CC to CC (needed for the reduction to a binary alphabet) makes
the following changes: the width of the cards, originally 3, becomes a variable ω, the offset at
which cards need to hold, originally 1, becomes a variable o, and the list of final subsymbols
is generalised to a list of final substrings. Abstractly, o symbols grouped together form a
unit and covering cards need to hold only at positions which are multiples of o. Every 3-CC
instance is a CC instance by an easy transformation .

Encoding Configurations. For the rest of this section, we fix a instance (Σ, M, in, k′, t) of
TMGenNP. The maximum length the fixed input in and the certificate can have is bounded
by k := |in|+ k′. We use the metavariables σ : Σ and m : Σ + {␣}. First, we consider how to
deterministically simulate the machine on a given initial input and later deal with “guessing”
a certificate.

A configuration consists of the current TM state, the tape contents, and the position of
the single head. A configuration string s : Γ∗ over an extended alphabet Γ has a fixed width
and encodes a configuration in an essentially unique way. Our encoding features the current
state q and the symbol under the head m combined in a single symbol qm at the exact center
of the string. The tape halves u : Σ∗ to the left and to the right of the head are represented
by the substrings h : Γ∗ left and right of the center symbol. Fixing the state symbol to the
center simplifies the inductive invariants in the presence of two-sided infinite tape machines,
but necessitates that, when the head is moved, the whole tape representation in the string is
shifted.

Figure 3 shows an example of a configuration change, where the head is moved to the
left and thus the tape needs to be shifted to the right. The outer-most character on both
sides is the delimiter #. We denote the amount of space maximally needed by the TM by
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−→
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−→
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−→␣qc

1
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Figure 3 Two successive configuration strings, where Σ = {a, b, c}, q0 is the initial state, and
δ(q0, ⌊a⌋) = (q1, ⌊b⌋ , L). The strings are delimited by #.

z := k + t 7. The tape symbols of the successor string are annotated with polarities p. They
denote the direction in which the tape is shifted (left ←−m, stay m, and right −→m) and are added
to every tape symbol. Polarities are needed in order to enforce a consistent tape shift across
the whole tape string. A symbol with unknown polarity p is written as mp. We omit the
polarity of a symbol when it is irrelevant.

We define two relations ∼t and ∼c to capture the representation of tape halves and
configurations. The relation ∼t is parameterised by the amount of space n available for the
TM simulation and the polarity p. The empty tape half of length n is represented by E p n ,
defined as E p 0 := [#] and E p Sn := ␣p :: E p n. A general tape half u is represented by u

with an arbitrary polarity p added and trailing blank space, denoted u ∼(n,p)
t h (with two

blanks added as noted above):

u ∼(n,p)
t h := |u| ≤ n ∧ h = [ xp | x ∈ u ] ++ E p (2 + n− |u|).

A configuration string is pieced together from three parts, where the left tape string must
be reversed. The polarity is irrelevant, as long as it is consistent:

(q, tp)∼c s := ∃p, l, r.s = rev (l) ++ [qcurrent tp] ++ r ∧ left tp ∼(z,p)
t l ∧ right tp ∼(z,p)

t r

This relation determines the string representing a configuration uniquely, up to the polarity.

Simulation Cards. As a reminder, the covering cards used for the simulation encode valid
configuration changes through overlaps. We distinguish three types of covering cards that
encode valid configuration changes: cards that are used for shifting the tape, cards that affect
the center state symbol, and cards that replicate a configuration string in case the machine
halts in less than t steps. As most cards need to be applicable independently of the current
tape contents or the polarity, we give rules for creating cards, containing metavariables σi

and mi. Moreover, for their premises we do not give the polarities. In order to obtain the
actual cards, the rules are instantiated with all possible assignments to the metavariables.
For instance, for transitions, three kinds of rules are needed, having the center state symbol
in the left, middle, or right position. The middle position rules for δ(q1, ⌊σ1⌋) = (q2, ⌊σ2⌋ , L)
are:

σ3
−→
m2

qσ1
1

qσ3
2

m1
−→
σ2

␣
−→␣

qσ1
1

q␣2

m1
−→
σ2

One can see that a large number of rules is needed. The full set of rules can be found in the
Coq development. We denote the set of covering cards obtained by instantiating the rules by
Rsim .

7 but we add two further blanks to each side as having at least three symbols in each tape string simplifies
the proofs.
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The next theorem is the main result needed to prove that TM runs are in one-to-one
correspondence with CC-step sequences.

Theorem 14 (Step Simulation).
If (q, tp) ∼c s, (q, tp) ≻ (q′, tp′) and |tp| < z, then there exists a unique s′ such that s⇝Rsim s′.
Moreover, s′ satisfies (q′, tp′) ∼c s′.

Proof. Given a configuration string, we split it into the state symbol qm, the left tape half,
and the right tape half.

The state symbol uniquely determines the transition the TM takes. By analysing the
heads hl and hr of the tape halves, we can find out the cards to use at the center. These
cards then uniquely determine the heads h′

l and h′
r of the successor tape halves. By an

induction, the successor tape halves are therefore fully determined. The coverings can then
be justified separately. ◀

A similar correspondence can be proved for halting configurations. As consequences, we
get soundness and completeness for the simulation of deterministic TMs. Both proofs are
by induction with some intermediate lemmas. The predicate haltingString s denotes that s

contains a symbol qm and halt q = true.

Theorem 15 (Completeness). If |tp| ≤ k, (q, tp) ∼c s, and (q, tp)▷≤t (q′, tp′), then there is
s′ with s⇝t s′, (q′, tp′) ∼c s′ and haltingString s′.

Theorem 16 (Soundness). If (q, tp) ∼c s, |tp| ≤ k, s⇝t s′, and haltingString s′, then there
are q′, tp′ with (q′, tp′) ∼c s′, (q, tp)▷≤t (q′, tp′) and |tp′| ≤ z.

Nondeterministic Certificate. Finally, we need to generate an initial string that accounts
for the certificate input of the TM. Since the 3-CC instance should be satisfiable iff there
exists a valid certificate, this needs to be encoded using a CC-step. We prefix another line
to the tableau and add additional cards that allow for a non-deterministic successor string
that is used as the initial string of the TM simulation. By making these cards use a disjoint
alphabet , they cannot interfere with the succeeding TM simulation.

Theorem 17. TMGenNP reduces to CC in polynomial time.

6.2 From 3-CC to SAT
For lack of space and since the constructions are conceptually simple, we do not give a more
detailed account of the remaining steps from 3-CC to SAT but instead refer to Section 4 and
our mechanisation. In total, we show the following reductions:

▶ Theorem 18.
1. CC reduces to BCC in polynomial-time.
2. BCC reduces to FSAT in polynomial time.
3. FSAT reduces to SAT in polynomial time.

6.3 NP Containment
For proving SAT NP-complete, we also need to show that SAT ∈ NP, which is far simpler than
the chain of reductions. We construct a standard certificate verifier that takes assignments
as certificates and verify it to run in polynomial-time. Further details are left to the Coq
formalisation.
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Lemma 19 (SAT is in NP). SAT ∈ NP

In total, we now have proved the Cook-Levin theorem:

Theorem 20 (Cook-Levin). SAT is NP-complete8.

Table 1 Line counts (grouped, counted with coqwc).

Component Spec Proof

Libraries definitions and frameworks for L and TM, . . . 17000+ 17000+

Complexity Definitions 317 675
Problem Normal Versions 444 541
Definitions (Add.) Flat Versions 325 674
GenNP is NP-hard 43 230
GenNP to mTMGenNPexcl. EvalL 203 574
mTMGenNP to TMGenNPexcl. multi-to-single-tape compiler 264 889
TMGenNP to CC 3470 4442
CC to SAT 755 2312
SAT ∈ NP 108 297

7 Mechanisation in Coq

Our development compiles with Coq 8.12.1, without any axioms and with a code size as
denoted in Table 1. We comment on a few challenges involved in the mechanisation.

Flat First-Order Encodings. One of the limitations of the extraction framework of [10]
is that higher-order types and types having propositional components cannot be extracted
directly. For instance, arbitrary finite types, dependent function types, and dependent pairs
are hard to handle generically. We call a particular formulation of a problem P : X → P flat
if X is L-encodable and will also refer to the type of instances X as flat.

Directly formulating all problems discussed in this paper such that their instances are flat
is unpleasant, as that strips away many of the amenities of Coq’s dependently-typed language
which are useful for stating problems. This does in particular affect the generic problems
for TMs and the different variants of CC. Instead, we first formulate a problem P without
paying attention to flatness and use this nice formulation to prove correctness statements.
For the extraction, a separate flat version P ′ is defined, for instance by representing a finite
type Σ by the number of its elements |Σ| and its elements by the natural numbers up to
|Σ|. The functions computing the reduction are defined on the flat versions. To prove their
correctness, a natural notion of agreement to the non-flat definitions is proved.

For the variants of CC, this is straightforward. A flat definition of TMs was already
available in the Coq Library of Undecidable Problems [14].

Encoding Turing machines in CC. A major difficulty in the reduction to CC is the handling
of the covering cards. A large number of rules are needed to generate the cards and to handle
all cases. This is in significant parts due to the fact that blank symbols ␣ are unknown to

8 Actually, we mechanise that even 3-SAT, where clauses are restricted to have size 3, is NP-complete.
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the TMs and have to be handled separately. Theorem 14 splits up into a large number of
cases (100 are non-contradictory) due to cases analyses on the machine’s behaviour and the
local shape of the tape around the head (for selecting the right cards at the center). This is
only feasible using custom Ltac automation (around 160LOC for this theorem), since the
different cases are similar enough that the general strategy is the same, but different enough
that at certain points, key decisions need to be taken depending on the current case and
context. Further custom automation is used to invert the relations ∼t,∼c and to eliminate
contradictions.

For easing automation, the cards are not directly formalised using lists, but instead using
indexed inductive predicates. This enables an easy use of eauto to justify coverings and
inversions to analyse coverings.

To make an automatic extraction into L and a resource analysis possible with the extraction
framework [10], separate flat versions FlatCC of CC and FlatTMGenNP of TMGenNP are used,
representing the finite type for the alphabet by natural numbers. In particular, a list of flat
cards needs to be computed. In order to transfer the proof of correctness from CC to FlatCC,
functions for computing the cards are parameterised and can be instantiated either with a
finite type or with natural numbers. The proof then first shows that the cards determined
by the indexed inductive predicates and the list-based cards using finite types agree and in a
second step that both instantiations of the list-based cards are suitably equivalent.

Prop vs Type. Definitions like polynomial-time computability contain several components
that are explicitly used in the constructions that we perform, like the explicit running time
or the function bounding the result size. Therefore, our proofs get more concise by modelling
definitions not as propositions, but in Type, which allows to define the projections.

7.1 Resource Analyses
A major part of complexity theory is making sure that the constructions satisfy the required
resource bounds. While this aspect is uninteresting from a formalisation perspective, the
mechanisation of resource bounds is work-intensive and benefits from the right abstractions.
We need to derive not only running time bounds for L computations, but also for their result
size, and similar bounds for the TMs constructed in Section 5.

We define a preorder ≤c on functions, used to give more readable upper bounds.

f ≤c g := Σc′.∀x.f x ≤ c′ · g x

This definition has many of the desired properties of O notation, like abstraction from
constant factors and the ability to bound a (finite) sum by the largest summands. But in
contrast to “full” O notation, which was mechanised and used by Armaël et al. [17], our
definition is lightweight and covers functions with multiple (uncurried) arguments of arbitrary
type, without the need of a notion of limits or ultrafilters.

We use two notational tricks in Coq: Using coercions and a record we can concisely
express the existence of some function ≤c g in specifications . Using the projection to the
c in the definition of ≤c, we can employ the concrete bound c · g x whenever needed and still
hide the exact value of c.

Intuitive Time Bounds for L. Since L is a low-level machine model, we inevitably need
to connect our analyses to the notions of time for L. Formally, the running time function
simply is a function that computes the number of steps needed for each input. A priori, the
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syntactic representation of this function can be very messy (e.g. recursive), mention many
constants whose exact value is of no interest, and is not expressed in terms of the size of
the input, but the input itself. Deriving concise, intuitive bounds is an important aspect
of our mechanisation. As an example, we consider deriving time bounds for the evaluation
of Boolean clauses (conjunctions of disjunctions of literals) used for the SAT verifier of
Section 6.3. We represent variables by natural numbers, literals as pairs of variables and their
Boolean sign, and clauses as lists of literals. Assignments are lists containing the variables
which are assigned true, all other variables are implicitly false.

v : var := N l : lit := B× var C : cla := lit∗ a : assgn := var∗

existsb p [ ] := false
existsb p (x :: l) := p(x) | existsb p l

Elit a (s, v) := (v
?
∈ a) ?= s

Ecla a C := existsb (Elit a) C

Let us assume that we have already analysed Elit. For the time analysis of Ecla, we first
analyse the higher-order function existsb used in its definition. We start with the (simplified)
recurrences generated by the certifying extraction framework of Forster et al. [10], which
are phrased in terms of the number of β-steps of the extracted L-term:

8 ≤ Texistsb(Tf , [])
Tf h + Texistsb(Tf , l) + 15 ≤ Texistsb(Tf , h :: l)

where C is an L-encodable type and Tf : X → N is the running time function of the argument
function f : X → B. Instead of solving this recurrence explicitly for Texistsb, involving
all the constants, we strive for more intuitive bounds in terms of abstract size functions,
such as the length of the list. Therefore, we give a bounding solution Texistsb ≤c Bexistsb for
Bexistsb := λ(Tf , C).

∑
a∈C Tf a + |C|+ 1 which hides the constants.

With this, we derive bounds for Ecla. We make use of the abstract size function maxVar
giving the (encoding size of the) maximum variable used in a clause. Assuming that
TElit ≤c BElit := λa.(|a|+ 1) · (maxVar(a) + 1), we compositionally obtain the bound TEcla ≤c

BEcla := λ(a, C).(|C|+ 1) · (|a|+ 1) · (maxVar(a) + 1) by instantiating the bound for existsb.
To get back to the concrete resource measures of L in the end and obtain bounds in terms

of the encoding size, we simply have to prove that the abstract size functions are bounded in
terms of the encoding size, e.g. that |a| ≤ ∥⌜a⌝∥ .

8 Discussion

To the best of our knowledge, this paper contains the first mechanisation of a complexity-
theoretic result all the way down to a computational model. Our experiences seem to support
the conjecture [12] that a λ-calculus is more amenable to mechanising complexity theory
than TMs are. This is in large parts due to being able to automatically generate L-code
from Coq-code, which makes programming and verifying in L simple, and having recurrences
generated in the same process. Still, the resource analysis poses a major overhead over
just verifying the functional correctness of reductions as is done in synthetic computability
theory [9], since we need to derive flat first-order encodings of the problems and of course
analyse the running time of the reduction functions.

It may seem ironic that we started out with a quest to move away from TMs, but ended
up still using them as an intermediate problem in the reduction chain because of their local
computational structure, and because of our experience with mechanising TMs [12, 14]. But
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the techniques we have for poly-time computability proofs in L are vastly superior to the
hypothetical alternative of using TMs as underlying model of computation and verifying
TM-computability of all constructions.

Future work. This work, the NP-hardness of SAT, now enables a variety of fully mechanised
NP-completeness proofs, like the well known 21 NP-complete problems by Karp [20], without
even knowing what a Turing machine is.

We conjecture that many interesting results in computational complexity theory can be
mechanised when phrased in terms of L, as evident by a mechanisation of the time hierarchy
theorem we are working on. We want to explore these possibilities in more detail.

Mechanising the agreement between our definition of NP and a TM-definition of NP
should be straightforward by reusing simulations in L/TMs we already have.

We are interested in understanding how characterisations of P and NP that are independent
from a computational model, like via Fagin’s theorem [8] or certain type systems [18], can be
shown equivalent to our characterisations.
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Abstract

As quantum computing progresses steadily from theory into practice, programmers will face a
common problem: How can they be sure that their code does what they intend it to do? This
paper presents encouraging results in the application of mechanized proof to the domain of quantum
programming in the context of the sqir development. It verifies the correctness of a range of a
quantum algorithms including Grover’s algorithm and quantum phase estimation, a key component
of Shor’s algorithm. In doing so, it aims to highlight both the successes and challenges of formal
verification in the quantum context and motivate the theorem proving community to target quantum
computing as an application domain.
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1 Introduction

Quantum computers are fundamentally different from the “classical” computers we have
been programming since the development of the ENIAC in 1945. This difference includes a
layer of complexity introduced by quantum mechanics: Instead of a deterministic function
from inputs to outputs, a quantum program is a function from inputs to a superposition of
outputs, a notion that generalizes probabilities. As a result, quantum programs are strictly
more expressive than probabilistic programs and even harder to get right. While we can test
the output of a probabilistic program by comparing its observed distribution to the desired
one, doing the same on a quantum computer can be prohibitively expensive and may not
fully describe the underlying quantum state.
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This challenge for quantum programming is an opportunity for formal methods. We can
use formal methods to prove, in advance, that the code implementing a quantum algorithm
does what it should for all possible inputs and configurations.

In prior work [17], we developed a formally verified optimizer for quantum programs
(voqc), implemented and proved correct in the Coq proof assistant [8]. voqc transforms
programs written in sqir, a small quantum intermediate representation. While we designed
sqir to be a compiler intermediate representation, we quickly realized that it was not so
different from languages used to write source quantum programs, and that the design choices
that eased proving optimizations correct could ease proving source programs correct, too.

To date, we have proved the correctness of implementations of a number of quantum
algorithms, including quantum teleportation, Greenberger–Horne–Zeilinger (GHZ) state
preparation [15], the Deutsch-Jozsa algorithm [10], Simon’s algorithm [32], the quantum
Fourier transform (QFT), quantum phase estimation (QPE), and Grover’s algorithm [16].
QPE is a key component of Shor’s prime-factoring algorithm [31], today’s best-known, most
impactful quantum algorithm, with Grover’s algorithm for unstructured search being the
second. Our implementations can be extracted to code that can be executed on quantum
hardware or simulated classically, depending on the problem size and hardware limitations.

While sqir was first introduced as part of voqc, this paper offers two new contributions.
First, it presents a detailed discussion of how sqir’s design supports proofs of correctness.
After presenting background on quantum computing (Section 2) and reviewing sqir (Sec-
tion 3), Section 4 discusses key elements of sqir’s design and compares and contrasts them
to design decisions made in the related tools Qwire [25], Qbricks [7], and the Isabelle
implementation of quantum Hoare logic [18]. sqir’s overall benefit over these tools is its
flexibility, supporting multiple semantics and approaches to proof. As a second contribution,
this paper presents the code, formal specification, and proof sketch of Grover’s algorithm,
QFT, and QPE, which are the most sophisticated algorithms that we have verified so far
(Section 5). We comment on the proofs of simpler algorithms in Appendix B of the extended
version of this paper. We believe there is ripe opportunity for further application of formal
methods to quantum computing and we hope this paper, and our work on sqir, paves the
way for new research; we sketch open problems in Section 6.

sqir is implemented in just over 3500 lines of Coq, with an additional 3700 lines of
example sqir programs and proofs; it is freely available on Github.1

2 Background

We begin with a light background on quantum computing; for a full treatment we recommend
the standard text on the subject [22].

2.1 Quantum States
A quantum state consists of one or more quantum bits. A quantum bit (or qubit) can be
expressed as a two dimensional vector ( α

β ) such that |α|2 + |β|2 = 1. The α and β are called
amplitudes. We frequently write this vector as α |0⟩ + β |1⟩ where |0⟩ = ( 1

0 ) and |1⟩ = ( 0
1 )

are basis states. When both α and β are non-zero, we can think of the qubit as being “both
0 and 1 at once,” a.k.a. a superposition. For example, 1√

2 (|0⟩ + |1⟩) is an equal superposition
of |0⟩ and |1⟩.

1 https://github.com/inQWIRE/SQIR

https://github.com/inQWIRE/SQIR
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(a) Quantum circuit

H 0;
CNOT 0 1;
CNOT 1 2

(b) sqir assembly

Fixpoint ghz (n : N) : ucom base n :=
match n with
| 0 ⇒ I 0
| 1 ⇒ H 0
| S n' ⇒ ghz n'; CNOT (n'-1) n'
end.

(c) sqir meta-program

box (x,y,z) ⇒
gate x ← H x;
gate (x,y) ← CNOT (x,y);
gate (y,z) ← CNOT (y,z);
output (x,y,z).

(d) Qwire

SEQ(SEQ(PAR(H, PAR(I, I)),
PAR(CNOT, I)),

PAR(I, CNOT))

(e) Qbricks-DSL

q1 := H q1;
q1,q2 := CNOT q1,q2;
q2,q3 := CNOT q2,q3

(f) QWhile

(I ⊗ CNOT ) × (CNOT ⊗ I) × (H ⊗ I ⊗ I)
(g) Matrix expression

Figure 1 Example quantum program: GHZ state preparation.

We can join multiple qubits together by means of the tensor product (⊗) from linear
algebra. For convenience, we write |i⟩ ⊗ |j⟩ as |ij⟩ for i, j ∈ {0, 1}; we may also write |k⟩
where k ∈ N is the decimal interpretation of bits ij. We use |ψ⟩ to refer to an arbitrary
quantum state. Sometimes a multi-qubit state cannot be expressed as the tensor of individual
qubits; such states are called entangled. One example is the state 1√

2 (|00⟩ + |11⟩), known as
a Bell pair.

2.2 Quantum Programs
Quantum programs are composed of a series of quantum operations, each of which acts on
a subset of qubits in the quantum state. In the standard presentation, quantum programs
are expressed as circuits, as shown in Figure 1(a). In these circuits, each horizontal wire
represents a qubit and boxes on these wires indicate quantum operations, or gates. The
circuit in Figure 1(a) uses three qubits and applies three gates: the Hadamard (H) gate and
two controlled-not (CNOT) gates. The semantics of a gate is a unitary matrix (a matrix that
preserves the unitarity invariant of quantum states); applying a gate to a state is tantamount
to multiplying the state vector by the gate’s matrix. The matrix corresponding to the circuit
in Figure 1(a) is shown in Figure 1(g), where I is the 2 × 2 identity matrix, CNOT is the
matrix corresponding to the CNOT gate, and H is the matrix corresponding to the H gate.

A special, non-unitary measurement operation is used to extract classical information
from a quantum state (often, when a computation completes). Measurement collapses the
state to one of the basis states with a probability related to the state’s amplitudes. For
example, measuring 1√

2 (|0⟩ + |1⟩) will collapse the state to |0⟩ with probability 1
2 and likewise

for |1⟩, returning classical values 0 or 1, respectively. The semantics of a program involving
measurement amounts to a probability distribution over quantum states; such a distribution
is called a mixed state. In our example above, measurement produces a mixed state that is a
uniform distribution over |0⟩ and |1⟩. By contrast, pure states like |0⟩ and 1√

2 (|0⟩ + |1⟩) can
be produced without measurement. Section 3.3 discusses non-unitary semantics further.

ITP 2021
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3 SQIR: A Small Quantum Intermediate Representation

sqir is a simple quantum language deeply embedded in the Coq proof assistant. This
section presents sqir’s syntax and semantics. We defer a detailed discussion of sqir’s design
rationale to the next section.

3.1 Unitary SQIR: Syntax

sqir’s unitary fragment is a sub-language of full sqir for expressing programs consisting of
unitary gates. (The full sqir language extends unitary sqir with measurement.) A program
in the unitary fragment has type ucom (for “unitary command”), which we define in Coq as
follows:

Inductive ucom (U: N → Set) (d : N) : Set :=
| useq : ucom U d → ucom U d → ucom U d
| uapp1 : U 1 → N → ucom U d
| uapp2 : U 2 → N → N → ucom U d

The useq constructor sequences two commands; we use notational shorthand p1 ; p2 for
useq p1 p2. The two uappn constructors indicate the application of a quantum gate to n

qubits, where n is 1 or 2. Qubits are identified as numbered indices into a global qubit register
of size d, which stores the quantum state. Gates are drawn from parameter U, which is
indexed by a gate’s size. For writing and verifying programs, we use the following base set
for U, inspired by IBM’s OpenQASM [9]:2

Inductive base : N → Set :=
| U_R (θ ϕ λ : R) : base 1
| U_CNOT : base 2.

That is, we have a one-qubit gate U_R (which we write UR when using math notation), which
takes three real-valued arguments, and the standard two-qubit controlled-not gate, U_CNOT
(written CNOT in math notation), which negates the second qubit wherever the first qubit
is |1⟩, making it the quantum equivalent of a xor gate. The U_R gate can be used to express
any single-qubit gate (see Section 3.2). Together, U_R and U_CNOT form a universal gate set,
meaning that they can be composed to describe any unitary operation [3].

Example: SWAP

The following Coq function produces a unitary sqir program that applies three controlled-not
gates in a row, with the effect of exchanging two qubits in the register. We define CNOT as
shorthand for uapp2 U_CNOT.

Definition SWAP d a b : ucom base d := CNOT a b; CNOT b a; CNOT a b.

2 It is helpful for proofs to keep U small because the number of cases in the proof about a value of type
ucom U d will depend on the number of gates in U. In our work on voqc [17], we define optimizations
over a larger gate set that includes common gates like Hadamard, but convert these gates to our base
set for proof.
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Example: GHZ

Figure 1(b) is the sqir representation of the circuit in Figure 1(a), which prepares the
three-qubit GHZ state [15]. We describe families of sqir circuits by meta-programming
in the Coq host language. The Coq function in Figure 1(c) produces a sqir program that
prepares the n-qubit GHZ state, producing the program in Figure 1(b) when given input 3.
In Figures 1(b–c), H and I apply the U_R encodings of the Hadamard and identity gates.

3.2 Unitary SQIR: Semantics
Each k-qubit quantum gate corresponds to a 2k × 2k unitary matrix. The matrices for our
base set are:

JUR(θ, ϕ, λ)K =
(

cos(θ/2) −eiλ sin(θ/2)
eiϕ sin(θ/2) ei(ϕ+λ) cos(θ/2)

)
, JCNOT K =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Conveniently, the UR gate can encode any single-qubit gate [22, Chapter 4]. For instance,
two commonly-used single-qubit gates are X (“not”) and H (“Hadamard”). The former
has the matrix ( 0 1

1 0 ) and serves to flip a qubit’s α and β amplitudes; it can be encoded as
UR(π, 0, π). The H gate has the matrix 1√

2

( 1 1
1 −1

)
, and is often used to put a qubit into

superposition (it takes |0⟩ to 1√
2 (|0⟩ + |1⟩)); it can be encoded as UR(π/2, 0, π). Multi-qubit

gates are easily produced by combinations of CNOT and UR; we show the definition of the
three-qubit “Toffoli” gate in Section 4.6. Keeping our gate set small simplifies the language
and enables easy case analysis – and does not complicate proofs. We rarely unfold the
definition of gates like X or the three-qubit Toffoli, instead providing automation to directly
translate these gates to their intended denotations. Hence, X is translated directly to ( 0 1

1 0 ).
Users can thereby easily extend sqir with new gates and denotations.

A unitary sqir program operating on a size-d register corresponds to a 2d × 2d unitary
matrix. Function uc_eval denotes the matrix corresponding to program c.

Fixpoint uc_eval {d} (c : ucom base d) : Matrix (2^d) (2^d) := ...

We write JcKd for uc_eval d c. The denotation of composition is simple matrix multiplication:
JU1; U2Kd = JU2Kd × JU1Kd. The denotation of uapp1 is the denotation of its argument gate,
but padded with the identity matrix so it has size 2d × 2d. To be precise, we have:

Juapp1 U qKd =
{
I2q ⊗ JUK ⊗ I2d−q−1 q < d

02d otherwise

where In is the n× n identity matrix. In the case of our base gate set, JUK is the UR matrix
shown above. The denotation of any gate applied to an out-of-bounds qubit is the zero
matrix, ensuring that a circuit corresponds to a zero matrix if and only if it is ill-formed.
We likewise prove that every well-formed circuit corresponds to a unitary matrix.

As our only two-qubit gate in the base set is U_CNOT, we specialize our semantics for
uapp2 to this gate. To compute JCNOT q1 q2Kd, we first decompose the CNOT matrix into
( 1 0

0 0 ) ⊗ I2 + ( 0 0
0 1 ) ⊗X. We then pad the expression appropriately, obtaining the following

when q1 < q2 < d:

I2q1 ⊗ ( 1 0
0 0 ) ⊗ I2q2−q1−1 ⊗ I2 ⊗ I2d−q2−1 + I2q1 ⊗ ( 0 0

0 1 ) ⊗ I2q2−q1−1 ⊗X ⊗ I2d−q2−1 .

ITP 2021
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When q2 < q1 < d, we obtain a symmetric expression, and when either qubit is out of bounds,
we get the zero matrix. Additionally, since the two inputs to CNOT cannot be the same, if
q1 = q2 we also obtain the zero matrix.

Example: Verifying SWAP

We can prove in Coq that SWAP 2 0 1, which swaps the first and second qubits in a two-qubit
register, behaves as expected on two unentangled qubits:

Lemma swap2: ∀ (ϕ ψ : Vector 2), WF_Matrix ϕ → WF_Matrix ψ →
JSWAP 2 0 1K2 × (ϕ ⊗ ψ) = ψ ⊗ ϕ.

WF_Matrix says that ϕ and ψ are well-formed vectors [29, Section 2]. This proof can be
completed by simple matrix multiplication. In the full development we prove the correctness
of SWAP d a b for arbitrary dimension d and qubits a and b.

3.3 Full SQIR: Adding Measurement
The full sqir language adds a branching measurement construct inspired by Selinger’s
QPL [30]. This construct permits measuring a qubit, taking one of two branches based on the
measurement outcome. Full sqir defines “commands” com as either a unitary sub-program,
a no-op skip, branching measurement, or a sequence of these.

Inductive com (U: N → Set) (d : N) : Set :=
| uc : ucom U d → com U d
| skip : com U d
| meas : N → com U d → com U d → com U d
| seq : com U d → com U d → com U d.

The command meas q P1 P2 measures qubit q and performs P1 if the outcome is 1 and P2
if it is 0. We define non-branching measurement and resetting to a zero state in terms of
branching measurement:

Definition measure q := meas q skip skip.
Definition reset q := meas q (X q) skip.

As before, we use our base set of unitary gates for full sqir.

Example: Flipping a Coin

It is simple to generate a random coin flip with a quantum computer: Use the Hadamard
gate to put a qubit into equal superposition 1√

2 (|0⟩ + |1⟩) and then measure it.

Definition coin : com base 1 := H 0; measure 0.

Density Matrix Semantics

As discussed in Section 2.2, measurement induces a probabilistic transition, so the semantics
of a program with measurement is a probability distribution over states, called a mixed state.
As is standard [25, 34], we represent such a state using a density matrix. The density matrix
of a pure state |ψ⟩ is |ψ⟩⟨ψ| where ⟨ψ| = |ψ⟩† is the conjugate transpose of |ψ⟩. The density
matrix of a mixed state is a sum over its constituent pure states. For example, the density
matrix corresponding to the uniform distribution over |0⟩ and |1⟩ is 1

2 |0⟩⟨0| + 1
2 |1⟩⟨1|.
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The semantics {|P|}d of a full sqir program P is a function from density matrices to density
matrices. Naturally, {|skip|}d ρ = ρ and {|P1 ; P2|}d = {|P2|}d ◦ {|P1|}d. For unitary subroutines,
we have {|uc U|}d ρ = JUKdρJUKd

†: Applying a unitary matrix to a state vector is equivalent to
applying it to both sides of its density matrix. Finally, using |i⟩q⟨j| for I2q ⊗ |i⟩⟨j| ⊗ I2d−q−1 ,
the semantics for {|meas q P1 P2|}d ρ is

{|P1|}d(|1⟩q⟨1| ρ |1⟩q⟨1|) + {|P2|}d(|0⟩q⟨0| ρ |0⟩q⟨0|)

which corresponds to probabilistically applying P1 to ρ with the specified qubit projected to
|1⟩⟨1| or applying P2 to a similarly altered ρ.

Example: A Provably Random Coin

We can now prove that our coin circuit above produces the |1⟩⟨1| or |0⟩⟨0| density matrix
(corresponding to the |1⟩ or |0⟩ pure state), each with probability 1

2 .

Lemma coin_dist : {|coin|}1 |0⟩⟨0| = 1
2 |0⟩⟨0| + 1

2 |0⟩⟨0|.

The proof proceeds by simple matrix arithmetic. {|H|} |0⟩⟨0| is H |0⟩⟨0|H† = 1
2 ( 1 1

1 1 ). Calling
this ρ12, applying measure yields |1⟩⟨1| ρ12 |1⟩⟨1| + |0⟩⟨0| ρ12 |0⟩⟨0|, which can be further
simplified using the fact ⟨1| ρ12 |1⟩ = ⟨0| ρ12 |0⟩ = ( 1

2 ), yielding 1
2 |1⟩⟨1| + 1

2 |0⟩⟨0| as desired.
Measurement plays a key role in many quantum algorithms; we discuss further examples

and an alternative semantics in Appendix A of the extended version of this paper.

4 SQIR’s Design

This section describes key elements in the design of sqir and its infrastructure for verifying
quantum programs. To place those decisions in context, we first introduce several related
verification frameworks and contrast sqir’s design with theirs. In summary, sqir benefits
from the use of concrete indices into a global register (a common feature in the tools we
looked at), support for reasoning about unitary programs in isolation (supported by one
other tool), and the flexibility to allow different semantics and approaches to proof (best
supported in sqir).

4.1 Related Approaches
Several prior works have had the goal of formally verifying quantum programs. In 2010,
Green [14] developed an Agda implementation of the Quantum IO Monad, and in 2015
Boender et al. [5] produced a small Coq quantum library for reasoning about quantum
“programs” directly via their matrix semantics (e.g. see Figure 1(g)). These were both
proofs of concept, and were only capable of verifying basic protocols. More recently, Bordg
et al. [6] took a step further in verifying quantum programs expressed as matrix products
(Figure 1(g)), providing a library for reasoning about quantum computation in Isabelle/HOL
and verifying more interesting protocols like the n-qubit Deutsch-Jozsa algorithm (shown in
sqir in Appendix B of the extended version of this paper).

In this section, we compare sqir’s design against three other tools for verified quantum
programming that have been used to verify interesting, parameterized quantum programs:
Qwire [27] (implemented in Coq [8]); quantum Hoare logic [19] (in Isabelle/HOL [23]); and
Qbricks [7] (in Why3 [11]). We do not include Bordg et al. [6], despite its recency, because
it operates one level below the surface programming language, so many issues considered
here do not apply. Bordg et al.’s library is similar to the quantum libraries developed for
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Qwire and the quantum Hoare logic. All matrix formalisms provided by Bordg et al. are
also available in Qwire’s library, which we re-use and extend (by ∼ 3000 lines [17, Section
2.2]) in sqir.

QWIRE

The Qwire language [25, 27] originated as an embedded circuit description language in the
style of Quipper [13] but with a more powerful type system. Figure 1(d) shows the Qwire
equivalent of the sqir program in Figure 1(b). Qwire uses variables from the host language
Coq to reference qubits, an instantiation of higher-order abstract syntax [26]. In Figure 1,
the Qwire program uses variables x, y, and z, while the sqir program uses indices 0, 1,
and 2 to refer to the first, second, and third qubits in the global register. Qwire does not
distinguish between unitary and non-unitary programs, and thus uses density matrices for
its semantics. Qwire has been used to verify simple randomness generation circuits and a
few textbook examples [28].

QBRICKS

Qbricks [7] is a quantum proof framework implemented in Why3 [11], developed concurrently
with sqir. Qbricks provides a domain-specific language (DSL) for constructing quantum
circuits using combinators for parallel and sequential composition (among others). Figure 1(e)
presents the GHZ example written in Qbricks’ DSL. The semantics of Qbricks are based
on the path-sums formalism by Amy [1, 2], which can express the semantics of unitary
programs in a form amenable to proof automation. Qbricks extends path-sums to support
parameterized circuits. Qbricks has been used to verify a variety of quantum algorithms,
including Grover’s algorithm and Quantum Phase Estimation (QPE).

Quantum Hoare Logic

Quantum Hoare logic (QHL) [34] has been formalized in the Isabelle/HOL proof assistant [18].
QHL is built on top of the quantum while language (QWhile), which is the quantum analog
of the classical while language, allowing looping and branching on measurement results.
Figure 1(f) presents the GHZ example written in QHL. QWhile does not use a fixed gate
set; gates are instead described directly by their unitary matrices. As such, the program
in Figure 1(f) could instead be written as the application of a single gate that prepares
the 3-qubit GHZ state. Given that measurement is a core part of the language, QWhile’s
semantics are given in terms of (partial) density matrices. A density matrix is partial when
it may represent a sub-distribution – that is, a subset of the outcomes of measurement.

QHL has been used to verify Grover’s algorithm [18]. An earlier effort by Liu et al. [20]
to formalize QHL claimed to prove correctness of QPE, too. However, the approach used a
combination of Isabelle/HOL and Python, calling out to Numpy to solve matrix (in)equalities;
as such, we consider this only a partial verification effort. We cannot find a proof of QPE in
the associated Github repository3 and believe that this approach was abandoned in favor of
Liu et al. [18].

3 https://github.com/ijcar2016/propitious-barnacle

https://github.com/ijcar2016/propitious-barnacle
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4.2 Concrete Indices into a Global Register
The first key element of sqir’s design is its use of concrete indices into a fixed-sized global
register to refer to qubits. For example, in our SWAP program (end of Section 3.1), a and
b are natural numbers indexing into a global register of size d. Expressing the semantics
of a program that uses concrete indices is simple because concrete indices map directly to
the appropriate rows and columns in the denoted matrix. Moreover, it is easy to check
relationships between operations – X a and X b act on the same qubit if and only if a = b.
Keeping the register size fixed means that the denoted matrix’s size is known, too.

On the other hand, concrete indices hamper programmability. The ghz example in
Figure 1(c) only produces circuits that occupy global qubits 0...n; we could imagine further
generalizing it to add a lower bound m (so the circuit uses qubits m ... n), but it is not clear
how it could be generalized to use non-contiguous wires. A natural solution, employed by
Qwire, is to use host-level variables to refer to abstract qubits that can be freely introduced
and discarded, simplifying circuit construction and sub-program composition. Unfortunately,
abstract qubits significantly complicate formal verification. To translate circuits to operations
on density matrices, variables must be mapped to concrete matrix indices. Each time a qubit
is discarded, indices undergo a de Bruijn-style shifting.

Similar to sqir’s use of concrete indices, Qbricks-DSL’s compositional structure makes
it easy to map programs to their denotation: The “index” of a gate application can be
computed by its nested position in the program. However, this syntax is even less convenient
than sqir’s for programming: Although Qbricks provides a utility function for defining CNOT
gates between non-adjacent qubits, their underlying syntax does not support this, meaning
that expressions like CNOT 7 2 are translated into large sequences of CNOT gates. QHL is
presented as having variables (e.g. q1 in Figure 1(f)), but these variables are fixed before a
program is executed and persist throughout the program. In the Isabelle formalization, they
are represented by natural numbers, making them comparable to sqir concrete indices.

4.3 Extensible Language around a Unitary Core
Another key aspect of sqir’s design is its decomposition into a unitary sub-language and the
non-unitary full language. While the full language (with measurement) is more powerful, its
density matrix-based semantics adds unneeded complication to the proof of unitary programs.
For example, given the program U1;U2;U3, its unitary semantics is a matrix U3 × U2 × U1
while its density matrix semantics is a function ρ 7→ U3 × U2 × U1 × ρ× U †

1 × U†
2 × U†

3 . The
latter is a larger term, with a type that is harder to work with. This added complexity,
borne by Qwire and QHL, lacks a compelling justification given that many algorithms can
be viewed as unitary programs with measurement occurring implicitly at their conclusion
(see Section 4.7).

On the other hand, Qbricks’ semantics is based on (higher-order) path-sums, which
cannot describe mixed states, and thus cannot give a semantics to measurement. sqir’s
design allows for a “best of both worlds,” utilizing a unitary semantics when possible, but
supporting non-unitary semantics when needed. Furthermore, as we show in Section 4.6,
abstractions like path-sums can be easily defined on top of sqir’s unitary semantics.

4.4 Semantics of Ill-typed Programs
We say that a sqir program is well-typed if every gate is applied to indices within range
of the global register and indices used in each multi-qubit gate are distinct. This second
condition enforces quantum mechanics’ no-cloning theorem, which disallows copying an
arbitrary quantum state, as would be required to evaluate an expression like CNOT q q. For
example, SWAP d a b is well-typed if a < d, b < d, and a ̸= b.
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Qwire addresses this issue through its linear type system, which also guarantees that
qubits are never reused. However, well-typedness is a (non-trivial) extrinsic proposition
in Qwire, meaning that many proofs require an assumption that the input program is
well-typed and must manipulate this typing judgment within the proof. Qbricks avoids
the issue of well-typedness through its language design: It is not possible to construct an
ill-typed circuit using sequential and parallel composition. The Isabelle implementation of
QHL uses a well-typedness predicate to enforce some program restrictions (e.g. the gate in
a unitary application is indeed a unitary matrix), but the issue of gate argument validity
is enforced by Isabelle’s type system: Gate arguments are represented as a set (disallowing
duplicates) where all elements are valid variables.

In sqir, ill-typed programs are denoted by the zero matrix. This often means that we do
not need to explicitly assume or prove that a program is well-typed in order to state a property
about its semantics, thereby removing clutter from theorems and proofs. For example, we can
prove symmetry of SWAP, i.e. SWAP d a b ≡ SWAP d b a, without any well-typedness constraint
because either both sides of the equation are well-typed or both are ill-typed. However, we
cannot always avoid well-typedness preconditions. Say we want to prove transitivity of SWAP,
i.e. SWAP d a c ≡ SWAP d a b ; SWAP d b c. In this case the left-hand side may be well-typed
while the right-hand side is ill-typed. To verify this equivalence, we (minimally) need the
precondition b < d ∧ b ̸= a ∧ b ̸= c. We capture these in our uc_well_typed predicate, which
resembles the WF_Matrix predicate (used in the SWAP example in Section 3.2) that guarantees
that a matrix’s non-zero entries are all within its bounds [17, Section 3.3]. Both conditions
are easily checked via automation.

4.5 Automation for Matrix Expressions
The sqir development provides a variety of automation techniques for dealing with matrix
expressions. Most of this automation is focused on simplifying matrix terms to be easier to
work with. The best example of this is our gridify tactic [17, Section 4.5], which rewrites
terms into grid normal form where matrix addition is on the outside, followed by tensor
product, with matrix multiplication on the inside, i.e., ((..× ..) ⊗ (..× ..)) + ((..× ..) ⊗ (..× ..)).
Most of the circuit equivalences available in sqir (e.g. ∀ a, b, c. CNOT a c ; CNOT b c ≡ CNOT
b c ; CNOT a c) are proved using gridify. This style of automation is available in other

verification tools too; gridify is similar to Liu et al.’s Isabelle tactic for matrix normalization
[18, Section 5.1]. Qbricks avoids the issue by using path-sums; they provide a matrix
semantics for comparison’s sake, but do not discuss automation for it.

Some of our automation is aimed at alleviating difficulties caused by our use of phantom
types [29] to store the dimensions of a matrix, the rationale of which is explained in our prior
work [17, Section 3.3]. In our development, matrices have the type Matrix m n, where m is the
number of rows and n is the number of columns. One challenge with this definition is that
the dimensions stored in the type may be “out of sync” with the structure of the expression
itself. For example, due to simplification, rewriting, or declaration, the expression |0⟩ ⊗ |0⟩
may be annotated with the type Vector 4, although rewrite rules expect it to be of the form
Vector (2 ∗ 2). We provide a tactic restore_dims that analyzes the structure of a term and
rewrites its type to the desired form, allowing for more effective automated simplification.

4.6 Vector State Abstractions
To verify that the SWAP program has the intended semantics, we can unfold its definition
(CNOT a b; CNOT b a; CNOT a b) and compute the associated matrix expression. However, while
this proof is made simpler by automation like gridify, it is still fairly complicated considering
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that SWAP has a simple classical (non-quantum) purpose. In fact, this operation is much
more naturally analyzed using its action on basis states. A (computational) basis state is
any state of the form |i1 . . . id⟩ for i1, . . . , id ∈ {0, 1} (so |00⟩ and |11⟩ are basis states, while

1√
2 (|00⟩ + |11⟩) is not). The set of all d-qubit basis states form a basis for the underlying

d-dimensional vector space, meaning that any 2d × 2d unitary operation can be uniquely
described by its action on those basis states.

Using basis states, the reasoning for our SWAP example proceeds as follows, where we use
|. . . x . . . y . . .⟩ as informal notation to describe the state where the qubit at index a is in
state x and the qubit at index b is in state y.
1. Begin with the state |. . . x . . . y . . .⟩.
2. CNOT a b produces |. . . x . . . (x⊕ y) . . .⟩.
3. CNOT b a produces |. . . (x⊕ (x⊕ y)) . . . (x⊕ y) . . .⟩ = |. . . y . . . (x⊕ y) . . .⟩.
4. CNOT a b produces |. . . y . . . (y ⊕ (x⊕ y)) . . .⟩ = |. . . y . . . x . . .⟩.
In our development, we describe basis states using f_to_vec d f where d : N and f : N → B.
This describes a d-qubit quantum state where qubit i is in the basis state f(i), and false
corresponds to 0 and true to 1. We also sometimes describe basis states using basis_vector
d i where i < 2d is the index of the only 1 in the vector. We provide methods to translate
between the two representations (simply converting between binary and decimal encodings).
For the remainder of the paper, we will write |f⟩ for f_to_vec n f and |i⟩ for basis_vector n i,
omitting the n parameter when it is clear from the context.

We prove a variety of facts about the actions of gates on basis states. For example, the
following succinctly describe the behavior of the CNOT and Rz(θ) gates, where Rz(θ) =
UR(0, 0, θ):

Lemma f_to_vec_CNOT : ∀ (d i j : N) (f : N → B),
i < d → j < d → i ̸= j →
let f' := update f j (f j ⊕ f i) in
JCNOT i jKd × |f⟩ = |f'⟩.

Lemma f_to_vec_Rz: ∀ (d j : N) (θ : R) (f : N → B),
j < d →
JRz θ jKd × |f⟩ = eiθ(f j) * |f⟩.

Above, update f i v updates the value of f at index i to be v (i.e. for the resulting
function f ′, f ′(i) = v and f ′(j) = f(j) for all j ̸= i). So CNOT i j has the effect of updating
the jth entry of the input state to the exclusive-or of its ith and jth entries. Rz θ j updates
the phase associated with the input state.

There are several advantages to applying these rewrite rules instead of unfolding the
definitions of JCNOT i jKd and JRz θ jKd. For example, these rewrite rules assume well-typedness
and do not depend on the ordering of qubit arguments, avoiding the case analysis needed in
gridify [17, Section 4.5]. In addition, the rule for CNOT above is simpler to work with than
the general unitary semantics (CNOT 7→ _ ⊗ ( 1 0

0 0 ) ⊗ _ ⊗ I2 ⊗ _ + _ ⊗ ( 0 0
0 1 ) ⊗ _ ⊗σx ⊗ _).

As a concrete example of where vector-based reasoning was critical, consider the three-
qubit Toffoli gate, which implements a controlled-controlled-not, and can be thought of as the
quantum equivalent of an and gate. It is frequently used in algorithms, but (like all n-qubit
gates with n > 2) rarely supported in hardware, meaning that it must be decomposed into
more basic gates before execution. In practice, we found gridify too inefficient to verify the
standard decomposition of the gate [22, Chapter 4], shown below.

Definition TOFF {d} a b c : ucom base d :=
H c ; CNOT b c ; T† c ; CNOT a c ; T c ; CNOT b c ; T† c ;
CNOT a c ; CNOT a b ; T† b ; CNOT a b ; T a ; T b ; T c ; H c.
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However, like SWAP, the semantics of the Toffoli gate is naturally expressed through its action
on basis states:
Lemma f_to_vec_TOFF : ∀ (d a b c : N) (f : N → B),

a < d → b < d → c < d →
a ̸= b → a ̸= c → b ̸= c →
let f' := update f c (f c ⊕ (f a && f b)) in
JTOFF a b cKd × |f⟩ = |f'⟩.

The proof of f_to_vec_TOFF is almost entirely automated using a tactic that rewrites using the
f_to_vec lemmas shown above, since T and T† are Rz (PI / 4) and Rz (−PI / 4), respectively.

The f_to_vec abstraction is simple and easy to use, but not universally applicable: Not
all quantum algorithms produce basis states, or even sums over a small number of basis
states, and reasoning about 2d terms of the form |i1 . . . id⟩ is no easier than reasoning directly
about matrices. To support more general types of quantum states we define indexed sums
and tensor (Kronecker) products of vectors.
Fixpoint vsum {d} n (f: N → Vector d) : Vector d := ...
Fixpoint vkron n (f: N → Vector 2) : Vector 2n := ...

As an example of a state that uses these constructs, the action of n parallel Hadamard gates
on the state |f⟩ can be written as

vkron n (fun i ⇒ 1√
2 (|0⟩ + (−1)f(i) |1⟩)) or 1√

2n ∗ (vsum 2n (fun i ⇒ (−1)to_int(f)•i ∗ |i⟩)),

both commonly-used facts in quantum algorithms. For the remainder of the paper, we will
write

∑n−1
i=0 f(i) for vsum n (fun i ⇒ f i) and

⊗n−1
i=0 f(i) for vkron n (fun i ⇒ f i).

Relation with Path-sums

Our vsum and vkron definitions share similarities with the path-sums [1, 2] semantics used by
Qbricks [7]. In the path-sums formalism, every unitary transformation is represented as a
function of the form

|x⟩ → 1√
2m

2m−1∑
y=0

e2πiP (x,y)/2m

|f(x, y)⟩

where m ∈ N, P is an arithmetic function over x and y, and f is of the form |f1(x, y)⟩ ⊗ · · · ⊗
|fm(x, y)⟩ where each fi is a Boolean function over x and y. For instance, the Hadamard gate
H has the form |x⟩ → 1√

2

∑1
y=0 e

2πixy/2 |y⟩. Path-sums provide a compact way to describe
the behavior of unitary matrices and are closed under matrix and tensor products, making
them well-suited for automation. They can be naturally described in terms of our vkron and
vsum vector-state abstractions:
Definition path_sum (m : N) P f x :=

vsum 2m (fun y ⇒ e2πiP (x,y)/2m

* (vkron m (fun i ⇒ f i x y))).

As above, P is an arithmetic function over x and y and f i is a Boolean function over x and y
for any i.

4.7 Measurement Predicates
The proofs in Section 5 do not use the non-unitary semantics directly, but instead describe
the probability of different measurement outcomes using predicates probability_of_outcome
and prob_partial_meas.
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(* Probability of measuring φ given input ψ. *)
Definition probability_of_outcome {n} (φ ψ : Vector n) : R :=

let c := (φ† × ψ) 0 0 in |c|2.

(* Probability of measuring φ on the first n qubits given (n+m) qubit input ψ. *)
Definition prob_partial_meas {n m} (φ : Vector 2n) (ψ : Vector 2n+m) :=
∥ (φ† ⊗ I2m ) × ψ ∥2.

Above, ∥v∥ is the 2-norm of vector v and |c| is the complex norm of c. In formal terms, the
“probability of measuring φ” is the probability of outcome φ when measuring a state in the
basis {φ× φ†, I2n − φ× φ†}.

The principle of deferred measurement [22, Chapter 4] says that measurement can always
be deferred until the end of a quantum computation without changing the result. However,
we included measurement in Section 3.3 because it is an important feature of quantum
programming languages that is used in a variety of constructs like repeat-until-success
loops [24] and error-correcting codes [12]. Qbricks also uses measurement predicates, but
unlike sqir does not support a general measurement construct.

5 Proofs of Quantum Algorithms

In this section we discuss the formal verification of two classic quantum algorithms: Grover’s
algorithm [22, Chapter 6] and quantum phase estimation [22, Chapter 5]. We present
additional, simpler examples in Appendices A and B of the extended version of this paper.
All proofs and specifications follow the corresponding textbook arguments.

5.1 Grover’s Algorithm
Overview

Given a circuit implementing Boolean oracle f : {0, 1}n → {0, 1}, the goal of Grover’s
algorithm is to find an input x satisfying f(x) = 1. Suppose that n ≥ 2. In the classical
(worst-)case where f(x) = 1 has a unique solution, finding this solution requires O(2n) queries
to the oracle. However, the quantum algorithm finds the solution with high probability using
only O(

√
2n) queries.

The algorithm alternates between applying the oracle and a “diffusion operator.” Indi-
vidually, these operations each perform a reflection in the two-dimensional space spanned by
the input vector (a uniform superposition) and a uniform superposition over the solutions to
f . Together, they perform a rotation in the same space. By choosing an appropriate number
of iterations i, the algorithm will rotate the input state to be suitably close to the solution
vector. The sqir definition of Grover’s algorithm is shown in Figure 2.

The sqir version of Grover’s algorithm is 15 lines, excluding utility definitions like control
and npar. The specification and proof are around 770 lines. The proof took approximately
one person-week.

Proof Details

The statement of correctness says that after i iterations, the probability of measuring a
solution is sin2((2i+1)θ) where θ = arcsin(

√
k/2n) and k is the number of satisfying solutions

to f . Note that this implies that the optimal number of iterations is π
4

√
2n

k .
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(* Controlled-X with target (n-1) and controls 0, 1, ..., n-2. *)
Fixpoint generalized_Toffoli' n0 : ucom base n :=

match n0 with
| O | S O ⇒ X (n - 1)
| S n0' ⇒ control (n - n0) (generalized_Toffoli' n0')
end.

Definition generalized_Toffoli := generalized_Toffoli' n.

(* Diffusion operator. *)
Definition diff : ucom base n :=

npar n H; npar n X ;
H (n - 1) ; generalized_Toffoli ; H (n - 1) ;
npar n X; npar n H.

(* Main program (iterates applying Uf and diff). *)
Definition body := Uf ; cast diff (S n).
Definition grover i := X n ; npar (S n) H ; niter i body.

Figure 2 Grover’s algorithm in sqir. control performs a unitary program conditioned on an
input qubit, npar performs copies of a unitary program in parallel, cast is a no-op that changes the
dimension in a ucom’s type, and niter iterates a unitary program.

We begin the proof by showing that the uniform superposition can be rewritten as a sum
of “good” states (ψg) that satisfy f and “bad” states (ψb) that do not satisfy f .

Definition ψ := 1√
2n

∑2n−1
k=0 |k⟩.

Definition θ := asin (
√
k/2n).

Lemma decompose_ψ : ψ = (sin θ) ψg + (cos θ) ψb.

We then prove that Uf and diff perform the expected reflections (e.g. JdiffKn = −2 |ψ⟩ ⟨ψ| +
I2n) and the following key lemma, which shows the output state after i iterations of body.

Lemma loop_body_action_on_unif_superpos : ∀ i,
JbodyKi

n+1 (ψ ⊗ |-⟩) =
(-1)i (sin ((2 * i + 1) * θ) ψg + cos ((2 * i + 1) * θ) ψb) ⊗ |-⟩.

This property is straightforward to prove by induction on i, and implies the desired result,
which specifies the probability of measuring any solution to f .

Lemma grover_correct : ∀ i,
Rsum 2n (fun z ⇒ if f z

then prob_partial_meas |z⟩ (Jgrover iKn+1 × |0⟩n+1)
else 0) =

(sin ((2 * i + 1) * θ))2.

That is, the sum over the probability of all possible outcomes z such that f(z) is true is
sin2((2i+ 1)θ). Above, Rsum is a sum over real numbers.

5.2 Quantum Phase Estimation
Overview

Given a unitary matrix U and eigenvector |ψ⟩ such that U |ψ⟩ = e2πiθ |ψ⟩, the goal of
quantum phase estimation (QPE) is to find a k-bit representation of θ. In the case where
θ can be exactly represented using k bits (i.e. θ = z/2k for some z ∈ Z), QPE recovers θ
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exactly. Otherwise, the algorithm finds a good k-bit approximation with high probability.
QPE is often used as a subroutine in quantum algorithms, most famously Shor’s factoring
algorithm [31].

The sqir program for QPE is shown in Figure 3. For comparison, the standard circuit
diagrams for QPE and the quantum Fourier transform (QFT), which is used as a subroutine
in QPE, are shown in Figure 4. The sqir version of QPE is around 40 lines and the
specification and proof in the simple case (θ = z/2k) is around 800 lines. The fully general
case (θ ̸= z/2k) adds about 250 lines. The proof of the simple case was completed in about
two person-weeks. When working out the proof of the general case, we found that we needed
some non-trivial bounds on trigonometric functions (for x ∈ R, |sin(x)| ≤ |x| and if |x| ≤ 1

2
then |2 ∗ x| ≤ |sin(πx)|). Laurent Théry kindly provided proofs of these facts using the Coq
Interval package [21].

Proof Details

The correctness property for QPE in the case where θ can be described exactly using k bits
(θ = z/2k) says that the QPE program will exactly recover z. It can be stated in sqir’s
development as follows.
Lemma QPE_correct_simplified: ∀ k n (u : ucom base n) z (ψ : Vector 2n),

n > 0 → k > 1 → uc_well_typed u → WF_Matrix ψ →
let θ := z / 2k in
JuKn × ψ = e2πiθ * ψ →
JQPE k n uKk+n × (|0⟩k ⊗ ψ) = |z⟩ ⊗ ψ.

The first four conditions ensure well-formedness of the inputs. The fifth condition enforces
that input ψ is an eigenvector of c. The conclusion says that running the QPE program
computes the value z, as desired.

In the general case where θ cannot be exactly described using k bits, we instead prove
that QPE recovers the best k-bit approximation with high probability (in particular, with
probability ≥ 4/π2).
Lemma QPE_semantics_full : ∀ k n (u : ucom base n) z (ψ : Vector 2n) (δ : R),

n > 0 → k > 1 → uc_well_typed u → Pure_State_Vector ψ →
-1 / 2k+1 ≤ δ < 1 / 2k+1 → δ ̸= 0 →
let θ := z / 2k + δ in
JuKn × ψ = e2πiθ * ψ →
prob_partial_meas |z⟩ (JQPE k n uKk+n × (|0⟩k ⊗ ψ)) ≥ 4 / π2.

Pure_State_Vector is a restricted form of WF_Matrix that requires a vector to have norm 1.
As an example of the reasoning that goes into proving these properties, consider the QFT

subroutine of QPE. The correctness property for controlled_rotations says that evaluating
the program on input |x⟩ will produce the state e2πi(x0 · x1x2...xn−1)/2n |x⟩ where x0 is the
highest-order bit of x represented as a binary string and x1x2...xn−1 are the lower-order
n− 1 bits.
Lemma controlled_rotations_correct : ∀ n x,

n > 1 → Jcontrolled_rotations nKn × |x⟩ = e2πi(x0 · x1x2...xn−1)/2n

|x⟩.

We can prove this property via induction on n. In the base case (n = 2) we have that x is a
2-bit string x0x1. In this case, the output of the program is e2πi(x0·x1)/22 |x0x1⟩, as desired.
In the inductive step, we assume that:

Jcontrolled_rotations nKn × |x1x2...xn−1⟩ = e2πi(x0 · x1x2...xn−1)/2n

|x1x2...xn−1⟩.

ITP 2021
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(* Controlled rotation cascade on n qubits. *)
Fixpoint controlled_rotations n : ucom base n :=

match n with
| 0 | 1 ⇒ SKIP
| S n' ⇒ controlled_rotations n' ; control n' (Rz (2π / 2n) 0)
end.

(* Quantum Fourier transform on n qubits. *)
Fixpoint QFT n : ucom base n :=

match n with
| 0 ⇒ SKIP
| S n' ⇒ H 0 ; controlled_rotations n ; map_qubits (fun q ⇒ q + 1) (QFT n')
end.

(* The output of QFT needs to be reversed before further processing. *)
Definition reverse_qubits n := ...
Definition QFT_w_reverse n := QFT n ; reverse_qubits n.

(* Controlled powers of u. *)
Fixpoint controlled_powers' {n} (u : ucom base n) k kmax : ucom base (kmax+n) :=

match k with
| 0 ⇒ SKIP
| S k' ⇒ controlled_powers' u k' kmax ; niter 2k′

(control (kmax - k' - 1) u)
end.

Definition controlled_powers {n} (u : ucom base n) k := controlled_powers' u k k.

(* QPE circuit for program u.
k = number of bits in resulting estimate
n = number of qubits in input state *)

Definition QPE k n (u : ucom base n) : ucom base (k + n) :=
npar k H ;
controlled_powers (map_qubits (fun q ⇒ k + q) u) k;
invert (QFT_w_reverse k).

Figure 3 sqir definition of QPE. Some type annotations and calls to cast have been removed
for clarity. control, map_qubits, niter, npar, and invert are Coq functions that transform sqir
programs; we have proved that they have the expected behavior (e.g. ∀ u. Jinvert uKn = JuK†

n).

QPEk,n =

|0⟩ H . . . •

QFT−1
k

...
...|0⟩ H • . . .

|0⟩ H • . . .

|ψ⟩ /n
U20

U21 . . . U2k−1

QFTk =

H R2 . . . Rk−1 Rk

• . . . H . . . Rk−2 Rk−1... • • . . . H R2

• • . . . • H

Figure 4 Circuit for quantum phase estimation (QPE) with k bits of precision and an n-qubit
input state (top) and quantum Fourier transform (QFT) on k qubits (bottom). |ψ⟩ and U are inputs
to QPE. Rm is a z-axis rotation by 2π/2m.



K. Hietala, R. Rand, S.-H. Hung, L. Li, and M. Hicks 21:17

Jcontrolled_rotations (n+1)Kn+1 × |x⟩
= Jcontrol xn (Rz (2π/2n+1) 0Kn+1 × Jcontrolled_rotations nKn+1 × |x⟩
= Jcontrol xn (Rz (2π/2n+1) 0Kn+1 × e2πi(x0 · x1x2...xn−1)/2n

|x1x2...xn−1xn⟩

= e2πi(x0 · xn)/2n+1
e2πi(x0 · x1x2...xn−1)/2n

|x1x2...xn−1xn⟩

= e2πi(x0 · x1x2...xn)/2n+1
|x1x2...xn−1xn⟩

Figure 5 Reasoning used in the proof of controlled_rotations. The first step unfolds the
definition of controlled_rotations; the second step applies the inductive hypothesis; the third
step evaluates the semantics of control; and the fourth step combines the exponential terms.

We then perform the simplifications shown in Figure 5, which complete the proof.
Our correctness property for QFT n (shown below) can similarly be proved by induction

on n, and relies on the lemma controlled_rotations_correct.

Lemma QFT_semantics : ∀ n x, n>0 → JQFT nKn × |x⟩ = 1√
2n

⊗n−1
j=0 (|0⟩+ e2πix/2n−j

|1⟩).

6 Open Problems and Future Work

We previously presented sqir as the intermediate representation in a verified circuit optim-
izer [17]. In this paper, we presented sqir as a source language for quantum programming
and discussed how our design choices (e.g. concrete indices, unitary core, vector state
abstractions) ease proofs about sqir programs. But there is still work to be done.

So far, work on formally verified quantum computation has been limited to textbook
quantum algorithms like QPE and Grover’s. Although these algorithms are a useful stress-test
for tools, they do not accurately reflect the types of quantum programs that are expected to
run on near-term machines. Near-term algorithms are usually approximate. They do not
implement the desired operation exactly, but rather perform an operation “close” to what
was intended. Our probability_of_outcome and prob_partial_meas predicates can be used
to express distance between vector states, but we currently do not have support for reasoning
about distance between general quantum operations.

Another issue is that near-term algorithms often need to account for hardware errors.
Thus, verifying these algorithms may require considering their behavior in the presence of
errors. So far, most of our work in sqir has revolved around the unitary semantics and
vector-based state abstractions because we find these simpler to work with. However, it is
more natural to describe states subject to error using density matrices, since noisy states are
mixtures of pure states [22, Chapter 8].

On another front, there is important work to be done on describing quantum algorithms
and correctness properties at a higher level of abstraction. The proofs and definitions in this
paper follow the standard textbook presentation, but are still lower-level than similar proofs
about classical programs. Rather than working from the circuit model, used in Qwire, sqir,
Qbricks, and (to some extent) QWhile, it would be interesting to verify programs written
in higher-level languages like Silq [4] or Q# [33].

We hope that sqir’s extensible design and flexible semantics, developed while verifying
circuit optimizations and textbook quantum programs, will serve as a solid foundation for
the proposed verification efforts above and those to come.
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Abstract
Combinatorics on Words is a rather young domain encompassing the study of words and formal
languages. An archetypal example of a task in Combinatorics on Words is to solve the equation
x · y = y · x, i.e., to describe words that commute.

This contribution contains formalization of three important classical results in Isabelle/HOL.
Namely i) the Periodicity Lemma (a.k.a. the theorem of Fine and Wilf), including a construction of
a word proving its optimality; ii) the solution of the equation xa · yb = zc with 2 ≤ a, b, c, known
as the Lyndon-Schützenberger Equation; and iii) the Graph Lemma, which yields a generic upper
bound on the rank of a solution of a system of equations.

The formalization of those results is based on an evolving toolkit of several hundred auxiliary
results which provide for smooth reasoning within more complex tasks.
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1 Introduction

Combinatorics on Words usually dates its beginning (cf. Berstel and Perrin [5]) back to
the works of Axel Thue on repetitions in infinite words published more than hundred years
ago [34, 35]. Nevertheless, the first (collective) monograph on the subject was published
only in 1983 [26]. In this paper, we are interested in the part of the field dealing with finite
(rather than infinite) words, which in particular includes solving word equations (without
constants). Solving general word equations is a difficult algorithmic task. Once believed
to be undecidable, the first algorithm was described by Makanin in 1977 [28] (see [7] for a
self-contained exposition by Diekert). Currently, the approach of recompression introduced
by Jeż [22] is the most efficient one, with nondeterministic linear space complexity (see Jeż
[23]). While the problem is NP hard, it remains a challenging open question whether it is
NP complete.

We believe that combinatorics of (finite) words is an area where computer assisted
formalization may be very helpful. Proofs of even fairly simple results tend to be tedious
and repetitive, featuring complicated analysis of cases, which makes them hard (both for
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referees and readers) to verify. Moreover, despite the short history of the field, basic auxiliary
results are sometimes forgotten and rediscovered, or simply repeatedly proven in many
papers. Some easily stated problems, like the solution of equations in three unknowns by
Nowotka and Saarela [29, 30], or the characterization of binary equality languages by the
first author [19], are nontrivial classification tasks, for which computer formalization can
be decisive. Prominent examples are classification of finite groups formalized by Gonthier
et al. in Coq [9], four-colour problem formalized by Gontihier also in Coq [11] or Kepler’s
conjecture formalized by Hales et al. in HOL Light and Isabelle [12]. Our long term ambition
is to create a library of formalized results with three objectives: 1) verified basic facts (the
“folklore”) that can become a standard starting point for further formalization; 2) verified
classical results, making sure that occasional gaps in the published proofs are not fatal, and
sometimes providing polished, more straightforward proofs; 3) allowing to push boundaries
of the current research in areas where a sheer complexity of the topic may be the most
important barrier for further advances. Automation of repeated steps can make a crucial
difference here. (In particular, we have in mind the above mentioned classification tasks.)

In this paper, we present advances in the first two of those objectives. Namely, we
formalize three important classical results, which together reveal the main features of the
general project of formalization of word equations. We want our formalization to reflect as
clearly as possible the main ideas that would be given in (a good) paper proof. This requires
an auxiliary background theory that collects humanly trivial facts about words that are
nevertheless not covered by the main Isabelle/HOL library. Our auxiliary theory contains
several hundred claims which we deem of fundamental nature in order to formalize some
advanced results in Combinatorics on Words (see more in Section 2.4.1).

The first classical result presented in this paper is the Periodicity Lemma, also known as
the theorem of Fine and Wilf [10], which regulates the possibility of a word having more
than one period. It states that if a word of length at least p + q − gcd(p, q) has periods p

and q, then it has also a period gcd(p, q). We present here a particularly simple proof at
which we arrived through the formalization process. We take the opportunity of this simple
example to illustrate some common features of our project. We have also formalized an
explicit verified construction of a word witnessing that the bound given in the Periodicity
Lemma is sharp. For example, the word 0102010 of length seven has periods 4 and 6 but
not the period gcd(4, 6) = 2, while any word of length at least eight having periods four and
six has also a period two.

The second theorem deals with the equation xayb = zc with 2 ≤ a, b, c. We formalize
a proof that this equation admits only solutions where all unknown words x, y, and z are
powers of a common word. Such solutions are called periodic. This classical result was
first proven by Lyndon and Schützenberger [27] in a more general setting of free groups.
Historically, it was the first challenging equation with three unknowns whose solutions were
completely characterized. The presented proofs of the Periodicity Lemma and the solution
of the Lyndon and Schützenberger equation (LSE) are mainly combinatorial.

The need to deal with equations like LSE in an ad hoc manner is tightly related to
the fact that word equations are rather immune against the so called defect effect. To
understand what this means, consider systems of linear equations. Each new independent
linear equation decreases the degree of freedom of a solution of the corresponding system, so
that n independent equations over n unknowns admit only one solution. In contrast, there is
no known upper bound on the size of an independent system of word equations over n ≥ 4
unknowns, and only a rough bound for n = 3 (see e.g. Saarela [31] for a survey).

The best general form of the defect effect for word equations is provided by the Graph
Lemma, which is the third important result presented and formalized in this paper. We shall
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discuss the Graph Lemma in detail in Section 2.3. Here, let us illustrate the main idea by an
example. Consider the following system of two equations over three unknowns:

xyz = yzx,

xzy = zyx.

We construct an undirected graph whose vertices are the unknowns x, y, z. The edges, one for
each equation of the system, connect first letters of left and right hand side of the equation.
In our example, the edges are (x, y) and (x, z). By the Graph Lemma, such a system has
periodic solutions only, since the resulting graph is connected. In other terms, since the graph
has one connected component, all three words in any solution are powers of one common
word. Consider, on the other hand, the system

xyz = zyx,

xyyz = zyyx.

The graph of this system has the unique edge (x, z), hence the Graph Lemma does not tell
us whether the system has a non-periodic solution or not. In fact, this system has an obvious
non-periodic solution x 7→ a, y 7→ b, z 7→ a.

Our approach to the proof of the Graph Lemma exploits the algebraic concept of the free
hull of a solution, and of its rank, that is, of the cardinality of its basis. This also means
that auxiliary claims needed in the proof of the Graph Lemma are of a more algebraic flavor,
compared to the proof of the Periodicity Lemma and the solution of the LSE. These claims
are covered by the second background auxiliary theory used in this paper, described in more
detail in Section 2.4.2.

We start by introducing the notation and terminology followed by an overview of related
algebraic structures and related work. In Section 2, we present the three main results and
conclude by the details on the structure and background theories of the formalization.

1.1 Notation and terminology
Words are finite sequences of elements from a given set Σ, where Σ is called an alphabet, and
its elements are called letters. Accordingly, we represent words by the datatype of lists in
our formalization, and the alphabet is typically represented in Isabelle by a type variable ′a.
The set of all words over Σ is denoted by Σ∗, including the empty word, denoted by ε, which
is represented as Nil or [] in Isabelle/HOL.

Words are endowed by the operation of concatenation, which corresponds to append for
lists. Words with the operation of concatenation form a free monoid. The infix notation for
the append-operation is @. For words, the concatenation is denoted by the multiplication
sign · (which, as usual, is often omitted). We therefore allow, in our formalization, to write ·
instead of @. That is, x · y is equivalent to x@y. We write u ≤p v if u is a prefix of v, that
is, if v = u · z for some z.

Seeing concatenation as a monoid multiplication naturally yields the concept of a power.
We use the usual notation xn of the n-th power of x in the mathematical text, and by x@n

in the formalization. The set of all powers of a word t is usually denoted as t∗ using the
Kleene star familiar from regular expressions, where it is commonly used even for sets as, for
example, in {u, v}∗. However, this allows a certain confusion. If G is a set of words over Σ,
then G∗ should denote all words over Σ generated by G. On the other hand, Σ∗ denotes
all words over the alphabet Σ, and the difference between the alphabet Σ and the set of
words G has to be kept in mind. Strictly speaking, Σ∗ is not generated by the alphabet
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Σ, but rather by the set of singletons, that is, words of length one. While the difference
between letters and singletons is typically ignored in the literature without any significant
harm, the difference between a letter a, and the list [a] must obviously be respected in the
formalization. We therefore prefer to use the notation ⟨G⟩ for the submonoid of Σ∗ generated
by a set G ⊂ Σ∗. We also call it the hull of G. We nevertheless allow the expression x ∈ t∗

which is an abbreviation for x ∈ ⟨{t}⟩. The term decompose G u, abbreviated as Dec G u,
represents some decomposition of the word u into elements of G. It returns a list of words,
i.e., of type ′a list list.

fun decompose :: ′a list set ⇒ ′a list ⇒ ′a list list (Dec - - ) where
decompose G u = (SOME us. us ̸= ε ∧ us ∈ lists G ∧ u = concat us)

Hilbert’s choice operator SOME is used here. The output of the function makes no good sense
if the second argument is not in ⟨G⟩. Note, however, that even for elements of ⟨G⟩ the list is
an unspecified choice among all possible decompositions. For example, if G = {a, ab, ba} and
u = aba, then Dec G u is either [a, ba] or [ba, a]. This in particular implies that we cannot
prove Dec G (u · v) = Dec G u ·Dec G v.

We deal with finite words only. An apparent exception is the infinite repetition uω =
u · u · u · · · . However, this infinite word will be used exclusively in expressions of the form
w ≤p uω, which is just a handy way of writing ∃n.w ≤p un.

The length of a word w, that is the usual list length, is denoted by |w|. A word w of
length n can be spelled as the list [w0, w1, . . . , wn−1], where wi represents the (i + 1)-th letter
of w. The first letter of a nonempty word w is also denoted hd w. The prefix of w of length
k ≤ |w| is denoted prefkw (take k w in Isabelle).

The word w has a period p if 1 ≤ p, and if wi = wi+p for each 0 ≤ i < |w| − p. We allow
(trivial) periods p ≥ |w|.

One of our main interests is in word equations. Formally, a word equation is a pair of
words (L, R) ∈ X∗ ×X∗ over an alphabet X of unknowns. Nevertheless, the equation like
([x, y, z], [z, y, x]) is usually written as xyz = zyx, a convention we already used above. A
solution (in an alphabet Σ) of the equation (L, R) is a monoid morphism f : X∗ → Σ∗ (often
called a substitution) such that f(L) = f(R). (The defined concept should be more precisely
described as word equations without constants. We do not deal with equations with constants
in this paper.) The reader may further refer to Harju et al. [14].

1.2 Related algebraic structures and related work
Combinatorics of finite words focused on word equations has two basic aspects: the com-
binatorial and the algebraic. The combinatorial aspect is in an obvious way connected to
words as lists, the algebraic aspect becomes important when considering a set of words as
a generating set of a monoid. The algebraic aspect is exhibited and further discussed in
Section 2.3 dedicated to the Graph Lemma. It is a basic decision of the formalization how to
represent words in order to capture these two aspects. The first author in [21] conducted
an inquiry into the possibility to deal with free monoids axiomatically. In particular, free
monoids are fully characterized by the equidivisibility property:

lemma eqd: x · y = u · v =⇒ |x| ≤ |u| =⇒ ∃ t. x · t = u ∧ t · v = y

together with the provision that the length of possible decompositions of any element is
bounded. Experience from this research confirms that the axiomatic approach has no
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advantages. On the contrary, the elements of the free monoid will eventually be represented
as lists of generators in any case (so in the Lean prover, for example, free-monoid over
alphabet α is directly defined as a synonym for list α). Our formalization is therefore
based on the datatype of lists. This fundamental datatype is well developed in Isabelle/HOL
(as well as in all other provers), and we heavily build on the theory List.thy from the Main
library, and the theory Sublist.thy from the HOL-Library.

Nevertheless, from the point of view of word equations, those theories contain only the
solution of the easiest nontrivial word equation, namely x · y = y ·x, showing that commuting
words x and y are always powers of the same (shorter) word:

lemma comm-append-are-replicate:
xs @ ys = ys @ xs
=⇒ ∃m n zs. concat (replicate m zs) = xs ∧ concat (replicate n zs) = ys

(We remark that this is the formulation in the 2021 release without redundant assumptions
removed following our suggestion.) This result is called the Commutation Lemma. Since
equations are our main interest, we improve readability using a slightly modified notation.
Our version reads:

theorem comm-root: x · y = y · x ←→ (∃ t. x ∈ t∗ ∧ y ∈ t∗)

Here t∗ denotes the set {tn | 0 ≤ n}.
A similar remark concerning applicability for word equations applies to potentially related

area of combinatorics of free groups, or even more generally, to combinatorial theory of (free)
(semi)groups. The Isabelle/HOL theory Free-Groups by Breitner [6] contains fundamental
properties of free groups including recently the Ping Pong lemma, which naturally exhibits
some combinatorial features related to our work. Nevertheless, there is no direct overlap.

To our knowledge, the situation in other provers is not different. The most related to
Combinatorics on Words is the Coq package Coq-Combi by Hivert [18] which uses specific
parts of Combinatorics on Words results to prove some other results such as the Littlewood–
Richardson rule. Another Coq package which is related is Coq-free-groups, formalizing
elements of the free group theory (which is not as much developed as the above mentioned
Isabelle/HOL free group theory by Breitner). Another related pieces of formalization can be
found in the Lean Mathematical Library: it contains a basic formalization of free groups
and free monoids, with no specific tools for submonoids of free groups (besides general
submonoids).

Isabelle’s Archive of Formal Proofs [1] contains a large group of theories on Automata
and formal languages. The Coq package Coq-automata is situated within the same topic.
However, there is almost no overlap with word equations and questions we are interested in.
For example, the theory of regular expressions (or, more generally, Kleene algebras) deals
with structures on sets of languages, not with individual languages, which moreover typically
are not themselves monoids. We can illustrate this by one of our recent formalizations [20]. It
is a basic property of regular languages to be closed under intersection. However, to classify
possible intersections {x, y}∗ ∩ {u, v}∗ of two monoids generated by pairs of non-commuting
words is a nontrivial task, which has little to do with finite automata or with a general theory
of regular languages.

It should be stressed that monoids as such are too general a structure, and do not provide
any significant theoretical support for reasoning about lists. The main defining property of

ITP 2021



22:6 Formalization of Basic Combinatorics on Words

monoids, associativity, is captured by lists trivially. The single exception are properties of
powers. We therefore interpret lists as an instance of the class monoid-mult:

interpretation monoid-mult ε append

This immediately yields a series of claims like

lemma power-add-list: x@n·x@m = x@(n+m)

where x@n is our notation for the interpreted power.

2 Presented results

2.1 The Periodicity Lemma

Periodicity is one of the most important and most studied properties of words. In our
formalization, we use the following definition:

definition periodN :: ′a list ⇒ nat ⇒ bool
where periodN w n = w ≤p (take n w)ω

A related definition is the definition of the period root:

definition period-root :: ′a list ⇒ ′a list ⇒ bool (- ≤p -ω)
where [simp]: period-root u r = (u ≤p r · u ∧ r ̸= ε)

with the notation u ≤p rω. This notation is justified by the observation that the following
claims are equivalent:

w has a period p (in the sense given in Section 1.1);
w is a prefix of u · w, where u is a word of length p (the period root);
w is a prefix of uω.

A word can have more than one period. This possibility is regulated by the following
famous result.

▶ Lemma 1 (Periodicity Lemma [10]). If a word w of length at least p + q − gcd(p, q) has
periods p and q, then it also has a period gcd(p, q).

The proof is a combination of two elementary facts. The first one is the above mentioned
characterization of the period by the period root. The second one is the Commutation
Lemma. We first prove the following claim, which can be seen as a modification of the
Euclidean algorithm.

▶ Lemma 2. Let w ≤p r ·w and w ≤p s ·w. If |r|+ |s| − gcd(|s|, |r|) ≤ |w|, then r · s = s · r.

Proof. The assumptions imply that both s and r are prefixes of w. By symmetry, we can
suppose |s| ≤ |r| which yields s ≤p r. Let r′ and w′ be such that r = s · r′ and w = s · w′.
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Then s, r′ and w′ satisfy the assumptions of the claim, see the following figure.

s w

r w

w

r′
w′

s
w′

w′

In particular, we have

|r′|+ |s| − gcd(|s|, |r′|) = |r| − |s|+ |s| − gcd(|s|, |r| − |s|) =
|r|+ |s| − gcd(|s|, |r|)− |s| ≤ |w| − |s| = |w′|.

If s = ε, the claim holds. If s is nonempty, then we have that s and r′ commute by
induction on |s|+ |r|. Hence also s and r commute. ◀

The proof of the Periodicity lemma is now easily concluded using the Commutation
Lemma (see Section 1.2):

Proof of the Periodicity lemma. Assume p ≤ q, and let t be the common root of s = prefpw

and r = prefqw. Then |t| divides gcd(p, q). Since w is a prefix of sω, it is also a prefix of tω,
hence it has a period gcd(p, q). ◀

We want to point out, based on this very simple example, several observations. First,
we note the interplay between intuition brought about by the picture in the above proof,
and the formal manipulation. In order to make the induction step, namely to see that both
w′ ≤p r′ · w and w′ ≤p s · w′, one can either consult the picture, or use a formal verification
which consists in the following considerations:
1. cancellation of s from w ≤p s · w after substitution of both occurrences of w with s · w′

yields w′ ≤p s · w′;
2. cancellation of s from w ≤p s · w after substitution of just the first occurrence of w with

s · w′ yields w′ ≤p w;
3. cancellation of s from w ≤p r · w yields w′ ≤p r′ · w;
4. the latter and w′ ≤p w yields w′ ≤ r′ · w′.
Actually, the last step still requires a simple length argument.

Although a similar point could be probably made about mathematical proofs in general,
in Combinatorics on words, thanks to the elementary character of lists, the gap between the
insight and the formal proof is very typical. Calibrating the right mixture of the insight and
the detail, which is naturally very reader-specific, is an almost impossible task. One of the
main advantages of the formalization becomes apparent here: it allows to focus on ideas
while being sure that no unexpected gaps were missed.

Another lesson from this example is that it was in the context of this formalization that
we realized how important and useful the equivalent characterization of periods are. More
precisely, the formalization makes clear that the characterization by the period root is “the
right one”. In fact, we believe that the proof presented here is the shortest one available in
the literature. The Periodicity lemma has many different proofs, several of them presented
already in the original paper by Fine and Wilf [10]. Proofs based on the numeric definition
of period by indexes (that is, by wi = wi+p) can be rather involved (see, for example, the
basic reference monograph [26]). Our proof is close to the version in Berstel an Karhumäki
[3] but without the need to deal separately with the case when the periods are not coprime.
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The superiority of the periodic root definition of a period can be captured as its suitability
for equational reasoning. We add another example of this phenomenon. Consider the
following claim:

▶ Lemma 3. If x · y = z and the words x and z commute, then also y and z commute.

This is a trivial claim which would be justified (if needed) as follows:

Proof. Commuting words are powers of the same word. Canceling x from x · y = z therefore
yields that also y is the power of the same word. ◀

This appeal to the Commutation Lemma is an almost instinctive move for a researcher in
Combinatorics on Words. However, this argument does not seem to be sufficiently trivial for
an automated tool (like try0 in Isabelle). Nevertheless, the proof is the simple by force
anyway, since Isabelle employs a different approach, which is humanly less transparent but is
based on a simple manipulation of equalities.

Proof. Substitute x · y for z in x · z = z ·x to obtain x ·x · y = x · y ·x. Cancel x and multiply
both sides by y from right to obtain x · y · y = y · x · y, which is the desired equality after
substituting z back for x · y. ◀

Finally, a particular challenge for the formalization of the Periodicity Lemma is the
humanly obvious argument from symmetry (cf. Harrison [17]), which allows to assume that
s is not longer than r. This move is sometimes dealt with in formalization by defining s1
and r1 as the shorter and the longer of the two words respectively, and then carrying out the
proof using s1 and r1. This approach is nevertheless quite tedious, in particular in proofs by
induction. We use a little trick to deal with this problem: the induction is made not simply
on |s|+ |r| but rather on |s|+ |s|+ |r|. Then, considering the cases |r| < |s| and |s| ≤ |r|,
the former case is covered by the induction hypothesis exactly by symmetry of s and r as in
the informal proof.

The bound in the Periodicity Lemma is optimal in the following sense:

▶ Lemma 4. Let p and q be positive integers such that p ∤ q and q ∤ p. Then there is a word
of length p + q − gcd(p, q)− 1 that has periods p and q, and not a period gcd(p, q).

The word from the lemma is called an FW-word(p, q) (for Fine and Wilf). With the additional
requirement that it contains maximum number of distinct letters, it is unique up to renaming
of letters (this property is not proved in our formalization). Such a word FW-word(p, q),
which is equal to FW-word(q, p), with the maximum number of distinct letters can be
constructed as follows. Use natural numbers as the alphabet, and let [n] denote the word
0 · 1 · · · (n− 1). Assume p < q and let d = gcd(p, q). If p = kd and q = (k + 1)d, 1 < k, then
the word

FW-word(p, q) = [d]k−1 · [d− 1] · d · [d]k−1 · [d− 1]

satisfies the required conditions. Otherwise FW-word(p, q) is defined inductively as the prefix
of (FW-word(p, q − p))ω of the required length. The correctness of the construction can be
proved as follows:

Proof. If q = p + d, then the word FW-word(p, q) defined above has the required properties
as can be directly verified. If q = p + kd with 1 < k, then kd does not divide p and by
induction we obtain a word v of length q − d − 1 = (q − p) + p − d − 1 > max(p, q − p),
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which has periods p and q − p and does not have a period d. The word v is then a prefix of
(prefpv)ω and of (prefq−pv)ω. It is therefore also a prefix of words prefpv · v and prefq−pv · v.
Consider the prefix w of (prefpv)ω of length p + q − d− 1 > q. The word w has a period p

since it is a prefix of (prefpv)ω, and it does not have the period d since v is a prefix of w. It
remains to show that w has a period q, that is, that w is a prefix of prefqw · w. First, note
that w = prefpv · v, hence prefqw = prefpv · prefq−pv. Since v is a prefix of prefq−pv · v, we
have that w is a prefix of prefpv · prefq−pv · prefpv = prefqw · prefpv, which is a prefix of
prefqw · w. ◀

We have implemented the above construction, and formalized the proof of its correctness:

theorem fw-word: assumes ¬ p dvd q and ¬ q dvd p
shows |FW-word p q| = p + q − gcd p q − 1 and

periodN (FW-word p q) p and
periodN (FW-word p q) q and
¬ periodN (FW-word p q) (gcd p q)

The formalized proof is relatively long (over 200 lines). This reflects the number of facts that
have to be verified, including the shifty claim about the “direct verification” of the base case
which spans more than half of the proof.

We thereby provide a formally verified calculation of an FW-word. Here are some sample
values:

value FW-word 3 7

[0, 0, 1, 0, 0, 1, 0, 0]

value FW-word 4 6

[0, 1, 0, 2, 0, 1, 0]

value FW-word 12 18

[0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 6, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4]

2.2 The theorem of Lyndon and Schützenberger
The very first folklore result in the basic course of Combinatorics of Words is the Commutation
Lemma mentioned above, solving the equation x · y = y · x. The Commutation Lemma is
easy to prove directly, but it can be also noted that the word w = uv = vu has periods |u|
and |v|, and the claim follows from the Periodicity Lemma.

Moved from two to three unknowns, solving equations becomes a challenging task.
Although a classification of monoids generated by three words is available (see a survey by
Harju and Nowotka [15]), it is a complex one. Recall that the question about the maximal
number of independent equations in three unknowns remains open as mentioned in the
Introduction. From this point of view, the LSE, i.e. the equation xa · yb = zc with 2 ≤ a, b, c

solved by Lyndon and Schützenberger in 1962, is important both historically and conceptually.
As already mentioned, this equation with three unknowns was originally solved in a more
general case of a free group, but it has been subsequently further investigated in free monoids,
and several alternative proofs have been suggested for example by Dömösi and Horváth [8]
or Harju and Nowotka [16]. It would be interesting to formalize the original proof in free
groups, however this task goes beyond our present focus. We expect that the proof in free
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groups could not be simplified as the word variant we present below. Note that the equation
can be seen as a natural follow up of the Periodicity Lemma since it deals with a special
configuration of three distinct periods.

theorem Lyndon-Schutzenberger:
assumes x@a·y@b = z@c and 2 ≤ a and 2 ≤ b and 2 ≤ c
shows x·y = y·x and x·z = z·x and y·z = z·y

We present here a concise formalization of the theorem of Lyndon and Schützenberger in
free monoids. We first give a full paper proof that we formalized. It is similar to the one
given in [26, Section 9.2], however, the core case c = 3 is significantly simplified.

Proof. By symmetry, assume |xa| ≥ |yb|.
The word xa has periods |x| and |z|. If |xa| ≥ |z| + |x|, then the Periodicity Lemma

implies that x and z have a period dividing |x| and |z|, which easily yields that they commute.
Similarly if |yb| ≥ |z|+ |y|.

Therefore, suppose that xn−1 is a proper prefix of z and ym−1 a proper suffix of z. Then
|xa| < 2|z| and |yb| < 2|z|, hence c < 4.

Let c = 3. If a ≥ 3, then |x2| < |z| implies |x3| < 3
2 |z|, contradicting the assumption

|xa| ≥ |yb|. Therefore a = 2 and |x| ≥ |y|. There are words u, v, w such that x = uw = wv,
z = xu = wvu and yb = vuwvu. From uw = wv we deduce that uwv has a period |u|.
Moreover, uwv is a factor of yb which implies that it has a period |y|. Since |y|+ |u| ≤ |uwv|,
the Periodicity Lemma implies that d = gcd(|u| , |y|) is a period of uwv. It is easy to see that
d divides also |v| and |w|, which implies that words u, v and w commute. Therefore also x,
y and z commute.

The case c = 2 remains. We have z = xa−1u = wyb, where uw = x. Then wz = (wu)a =
w2yb, where wu is shorter than z. By induction on |z|, we obtain that w, y and wu commute.
Therefore also x, y and z commute. ◀

In the formalization, we first prove that x and y commute:

lemma per-lemma-case:
assumes |z| + |x| ≤ |x@a|
shows x·y=y·x

The other two commutation claims, humanly obvious consequences of the first one, are
proved relatively easily using auxiliary lemmas about roots formalized in our background
theory.

Two of the three cases in the proof are proven as separate lemmas. Namely, the case
solved by the Periodicity Lemma:

lemma per-lemma-case:
assumes |z| + |x| ≤ |x@a| and x ̸= ε

shows x·y=y·x

and the core case c = 3:
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lemma core-case:
assumes

c = 3 and
b∗|y| ≤ a∗|x| and x ̸= ε and y ̸= ε and
lenx: a∗|x| < |z| + |x| and
leny: b∗|y| < |z| + |y|

shows x·y = y·x

It would seem natural to solve even the remaining case c = 2 separately, and then simply
put the three cases together. However, this is not possible, since the induction, abruptly
announced at the end of the paper proof, actually governs the whole proof since it covers the
first two cases as well. (This is one of the typical backtracking moments of the development.)
We conclude this section noting that also in this case we use a similar trick to deal with the
symmetry as in the proof of the Periodicity lemma. Namely, the the induction is on |z|+ b|y|.
If |xa| <

∣∣yb
∣∣, then we switch to the symmetric case which yields the result immediately by

induction.

2.3 The Graph Lemma
In order to present the third classical result, the Graph Lemma, we first need to explain
its algebraic background which is covered by our second auxiliary formalized theory. It
is immediate that (unlike in the free group case) submonoids of the free monoid are not
always free. Consider, for example, the monoid M = ⟨{aa, aab, baa}⟩ generated by words aa,
aab and baa. While {aa, aab, baa} is its basis, denoted BM ,that is, the minimal generating
subset (which is unique for submonoids of the free monoid), the monoid M is not free since
aab · aa = aa · baa are two distinct decompositions of the word aabaa into elements of the
basis. In other words, x 7→ aa, y 7→ baa, z 7→ aab is a solution of the equation x · y = z · x.
On the other hand, each set G of words has a free hull ⟨G⟩F , the unique smallest free monoid
containing G. This can be seen using another equivalent characterization of free monoids,
namely the stability condition:

p, pw, wq, q ∈M =⇒ w ∈M. (1)

We remark that the equality p · wq = pw · q provides a link to the equidivisibility property,
another equivalent characterization of freeness mentioned in Section 1.2. Since the stability
condition is obviously closed under intersection, we obtain

▶ Lemma 5.

⟨G⟩F =
⋂
{M | G ⊆M, M is free} .

For example, the free hull of G = {aa, aab, baa} is ⟨{aa, b}⟩. The basis of ⟨G⟩F is
also called the free basis of G, and is denoted BF G. The key (and defining) property
of free monoids is uniqueness of the decomposition into elements of the basis. That is,
Dec (BF G) is a well defined decomposition function for any G. In our example, we have
Dec (BF G) aabaa = [aa, b, aa]. If some set G is equal to its free basis, that is, if it is the
minimal generating set of a free monoid, then G is called a code.

If f : X∗ → Σ∗ is a morphism (a solution of a word equation), then its rank is the
cardinality of the free basis of the set of images {f(x) | x ∈ X}. The fact that any solution
of a nontrivial equation has rank less than the number of unknowns is sometimes called “a
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defect effect”. It was probably for the first time proved in the book by Lentin [25] which
curiously exists in the hand-written form only:
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However, unlike the case of linear equations mentioned in the Introduction, word equations
do not allow a straightforward cumulative defect effect. In other words, there can be large
systems of independent word equations (see Karhumäki and Plandowski [24]).

The Graph Lemma is a result enforcing a weak but very general form of the cumulative
defect effect. It owes its name to the formulation by Harju and Karhumäki [13]. We illustrated
the graph in question by an example in the Introduction. The proof of the Graph Lemma
that we formalize here is from Berstel et al. [4]. The claim in this formulation reads as
follows:

▶ Theorem 6 (Graph Lemma). Let G be a set of words. Then

BF G = {hd(Dec (BF G) x) | x ∈ G, x ̸= ε} .

This is related to the graph described in the Introduction in the following way. The theorem
says that each element of the basis appears as the head in the decomposition of some x ∈ G.
Consider again the system of equations

xyz = yzx

xzy = zyx

and let f be its solution. From f(xyz) = f(yzx) we deduce that hd(f(x)) = hd(f(y)).
Similarly, we have hd(f(x)) = hd(f(z)) from f(xzy) = f(zyx). The Graph Lemma now
implies that the rank of f is one, yielding a cumulative defect effect: each equation decreased
the rank of the solution by one.

The proof of the Graph Lemma has two steps. We first prove the following lemma:

▶ Lemma 7. Let C be a code and let b ∈ C. Then also

C ′ = {zbk | z ∈ C, z ̸= b}

is a code, and it generates the submonoid S = {x ∈ ⟨C⟩ | hd z ̸= b} of ⟨C⟩.

This lemma is considered to be humanly obvious. In [4] (see p. 171), this is not even
formulated as a separate lemma, and the claim is justified by a simple appeal to intuition:
any word not starting with b has a unique decomposition into elements of C ′. On the other
hand, the formalization of this claim is challenging. Indeed, the lemma actually contains (at
least) the following claims:

C ′ is a basis;
C ′ generates S;
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C ′ is a code,
each of which requires nontrivial formalization effort.

Having proved Lemma 7, we can prove the Graph Lemma by contradiction. If b ∈ BF G

is not a head of any decomposition, then G is contained in ⟨C ′⟩ where

C ′ = {zbk | k ≥ 0, z ∈ BF X, z ̸= b}

is a code. Since ⟨C ′⟩ does not contain b, we have ⟨C ′⟩ ⊊ ⟨G⟩F , a contradiction with Lemma
5.

2.4 Overview of the structure of the published formalization
The formalization is published in the Gitlab repository [36] as a part of an evolving Combin-
atorics on Words formalization project. The content described in this article is covered by
the following five theories:

Basics/CoWBasic.thy: defines basic concepts, and contains more than five hundred
auxiliary lemmas (not all of them needed for the three main presented results);
Basics/Submonoids.thy: defines submonoids, and contains the algebraic backbone:
submonoids, fundamental properties of bases, codes and free hulls;

and three more advanced and more specific theories:
Basics/Periodicity_Lemma.thy: contains the periodicity lemma, along with the
proof of its optimality;
Basics/Lyndon_Schutzenberger.thy: covers the Lyndon-Schützenberger theorem;
Graph_Lemma/Graph_Lemma.thy: contains the Graph Lemma and its application
to binary codes.

We describe the two background theories, CoWBasic and Submonoids, in more detail in
the next two sections.

2.4.1 CoWBasic background theory
As already mentioned, the theory CoWBasic serves as a basis for a formalization of a
Combinatorics on Words results such as the three results presented in this article. Its purpose
is to cover elementary concepts (the “folklore” mentioned in Introduction) using a common
notation and theorem formulation, and thus make them ready to be used by a Combinatorics
on Words researcher.

CoWBasic is builds heavily on the Main’s theory List and on the theory HOL-
Library.Sublist. Besides the definition of the fundamental datatype list, the first men-
tioned theory contains many Combinatorics on Words relevant concepts such as the func-
tions take, drop, rotate, concat, and length, accompanied by many relevant lemmas.
The theory HOL-Library.Sublist extends the range of available tools by defining prefix,
longest-common-prefix, suffix, and (contiguous) sublist, again furnished with many
relevant claims. As summarized in Section 1.1, the theory first establishes some elementary
prevalent notation in Combinatorics on Words. It extends the coverage of supporting claims
related existing concepts ranging from observation level lemmas such as

lemma pref-drop: u ≤p v =⇒ drop p u ≤p drop p v

to slightly more elaborate (in terms of a formal proof) claims such as

lemma rotate-back: obtains m where rotate m (rotate n u) = u.

ITP 2021
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Most of the claims themselves can be considered quite simple, i.e., a human reader, not
necessarily an expert in Combinatorics on Words, would consider them “obvious” or maybe
requiring a simple argument or a picture (cf. the discussion in Section 2.1). Naturally, many
of these lemmas are implicitly used in paper proofs hidden under claims such as “It easily
follows”. The selection of these auxiliary claims is based first on our consideration, second
on the actual need in the formalization of more advanced results. As the development is an
iterative process, many definitions and lemmas are results of several optimizations based on
our usage experience.

In the same spirit, the theory CoWBasic introduces new concepts and supporting claims.
While some of these were mentioned along with the main presented results in Section 2, we
list here some most prominent other examples. We define the left quotient of a word as
follows:

definition left-quotient:: ′a list ⇒ ′a list ⇒ ′a list ((-−1>)(-))
where left-quotient-def[simp]: left-quotient u v = (THE z. u · z = v).

A word is primitive if it is not a power of some other word:

definition primitive :: ′a list ⇒ bool
where primitive u = (∀ r k. r@k = u −→ k = 1)

Given a non-empty word w which is not primitive, it is natural to look for the shortest u

such that w = uk. Such a word is primitive, and it is the primitive root of w:

definition primitive-root :: ′a list ⇒ ′a list ⇒ bool (- ∈p - ∗ )
where primitive-root x r = (x ̸= ε ∧ x ∈ r∗ ∧ primitive r)

2.4.2 Submonoids background theory

Whereas the first auxiliary theory overlaps with existing tools, Submonoids theory develops
its own tools, building on CoWBasic. Its main purpose is to cover algebraic properties of
submonoids of a free monoids, a background needed for the Graph Lemma and already
introduced in Section 2.3.

The first two notions were already introduced in Section 1.1, the first is the hull:

inductive-set hull :: ′a list set ⇒ ′a list set (⟨-⟩)
for G where
emp-in: ε ∈ ⟨G⟩
|prod-cl: w1 ∈ G =⇒ w2 ∈ ⟨G⟩ =⇒ w1 · w2 ∈ ⟨G⟩

and the second is a decomposition of a word into some sequence of words, i.e., the function
decompose (abbreviated as Dec).

The remaining notions introduced in Section 2.3 follow. It is a noteworthy fact that
their definitions are slightly different from the “paper” version above. This difference is
motivated purely by a more suitable use in the formalization, based on authors’ experience
with primordial versions of the formalization using exactly the “paper” versions. Basis relies
on the notion of a simple element:
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function simple-element :: ′a list ⇒ ′a list set ⇒ bool ( - ∈B - ) where
simple-element b G = (b ∈ G ∧ (∀ us. us ̸= ε ∧ us ∈ lists G ∧ concat us = b −→ |us|

= 1))

Basis is then the set of all simple elements:

fun basis :: ′a list set ⇒ ′a list set (B - ) where
basisdef: basis G = {x. x ∈B G}

The definition stated above is shown as a pair of theorems – the basis is the minimal
generating set:

theorem ⟨B G⟩ = ⟨G⟩
theorem ⟨S⟩ = ⟨G⟩ =⇒ B G ⊆ S

The concept of a code, implemented as a locale, is formalized as

locale code =
fixes C
assumes C-is-code: xs ∈ lists C =⇒ ys ∈ lists C =⇒ concat xs = concat ys =⇒ xs = ys

and finally the inductive definition of the free hull reads

inductive-set free-hull :: ′a list set ⇒ ′a list set (⟨-⟩F )
for G where

ε ∈ ⟨G⟩F
| free-gen-in: w ∈ G =⇒ w ∈ ⟨G⟩F
| w1 ∈ ⟨G⟩F =⇒ w2 ∈ ⟨G⟩F =⇒ w1 · w2 ∈ ⟨G⟩F
| p ∈ ⟨G⟩F =⇒ q ∈ ⟨G⟩F =⇒ p · w ∈ ⟨G⟩F =⇒ w · q ∈ ⟨G⟩F =⇒ w ∈ ⟨G⟩F

The freeness is ensured by the last condition which is the stability condition (1). The fact
that the free hull is the smallest free monoid containing the generating set is again proven as
a theorem:

theorem free-hull-inter: ⟨G⟩F =
⋂
{M. G ⊆ M ∧ M = ⟨M⟩F }

Finally, free basis is exactly as introduced above, namely BF G = B ⟨G⟩F :

definition free-basis :: ′a list set ⇒ ′a list set (BF -)
where free-basis G ≡ B ⟨G⟩F

3 Conclusion

The aim of this paper is to introduce an ongoing formalization of Combinatorics on Words.
The next step after the Lyndon-Schützenberger theorem is its natural extension obtained
independently by J.-P. Spehner [33], and by E. Barbin-Le Rest, M. Le Rest [2] which
claims that xiy is the only non-trivial way (up to symmetry and conjugation) how two
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non-commuting words can form a non-primitive word (like zc). The history of this result is
another good motivation for our formalization project. The result, while very natural and
important, has been almost forgotten (it was cited only six times before 2015). A weaker
form of this result was even rediscovered in 1994 [32], and started to be referenced. One
reason for this is that already this relatively simple result is very technical and difficult to
read. Moreover, the paper contains several minor inaccuracies which makes the reading even
more labored. This is by no means an exceptional situation in Combinatorics on Words,
which testifies for a strong need of formally verified proofs in the field.
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Abstract
We mechanise the undecidability of various first-order axiom systems in Coq, employing the synthetic
approach to computability underlying the growing Coq Library of Undecidability Proofs. Concretely,
we cover both semantic and deductive entailment in fragments of Peano arithmetic (PA) and
Zermelo-Fraenkel set theory (ZF), with their undecidability established by many-one reductions from
solvability of Diophantine equations, i.e. Hilbert’s tenth problem (H10), and the Post correspondence
problem (PCP), respectively. In the synthetic setting based on the computability of all functions
definable in a constructive foundation, such as Coq’s type theory, it suffices to define these reductions
as meta-level functions with no need for further encoding in a formalised model of computation.

The concrete cases of PA and ZF are prepared by a general synthetic theory of undecidable
axiomatisations, focusing on well-known connections to consistency and incompleteness. Specifically,
our reductions rely on the existence of standard models, necessitating additional assumptions in
the case of full ZF, and all axiomatic extensions still justified by such standard models are shown
incomplete. As a by-product of the undecidability of ZF formulated using only membership and no
equality symbol, we obtain the undecidability of first-order logic with a single binary relation.
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1 Introduction

Being among the mainstream formalisms to underpin mathematics, first-order logic has been
subject to investigation from many different perspectives since its concretisation in the late
19th century. One of them is concerned with algorithmic properties, prominently pushed by
Hilbert and Ackermann with the formulation of the Entscheidungsproblem [16], namely the
search for a decision procedure determining the formulas φ that are valid in all interpretations,
usually written ⊨ φ. With their groundbreaking work in the 1930s, Turing [41] and Church [6]
established that such a general decision procedure cannot exist. However, this outcome can
change if one considers validity of φ restricted to interpretations satisfying a given collection
A of axioms, written A ⊨ φ. Already in 1929, Presburger presented a decision procedure for
an axiomatisation of linear arithmetic [28] and Tarski contributed further instances with his
work on Boolean algebras, real-closed ordered fields, and Euclidean geometry in the 1940s [8].

On the other hand, as soon as an axiomatisation A is strong enough to express compu-
tation, the undecidability proof for the Entscheidungsproblem can be replayed within A,
turning its entailed theory undecidable. Used as standard foundations for large branches of
mathematics exactly due to their expressiveness, Peano arithmetic (PA) and Zermelo-Fraenkel
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set theory (ZF) are prime examples of such axiomatisations. In this paper, we use the Coq
proof assistant [38] to mechanise the undecidability of PA and ZF based on the synthetic
approach to computability results available in Coq’s constructive type theory.

As is common in constructive foundations, all functions definable in Coq’s type theory are
effectively computable. So for instance any Boolean function on natural numbers f : N → B
coinciding with a predicate P ⊆ N may be understood as a decider for P , even without
explicitly relating f to some encoding as a Turing machine, µ-recursive function, or untyped
λ-term. In this fashion, many positive notions of computability theory can be rendered
synthetically, disposing of the need for an intermediate formal model of computation [3, 11].
Moreover, negative notions like undecidability are mostly established by transport along
reductions, i.e. computable functions encoding instances of one problem in terms of another
problem. Synthetically, the requirement that reductions are computable is again satisfied by
construction. In fact, all problems included in the growing Coq Library of Undecidability
Proofs [14] are shown undecidable in the sense that their decidability would entail the
decidability of Turing machine halting by synthetic reduction from the latter.

Therefore, revisiting the undecidability of first-order axiom systems using a proof as-
sistant like Coq is worthwhile for several reasons. First, using the synthetic approach to
undecidability makes a mechanisation of these fundamental results of metamathematics
pleasently feasible [11, 17]. Our mechanisations follow the informal (and instructive) practice
to just define and verify reduction functions while leaving their computability implicit, with
the key difference that in our constructive setting this relaxation is formally justified.

Secondly, it is well-known that undecidable axiomatisations A are negation-incomplete,
i.e. admit φ with neither A ⊨ φ nor A ⊨ ¬φ. By characterising A ⊨ φ with an enumerable
deduction system A ⊢ φ, this is a consequence of Post’s theorem [27] stating that bi-
enumerable predicates are decidable. Indeed, assuming negation-completeness, also the
complement A ⊭ φ would be enumerable via A ⊢ ¬φ. Based on a synthetic proof of Post’s
theorem [3, 11], all axiomatisations shown synthetically undecidable in the present paper
are incomplete in the sense that their completeness would imply the decidability of Turing
machine halting. These algorithmic observations complement the otherwise notoriously hard
to mechanise incompleteness proofs based on Gödel sentences [24, 25].

Lastly, undecidability of a first-order axiomatisation A like PA or ZF can only be es-
tablished in a stronger system, since a reduction from a non-trivial problem yields the
consistency of A. Coq exhibits standard models for PA and ZF (the latter relying on mild
assumptions [18]), enabling proofs of their undecidability. In fact, we sharpen the results for
weak fragments Q′ and Z′ even strictly below Robinson arithmetic Q and Zermelo set theory
Z, respectively, with the latter now also admitting a fully constructive standard model.

In summary, the contributions of this paper can be listed as follows:
We extend the Coq Library of Undecidability Proofs with verified reductions to Q′, Q,
PA, Z′, Z, and ZF(-regularity), regarding both Tarski semantics and natural deduction.
We verify a translation of set theory over a convenient signature with function symbols for
set operations to smaller signatures just containing one or two binary relation symbols.
By composition, we obtain the undecidability of the Entscheidungsproblem for a single
binary relation, improving on a previous mechanisation with additional symbols [11].
By isolating a generic theorem, we obtain synthetic undecidability and incompleteness
for all axiomatisations extending the fragments Q′ and Z′ w.r.t. standard models.

After a preliminary discussion of constructive type theory, synthetic undecidability, and
first-order logic in Section 2, we proceed with the general results relating undecidabilitity,
incompleteness, and consistency of first-order axiom systems in Section 3. This is followed
by the case studies concerning arithmetical axiomatisations (Section 4) as well as set theory
with Skolem functions (Section 5) and without (Section 6). We conclude in Section 7.
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2 Preliminaries

In order to make this paper self-contained and accessible, we briefly outline the synthetic
approach to undecidability proofs and the representation of first-order logic in constructive
type theory used in previous papers.

2.1 Constructive Type Theory
We work in the framework of a constructive type theory such as the one implemented in Coq,
providing a predicative hierarchy of type universes above a single impredicative universe P of
propositions. On type level, we have the unit type 1 with a single element ∗ : 1, the void type
0, function spaces X → Y , products X × Y , sums X + Y , dependent products ∀(x : X). F x,
and dependent sums Σ(x : X). F x. On propositional level, these types are denoted by the
usual logical notation (⊤, ⊥, →, ∧, ∨, ∀, and ∃). So-called large elimination from P into
computational types is restricted, in particular case distinction on proofs of ∨ and ∃ to form
computational values is disallowed. On the other hand, this restriction is permeable enough
to allow large elimination of the equality predicate = : ∀X.X → X → P specified by the
constructor ∀(x : X). x = x, as well as function definitions by well-founded recursion.

We employ the basic inductive types of Booleans (B := tt | ff), Peano natural numbers
(n : N := 0 | n+ 1), the option type (O(X) := ⌜x⌝ | ∅), and lists (l : L(X) := [ ] | x :: l). We
write |l| for the length of a list, l++ l′ for the concatenation of l and l′, x ∈ l for membership,
and just f [x1; . . . ;xn] := [f x1; . . . ; f xn] for the map function. We denote by Xn the type of
vectors v⃗ of length n : N over X and reuse the definitions and notations introduced for lists.

2.2 Synthetic Undecidability
The base of the synthetic approach to computability theory [30, 3] is the fact that all functions
definable in a constructive foundation are computable. This fact applies to many variants of
constructive type theory and we let the assumed variant sketched in the previous section
be one of those. Of course, we are confident that in particular the polymorphic calculus of
cumulative inductive constructions (pCuIC) [36] currently implemented in Coq satisfies this
condition although there is no formal proof yet.

Now beginning with positive notions, we can introduce decidability and enumerability of
decision problems synthetically, i.e. without reference to a formal model of computation:

Definition 1. Let P : X → P be a predicate over a type X.
P is decidable if there exists f : X → B s.t. P x iff f x = tt,
P is enumerable if there exists f : N → O(X) s.t. P x iff f n = ⌜x⌝ for some n : N.

Note that it is commonly accepted practice to mechanise decidability results in this
synthetic sense (e.g. [4, 22, 31]). In the present paper, however, we mostly consider negative
results in the form of undecidability of decision problems regarding first-order axiomatisations.
Such negative results cannot be established in form of the actual negation of positive results,
since constructive type theory is consistent with strong classical axioms turning every problem
(synthetically) decidable (as witnessed by fully classical set-theoretic models, cf. [42]).

The approximation chosen in the Coq Library of Undecidability Proofs [14] is to call P
(synthetically) undecidable if the decidability of P would imply the decidability of a seed
problem known to be undecidable, specifically the halting problem for Turing machines.
Therefore the negative notion can be turned into a positive notion, namely the existence of a
computable reduction function, that again admits a synthetic rendering:
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Definition 2. Given predicates P : X → P and Q : Y → P, we call a function f : X → Y a
(many-one) reduction if P x iff Q (f x) for all x. We write P ⪯ Q if such a function exists.

Then interpreting reductions from the halting problem for Turing machines as undecidab-
ility results is backed by the following fact:

Fact 3. If P ⪯ Q and Q is decidable, then so is P .

Such reductions have already been verified for Hilbert’s tenth problem (H10) [20] and
the Post correspondence problem (PCP) [10] that we employ in the present paper, so by
transitivity it is enough to verify continuing reductions to the axiom systems considered.

2.3 Syntax, Semantics, and Deduction Systems of First-Order Logic
We now review the representation of first-order syntax, semantics, and natural deduction
systems developed in previous papers [11, 12, 17]. Beginning with the syntax, we describe
terms t : T and formulas φ : F as inductive types over a fixed signature Σ = (FΣ; PΣ) of
function symbols f : FΣ and relation symbols P : PΣ with arities |f | and |P |:

t ::= xn | f t⃗ (n : N, t⃗ : T|f |) φ ::= P t⃗ | ⊥ | φ → ψ | φ∧ψ | φ∨ψ | ∀φ | ∃φ (⃗t : T|P |)

Negation ¬φ and equivalence φ ↔ ψ are then obtained by the standard abbreviations.
In the chosen de Bruijn representation [7], a bound variable is encoded as the number

of quantifiers shadowing its binder, e.g. ∀x. ∃y. P xu → P y v may be represented by
∀ ∃P x1 x4 → P x0 x5. For the sake of legibility, we write concrete formulas with named
binders where instructive and defer de Bruijn representations to the Coq development. A
formula with all occurring variables bound by some quantifier is called closed.

Next, we define the usual Tarski semantics providing an interpretation of formulas:

Definition 4. A model M consists of a domain type D as well as functions fM : D|f | → D

and PM : D|P | → P interpreting the symbols in the signature Σ. Given a variable assignment
ρ : N → D we define term evaluation ρ̂ : T → D and formula satisfiability ρ ⊨ φ by

ρ̂ xn := ρn ρ̂ (f t⃗ ) := fM (ρ̂ t⃗ ) ρ ⊨ P t⃗ := PM(ρ̂ t⃗ )

where the remaining cases of ρ ⊨ φ map each logical connective to its meta-level counterpart.

If a model M satisfies a formula φ for all variable assignments ρ, we write M ⊨ φ.
Moreover, given a theory T : F → P, we write M ⊨ T if M ⊨ ψ for all ψ with T ψ and T ⊨ φ
if M ⊨ T implies M ⊨ φ for all M. The same notations apply to (finite) contexts Γ : L(F).

Finally, we represent deduction systems as inductive predicates of type L(F) → F → P.
In this paper, we consider intuitionistic and classical natural deduction Γ ⊢i φ and Γ ⊢c φ,
respectively, and write Γ ⊢ φ if a statement applies to both variants. The rules characterising
the two systems are standard and listed in Appendix A, here we only highlight the quantifier
rules depending on the de Bruijn encoding of bound variables

Γ[↑] ⊢ φ

Γ ⊢ ∀φ AI
Γ ⊢ ∀φ
Γ ⊢ φ[t] AE

Γ ⊢ φ[t]
Γ ⊢ ∃φ EI

Γ ⊢ ∃φ Γ[↑], φ ⊢ ψ[↑]
Γ ⊢ ψ

EE

where φ[σ] denotes the capture-avoiding instantiation of a formula φ with a parallel substitu-
tion σ : N → T, where the substitution ↑ maps n to xn+1, where the substitution (t;σ) maps
0 to t and n+ 1 to σ n, and where φ[t] is short for φ[t; (λn. xn)]. Extending the deduction
systems to theories T : F → P, we write T ⊢ φ if there is Γ ⊆ T with Γ ⊢ φ.
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Constructively, only soundness of the intuitionistic system (T ⊢i φ implies T ⊨ φ) is
provable without imposing a restriction on the admitted models (as done in [12]). However,
it is easy to verify the usual weakening (Γ ⊢ φ implies ∆ ⊢ φ for Γ ⊆ ∆) and substitution
(Γ ⊢ φ implies Γ[σ] ⊢ φ[σ]) properties of both variants by induction on the given derivations.
The latter gives rise to named reformulations of (AI) and (EE) helpful in concrete derivations

Γ ⊢ φ[xn]
Γ ⊢ ∀φ xn ̸∈ Γ, φ

Γ ⊢ ∃φ Γ, φ[xn] ⊢ ψ

Γ ⊢ ψ
xn ̸∈ Γ, φ, ψ

where xn ̸∈ Γ denotes that xn is fresh, i.e. does no occur unbound in any formula of Γ.
The concrete signatures used in this paper all contain a reserved binary relation symbol

≡ for equality. Instead of making equality primitive in the syntax, semantics, and deduction
systems, we implicitly restrict M ⊨ φ to extensional models M interpreting ≡ as actual
equality = and understand T ⊢ φ as derivability from T augmented with the standard
axioms characterising ≡ as an equivalence relation congruent for the symbols in Σ.

3 Undecidable and Incomplete First-Order Axiom Systems

In this section, we record some general algorithmic facts concerning first-order axiomatisations
and outline the common scheme underlying the undecidability proofs presented in the
subsequent two sections. We fix an enumerable and discrete signature Σ for the remainder of
this section and begin by introducing the central notion of axiom systems formally.

Definition 5. We call a theory A : F → P an axiomatisation if A is enumerable.

Any given axiomatisation induces two related decision problems, namely semantic entail-
ment A⊨ := λφ.A ⊨ φ and deductive entailment A⊢ := λφ.A ⊢ φ. Since in our constructive
setting we can show the classical deduction system ⊢c neither sound nor complete (cf. [12]),
we mostly consider a combined notion of classical semantics and intuitionistic deduction:

Definition 6. We say that a predicate P : X → P reduces to A, written P ⪯ A, if there is
a function f : X → F witnessing both P ⪯ A⊨ and P ⪯ A⊢i .

Assuming the law of excluded middle LEM := ∀p : P. p ∨ ¬p would be sufficient to obtain
P ⪯ A⊢c from P ⪯ A⊨, since then A ⊢c φ and A ⊨ φ coincide. In fact, already the soundness
direction is enough for our case studies on PA and ZF, since for them it is still feasible to
verify A ⊢ f x given P x by hand without appealing to completeness.

We now formulate two facts stating the well-known connections of undecidability with
consistency and incompleteness for our synthetic setting. The first observation is that
verifying a reduction from a non-trivial problem is at least as hard as a consistency proof.

Fact 7. If P ⪯ A⊢ and there is x with ¬P x, then A ⊬ ⊥.

Proof. If f : X → F witnesses P ⪯ A⊢, then by ¬P x we obtain A ⊬ f x. This prohibits a
derivation A ⊢ ⊥ by the explosion rule (E). ◀

The second observation is a synthetic version of incompleteness for all axiomatisations
strong enough to express an undecidable problem. We follow the common practice to focus
on incompleteness of the classical deduction system, see Section 7.1 for a discussion.

Definition 8. We call A (negation-)complete if for all closed φ either A ⊢c φ or A ⊢c ¬φ.

Fact 9. If A is complete with A ⊬c ⊥, then λφ.A ⊢c φ is decidable for closed φ. Con-
sequently, if f witnesses P ⪯ A⊢c such that all f x are closed, then P is decidable.
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Proof. By a synthetic version of Post’s theorem ([11, Lemma 2.15]) it suffices to show that
A⊢c is bi-enumerable, i.e. both λφ.A ⊢c φ and λφ.A ⊬c φ are enumerable, and logically
decidable, i.e. A ⊢c φ or A ⊬c φ for all φ. This follows by enumerability of ⊢c and since by
consistency and completeness A ⊬c φ iff A ⊢c ¬φ. The consequence is by Fact 3. ◀

Note that this fact is an approximation of the usual incompleteness theorem in two ways.
First, similar to the synthetic rendering of undecidability, axiomatisations A subject to a
reduction P ⪯ A⊢c for P known to be undecidable are only shown incomplete in the sense that
their completeness would imply decidability of P . Deriving an actual contradiction would rely
on computability axioms (e.g. Church’s thesis [19, 9] or an undecidability assumption [11])
or extraction to a concrete model (e.g. a weak call-by-value λ-calculus [13]). Secondly, the
fact does not produce a witness of an independent formula the way a more informative proof
based on Gödel sentences does. Also note that inconsistent axiomatisations are trivially
decidable, so the requirement A ⊬c ⊥ is inessential (especially given Fact 7).

Next, we outline the general pattern underlying the reductions verified in this paper:
1. We choose an undecidable seed problem P : X → P easy to encode in the domain of the

target axiomatisations. This will be H10 for PA and PCP for ZF.
2. We define the translation function X → F mapping instances x : X to formulas φx in a

way compact enough to be stated without developing much of the internal theory of A.
3. We isolate a finite fragment A ⊆ A of axioms that suffices to implement the main

argument. This yields a reusable factorisation and is easier to mechanise.
4. We verify the semantic part locally by showing for every M with M ⊨ A that P x iff

M ⊨ φx. For the backwards direction, we in fact need to restrict M to satisfy a suitable
property of standardness allowing us to reconstruct an actual solution of P .

5. We construct standard models for A and A, possibly relying on additional assumptions.
6. We verify the deductive part by establishing that P x implies A ⊢ φx, closely following

the semantic proof from before. The backwards direction follows from soundness.
7. We conclude the undecidability of A, A, and any B ⊇ A by virtue of the following:

Theorem 10. Let a problem P : X → P, an axiomatisation A, a notion of standardness
on models M ⊨ A, and a function φ_ : X → F be given with the following properties:

(i) P x implies A ⊨ φx.
(ii) Every standard model M ⊨ A with M ⊨ φx yields P x.
(iii) P x implies A ⊢ φx.

Then P ⪯ B for all B ⊇ A admitting a standard model. Assuming LEM, then also P ⪯ B⊢c .

Proof. We begin with P ⪯ B⊨. That P x implies B ⊨ φx is direct by (i) since every model
of B is a model of A. Conversely, if B ⊨ φx then in particular the assumed standard model
M ⊨ B satisfies φx. Thus we obtain P x by (ii).

Turning to P ⪯ B⊢i , the first direction is again trivial, this time by (iii) and weakening.
For the converse, we assume that B ⊢i φx and hence B ⊨ φx by soundness. Thus we conclude
P x with the previous argument relying on (ii).

Finally assuming LEM, we obtain P ⪯ B⊢c since then already B ⊢c φx implies B ⊨ φx. ◀

Of course (i) follows from (iii) via soundness, so the initial semantic verification could
be eliminated from Theorem 10 and the informal strategy outlined before. However, we
deem it more instructive to first present a self-contained semantic verification without the
overhead introduced by working in a syntactic deduction system, mostly apparent in the
Coq mechanisation. Also note that the necessity of a standard model will be no burden in
the treatment of PA but in the case of ZF this will require a careful analysis of preconditions.
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We end this section with the unsurprising but still important fact that we can reduce
the decision problem for finite axiomatisations A to the classical Entscheidungsproblem of
first-order logic concerning validity and provability in the empty context [16].

Fact 11. For A : L(F) we have A⊨ ⪯ (λφ. ⊨ φ) and A⊢ ⪯ (λφ. ⊢ φ).

Proof. It is straightforward to verify that the function λφ.
∧
A → φ prefixing φ with the

conjunction of all formulas in A establishes both reductions. ◀

So the reductions to finite fragments of PA and ZF presented in the next sections in
particular complement the direct reductions to the Entscheidungsproblem given in [11].

4 Peano Arithmetic

We begin with a rather simple case study to illustrate our general approach to undecidability
and incompleteness. For the theory of Peano arithmetic (PA) we use a signature containing
symbols for the constant zero, the successor function, addition, multiplication and equality:

(O, S_ , _ ⊕ _ , _ ⊗ _ ; _ ≡ _)

The core of PA consists of axioms characterising addition and multiplication:

⊕-base: ∀x.O ⊕ x ≡ x ⊕-recursion: ∀xy. (Sx) ⊕ y ≡ S(x⊕ y)
⊗-base: ∀x.O ⊗ x ≡ O ⊗-recursion: ∀xy. (Sx) ⊗ y ≡ y ⊕ x⊗ y

The list Q′ consisting of these four axioms is strong enough to be undecidable. Undecidability
(and incompleteness) then transport in particular to the (infinite) axiomatisation PA adding

Disjointness: ∀x. Sx ≡ O → ⊥ Injectivity: ∀xy. Sx ≡ Sy → x ≡ y

and the axiom scheme of induction, which we define as a type-theoretic function on formulas:

λφ. φ[O] → (∀x. φ[x] → φ[Sx]) → ∀x. φ[x]

Another typical reference point in the context of incompleteness is Robinson arithmetic Q,
obtained by replacing the induction scheme by the single axiom ∀x. x ≡ O ∨ ∃y. x ≡ Sy.

Hilbert’s 10th problem (H10) is concerned with the solvability of Diophantine equations
and comes as a natural seed problem for showing the undecidability of PA, since the equations
are a syntactic fragment of PA formulas. To be more precise, H10 consists of deciding whether
a Diophantine equation p = q has a solution in the natural numbers N, where p, q are
polynomials constructed by parameters, variables, addition, and multiplication:

p, q ::= an | var k | add p q | mult p q (n, k : N)

The evaluation [[p]]α of a polynomial p for a variable assignment α : N → N is defined by

[[an]]α := n [[var k]]α := αk [[add p q]]α := [[p]]α + [[q]]α [[mult p q]]α := [[p]]α × [[q]]α

and a Diophantine equation p = q then has a solution, if there is α such that [[p]]α = [[q]]α.
Given their syntactic similarity, it is easy to encode H10 into PA, beginning with numerals:

Definition 12. We define ν : N → T recursively by ν(0) := O and ν(n+ 1) := S(ν(n)).
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We now translate polynomials into PA terms by defining p∗ : T recursively:

an
∗ := ν(n) (var k)∗ := xk (add p q)∗ := p∗ ⊕ q∗ (mult p q)∗ := p∗ ⊗ q∗

A Diophantine equation with greatest free variable N can now be encoded as the formula
φp,q := ∃N p∗ ≡ q∗ where we use N leading existential quantifiers to internalise the solvability
condition. The formula φp,q thus asserts the existence of a solution for p = q which gives us
a natural encoding from Diophantine equations into PA.

We prepare the verification of the three requirements (Facts 19, 21, and 24) necessary to
apply Theorem 10 with the following lemma about closed existential formulas:

Lemma 13. If ∃Nφ is closed, then
(i) M ⊨ ∃Nφ iff there is ρ : N → M such that ρ ⊨ φ,
(ii) Γ ⊢ ∃Nφ if there is σ : N → T such that Γ ⊢ φ[σ].

Proof. We only provide some intuition for (i). For the implication from left to right,
the assumption M ⊨ ∃Nφ gives us x1, . . . , xN : M such that ∀ρ. x1; . . . ;xN ; ρ ⊨ φ, so in
particular we have ρ′ ⊨ φ for ρ′ := x1; . . . ;xN ; (λx.OM), showing the claim. For the other
implication, we get ρ with ρ ⊨ φ. By setting ρ′ := λx. ρ(x+N) we have ρ = ρ(0); . . . ; ρ(N); ρ′

and hence there are x1, . . . , xN : M such that x1; . . . ;xN ; ρ′ ⊨ φ. Since φ has at most N free
variables, ρ′ can be exchanged with any other τ : N → M. ◀

By Lemma 13, showing φp,q is equivalent to finding a satisfying environment ρ : N → M
for p∗ ≡ q∗ in a model M or deductively showing that a substitution σ : N → T solves it.
This enables us to transport a solution for p = q to both the model and the deduction system.

We now verify the semantic part of the reduction for the axiomatic fragment Q′. To this
end, we fix a model M ⊨ Q′ for the next definitions and lemmas.

Definition 14. We define µ : N → M by µ(0) := OM and µ(n+ 1) := SM(µ(n)).

The axioms in Q′ are sufficient to prove that µ is a homomorphism.

Lemma 15. For n,m : N, µ(n+m) = µ(n) ⊕M µ(m) and µ(n+m) = µ(n) ⊗M µ(m).

Proof. The proof for addition is done by induction on n : N and using the axioms for
addition in Q′. The proof for multiplication is done in the same fashion, using the axioms
for multiplication and the previous result for addition. ◀

Lemma 16. For any ρ : N → M and n : N we have ρ̂ (ν(n)) = µ(n).

Given an assignment α : N → N, we can transport the evaluation of a polynomial [[p]]α to
any Q′ model by applying µ. The homomorphism property of µ now makes it easy to verify
that we get the same result by evaluating the encoded version p∗ with the composition µ ◦ α.

Lemma 17. For any polynomial p and α : N → N we have (̂µ ◦ α)(p∗) = µ([[p]]α).

Proof. By induction on p, using Lemmas 16 and 17. ◀

Corollary 18. If p = q has a solution α, then in any Q′ model (µ ◦ α) ⊨ p∗ ≡ q∗.

Proof. We have µ([[p]]α) = µ([[q]]α) L.17=⇒ (̂µ ◦ α)(p∗) = (̂µ ◦ α)(q∗) =⇒ (µ◦α) ⊨ p∗ ≡ q∗. ◀

Fact 19. If p = q has a solution, then Q′ ⊨ φp,q.

Proof. Let α be the solution of p = q, then (µ ◦ α) ⊨ p∗ ≡ q∗ holds by Corollary 18 and
since ∃Np∗ ≡ q∗ is closed by construction, the goal follows by Lemma 13. ◀
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Turning to the converse direction, the natural choice for a standard model is the type N.

Lemma 20. N is a model of Q′, Q, and PA.

It is straightforward to extract a solution of p = q if N ⊨ φp,q using the previous lemmas.

Fact 21. If N ⊨ φp,q then p = q has a solution.

Proof. By assumption we have N ⊨ φp,q which by Lemma 13 gives us α : N → N with

α ⊨ p∗ ≡ q∗ =⇒ (̂µ ◦ α)(p∗) = (̂µ ◦ α)(q∗) L.17=⇒ µ([[p]]α) = µ([[q]]α).

Since over N the function µ is simply the identity, we conclude [[p]]α = [[q]]α. ◀

The deductive part of the reduction can be shown analogously to Fact 19, encoding the
proofs of all intermediate results as ND derivations. We just list the relevant statements and
refer to the Coq code for more detail.

Lemma 22. For n,m : N, Q′ ⊢ ν(n+m) ≡ ν(n)⊕ν(m) and Q′ ⊢ ν(n×m) ≡ ν(n)⊗ν(m).

Lemma 23. If p = q has a solution α, then we can deduce Q′ ⊢ (p∗ ≡ q∗)[ν ◦ α].

Fact 24. If p = q has a solution then Q′ ⊢ φp,q.

Now we have all facts in place to verify the reductions with Theorem 10.

Theorem 25. H10 ⪯ Q′, H10 ⪯ Q, and H10 ⪯ PA.

Proof. Since N is a standard model for Q′, Q, and PA, the claims follow by Theorem 10
since we have shown the three necessary conditions in Facts 19, 21, and 24. ◀

As a consequence of these reductions, we can conclude incompleteness as follows:

Theorem 26. Assuming LEM, completeness of any extension A ⊇ Q′ satisfied by the
standard model N would imply the decidability of the halting problem of Turing machines.

Proof. By Theorems 10 and 25, Fact 9, and the reductions verified in [20]. ◀

We close this section with a remark on separating models of Q′, Q, and PA. For any
n : N, the quotient Z/nZ is a model of Q′. So in particular Q′ admits the trivial model and
can hence be completed with ∀xy. x ≡ y, separating it from both Q and PA since they only
admit infinite models and are essentially incomplete. A well-known model separating Q and
PA is obtained by extending N to N∞ with a maximal number ∞.

5 ZF Set Theory with Skolem Functions

Turning to set theory, we first work in a rich signature providing function symbols for the
axiomatic operations of ZF. Concretely, for the rest of this section we fix the signature

Σ := (∅, {_,_},
⋃

_, P(_), ω ; _ ≡ _, _ ∈ _)

with function symbols denoting the empty set, pairing, union, power set, the set of natural
numbers, next to the usual relation symbols for equality and membership. Using such Skolem
functions for axiomatic and other definable operations is common practice in set-theoretic
literature and eases the definition and verification of the undecidability reduction in our case.
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That the undecidability result can be transported to minimal signatures just containing
equality and membership, or even just the latter, is subject of the next section.

We do not list all axioms in detail but refer the reader to Appendix B, the Coq code, and
standard literature (eg. [35]). The only point worth mentioning again is the representation
of axiom schemes as functions F → F, for instance by the separation scheme expressed as

λφ. ∀x. ∃y. ∀z. z ∈ y ↔ z ∈ x ∧ φ[x].

We then distinguish the following axiomatisations:
Z′ is the list containing extensionality and the specifications of the five function symbols.
Z is the (infinite) theory obtained by adding all instances of the separation scheme.
ZF is the theory obtained by further adding all instances of the replacement scheme.

Note that in ZF we do not include the axiom of regularity since this would force the theory
classical and would require to extend Coq’s type theory even further to obtain a model [23].
Alternatively, one could add the more constructive axiom for ϵ-induction, but instead we opt
for staying more general and just leave the well-foundedness of sets unspecified.

Following the general outline for the undecidability proofs in this paper, we first focus on
verifying a reduction to the base theory Z′ and then extend to the stronger axiomatisations
by use of Theorem 10. As a seed problem for this reduction, we could naturally pick just any
decision problem since set theory is a general purpose foundation expressive enough for most
standard mathematics. However, the concrete choice has an impact on the mechanisation
overhead, where formalising Turing machine halting directly is tricky enough in Coq’s type
theory itself, and even a simple problem like H10 used in the previous section would presuppose
a modest development of number theory and recursion in the axiomatic framework. We
therefore base our reduction to Z′ on the Post correspondence problem (PCP) which has a
simple inductive characterisation expressing a matching problem given a finite stack S of
pairs (s, t) of Boolean strings:

(s, t) ∈ S

S ▷ (s, t)
S ▷ (u, v) (s, t) ∈ S

S ▷ (su, tv)
S ▷ (s, s)
PCPS

Informally, S is used to derive pairs (s, t), written S ▷ (s, t) by repeatedly appending the
pairs from the stack componentwise in any order or multitude. The instance S admits a
solution, written PCPS, if a matching pair (s, s) can be derived by this procedure.

Encoding data like numbers and Booleans in set-theoretic terms is standard, using the
usual derived notations for binary union x ∪ y, singletons {x}, and ordered pairs (x, y):

Numbers: 0 := ∅ and n+ 1 := n ∪ {n}
Booleans: tt := {∅} and ff := ∅

Strings: b1, . . . , bn := (b1, (. . . (bn, ∅) . . . ))
Stacks: S := {(s1, t1), . . . , (sm, tm)}

Starting with an informal idea, the solvability condition of PCP can be directly expressed
in set theory by just asserting the existence of a set encoding a match for S:

∃x. (x, x) ∈
⋃

k∈ω

S
k where S

0 = S and S
k+1 = S ⊠ S

k =
⋃

s/t∈S

{(sx, ty) | (x, y) ∈ S
k}

Unfortunately, formalizing this idea is not straightforward, since the iteration operation S
k

is described by recursion on set-theoretic numbers k ∈ ω missing a native recursion principle
akin to the one for type-theoretic numbers n : N. Such a recursion principle can of course be
derived but in our case it is simpler to inline the main construction.

The main construction used in the recursion theorem for ω is a sequence of finite
approximations f accumulating the first k steps of the recursive equations. Since in our case
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we do not need to form the limit of this sequence requiring the approximations to agree, it
suffices to ensure that at least the first k steps are contained without cutting off, namely

f ≫ k := (∅, S) ∈ f ∧ ∀(l, B) ∈ f. l ∈ k → (l ∪ {l}, S ⊠B) ∈ f

where we reuse the operation S⊠B appending the encoded elements of the list S component-
wise to the elements of the set B as specified above. Note that this operation is not really
definable as a function L(B) → T → T and needs to be circumvented by quantifying over
candidate sets satisfying the specification. However, for the sake of a more accessible
explanation, we leave this subtlety to the Coq code and continue using S ⊠B as a function.

Now solvability of S can be expressed formally as the existence of a functional approxim-
ation f of length k containing a match (x, x):

φS := ∃k, f,B, x. k ∈ ω ∧ (∀(l, B), (l, B′) ∈ f.B = B′) ∧ f ≫ k ∧ (k,B) ∈ f ∧ (x, x) ∈ B

We proceed with the formal verification of the reduction function λS. φS by proving the
three facts necessary to apply Theorem 10. Again beginning with the semantic part for
clarity, we fix a model M ⊨ Z′ for the next lemmas in preparation of the facts connecting
PCPS with M ⊨ φS . We skip the development of basic set theory in M reviewable in the
Coq code and only state lemmas concerned with encodings and the reduction function:

Lemma 27. Let n,m : N and s, t : L(B) be given, then the following hold:
(i) M ⊨ n ∈ ω

(ii) M ⊨ n ̸∈ n

(iii) M ⊨ n ≡ m implies n = m

(iv) M ⊨ s ≡ t implies s = t

Proof.
(i) By induction on n, employing the infinity axiom characterising ω.
(ii) Again by induction on n, using the fact that numerals n are transitive sets.
(iii) By trichotomy we have n < m, m < n, or n = m as desired. If w.l.o.g. it were n < m,

then M ⊨ n ∈ m would follow by structural induction on the derivation of n < m. But
then the assumption M ⊨ n ≡ m would yield M ⊨ n ∈ n in conflict with (ii).

(iv) By induction on the given strings, employing injectivity of the encoding of Booleans. ◀

In order to match the structure of iterated derivations encoded in φS , we reformulate
S ▷ (s, t) by referring to the composed derivations Sn of length n, now definable by recursion
on n : N via S0 := S and Sn+1 := S ⊠ Sn reusing the operation ⊠ for lists as expected.

Lemma 28. S ▷ (s, t) iff there is n : N with (s, t) ∈ Sn.

Then the iterations Sn can be encoded as set-level functions fn
S := {(∅, S), . . . , (n, Sn)}

that are indeed recognised by the model M as correct approximations:

Lemma 29. For every n : N we have M ⊨ fn
S ≫ n.

Proof. In this proof we work inside of M to simplify intermediate statements. For the first
conjunct, we need to show that (∅, S) ∈ fn

S which is straightforward since (∅, S) ∈ f0
S and

fm
S ⊆ fn

S whenever m ≤ n. Regarding the second conjunct, we assume (k,B) ∈ fn
S with

k ∈ n and need to show (k ∪ {k}, S ⊠ B) ∈ fn
S . From (k,B) ∈ fn

S we obtain that there
is m with k = m and B = Sm. Then from m ∈ n and hence m < n we deduce that also
(m+ 1, Sm+1) ∈ fn

S . The claim follows since m+ 1 = k ∪ {k} and

Sm+1 = S ⊠ Sn = S ⊠ Sn = S ⊠B

using that the ⊠ operation on lists respecitively sets interacts well with string encodings. ◀
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With these lemmas in place, we can now conclude the first part of the semantic verification.

Fact 30. If PCPS then Z′ ⊨ φS.

Proof. Assuming PCPS, there are s : L(B) and n : N with (s, s) ∈ Sn using Lemma 28. Now
to prove Z′ ⊨ φS we assume M ⊨ Z′ and need to show Z′ ⊨ φS . Instantiating the leading
existential quantifiers of φS with n, fn

S , Sn, and s leaves the following facts to verify:
M ⊨ n ∈ ω, immediate by (i) of Lemma 27.
Functionality of fn

S , straightforward by construction of fn
S .

M ⊨ fn
S ≫ n, immediate by Lemma 29.

M ⊨ (n, Sn) ∈ fn
S , again by construction of fn

S .
M ⊨ (s, s) ∈ Sn, by the assumption (s, s) ∈ Sn. ◀

For the converse direction, we again need to restrict to models M only containing standard
natural numbers, i.e. satisfying that any k ∈ ω is the numeral k = n for some n : N. Then
the internally recognised solutions correspond to actual external solutions of PCP.

Lemma 31. If in a standard model M there is a functional approximation f ≫ k for k ∈ ω

with (k,B) ∈ f , then for all p ∈ B there are s, t : L(B) with p = (s, t) and S ▷ (s, t).

Proof. Since M is standard, there is n : N with k = n, so we have f ≫ n and (n,B) ∈ f .
In any model with f ≫ n we can show that (k, Sk) ∈ f by induction on k, so in particular
(n, Sn) ∈ f in M. But then by functionality of f it must be B = Sn, so for any p ∈ B we
actually have p ∈ Sn for which it is easy to extract s, t : L(B) with p = (s, t) and (s, t) ∈ Sn.
We then conclude S ▷ (s, t) with Lemma 28. ◀

Fact 32. Every standard model M ⊨ Z′ with M ⊨ φS yields PCPS.

Proof. A standard model of Z′ with M ⊨ φS yields a functional approximation f ≫ k for
k ∈ ω with some (k,B) ∈ f and (x, x) ∈ B. Then by Lemma 31 there are s, t : L(B) with
(x, x) = (s, t) and S ▷ (s, t). By the injectivity of ordered pairs and string encodings ((iv) of
Lemma 27) we obtain s = t and thus S ▷ (s, s). ◀

Finally, we just record the fact that the semantic argument in Fact 32 can be repeated
deductively with an analogous intermediate structure.

Fact 33. If PCPS then Z′ ⊢ φS.

With the three facts verifying φS in place, we conclude reductions as follows:

Theorem 34. We have the following reductions.
PCP ⪯ Z′, provided a standard model of Z′ exists.
PCP ⪯ Z, provided a standard model of Z exists.
PCP ⪯ ZF, provided a standard model of ZF exists.

Proof. By Facts 30, 32, and 33 as well as Theorem 10. ◀

In a previous paper [18] based on Aczel’s sets-as-trees interpretation [1, 42, 2], we analyse
assumptions necessary to obtain models of higher-order set theories in Coq’s type theory.
The two relevant axioms concerning the type T of well-founded trees can be formulated as
the extensionality of classes, i.e. unary predicates, on trees (CE), and the existence of a
description operator for isomorphism classes [t]≈ of trees (TD):

CE := ∀(P, P ′ : T → P). (∀t. P t ↔ P ′ t) → P = P ′

TD := ∃(δ : (T → P) → T ). ∀P. (∃t. P = [t]≈) → P (δ P )

Then Theorem 34 can be reformulated as follows.
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Corollary 35. CE implies both PCP ⪯ Z′ and PCP ⪯ Z, and CE ∧ TD implies PCP ⪯ ZF.

Proof. By Fact 5.4 and Theorem 5.9 of [18] CE and CE ∧ TD yield models of higher-order Z
and ZF set theory, respectively. It is easy to show that they are standard models and satisfy
the first-order axiomatisations Z and ZF. ◀

Note that assuming CE to obtain a model of higher-order Z is unnecessary if we allow
the interpretation of equality by any equivalence relation congruent for membership, backed
by the fully constructive model given in Theorem 4.6 of [18]. This variant is included in the
Coq development but we focus on the simpler case of extensional models in this text.

As a consequence of these reductions, we can conclude the incompleteness of ZF.

Theorem 36. Assuming LEM, completeness of any extension A ⊇ Z′ satisfied by a standard
model would imply the decidability of the halting problem of Turing machines.

Proof. By Corollary 35, Theorem 10, Fact 9, and the reductions verified in [10]. ◀

6 ZF Set Theory without Skolem Functions

We now work in the signature Σ̃ := (_ ≡ _, _ ∈ _) only containing equality and membership.
To express set theory in this syntax, we reformulate the axioms specifying the Skolem symbols
used in the previous signature Σ to just assert the existence of respective sets, for instance:

∅ : ∀x. x ̸∈ ∅ ⇝ ∃u. ∀x. x ̸∈ u

P(x) : ∀xy. y ∈ P(x) ↔ y ⊆ x ⇝ ∀x. ∃u. ∀y. y ∈ u ↔ y ⊆ x

In this way we obtain axiomatisations Z̃′, Z̃, and Z̃F as the respective counterparts of Z′, Z,
and ZF. In this section, we show that these symbol-free axiomatisations admit the same
reduction from PCP.

Instead of reformulating the reduction given in the previous section to the smaller
signature, which would require us to replace the natural encoding of numbers and strings as
terms by a more obscure construction, we define a general translation φ̃ : FΣ̃ of formulas
φ : FΣ. We then show that Z̃′ ⊨ φ̃ implies Z′ ⊨ φ (Fact 40) and that Z′ ⊢ φ implies Z̃′ ⊢ φ̃

(Fact 43), which is enough to deduce the undecidability of Z̃′, Z̃, and Z̃F (Theorem 44).
The informal idea of the translation function is to replace terms t : TΣ by formulas φt : FΣ̃

characterising the index x0 to behave like t, for instance:

xn ⇝ x0 ≡ xn+1 ∅ ⇝ ∀ x0 ̸∈ x1 P(t) ⇝ ∃φt[x0; ↑2] ∧ ∀ x0 ∈ x2 ↔ x0 ⊆ x1

The formula expressing P(t) first asserts that there is a set satisfying φt (where the substi-
tution ↑n shifts all indices by n) and then characterises x0 (appearing as x2 given the two
quantifiers) as its power set. Similarly, formulas are translated by descending recursively to
the atoms, which are replaced by formulas asserting the existence of characterised sets being
in the expected relation, for instance:

t ∈ t′ ⇝ ∃φt[x0; ↑2] ∧ ∃φt′ [x0; ↑3] ∧ x1 ∈ x0

We now verify that the translation φ̃ satisfies the two desired facts, starting with the easier
semantic implication. To this end, we denote by M̃ the Σ̃-model obtained from a Σ-model
M by forgetting the interpretation of the function symbols not present in Σ̃. Then for
a model M ⊨ Z′, satisfiability is preserved for translated formulas, given that the term
characterisations are uniquely satisfied over the axioms of Z′:
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Lemma 37. Given M ⊨ Z′, t : T, ρ : N → M, and x : M we have x = ρ̂ t iff (x; ρ) ⊨M̃ φt.

Proof. By induction on t with x generalised. We only consider the cases xn and ∅:
We need to show x = ρ̂ xn iff (x; ρ) ⊨M̃ x0 ≡ xn+1 which is immediate by definition.
First assuming x = ∅, we need to show that ∀y. y ̸∈ x, which is immediate since M
satisfies the empty set axiom. Conversely assuming ∀y. y ̸∈ x yields x = ∅ by using the
extensionality axiom also satisfied by M. ◀

Lemma 38. Given M ⊨ Z′, φ : F, and ρ : N → M we have ρ ⊨M φ iff ρ ⊨M̃ φ̃.

Proof. By induction on φ with ρ generalised, all cases but atoms are directly inductive.
Considering the case t ∈ t′, we first need to show that if ρ̂ t ∈ ρ̂ t′, then there are x and
x′ with x ∈ x′ satisfying φt and φt′ , respectively. By Lemma 37 the choice x := ρ̂ t and
x′ := ρ̂ t′ is enough. Now conversely, if there are such x and x′, by Lemma 37 we know that
x = ρ̂ t and x′ = ρ̂ t′ and thus conclude ρ̂ t ∈ ρ̂ t′. The case of t ≡ t′ is analogous. ◀

Then the desired semantic implication follows since pruned models M̃ satisfy Z̃′:

Lemma 39. If M ⊨ Z′ then M̃ ⊨ Z̃′.

Proof. We only need to consider the axioms concerned with set operations, where we
instantiate the existential quantifiers introduced in Z̃′ with the respective operations available
in M. For instance, to show M̃ ⊨ ∃u. ∀x. x ̸∈ u it suffices to show that ∀x. x ̸∈ ∅ in M̃,
which is exactly the empty set axiom satisfied by M. ◀

Fact 40. Z̃′ ⊨ φ̃ implies Z′ ⊨ φ.

Proof. Straightforward by Lemmas 38 and 39. ◀

We now turn to the more involved deductive verification of the translation, beginning
with the fact that Z̃′ proves the unique existence of sets satisfying the term characterisations:

Lemma 41. For all t : T we have Z̃′ ⊢ ∃φt and Z̃′ ⊢ φt[x] → φt[x′] → x ≡ x′.

Proof. Both claims are by induction on t, the latter with x and x′ generalised. The former is
immediate for variables and ∅, we discuss the case of P(t). By induction we know Z̃′ ⊢ ∃φt

yielding a set x simulating t and need to show Z̃′ ⊢ ∃ ∃φt[x0; ↑2] ∧ ∀ x0 ∈ x2 ↔ x0 ⊆ x1.
After instantiating the first quantifier with the set u guaranteed by the existential power
set axiom for the set x and the second quantifier with x itself, it remains to show φt[x] and
∀ x0 ∈ u ↔ x0 ⊆ x which are both straightforward by the choice of x and u.

The second claim follows from extensionality given that the characterisation φt specifies its
satisfying sets exactly by their elements. So in fact the axioms concerning the set operations
are not even used in the proof of uniqueness. ◀

During translation, substitution of terms can be simulated by substitution of variables:

Lemma 42. Forall φ : F and t : T we have Z̃′ ⊢ φt[x] → (φ̃[x] ↔ φ̃[t]).

Proof. By induction on φ, all cases but the atoms are straightforward, relying on the fact
that the syntax translation interacts well with variable renamings in the quantifier cases.
The proof for atoms relies on a similar lemma for terms stating that φs[y;x] and φs[t][y] are
interchangeable whenever φt[x], then the rest is routine. ◀

The previous lemma is the main ingredient to verify the desired proof transformation:
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Fact 43. Z′ ⊢ φ implies Z̃′ ⊢ φ̃.

Proof. We prove the more general claim that Γ ++ Z′ ⊢ φ implies Γ̃ ++ Z̃′ ⊢ φ̃ by induction
on the first derivation. All rules but the assumption rule (A), ∀-elimination (AE), and
∃-elimination (EE) are straightforward, we explain the former two.

If φ ∈ Γ ++ Z′, then either φ ∈ Γ or φ ∈ Z′. In the former case we have φ̃ ∈ Γ̃, so
Γ̃ ++ Z̃′ ⊢ φ̃ by (A). Regarding the latter case, we can verify Z̃′ ⊢ φ̃ for all φ ∈ Z′ by
rather tedious derivations given the sheer size of some axiom translations.
If Γ ++ Z′ ⊢ φ[t] was derived from Γ ++ Z′ ⊢ ∀φ, then by the inductive hypothesis we
know Γ̃ ++ Z̃′ ⊢ ∀ φ̃. Given Lemma 41 we may assume φt[x] for a fresh variable x. Then
by instantiating the inductive hypothesis to x via (AE) we obtain Γ̃ ++ Z̃′ ⊢ φ̃[x] and
conclude the claim Γ̃ ++ Z̃′ ⊢ φ̃[t] with Lemma 42. ◀

Now the undecidability of the symbol-free axiomatisations can be established.

Theorem 44. CE implies both PCP ⪯ Z̃′ and PCP ⪯ Z̃, and CE ∧ TD implies PCP ⪯ Z̃F.

Proof. Similar to Theorem 10 based on Facts 40 and 43 and the reduction from Section 5. ◀

We conclude this section with a brief observation concerning the further reduced signature
Σ̌ := ( _ ∈ _), full detail can be found in the Coq development. Since equality is expressible
in terms of membership by x ≡ y := ∀z. x ∈ z ↔ y ∈ z, we can rephrase the above translation
to yield formulas φ̌ : FΣ̌ satisfying the same properties as stated in Facts 40 and 43 for a
corresponding axiomatisation Ž′. Moreover, since Ž′ does not refer to primitive equality, we
can freely interpret it with the fully constructive model given in Theorem 4.6 of [18] and
therefore obtain PCP ⪯ Ž′ without assumptions. This allows us to deduce the undecidability
of the Entscheidungsproblem in its sharpest possible form:

Theorem 45. First-order logic with a single binary relation symbol is undecidable.

Proof. By Fact 11 and the reduction PCP ⪯ Ž′. ◀

7 Discussion

7.1 General Remarks
In this paper, we have described a synthetic approach to the formalisation and mechanisation
of undecidability and incompleteness results in first-order logic. The general approach was
then instantiated in two case-studies, one concerned with arithmetic theories in the family
of PA as the typical systems considered in the investigation of incompleteness, and another
one regarding fragments of ZF set theory as one of the standard foundations of mathematics.
The chosen strategy complements the considerably harder to mechanise proofs relying on
Gödel sentences, and for ZF the choice of PCP as seed problem instead of H10 or PA itself is
a slight simplification since only a single recursion needs to be simulated. We use this section
for some additional remarks based on the helpful feedback by the anonymous reviewers.

As formally stated in Definition 8, we only consider incompleteness as a property of the
classical deduction system. This is simply owing to the fact that much of the literature on
incompleteness seems focused on classical logic, with a notable exception of the more agnostic
treatment in [26]. Although likely weaker in general, incompleteness of the intuitionistic
deduction system can also be considered a meaningful property and follows in an analogous
way. Concretely, a corresponding version of Fact 9 holds for the intuitionistic notion, yielding
variants of Theorems 26 and 36 provable without LEM.
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In alignment with [11] but in contrast to [12], we define semantic entailment T ⊨ φ
without restricting to classical models, i.e. models that satisfy all first-order instances of
LEM. In our constructive meta-theory this relaxation is necessary to be able to use the
standard models of PA and ZF, which would only be classical in a classical meta-theory.
Leaving T ⊨ φ in this sense constructively underspecified seems like a reasonable trade for a
more economical usage of LEM.

Similarly, we leave it underspecified whether PA and ZF are seen as classical theories or
their intuitionistic counterparts, namely Heyting arithmetic and a variant of intuitionistic set
theory, respectively. By the choice not to distinguish these explicitly by LEM as a first-order
axiom scheme, we leave it to the deduction system to discriminate between both views while
the Tarski-style semantics emphasises the classical interpretation (especially in the presence
of LEM). For simplicity, we decided to only speak of PA and ZF in the main body of the text,
especially since a discussion of intuitionistic set theories would involve choosing a particular
system. While IZF is an extension of Z′ close to ZF with collection instead of replacement,
the more predicative CZF does not have power sets as included in Z′.

7.2 Coq Mechanisation
Our axiom-free mechanisation contributes 5300loc to the Coq Library of Undecidability
Proofs [14], on top of about 1300loc that could be reused from previous developments [12, 18].
Remarkably, the reduction from H10 to PA consists of only 700loc while already the initial
reduction from PCP to ZF in the skolemised signature is above 1600loc. The remaining
3000loc mostly concern the technically more challenging translations to the sparse signatures
of Z̃′ and Ž′ as well as the use of intensional setoid models for the elimination of CE. By the
latter, the given reductions can be verified constructively up to Z while the local assumption
of TD remains necessary for full ZF. The development is available on our project page (see
link in header) and all statements and some highlighted notations in the PDF version of this
paper are systematically hyperlinked with HTML documentation of the code.

Our mechanisation of first-order logic unifies ideas from previous versions [11, 12, 17]
and is general enough to be reused in other use cases. Notably, we refrained from including
equality as a syntactic primitive to treat both intensional and extensional interpretations
without changing the underlying signature. On the other hand, with primitive equality,
the extensionality of models would hold definitionally and the deduction system could be
extended with the Leibniz rule, making the additional axiomatisation of equality obsolete.

Furthermore, manipulating deductive goals of the form Γ ⊢ φ benefitted a lot from
custom tactics, mostly to handle substitution and the quantifier rules. The former tactics
approximate the automation provided by the Autosubst 2 framework unfortunately relying
on functional extensionality [37] and the latter are based on the named reformulations of (AI)
and (EE) given in Section 2.3. We are currently working on a more scalable proof mode for
deductive goals including a HOAS input language hiding de Bruijn encodings, implementing
a two-level approach in comparison to the one-level compromise proposed by Laurent [21].

7.3 Related Work
We report on other mechanisations concerned with incompleteness and undecidability results
in first-order logic. Regarding the former, a fully mechanised proof of Gödel’s first incom-
pleteness theorem was first given by Shankar [32] using the Nqthm prover. O’Connor [24]
implements the same result fully constructively in Coq, and Paulson [25] provides an Isa-
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belle/HOL mechanisation of both incompleteness theorems using the theory of hereditarily
finite sets instead of a fragment of PA. Moreover, there are several partial mechanisa-
tions [29, 5, 33], and Popescu and Traytel [26] investigate the abstract preconditions of
the incompleteness theorems using Isabelle/HOL. With the independence of the continuum
hypothesis, Han and van Doorn [15] mechanise a specific instance of incompleteness for ZF
in Lean. None of these mechanisations approach incompleteness via undecidability.

Turning to undecidability results, Forster, Kirst, and Smolka [11] mechanise the undecid-
ability of the Entscheidungsproblem in Coq, using a convenient signature to encode PCP, and
Kirst and Larchey-Wendling [17] give a Coq mechanisation of Trakhtenbrot’s theorem [40],
stating the undecidability of finite satisfiability. They also begin with a custom signature for
the encoding of PCP but provide the transformations necessary to obtain the undecidability
result for the minimal signature containing a single binary relation symbol. We are not aware
of any previous mechanisations of the undecidability of PA or ZF.

7.4 Future Work

There are two ways how our incompleteness results (Theorems 26 and 36) could be strengthened.
First, the assumption of LEM is only due to the fact that we need soundness, for instance to
deduce Q′ ⊨ φp,q from Q′ ⊢c φp,q. As done previously [11], it should be possible to employ a
Friedman translation to extract Q′ ⊢i φp,q from Q′ ⊢c φp,q and hence to obtain Q′ ⊨ φp,q con-
structively. Secondly, that supposed negation-completeness only implies synthetic decidability
of a halting problem instead of a provable contradiction could be sharpened by extracting all
reduction functions to a concrete model of computation like the weak call-by-value λ-calculus
L [13]. Then the actual contradiction of an L-decider for L-halting could be derived.

We plan to continue the work on PA with a constructive analysis of Tennenbaum’s
theorem [39], stating that no computable non-standard model of PA exists. Translated to
the synthetic setting where all functions are computable by construction, this would mean
that no non-standard model of PA can be defined in Coq’s type theory as long as function
symbols are interpreted with type-theoretic functions. It will be interesting to investigate
which assumptions are necessary to derive this as a theorem in Coq.

Regarding the reductions to ZF, it should be possible to eliminate the infinite set ω used
to simplify the accumulation of partial solutions. Then the fully constructive and extensional
standard model of hereditarily finite sets [34] would be available. Further eliminating the
power set axiom, segments of this model could be used to obtain a more direct mechanisation
of Trakhtenbrot’s theorem than the previous one using signature transformations [17].

In general, it would be interesting to find a more elementary characterisation of an
undecidable binary relation usable for the sharp formulations of the Entscheidungsproblem
and Trakhtenbrot’s theorem. This might well work without an intermediate axiomatisation
of set theory and express an undecidable decision problem more primitively.

Moreover, by a straightforward extension of the translation in Section 6, one could deduce
the conservativity of ZF over Z̃F, i.e. that if ZF ⊢ φ for φ free of function symbols, then
already Z̃F ⊢ φ. This is an instance of the more general fact that first-order logic with
definable symbols is conservative, which would be a worthwhile addition to our development.

Finally, we plan to mechanise similar undecidability and incompleteness results for second-
order logic. Since second-order PA is categorical, in particular the incompleteness of any
sound and enumerable deduction system for second-order logic would then follow easily.
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A Deduction Systems

Intuitionistic natural deduction Γ ⊢i φ is defined inductively by the following rules:
φ ∈ Γ
Γ ⊢ φ

C Γ ⊢ ⊥
Γ ⊢ φ

E
Γ, φ ⊢ ψ

Γ ⊢ φ → ψ
II

Γ ⊢ φ → ψ Γ ⊢ φ

Γ ⊢ φ
IE

Γ ⊢ φ Γ ⊢ ψ

Γ ⊢ φ ∧ ψ
CI

Γ ⊢ φ ∧ ψ

Γ ⊢ φ
CE1

Γ ⊢ φ ∧ ψ

Γ ⊢ ψ
CE2

Γ ⊢ φ

Γ ⊢ φ ∨ ψ
DI1

Γ ⊢ ψ

Γ ⊢ φ ∨ ψ
DI2

Γ ⊢ φ ∨ ψ Γ, φ ⊢ θ Γ, ψ ⊢ θ

Γ ⊢ θ
DE

Γ[↑] ⊢ φ

Γ ⊢ ∀φ AI
Γ ⊢ ∀φ
Γ ⊢ φ[t] AE

Γ ⊢ φ[t]
Γ ⊢ ∃φ EI

Γ ⊢ ∃φ Γ[↑], φ ⊢ ψ[↑]
Γ ⊢ ψ

EE

The classical variant Γ ⊢c φ adds all instances of the Peirce rule ((φ → ψ) → φ) → φ.

B Axioms of Set Theory

We list the ZF axioms over the signature Σ := (∅, {_,_},
⋃

_, P(_), ω ; _ ≡ _, _ ∈ _):

Structural axioms
Extensionality: ∀xy. x ⊆ y → y ⊆ x → x ≡ y

Set operations
Empty set: ∀x. x ̸∈ ∅
Unordered pair: ∀xyz. z ∈ {x, y} ↔ x ≡ y ∨ x ≡ z

Union: ∀xy. y ∈
⋃
x ↔ ∃z ∈ x. y ∈ z

Power set: ∀xy. y ∈ P(x) ↔ y ⊆ x

Infinity: (∅ ∈ ω ∧ ∀x. x ∈ ω → x ∪ {x} ∈ ω)
∧ (∀y. (∅ ∈ y ∧ ∀x. x ∈ y → x ∪ {x} ∈ y) → ω ⊆ y)

Axiom schemes
Separation: λφ. ∀x. ∃y. ∀z. z ∈ y ↔ z ∈ x ∧ φ[x]
Replacement λφ. (∀xyy′. φ[x, y] → φ[x, y′] → y ≡ y′)

→ ∀x. ∃y. ∀z. z ∈ y ↔ ∃u ∈ x. φ[u, z]

Equality axioms
Reflexivity: ∀x. x ≡ x

Symmetry: ∀xy. x ≡ y → y ≡ x

Transitivity: ∀xyz. x ≡ y → y ≡ z → x ≡ z

Congruence: ∀xx′yy′. x ≡ x′ → y ≡ y′ → x ∈ y → x′ ∈ y′

The core axiomatisation Z′ contains extensionality and the set operation axioms, Z adds
the separation scheme, and ZF also adds the replacement scheme. The equality axioms are
added when working with the deduction system or in an intensional model.
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Abstract
This article presents a bidirectional type system for the Calculus of Inductive Constructions (CIC).
The key property of the system is its completeness with respect to the usual undirected one, which
has been formally proven in Coq as a part of the MetaCoq project. Although it plays an important
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1 Introduction

In logical programming, an important characteristic of judgements is the mode of the objects
involved, i.e., which ones are considered inputs or outputs. When examining this distinction
for a typing judgement Γ ⊢ t : T , both the term t under inspection and the context Γ of
this inspection are usually known, they are thus inputs (although some depart from this,
see [12]). The mode of the type T , however, may vary: should it be inferred based upon Γ
and t, or do we merely want to check whether t conforms to a given T? Both are sensible
approaches, and in fact typing algorithms for complex type systems usually alternate between
them during the inspection of a single term/program. The bidirectional approach makes this
difference between modes explicit, by decomposing undirected1 typing Γ ⊢ t : T into two
separate judgments Γ ⊢ t ▷ T (inference) and Γ ⊢ t ◁ T (checking)2, that differ only by modes.
This decomposition allows theoretical work on practical typing algorithms, but also gives a
finer grained structure to typing derivations, which can be of purely theoretical interest even
without any algorithm in sight.

1 We call anything related to the Γ ⊢ t : T judgement undirected by contrast with the bidirectional typing.
2 We chose ▷ and ◁ rather than the more usual ⇒ and ⇐ to avoid confusion with implication on paper,

and with the Coq notation for functions in the development.
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Although this seems appealing, and despite advocacy by McBride [15, 16] to adopt this
approach when designing type systems, most of the theoretical work on dependent typing to
this day remains undirected. Others have described on paper bidirectional algorithms for
dependent types, starting with Coquand [11] and continuing with Norell [17] or Abel [5].
However, all of these consider unannotated λ-abstractions, and use bidirectional typing as a
way to remedy this lack of annotations. This is sensible when looking for lightness of the
input syntax, but poses an inherent completeness problem, as a term like (λ x.x) 0 does not
type-check against type N in those systems. Very few have considered the case of annotated
abstractions, apart from Asperti and the Matita team [7], who however concentrate on
specific problems pertaining to unification and implementation of the Matita elaborator,
without giving a general bidirectional framework. They also do not consider the problem of
completeness with respect to a given undirected system, as it would fail in their setting due
to the undecidability of higher order unification.

Thus, we wish to fill a gap in the literature, by describing a bidirectional type system that
is complete with respect to the (undirected) Calculus of Inductive Constructions (CIC). By
completeness, we mean that any term that is typable in the undirected system should also infer
a type in the bidirectional one. This feature is very desirable when implementing kernels for
proof assistants, whose algorithms should correspond to their undirected specification, never
missing any typable term. The bidirectional systems we describe thus form intermediate steps
between actual algorithms and undirected type systems. This step has proven useful in an
ongoing completeness proof of MetaCoq’s [23] type-checking algorithm3: rather than proving
the algorithm complete directly, the idea is to prove it equivalent to the bidirectional type
system, separating the implementation problems from the ones regarding the bidirectional
structure.

But the interest of having a bidirectional type system equivalent to the undirected one
is not limited to the link with algorithms, it is also purely theoretical. First, the structure
of a bidirectional derivation is more constrained than that of an undirected one, especially
regarding the uses of computation. This finer structure can make proofs easier, while the
equivalence ensures that they can be transported to the undirected world. For instance, in a
setting with cumulativity/subtyping, the inferred type for a term t should by construction
be smaller than any other types against which t checks. This provides an easy proof of the
existence of principal types in the undirected system. The bidirectional structure also provides
a better base for new type systems. This was actually the starting point for this investigation:
in [13], we quickly describe a bidirectional variant of CIC, as the usual undirected CIC is
unfit for the gradual extension we envision due to the too high flexibility of a free-standing
conversion rule. This is the system we wish to thoroughly describe and investigate here.

Outline. We start by giving in Section 2 a general roadmap in the simple setting of pure
type systems, including the introduction of a constrained inference judgement that had not
been clearly singled out in previous works. With the ideas set clear, we go on to the real thing:
a bidirectional type system proven equivalent to the Predicative Calculus of Cumulative
Inductive Constructions – PCUIC, the extension of CIC nowadays at the heart of Coq. This
equivalence has been formalised on top of MetaCoq [24]4 We next turn back to less technical

3 A completeness bug in that algorithm – also present in the Coq kernel – has already been found, see
Section 3 for details.

4 A version frozen as described in this article is available in the following git branch: https://github.
com/MevenBertrand/metacoq/tree/itp-artefact.

https://github.com/MevenBertrand/metacoq/tree/itp-artefact
https://github.com/MevenBertrand/metacoq/tree/itp-artefact
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considerations, as we believe that the bidirectional structure is of general theoretical interest.
Section 4 thus describes the value of basing type systems on the bidirectional system directly
rather than on the equivalent undirected one. Finally Section 5 investigates related work,
and in particular tries and identify the implicit presence of constrained inference in various
earlier articles, showing how making it explicit clarifies those.

2 Warming up with CCω

2.1 Undirected CCω

As a starting point, let us consider the system CCω. It is the backbone of CIC, and we
can already illustrate most of our methodology on it. CCω belongs to the wider class of
pure type systems (PTS), that has been thoroughly studied and described, see for instance
[8]. Since there are many presentational variations, let us first give a precise account of our
conventions. Terms in CCω are given by the grammar

t ::= x | □i | Π x : t.t | λ x : t.t | t t

where the letter x denotes a variable (so will letters y and z), and the letter i is an integer
(we will also use letters j, k and l for those). All other Latin letters will be used for terms,
with the upper-case ones used to suggest the corresponding terms should be though of as
types – although this is not a syntactical separation. We abbreviate Π x : A.B by A → B

when B does not depend on x, as is customary. On those terms, reduction ⇝ is defined as
the least congruence such that (λ x : T.t) u⇝ t[x := u], where t[x := u] denotes substitution.
Conversion ≡ is the symmetric, reflexive, transitive closure of reduction. Finally, contexts are
lists of variable declarations x : t and are denoted using capital Greek letters. We write · for
the empty list, Γ, x : T for concatenation, and (x : T ) ∈ Γ if (x : T ) appears in Γ. Combining
those, we can define typing Γ ⊢ t : T as in Figure 1, where i∨ j denotes the maximum of i and
j. We say a context Γ is well-formed if ⊢ Γ, a type T is well-formed in a context Γ if there
exists i such that Γ ⊢ T : □i, and a term is well-formed in a context Γ if there exists T such
that Γ ⊢ t : T . We also use well-typed for the latter, and leave the context implicit for the
last two when it is clear from context. These rules differ from more usual PTS presentations
such as [8] on the Var and Sort rules so as to avoid general weakening (which is however
admissible) and single out the context well-formedness judgment. Premises are not minimal
in order to provide more generous inductive hypotheses when doing proofs by induction on
derivations. However, this presentation can easily be seen to be equivalent to that of [8].

As any PTS, CCω has many desirable properties. We summarize the ones we rely on
here. Detailed proofs in the context of PTS can be found in [8], and formalisation of the
corresponding properties for PCUIC are an important part of MetaCoq.

▶ Proposition 1 (Properties of CCω). The type system CCω as just described enjoys the
following properties:
Confluence Reduction ⇝ is confluent. As a direct consequence, two terms are convertible

just when they have a common reduct: t ≡ u if and only if there exists t′ such that t⇝∗ t′

and u⇝∗ t′.
Transitivity Conversion is transitive.
Subject reduction If Γ ⊢ t : T and t⇝ t′ then Γ ⊢ t′ : T .
Validity If Γ ⊢ t : T then T is well-formed, e.g. there exists some i such that Γ ⊢ T : □i.

ITP 2021
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⊢ Γ

⊢ ·
Empty

⊢ Γ Γ ⊢ A : □i

⊢ Γ, x : A
Ext

Γ ⊢ t : T

⊢ Γ
Γ ⊢ □i : □i+1

Sort
⊢ Γ (x : A ∈ Γ)

Γ ⊢ x : A
Var

Γ ⊢ A : □i Γ, x : A ⊢ B : □j

Γ ⊢ Π x : A.B : □i∨j

Prod

Γ ⊢ Π x : A.B : □i Γ, x : A ⊢ t : B

Γ ⊢ λ x : A.t : Π x : A.B
Abs

Γ ⊢ t : Π x : A.B Γ ⊢ u : A

Γ ⊢ t u : B[x := u]
App

Γ ⊢ t : A Γ ⊢ B : □i A ≡ B

Γ ⊢ t : B
Conv

Figure 1 Undirected typing for CCω.

2.2 Turning CCω Bidirectional

McBride’s discipline. To design our bidirectional type system, we follow a discipline exposed
by McBride [15, 16]. The central point is to distinguish in a judgment between the subject,
whose well-formedness is under scrutiny, from inputs, whose well-formedness is a condition
for the judgment to behave well, and outputs, whose well-formedness is a consequence of
the judgment. For instance, in inference Γ ⊢ t ▷ T , the subject is t, Γ is an input and T is
an output. This means that one should consider whether Γ ⊢ t ▷ T only in cases where ⊢ Γ
is already known, and if the judgment is derivable it should be possible to conclude that
both t and T are well-formed. All inference rules are to preserve this invariant. This means
that inputs to a premise should be well-formed whenever the inputs to the conclusion and
outputs and subjects of previous premises are. Similarly the outputs of the conclusion should
be well-formed if the inputs of the conclusion and the subjects and outputs of the premises
are assumed to be so.

This distinction also applies to the computation-related judgments, although those have
no subject. For conversion T ≡ T ′ both T and T ′ are inputs, and thus should be known to
be well-formed beforehand. For reduction T ⇝∗ T ′, T is an input and T ′ is an output, so
only T needs to be well-formed, with the subject reduction property of the system ensuring
that the output T ′ is also well-formed.

Constrained inference. Beyond the already described inference and checking judgements
another one appears in the bidirectional typing rules of Figure 2: constrained inference,
written Γ ⊢ t ▷h T , where h is either Π or □ – and will be extended once we introduce more
type formers. Constrained inference is a judgement – or, rather, a family of judgements
indexed by h – with the exact same modes as inference, but where the type output is not
completely free. Rather, as the name suggests, a constraint is imposed on it, namely that its
head constructor can only be the corresponding element of h. This is needed to handle the
behaviour absent in simple types that some terms might not have a desired type “on the
nose”, as exemplified by the first premise Γ ⊢ t ▷Π Π x : A.B of the App rule for t u. Indeed,
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Inference: Γ ⊢ t ▷ T

Γ ⊢ □i ▷□i+1
Sort

(x : T ) ∈ Γ
Γ ⊢ x ▷ T

Var
Γ ⊢ A ▷□ □i Γ, x : A ⊢ B ▷□ □j

Γ ⊢ Π x : A.B ▷□i∨j

Prod

Γ ⊢ A ▷□ □i Γ, x : A ⊢ t ▷ B

Γ ⊢ λ x : A.t ▷ Π x : A.B
Abs

Γ ⊢ t ▷Π Π x : A.B Γ ⊢ u ◁ A

Γ ⊢ t u ▷ B[x := u]
App

Checking: Γ ⊢ t ◁ T

Γ ⊢ t ▷ T ′ T ′ ≡ T

Γ ⊢ t ◁ T
Check

Constrained inference: Γ ⊢ t ▷h T

Γ ⊢ t ▷ T T ⇝∗ □i

Γ ⊢ t ▷□ □i

Sort-Inf
Γ ⊢ t ▷ T T ⇝∗ Π x : A.B

Γ ⊢ t ▷Π Π x : A.B
Prod-Inf

Figure 2 Bidirectional typing for CCω.

it would be too much to ask t to directly infer a Π-type, as some reduction might be needed
on T to uncover this Π. Checking also cannot be used, because the domain and codomain of
the tentative Π-type are not known at that point: they are to be inferred from t.

Structural rules. To transform the rules of Figure 1 to those of Figure 2, we start by
recalling that we wish to obtain a complete bidirectional type system. Therefore any term
should infer a type, and thus all structural rules (i.e. all rules where the subject of the
conclusion starts with a term constructor) should give rise to an inference rule. It thus
remains to choose the judgements for the premises, which amounts to determining their
modes. If a term in a premise appears as input in the conclusion or output of a previous
premise, then it can be considered an input, otherwise it must be an output. Moreover, if
a type output is unconstrained, then inference can be used, otherwise we must resort to
constrained inference.

This applies straightforwardly to most rules but the PTS-style Abs. Indeed, neither
Γ ⊢ Π x : A.B : □i nor Γ, x : A ⊢ t : B can be taken as the first bidirectional premise: the
first one because B is not known from inputs to the conclusion, and the second because
context Γ, x : A is not known to be well-formed from the conclusion. For general PTS, this is
quite problematic, as demonstrated by Pollack [19]. For CCω, however, the solution is simple.
Replacing Γ ⊢ Π x : A.B : □i by the equivalent Γ ⊢ A : □j and Γ, x : A ⊢ B : □j′ , the former
can become the first premise, ensuring that type inference for t is done in a well-formed
context, and the latter can be dropped based upon the invariant that outputs – here the
type B inferred for t – are well-formed.

Similarly, as the context is always supposed to be well-formed as an input to the conclusion,
it is not useful to re-check it, and thus the premise of Sort and Var can be safely dropped.
This is in line with implementations, where the context is not re-checked at leaves of a
derivation tree, with performance issues in mind. The well-formedness invariants then
ensure that any derivation starting with the (well-formed) empty context will only handle
well-formed contexts.

ITP 2021
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Computation rules. We are now left with the non-structural conversion rule. As we
observed, there are two possible modes for computation: if both sides are inputs, conversion
can be used, but if only one is known one must resort to reduction, and the other side
becomes an output instead. Rule Check corresponds to the first case, while rules Prod-Inf
and Sort-Inf both are in the second case. This difference in turn introduces the need
to separate between checking, that calls for the first rule, and constrained inference, that
requires the others.

The need to split the conversion rule into a (weak-head) reduction and conversion
subroutine depending on the mode is known to the implementors of proof assistants [2].
However, we wish to de-emphasize the role devoted specifically to reduction in the description
of those algorithms, instead putting constrained inference forward. Indeed, reduction is
only a means to determine whether a certain term fits into a certain category of types. In
the setting of CCω, there is mainly one way to do so, which is to reduce its type until its
head constructor is exposed. However, as soon as conversion is extended, for instance with
unification [7], coercions [7, 22] or graduality [13], reduction is not enough any more. Singling
out constrained inference then makes the required modification to the typing rules clearer.
We come back to this more in length in Section 5.1.

2.3 Properties
Let us now state the two main properties relating the bidirectional system to the undirected
one: it is both correct (terms typable in the bidirectional system are typable in the undirected
system) and complete (all terms typable in the undirected system are also typable in the
bidirectional system).

2.3.1 Correctness
A bidirectional derivation can be seen as a refinement of an undirected derivation. Indeed, the
bidirectional structure can be erased – replacing each bidirectional rule with the corresponding
undirected rule – to obtain an undirected derivation, but for missing sub-derivations, which
can be retrieved using the invariants on well-formedness of inputs and outputs. Thus,
we get the following correctness theorem – note how McBride’s discipline manifests as
well-formedness hypothesis on inputs.
▶ Theorem 2 (Correctness of bidirectional typing for CCω). If Γ is well-formed and Γ ⊢ t ▷ T

or Γ ⊢ t ▷h T then Γ ⊢ t : T . If Γ and T are well-formed and Γ ⊢ t ◁ T then Γ ⊢ t : T .
Proof. The proof is by mutual induction on the bidirectional typing derivation.

Each rule of the bidirectional system can be replaced by the corresponding rule of the
undirected system, with all three Check, Prod-Inf and Sort-Inf replaced by Conv,
Abs using an extra Prod rule. In all cases, the induction hypothesis can be used on
sub-derivations of the bidirectional judgment because the context extensions and checking
are done with types that are known to be well-formed by induction hypothesis on previous
premises and validity.

Some sub-derivations of the undirected rules that have no counterpart in the bidirectional
ones are however missing. In rules Sort and Var the hypothesis that ⊢ Γ is enough to
get the required premise. For rule Check, the well-formedness hypothesis on the type is
needed to get the second premise of rule Conv. As for Prod-Inf and Sort-Inf, that second
premise is obtained using the induction hypothesis, validity and subject reduction. Finally,
the missing premise on the codomain of the product type in rule Abs is obtained by validity.

Uses of validity could alternatively be handled by strengthening the theorem to incorporate
the well-formedness of types when they are outputs. ◀
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2.3.2 Completeness
Let us now state the most important property of our bidirectional system: it does not miss
any undirected derivation.

▶ Theorem 3 (Completeness of bidirectional typing for CCω). If Γ ⊢ t : T then there exists T ′

such that Γ ⊢ t ▷ T ′ and T ′ ≡ T .

Proof. The proof is by induction on the undirected typing derivation.
Rules Sort and Var are base cases, and can be replaced by the corresponding rules in

the bidirectional world. Rule Conv is a direct consequence of the induction hypothesis on
its first premise, together with transitivity of conversion.

For rule Prod, we need the intermediate lemma that if T is a term such that T ≡ □i,
then also T ⇝∗ □i. This is a consequence of confluence of reduction. In turn, it implies that
if Γ ⊢ t ▷ T and T ≡ □i then Γ ⊢ t ▷□ □i, and is enough to conclude for that rule.

In rule Abs, the induction hypothesis gives Γ ⊢ Π x : A.B ▷T for some T , and an inversion
on this gives Γ ⊢ A ▷□□i for some i. Combined with the second induction hypothesis, we get
Γ ⊢ λ x : A.t ▷ Π x : A.B′ for some B′ such that B ≡ B′, and thus Π x : A.B ≡ Π x : A.B′ as
desired.

We are finally left with the App rule. We know that Γ ⊢ t ▷ T with T ≡ Π x : A.B.
Confluence then implies that T ⇝∗ Π x : A′.B′ for some A′ and B′ such that A ≡ A′ and
B ≡ B′. Thus Γ ⊢ t▷Π Π x : A′.B′. But by induction hypothesis we also know that Γ ⊢ u▷A′′

with A′′ ≡ A and so by transitivity of conversion Γ ⊢ u ◁ A′. We can thus apply App to
conclude. ◀

Contrarily to correctness, which kept a similar derivation structure, completeness is of
a different nature. Because in bidirectional derivations the conversion rules are much less
liberal than in undirected derivations, the crux of the proof is to ensure that conversions can
be permuted with structural rules, in order to concentrate them in the places where they are
authorized in the bidirectional derivation. In a way, composing completeness with conversion
gives a kind of normalization procedure that produces a canonical undirected derivation by
pushing all conversions down as much as possible.

2.3.3 Reduction strategies
The judgements of Figure 2 are syntax-directed, in the sense that there is always at most
one rule that can be used to derive a certain typing judgements. But with the rules as
given there is still some indeterminacy. Indeed when appealing to reduction no strategy is
fixed, thus two different reducts give different uses of the rule, resulting in different inferred
types – although those are still convertible. However, a reduction strategy can be imposed
to completely eliminate indeterminacy in typing, leading to the following.

▶ Proposition 4 (Reduction strategy). If ⇝∗ is replaced by weak-head reduction in rules
Sort-Inf and Prod-Inf, then given a well-formed context Γ and a term t there is at most
one derivation of Γ ⊢ t ▷ T and Γ ⊢ t ▷h T , and so in particular such a T is unique. Similarly,
given well-formed Γ and T and a term t there is at most one derivation of Γ ⊢ t◁T . Moreover,
the existence of those derivations is decidable.

The algorithm for deciding the existence of the derivations is straightforward from the
bidirectional rules, it amounts to structural recursion on the subject.

ITP 2021
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3 From CCω to PCUIC

CCω is already a powerful system, but today’s proof assistants rely on much more complex
features. There are two main areas of differences between CCω and the Predicative Calculus
of Cumulative Inductive Constructions (PCUIC), the type theory nowadays behind the
Coq proof assistant. Adapting to those is a good stress test for the bidirectional approach:
seamlessly doing so is a good sign that the general methodology we presented is robust.

The first area of difference are the universes. While on paper those are simply integer,
to handle typical ambiguity and polymorphic (co)-inductive types, PCUIC uses algebraic
universes, containing level variables, algebraic ∨ and +1 operators, and a special level for
the sort Prop. Moreover, those universes are cumulative, that is they behave as if smaller
universes were included in larger ones. The precise handling of the algebraic universes is
abstracted away in MetaCoq, and quite similar in the directed and undirected systems, so it
did not prove too difficult to handle. Cumulativity, however, introduces some not-so-small
differences with the previous presentation, so we spend some time on it in Section 3.1.

The second is the addition of new base type and term constructors. We describe the
treatment of inductive types in Section 3.2. Co-inductive types and records behave very
similarly to inductive types at the level of typing, so we do not dwell on them. The difference
lies mainly at the level of reduction/conversion, but as our type system treats those as black
boxes the differences have a negligible impact.

The interplay between those two areas is quite subtle, and we were able to uncover an
incompleteness bug in the current kernel of Coq regarding pattern-matching of cumulative
inductive types. This bug had gone unnoticed until our formalisation, but was causing
subject reduction failures in some corner cases5. We try and give an intuition of the problem
in Section 3.2.

3.1 Cumulativity
PCUIC incorporates a limited form of subtyping, corresponding to the intuition that smaller
universes are included in larger ones. Conversion ≡ is therefore replaced by cumulativity
⪯, the main difference being that the constraint on universes is relaxed. For conversions
□i ≡ □j only when i = j, but for cumulativity □i ⪯ □j whenever i ≤ j – and this extends
by congruence through most constructors. The conversion rule is accordingly replaced by
the following cumulativity rule

Γ ⊢ t : A Γ ⊢ B : □i A ⪯ B

Γ ⊢ t : B
Cumul

This reflects the view that universes □i should be included one in the next when going up in
the hierarchy. In CCω, all types for a given term t in a fixed context Γ are equally good, as
they are all convertible. This is not the case any more in presence of cumulativity, as we can
have T ⪯ T ′ but not T ≡ T ′. Of particular interest are principal types, defined as follows.

▶ Definition 5 (Principal type). The term T is called a principal type for term t in context
Γ if it is a least type for t in Γ, that is if Γ ⊢ t : T and for any T ′ such that Γ ⊢ t : T ′ we
have T ⪯ T ′.

5 The precise issue in the kernel is described in this git issue: https://github.com/coq/coq/issues/
13495.

https://github.com/coq/coq/issues/13495
https://github.com/coq/coq/issues/13495
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The existence of such principal types is no so easy to prove directly but quite useful, as
they are in a sense the best types for any terms. Indeed, if T is a principal type for t in
Γ and T ′ is any other type for t, the Cumul rule can be used to deduce Γ ⊢ t : T ′ from
Γ ⊢ t : T , which in general is not the case if T is not principal. Similarly, if T and T ′ are two
types for a term t, then they are not directly related, but the existence of principal types
ensures that there exists some T ′′ that is a type for t and such that T ⪯ T ′ and T ⪯ T ′′,
indirectly relating T ′ and T ′′.

Reflecting this modification in the bidirectional system of course calls for an update to
the computation rules. The change to the Check rule is direct: simply replace conversion
with cumulativity.

Γ ⊢ t ▷ A A ⪯ B

Γ ⊢ t ◁ B
Cumul

As to the constrained inference rules, there is no need to modify them. Intuitively, this is
because there is no reason to degrade a type to a larger one when it is not needed. We
only resort to cumulativity when it is forced by a given input. In that setting, completeness
becomes the following:

▶ Theorem 6 (Completeness with cumulativity). If Γ ⊢ t : T using rules of Figure 1 replacing
Conv with Cumul, then Γ ⊢ t ▷ T ′ is derivable with rules of Figure 2 replacing Check with
Cumul for some T ′ such that T ′ ⪯ T .

In that setting, even without fixing a reduction strategy as in Proposition 4, there is a
weaker uniqueness property for inferred types.

▶ Proposition 7 (Uniqueness of inferred type). If Γ is well-formed, Γ ⊢ t ▷ T and Γ ⊢ t ▷ T ′

then T ≡ T ′. Similarly if Γ is well-formed, Γ ⊢ t ▷h T and Γ ⊢ t ▷h T ′ then T ≡ T ′.

Proof. Mutual induction on the first derivation. It is key that constrained inference rules
only reduce a type, so that the type in the conclusion is convertible to the type in the premise,
rather than merely related by cumulativity. ◀

In particular, combining those two properties with a correctness property akin to The-
orem 2, we can prove that any inferred type is principal, and so that they both exist and are
computable since the bidirectional judgement can still be turned into an algorithm in the
spirit of Proposition 4.

▶ Proposition 8 (Principal types). If Γ is well-formed and Γ ⊢ t ▷ T then T is a principal
type for t in Γ.

Proof. If Γ ⊢ t : T ′, then by completeness there exists some T ′′ such that Γ ⊢ t ▷ T ′′ and
moreover T ′′ ⪯ T ′. But by uniqueness T ≡ T ′′ ⪯ T ′ and thus T ⪯ T ′, and T is indeed a
principal type for t in Γ. ◀

Reasoning on the bidirectional derivation thus makes proofs easier, while the correctness
and completeness properties ensure they can be carried to the undirected system. Another
way to understand this is that seeing completeness followed by correction as a normalization
procedure on derivations, the produced canonical derivation is more structured and thus
more amenable to proofs. Here for instance the uniqueness of the inferred type translates
to the existence of principal types via correctness, and the normalization of the derivations
optimizes it to derive a principal type.
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Γ ⊢ A : □i Γ, x : A ⊢ B : □j

Γ ⊢ Σ x : A.B : □i∨j

Σ-type

Γ ⊢ A : □i Γ, x : A ⊢ B : □j Γ ⊢ a : A Γ ⊢ b : B[x := a]
Γ ⊢ (a, b)A,x.B : Σ x : A.B

Σ-cons

Γ, z : Σ x : A.B ⊢ P : □i Γ, x : A, y : B ⊢ b : P [z := (x, y)] Γ ⊢ s : Σ x : A.B

Γ ⊢ recΣ(z.P, x.y.p, s) : P [z := s]
Σ-rec

Figure 3 Undirected sum type.

Γ ⊢ t ▷ T

Γ ⊢ A ▷□ □i Γ, x : A ⊢ B ▷□ □j

Γ ⊢ Σ x : A.B ▷□i∨j

Σ-type

Γ ⊢ A ▷□ □i Γ, x : A ⊢ B ▷□ □j Γ ⊢ a ◁ A Γ ⊢ b ◁ B[x := a]
Γ ⊢ (a, b)A,x.B ▷ Σ x : A.B

Σ-cons

Γ ⊢ s ▷Σ Σ x : A.B Γ, z : Σ x : A.B ⊢ P ▷□ □i

Γ, x : A, y : B ⊢ b ◁ P [z := (x, y)]
Γ ⊢ recΣ(z.P, x.y.b, s) ▷ P [z := s]

Σ-rec

Γ ⊢ t ▷h T

Γ ⊢ t ▷ T T ⇝∗ Σ x : A.B

Γ ⊢ t ▷Σ Σ x : A.B
Σ-Inf

Figure 4 Bidirectional sum type.

3.2 Inductive Types

Sum type. Before we turn to the general case of inductive types of the formalisation, let us
present a simple inductive type: dependent sums. The undirected rules are given in Figure 3,
and are inspired from the theoretical presentation of such dependent sums, such at the one
of the Homotopy Type Theory book [26]. In particular, we use the same convention to
write y.P when variable y is bound in P . Note however that contrarily to [26], some typing
information is kept on the pair constructor. Exactly as for the abstraction, this is to be
able to infer a unique, most general type in the bidirectional system. Indeed, without that
information a pair (a, b) could inhabit multiple types Σ x : A.B because there are potentially
many incomparable types B such that B[x := a] is a type for b, as even if B[x := a] and
B′[x := a] are convertible B and B′ may be quite different, depending of which instances of
a in B[x := a] are abstracted to x.

To obtain the bidirectional rules of Figure 4, first notice that all undirected rules are
structural and must thus become inference rules if we want the resulting system to be
complete, just as in Section 2. The question therefore is again to know which modes to



M. Lennon-Bertrand 24:11

choose for the premises. For Σ-type and Σ-cons this is straightforward: when the type
appears in the conclusion, use checking, otherwise (constrained) inference. The case of the
destructors is somewhat more complex. Handling the subterms of the destructor in the order
in which they usually appear (predicate, branches and finally scrutinee) is not possible, as the
parameters of the inductive type are needed to construct the context in which the predicate
is typed. However those parameters can be inferred from the scrutinee. Thus, a type for the
scrutinee is first obtained using a new constrained inference judgment, forcing the inferred
type to be a Σ-type, but leaving its parameters free. Next, the obtained arguments can be
used to construct the context to type the predicate. Finally, once the predicate is known to
be well-formed, it can be used to type-check the branch.

Γ ⊢ t ▷ T

Γ ⊢ N ▷□0 Γ ⊢ 0 ▷ N
Γ ⊢ n ◁ N

Γ ⊢ S(n) ▷ N

Γ ⊢ s ▷N N
Γ, z : N ⊢ P ▷□ □i Γ ⊢ b0 ◁ P [z := 0] Γ, x : N, p : P [z := x] ⊢ bS ◁ P [z := S(x)]

Γ ⊢ recN(z.P, b0, x.p.bS, s) ▷ P [z := s]

Γ ⊢ A ▷□ □i Γ ⊢ a ◁ A Γ ⊢ a′ ◁ A

Γ ⊢ IdA a a′ ▷□i

Γ ⊢ A ▷□ □i Γ ⊢ a ◁ A

Γ ⊢ reflA a ▷ IdA a a

Γ ⊢ s ▷ IdA a a′ Γ, x : A, z : IdA a x ⊢ P ▷□ □i Γ ⊢ b ◁ P [z := IdA a a][x := a]
Γ ⊢ recId(x.z.P, b, s) ▷ P [z := s][x := a′]

Γ ⊢ t ▷h T

Γ ⊢ t ▷ T T ⇝∗ N
Γ ⊢ t ▷N N

Γ ⊢ t ▷ T T ⇝∗ IdA a a′

Γ ⊢ t ▷Id IdA a a′

Figure 5 Other bidirectional inductive types.

This same approach can be readily extended to other usual inductive types, with recursion
or indices posing no specific problems, see Figure 5. The choice to use ▷□ rather than ◁ for
types is guided by the intuition that the universe level of e.g. A in IdA a a′ is free, similarly
to what happens for sum types.

Polymorphic, Cumulative Inductive Types. The account of general inductive types in
PCUIC is quite different from the one we just gave. The main addition is universe polymorph-
ism [25], which means that inductive types and constructors come with explicit universe
levels. The Σ-type of the previous paragraph, for instance, would contain an explicit universe
level i, and both A and B would be checked against □i rather than having their level inferred.
This makes the treatment of complex inductive types possible by using checking uniformly –
rather than relying on constrained inference to infer universe levels – at the cost of possibly
needless annotations, as here with Σ-types. To make that polymorphism more seamless, those
polymorphic inductive types are also cumulative [27]: in much the same way as □i ⪯ □j if
i ≤ j, also N@i ⪯ N@j , where N@i denotes the polymorphic inductive N at universe level i.
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Γ ⊢ t ▷ T

Γ ⊢ I@i ▷ Π(x : X@i)(y : Y@i),□l@i
Ind

Γ ⊢ c@i
k ▷ Π(x : X@i)(y : Yk

@i), I@i x u@i
k

Cons

Γ ⊢ s ▷I I@i′
a b Γ ⊢ pk ◁ X@i

k [x := p]
Γ, y : Y@i[x := p], z : I@i p y ⊢ P ▷□ □j

I@i′
a b ⪯ I@i p b Γ, y : Yk

@i[x := p] ⊢ tk ◁ P [y := uk
@i][z := c@i

k p y]
Γ ⊢ match s in(I, i, p) return P with[t] ▷ P [y := b][z := s]

Match

Γ ⊢ T ▷□ □i Γ, f : T ⊢ t ◁ T guard condition
Γ ⊢ fix f : T := t ▷ T

Fix

Γ ⊢ t ▷I T

Γ ⊢ t ▷ T T ⇝ I a b
Γ ⊢ t ▷I I a b

Figure 6 Bidirectional inductive type – PCUIC style.

This enables lifting from a lower universe to a higher one, so that for instance ⊢ 0@i : N@j if
i ≤ j. PCUIC as presented in MetaCoq also presents constructors and inductive types as
functions, rather than requiring them to be fully applied, and it separates recursors into a
pattern-matching and a fixpoint construct, the latter coming with a specific guard condition
to keep the normalization property enjoyed by a system with recursors.

A sketch of the bidirectional rules is given in Figure 6, for a generic inductive I. We use
bold characters to denote lists – for instance a is a list of terms – and indexes to denote a
specific element – so that ak is the k-th element of the previous. The considered inductive I

has parameters of type X, indices of type Y and inhabits some universe □l. Its constructors
ck are of types Π(x : X)(y : Yk), I x u, with uk terms possibly depending on both x and
y. Since we are considering a polymorphic inductive type, all of those actually have to be
instantiate with universe levels, an operation we denote with @i.

The two rules Ind, Cons are similar to those for variables, with the types pulled out of a
global environment – not represented in our rules – rather than of the context. In particular,
this presentation completely fixes the universe levels of the arguments. In rule Fix, the
type of the fixpoint is checked to be well-formed, and then the body is checked against it.
The guard condition, although complex, does not vary between the directed and undirected
systems, and we thus do not dwell on it. The formalised version of this rule is complicated
by the need to consider mutual (co-)fixpoints, but follows the same pattern.

Last but not least, Match follows the same structure as in Figures 4 and 5: first, the
type of the scrutinee is inferred, then the predicate is verified to be a type and finally the
branches are checked. An important point is how much information can be retrieved from
the scrutinee s. Indeed, the universe levels i and the parameters p used to build the context
in which the predicate P and branches t are typed are stored in the match constructor.
For cumulative inductive types, this is crucial to retain equivalence between the undirected
and bidirectional system, and wrongly building the context from the type inferred for the
scrutinee led to the bug we discovered. The idea is that the match construction might need
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to be typed “higher” than the type of inferred for s to be able to type P and t. Subsequently,
a cumulativity check not appearing in the examples above is needed to ensure that the
scrutinee checks against the type constructed using i and p. In contrast with parameters,
the inferred indices b can safely be used in the return type, but proving this is the most
subtle part of the correctness proof.

3.3 The formalisation
Let us now go over the formalisation file by file.

BDEnvironmentTyping.v & BDTyping.v. The first file refines a few definitions on contexts
from EnvironmentTyping.v in order to account for the difference between checking and
constrained inference. We expect this to eventually replace the less precise definitions.

The second contains the definition of the bidirectional type system as a mutually defined
inductive type whose main part is infering. The best way to understand this inductive is
probably to compare it with typing, the inductive predicate for undirected typing.

We then go on to proving by hand a custom induction principle, by first introducing a
notion of size of a derivation. This induction principle is not as strong as we might expect,
as it does not provide the extra induction hypothesis on context and type that would go
with McBride’s discipline. We did not try to go and prove such a strong induction principle,
as we did not need it. Instead, reflecting the discipline in the choice of the predicates proven
by induction was enough. But the main reason was that proving such an induction principle
effectively corresponds to an inline proof of validity, a property that required quite an
important amount of work to get. We still conjecture that such a strong induction principle
should be provable, by reproducing some of the lemmas on the undirected typing, with
extra care taken to the size of the obtained typing derivations, so as to be able to use e.g.
substitutivity of typing together with an induction hypothesis.

BDToPCUIC.v & BDFromPCUIC.v. The next two files prove the equivalence between
both type system. Correctness (akin to Theorem 2) is infering_typing for inference and
the following theorems for the other judgements. Completeness (akin to Theorem 6) is
theorem typing_infering.

The bulk of both proofs is an induction on typing derivation whose most challenging part
is the handling of the case constructor, especially the subtle issues around indices described
in Section 3.2. Similarly to Section 2, correctness relies on the strong properties of validity
and subject reduction to reconstruct missing premises, while completeness mostly requires
transitivity of conversion and confluence of reduction.

BDUnique.v. This last file contains the proofs of Proposition 7 – uniqueness_inferred
– and Proposition 8 – principal_type. Apart from some lemmas on conversion that were
only proved for cumulativity in MetaCoq, the induction itself is quite straightforward thanks
to the bidirectional structure.

4 Beyond PCUIC

The use of our bidirectional structure is not limited to CIC or PCUIC. On the contrary, we
found it crucial to have such a bidirectional type system when designing a gradual extension
to CIC [13], for multiple reasons we try and detail below.
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But let us first give a bit of context about this extension. The aim was to adapt the ideas
of gradual typing [21] to CIC. Gradual typing aims at incorporating some level of dynamic
typing into a static typing discipline. To do so, a new type constructor ? is introduced to
represent dynamic type information. At typing time, this ? should be seen as a wildcard
that represents “any type” that is to be treated optimistically. In particular, ? should be
considered convertible to any type. Conversion is thus replaced by a new relation, called
consistency, that corresponds to this intuition. In effect it behaves somewhat similarly to
unification, with each ? corresponding to a unification variable. This means in particular that
consistency is not transitive, as if it were it would be useless: since any type T is consistent
with ?, if consistency were transitive any two types would be related.

Localized computation. The free-standing conversion rule Conv is powerful, but sometimes
too much.

This was our first use for the bidirectional structure. Indeed, multiple uses of a consistency
in a row would have allowed to change the type of a term to any other arbitrary type by
going through ? using two conversion rules in a row. Thus, any term would have been
typable! Being able to use the conversion rule unrestricted was too much. Instead, the
bidirectional system enforces a more localized use of conversion: only once, at the interface
between inference and checking. This restriction was enough to make the conversion rule
meaningful again.

More generally, since the equivalence between the undirected and directed variants relies
on the properties listed in Proposition 1, when one of these fails the equivalence is endangered.
When one envisons a system where this would be the case, the bidirectional approach might
be worth considering, as it could stay viable while its undirected counterpart might not.

Modes for the conversion rule. The observation made in Section 2.2 that the unique Conv
rule serves two different roles, which is clarified by the separation between checking and
constrained inference, is an important one when toying with computation. Indeed, those two
different aspects must be accounted for if one wishes to modify conversion and/or reduction.
In particular, modifying the definition of conversion without accounting for the specific role of
reduction would make rules for checking and constrained inference come out of sync, bringing
trouble down the road.

Taking again the example of [13], the Check is modified by directly replacing conversion
with the consistency relation usual in gradual typing. But this is not enough, because
constrained inference must be handled as well. This is done by supplementing rule Sort-Inf
by another rule to treat the case when the inferred type reduces to the wildcard ?, that can
be used as a type – with some care taken. The same happens for all constrained inference
rules.

Bidirectional elaboration. In works such as [20, 7, 13], the procedure described is not typing
but rather elaboration: the subject of the derivation t is in a kind of source syntax and the
aim is not only to inspect t, but also to output a corresponding t′ in another target syntax.
The term t′ is a more precise account of term t, for instance with solved meta-variables,
inserted coercions, and so on. The bidirectional structure readily adapts to those settings,
with the extra term t′ simply considered as an output of all judgements. As such, McBride’s
discipline as described in Section 2.2 demands that when, in a context Γ, the subject t

elaborates to t′ while inferring type T , we should have Γ ⊢ t′ : T – and similarly for all other
typing judgements. Having all rules locally preserve this invariant ensures that elaborated
terms are always well-typed.
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5 Related work

5.1 Constrained inference
Traces of constrained inference in diverse seemingly ad-hoc workarounds can be found in
various works around typing for CIC, illustrating that this notion, although overlooked, is of
interest.

In [19], Γ ⊢ t : T is used for what we write Γ ⊢ t ▷ T , but another judgment written
Γ ⊢ t :≥ T and denoting type inference followed by reduction is used to effectively inline the
two hypothesis of our constrained inference rules. Checking is similarly inlined.

Saïbi [20] describes an elaboration mechanism inserting coercions between types. Those
are inserted primarily in checking, when both types are known. However he acknowledges the
presence of two special classes to handle the need to cast a term to a sort or a function type
without more informations, exactly in the places where we resort to constrained inference
rather than checking.

More recently, Sozeau [22] describes a system where conversion is augmented to handle
coercion between subset types. Again, Γ ⊢ t : T is used for inference, and the other judgments
are inlined. Of interest is the fact that reduction is not enough to perform constrained
inference, because type head constructors can be hidden by the subset construction: a term
of subset type such as {f : N → N | f 0 = 0} should be usable as a function of type N → N.
An erasure procedure is therefore required on top of reduction to remove subset types in the
places where we use constrained inference.

Abel and Coquand [4] use a judgement written ∆ ⊢ V δ ⇑ Set ⇝ i, where a type V is
checked to be well-formed, but with its exact level i free. This corresponds very closely to
our use of ▷□.

Traces can also be found in the description of Matita’s elaboration algorithm [7]. Indeed,
the presence of meta-variables on top of coercions makes it even clearer that specific treatment
of what we identified as constrained inference is required. The authors introduce a special
judgement they call type-level enforcing corresponding to our ▷□ judgement. As for ▷Π,
they have two rules to apply a function, one where its inferred type reduces to a product,
corresponding to Prod-Inf, and another one to handle the case when the inferred type
instead reduces to a meta-variable. As Saïbi, they also need a special case for coercions
of terms in function and type position. However, their solution is different. They rely on
unification, which is available in their setting, to introduce new meta-variables for the domain
and codomain of a product type whenever needed. For ▷□ though this solution is not viable,
as one would need a kind of universe meta-variable. Instead, they rely on backtracking to
test multiple possible universe choices.

Finally, we have already mentioned [13] in Section 4, where the bidirectional structure
is crucial in describing a gradual extension to CIC. In particular, and similarly to what
happens with meta-variables in [7], all constrained inference rules are duplicated: there is one
rule when the head constructor is the desired one, and a second one to handle the gradual
wildcard.

5.2 Completeness
Quite a few articles tackle the problem of bidirectional typing in a setting with an untyped –
so called Curry-style – abstraction. This is the case of early work by Coquand [11], the type
system of Agda as described in [17], the systems considered by Abel in many of his papers
[3, 4, 2, 5], and much of the work of McBride [14, 15, 16] on the topic. In such systems,
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λ-abstractions can only be checked against a given type, but cannot infer one, so that only
terms with no β-redexes are typable. Norell [17] argues that such β-redexes are uncommon
in real-life programs, so that being unable to type them is not a strong limitation in practice.
To circumvent this problem, McBride also adds the possibility of typing annotations to retain
the typability of a term during reduction.

While this approach is adapted to programming languages, where the emphasis is on
lightweight syntax, it is not tenable for a proof assistant kernel, where all valid terms should
be accepted. Indeed, debugging a proof that is rejected because the kernel fails to accept a
perfectly well-typed term the user never wrote – as most proofs are generated rather than
written directly – is simply not an option.

In a setting with typed – Church-style – abstraction, if one wishes to give the possibility
for seemingly untyped abstraction, another mechanism has to be resorted to, typically
meta-variables. This is what is done in Matita [7], where the authors combine a rule similar
to Abs – where the type of an abstraction is inferred – with another one, similar to the
Curry-style one – where abstraction is checked – looking like this:

T ⇝∗ Π x : A′.B Γ ⊢ A ▷□ □i A ≡ A′ Γ, x : A ⊢ t ◁ B

Γ ⊢ λ x : A.t ◁ T

While such a rule would make a simple system such as that of Section 2 “over-complete”, it
is a useful addition to enable information from checking to be propagated upwards in the
derivation. This is crucial in systems where completeness is lost, such as Matita’s elaboration.
Similar rules are described in [7] for let-bindings and constructors of inductive types.

Although only few authors consider the problem of a complete bidirectional algorithm for
type-checking dependent types, we are not the first to attack it. Already Pollack [19] does,
and the completeness proof for CCω of Section 2 is very close to one given in his article.
Another proof of completeness for a more complex CIC-like system can be found in [22].
None of those however tackle as we do the whole complexity of PCUIC.

5.3 Inputs and outputs
We already credited the discipline we adopt on well-formedness of inputs and outputs to
McBride [15, 16]. A similar idea has also appeared independently in [9]. Bauer and his
co-authors introduce the notions of a (weakly) presuppositive type theory [9, Def. 5.6] and
of well-presented premise-family and rule-boundary [9, Def. 6.16 and 6.17] to describe a
discipline similar to ours, using what they call the boundary of a judgment as the equivalent
of our inputs and outputs. Due to their setting being undirected, this is however more
restrictive, because they are not able to distinguish inputs from outputs and thus cannot
relax their condition to only demand inputs to be well-formed but not outputs.

6 Conclusion

We have described a judgmental presentation of the bidirectional structure of typing al-
gorithms in the setting of dependent types. In particular, we identified a new family of
judgements we called constrained inference. Those have no counterpart in the non-dependent
setting, as they result from a choice of modes for the conversion rule, which is specific to
the dependent setting. We proved our bidirectional presentation equivalent to an undirected
one, both on paper on the simple case of CCω, and formally in the much more complex
and realistic setting of PCUIC. Finally, we gave various arguments for the usefulness of
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our presentation as a way to ease proofs, an intermediate between undirected type-systems
and typing algorithms, a solid basis to design new type systems, and a tool to re-interpret
previous work on type systems in a clearer way.

Regarding future work, a type-checking algorithm is already part of MetaCoq, and we
should be able to use our bidirectional type system to give a pleasant completeness proof by
separating the concerns pertaining to bidirectionality from the algorithmic problems, such
as implementation of an efficient conversion check or proof of termination. More broadly,
bidirectional type systems should be an interesting tool in the feat of incorporating in proof
assistants features that have been satisfactorily investigated on the theoretical level while
keeping a complete and correct kernel, avoiding the pitfall of cumulative inductive type’s
incomplete implementation in Coq. A first step would be to investigate the discrepancies
between the two kinds of presentations of inductive types Section 3, and in particular if
all informations currently stored in the match node are really needed or if a more concise
presentation can be given. But we could go further and study how to handle cubical
type theory [28], rewrite rules [10], setoid type theory [6], exceptional type theory [18],
η-conversion. . . There might also be an interesting link to make with the current work on
normalization by evaluation [1] as an alternative to weak-head reduction for constrained
inference. Finally, we hope that our methodology will be adapted as a base for other
theoretical investigations. As a way to ease this adoption, studying it in a general setting
such as that of [9] might be a strong argument for adoption.
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Abstract

Aharoni et al. [3] proved the max-flow min-cut theorem for countable networks, namely that in
every countable network with finite edge capacities, there exists a flow and a cut such that the flow
saturates all outgoing edges of the cut and is zero on all incoming edges. In this paper, we formalize
their proof in Isabelle/HOL and thereby identify and fix several problems with their proof. We also
provide a simpler proof for networks where the total outgoing capacity of all vertices other than the
source is finite. This proof is based on the max-flow min-cut theorem for finite networks.

2012 ACM Subject Classification Mathematics of computing → Network flows; Theory of computa-
tion → Higher order logic; Theory of computation → Logic and verification

Keywords and phrases flow network, optimization, infinite graph, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.25

Related Version A full version with informal proofs and more counterexamples is available:
Full Version: http://www.andreas-lochbihler.de/pub/lochbihler2021itpl.pdf [18]

Supplementary Material The formalization is available in the Archive of Formal Proofs:
Software (Formalization): http://www.isa-afp.org/entries/MFMC_Countable.shtml [16]

Funding Swiss National Science Foundation grant 153217 “Formalising Computational Soundness
for Protocol Implementations”. This work was partially done while the author was at ETH Zurich.

Acknowledgements We thank Ron Aharoni and Eli Berger for helping to clarify the weaknesses in the
original proofs. S. Reza Sefidgar and the anonymous reviewers helped to improve the presentation.

1 Introduction

The max-flow min-cut (MFMC) theorem for finite networks [10] has wide-spread applications:
network analysis, optimization, scheduling, etc. Aharoni et al. [3] have generalized this
theorem to countable networks, i.e., graphs with countably many vertices and edges, as
follows:

▶ Theorem 1. Let ∆ = (V, E, s, t, c) be a directed graph with countably many edges E ⊆ V ×V ,
vertices s and t and a capacity function c :: E → R≥0. There exists a flow f and an s-t-cut
C such that f saturates all outgoing edges e of C, i.e. f(e) = c(e), and is 0 on all incoming
edges.

The countable MFMC theorem is used, e.g., in probability [22] and programming language
theory [17], privacy [7], and for random walks [21]. Here, we formalize this theorem in
Isabelle.

Traditionally, the max-flow min-cut theorem is stated in terms of equality of values:
The value of the maximum flow is equal to the value of the minimum cut. Here, a flow
f :: E ⇒ R≥0 assigns values to the edges of ∆ such that the incoming and outgoing amounts in
every vertex are the same, except for the source s and the sink t. The value |f | is the amount
that leaves the source s, i.e., |f | =

∑
x∈OUT(s) f(s, x) where OUT(x) = {y | (x, y) ∈ E}.

Dually, an s-t-cut partitions the vertices into two sets (C, V − C) such that C contains the
source s but not the sink t. Its value |C| is the total capacity of the edges that leave C:
|C| =

∑
e∈OUT(C) c(e) where OUT(C) = {(x, y) ∈ E | x ∈ C ∧ y /∈ C}.
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Figure 1 A countable network with a flow and a cut of infinite value.

For finite networks, the equality-of-values condition |f | = |C| is equivalent to the flow
f saturating the cut C. In infinite networks, the saturation condition is preferable. For
example, Fig. 1 shows a network with source s and sink t and countably many vertices
xi. The edge capacities are given as white rounded rectangles on the edges. The black
rectangles denote a flow f and the vertices in the grey area form a cut C. The flow f

saturates the outgoing edges of C and we have |f | = ∞ = |C|. However, there is another
flow g given by g(e) = 1/2f(e) that sends only half the amount of f . Still, |g| = ∞ = |C|.
So the equality-of-values condition does not distinguish between f and g. Yet, we should
consider only f a maximum flow, not g, as one can obviously increase g on some edges. The
cut-saturation condition achieves this as it compares the finite capacities of individual edges
with the flow through them.

This subtlety highlights the main challenge in proving the max-flow min-cut theorem
for countable networks: avoiding infinite summations. Aharoni et al.’s proof performs an
elaborate dance around this problem, transforming the network several times on the way.
Our formalization follows these steps through all the transformations (Sect. 3) until the
problem is reduced to finding some sort of matching in an infinite bipartite graph. The
original proof then jumps back to arbitrary networks. Our proof forks into two proofs: The
first takes a shortcut to a significantly simpler argument based on the max-flow min-cut
theorem for finite networks (Sect. 4.1). This shortcut works only for networks where the
sum of the capacities of the outgoing edges of any vertex other than the source is finite.
This condition is met in some applications [7, 17]. The second proof follows the original
(Sect. 4.2).

Our main contributions are as follows:
We have formalized Aharoni et al.’s strong version of the max-flow min-cut theorem
for countable networks in Isabelle/HOL. The resulting formalization is usable in other
formalizations; e.g., we have applied it to the problem of proving parametricity of a
probabilistic programming language with recursion [17]. The formalization has clarified
the definitions and theorems and has revealed several problems in the original proofs
(Sect. 6), which we have fixed. In particular, the reduction to bipartite graphs did not
work as expected and required more general theorems.
We give an alternative proof for the case when every inner vertex of a network has only
finite total outgoing capacity. This local boundedness assumption allows us to reuse
Lammich and Sefidgar’s formalization of the max-flow min-cut theorem for finite networks
[14] by applying a majorised convergence argument. This proof is considerably simpler
and suffices for some use cases in programming languages and privacy [7, 17].

Neither of the two proofs requires a large background theory; basic notions like infinite
summations, monotone and majorised convergence, and fixpoints of increasing functions
suffice. The formalization therefore does not rely on specific Isabelle/HOL features and could
have been done similarly in other systems like HOL4 and Coq.
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Figure 2 Example of a network (left) and a flow (values of 0 are omitted) with an orthogonal cut,
and the corresponding web (right) with a maximal wave (black rectangles) and its set of terminal
vertices (grey circles). Capacities and weights are shown as labels in rounded rectangles.

The formalization started in 2015 and a first version was published in the Archive of
Formal Proofs in 2016. This paper describes the cleaned-up version for Isabelle2021 [16],
which also includes the simpler proof for the bounded case. This paper first presents the
corrected proof using conventional mathematical notation (Sects. 2–4). We discuss the
formalization aspects in Sect. 5 and the problems with the original proof in Sect. 6.

2 Graphs, Networks, and Webs

In this section, we introduce the relevant notions for graphs, networks, and webs. The
terminology and notation follows [3] to ease the comparison and make the presentation
accessible to mathematicians. Formalization considerations will be discussed in Sect. 5.

▶ Definition 2 (Graph). A (directed) graph G = (V, E) consists of a set of vertices V and a
set of directed edges E ⊆ V × V . A graph is countable iff its set of edges is countable. The
neighbours of a vertex x ∈ V are given by OUTG(x) = { y | (x, y) ∈ E } and ING(x) = { y |
(y, x) ∈ E }. If the graph G is obvious from the context, we drop the subscript G.

Given a function f :: E → R≥0, the in-degree d−
f :: V → R∞

≥0 of f given by d−
f (x) =∑

y∈IN(x) f(y, x) assigns to each vertex x ∈ V the sum of f over all incoming edges to x.
Analogously, d+

f (x) =
∑

y∈OUT(x) f(x, y) denotes f ’s out-degree of x ∈ V . If d+
f (x) = 0,

then x is a sink for f . The set SINK(f) denotes the set of sinks for f .

▶ Definition 3 (Network). A network ∆ = (V, E, s, t, c) is a graph (V, E) with two dedicated
vertices, the source s and the sink t, and a capacity function c :: E → R≥0. A network is
countable iff the graph is countable.

▶ Definition 4 (Flow). For a network ∆ = (V, E, s, t, c), a flow f :: E → R≥0 in ∆ satisfies
1. (Capacity restriction) f(x, y) ≤ c(x, y) for all (x, y) ∈ E, and
2. (Kirchhoff’s 1st law) d−

f (x) = d+
f (x) for all x ∈ V − { s, t }.

The value |f | of a flow f is f ’s out-degree of s: |f | = d+
f (s).

▶ Definition 5 (Orthogonal cut). In a network ∆ = (V, E, s, t, c), a set of vertices C is a cut
iff s ∈ C and t /∈ C. A cut C is orthogonal to a flow f iff f saturates all edges going out of
C (i.e., f(x, y) = c(x, y) for all (x, y) ∈ E with x ∈ C and y /∈ C) and f is zero on all edges
entering C (i.e., f(x, y) = 0 for all (x, y) ∈ E with x /∈ C and y ∈ C).

We have already seen an orthogonal pair of a flow of infinite value and a cut in Fig. 1.
Another example of an orthogonal flow-cut pair of value 9 is shown in Fig. 2 on the left.
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Figure 3 The network and web from Fig. 2 with a different flow (left) and a web-flow (right).

A network constrains the capacities of the edges in a graph, but the throughput of a
vertex is unconstrained. So the sums on the two sides of Kirchhoff’s first law may be infinite.
To avoid such infinite sums, a web constrains the throughput of a vertex and leaves the edge
capacity unconstrained. Section 3.1 explains how to convert between networks and webs.

▶ Definition 6 (Web). A web Γ = (V, E, A, B, w) is a graph (V, E) with two sets of vertices
A, B ⊆ V (the sides A and B) and a weight function w :: V → R≥0. We refer to the
components of Γ by VΓ, EΓ, AΓ, BΓ, and wΓ.

The two vertex sets A and B correspond to the source and sink of a network, respectively.
Currents in a web take the role of flows in a network. The difference is that vertices may
leak some of the incoming current (condition 2), i.e., they need not preserve the current.

▶ Definition 7 (Current). Given a web Γ = (V, E, A, B, w), a current f :: E → R≥0 satisfies
1. (weight restriction) d−

f (x) ≤ w(x) and d+
f (x) ≤ w(x) for all x ∈ V ,

2. (flow reflection) d−
f (x) ≥ d+

f (x) for all x ∈ V − A, and
3. (side restriction) d−

f (x) = 0 for x ∈ A and d+
f (y) = 0 for y ∈ B.

A current f is called a web-flow if d−
f (x) = d+

f (x) for all x ∈ V − (A ∪ B). If d+
f (x) ≥ w(x),

then f exhausts x. If x ∈ A or d−
f (x) ≥ w(x), then f saturates x. A saturated sink x is

called terminal. The set of saturated vertices is written as SAT(f) and the set of terminal
vertices as TER(f) = SAT(f) ∩ SINK(f).

Figure 2 shows an example web on the right where the weight of the vertices are shown in
rounded rectangles. It is derived from the network on the left as we will see in Sect. 3.1. The
black rectangles specify a current f whose terminal vertices TER(f) are shown in grey. It
exhausts none of the vertices. The current f is not a web-flow because some vertices are
leaking, e.g., d−

f (bc) = 7 > 6 = d+
f (bc).

Figure 3 shows a different flow and current for same network and web, respectively. The
flow on the left differs from the one in Fig. 2 only in that three units are routed through (s, a)
and (a, c) instead of through (s, b) and (b, c). So the vertex c now mixes the units coming
from a with the three units coming from b and outputs five of them to d and one to e. On the
right, a web-flow is shown, which refines the flow on the left as will be explained in Sect. 3.1.
The light-grey area contains the exhausted vertices, namely ad, cd, and ce. There are no
terminal vertices as the three sinks dt, et, and eb are disjoint from the saturated vertices sa,
sb, ad, cd, and ce.

▶ Definition 8 (Essential vertex). Given sets of vertices S and B in a graph G = (V, E),
a vertex x ∈ S is essential in S iff there is a path from x to a vertex in B which does not
contain a vertex in S − {x}. The set of essential vertices of S is written as EG,B(S).
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▶ Definition 9 (Separation and roofing). A set S of vertices in graph G separates a vertex x

from a set of vertices B iff every path from x to a vertex in B contains a vertex in S. The
set S is said to separate a set of vertices A from B iff it separates every vertex in A from B.

The roofing of S and B (notation RFG,B(S)) consists of all vertices which S separates
from B. The strict roofing excludes essential vertices: RF◦

G,B(S) = RFG,B(S) − EG,B(S).
In a web Γ = (V, E, A, B, w), S is A-B-separating iff it separates A and B. If f is

a current in Γ, we abbreviate E(f) = EΓ,B(TER(f)) and RF(f) = RFΓ,B(TER(f)) and
RF◦(f) = RF◦

Γ,B(TER(f)).

In the web in Fig. 2, the grey vertices TER(f) separate A from B. The vertex ac is not
essential in TER(f) as all paths from ac to B pass either through cd or ce, which are both in
TER(f). The roofing RF(f) contains all the vertices to the left of ad, cd, and ce, inclusive,
i.e., RF(f) = {sa, sb, ac, bc, ad, eb, cd, ce}. The strict roofing RF◦(f) excludes the essential
vertices ad, eb, and ce. Since ac is not essential in TER(f), the strict roofing includes ac.

▶ Lemma 10 ([2, Lemma 2.14]). If S separates A from B in G, so does EG,B(S).

The key tool for the proof is the concept of a wave. Waves are currents whose terminal
vertices separate A from B and which are zero outside of the roofing of the terminal vertices.
Intuitively, a wave’s essential terminal vertices identify a bottleneck in the web: since the
wave saturates them, all other separating sets between the A side and the terminal vertices
must allow at least the same current.

▶ Definition 11 (Wave). A current f in Γ is a wave iff TER(f) is A-B-separating and
d+

f (x) = 0 for x /∈ RF(f).

In Fig. 2, the current f is 0 outside of RF(f), i.e., on the edges entering B. So f is a wave.
Conversely, the web-flow g in Fig. 3 is not a wave as TER(g) = {} does not separate A
from B.

3 From Networks to Bipartite Webs and Back

Aharoni et al.’s proof proceeds in four steps [3]:
1. Transform the network into a web.
2. Find a maximal wave in the web. Its roofing determines the cut.
3. Trim the wave, i.e., reduce the wave such that strictly roofed vertices preserve the current.
4. Extend the wave to a web-flow. This uses a reduction to bipartite webs in which every

current is a web-flow by definition.
In this section, we cover these steps up to the reduction to bipartite webs. The next section
takes care of actually finding a suitable current in the bipartite web.

3.1 From Networks to Webs
The first step reduces a network ∆ to a web, which we denote by web(∆). Every edge e

becomes a vertex of web(∆) with weight c(e). Every two incident edges (x, y) and (y, z) in
the network induce an edge between the vertices (x, y) and (y, z) in web(∆). The side A

consists of the edges leaving s and B of the edges entering t. Formally:

Vweb(∆) = E∆ wweb(∆)(e) = c(e) Aweb(∆) = {(s, y) | (s, y) ∈ E∆}
Eweb(∆) = {((x, y), (y, z)) | (x, y) ∈ E∆ ∧ (y, z) ∈ E∆} Bweb(∆) = {(x, t) | (x, t) ∈ E∆}
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is not orthogonal to the shown web-flow.
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Figure 5 A trimming of the wave from
Fig. 2.

For example, Figs. 2 and 3 show the same network ∆ on the left and the corresponding
web web(∆) on the right. Webs have the advantage over networks that the current makes
explicit how the incoming flow is split up into the outgoing edges of a vertex. In Fig. 3, e.g.,
the web-flow on the right specifies that the three units flowing from sa to ac split up into
two units going to cd and one unit going to ce. The flow in the network on the left cannot
express this detail: the vertex c mixes the two incoming flows of 3 units each and distributes
somehow into five and one outgoing units.

Webs therefore allow us to capture flow preservation more precisely than networks. For if
a flow f through a network vertex x is infinite, then flow preservation at x merely states
that both sums are infinite: d−

f (x) = d+
f (x) = ∞. This creates problems if we want to

subtract two infinite flows f and g from one another because d−
f (x) − d−

g (x) = ∞ − ∞ is not
meaningful. So even if both f and g satisfy Kirchhoff’s first law at a vertex, it is not clear
that their difference f − g satisfies it. In the corresponding web, in contrast, a web-flow g

specifies precisely the finite amount each incoming edge contributes to each outgoing edge.
So for a web-flow or current g, the sums d−

g (x) and d+
g (x) are finite because they are bounded

by the finite vertex weights, i.e., the edge capacities in the network. Accordingly, subtraction
of flows has nice algebraic properties such as d−

f (x) − d−
g (x) = d−

f−g(x) if f ≥ g.
We next transfer the orthogonality notion from networks to webs. We show that an

A-B-separating set S and an orthogonal web-flow f in web(∆) induce a cut Ŝ and an
orthogonal flow f̂ in the original network ∆. Figure 3 illustrates the reduction: The flow f̂

in the network ∆ on the left corresponds to the web-flow f in web(∆) on the right. The set
E(SAT(f)) in grey on the right is orthogonal to the web-flow f and yields the cut Ŝ on the
left.

▶ Definition 12 (Orthogonal current). Let Γ = (V, E, A, B, w) be a web. A set of vertices S

is orthogonal to a current f iff
(i) d−

f (x) = w(x) for x ∈ S − A,
(ii) d+

f (x) = w(x) for x ∈ (S ∩ A) − B, and
(iii) f(x, y) = 0 for x ∈ V − RF◦(S) and y ∈ RF(S).

Intuitively, an orthogonal current exhausts the vertices in S unless the vertex belongs
to both sides. Condition (iii) ensures that nothing flows back into the roofed vertices. For
example, the web-flow in Fig. 4 is not orthogonal to the vertices in the grey area, because
one unit flows from the essential vertex ce back to the roofed vertex eb.

▶ Lemma 13 (Reduction from networks to webs). Let ∆ = (V, E, s, t, c) be a network with
s ̸= t and no outgoing edge from t and no direct edge from s to t. Suppose that all edges have
positive capacity, i.e., c(e) > 0 for e ∈ E.
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(a) Let f be a web-flow in web(∆). Define f̂ by f̂(e) = max(d+
f (e), d−

f (e)) for e ∈ E. Then,
f̂ is a flow in ∆.

(b) Let S be an A-B-separating set in web(∆). Define Ŝ = RF∆,{t}({x | ∃y. (x, y) ∈ E(S)}).
Then Ŝ is a cut in ∆.

(c) Let an A-B-separating set S be orthogonal to a web-flow f . Then Ŝ is orthogonal to f̂ .

By this lemma, to find a cut and an orthogonal flow in a network ∆, it suffices to find a
separating set of vertices in web(∆) and an orthogonal web-flow f . In the next section, we
focus on finding a suitable separating set, namely the terminal vertices of a maximal wave.

3.2 Maximal Waves and Trimmings
Waves and currents can be ordered pointwise: if f and g are waves or currents in Γ =
(V, E, A, B, w), then f ≤ g iff f(e) ≤ g(e) for all e ∈ E. The waves in a countable web form
a chain-complete partial order (ccpo), and so do the currents. Therefore, every countable
web contains a maximal wave [3, Cor. 4.4] by Zorn’s lemma.

Recall that a wave’s terminal vertices describe a bottleneck in the web. Intuitively, the
maximal wave identifies a narrowest bottleneck in the web: Roughly speaking, the roofed
part cannot contain a tighter bottleneck because if so, the current could not saturate the
terminal vertices due to the flow reflection condition. Conversely, if a separating set beyond
the terminal vertices formed a tighter bottleneck, then we could extend the wave and saturate
that smaller bottleneck, which contradicts maximality. Here, it is crucial that a wave may
partially leak the incoming current of some vertices, i.e., they need not preserve the current.

A trimming of a wave reduces the current such that the incoming current is preserved on
the strict roofing. For example, the wave in Fig. 2 on the right is maximal. Its trimming is
shown in Fig. 5. The current is reduced on the edge from sb to bc from 7 to 6 and on the
edge from sa to ac from 4 to 0.

▶ Definition 14 (Trimming). Let f be a wave in Γ = (V, E, A, B, w). A wave g is called a
trimming of f iff

(i) g ≤ f ,
(ii) d+

g (x) = d−
g (x) for all x ∈ RF◦(f) − A, and

(iii) E(TER(g)) − A = E(TER(f)) − A.

▶ Lemma 15 ([3, Lemma 4.8]). Every wave in a countable web has a trimming.

Proof. The trimming for a wave f is constructed as the transfinite fixpoint iteration of the
one-step trimming function trim1 starting at f . For a wave g, trim1(g) picks some strictly
roofed vertex z where Kirchhoff’s first law does not hold, i.e., z ∈ RF◦(g)−A∧d+

g (z) ̸= d−
g (z).

Then, trim1 reduces the current on z’s incoming edges by the factor d+
g (z)

d−
g (z) so that Kirchhoff’s

first law holds at z afterwards.

trim1(g)(y, x) =

g(y, x) if g is a trimming
if x = z then d+

g (z)
d−

g (z) ∗ g(y, x) else g(y, x) if such a z exists

The fixpoint exists by Bourbaki-Witt’s fixpoint theorem [8] as trim1 is decreasing, i.e.,
trim1(g) ≤ g, and the set of waves g with g ≤ f is a chain-complete partial order w.r.t. ≥. The
proof that the fixpoint satisfies the trimming conditions relies on d+ and d− being point-wise
order-continuous, which holds by monotone convergence as the web is countable. ◀
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Figure 6 The quotient of the web and
wave of Fig. 2 with a linkage.
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Figure 7 A web that contains no non-zero
wave, but the zero wave is a hindrance.

3.3 A Linkage in the Quotient of a Web
The trimming of a maximal wave f describes the first half of the web-flow we are looking
for (Fig. 5). For the second half, we consider the residual web beyond f ’s terminal vertices,
which is called the quotient Γ/f . Figure 6 shows the quotient for the web and wave f from
Fig. 2. The essential terminal vertices of the wave become the side A. The quotient does
not include the roofed vertex eb even though it is reachable from E(TER(f)) as we want to
construct an orthogonal current and nothing may flow back into roofed vertices. The formal
definition is a bit complicated so that it also works when there are edges between vertices
in E(TER(f)) or when E(TER(f)) contains vertices from B. The details are discussed in
Sect. 6.

▶ Definition 16 (Quotient). Let Γ = (V, E, A, B, w) and f be a wave in Γ. The quotient Γ/f

is the following web:
EΓ/f = {(x, y) ∈ E | x /∈ RF◦

Γ(f) ∧ y /∈ RFΓ(f)}
AΓ/f = EΓ(TERΓ(f)) − (B − A) and BΓ/f = B

wΓ/f (x) = w(x) for x ∈ V − (RF◦
Γ(f) ∪ (TERΓ(f) ∩ B)) and wΓ/f (x) = 0 for x ∈

TERΓ(f) ∩ B.
In the quotient Γ/f , we now look for a web-flow g that saturates all vertices in A, i.e.,
TER(f). Such a web-flow is called a linkage. Then, the web-flow in Γ is given by the
trimming of f plus g. Figure 6 shows such a linkage; together with the trimmed wave from
Fig. 5, they form the orthogonal web-flow whose reduction (Lemma 13) yields the network
flow shown in Fig. 2.

▶ Definition 17 (Linkage [3, Def. 4.1]). A web-flow f in a web Γ = (V, E, A, B, w) is called
a linkage iff f exhausts all vertices in A, i.e., d+

f (a) = w(a) for all a ∈ A.

Under what conditions does a web Γ contain a linkage? Certainly, there must not be a
bottleneck beyond the A side. Waves describe such bottlenecks. So if the zero wave is the
only wave in Γ, then the A side is the only bottleneck. Moreover, we need that all vertices
in A are essential for separation unless their weight is 0. For example, the web in Fig. 7
contains only the zero wave, but not a linkage. The problem is that the vertex a2 with
weight 1 is bottlenecked by the zero-weight vertex x ∈ E(TER(0)). Such a situation is called
a hindrance.

▶ Definition 18 (Hindrance, looseness, [3, Def. 4.5]). A wave f in a web Γ = (V, E, A, B, w)
is a >ε-hindrance iff there is a vertex a ∈ A − E(TER(f)) such that ε < w(a) − d+

f (a). Also,
f is a hindrance iff there exists a ε > 0 such that f is a >ε-hindrance. A web is called
hindered (respectively >ε-hindered) iff it contains a hindrance (respectively a >ε-hindrance).
A web is called loose iff it contains no non-zero wave and the zero wave is not a hindrance.
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Figure 8 An unhindered web Γ (left) and
its bipartite reduction bp(Γ) (right). The
wave f in bp(Γ) induces the wave f̃ in Γ.
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Figure 9 A linkage g in bp(Γ) (left) that
yields a linkage (right) in the web Γ from
Fig. 8 by trimming g̃ at vertex x.

▶ Lemma 19 ([3]). If f is a maximal wave in the web Γ = (V, E, A, B, w), then Γ/f is loose.

3.4 Reduction to Bipartite Webs

To find linkages in countable loose webs, Aharoni et al. [3] transform webs into bipartite
webs. A web Ω = (V, E, A, B, w) is bipartite iff there are only edges from nodes in A to nodes
in B, i.e., iff V = A ∪ B and A ∩ B = ∅ and E ⊆ A × B.

We briefly review the transformation described in [1]; Fig. 8 shows an example. In
this section, we always assume that the web Γ = (V, E, A, B, w) has no incoming edges
to vertices in A, no outgoing edges from vertices in B, no loops, and that A and B are
disjoint. In the bipartite web bp(Γ), there are two copies x′ and x′′ for every vertex
x ∈ V − (A ∪ B). Vertices x ∈ A and y ∈ B only have one copy x′ and y′′, respectively.
The edges are Ebp(Γ) = {(x′, y′′) | (x, y) ∈ E} ∪ {(x′, x′′) | x ∈ V − (A ∪ B)} and the
sides Abp(Γ) = {x′ | x ∈ V − B} and Bbp(Γ) = {x′′ | x ∈ V − A} and the weight function
w(x′) = w(x) for x ∈ V − B and w(x′′) = w(x) for x ∈ V − A.

An A-B-separating set S in bp(Γ) induces an A-B-separating set S̃ in Γ given by S̃ =
(AS ∩ BS) ∪ (A ∩ AS) ∪ (B ∩ BS) where AS = {v | v′ ∈ S} and BS = {v | v′′ ∈ S} [1].
Moreover, a wave f in bp(Γ) induces a wave f̃ in Γ given by f̃(x, y) = f(x′, y′′) for (x, y) ∈ E

with TERΓ(f̃) = ˜TERbp(Γ)(f) [3, Lemma 6.3].

▶ Lemma 20. If Γ is loose, then bp(Γ) is unhindered.

Aharoni et al. wrongly claimed the stronger statement that if Γ is loose then bp(Γ) is loose
[3, below Thm. 6.5]. We provide a counterexample in Sect. 6. Note that the reduction bp
does not preserve unhinderedness either.

Conversely, a linkage g in bp(Γ) yields a linkage in Γ as illustrated in Fig. 9: For g̃ as
defined above, we have d+

g̃ (a) = d+
g (a′) = w(a) for a ∈ AΓ and d+

g̃ (x) ≥ d−
g̃ (x) for all x /∈ B.

So the out-flow of some vertices may surpass the in-flow, e.g., x in Fig. 9. Analogously to
the trimming of waves, we can trim g̃ using a fixpoint iteration to obtain the linkage in Γ.

▶ Lemma 21 ([3]). If bp(Γ) contains a linkage and Γ is countable, then Γ contains a linkage.
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4 Linkability in unhindered bipartite webs

By the results in Sect. 3, the max-flow min-cut theorem for the countable case (Thm. 1)
follows from the following theorem, which we prove in this section.

▶ Theorem 22 (Bipartite linkability). A countable unhindered bipartite web contains a linkage.

In fact, we present two ways how to construct such a linkage in an unhindered bipartite
web. Both ways enumerate the vertices in A = {a1, a2, a3, . . .} and construct a sequence of
web-flows fi that exhaust {a1, . . . , ai} so that the limit f exhausts all of A. The difference is
in how the fi are constructed and in the limit argument. In Sect. 4.1, each fi is constructed
independently as the limit of maximum flows in a finite network; the existence and the
linkage property of the limit for these fi themselves is shown using diagonalization and
majorised convergence. Unfortunately, this construction only works if the neighbours of any
ai vertex have finite total weight.

In contrast, fi+1 in Sect. 4.2 saturates ai+1 by extending the previous web-flow fi with
a sequence of augmenting flows in the so-called residual network, similar to how classic
max-flow algorithms for finite networks work [9]. This construction avoids taking infinite
summations and thus yields a proof of Thm. 22 without additional assumptions. However,
the proof is more involved than in the bounded case.

4.1 The Bounded Case
We first prove Thm. 22 for the case where the neighbours of each vertex in A have only
bounded total weight, i.e.,

∑
y∈OUT(x) w(y) < ∞ for all x ∈ A. The general case is shown in

the next section.
The next lemma states the crucial property of unhindered bipartite webs, namely that

the total weight of any finite set of A vertices is at most the total weight of their neighbours
in B.

▶ Lemma 23. Let Ω = (V, E, A, B, w) be a countable unhindered bipartite web and X ⊆ A be
finite. Then,

∑
x∈X w(x) ≤

∑
y∈E[X] w(y) where E[X] = {y | ∃x ∈ X. (x, y) ∈ E} denotes

the neighbours of X.

This lemma allows us to understand a linkage in an unhindered bipartite web as an A×B

matrix over the reals where the weights on A are the row sums of the countable matrix and
the edges describe the matrix elements that may be non-zero. In the proof below, we will
use the following result about the existence of a countable matrix with given marginals. It
is a corollary of a theorem by Kellerer [12, Satz 4.1]. In the formalization, we have proved
the corollary directly by adapting Kellerer’s proof to this special case. This proof uses the
max-flow min-cut theorem for finite networks.

▶ Proposition 24 (Matrix with given marginals). Let f : A → R≥0 and g : B → R≥0 for
countable sets A, B such that

∑
i∈A f(i) =

∑
j∈B g(j) < ∞, and let R ⊆ A×B. Assume that∑

i∈X f(x) ≤
∑

j∈R[X] g(j) for all X ⊆ A. Then, there exists a function h : A × B → R≥0
such that for all i ∈ A and j ∈ B:

h(i, j) = 0 if (i, j) /∈ R,
f(i) =

∑
j∈N h(i, j), and

g(j) =
∑

i∈N h(i, j).
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We can now prove bipartite linkability in the bounded case. The proof starts with a
sequence of increasing finite subsets An of A that converge to A, and suitable, possibly
infinite subsets Bn of their neighbours in B. For these subsets, we obtain a An × Bn matrix
hn with the right marginals. This sequence hn converges and its limit yields the desired
linkage, using a majorised convergence argument with the bound on the neighbours.

▶ Theorem 25 (Bounded bipartite linkability). A countable unhindered bipartite web Ω =
(V, E, A, B, w) contains a linkage if

∑
y∈OUT(x) w(y) < ∞ for all x ∈ A.

Together with the reduction from Sect. 3, this yields a proof for Thm. 1 when only the
source s in the network ∆ = (V, E, s, t, c) may have outgoing edges whose total capacity is
infinite, i.e., d+

c (x) < ∞ for x ∈ V − {s}. The MFMC use cases in probability theory [22]
and privacy [7] satisfy this condition.

4.2 The Unbounded Case
We now show that Thm. 22 holds even when the neighbours of a vertex have infinite total
weight. Our proof generalizes Aharoni et al.’s from loose to unhindered bipartite webs. For
the remainder of this section, we always assume that Ω = (V, E, A, B, w) is a countable
bipartite web. We write Ω ⊖ f for the bipartite web Ω where the weight of the vertices has
been reduced by the current f that flows through them.

▶ Definition 26 (Residual web). If Ω = (V, E, A, B, w) is a bipartite web and f a current in
Ω, we write Ω ⊖ f for the web (V, E, A, B, w′) where the new weight function w′ is given by
w′(x) = w(x) − d+

f (x) for x ∈ A and w′(x) = w(x) − d−
f (x) for x ∈ B.

The proof rests on the following step: If Ω is unhindered, then we can find a current f

that saturates some vertex a ∈ A such that the residual web Ω ⊖ f is unhindered again.

▶ Lemma 27 (Vertex saturation in unhindered bipartite webs). If Ω is unhindered and a ∈ A,
then there exists a current f in Ω such that d+

f (a) = w(a) and Ω ⊖ f is unhindered.

With this lemma, we can now prove that countable unhindered bipartite webs are linkable
(Thm. 22). The proof is analogous to [3, Thm. 6.5], but uses our Lemma 27 instead.

Proof of Thm. 22. Enumerate the vertices in A as a1, a2, . . .. Recursively define a family
fn of currents in Ω as follows:

(i) f0 is the zero current.
(ii) For n > 0, pick a current gn in Ω ⊖ fn−1 such that d+

g (an) = wΩ⊖fn−1(an) and
Ω ⊖ fn−1 ⊖ g is unhindered. Set fn = fn−1 + g.

A simple induction on n shows that fn is a well-defined current in Ω and Ω⊖fn is unhindered
for all n; here, Lemma 27 applied to Ω ⊖ fn−1 ensures that gn exists. Set g(e) = sup{fn(e) |
n ∈ N} for e ∈ E. Then, g is a current in Ω with d+

g (x) = w(x) for all x ∈ A. As every
current in a bipartite web is a web-flow, g is the linkage we are looking for. ◀

The proof of the saturation lemma 27 uses the following theorems and lemmas, which
have already been proven by Aharoni et al. [3]. We have formalized all of them and fixed the
glitches in the original statements and proofs.

▶ Theorem 28 (Flow attainability [3, Thm. 5.1]). Let ∆ = (V, E, s, t, c) be a countable
network with s ̸= t, no loops and no incoming edges to s, and such that for all x ∈ V − {t},
the sum of capacities of the incoming edges to x or the sum of capacities of the outgoing
edges from x is finite, i.e., d−

c (x) < ∞ or d+
c (x) < ∞. Then there exists a flow f in ∆ such

that d+
f (s) = sup{|g| | g is a flow in ∆} and d−

f (x) ≤ |f | for all x ∈ V .
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▶ Lemma 29 ([3, Lemma 6.7]). Let Ω = (V, E, A, B, w) be a countable bipartite web and let
u :: V → R≥0 such that u(x) = 0 for x ∈ A, u(y) ≤ w(y) for y ∈ B, and ε =

∑
x∈B u(x) < ∞.

Let Ω′ = (V, E, A, B, w − u) be the web Ω with w reduced by u. If Ω′ is >ε-hindered, then Ω
is hindered.

▶ Lemma 30 ([3, Cor. 6.8]). Let g be a current in Ω with ε :=
∑

b∈B d−
g (b) < ∞. If Ω ⊖ g is

>ε-hindered, then Ω is hindered.

▶ Lemma 31 ([3, Lem 6.9]). Let Ω be loose and b ∈ B with w(b) > 0. For every δ > 0, there
exists an ε > 0 such that ε < δ and Ω with the weight of b reduced by ε is unhindered.

5 Discussion of the Formalization

We have formalized all definitions, theorems, and proofs mentioned in this paper in Isa-
belle/HOL. This includes all the lemmas and underlying theory. In this section, we discuss
the challenges we faced and the design decisions we made. The issues with the original
definitions, theorems, and proofs and their corrections are discussed in the next section.

Graphs are formalized using Isabelle’s record package [20] as an extensible record with
one field for the edge relation, given as a binary predicate over the vertices of type α. This
yields the projection function edge :: α graph ⇒ α ⇒ α ⇒ bool for the edge field.1 From this,
we derive the set E of edges as an abbreviation.

record α graph = edge :: α ⇒ α ⇒ bool
definition vertex :: α graph ⇒ α ⇒ bool where vertex G x = (∃y. edge G x y ∨ edge G y x)
type-synonym α edge = α × α

abbreviation E :: α graph ⇒ α edge set where EG = {(x, y). edge G x y}

We derive the set of vertices from edges of the graph rather than modelling them separately.
This has the advantage that we encode the condition E ⊆ V × V in the construction and do
not have to carry around this well-formedness condition in our formalization. Conversely,
graphs in this model cannot have isolated vertices. This is without loss of generality as
isolated vertices cannot contribute to any flow or cut.

Networks are formalized as an extension of the record graph. So all operations on graphs
also work for networks. The same applies to webs.

record α network = α graph +
capacity :: α ⇒ ennreal
source :: α

sink :: α

record α web = α graph +
weight :: α ⇒ ennreal
A :: α set
B :: α set

Records provide a simple and lightweight means for grouping the components of a network
or web. Particular properties such as countability, finite capacity and weights, and disjoint
sides A and B, are formalized as locales [5]. For example, the locale countable-network
below enforces that there are only countably many edges, the source is not the sink, and
the capacities are finite and 0 outside of the edges. Using the (structure) annotation on
a record variable like ∆ [4], we can omit the network (or web) as subscripts, e.g., in the

1 The record package achieves extensibility with structural subtyping by internally generalizing α graph
to (α, β) graph-scheme, where β is the extension slot for further fields. For example, β is instantiated
with the singleton type unit for graph. All operations on graph are actually defined on graph-scheme so
that they also work for all record extensions. We omit this technicality from the presentation.
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assumption countable E; Isabelle automatically fills in the corresponding parameter. We use
this notational convenience mainly for definitions that need custom syntax anyway, e.g., E,
RF, and RF◦. For plain HOL functions without special syntax like capacity and source, it is
usually faster to type the record parameter than to enter special syntax.

locale countable-network = fixes ∆ :: α network (structure)
assumes countable E and source ∆ ̸= sink ∆

and e /∈ E =⇒ capacity ∆ e = 0 and capacity ∆ e < ∞

Since flows, cuts, and capacities are always non-negative, we use the extended non-negative
reals ennreal from Isabelle/HOL’s library everywhere. Summations like the in-degree d− are
expressed using the Lebesgue integral nn-integral over the counting measure count-space A

on the set A. So every subset of A is measurable and all points have equal weight. Moreover,
every function is integrable and we need not discharge neither integrability nor summability
conditions in the proofs. Just the finiteness conditions of the form

∑
x∈A < ∞ are ubiquitous.

We also formalize capacities and weights as ennreal and explicitly require them being
finite in the locales. This avoids coercions from the real numbers real into ennreal, which
would complicate the proof formalization. For example, the in-degree d−

f (f) of y is defined as
follows where

∑
x∈A g desugars to nn-integral (count-space A) (λx. g). We let the summation

range over UNIV, the set of all values of α, not only the neighbours of y. Instead, we enforce
that f is 0 outside of E, e.g., via the capacity assumption in countable-network. This way,
d-IN depends only on f and not on the graph. This simplifies the formalization because when
we consider f in the context of different graphs, d-IN f is trivially the same for all of them.

definition d-IN :: (α edge ⇒ ennreal) ⇒ α ⇒ ennreal where d-IN f y =
∑

x∈UNIV f (x, y)

Regarding the mathematical background theory, we found that most relevant theorems
were readily available in the Isabelle/HOL library: limits, infinite summations via the
Lebesgue integral, monotone and majorised convergence, lim sup and lim inf. There is
even a generic formalization of Cantor’s diagonalization argument by Immler [11]. The
Bourbaki-Witt fixpoint theorem [8], however, was missing. We therefore ported the Coq
formalization by Smolka et al. [23] to Isabelle/HOL. It is now part of Isabelle/HOL’s library.
We have also contributed many lemmas about ennreal and nn-integral to the library.

Apart from identifying and fixing glitches and mistakes in definitions and proofs (Sect. 6),
we faced three main challenges during the formalization. First, the definition and proof
principles in the paper are often not suitable for direct formalization. For example, the
original proofs construct trimmings, linkages and saturating flows using transfinite iteration
and transfinite induction with ordinals. We have replaced them with fixpoints of increasing
or decreasing functions in a chain-complete partial order, using Bourbaki-Witt’s fixpoint
theorem (Lemmas 15, 21, and 27). This way, we did not need to formalize ordinals and their
theory.

Second, applying the theorems from the Isabelle library often needs a small twist. The
proof for the existence of a maximal wave in Sect. 3.2 demonstrates this. The proof that the
least upper bound

⊔
i∈I fi for a chain fi of currents in a web Γ is a current relies on Beppo

Levi’s monotone convergence theorem. The challenge here was that the monotone convergence
theorem applies only to countable increasing sequences, whereas Isabelle’s formalizaton of
chain-complete partial orders demands the existence of least upper bounds for arbitrary
(uncountable) chains. We bridge the gap by finding a countable subsequence of any such
chain, which relies on the currents being non-zero only on the countably many edges.

Third, we often faced the problem that a statement had some precondition that was not
met when we wanted to apply it. In an informal proof, these preconditions would be assumed
“without loss of generality” or ignored altogether. We deal with them in two ways: either
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Table 1 Line counts for different parts of the formalization, not counting empty lines.

Shared Bounded Unbounded

preliminaries 200 matrix for marginals (Prop. 24) 845
networks & webs 2214 flow attainability (Thm. 28) 1954
reductions 1248 bipartite linkability (Thms. 25 / 22) 589 3158

total 3662 1434 5112

introduce a reduction that ensures the precondition or generalize the definitions and proofs
so that they are not needed. Reductions are in general preferable as generalizations often
complicate the definitions and proofs. Additional reductions can be seen, e.g., in Lemma 13.
It assumes that there is no direct edge from s to t and all edges have positive capacity. The
final theorem 1 does not make these assumptions. We therefore introduce another reduction
that splits a potential s-t edge by introducing a new vertex and removes all edges with no
capacity. Similarly, the reduction to bipartite webs in Sect. 3.4 assumes that the web does
not contain loops. These loops would originate from loops in the original network; so we
have another reduction that eliminates loops in networks. Reductions are not always feasible
though. The example of the quotient web (Def. 16) is discussed in the next section.

On the positive side, reasoning about paths in networks and webs was much less of a
pain than we had expected. We formalized a finite path as a list of vertices, which allows us
to reuse Isabelle’s library for lists to manipulate and reason about paths. For example, the
predicate distinct expresses that a path does not contain cycles, and π @ [x] @ π′ denotes the
concatenation of the two paths π @ [x] and [x] @ π′. Moreover, we found that E, RF, and
RF◦ are powerful concepts that allow us to avoid explicitly dealing with paths in the main
lemmas about flows – once we had proven enough properties about them.

Table 1 shows line counts of the Isabelle theories for different parts of the formalization,
as a proxy for the formalization effort. These counts exclude empty lines. The left part
lists the material that is used by both linkability proofs for bipartite webs. This covers
the concepts of networks, flows, webs, currents, (maximal) waves, and trimmings, as well
as the reductions from networks to webs and from webs to bipartite webs. On the right,
the line counts are shown for linkability of bounded (Sect. 4.1) and unbounded (Sect. 4.2)
countable bipartite webs, together with the line counts for the helper statements 24 and
28. The unbounded case requires about 3.6 times as much space as the bounded case if we
include the formalization of the helper statements. If we exclude the helper statements, the
ratio is about 5.4. This highlights how much more complicated the general case is.

We have also generated a PDF from the Isabelle theories using Isabelle’s document
preparation system. The material corresponding to shared and unbounded fill 236 pages.
Aharoni et al. need a bit more than 10 pages in [3]. This gives an expansion factor of about
23. This is much higher than for text book mathematics, where the factor is typically well
below 10 [6, 24]. We take this as an indication that the original paper is very dense.

6 Problems in the Original Proof

We now discuss the problems we have identified in the original paper during the formalization.
We focus on three representative examples here: the reduction to bipartite webs, the definition
of quotient webs, and the notion of trimmings. Further problems are given in the report [18].
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Figure 10 A loose web (left) whose bipartite
reduction (right) is not loose as witnessed by
the non-zero wave shown.
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Figure 11 An unhindered web (left) whose
bipartite reduction (right) contains a hindrance
as witnessed at x′.

Reduction to bipartite webs. This is the main problem we have found. Aharoni et al. [3]
claim that the reduction to bipartite webs from Sect. 3.4 preserves looseness, but this is not
the case. In Fig. 10, the web Γ on the left is loose, its bipartite transformation bp(Γ) on
the right is not loose, because it contains the non-zero wave shown. The problem is that
there is no path from the (infinitely many) vertices yi (where i ∈ N) to b. In a finite web, we
could remove all vertices that cannot reach a vertex in B, because they cannot contribute to
a web-flow. In the infinite case, however, we cannot do so easily because such infinite paths
do occur in infinite networks and absorb parts of the (maximal) flow; an example is given
in the conclusion. So their key theorem [3, Thm. 6.5], namely that every countable loose
bipartite web contains a linkage, cannot be used to prove the general case.

Instead, we strengthen the theorem to countable unhindered bipartite webs (Thm. 22).
The induction invariant now is Ω ⊖ fn being unhindered rather than being loose, and the
induction step (Lemma 27) must also be generalized. Fortunately, the original high-level
ideas carry over; our proof composes the lemmas 29, 30 and 31 in a different order. We regain
looseness from unhinderedness by first finding a maximal wave and reducing the weights,
similar to what is happening in Lemma 19. Note that the reduction bp does not preserve
unhinderedness either, as the example in Fig. 11 shows. The web on the left is not loose as
it contains the shown wave.

Quotient webs. Quotient webs (Def. 16) are an example where the definition had to be
changed. This change propagates to the proofs of the basic properties of quotient webs. In
detail, the original definition sets the edges as EΓ/f = {(x, y) ∈ E | x /∈ RF◦

Γ(f)∧y /∈ RF◦
Γ(f)},

i.e., an edge may point to one of f ’s essential terminal vertices. Our Definition 16 excludes
these edges. The difference is illustrated in Fig. 12. The quotient Γ/f on the right of the
web Γ and the wave f on the left contains the edge (z, x) only with the original definition.
This edge invalidates a number of statements, e.g., that f + g ↾ (Γ/f) is a current or a wave
if g is a current or a wave in Γ, where g ↾ (Γ/f) restricts g to the vertices of Γ/f . Take, e.g.,
g(a, z) = 2, g(z, x) = g(z, y) = 1, and g(e) = 0 otherwise.
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Figure 12 A wave f in a web Γ (left) and the quotient web
Γ/f (right). The quotient contains the edge (z, x) only in [3].
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Figure 13 Wave f in a web
none of whose trimmings g sat-
isfies Aharoni et al.’s condition
TER(g)−A = E(TER(f))−A.

Our definition therefore excludes this edge. And while we were at it, we also changed the
definition of AΓ/f and the weights so that the two sides of the quotient are always disjoint
and vertices without edges have weight 0. These changes ensure that the quotient web meets
the assumptions of the reduction to bipartite webs (Sect. 3.4). Accordingly, we had to adapt
the existing proofs about the quotient web’s properties or find new ones.

Trimmings. The definition of trimmings (Def. 14) is an example of a small glitch that
affects proofs only minimally. For trimmings, Aharoni et al. [3] require the stronger condition
TER(g) − A = E(TER(f)) − A instead of E(TER(g)) − A = E(TER(f)) − A. The two are
equivalent only if there are no vertices with weight 0, but webs may contain such vertices.
So Lemma 15 need not hold for such webs. For example, Fig. 13 shows a wave f that does
not have a trimming according to Aharoni et al.’s definition [3, Def. 4.7]. Every wave g has
x ∈ TER(g) because x has weight 0, but x /∈ E(TER(f)) − A = {y}.

7 Related work

Lee [15] and Lammich and Sefidgar [13, 14] have formalized the MFMC theorem for finite
networks in Mizar and Isabelle/HOL, respectively. Lammich and Sefidgar additionally
formalize and verify several max-flow algorithms. We reused Lammich and Sefidgar’s
formalization in our proof of Prop. 24. We make no algorithmic considerations, as countable
networks are infinite objects that lie beyond the reach of traditional notions of algorithms.

Lyons and Peres [19, Thm. 3.1] consider countable locally finite networks, where every
vertex has only finitely many neighbours, and without a sink. They show that the maximum
flow’s value equals the value of a minimum cut, where a cut here contains an edge of every
infinite simple path that starts at the source. Like our proof for the bounded case, their
proof extends the MFMC theorem for finite networks using majorised convergence. Since
their graphs are locally finite, all summations of interest are finite by construction.

8 Conclusion

In this paper, we have formalized a strong max-flow min-cut theorem for countable networks
in Isabelle/HOL. To rule out anomalities due to the network being infinite, the theorem
statement avoids imprecise infinite sums and instead compares the saturation edge by edge.
During the formalization, we have discovered and fixed a number of problems in the original
proof [3].

Arguably, this statement still does not capture the intuition fully. For example, the
infinite network in Fig. 14 has a cut of value 4 with an orthogonal flow. This is the cut
that the proof of Thm. 1 constructs. Yet, this cut is not minimal: The cut that separates
the upper nodes from the lower nodes would be saturated by a flow of 2 units (not shown).
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Figure 14 An infinite network with an orthogonal pair of a cut and a flow.

This illustrates the intricacies of infinite networks: The out-flow from the source s of value
3 drains away in the infinite ray s → x1 → x2 → x3 → . . .. Conversely, the in-flow to the
sink t of value 4 is pulled in via the infinite path . . . → y3 → y2 → y1 → z → t. So this
network shows that the outflow from the source may exceed the capacity of a cut and yet
not saturate it.

Aharoni et al. [3, Sects. 7–8] study two restrictions on networks that avoid such anomalies:
networks without infinite edge-disjoint paths and locally-finite networks. We have not yet
formalized these results. Neither result applies to the network in Fig. 14. So finding a more
intuitive statement of the max-flow min-cut theorem for countable networks is still an open
problem.
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Abstract
This work presents a formalized proof of modal completeness for Gödel-Löb provability logic (GL)
in the HOL Light theorem prover. We describe the code we developed, and discuss some details of
our implementation. In particular, we show how we adapted the proof in the Boolos’ monograph
according to the formal language and tools at hand. The strategy we develop here overcomes the
technical difficulty due to the non-compactness of GL, and simplify the implementation. Moreover,
it can be applied to other normal modal systems with minimal changes.
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1 Introduction

In this paper we wish to report on our results and general experience in using HOL Light
theorem prover to formally verify some properties of Gödel-Löb provability logic (GL).

Our work starts with a deep embedding of the syntax of propositional modal logic together
with the corresponding relational semantics. Next, we introduce the traditional axiomatic
calculus GL and prove the validity of the system w.r.t. irreflexive transitive finite frames.

After doing that, the most interesting part of our work begins with the proof of a number
of lemmas in GL that are necessary for our main goal, namely the development of a formal
proof of modal completeness for the system.

In order to achieve that, we had to formally verify a series of preliminary lemmas and
constructions involving the behaviour of syntactical objects used in the standard proof of
the completeness theorem. These unavoidable steps are very often only proof-sketched in
wide-adopted textbooks in logic, for they mainly involve “standard” reasoning within the
proof system we are dealing with. But when we are working in a formal setting like we did
with HOL Light, experience reveals that it is generally more convenient to adopt a different
line of reasoning and to make a smart use of our formal tools, so that we can succeed in
developing alternative (or simpler) proofs, still totally verified by the computer.
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In other terms: in order to give a formal proof of the completeness theorem for GL,
that is

▶ Theorem 1. For any formula A, GL ⊢ A iff A is true in any irreflexive transitive finite
frame.

we needed to split down the main goal into several subgoals – dealing with both the object-
and the meta-level – which might seem trivial in informal reasoning. However, in order to
carefully check them it has been more convenient to apply different proof-strategies where
HOL Light infrastructure played a more active role.

We can briefly summarise the present paper as follows:
In Section 2, we introduce the basic ingredients of our development, namely the formal
counterparts of the syntax and relational semantics for provability logic, along with some
lemmas and general definitions which are useful to handle the implementation of these
objects in a uniform way, i.e. without the restriction to the specific modal system we are
interested in. The formalization constitutes large part of the file modal.ml;
In Section 3, we formally define the axiomatic calculus GL, and prove in a neat way the
validity lemma for this system. Moreover, we give formal proofs of several lemmas in GL
(GL-lemmas, for short), whose majority is in fact common to all normal modal logics,
so that our proofs might be re-used in subsequent implementations of different systems.
This corresponds to contents of our code in gl.ml;
Finally, in Section 4 we give our formal proof of modal completeness of GL, starting with
the definition of maximal consistent lists of formulae. In order to prove their syntactic
properties – and, in particular, the extension lemma for consistent lists of formulae
to maximal consistent lists – we use the GL-lemmas and, at the same time, we adapt
an already known general proof-strategy to maximise the gain from the formal tools
provided by HOL Light – or, informally, from higher-order reasoning. Therefore, the
proof we are proposing in that section follows the standard lines presented in e.g. [7]
– from extension lemma to modal completeness via truth lemma – but it adopts tools,
results, and techniques which are specific to the theorem prover we used, in line with a
clear philosophical attitude in computer-aided proof development.
At the end of the Section, we give the formal definition of bisimilarity for our setup and
we prove the associated bisimulation theorem [19, Ch. 11]. Our notion of bisimilarity is
polymorphic, in the sense that it can relate classes of frames sitting on different types.
With this tool at hand, we can correctly state our completeness theorem in its natural
generality (COMPLETENESS_THEOREM_GEN) – i.e. for irreflexive, transitive finite frames over
any (infinite) type. These results, together with a simple decision procedure for GL, are
gathered in the file completeness.ml.

Our code is integrated into the current HOL Light distribution, and it is freely available
from there.1 We care to stress that our formalization does not tweak any original HOL
Light tools, and it is therefore “foundationally safe”. Moreover, since we only used that
original formal infrastructure, our results can be easily translated into another theorem
prover belonging to the HOL family – or, more generally, endowed with the same automation
toolbox.

Before presenting our results, in the forthcoming subsections of this introduction we
provide the reader with some background material both on provability logic, and on formal
theorem proving in HOL Light: further information about modalities and HOL Light can be
found in [12] and [15], respectively.

1 See “Supplementary Material” on the first page of this paper.
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1.1 Developments of Provability Logic

The origin of provability logic dates back to a short paper by Gödel [11] where propositions
about provability are formalized by means of a unary operator B with the aim of giving a
classical reading of intuitionistic logic.

The resulting system corresponds to the logic S4, and the proposition Bp is interpreted
as “p is informally provable” – as claimed by Gödel himself. This implies that S4 can be
considered a provability logic lacking an appropriate semantics.

At the same time, that work opened the question of finding an adequate modal calculus
for the formal properties of the provability predicate used in Gödel’s incompleteness theorems.
That problem has been settled since 1970s for many formal systems of arithmetic by means
of Gödel-Löb logic GL.

The corresponding axiomatic calculus GL consists of the axiomatic system for classical
propositional logic, extended by the distributivity axiom schema K, the necessitation rule
NR, and the axiom schema GL (see Section 3).

The schema GL is precisely a formal version of Löb’s theorem, which holds for a wide
class of arithmetical theories satisfying the so-called Hilbert-Bernays-Löb (HBL) provability
conditions.2

The semantic counterpart of this calculus is - through the Kripke formalism - the logic of
irreflexive transitive finite frames. Moreover, the calculus can be interpreted arithmetically
in a sound and complete way. In other terms, GL solves the problem raised in Gödel’s paper
by identifying a propositional formal system for provability in all arithmetical theories that
satisfies the previously mentioned HBL conditions.

Published in 1976, Solovay’s arithmetical completeness theorem [21] is in this sense
a milestone result in the fields of proof theory and modal logic. As GL is arithmetically
complete, it is capable of capturing and identifying all relevant properties of formal provability
for arithmetic in a very simple system, which is decidable and neatly characterised.

Such a deep result, however, uses in an essential way the modal completeness of GL:
Solovay’s technique basically consists of an arithmetization of a relational countermodel for a
given formula that is not a theorem of GL, from which it is possible to define an appropriate
arithmetical formula that is not a theorem of the mathematical system.

In contemporary research, this is still the main strategy to prove arithmetical completeness
for other modalities for provability and related concepts, in particular for interpretability
logic. In spite of this, for many theories of arithmetic – including Heyting Arithmetic – this
technique cannot be applied, and no alternatives are known.

Therefore, on the one hand, completeness of formal systems w.r.t. the relevant relational
semantics is still an unavoidable step in achieving the more substantial result of arithmetical
completeness; on the other hand, however, the area of provability logic keeps flourishing and
suggesting old and new open problems, closely related to the field of proof theory, but in fact
bounded also to seeking a uniform proof-strategy to establish adequate semantics in formal
theories of arithmetic having different strengths and flavours.3

2 These properties of the formal predicate for arithmetical provability were isolated first in [16].
3 The reader is referred to [3] for a survey of open problems in provability logics. As an instance of

relevant applications of this kind of formal systems to traditional investigations in proof theory see
e.g. [1].
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1.2 HOL Light Notation
The HOL Light proof assistant [14] is based on classical higher-order logic with polymorphic
type variables and where equality is the only primitive notion. From a logical viewpoint,
the formal engine defined by the term-conversions and inference rules underlying HOL
Light is the same as that described in [17], extended by an infinity axiom and the classical
characterization of Hilbert’s choice operator. From a practical perspective, it is a theorem
prover privileging a procedural proof style development – i.e. when using it, we have to solve
goals by applying tactics that reduce them to (eventually) simpler subgoals, so that the
interactive aspect of proving is highlighted. Proof-terms can then be constructed by means
of tacticals that compact the proof into few lines of code evaluated by the machine.

Logical operators – defined in terms of equality – and λ-abstraction are denoted by
specific symbols in ASCII: for the reader’s sake, we give a partial glossary in the next table.
In the third column of the table, we also report the notation used for the object logic GL
(introduced at the beginning of Section 2.1).

Informal notation HOL notation GL notation Description
⊥ F False Falsity
⊤ T True Truth
¬p ~ p Not p Negation

p ∧ q /\ && Conjunction
p ∨ q \/ || Disjunction

p =⇒ q ==> --> Implication
p ⇐⇒ q <=> <-> Biconditional

□p Box p Modal Operator
p1, . . . pN ⊢ p p1 ... pN |- p HOL theorem

⊢ p |-- p Derivability in GL
∀x. P (x) !x. P(x) Universal quantification
∃x. P (x) ?x. P(x) Existential quantification
λx. M(x) \x. M(x) Lambda abstraction

x ∈ s x IN s Set membership

We recall that a Boolean function s : α -> bool is also called a set on α in the HOL
parlance. The notation x IN s is equivalent to s x and must not be confused with a type
annotation x : α.

In the following sections, we will directly state our results as theorems and definitions
in the HOL Light syntax. Note that theorems are prefixed by the turnstile symbol, as
in |- 2 + 2 = 4. We often report a theorem with its associated name, that is, the name of
its associated OCaml constant, e.g.

ADD_SYM
|- !m n. m + n = n + m

As expository style, we omit formal proofs at all, but the meaning of definitions, lemmas,
and theorems in natural language is hopefully clear after the table we have just given.

We warn the reader that the HOL Light printing mechanism omits type information
completely. However in this paper we manually add type annotations when they might be
useful, or even indispensable, in order to avoid ambiguity – including the case of our main
results, COMPLETENESS_THEOREM and COMPLETENESS_THEOREM_GEN.

As already told in the introduction, our contribution is now part of the HOL Light
distribution. The reader interested in performing these results on her machine – and perhaps
build further formalization on top of it – can run our code with the command

loadt "GL/make.ml";;

at the HOL Light prompt.
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2 Basics of Modal Logic

As we stated previously, we deal with a logic that extends classical propositional reasoning
by means of a single modal operator which is intended to capture the abstract properties of
the provability predicate for arithmetic.

To reason about and within this logic, we have to “teach” HOL Light – our meta-language
– how to identify it, starting with its syntax – the object-language – and semantics – the
interpretation of this very object-language.

We want to keep everything neat and clean from a foundational perspective, therefore
we will define both the object-language and its interpretation with no relation to the HOL
Light environment. In other terms: our formulae and operators are real syntactic objects
which we keep distinct from their semantic counterpart – and from the logical operators of
the theorem prover too.

2.1 Language and Semantics Defined
Let us start by fixing the propositional modal language we will use throughout the present
work. We consider all classical propositional operators – conjunction, disjunction, implication,
equivalence, negation, along with the 0-ary symbols ⊤ and ⊥ – and we add a modal unary
connective □. The starting point is, as usual, a denumerable infinite set of propositional
atoms a0, a1, · · · . Accordingly, formulae of this language will have one of the following form

a | A ∧ B | A ∨ B | A → B | A ↔ B | ¬A | ⊤ | ⊥ | □A .

The following code extends the HOL system with an the inductive type of formulae up
to the atoms – which we identify with the denumerable type of strings – by using the above
connectives:

let form_INDUCT,form_RECURSION = define_type
"form = False

| True
| Atom string
| Not form
| && form form
| || form form
| --> form form
| <-> form form
| Box form";;

Next, we turn to the semantics for our modal language. We use relational models – aka
Kripke models4. Formally, a Kripke frame is made of a non-empty set “of possible worlds”
W, together with a binary relation R on W. To this, we add a valuation function V which assigns
to each atom of our language and each world w in W a Boolean value. This is extended to a
forcing relation holds, defined recursively on the structure of the input formula p, that
computes the truth-value of p in a specific world w:

let holds = new_recursive_definition form_RECURSION
‘(holds f V False (w:W) <=> F) /\
(holds f V True w <=> T) /\
(holds f V (Atom s) w <=> V s w) /\

4 See [9] for the historical development of this notion.
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(holds f V (Not p) w <=> ~(holds f V p w)) /\
(holds f V (p && q) w <=> holds f V p w /\ holds f V q w) /\
(holds f V (p || q) w <=> holds f V p w \/ holds f V q w) /\
(holds f V (p --> q) w <=> holds f V p w ==> holds f V q w) /\
(holds f V (p <-> q) w <=> holds f V p w <=> holds f V q w) /\
(holds f V (Box p) w <=> !u. u IN FST f /\ SND f w u ==> holds f V p u)‘;;

In the previous lines of code, f stands for a generic Kripke frame – i.e., a pair (W,R) of a
set of worlds and an accessibility relation – and V is an evaluation of propositional variables.
Then, the validity of a formula p with respect to a frame (W,R), and a class of frames L,
denoted respectively holds_in (W,R) p and L |= p, are

let holds_in = new_definition
‘holds_in (W,R) p <=> !V w. w IN W ==> holds (W,R) V p w‘;;

let valid = new_definition
‘L |= p <=> !f. L f ==> holds_in f p‘;;

The above formalization is essentially the one presented in Harrison’s HOL Light Tutorial [15,
§ 20]. Notice that the usual notion of Kripke frame requires that the set of possible worlds
is non-empty: that condition could be imposed by adapting the valid relation. We have
preferred to stick to Harrison’s original definitions in our code, but in the next section,
when we define the classes of frames we are dealing with, the requirement on W is correctly
integrated in the corresponding types.

2.2 Frames for GL
For carrying out our formalization, we are interested in the logic of the (non-empty) frames
whose underlying relation R is transitive and conversely well-founded – aka Noetherian
– on the corresponding set of possible worlds; in other terms, we want to study the modal
tautologies in models based on an accessibility relation R on W such that

if xRy and yRz, then xRz; and
for no X ⊆ W there are infinite R-chains x0Rx1Rx2 · · · .

In HOL Light, WF R states that R is a well-founded relation, so that we express the latter
condition as WF(\x y. R y x). Here we see a recurrent motif in logic: defining a system
from the semantic perspective requires non-trivial tools from the foundational point of view,
for, to express the second condition, a first-order language is not enough. However, that is
not an issue here, since our underlying system is natively higher order:

let TRANSNT = new_definition
‘TRANSNT (W:W->bool,R:W->W->bool) <=>
~(W = {}) /\
(!x y:W. R x y ==> x IN W /\ y IN W) /\
(!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\
WF(\x y. R y x)‘;;

We warn the reader that in the previous statement there occur two interrelated mathematical
objects both denoted W (for convenience): one is the type W and the other is the set W on the
former (in the sense explained in the introduction about the HOL syntax). From a theoretical
point of view, moreover, the question has no deep consequences as we can characterize this
class of frames by using a propositional language extended by a modal operator □ that
satisfies the Gödel-Löb axiom schema (GL) : □(□A → A) → □A. Here is the formal version
of our claim:
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TRANSNT_EQ_LOB
|- !W:W->bool R:W->W->bool.

(!x y:W. R x y ==> x IN W /\ y IN W)
==> ((!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\

WF (\x y. R y x) <=>
(!p. holds_in (W,R) (Box(Box p --> p) --> Box p)))

The informal proof of the above result is standard and can be found in [7, Theorem 10]
and in [19, Theorem 5.7]. The computer implementation of the proof is made easy thanks to
Harrison’s tactic MODAL_SCHEMA_TAC for semantic reasoning in modal logic, documented in
[15, § 20.3].

By using this preliminary result, we could say that the frame property of being transitive
and Noetherian can be captured by Gödel-Löb modal axiom, without recurring to a higher-
order language. Nevertheless, that class of frames is not particularly informative from a
logical point of view: a frame in TRANSNT can be too huge to be used in practice – for
instance, for checking whether a formula is indeed a theorem of our logic. In particular, when
aiming at a completeness theorem, one wants to consider models that are useful for further
investigations on the properties of the very logic under consideration – in the present case,
decidability of GL, which, as for any other normal modal logic, is an easy corollary of the
finite model property [19, Ch. 13].

To this aim we note that by definition of Noetherianness, our R cannot be reflexive –
otherwise xRxRx · · · would give us an infinite R-chain. This is not enough: following our
main reference [7], the frames we want to investigate are precisely those whose W is finite,
and whose R is both irreflexive and transitive:

let ITF = new_definition
‘ITF (W:W->bool,R:W->W->bool) <=>
~(W = {}) /\
(!x y:W. R x y ==> x IN W /\ y IN W) /\
FINITE W /\
(!x. x IN W ==> ~R x x) /\
(!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z)‘;;

Now it is easy to see that ITF is a subclass of TRANSNT:

ITF_NT
|- !W R:W->W->bool. ITF(W,R) ==> TRANSNT(W,R)

That will be the class of frames whose logic we are now going to define syntactically.

3 Axiomatizing GL

We want to identify the logical system generating all the modal tautologies for transitive
Noetherian frames; more precisely, we want to isolate the generators of the modal tautologies
in the subclass of transitive Noetherian frames which are finite, transitive, and irreflexive.
Notice that the lemma ITF_NT allows us to derive the former result as a corollary of the
latter.

When dealing with the very notion of tautology – or theoremhood, discarding the com-
plexity or structural aspects of derivability in a formal system – it is convenient to focus on
axiomatic calculi. The calculus we are dealing with here is usually denoted by GL.

It is clear from the definition of the forcing relation that for classical operators any
axiomatization of propositional classical logic will do the job. Here, we adopt a basic system
in which only → and ⊥ are primitive – from the axiomatic perspective – and all the remaining
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classical connectives are defined by axiom schemas and by the inference rule of Modus Ponens
imposing their standard behaviour.5

As anticipated in the Introduction, to this classical engine we add
the axiom schema K: □(A → B) → □A → □B;
the axiom schema GL: □(□A → A) → □A;
the necessitation rule NR: A NR

□A
,

where A, B are generic formulae (not simply atoms). Then, here is the complete definition of
the axiom system GL. The set of axioms is encoded via the inductive predicate GLaxiom:

let GLaxiom_RULES,GLaxiom_INDUCT,GLaxiom_CASES = new_inductive_definition
‘(!p q. GLaxiom (p --> (q --> p))) /\
(!p q r. GLaxiom ((p --> q --> r) --> (p --> q) --> (p --> r))) /\
(!p. GLaxiom (((p --> False) --> False) --> p)) /\
(!p q. GLaxiom ((p <-> q) --> p --> q)) /\
(!p q. GLaxiom ((p <-> q) --> q --> p)) /\
(!p q. GLaxiom ((p --> q) --> (q --> p) --> (p <-> q))) /\
GLaxiom (True <-> False --> False) /\
(!p. GLaxiom (Not p <-> p --> False)) /\
(!p q. GLaxiom (p && q <-> (p --> q --> False) --> False)) /\
(!p q. GLaxiom (p || q <-> Not(Not p && Not q))) /\
(!p q. GLaxiom (Box (p --> q) --> Box p --> Box q)) /\
(!p. GLaxiom (Box (Box p --> p) --> Box p))‘;;

The judgment GL ⊢ A, denoted |-- A in the machine code (not to be confused with the
symbol for HOL theorems |-), is also inductively defined in the expected way:

let GLproves_RULES,GLproves_INDUCT,GLproves_CASES = new_inductive_definition
‘(!p. GLaxiom p ==> |-- p) /\
(!p q. |-- (p --> q) /\ |-- p ==> |-- q) /\
(!p. |-- p ==> |-- (Box p))‘;;

3.1 GL-lemmas
As usual, GL ⊢ A denotes the existence of a derivation of A from the axioms of GL; we could
also define a notion of derivability from a set of assumptions just by tweaking the previous
definitions in order to handle the specific limitations on NR – so that the deduction theorem
would hold [13] – but this would be inessential to our intents.

Proving some lemmas in the axiomatic calculus GL is a technical interlude necessary for
obtaining the completeness result.

In accordance with this aim, we denoted the classical axioms and rules of the system
as the propositional schemas used by Harrison in the file Arithmetic/derived.ml of the
HOL Light standard distribution [14] – where, in fact, many of our lemmas relying only on
the propositional calculus are already proven there w.r.t. an axiomatic system for first-order
classical logic; our further lemmas involving modal reasoning are denoted by names that are
commonly used in informal presentations.

Therefore, the code in gl.ml mainly consists of the formalized proofs of those lemmas in
GL that are useful for the formalized results we present in the next section. This file might
be thought of as a “kernel” for further experiments in reasoning about axiomatic calculi
by using HOL Light. The lemmas we proved are, indeed, standard tautologies of classical

5 This is essentially the calculus introduced by Church in [8]
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propositional logic, along with specific theorems of minimal modal logic and its extension for
transitive frames – i.e. of the systems K and K4 [19] –, so that by applying minor changes in
basic definitions, they are – so to speak – take-away proof-terms for extensions of that very
minimal system within the realm of normal modal logics.

More precisely, we have given, whenever it was useful, a “sequent-style natural deduction”
characterization of classical operators both in terms of an implicit (or internal) deduction –
and in that case we named the lemma with the suffix _th –, such as

GL_modusponens_th
|- !p q. |-- ((p --> q) && p --> q)

and as a derived rule of the axiomatic system mimicking the behaviour of the connective in
Gentzen’s formalism, e.g.,

GL_and_elim
|- !p q r. |-- (r --> p && q) ==> |-- (r --> q) /\ |-- (r --> p)

We had to prove about 120 such results of varying degree of difficulty. We believe that this
file is well worth the effort of its development, for two main reasons to be considered – along
with the just mentioned fact that they provide a (not so) minimal set of internal lemmas
which can be moved to different axiomatic calculi at, basically, no cost.

Indeed, on the one hand, these lemmas simplify the subsequent formal proofs involving
consistent lists of formulae since they let us work formally within the scope of ⊢, so that
we can rearrange subgoals according to their most useful equivalent form by applying the
appropriate GL-lemma(s).

On the other hand, the endeavour of giving formal proofs of these lemmas of the calculus
GL has been important for checking how much our proof-assistant is “friendly” and efficient
in performing this specific task.

As it is known, any axiomatic system fits very well an investigation involving the notion
of theoremhood for a specific logic, but its lack of naturalness w.r.t. the practice of developing
informal proofs makes it an unsatisfactory model for the notion of deducibility. In more
practical terms: developing a formal proof of a theorem in an axiomatic system by pencil
and paper can be a dull and uninformative task.

We therefore left the proof-search to the HOL Light toolbox as much as possible. Un-
fortunately, we have to express mixed feelings on the general experience. In most cases,
relying on the automation tools of this specific proof assistant did indeed save our time and
resources when trying to give a formal proof in GL. Nevertheless, there has been a number
of GL-lemmas for proving which those automation tools did not revealed useful at all. In
those cases, actually, we had to perform a tentative search of the specific instances of axioms
from which deriving the lemmas,6 so that interactive proving them had advantages as well
as traditional instruments of everyday mathematicians.

Just to stress the general point: it is clearly possible – and actually useful in general –
to rely on the resources of HOL Light to develop formal proofs both about and within an
axiomatic calculus for a specific logic, in particular when the lemmas of the object system
have relevance or practical utility for mechanizing (meta-)results on it; however, these very
resources – and, as far as we can see, the tools of any other general proof assistant – do
not look peculiarly satisfactory for pursuing investigations on derivability within axiomatic
systems.

6 The HOL Light tactics for first-order reasoning MESON and METIS were unable, for example, to instantiate
autonomously the obvious middle formula for the transitivity of an implication, or even the specific
formulae of a schema to apply to the goal in order to rewrite it.
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3.2 Soundness Lemma
At this point, we can prove that GL is sound – i.e. every formula derivable in the calculus
is a tautology in the class of irreflexive transitive finite frames. This is obtained by simply
unfolding the relevant definitions and applying theorems TRANSNT_EQ_LOB and ITF_NT of
Section 2.2:

GL_TRANSNT_VALID
|- !p. (|-- p) ==> TRANSNT:(W->bool)#(W->W->bool)->bool |= p

GL_ITF_VALID
|- !p. |-- p ==> ITF:(W->bool)#(W->W->bool)->bool |= p

From this, we get a model-theoretic proof of consistency for the calculus

GL_consistent
~ |-- False

Having exhausted the contents of file gl.ml, we shall move to consider the most interesting
part of our effort, namely the mechanized proof of completeness for the calculus w.r.t. this
very same class of frames. That constitutes the remaining contents of our implementation,
beside the auxiliary code in misc.ml furnishing some general results about lists of items
with same type we needed to handle the subsequent constructions (but have a more general
utility).

4 Completeness and Decidability

When dealing with normal modal logics, it is common to develop a proof of completeness
w.r.t. relational semantics by using the so-called “canonical model method”. This can be
summarized as a standard construction of countermodels made of maximal consistent sets of
formulae and an appropriate accessibility relation [19].

For GL, we cannot pursue this strategy, since the logic is not compact: maximal consistent
sets are (in general) infinite objects, though the notion of derivability involves only a finite set
of formulae. We cannot therefore reduce the semantic notion of (in)coherent set of formulae
to the syntactic one of (in)consistent set of formulae: when extending a consistent set of
formulae to a maximal consistent one, we might end up with a syntactically consistent set
that nevertheless cannot be semantically satisfied.

In spite of this, it is possible to achieve a completeness result by
1. identifying the relevant properties of maximal consistent sets of formulae; and
2. tweaking the definitions so that those properties hold for specific consistent sets of

formulae related to the formula we want to find a countermodel to.
That is, basically, the key idea behind the proof given in [7, Ch. 5]. In that monograph,
however, the construction of a maximal consistent set from a simply consistent one is only
proof-sketched and relies on a syntactic manipulation of formulae. By using HOL Light
we do succeed in giving a detailed proof of completeness as direct as that by Boolos. But,
as a matter of fact, we can claim something more: we can do that by carrying out in a
very natural way a tweaked Lindenbaum construction to extend consistent lists to maximal
consistent ones. This way, we succeed in preserving the standard Henkin-style completeness
proofs; and, at the same time, we avoid the symbolic subtleties sketched in [7] that have
no real relevance for the argument, but have the unpleasant consequence of making the
formalized proof unnecessarily long, so that the implementation would sound rather pedantic
– or even dull.
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Furthermore, the proof of the main lemma EXTEND_MAXIMAL_CONSISTENT is rather general
and does not rely on any specific property of GL: our strategy suits all the others normal
(mono)modal logics – we only need to modify the subsequent definition of STANDARD_RELATION
according to the specific system under consideration. Thus, we provide a way for establishing
completeness à la Henkin and the finite model property without recurring to filtrations [19]
of canonical models for those systems.

4.1 Maximal Consistent Lists
Following the standard practice, we need to consider consistent finite sets of formulae for
our proof of completeness. In principle, we can employ general sets of formulae in the
formalization, but, from the practical view-point, lists without repetitions are better suited,
since they are automatically finite and we can easily manipulate them by structural recursion.
We define first the operation of finite conjunction of formulae in a list:7

let CONJLIST = new_recursive_definition list_RECURSION
‘CONJLIST [] = True /\
(!p X. CONJLIST (CONS p X) = if X = [] then p else p && CONJLIST X)‘;;

We proceed by proving some properties on lists of formulae and some GL-lemmas
involving CONJLIST. In particular, since GL is a normal modal logic – i.e. its modal operator
distributes over implication and preserves theoremhood – we have that our □ distributes
over the conjunction of X so that we have CONJLIST_MAP_BOX:

GL ⊢ □
∧

X ↔
∧

□X,

where □X is an abuse of notation for the list obtained by “boxing” each formula in X.
We are now able to define the notion of consistent list of formulae and prove the

main properties of this kind of objects:

let CONSISTENT = new_definition
‘CONSISTENT (l:form list) <=> ~ (|-- (Not (CONJLIST l)))‘;;

In particular, we prove that:
a consistent list cannot contain both A and ¬A for any formula A, nor ⊥ (see theorems
CONSISTENT_LEMMA, CONSISTENT_NC, and FALSE_IMP_NOT_CONSISTENT, respectively);
for any consistent list X and formula A, either X +A is consistent, or X +¬A is consistent
(CONSISTENT_EM), where + denotes the usual operation of appending an element to a list.

Our maximal consistent lists w.r.t. a given formula A will be consistent lists that do not
contain repetitions and that contain, for any subformula of A, that very subformula or its
negation:8

let MAXIMAL_CONSISTENT = new_definition
‘MAXIMAL_CONSISTENT p X <=>
CONSISTENT X /\ NOREPETITION X /\
(!q. q SUBFORMULA p ==> MEM q X \/ MEM (Not q) X)‘;;

7 Notice that in the this definition we perform a case analysis where the singleton list is treated separately
(i.e., we have CONJLIST [p] = p). This is slightly uncomfortable in certain formal proof steps: in
retrospect, we might have used a simpler version of this function. However, since this is a minor detail,
we preferred not to change our code.

8 Here we define the set of subformulae of A as the reflexive transitive closure of the set of formulae
on which the main connective of A operates: this way, the definition is simplified and it is easier to
establish standard properties of the set of subformulae by means of general higher-order lemmas in HOL
Light for the closure of a given relation.
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where X is a list of formulae and MEM q X is the membership relation for lists. We then
establish the main closure property of maximal consistent lists:

MAXIMAL_CONSISTENT_LEMMA
|- !p X A b. MAXIMAL_CONSISTENT p X /\

(!q. MEM q A ==> MEM q X) /\
b SUBFORMULA p /\
|-- (CONJLIST A --> b)
==> MEM b X

After proving some further lemmas with practical utility – in particular, the fact that any
maximal consistent list behaves like a restricted bivalent evaluation for classical connect-
ives (MAXIMAL_CONSISTENT_MEM_NOT and MAXIMAL_CONSISTENT_MEM_CASES) – we can finally
define the ideal (type of counter)model we are interested in. The type STANDARD_MODEL
consists, for a given formula p, of:
1. the set of maximal consistent lists w.r.t. p made of subsentences of p – i.e. its subformulae

or their negations – as possible worlds;
2. an irreflexive transitive accessibility relation R such that for any subformula Box q of p

and any world w, Box q is in w iff, for any x R-accessible from w, q is in x;
3. an atomic valuation that gives value T (true) to a in w iff a is a subformula of p.

After defining the relation of subsentences as

let SUBSENTENCE = new_definition
‘!p q. q SUBSENTENCE p <=>

q SUBFORMULA p \/ (?q’. q = Not q’ /\ q’ SUBFORMULA p)‘;;

we can introduce the corresponding code:

let GL_STANDARD_FRAME = new_definition
‘GL_STANDARD_FRAME p (W,R) <=>
W = {w | MAXIMAL_CONSISTENT p w /\ (!q. MEM q w ==> q SUBSENTENCE p)} /\
ITF (W,R) /\
(!q w. Box q SUBFORMULA p /\ w IN W

==> (MEM (Box q) w <=> !x. R w x ==> MEM q x))‘;;

let GL_STANDARD_MODEL = new_definition
‘GL_STANDARD_MODEL p (W,R) V <=>
GL_STANDARD_FRAME p (W,R) /\
(!a w. w IN W ==> (V a w <=> MEM (Atom a) w /\ Atom a SUBFORMULA p))‘;;

4.2 Maximal Extensions
What we have to do now is to show that the type GL_STANDARD_MODEL is non-empty. We
achieve this by constructing suitable maximal consistent lists of formulae from specific
consistent ones.

Our original strategy differs from the presentation given in e.g. [7] for being closer to
the standard Lindenbaum construction commonly used in proving completeness results. By
doing so, we have been able to circumvent both the pure technicalities in formalizing the
combinatorial argument sketched in [7, p.79] and the problem – apparently inherent to the
Lindenbaum extension – due to the non-compactness of the system, as we mentioned before.

The main lemma states then that, from any consistent list X of subsentences of a
formula A, we can construct a maximal consistent list of subsentences of A by extending (if
necessary) X:
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EXTEND_MAXIMAL_CONSISTENT
|- !p X.

CONSISTENT X /\
(!q. MEM q X ==> q SUBSENTENCE p)
==> ?M. MAXIMAL_CONSISTENT p M /\

(!q. MEM q M ==> q SUBSENTENCE p) /\
X SUBLIST M

The proof-sketch is as follows: given a formula A, we proceed in a step-by-step construction
by iterating over the subformulae B of A not contained in X. At each step, we append to the
list X the subformula B – if the resulting list is consistent – or its negation ¬B – otherwise.

This way, we are in the pleasant condition of carrying out the construction by using the
HOL Light device efficiently, and, at the same time, we do not have to worry about the
non-compactness of GL, since we are working with finite objects – the type list – from the
very beginning.

Henceforth, we see that – under the assumption that A is not a GL-lemma – the set of
possible worlds in STANDARD_FRAME w.r.t. A is non-empty, as required by the definition of
relational structures:

NONEMPTY_MAXIMAL_CONSISTENT
|- !p. ~ |-- p

==> ?M. MAXIMAL_CONSISTENT p M /\
MEM (Not p) M /\
(!q. MEM q M ==> q SUBSENTENCE p)

Next, we have to define an R satisfying the condition 2 for a STANDARD_FRAME; the following
does the job:

let GL_STANDARD_REL = new_definition
‘GL_STANDARD_REL p w x <=>
MAXIMAL_CONSISTENT p w /\
(!q. MEM q w ==> q SUBSENTENCE p) /\
MAXIMAL_CONSISTENT p x /\
(!q. MEM q x ==> q SUBSENTENCE p) /\
(!B. MEM (Box B) w ==> MEM (Box B) x /\ MEM B x) /\
(?E. MEM (Box E) x /\ MEM (Not (Box E)) w)‘;;

Such an accessibility relation, together with the set of the specific maximal consistent lists
we are dealing with, defines a structure in ITF with the required properties:

ITF_MAXIMAL_CONSISTENT
|- !p. ~ |-- p

==> ITF ({M | MAXIMAL_CONSISTENT p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},

GL_STANDARD_REL p),

ACCESSIBILITY_LEMMA
|- !p M w q.

~ |-- p /\
MAXIMAL_CONSISTENT p M /\
(!q. MEM q M ==> q SUBSENTENCE p) /\
MAXIMAL_CONSISTENT p w /\
(!q. MEM q w ==> q SUBSENTENCE p) /\
MEM (Not p) M /\
Box q SUBFORMULA p /\
(!x. GL_STANDARD_REL p w x ==> MEM q x)
==> MEM (Box q) w,
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4.3 Truth Lemma and Completeness
For our ideal model, it remains to reduce the semantic relation of forcing to the more tractable
one of membership to the specific world. More formally, we prove – by induction on the
complexity of the subformula B of A – that if GL ̸⊢ A, then for any world w of the standard
model, B holds in w iff B is member of w:

GL_truth_lemma
|- !W R p V q.

~ |-- p /\
GL_STANDARD_MODEL p (W,R) V /\
q SUBFORMULA p
==> !w. w IN W ==> (MEM q w <=> holds (W,R) V q w),

Finally, we are able to prove the main result: if GL ̸⊢ A, then the list [¬A] is consistent, and
by applying EXTEND_MAXIMAL_CONSISTENT, we obtain a maximal consistent list X w.r.t. A

that extends it, so that, by applying GL_truth_lemma, we have that X ̸⊨ A in our standard
model. The corresponding formal proof reduces to the application of those previous results
and the appropriate instantiations:

COMPLETENESS_THEOREM
|- !p. ITF:(form list->bool)#(form list->form list->bool)->bool |= p

==> |-- p,

Notice that the family of frames ITF is polymorphic, but, at this stage, our result holds only
for frames on the domain form list, as indicated by the type annotation. This is not an
intrinsic limitation: the next section is devoted indeed to generalize this theorem to frames
on an arbitrary domain.

By using our EXTEND_MAXIMAL_CONSISTENT lemma, we succeeded in giving a rather quick
proof of both completeness and the finite model property for GL.9

Indeed, as an immediate corollary, we have that the system GL is decidable and, in
principle, we could implement a decision procedure for it in OCaml. This is a not-so-easy
task – especially if one seeks efficiency and completeness – and it is out of the scope of the
present work. Nevertheless, we feel like offering a very rough approximation.

We define the tactic GL_TAC and its associated rule GL_RULE that perform the following
steps: (1) apply the completeness theorem, (2) unfold some definitions, and (3) try to solve
the resulting semantic problem using first-order reasoning.

let GL_TAC : tactic =
MATCH_MP_TAC COMPLETENESS_THEOREM THEN
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds;

ITF; GSYM MEMBER_NOT_EMPTY] THEN
MESON_TAC[];;

let GL_RULE tm = prove(tm, REPEAT GEN_TAC THEN GL_TAC);;

The above naive strategy is able to prove automatically some lemmas which are common to
normal modal logic, but require some effort when derived in an axiomatic system. As an
example consider the following GL-lemma:

9 For the completeness w.r.t. transitive Noetherian frames, it is common – see [7, 19] – to reason on
irreflexive transitive structures and derive the result as a corollary of completeness w.r.t. the latter class.
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GL_box_iff_th
|- !p q. |-- (Box (p <-> q) --> (Box p <-> Box q))

When developing a proof of it within the axiomatic calculus, we need to “help” HOL
Light by instantiating several further GL-lemmas, so that the resulting proof-term consists
of ten lines of code. On the contrary, our rule is able to check it in few steps:

# GL_RULE ‘!p q. |-- (Box (p <-> q) --> (Box p <-> Box q))‘;;
0..0..1..6..11..19..32..solved at 39
0..0..1..6..11..19..32..solved at 39

val it : thm = |- !p q. |-- (Box (p <-> q) --> (Box p <-> Box q))

In spite of this, the automation offered by MESON tactic is not enough when the generated se-
mantic problem involves in an essential way the fact that our frames are finite (or Noetherian).
So, for instance, our procedure is not able to prove the Gödel-Löb axiom

GL ⊢ □(□A −→ A) −→ □A .

This suggests the need for improving GL_TAC to handle more general contexts: in the long
run, it is a likely-looking outcome of what we reached so far.

4.4 Generalizing via Bisimulation
As we stated before, our theorem COMPLETENESS_THEOREM provides the modal completeness
for GL with respect to a semantics defined using models built on the type :form list. It is
obvious that the same result must hold whenever we consider models built on any infinite
type. To obtain a formal proof of this fact, we need to establish a correspondence between
models built on different types. It is well-known that a good way to make rigorous such a
correspondence is by means of the notion of bisimulation [5].

In our context, given two models (W1,R1) and (W2,R2) sitting respectively on types
:A and :B, each with a valuation function V1 and V2, a bisimulation is a binary relation
Z:A->B->bool that relates two worlds w1:A and w2:B when they can simulate each other.
The formal definition is as follows:

BISIMIMULATION
|- BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z <=>

(!w1:A w2:B.
Z w1 w2
==> w1 IN W1 /\ w2 IN W2 /\

(!a:string. V1 a w1 <=> V2 a w2) /\
(!w1’. R1 w1 w1’ ==> ?w2’. w2’ IN W2 /\ Z w1’ w2’ /\ R2 w2 w2’) /\
(!w2’. R2 w2 w2’ ==> ?w1’. w1’ IN W1 /\ Z w1’ w2’ /\ R1 w1 w1’))

Then, we say that two worlds are bisimilar if there exists a bisimulation between them:

let BISIMILAR = new_definition
‘BISIMILAR (W1,R1,V1) (W2,R2,V2) (w1:A) (w2:B) <=>
?Z. BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\ Z w1 w2‘;;

The key fact is that the semantic predicate holds respects bisimilarity:

BISIMILAR_HOLDS
|- !W1 R1 V1 W2 R2 V2 w1:A w2:B.

BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2
==> (!p. holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)

ITP 2021
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From this, we can prove that validity is preserved by bisimilarity. The precise statements are
the following:

BISIMILAR_HOLDS_IN
|- !W1 R1 W2 R2.

(!V1 w1:A. ?V2 w2:B. BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2)
==> (!p. holds_in (W2,R2) p ==> holds_in (W1,R1) p)

BISIMILAR_VALID
|- !L1 L2.

(!W1 R1 V1 w1:A.
L1 (W1,R1) /\ w1 IN W1
==> ?W2 R2 V2 w2:B. L2 (W2,R2) /\

BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2)
==> (!p. L2 |= p ==> L1 |= p)

In the last theorem, recall that the statement L(W,R) means that (W R) is a frame in the
class of frames L.

Finally, we can explicitly define a bisimulation between ITF-models on the type
:form list and on any infinite type :A. From this, it follows at once the desired gen-
eralization of completeness for GL:

COMPLETENESS_THEOREM_GEN
|- !p. INFINITE (:A) /\ ITF:(A->bool)#(A->A->bool)->bool |= p ==> |-- p

5 Related Work

Our formalization gives a mechanical proof of completeness for GL in HOL Light which
sticks to the original Henkin’s method for classical logic. In its standard version, its nature
is synthetic and intrinsically semantic [10], and, as we stated before, it is the core of the
canonical model construction for most of normal modal logic.

That very approach does not work for GL. Nevertheless, the modified extension lemma
we proved in our mechanization introduces an analytic flavour to the strategy – for building
maximal consistent lists in terms of components of a given non-provable formula in the
calculus – and shows that Henkin’s idea can be applied to GL too modulo appropriate
changes.

As far as we know, no other mechanized proof of modal completeness for GL has been
given before, despite there exist formalizations of similar results for several other logics,
manly propositional and first-order classical and intuitionistic logic.

Formalizations of completeness for classical logic define an established trend in interactive
theorem proving since [20], where a Hintikka-style strategy is used to define a theoremhood
checker for formulae built up by negation and disjunction only.

In fact, a very general treatment of systems for classical propositional logic is given in [18].
There, an axiomatic calculus is investigated along with natural deduction, sequent calculus,
and resolution system in Isabelle/HOL, and completeness is proven by Hintikka-style method
for sequent calculus first, to be lifted then to the other formalisms by means of translations
of each system into the others. Their formalization is more ambitious than ours, but, at
the same time, it is focused on a very different aim. A similar overview of meta-theoretical
results for several calculi formalized in Isabelle/HOL is given in [6], where, again, a more
general investigation – unrelated to modal logics – is provided.

Concerning the area of intuitionistic modalities, [2] gives a constructive proof of com-
pleteness of IS4 w.r.t. a specific relational semantics verified in Agda, but it uses natural
deduction and apply modal completeness to obtain a normalization result for the terms of
the associated λ-calculus.
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A Henkin-style completeness proof for S5 is formalised in Lean [4]. That work applies
the standard method of canonical models – since S5 is compact – but does not prove the
finite model property for the logic.

More recently, Xu and Norrish in [22] have used the HOL4 theorem prover for a general
treatment of model theory of modal systems. As a future work, it might be interesting to
make use of the formalization therein along with the main lines of our implementation of
axiomatic calculi to merge the two presentations – syntactic and semantic – in an exhaustive
way.
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Abstract
This paper presents a formalization of several termination criteria for first-order recursive functions.
The formalization, which is developed in the Prototype Verification System (PVS), includes the
specification and proof of equivalence of semantic termination, Turing termination, size change
principle, calling context graphs, and matrix-weighted graphs. These termination criteria are defined
on a computational model that consists of a basic functional language called PVS0, which is an
embedding of recursive first-order functions. Through this embedding, the native mechanism for
checking termination of recursive functions in PVS could be soundly extended with semi-automatic
termination criteria such as calling contexts graphs.
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1 Introduction

Advances in theorem proving have enabled the formal verification of algorithms used in
safety-critical applications. For instance, the Prototype Verification System (PVS) [11] is
extensively used at NASA in the verification of safety-critical algorithms of autonomous
unmanned systems.1 These algorithms are typically specified as recursive functions whose
computations are well-behaved, i.e., they terminate for every possible input. In computer
science, program termination is the quintessential example of a property that is undecidable.
Alan Turing famously proved that it is impossible to construct an algorithm that decides
whether or not another algorithm terminates on a given input [13]. Turing’s proof applies

1 For example, see https://shemesh.larc.nasa.gov/fm.
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to algorithms written as Turing machines, but the proof extends to other formalisms for
expressing computations such as λ-calculus, rewriting systems, and programs written in
modern programming languages.

As is the case for other undecidable problems, there are syntactic and semantic restrictions,
data structures, and heuristics that lead to a solution for subclasses of the problem. In Coq,
for example, termination of well-typed functions is guaranteed by the Calculus of Inductive
Constructions implemented in its type system [4]. Other theorem provers, such as ACL2,
have incorporated syntactic conditions for checking termination of recursive functions [7].
In the Prototype Verification System (PVS), the user needs to provide a measure function
over a well-founded relation that strictly decreases at every recursive call [11]. Despite the
undecidability result, termination is routine, but is often a tedious and time-consuming stage
in a formal verification effort.

This paper reports on the formalization of several termination criteria in PVS. In addition
to the proper mechanism implemented in the type checker of PVS to assure termination of
recursive definitions, this work also includes the formalization of more general techniques,
such as the size change principle (SCP) presented by Lee et. al. [9]. The SCP principle states
that if every infinite computation would give rise to an infinitely decreasing value sequence,
then no infinite computation is possible. Later, Manolios and Vroon introduced a particular
concretization of the SCP, namely the Calling Context Graphs (CCG) and demonstrated
its practical usefulness in the ACL2 prover [10]. Avelar’s PhD dissertation proposes an
improvement on the CCG technique, based on a particular algebra on matrices [3]. The
formalization reported in this paper includes all these criteria and proofs of equivalence
between them. While the formalization itself has been available for some time as part of the
NASA PVS Library, the goal of this paper is to report the main results. These results, which
have been used in other works such as [2] and [12], have not been properly published before.
Furthermore, this paper also presents a practical contribution: a mechanizable technique to
automate (some) termination proofs of user-defined recursive functions in PVS.

For readability, this paper uses a stylized PVS notation. The development presented in
this paper, including all lemmas and theorems, are formally verified in PVS and are available
as part of the NASA PVS Library.

2 PVS & PVS0

PVS is an interactive theorem prover based on classical higher-order logic. The PVS
specification language is strongly-typed and supports several typing features including
predicate sub-typing, dependent types, inductive data types, and parametric theories. The
expressiveness of the PVS type system prevents its type-checking procedure from being
decidable. Hence, the type-checker may generate proof obligations to be discharged by the
user. These proof obligations are called Type Correctness Conditions (TCCs). The PVS
system includes several pre-defined proof strategies that automatically discharge most of the
TCCs.

In PVS, a recursive function f of type [A→B] is defined by providing a measure function
M of type [A→T], where T is an arbitrary type, and a well-founded relation R over elements
in T . The termination TCCs produced by PVS for a recursive function f guarantee that the
measure function M strictly decreases with respect to R at every recursive call of f .

▶ Example 1. ackermann(m, n: N) : RECURSIVE N =
IF m = 0 THEN n+1
ELSIF n = 0 THEN ackermann(m-1,1)
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ackermann_TCC5: OBLIGATION
∀ (m,n: N): n ̸= 0 ∧ m ̸= 0 ⇒ lex2(m,n-1) < lex2(m,n)

ackermann_TCC6: OBLIGATION
∀ (m,n: N, f: [{z : [N× N] | lex2(z‘1, z‘2) < lex2(m, n)} → N]):
n ̸= 0 ∧ m ̸= 0 ⇒ lex2(m-1, f(m,n-1)) < lex2(m,n)

Figure 1 Termination-related TCCs for the Ackermann function in Ex. 1.

ELSE ackermann(m-1, ackermann(m,n-1))
ENDIF

MEASURE lex2(m,n) BY <

Example 1 provides a definiton of the Ackermann function in PVS. In this example, the
type A is the tuple [N× N] and the type B is N. The type T is ordinal, the type denoting
ordinal numbers in PVS. The measure function lex2 maps a tuple of natural numbers
into an ordinal number. Finally, the well-founded relation R is the order relation “<” on
ordinal numbers. The termination-related TCCs generated by the PVS type-checker for the
Ackermann function are shown in Figure 1. Since all the TCCs are automatically discharged
by a PVS built-in proof strategy, the PVS semantics guarantees that the function ackermann
is well defined on all inputs.

PVS0 is a basic functional language used in this paper as a computational model for
first-order recursive functions in PVS. More precisely, PVS0 is an embedding of univariate
first-order recursive functions of type [Val→Val] for an arbitrary generic type Val. The
syntactic expressions of PVS0 are defined by the grammar

e ::= cnst(v) | vr | op1(n, e) | op2(n, e, e) | rec(e) | ite(e, e, e),

where v is a value of type Val and n is a natural number. Furthermore, cnst(v) denotes a
constant with value v, vr denotes a unique variable, op1 and op2 denote unary and binary
operators respectively, rec denotes a recursive call, and ite denotes a conditional expression
(“if-then-else”). The first parameter of op1 and op2 is an index used to identify built-in
operators of type [Val→Val] and [[Val × Val] → Val], respectively. In the following, the
collection of PVS0 expressions is referred to as PVS0ExprVal, where the type parameter for
PVS0Expr is omitted when possible to lighten the notation. The PVS0 programs with values
in Val, denoted by PVS0Val, are 4-tuples of the form (O1, O2,⊥, e), such that

O1 is a list of unary operators of type [Val→Val], where O1(i), i.e., the i-th element of
the list O1, interprets the index i as referred by in the application of op1,
O2 is a list of binary operators of type [[Val×Val] →Val], where O2(i) interprets the
index i in applications of op2,
⊥ is a constant of type Val representing the Boolean value false in the conditional
construction ite, and
e is a expression from PVS0Expr: the syntactic representation of the body of the program.

Operators in O1 and O2 are PVS pre-defined functions, whose evaluation is considered to be
atomic in the proposed computational model. These operators make it easy to modularly
embed first-order PVS recursive functions in PVS0, while maintaining non-recursive PVS
functions directly available to PVS0 definitions. Henceforth, if p = (O1, O2,⊥, e) is a PVS0
program, the symbols pO1

, pO2
, p⊥, and pe denote, respectively, the first, second, third,
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and fourth elements of the tuple. Since there is only one variable available to write PVS0
programs, arguments of binary functions such as Ackermann’s need to be encoded in Val,
for example using tuples as shown in Example 2.

▶ Example 2. The Ackermann function of Example 1 can be implemented as the PVS0[N×N]
program ack ≡ (O1, O2,⊥, e), where the type parameter Val of PVS0 is instantiated with
the type of pair of natural numbers, i.e., [N×N]. In this encoding, the first projection of
the result of the program represents the output of the function. The components of ack are
defined below.

O1(0)((m, n)) ≡ IF m = 0 THEN ⊤ ELSE ⊥ ENDIF .
O1(1)((m, n)) ≡ IF n = 0 THEN ⊤ ELSE ⊥ ENDIF .
O1(2)((m, n)) ≡ (n + 1, 0).
O1(3)((m, n)) ≡ IF m = 0 THEN ⊥ ELSE (max(0, m− 1), 1) ENDIF .
O1(4)((m, n)) ≡ IF n = 0 THEN ⊥ ELSE (m, max(0, n− 1)) ENDIF .
O2(0)((m, n), (i, j)) ≡ IF m = 0 THEN ⊥ ELSE (max(0, m− 1), i) ENDIF .
⊥ ≡ (0, 0), and for convenience ⊤ ≡ (1, 0).
e ≡ ite(op1(0,vr), op1(2,vr),

ite(op1(1,vr), rec(op1(3,vr)), rec(op2(0,vr,rec(op1(4,vr)))))).

Example 2 illustrates the use of built-in operators in PVS0. Any unary or binary PVS
function can be used as an operator in the construction of a PVS0 program. In order to show
that ack correctly encodes the Ackermann function, it is necessary to define the operational
semantics of PVS0.

2.1 Semantic Relation
Given a PVS0 program p, the semantic evaluation of a PVS0Expr expression ei is given by
the relation ε defined as follows. Intuitively, it holds when given a subexpression ei of a
program p, the evaluation of ei on the input value vi results in the output value vo.

▶ Definition 3 (Semantic Relation). Let p be a PVS0 program on a generic type Val, ei be an
expression in PVS0Expr, and vi, vo, v, v′, v′′ be values from Val. The relation ε(p)(ei, vi, vo)
holds if and only if

vo = v if ei = cnst(v)
vo = vi if ei = vr

∃ v′ : ε(p)(e1, vi, v′) ∧ vo = χ1(p)(j, v′) if ei = op1(j, e1)
∃ v′, v′′ : ε(p)(e1, vi, v′) ∧ ε(p)(e2, vi, v′′)

∧ vo = χ2(p)(j, v′, v′′) if ei = op2(j, e1, e2)
∃ v′ : ε(p)(e1, vi, v′) ∧ ε(p)(pe, v′, vo) if ei = rec(e1)
∃ v′ : ε(p)(e1, vi, v′) ∧ (v′ ̸= p⊥ ⇒ ε(p)(e2, vi, vo))

∧ (v′ = p⊥ ⇒ ε(p)(e3, vi, vo)) if ei = ite(e1, e2, e3)

where

χ1(p)(j, v) =
{

pO1
(j)(v) if j < |pO1

|
p⊥ otherwise.

χ2(p)(j, v1, v2) =
{

pO2
(j)(v1, v2) if j < |pO2

|
p⊥ otherwise.
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The following lemma states that the ack program encodes the function ackermann.

▶ Lemma 4. For all n, m, k ∈ N, ackermann(m, n) = k if and only if there exists i ∈ N such
that ε(ack)(acke, (m, n), (k, i)).

This lemma can be proved by structural induction on the definition of the function ackermann
and the relation ε. A proof of this kind of statement is usually tedious and long. However,
it is fully mechanizable in PVS assuming that the function and the PVS0 program share
the same syntactical structure. A proof strategy that automatically discharges equivalences
between PVS functions and PVS0 programs was developed. The following theorem shows
that the semantic relation ε is deterministic.

▶ Theorem 5. Let p be a PVS0 program. For any PVS0Expr expression ei and values
vi, v′

o, v′′
o ∈ Val, ε(p)(ei, vi, v′

o) and ε(p)(ei, vi, v′′
o ) implies v′

o = v′′
o .

PVS0 enables the encoding on non-terminating functions. The predicate ε-determined,
defined below, holds when a PVS0 program encodes a function that returns a value for a
given input.

▶ Definition 6 (ε-determination). A PVS0 program p is said to be ε-determined for an input
value vi ∈ Val (denoted by Dε(p, vi)) when ∃vo ∈ Val : ε(p)(pe, vi, vo).

2.2 Functional Semantics
The operational semantics of PVS0 can be expressed by a function χ : [PVS0→ [PVS0Expr×
Val × N]→ Val ⊎ {♢}]. This function returns either a value of type Val or a distinguished
value ♢ ̸∈ Val. The natural number argument represents an upper bound on the number of
nested recursive calls that are to be evaluated. If this bound is reached and no final value
has been computed, the function returns ♢.

▶ Definition 7 (Semantic Function). Let p be a PVS0 program, ei a PVS0Expr expression, vi

a value from Val, n a natural number, v′ = χ(p)(e1, vi, n), and v′′ = χ(p)(e2, vi, n).

χ(p)(ei, vi, n) ≡



v if n > 0 and ei = cnst(v)
vi if n > 0 and ei = vr

χ1(p)(j, v′) if n > 0, ei = op1(j, e1), and v′ ̸= ♢
χ2(p)(j, v′, v′′) if n > 0, ei = op2(j, e1, e2),

v′ ̸= ♢, and v′′ ̸= ♢
χ(p)(e, v′, n− 1) if n > 0, ei = rec(e1), and v′ ̸= ♢
χ(p)(e2, vi, n) if n > 0, ei = ite(e1, e2, e3), v′ ̸= ♢,

and v′ ̸= p⊥

χ(p)(e3, vi, n) if n > 0, ei = ite(e1, e2, e3), v′ ̸= ♢,

and v′ = p⊥

♢ otherwise.

The following theorem states that the semantic relation ε and the semantic function χ

are equivalent.

▶ Theorem 8. For any PVS0 program p, vi, vo ∈ Val and ei ∈ PVS0Expr, ε(p)(ei, vi, vo) if
and only if vo = χ(p)(ei, vi, n), for some n ∈ N.
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A program p is χ-determined for an input vi, as defined below, if the evaluation of p(vi)
produces a value in a finite number of nested recursive calls.

▶ Definition 9 (χ-determination). A PVS0 program p is said to be χ-determined for an input
value vi ∈ Val (denoted by Dχ(p, vi)) when there is an n ∈ N such that χ(p)(pe, vi, n) ̸= ♢.

As a corollary of Theorem 8, the notions of ε-determination and χ-determination coincide.

▶ Theorem 10. For all p ∈ PVS0Val and value vi : Val, Dε(p, vi) if and only if Dχ(p, vi).

In Definition 9, there may be multiple (in fact, infinite) natural numbers n that satisfy
χ(p)(pe, vi, n) ̸= ♢. The following definition distinguishes the minimum of those numbers.

▶ Definition 11 (µ). Let p be a PVS0 program and vi a value in Val such that Dχ(p, vi),
the minimum number of recursive calls needed to produce a result (denoted by µ(p, vi)) is
formally defined as min({n ∈ N | χ(p)(pe, vi, n) ̸= ♢}).

If p is χ-determined for a value vi, then for any n ≥ µ(p, vi) the evaluation of χ(p)(pe, vi, n)
results in a value from Val. This remark is formalized by the following lemma.

▶ Lemma 12. Let p be a PVS0 program and vi a value from Val such that Dχ(p, vi). For
any n ∈ N such that n ≥ µ(p, vi), χ(p)(pe, vi, n) = χ(p)(pe, vi, µ(p, vi)).

2.3 Semantic Termination
The notion of termination for PVS0 programs is defined using the notions of determination
from Section 2.2.

▶ Definition 13 (ε-termination and χ-termination). A PVS0 program p ∈ PVS0Val is said to
be ε-terminating (noted Tε(p)) when ∀vi ∈ Val : Dε(p, vi). It is said to be χ-terminating
(Tχ(p)) when ∀vi ∈ Val : Dχ(p, vi).

As a corollary of Theorem 10, the notions of ε-termination and χ-termination coincide.

▶ Theorem 14. For every PVS0 program p, Tε(p) if and only if Tχ(p).

Not all PVS0 programs are terminating. For example, consider the PVS0 program p′ with
body rec(vr). It can be proven that Dε(p′, vi) does not hold for any vi ∈ Val. Hence, Tε(p′)
does not hold and, equivalently, nor does Tχ(p′). Since terminating programs compute a value
for every input, the function χ can be refined into an evaluation function for terminating
programs that does not depend on the existence of a distinguished value outside Val, such
as ♢.

▶ Definition 15. Let PVS0↓ε
be the collection of PVS0 programs for which Tε holds, let

p ∈ PVS0↓ε
, and vi be a value in Val. The semantic function for terminating programs

ϵ : [PVS0↓ε
→ Val→ Val] is defined in the following way.

ϵ(p)(vi) ≡ ϵe(p)(pe, vi), where v′ = ϵe(p)(e1, vi), v′′ = ϵe(p)(e2, vi), and

ϵe(p)(ei, vi) ≡



v if ei = cnst(v)
vi if ei = vr

χ1(p)(j, v′) if ei = op1(j, e1)
χ2(p)(j, v′, v′′) if ei = op2(j, e1, e2)
ϵe(p)(e, v′) if ei = rec(e1)
ϵe(p)(e2, vi) if ei = ite(e1, e2, e3) and ϵe(p)(e1, vi) ̸= p⊥

ϵe(p)(e3, vi) if ei = ite(e1, e2, e3) and ϵe(p)(e1, vi) = p⊥
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Figure 2 Abstract syntax tree of the Ackermann function from Example 2.

▶ Theorem 16. For all terminating PVS0 program p, i.e., Tε(p) holds, and values vi, vo ∈ Val,
ε(p)(pe, vi, vo) holds if and only if ϵ(p)(vi) = vo.

While Tε and Tχ provide semantic definitions of termination, these definitions are im-
practical as termination criteria, since they involve an exhaustive examination of the whole
universe of values in Val. The rest of this paper formalizes termination criteria that yield
mechanical termination analysis techniques.

3 Turing Termination Criterion

In contrast to the purely semantic notions of termination presented in Section 2, the so-
called Turing termination criterion relies on the syntactic structure of recursive programs.
In particular, this termination criterion uses a characterization of the input values that
lead to the evaluation of recursive call subexpressions, i.e., rec(e). In order to define such
a characterization, it is necessary to formalize a way to identify univocally a particular
subexpression of a given PVS0 program. Furthermore, the subexpression as well as its
actual position must be identified. If a given program body contains several repetitions
of the same expression, such as op2(0,rec(vr),rec(vr)), which has two occurrences of
rec(vr), the criterion needs them to be distinguishable from one another. Such a reference
for subexpressions can be formally defined using the abstract syntax tree of the enclosing
expression. To illustrate the idea, Figure 2 depicts a graphical representation of the abstract
syntax tree of the ack program. A unique identifier for a given subexpression can be
constructed by collecting all the numbers labeling the edges from the subexpression to the
root of the tree. For example, the sequence of numbers that identify the subexpression
rec(op1(4,vr)) is ⟨2, 0, 2, 2⟩. A syntax tree labeled using these sequences is called a labeled
syntax tree.

▶ Definition 17 (Valid Path). Let p be a PVS0 program, a finite sequence of natural numbers
p is a Valid Path of p if p determines a path in the labeled syntax tree of p from any node e

to the root of the tree. In that case, p is said to reach e in p.

The notion of path is strictly syntactic. Nevertheless, a semantic correlation is also needed
to state termination criteria focused on how the inputs change along successive recursive calls,
as is the case for Turing termination criterion. A semantic way to identify a subexpression e

of a given program p is to recognize all the values that exercise the particular subexpression
e when used as inputs for the evaluation of p. It is possible to characterize such values by
collecting all the expressions that act as guards for the conditional expressions traversed for
a given path reaching e.
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Continuing the example based on the ack program, for the path ⟨2, 0, 2, 2⟩ reaching
rec(op1(4,vr)), such expressions would be op1(0,vr) and op1(1,vr). For that specific
path, the values to be characterized are the ones that falsify both guard expressions, i.e.,
the values for which both expressions evaluate to p⊥. Nevertheless, for the path ⟨1, 2⟩
reaching rec(op1(3,vr)), the collected expressions are the same, but it is necessary for the
latter not to evaluate to p⊥ in order to characterize the input values that would exercise
rec(op1(3,vr)).

The previous example shows that it is necessary not only to collect the guard expressions,
but also to determine whether each one needs to evaluate to p⊥ or not.

▶ Definition 18 (Polarized Expression). Given a PVS0Expr expression e, the polarized version
of e is a pair [PVS0Expr× {0, 1}] such that (e, 0), abbreviated as ¬e, indicates that e should
evaluate to p⊥ and the pair (e, 1), which is abbreviated simply as e, indicates the contrary.

For a given program p, an input value vi, and a polarized expression c = (e, b) with
b ∈ {0, 1}, c is said to be valid when the condition expressed by it holds. The predicate ε±
defined below formalizes this notion.

ε±(p)(c, vi) ≡
{

ε(p)(e, vi, p⊥) if b = 0,

¬ε(p)(e, vi, p⊥) otherwise.

The semantic characterization of a particular subexpression is formalized by the notion
of list of path conditions defined below.

▶ Definition 19 (Path Conditions). Let p be a valid path of a PVS0 program p and e the
subexpression of pe reached by p. The list of polarized guard expressions of p that are needed
to be valid in order for the evaluation of p to involve the expression e is called the list of path
conditions of p.

▶ Definition 20 (Calling Context). A calling context of a program p is a tuple (rec(e′), p, c)
containing: a path p, which is valid in p, a recursive-call expression rec(e′) contained in pe

and reached by p, and the list c of path conditions of p. The collection of all calling contexts
of p is denoted by cc(p).

The notion of calling context captures both the syntactic and the semantic characteriza-
tions of the subexpressions of a program that denote recursive calls.

▶ Example 21. The calling contexts for the ack function from Example 2 are:
(rec(op1(3,vr)), ⟨1, 2⟩, ⟨¬op1(0,vr), op1(1,vr)⟩),
(rec(op2(0,vr,rec(op1(4,vr)))), ⟨2, 2⟩, ⟨¬op1(0,vr),¬op1(1,vr)⟩), and
(rec(op1(4,vr)), ⟨2, 0, 2, 2⟩, ⟨¬op1(0,vr),¬op1(1,vr)⟩).

An input value vi is said to exercise a calling context cc = (e, p, c) in a program p when
ε±(p)(c, vi) holds. A program p is TCC-terminating if for each calling context cc in p and
every input value vi exercising cc, the value of the expression used as argument by the call
in cc is smaller than vi. In this context, a value is considered smaller than another one if the
former is closer to the bottom induced by a well-founded relation than the latter.

▶ Definition 22 (TCC-termination). A PVS0 program p is said to be TCC-terminating, or
Turing-terminating, on a measuring type M if there exist a function m : [Val→M ] and a
well-founded relation <M on M such that for all calling context cc = (rec(e), p, c) among
the calling contexts of p, for all vi, vo ∈ Val, if ε±(p)(c, vi) and ε(p)(e, vi, vo) hold, then
m(vo) <M m(vi).
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The notion of TCC-termination on a program p is denoted by the predicate T
[M,<M ,m]
T (p),

which is parametric on the measure type M , the well-founded relation <M , and the measure
function m. TCC-termination is equivalent to ε-termination (and, therefore, to χ-termination)
as stated by Theorem 25 below. A key construction used in the proof of Theorem 25 is the
function Ω, defined as follows.

▶ Definition 23 (Ω). Let <p,m be a binary relation on Val defined as v1 <p,m v2 if and only
if m(v1) <M m(v2) and the evaluation of p with v2 as input reaches a recursive call rec(e)
such that ε(p)(e, v2, v1) holds. Then, Ωp,m(v) ≡ min({i : N+ | ∀ v′ ∈ Val : ¬(v′ <i

p,m v)})
where v′ <i

p,m v denotes a chain of i + 1 values related by <p,m with endpoints in v′ and v.

The following lemma states a relation between µ, the number of nested recursive calls in
the evaluation of a particular input v, and Ωp,m for the same input v.

▶ Lemma 24. Let p be a TCC-terminating PVS0 program, i.e., p satisfies T
[M,<M ,m]
T (p) for

a measure type M , a well-founded relation <M over M , and a measure function m. For any
value v ∈ Val, µ(p, v) ≤ Ωp,m(v).

▶ Theorem 25. Let p be a PVS0 program, Tε(p) holds if and only if there exist a measure
type M , a well-founded relation <M on M , and a measure function m such that T

[M,<M ,m]
T (p)

holds as well.

Proof. Assuming Tε(p), it can be proved that T
[N,<,µp]
T (p) holds, where µp(v) = µ(p, v).

The function µp(v) is well defined for every v since Tε(p) holds and then, by Theorem 14,
Dχ(p, v) holds as well. Following the definition of χ and the determinism of ε (Lemma 5),
it can be seen that µp(vo) < µp(vi) for each pair of values vi, vo such that ε±(p)(c, vi) and
ε(p)(e, vi, vo) for every calling context (rec(e), p, c) in p. The opposite implication can be
proved stating that if T

[M,<M ,m]
T (p) holds, for every v ∈ Val and any subexpression e of p,

there exists a natural number n ≤ Ωp,m(v) such that χ(p)(e, vi, n) ̸= ♢, which assures Tε(p)
by Theorem 14. The proof of such a property proceeds by induction on the lexicographic
order given by (m(v), |e|), where |e| denotes the size of the expression e. ◀

Theorem 25 can be used as a practical tool to prove ε-termination of PVS0 programs, as
illustrated by the following lemma.

▶ Lemma 26. The PVS0 program ack from Example 2 is ε-terminating, i.e., Tε(ack) holds.

Proof. In order to use the Theorem 25, it is necessary to prove first that there exist a
measure type M , a well-founded relation <M over M , and a measure function m such
that T

[M,<M ,m]
T (ack) holds. Let M be the type of pairs of natural numbers [N× N], m the

identity function, and <M the lexicographic order on [N× N], i.e., (a, b) <lex (c, d) ≡ a <

c ∨ (a = c ∧ b < d) where < is the less-than relation on natural numbers. To prove that
T

[[N×N],<lex,id]
T (ack) holds, it suffices to check that for every input pair vi, leading to any of

the recursive-call subexpressions rec(e) in ack, vi is such that for every pair vo satisfying
ε(ack)(e, vi, vo), vo <lex vi.

There are only three recursive calls in ack (see Example 2), namely: rec(op1(3,vr)),
rec(op1(4,vr)), and rec(op2(0,vr,rec(op1(4,vr)))). Each of them determines a case in
the proof. For the first subexpression, note that any input value vi leading to rec(op1(3,vr))
must be such that π1(vi) ̸= 0 and π2(vi) = 0, in order to falsify the guard in the outermost
if-then-else and validate the guard in the innermost conditional. Because of the function
O1(3) used to interpret op1(3, ·), for every vo such that ε(ack)(e, vi, vo) holds, π1(vo) must be
equal to π1(vi)−1; hence, vo <lex vi holds. For the other recursive-call subexpressions in ack,
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the values vi that lead to them satisfy π1(vi) ̸= 0 and π2(vi) ̸= 0. In particular, for the case
of rec(op1(4,vr)), the function O1(4) forces any vo for which ε(ack)(e, vi, vo) holds, to be
equal to (π1(vi), π2(vi)− 1), satisfying vo <lex vi as well. Finally, for the values vi reaching
rec(op2(0,vr,rec(op1(4,vr)))) and because of O2(0), the first coordinate of vo must be
π1(vi) − 1, which is enough to conclude that vo <lex vi holds. Then, T

[[N×N],<lex,id]
T (ack)

holds and, by Theorem 25, Tε(ack) holds as well. ◀

The inequalities of the form vo <lex vi that are proved in Lemma 26 correspond to the
actual termination correctness conditions generated by the PVS type checker for the function
ackermann defined in Example 1.

4 Calling Context Graphs

The Size Change Principle (SCP) states that “a program terminates on all inputs if every
infinite call sequence (following program control flow) would cause an infinite descent in
some data values” [9]. Calling Context Graphs is a technique that implements the SCP [10].

▶ Definition 27 (Valid Trace). Given p ∈ PVS0, an infinite sequence cc = ⟨rec(ei), pi, ci⟩i∈N
of calling contexts of p, and an infinite sequence of values v from Val, cc and v are said to
form a valid trace of calls if the following predicate τ holds.2

τp(cc, v) ≡ ∀(i : nat) : (ε±(p)(ci, vi) ∧ ε(p)(ei, vi, vi+1)).

▶ Definition 28 (SCP-Termination). A PVS0 program p is said to be SCP-terminating,
denoted by TSCP (p), if there are no infinite sequence cc of calling contexts of p and no
infinite sequence v of values in Val such that τ(cc, v) holds.

▶ Theorem 29. For all p ∈ PVS0, Tε(p) if and only if TSCP (p).

Proof. By Theorem 25 it is enough to prove that TT (p) and TSCP (p) are equivalent. Proving
TSCP (p) given TT (p) is straightforward. To prove the other direction, it is necessary to use
Ωp,m. Since one has TSCP (p), it is possible to provide a relation between parameters and
arguments of recursive calls and prove that it is well-founded. Similarly to the proof of
Theorem 25, the closure of this relation is then used to parametrize the function Ωp,m, which
provides the height of the tree of evaluation of recursive calls as the needed measure. ◀

▶ Definition 30. Let < be a well-founded relation over Val, SCP<(p) holds if for all infinite
sequence cc of calling contexts of p and for all infinite sequence v of values in Val such that
τ(cc, v) holds, v is a decreasing sequence on <, i.e., for all i ∈ N, vi+1 < vi.

▶ Theorem 31. For all p ∈ PVS0Val, TSCP (p) if and only if SCP<(p) for a well-founded
relation < over Val.

The proof of Theorem 31 uses the fact that every well-founded order provides a non-infinite
decreasing sequence of elements.

▶ Definition 32. A Calling Context Graph of a PVS0 program p (p ∈ PVS0Val) is a directed
graph Gp = (V, E) with a node in V for each calling context in p such that given two calling
contexts of p (rec(ea), Pa, Ca) and (rec(eb), Pb, Cb), if

∃(va, vb : Val) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ∧ ε±(p)(Cb, vb),

2 Since ε± can be straightforwardly extended to lists of polarized expressions, the same symbol is used
for both versions along the text.
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cc1 = (ack(m− 1, 1), m ̸= 0 ∧ n = 0)
cc2 = (ack(m− 1, ack(m, n− 1)), m ̸= 0 ∧ n ̸= 0)
cc3 = (ack(m, n− 1), m ̸= 0 ∧ n ̸= 0)

Figure 3 A possible CCG for the Ackermann function.

then the edge ⟨(rec(ea), Pa, Ca), (rec(eb), Pb, Cb)⟩ ∈ E.

The condition on the edges admits any fully connected graph of calling contexts to be
considered a CCG. For the sake of exemplification, another possible CCG for the Ackermann
function as defined in the Example 1 is depicted in the Figure 3, where the calling contexts
from Example 21 are abbreviated to improve readability. The lack of the loop on cc1 does not
prevent the graph to be considered a CCG because there exist no tuples (a, b), (c, d) ∈ [N×N]
such that ε±(ack)(Ccc1 , (a, b)) ∧ ε(ack)(ecc1 , (a, b), (c, d)) ∧ ε±(ack)(Ccc2 , (c, d)), since this
formula can be expanded to (a ̸= 0 ∧ b = 0) ∧ (c = a− 1 ∧ d = 1) ∧ (c ̸= 0 ∧ d = 0).

The following standard notions from Graph Theory will be used in the definitions below.
A walk of Gp is a sequence cci1 , . . . , ccin of calling contexts such that for all 1 ≤ j < n there
is an edge between ccij

and ccij+1 . The collection of all walks of a given graph G is denoted
by WalkG. A circuit is a walk cci1 , . . . , ccin

, with n > 1, where cci1 = ccin
. A cycle is an

elementary circuit, i.e., a circuit cci1 , . . . , ccin
where the only repeating nodes are cci1 and

ccin
. The notation |w| will be used in the following to denote the length of a walk w and

|G| to denote the size of a graph G. Additionally, if w = cc1, · · · , ccn the expression w[a..b]
will denote the walk cca, · · · , ccb when 1 ≤ a ≤ b ≤ n.

▶ Definition 33. Let M be a family of N measures µk : Val → M , with 1 ≤ k ≤ N ,
and < be a well-founded relation over M . A measure combination of a sequence of call-
ing contexts cci1 , . . . , ccin

is a sequence of natural numbers k1, . . . , kn, with 1 ≤ kj ≤ N

representing measure µkj
, such that for all 1 ≤ j < n, v, v′ ∈ Val, ε±(p)(Cj , v) ∧

ε(p)(ej , v, v′) implies µkj
(v) ▷j µkj+1(v′), where ccij

= (rec(ej), Pj , Cj) and ▷j ∈ {>,≥}.
A measure combination is descending if at least one ▷j is >.

▶ Definition 34. Let Gp be a CCG of a PVS0 program p ∈ PVS0Val and let M be a family
of measures for a well-founded relation < over a type M . The graph Gp is said to be CCG
terminating (denoted by TCCG(Gp)) if for all circuits cci1 , . . . , ccin

in WalkGp there is a
descending measure combination k1, . . . , kn, with k1 = kn.

▶ Theorem 35. For all p ∈ PVS0Val, TSCP (p) if and only if TCCG(Gp) for some CCG Gp

of p and some family of measures M.

Since the number of circuits in a CCG is potentially infinite, CCG termination does not
directly provide an effective procedure to check termination. Even though the number of
cycles in a graph is indeed finite, it is not enough to check for decreasing measure combinations
in cycles (see [3] for details).

5 Matrix-Weighted Graphs

Matrix-Weighted Graphs is a technique to check for descending measure combinations in a
CCG using an algebra over matrices [3]. Let M be a family of N measures, every edge in
the CCG is labeled with a matrix of dimension N ×N and values in {−1, 0, 1}. The type of
these matrices will be denoted by MN

3 .
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Figure 4 A MWG for the p program for the Ackermann function, where the family of measures
M is composed by µ1(m, n) = m and µ2(m, n) = n.

▶ Definition 36 (Matrix Weighted Graph). Let p be a PVS0 program in PVS0Val and M be a
family of N measures {µi}N

i=1. A matrix-weighted graph W M
p of p is a CCG Gp = (V, E)

of p whose edges are correctly labeled by matrices in MN
3 .

An edge (cca, ccb) ∈ E is said to be correctly labeled by a matrix Mab when for all
1 ≤ i, j ≤ N ,

if Mab(i, j) = 1, for all va, vb ∈ Val, ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) implies µi(va) >

µj(vb).
if Mab(i, j) = 0, for all va, vb ∈ Val, ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) implies µi(va) ≥
µj(vb).

An entry Mab(i, j) = −1 provides no information about va, vb ∈ Val with respect to µi and
µj .

The Figure 4 depicts a possible MWG for the p program implementing the Ackermann
function.

The algebra of matrices used to define the notion of MWG termination is given by the
following operations. Multiplication of matrices with values in {−1, 0, 1} is defined as usual,
where addition and multiplication of such values is defined below. Let x, y ∈ {−1, 0, 1},

x× y =


−1 if min(x, y) = −1,

1 if min(x, y) ≥ 0 ∧max(x, y) = 1,

0 otherwise,

x + y = max(x, y).

▶ Definition 37 (Weight of a Walk). Let p be a PVS0 program, Wp a MWG for p, and
wi = cci1 , . . . , ccin

a walk in such graph, the weight of wi, noted by w(wi), is defined as
Πn−1

j=1 Mijij+1 . A weight w(wi) is positive if there exists 1 ≤ i ≤ N such that w(wi)(i, i) > 0.

▶ Example 38. Continuing the example in Figure 4, the weights for walks w1,3 = cc1, cc3
and w2,3 = cc2, cc3 are shown below. Both of them are positive.

w(w1,3) =
[

1 1
−1 −1

]
w(w2,3) =

[
1 −1
−1 −1

]
The lemma below states a useful property about walk weights.

▶ Lemma 39. Let Wp be an MWG for a PVS0 program p and w = cc1, · · · , ccn be a walk
of Wp, then w(w) = w(cc1, · · · , cci)× w(cci, · · · , ccn).

As in the case of the calling context graphs, a walk in a MWG represents a trace of
recursive calls. Hence, circuit denotes a trace ending at the same recursive call where it
starts. In line with the notion of CCG termination, a MWG is considered terminating when,
for every possible circuit, the matrix representing its weight has at least one positive value in
its diagonal.



C. A. Muñoz et al. 27:13

▶ Definition 40 (Matrix-Weighted Graph Termination). Let p a PVS0 program and let Wp be
a MWG of p. The graph Wp is said to be MWG terminating (denoted by TMW G(Wp)) when
for every circuit wi of Wp, w(wi) is positive.

The equivalence between the notions of termination for CCG and MWG is stated by
Theorem 41 below.

▶ Theorem 41. Let M be a family of N measures for a well-founded relation < over a type
M . For all p ∈ PVS0Val, TCCG(CM

p ) for some CCG CM
p if and only if TMW G(W M

p ) for
some MWG W M

p .

Proof. This theorem follows from the fact that circuits in Wp, built from Gp using the same
measures, have positive weights if and only if there exist corresponding descending measure
combinations. This property is proved by induction in the length of circuits in Gp. ◀

As pointed out in the previous section, a digraph such as any CCG or MWG can have
infinitely many circuits. Nevertheless, since the information used to check MWG termination
is the weight of the circuits and, for a fixed number N of measures, there are only finitely
many possible weights, a bound on the length of the circuits to be considered can be safely
imposed as shown in the lemma below.

▶ Lemma 42. Let p be a PVS0 program and Wp a MWG for it. If for all circuit w in Wp

such that |w| ≤ |Wp| · 3N2 + 1, w(w) is positive, then Wp is MWG terminating.

Proof. In order to prove TMW G(Wp), it is necessary to show that every circuit of Wp has
positive weight. For every circuit w = cc1, · · · , ccn of Wp, if n ≤ |Wp| · 3N2 + 1, then w(w)
is positive by hypothesis. Otherwise, it can be proved that there exists another circuit w′

such that w(w) = w(w′) and |w′| ≤ |Wp| · 3N2 + 1. Hence, by hypothesis, w(w)′ is positive
and then w(w) is positive too.

The existence of the circuit w′ can be shown by constructing a sequence of pairs
⟨(cci, w(cc1, · · · , cci))⟩ni=1, where for each 1 ≤ i ≤ n, the vertex cci is the ith vertex in
w and it is paired with the weight of the prefix of w of length i. By a simple counting
argument, it can be seen that there cannot exist more than |Wp| ·3N2 of these pairs. Since n >

|Wp| ·3N2 +1, there are two indices i, j such that (cci, w(cc1, · · · , cci)) = (ccj , w(cc1, · · · , ccj))
and i ̸= j. Without loss of generality, it can be assumed that i < j. Then, the walk
w′′ = cc1, · · · , cci−1, ccj , ccj+1, · · · , ccn is a circuit, since cci = ccj and cc1 = ccn, and it is
shorter than w. To calculate the length of w′′, first it should be noted that, by Lemma 39,
w(cc1, · · · , cci, ccj+1, · · · , ccn) = w(cc1, · · · , cci−1, ccj)× w(ccj , ccj+1, · · · , ccn). Since cci =
ccj and w(cc1, · · · , cci) = w(cc1, · · · , ccj), w(w′′) = w(cc1, · · · , ccj)× w(ccj , ccj+1, · · · , ccn),
which by Lemma 39 again is equal to w(w).

If the length of w′′ is at most |Wp| · 3N2 + 1, it can be taken to be w′. Otherwise, the
same procedure can be repeated to shorten the circuit even further. Since this procedure
removes at least one vertex each time, eventually a circuit shorter than |Wp| · 3N2 + 1 and
with the same weight than w will be obtained. ◀

Lemma 42 allows for the definition of a procedure to check termination on a matrix-
weighted graph. This procedure is referred to as Dutle’s procedure. Given a MWG W M

p =
(V, E) on a family of N measuresM for a PVS0 program p, the general idea of this procedure
is to build sequentially a family of functions fi : V → list[MN

3 ] with 1 ≤ i ≤ |Wp| · 3N2 + 1.
These functions are such that for each vertex cc ∈ V and every circuit w in W M

p starting
at cc and |w| <= i, there is a weight M ∈ fi(cc) for which M ≤ w(w). If for some i there
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terminating?(Wp: MWG): bool =
LET f1 ← expandWeightLists(Wp, λ(v : VWp) : null)
IN terminatingAt?(Wp, 1, f1)

terminatingAt?(Wp: MWG, i : N, fi : [VWp → list[MN
3 ]]): bool =

i ≥ |Wp| · 3N2 + 1 OR
LET fi+1 ← expandWeightLists(Wp, fi) IN
IF ∃ (cc ∈ VWp , M ∈ fi+1(cc)) : ¬ positive?(M) THEN FALSE
ELSE fi = fi+1 OR terminatingAt?(Wp, i + 1, fi+1) ENDIF

expandWeightLists(Wp: MWG, fi : [VWp → list[MN
3 ]]): [VWp → list[MN

3 ]] =
λ(v : VWp): map(expandPartialWeight(fi), allCyclesAt(Wp,v))

expandPartialWeight(fi : [VWp → list[MN
3 ]]): [WalkWp → list[MN

3 ]] =
λ(w : WalkWp):

LET l ← cons(id×, fi(w[0]))
IN IF |w| = 1 THEN l

ELSE LET l1 ←map(λ (M : MN
3 ) : M ∗ w(w[0..1]))(l),

l2 ← expandPartialWeight(w[1 .. |w| − 1], fi)
IN pairwiseMultiplication(l1,l2) ENDIF

Figure 5 Dutle’s procedure to check termination on matrix-weighted graphs.

is vertex cc and a weight M such that M ∈ fi(cc) and M is not positive, then it can be
concluded that W M

p is not terminating, since there is a circuit whose weight is not positive.
On the contrary, if the algorithm reaches the point where i = |Wp| · 3N2 + 1 with positive
matrices in the range of fi(cc) for each i, W M

p can be safely declared as terminating thanks
to Lemma 42.

Figure 5 depicts a pseudocode for Dutle’s procedure. The function terminatingAt?
implements the rough idea described in the previous paragraph. The auxiliary function
expandWeightLists computes fi+1 given its predecessor fi. Hence, for instance, f1 contains
lower bounds for the weight of each cycle in the graph Wp. Starting from there, in every
recursive call to terminatingAt?, for each vertex cc in Wp, fi+1(cc) grows with respect to
fi(cc) by incorporating lower bounds for the circuits passing through cc that are longer that
the ones considered in fi(cc) by a complete cycle each. Then, fi provides information about
a lower bound on each walk of length at most i as previously stated, but it also contains
information about longer circuits. Hence, a guard that checks saturation of such functions
(fi+1 = fi) is also included to prematurely end the recursion if possible.

In the pseudocode, cons(x, l) denotes the list constructed from the element x and the
list l, null denotes the empty list, and map(f, l) is used to denote the list formed by the
application of the function f to each element in l. Furthermore, positive?(M) checks if a
matrix M is positive in the sense of Definition 37, allCyclesAt(G, v) returns the list of all
the cycles in the graph G passing through node v (if any), id× denotes the matrix weight that
acts as multiplicative identity, and pairwiseMultiplication(l1, l2) is the funtion that given
two lists l1, l2 of matrices in MN

3 returns the list resulting from the pairwise multiplication of
the elements in those lists.
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Dutle’s Procedure is a sound and complete procedure to decide positive weight of all
circuits in a matrix-weighted graph and hence to check termination on MWG. This procedure
has been formally verified in PVS as part of this work. The performance of the procedure
can be improved in both execution time and used storage space. For example, the function
expandWeightLists keeps enlarging the lists on the range of each fi+1 (with respect to its
predecessor fi), while it is enough to keep such lists minimal, for instance by adding a new
weight M to a list l only if there are no M′ in l already such that M′ ≤M.

The notion of Matrix Weighted Termination can be used to define a procedure to
automatically prove termination of certain recursive functions in PVS. Such a procedure
consist of the steps described below.

1. Extract the calling contexts from the PVS program definition. The set of calling contexts
is finite and can be extracted from the program by syntactic analysis.

2. Generate a sound CCG for the program.
A fully connected CCG is sound (the more edges the more inefficient the method).
The theorem prover itself can be used to soundly remove edges from the graph, i.e., an
edge cca, ccb can be removed if ⊢ ∀(va, vb : Val) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒
¬ ε±(p)(Cb, vb) can be discharged.
In order to select measures to form the family M, the following heuristics can be used.

The order relation < over natural numbers is usually a good starting point.
Since CCG allows for a family of measures, it is sound to add as many measures as
possible (of course the more measures the more inefficient the method).
Predefined functions can be used, e.g., parameter projections (in the case of natural
numbers), natural size of parameters (in the case of data types), maximum/minimum
of parameters, etc. More complex recursions may need heuristics based on static
analysis.

3. Construct a MWG for the program based on the CCG defined in the previous step in the
following way: all edges starting in a given calling context cca can be labeled with the
same matrix Ma. It is sound to set all its entries to -1. The theorem prover can then be
used to soundly set the entries in Ma(i, j) to either 0 or 1 as follows,

If ⊢ ∀(va, vb : Val) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒ µi(va) > µj(vb) can be
proved, set Ma(i, j) to 1.
If ⊢ ∀(va, vb : Val) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒ µi(va) ≥ µj(vb) can be
proved, set Ma(i, j) to 0.

4. Use Dutle’s procedure to check termination on the MWG.

6 Conclusion, Related and Future Work

The termination of programs expressed in a language such as PVS0 can be guaranteed by
providing a measure on a well-founded relation that strictly decreases at every recursive
call. This criterion can be traced back to Turing [14]. A related practical approach was
further proposed by Floyd [6]. The inputs and outputs of program instructions are enriched
with assertions (Floyd-Hoare first-order well-known pre- and post-conditions) so that if the
pre-condition holds and the instruction is executed the post-condition must hold. To verify
termination, these assertions are enriched with decreasing assertions that are built using
a well-founded ordering according to some measure function on the inputs and outputs of
the program. This approach can also be used in recursive functions as shown by Boyer and
Moore [5]. In this case, a measure is provided over the arguments of the function. The
measure must strictly decrease at every possible recursive call. The conditions to effectively
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check if a recursive call is possible or not are statically given by the guards of branching
instructions that lead to the function call. In the case of PVS, as in many other proof
assistants, the user provides a measure function and a well-founded relation for each recursive
function. The necessary conditions that guarantee termination are built during type checking.
In this paper, these conditions are referred to as termination TCCs and the process that
generates termination TCCs for PVS0 is formally verified against other termination criteria.

The functional language Agda tries to automatically check termination of programs
by finding a lexicographic order on the parameters of the functions participating in the
recursive-call chain [1]. This technique operates on multi-graphs whose edges are labeled
with matrices, but they differ from the graphs and matrices used in this paper in several
aspects. In that paper, each node represents a function instead of a calling context, each edge
represents a call, and the matrices labeling the edges relate the arguments used in each call
under the same order relation, instead of different measures as in the technique presented in
this paper. Closer to the work in this paper, Krauss formalizes the size-change termination
principle in Isabelle/HOL [8]. He also developed a technology based on this principle and the
dependency pair criterion to verify the termination of a class of recursive functions specified
in Isabelle/HOL. CCGs are implemented in ACL2s by Manolios and Vroon, where they
report that “[CCG] was able to automatically prove termination for over 98% of the more
than 10,000 functions in the regression suite [of ACL2s]” [10]. In his PhD thesis, Vroon
provides a pencil and paper proof of the correctness of his method based on CCGs [15].

The formalization presented in this paper includes proofs of equivalence among several
termination criteria. Other related formalizations that use or connect to the one presented
in this paper have been previously presented. For example, Alves Almeida and Ayala-Rincón
formalized a notion of termination for term rewriting systems based on dependency pairs
and showed how it can be related to the notions explained in this paper [2]. Also, Ferreira
Ramos et. al. have presented a proof of termination undecidability constructed on the
model language PVS0 [12]. The Matrix Weighted Graphs algebraic approach, which is an
implementation of the CCG technique, was first presented in Avelar’s PhD along with its
formalization in PVS [3]. That formalization does not include Dutle’s procedure. The authors
are currently working on the implementation of proof strategies, based on computational
reflection, that use the CCG/MWG technique to automate termination proofs of PVS
recursive functions.
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Abstract
Double sided auctions are widely used in financial markets to match demand and supply. Prior
works on double sided auctions have focused primarily on single quantity trade requests. We extend
various notions of double sided auctions to incorporate multiple quantity trade requests and provide
fully formalized matching algorithms for double sided auctions with their correctness proofs. We
establish new uniqueness theorems that enable automatic detection of violations in an exchange
program by comparing its output with that of a verified program. All proofs are formalized in
the Coq proof assistant without adding any axiom to the system. We extract verified OCaml and
Haskell programs that can be used by the exchanges and the regulators of the financial markets. We
demonstrate the practical applicability of our work by running the verified program on real market
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1 Introduction

Computer algorithms are routinely deployed nowadays by all big stock exchanges to match
buy and sell requests. These algorithms are required to abide by various regulatory guidelines.
For example, market regulators make it mandatory for trades resulting from double sided
auctions at exchanges to be fair, uniform and individual-rational.

In this paper, we introduce a formal framework for analyzing trades resulting from double
sided auctions used in the financial markets. To verify the essential properties required by
market regulators, we formally define these notions in a theorem prover and then develop
important results about matching demand and supply. Finally, we use this framework to
verify properties of two important classes of double sided auction mechanisms.

One of the resulting advantages of our work for an exchange or a regulator is that they can
check the algorithms deployed for any violations from required properties automatically. This
is enabled by the new uniqueness results that we establish in this work. All the definitions
and results presented in this paper are completely formalized in the Coq proof assistant
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without adding any additional axioms to it. The complete formalization in Coq facilitates
automatic program extraction in OCaml and Haskell, with the guarantee that extracted
programs satisfy the requirements specified by the market regulator. Consequently, the
extracted program could also be deployed directly at an exchange, apart from checking for
violations in existing programs. We demonstrate the practical applicability of our work by
running the verified program on real market data from an exchange to automatically check
for violations in the exchange algorithm.

The rest of this paper is organized as follows: Section 2 provides a brief background and
overview of trading at exchanges which is needed to describe our contributions; In Section
3, we briefly state our contributions; Section 4 provides basic definitions and establishes
certain combinatorial results; Section 5 describes a fairness procedure; Section 6 describes the
uniform matching mechanism used in the financial markets; Section 7 describes the maximum
matching mechanism; Section 8 establishes uniqueness results that enables automatic checking
for violations in an exchange matching algorithm; Section 9 describes the practical utility
of our work through running our verified program on real market data from an exchange;
Section 10 concludes the paper with related work and future directions. Parts of some
sections which could not be fully accommodated due to space constraints have been moved
to the appendix of the full version of the paper [5].

2 Background

Financial trades occur at various types of exchanges. For example, there are exchanges for
stocks, commodities and currencies. At any exchange, multiple buyers and sellers participate
to trade certain products. Mostly exchanges employ double sided auction mechanisms to
match the buyers and sellers. Some exchanges, apart from using double sided auctions,
also use an online continuous algorithm for executing trades during certain time intervals,
especially for highly traded products.

For conducting trades of a certain product using a double sided auction mechanism, the
exchange collects buy and sell requests from the traders for a fixed time period. At the end
of this time period, the exchange matches some of the trade requests and outputs trades, all
at a single price. This price is sometimes referred to as the equilibrium price and the process
as price discovery. A buyer places a buy request, also known as a bid, which consists of a
quantity indicating the maximum number of units he is interested in buying and a common
maximum price (bid’s limit price) for each of the units. Similarly, a seller’s sell request, an
ask, consists of a quantity and a minimum price (ask’s limit price). Each trade (transaction)
consists of a bid, an ask, traded quantity, and a trade price. Naturally, the traded quantity
should be at most the minimum of the bid and the ask quantities and the trade price should
be compatible with the bid and the ask.

Apart from the single price property and compatibility constraint mentioned above, there
are other desired properties that the trades (matching) should have. The properties that
capture these constraints are: uniform, individual-rational, fair and maximum. We briefly
describe these matching properties:

Uniform: A matching is uniform if all the trades happen at the same price.
Individual-rational: A matching is individual-rational if for each matched bid-ask pair
the trade price is between the bid and ask limit prices. In the context of financial markets,
the trade price should always be between the limit prices of the matched bid-ask pair.
Fair: A bid b1 is more competitive than a bid b2 if b1 has a higher limit price than b2 or
if their limit prices are the same and b1 arrives earlier than b2. Similarly, we can define
competitiveness between two asks. A matching is unfair if a less competitive bid gets
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matched but a more competitive bid is not fully matched. Similarly, it could be unfair if
a more competitive ask is not fully matched. If a matching is not unfair, then it is fair.
Maximum: A matching is maximum if it has the maximum possible total traded quantity
among all possible matchings.
Optimal individual-rational-uniform: An individual-rational and uniform matching
is called optimal individual-rational-uniform if it has the largest total trade volume among
all matchings that are individual-rational and uniform.

No single algorithm can possess all the above first four properties simultaneously [12, 4].
In the context of financial markets, regulators insist on the matching being fair and optimal
individual-rational-uniform, thus compromising on the maximum property. In other contexts
where the matching being maximum is important along with individual rational and fair,
uniformity is lost. This gives rise to two different classes of double sided auction mechanisms,
each with a different objective. In our work, we consider both these classes of mechanisms.

3 Our Contributions

In this work, we formalize the notion of double sided auctions where trade requests can be of
multiple quantities. Prior to our work, similar notions were explicitly defined only for single
unit trade requests [8, 6, 13]. In going from formalizing the theory for single unit to the
theory of multiple units, the mechanisms and their correctness proofs changed substantially.
Due to the possibility of partial trades, the formal analysis of multiple unit trades becomes
significantly more involved than in [8]. In this work, we show how to efficiently handle this
extra complexity by making the functions and their properties sensitive to the partial trade
quantities. This helps us to develop formal proofs of correctness of the recursive mechanisms
for double sided auctions.

In addition, we provide new uniqueness results that guarantee that the matching algorithm
for the double sided auctions used in the financial markets outputs a unique volume of trades
per order if the algorithm is fair and optimal individual-rational-uniform; thus enabling
automatic checking of violations in the exchange algorithm by comparing its output with
that of a verified program. We demonstrate this by running the extracted OCaml code of our
certified mechanism on real data from an exchange and comparing the outputs. Following is
a brief description of the key results formalized in this work.

Combinatorial result: We show that the modeling and the libraries we created to
obtain our results are also useful in proving other important results on double sided
auctions. For example, in Theorem 7, we show that for any p, no matching can achieve a
trade volume higher than the sum of the total demand and the total supply in the market
at price p.
Fairness: We show that any matching can be converted into a fair matching without
compromising on the total traded volume. For this, we design an algorithm, the Fair
procedure, which takes a matching M as input, and outputs a matching M ′. In Theorem
15, we show that the total traded quantities of M and M ′ are the same and M ′ is a fair
matching.
Uniform mechanism: We design an algorithm, the UM procedure, that takes as input
the bids and the asks and outputs a fair, individual-rational and uniform matching.
Furthermore, in Theorem 20, we show that the output matching has the largest total
trade volume among all the matchings that are uniform and individual-rational and thus
is optimal individual-rational-uniform. This algorithm is used in the exchanges that
output trades using double sided auctions.
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Maximum mechanism: We design an algorithm, the MM procedure, that takes as input
the bids and the asks and outputs an individual-rational, fair and maximum matching.
In Theorem 21, we show that the output matching has the largest total trade volume
among all the matchings that are individual-rational.
Uniqueness theorems: For any two fair and optimal individual-rational-uniform
matchings, Theorem 23 implies that their total trade volume for each order is the same.
Thus, if we compare the trade volumes between an exchange’s matching output with our
verified program’s output and for some order they do not match, then the exchange’s
matching is not fair and optimal individual-rational-uniform. On the contrary, if for
each order, the trade volumes match, then Theorem 24 implies that the exchange’s
matching is also fair and optimal individual-rational-uniform (given that it already is
individual-rational and uniform, which can be easily verified by checking the trade prices).
Making use of these results, in Section 9, we check violations automatically in real data
from an exchange.

The Coq code together with the extracted OCaml and Haskell programs for all the
above results is available at [10]. Our Coq formalization consists of approximately 50 new
definitions, 750 lemmas and theorems and 12000 lines of code. In the following sections, we
provide definitions, procedures and proof sketches that closely follow our actual formalization.

4 Modeling Double Sided Auctions

In a double sided auction multiple buyers and sellers place their orders to buy or sell an
underlying product. The auctioneer matches these buy-sell requests based on their limit
prices, arrival time, and the maximum specified trade quantities. Note that the limit prices are
natural numbers when expressed in the monetary unit of the lowest denomination (like cents
in USA). In our presentation, we will be working with lists (of bids, asks and transactions);
For ease of readability, we will often use set-theoretic notations like ∈, ⊆, ⊇, ∅ on lists whose
meanings are easy to guess from the context.

▶ Definition 1 (Bid). A bid b = (idb, τb, qb, pb) represents a buy request having four compon-
ents. Here, the first two components idb and τb are the unique identifier and the timestamp
assigned to the buy request b, respectively, whereas the third component qb represents the
quota of b, the maximum quantity of the item the buyer is willing to buy. The last component
pb is the limit price of the buy request, which is the price above which the buyer does not
want to buy the item.

▶ Definition 2 (Ask). An ask a = (ida, τa, qa, pa) represents a sell request having four
components. Here, the first two components ida and τa are the unique identifier and the
timestamp assigned to the sell request a, respectively, whereas the third component qa represents
the quota of a, the maximum quantity of the item the seller is willing to sell. The last
component pa is the limit price of the sell request, which is the price below which the seller
does not want to sell the item.

We say that a bid b ∈ B is matchable with an ask a ∈ A if pa ≤ pb.
In a double sided auction, the auctioneer is presented with duplicate-free1 lists of buy and

sell requests (lists B and A, respectively). The auctioneer can match a bid b ∈ B with an ask

1 A list of bids or asks is duplicate-free if all the participating orders have distinct ids.
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a ∈ A only if pb ≥ pa. Furthermore, the auctioneer assigns a trade price and a trade quantity
to each matched bid-ask pair, which finally results in a transaction m. Therefore, we can
represent a matching of demand and supply by using a list whose entries are transactions.

▶ Definition 3 (Transaction). A transaction m = (bm, am, qm, pm) describes a trade between
the bid bm and the ask am. The next two components qm and pm are the traded quantity and
the trade price, respectively. For ease of readability, we use the terms p(bm), p(am), q(bm),
and q(am) for pbm

, pam
, qbm

and qam
, respectively.

▶ Definition 4 (Matching M B A). A list of transactions M is a matching between the
duplicate-free lists of bids B and asks A if
1. For each transaction m ∈M , the bid of m is matchable with the ask of m (i.e., p(am) ≤

p(bm)).
2. The list of bids present in M , denoted by BM , is a subset of B (i.e., BM ⊆ B).
3. The list of asks present in M , denoted by AM , is a subset of A (i.e., AM ⊆ A).
4. For each bid b ∈ B, the total traded volume of bid b in the matching M , denoted by

Q(b, M), is not more than its maximum quantity (i.e., for all b ∈ B, Q(b, M) ≤ qb).
5. For each ask a ∈ A, the total traded volume of ask a in the matching M , denoted by

Q(a, M), is not more than its maximum quantity (i.e. for all a ∈ A, Q(a, M) ≤ qa).

Description. Note that there might be some bids in B which are not matched to any asks
in M and some asks in A which are not matched to any bids in M .

▶ Note 5. For simplicity, with slight abuse of notation, we use Q to denote total quantity of
various objects which will be clear from the context. So, Q(b, M) and Q(a, M) represent the
total quantities of the bid b and the ask a traded in the matching M , respectively. Similarly,
the terms Q(B) and Q(A) denote the sum of the quantities of all the bids in B and the sum
of the quantities of all the asks in A, respectively. And also, for the total traded quantity in
a matching M , we use the term Q(M). However, in the Coq implementation, each of these
terms are represented by different names: QMb, QMa, QB, QA and QM.

Formalization notes: We have defined Bid, Ask and Transaction as record types in Coq.
We define the proposition matching_in B A M to be true if and only if M is a matching
between the list of bids B and the list of asks A.

4.1 Matching Demand and Supply
Let B≥p represents the list of bids in B whose limit prices are at least a given number p.
Similarly, A≤p represents the list of asks in A whose limit prices are at most p. Therefore,
the quantities Q(B≥p) and Q(A≤p) represents the total demand and the total supply of the
product at the price p in the market, respectively. Although, in general we cannot say much
about the relationship between the total demand (i.e. Q(B≥p)) and supply (i.e. Q(A≤p)) at
an arbitrary price p, we can prove the following important results about the traded quantities
of the matched bid-ask pairs.

▶ Lemma 6. If M is a matching between the list of bids B and the list of asks A, then

Q(M) =
∑
b∈B

Q(b, M) ≤
∑
b∈B

qb = Q(B) and Q(M) =
∑
a∈A

Q(a, M) ≤
∑
a∈A

qa = Q(A)

▶ Theorem 7. If M is a matching between the list of bids B and the list of asks A, then for
all natural numbers p, we have Q(M) ≤ Q(B≥p) + Q(A≤p)
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Theorem 7 states that no matching M can achieve a trade volume higher than the sum
of the total demand and supply in the market at any given price.

Proof Idea. We first partition the matching M into two lists: M1 = {m ∈M | p(bm) ≥ p}
and M2 = {m ∈M | p(bm) < p}. Thus, Q(M) = Q(M1) + Q(M2).

It is easy to see that M1 is a matching between B≥p and A, and hence from Lemma 6,
Q(M1) ≤ Q(B≥p).

Next, we prove that M2 is a matching between B and A≤p. Consider a transaction m

from M2. Since m ∈M , p(bm) ≥ p(am), and from the definition of M2, we have p(bm) < p.
This implies p(am) < p, i.e., asks of M2 come from A≤p. Hence, M2 is a matching between
B and A≤p, and applying Lemma 6, we have Q(M2) ≤ Q(A≤p).

Combining, we have Q(M) = Q(M1) + Q(M2) ≤ Q(B≥p) + Q(A≤p), which completes
the proof of Theorem 7. □

Formalization notes: The formal proof of Theorem 7 is completed by first proving the
Lemmas Mbgep_bound (Q(M1) ≤ Q(B≥p)) and Mbltp_bound (Q(M2) ≤ Q(A≤p)) and then
combining them in theorem bound_on_M. These results can be found in the file “Bound.v”.

4.2 Individual-Rational Trades
An auctioneer assigns a trade price to each matched bid-ask pair. In any matching it is
desired that the trade price of a bid-ask pair lies between their limit prices. A matching
which has this property is called an individual-rational (IR) matching.

▶ Definition 8 (Individual rational). Is_IR(M) := for all m ∈M, p(bm) ≥ pm ≥ p(am).

Note that any matching can be converted to individual-rational by changing the price of
each transaction to lie between the limit prices of its bid and ask (See Fig 1).
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Figure 1 The colored dots represent trade prices for matched bid-ask pairs. Matching M2 is not
IR but M1 is IR, even though both the matchings contain exactly the same bid-ask pairs.

5 Fairness in Competitive Markets

A double sided auction is a competitive event, where the priority among participating traders
is determined by various attributes of the orders. A bid with higher limit price is considered
more competitive compared to bids with lower limit prices. Similarly, an ask with lower limit
price is considered more competitive compared to asks with higher limit prices. Ties are
broken in favor of the requests that have an earlier arrival time. A matching which prioritizes
more competitive traders is called a fair matching.

▶ Definition 9 (Arrow notation).
B
↑ L denotes that the list L is sorted as per the competitiveness

of the bids in L, with the most competitive bid being on top. Similarly,
A
↑ L denotes that the
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list L is sorted as per the competitiveness of the asks in L, with the most competitive ask

being on top. Similarly we can define
A
↓ and

B
↓ for sorting lists where the most competitive

orders lie at the bottom.

In this section, we show that there exists a procedure Fair that takes a matching M

between bids B and asks A as input and outputs a fair matching M ′ = Fair(M, B, A) with
the same trade volume as that of M . To describe the Fair procedure, we will need the
following definitions.

▶ Definition 10. Let M be a matching between bids B and asks A.
M is fair on bids if for all pairs of bids b1, b2 ∈ B such that b1 is more competitive than
b2 and b2 participates in the matching M , then b1 is fully traded in M (i.e., Q(b1, M) =
q(b1)).
Similarly, M is fair on asks if for all pairs of asks a1, a2 ∈ A such that a1 is more
competitive than a2 and a2 participates in the matching M , then a1 is fully traded in M

(i.e., Q(a1, M) = q(a1)).
M is fair if it is both fair on bids and asks.

The Fair procedure works in two steps: first, it sorts the matching M and the asks A

based on the competitiveness of the asks and then runs on them a procedure “fair on asks”
FOA that outputs a matching M ′ that is of the same volume as that of M and is fair on
the asks. In the second step, it sorts the resulting matching M ′ and the bids B based on
the competitiveness of the bids and then runs on them a procedure fair on bids FOB that
outputs a matching M ′′ that is of the same volume as that of M ′ and is fair on the bids.
The Fair procedure returns M ′′ as its output. The procedures FOB and FOA, along with
their correctness proofs, mirror each other and we just describe FOB below and show that

FOB(
B
↑M ′,

B
↑ B) outputs a fair on bids matching and has the same trade volume as that of

M ′. Furthermore, we will show that if M ′ is fair on asks, then FOB(
B
↑ M ′,

B
↑ B) is fair on

asks. This will immediately imply that the procedure Fair(M, B, A) outputs a fair matching
with the same total trade volume as that of M .

5.1 Fair on Bids
To describe the fair on bids FOB procedure, we first need the following notation.

▶ Definition 11. Given a list L and and an element a, a :: L denotes the list whose top
element (head) is a and the following elements (tail) are the elements of L (in the same
order as they appear in L).

The FOB procedure takes sorted (based on the bids’ competitiveness) lists of transactions
M and bids B. Intuitively, when all the bids are of unit quantity, we want to scan the list of
transactions in M from top to bottom replacing the bids therein with the bids of B from
top to bottom. So, in effect, in the FOB procedure we will implement this intuition apart
from taking care of multiple quantity bids; and also make the procedure recursive so that
we can provide a formalization friendly inductive proof of correctness. Let B = b :: B′ and
M = m :: M ′. In our procedure, we first pick the top bid b of B and the top transaction
m of M , and compare qb with qm. Now we have three cases. In each of the three cases,
the procedure first outputs a transaction between the bid b and the ask of m of quantity
min{qm, qb}. Case I: If qb = qm, we remove b and m from their respective lists and recursively
solve the problem on B′ and M ′. Case II: If qb < qm, we remove b from the list B and update
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qm to qm − qb and recursively solve the problem on B′ and M . Case III: If qb > qm, we
remove m from the list M and set a parameter t to qm that we will send to the recursive call
along with M ′ and B. The parameter t informs our recursive procedure that the top element
b of B has effectively quantity qb − t. Thus, our procedure will take three parameters: the
list of transactions, the list of bids and the parameter t (Note that unlike Case II (qb < qm)
where the top transaction is updated, the top bid is not updated in Case III (qb > qm). This
is done for technical reasons: Later we need to prove that the set of bids of FOB is a subset
of B, and at the same time we have to ensure that the total traded quantity of the bid b in
the matching outputted by FOB remains below its maximum quantity qb, as required by the
matching property. This would not be possible to do if we updated B and hence we take
this approach of keeping the total traded quantity of the top bid b in a separate argument: t

of f .). Keeping this description in mind, we now formally define the procedure FOB.

▶ Definition 12 (Fair On Bid (FOB)).

FOB(M, B) = f(M, B, 0)
where f(M, B, t) =

nil if M = nil or B = nil

(b, am, qm, pm) :: f(M ′, B′, 0) if qm = qb − t

(b, am, qm, pm) :: f(M ′, b :: B′, t + qm) if qm < qb − t

(b, am, qb − t, pm) :: f((bm, am, qm − (qb − t), pm) :: M ′, B′, 0) if qm > qb − t

where M = m :: M ′ when M ̸= nil and B = b :: B′ when B ̸= nil.

▶ Theorem 13. Let M be a matching between bids B and asks A where the lists M and B are
sorted in the descending order of the competitiveness of their bids (i.e., the most competitive
bid and the transaction with the most competitive bid are on top of their respective lists). Let
Mβ = FOB(M, B), then

(a) Mβ is a matching between bids B and asks A.
(b) For each ask a ∈ A, the total traded quantity of a in M is same as the total traded

quantity of a in Mβ (i.e., Q(a, M) = Q(a, Mβ)). As a corollary, we get that if M is fair
on asks, then Mβ is also fair on asks.

(c) The total traded quantity of M is equal to the total traded quantity of Mβ (i.e., Q(M) =
Q(Mβ)).

(d) The matching Mβ is fair on bids.

Proof Outline. Here, we briefly describe certain aspects of the proof; more details can be
found in the full version of the paper [5] and for the complete formalization see [10]. Note
that in each of the recursive calls in f , either the size of the first argument |M | decreases or
the size of the second argument |B| decreases. Therefore, we prove the above statements
using (well founded) induction on the sum (|M |+ |B|). Proof of (a) and (b) is done using
induction and case analysis. The proof of (c) follows by combining Lemma 6 with (b). We
focus on the proof of (d) below.

Let bid b be the top element of the bids B and B = b :: B′. First, we prove two general
results:

For all t, if Q(M) ≥ qb − t, then Q(f(M, b :: B′, t), b) = qb − t,

which states that if the total trade volume of the matching M is at least qb − t, then in the
matching f(M, b :: B′, t) the top bid b has trade quantity qb − t. The proof of this can be
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done using induction on the size of M . Intuitively, f tries to match as much quantity of the
top bid b with the top transaction in M . When the call f(M, b :: B′, t) is made, the top bid
b already has t traded quantity and qb − t of its quantity remains untraded. If the quantity
of the top transaction m of M is at least qb − t, then we are done. Otherwise, f matches qm

quantities of b and recursively calls f on a smaller list and then we will be done by applying
the induction hypothesis.

Now, we state the second general result.

For all t, if distinct bids b, b′ belong to the bids of f(M, b :: B′, t), then Q(M) ≥ qb − t.

This result can be proved, like the previous result, using induction on the sum (|M |+ |B|);
see [10] for details. Intuitively, since b′ is matched by f(M, b :: B′, t) (in particular b′ ∈ B′),
then f(M, b :: B′, t) will completely match b (which has at least qb − t quantity remaining
untraded) before it matches even a single quantity of b′.

Now using the above general results, we prove (d). We need to show the following:
for all b1, b2 ∈ B, if b1 is more competitive than b2 and Q(FOB(M, B), b2) ≥ 1, then
Q(FOB(M, B), b1) = qb1 , i.e., if the bid b2 participates in the matching M then the bid
b1 is fully traded in M . Fix b1, b2 ∈ B such that b1 is more competitive than b2 and
Q(FOB(M, B), b2) ≥ 1. Note that the bid b2 cannot be equal to the bid b since bids B are
sorted. Now we analyze three possible cases: b1 ≠ b, b1 = b and Q(M) ≥ qb, and b1 = b and
Q(M) < qb.

In the case when b1 ̸= b, we consider the recursive call where b1 is the top bid in the
argument for the first time. In this recursive call the list of bids is smaller than B since
the bid b must be fully traded before. Then, we are immediately done by applying the
induction hypothesis.
In the case b1 = b and Q(M) ≥ qb, in the matching FOB(M, b :: B′) = f(M, b :: B′, 0)
the top bid b has total trade volume qb − 0 = qb from the first general result invoked with
t = 0, and hence b1 = b is fully traded.
In the case b1 = b and Q(M) < qb, we arrive at the contradiction Q(M) ≥ qb by invoking
the second general result with t = 0, b = b1, b′ = b2 and FOB(M, b :: B′) = f(M, b :: B′, 0).

□

Similar to the procedure FOB, we have a procedure FOA, that produces a fair matching
on asks (see [10]). Combining the FOA and FOB procedures, we have the following definition
of the Fair procedure.

▶ Definition 14. Fair(M, B, A) = FOB(
B
↑ FOA(

A
↑M,

A
↑ A),

B
↑ B).

We conclude this section by formally summarizing the main fairness result.

▶ Theorem 15. If M is a matching on the list of bids B and the list of asks A, then the
matching M ′ = Fair(M, B, A) on B and A is a fair matching such that Q(M) = Q(M ′).

Formalization notes: The procedure FOB and FOA are implemented in Coq using the
Equations plugin which is helpful to write functions involving well-founded recursion [9]. The
proof of Theorem 15 is quite extensive and done in several parts. First we prove all the parts
of Theorem 13 in the file “mFair_Bid.v”. We prove similar theorems for the procedure FOA
in “mFair_Ask.v” file. Later all the results are combined in the file “MQFair.v” and the
above theorem is proved as exists_fair_matching.
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6 Uniform Price Matchings in Financial Markets

Liquidity in a market is a measure of how quickly one can trade in that market and maximizing
the total trade volume helps increase liquidity. However, to maximize the total trade volume
sometimes we have to accept different trade prices to the matched bid-ask pairs (Fig 2).
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Figure 2 Both the bids and the asks have quantity one. The only individually rational matching
of size two is not uniform.

Assigning different trade prices for the same product in the same market simultaneously,
might lead to dissatisfaction among some traders. As stated in the introduction, in the
financial markets, the matching should be fair and optimal individual-rational-uniform. In
this section, we describe the UM process that takes as input a list of bids and a list of asks
and produces a fair and optimal individual-rational-uniform matching that can be directly
applied in the financial markets for conducting double sided auctions. We present a novel
proof of optimality of the UM process.

Before we describe the UM process, we first give some intuition. Observe that in any
individual-rational and uniform matching M all the buyers are matched at a single price p

and the price p lies between the limit prices of all the matched bid-ask pairs. This means all
the matched bids’ limit prices are at least p and all the matched asks’ limit prices are at most
p. In the special case when all the orders are of unit quantity, the matching can be visualized
as a fully nested balanced parenthesis (for example, [[[[ ]]]]) where each bid is represented by
a closed parenthesis “]” and each ask as an open parenthesis “[” (See Figure 1).

Now, we describe the UM process. We recursively pair the most competitive available
bid with the most competitive available ask, if they are matchable. The trade quantity for
each matched bid-ask pair is the minimum of the remaining quantities of the respective bid
and the ask. The trade price assigned to each pair is the price of the ask in that pair2. We
terminate the process once there are no more matchable bid-ask pairs remaining. At the end
of the process, to produce a uniform matching we have to assign a single trade price to all
the matched bid-ask pairs which we choose to be the trade price of the last matched bid-ask
pair (which also keeps the individual-rational property intact).

Keeping this description in mind, we now formally define the UM process using recursion.

▶ Definition 16 (Uniform Matching (UM)). .

UM(B, A) = Replace_prices(fu(
B
↑ B,

A
↑ A, 0, 0), Last_trade_price(fu(

B
↑ B,

A
↑ A, 0, 0)))

where fu(B, A, tb, ta) =
nil if B = nil or A = nil or pb < pa

(b, a, qb − tb, pa) :: fu(B′, A′, 0, 0) if qa − ta = qb − tb and pb ≥ pa

(b, a, qb − tb, pa) :: fu(B′, a :: A′, 0, ta + qb − tb) if qa − ta > qb − tb and pb ≥ pa

(b, a, qa − ta, pa) :: fu(b :: B′, A′, tb + qa − ta, 0) if qa − ta < qb − tb and pb ≥ pa

where B = b :: B′ when B ̸= nil and A = a :: A′ when A ̸= nil.

2 Observe that any value in the interval of the limit prices of the matched bid-ask pair can be assigned as
the trade price and it will not affect any analysis done in this work.
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Description. Observe that, similar to the parameter t in the FOB process, we have two
parameters tb and ta that inform the recursive procedure fu that the top bid b and the
top ask a have effective quantities qb − tb and qa − ta, respectively. In each recursive call,
the process fu outputs a transaction (top bid b, top ask a, quantity min{qb − tb, qa − ta},
price pa). The process fu terminates when the top bid is not matchable with the top ask.

Remark 1. It is easy to see that UM outputs a uniform matching: Once the fu process
terminates, Last_trade_price computes the trade price of the last transaction in the
output of fu and Replace_prices replaces the trade prices of each transaction of the
output of fu with the trade price of the last transaction of the output, thus ensuring UM
produces a uniform matching. Also, notice that the process Replace_prices does not alter
any other information of the output of fu apart from the trade prices (we will later use
this fact in the proof of optimality of UM).

Remark 2. It is easy to see that UM outputs an individual-rational matching: the trade
price of a transaction m outputted by a recursive call of fu is between the limit prices
of the bid and the ask of m. Later these prices are altered by Replace_prices, but the
individual-rational property is not lost; the trade price of m is also between the limit
prices of the transactions of all the previous calls as the bids and the asks are sorted
by their competitiveness, and Replace_prices replaces all the trade prices with the trade
price of the last transaction.

Now, we discuss the optimality result of the UM process. Throughout this discussion,
WLOG, all lists of bids and asks will be sorted by their competitiveness. We make use of the
following notation.

▶ Definition 17. Given a matching M , a bid b and an ask a, we use Q(a↔ b, M) to denote
the total traded quantity between the bid b and the ask a in the matching M .

Next, we state the main result of this section.

▶ Theorem 18. Given a list of bids B and a list of asks A, let MU = UM(B, A) and
let M be an arbitrary individual-rational and uniform matching between B and A. Then,
Q(MU ) ≥ Q(M). In other words, UM outputs an optimal individual-rational-uniform
matching.

To prove the above theorem, we need the following lemma.

▶ Lemma 19. If M is an individual-rational and uniform matching between the lists of bids
B = b :: B′ and asks A = a :: A′ such that Q(M) ≥ min{qb, qa}, then there exists another
individual-rational and uniform matching M ′ between the same lists of bids B and asks A

such that Q(M) = Q(M ′) and Q(a↔ b, M ′) = min{qb, qa}.

Assuming this lemma, we will first prove Theorem 18 and then later prove the lemma.
Proof of Theorem 18. Note that fu(B, A, 0, 0) is a specific instance of fu(B, A, tb, ta). So

in order to apply the induction hypothesis, we sensitize the theorem statement to incorporate
arbitrary values of ta and tb. Also, as indicated earlier, the Replace_prices function does not
alter the total trade quantity of the output of the fu, thus Q(fu(B, A, 0, 0)) = Q(UM(B, A)).
Consequently, showing the following suffices.

(∗) Fix an arbitrary list of bids B = b :: B′ and an arbitrary list of asks A = a :: A′. Fix
arbitrarily tb < qb and ta < qa. Let b′ be the bid obtained from the bid b by reducing its
quantity to qb − tb. Similarly, let a′ be the ask obtained from the ask a by reducing its
quantity to qa − ta. We will show: for all individual-rational and uniform matchings M

between (b′ :: B′) and (a′ :: A′), Q(fu(B, A, tb, ta)) ≥ Q(M).
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Clearly, setting tb = ta = 0 in the above statement (∗) gives us Theorem 18.
We prove the above statement using induction on the sum (|B|+ |A|). We consider two

cases: p(b′) < p(a′) and p(b′) ≥ p(a′).
In the first case, when p(b′) < p(a′), since the most competitive bid in b′ :: B′ is not

matchable with the most competitive ask in a′ :: A′, any matching between b′ :: B′ and
a′ :: A′ is empty. Thus, Q(M) = 0, and we are done.

In the second case, when p(b′) ≥ p(a′), if the total trade quantity of M is less than
the quantity of the transaction created by fu in the first recursive call (i.e., Q(M) <

min{qb − tb, qa − ta} ≤ Q(fu(B, A, tb, ta)), then we are done. In the case when the total
traded quantity of M is more than the quantity of the transaction created by fu in the first
recursive call (i.e., Q(M) ≥ min{qb − tb, qa − ta}), we apply Lemma 19 and get another
individual-rational and uniform matching M ′ such that the total volume of M ′ is equal to the
total volume of M and the total traded quantity between the bid b′ and the ask a′ in M ′ is
equal to min{qb′ = qb − tb, qa′ = qa − ta}. Now since we have M ′ such that Q(M) = Q(M ′),
proving the following suffices.

Q(fu(B, A, tb, ta)) ≥ Q(M ′) (∗∗),

where M ′ is an individual-rational and uniform matching between the list of bids b′ :: B′

and a′ :: A′ such that Q(a′ ↔ b′, M ′) = min{qb−tb, qa−ta}. We define the matching M0 ⊆M

as follows: we remove all transactions between b′ and a′ (of total quantity Q(a′ ↔ b′, M ′))
from M ′ to get M0. We have (†): Q(M ′) = min{qa − ta, qb − tb}+ Q(M0). Also, note that
M0 is individual-rational and uniform (since M ′ ⊇M0 is individual-rational and uniform).

Now we argue the proof of (∗∗) in each of the three recursive branches of the function fu

corresponding to p(b) ≥ p(a).

Case: qa−ta = qb−tb. In this case M0 is a matching between B′ and A′. Since (|B|+|A|) >

(|B′|+ |A′|), we can apply the induction hypothesis to get Q(fu(B′, A′, 0, 0)) ≥ Q(M0).
Now, applying the definition of fu we get,

Q(fu(B, A, tb, ta)) = min{qa − ta, qb − tb}+ Q(fu(B′, A′, 0, 0))
I.H.
≥ min{qa − ta, qb − tb}+ Q(M0) (†)= Q(M ′).

Case: qa − ta > qb − tb. In this case M0 is a matching between B′ and â :: A′ (where
qâ = qa − ta − (qb − tb) ≤ qa). Since (|B| + |A|) > (|B′| + |â :: A′|), we can apply the
induction hypothesis when B′ ̸= ∅ to get Q(fu(B′, A, 0, ta + (qb − tb))) ≥ Q(M0). When
B′ = ∅, then Q(fu(B′, A, 0, ta + (qb − tb))) ≥ Q(M0) holds trivially as both the sides of
the inequality are zeros. Now, applying the definition of fu we get,

Q(fu(B, A, tb, ta)) = (qb − tb) + Q(fu(B′, A, 0, ta + (qb − tb)))
I.H.
≥ (qb − tb) + Q(M0) (†)= Q(M ′).

Case: qa − ta < qb − tb. This is symmetric to the previous case and the proof follows
similarly. □

Having finished the proof of the main result, we now discuss the proof of the lemma that
we assumed.

Main proof idea of Lemma 19. Given an individual-rational and uniform matching M

with Q(M) ≥ min{qb, qa} between the list of bids B = b :: B′ and the list of asks A = a :: A′,
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we need to show existence of an individual-rational and uniform matching M ′ such that
Q(M ′) = Q(M) and the total trade quantity between the bid b and ask a in M ′ is min{qb, qa}.
We do the following surgery on M in two steps to obtain the desired M ′.

Step 1: We first modify M to ensure that bid b and ask a each has at least min{qb, qa}
total trades in M (not necessarily between each other). This is accomplished by running
the Fair procedure on M that outputs a matching which prefers the most competitive orders
(b and a) over any other orders. Since Q(M) ≥ min{qb, qa}, we get that Fair(M, B, A)
has at least min{qb, qa} trades for each of b and a. Note that Fair does not change the
total trade quantity or affect the individual-rational and uniform properties of M . Set
M ← Fair(M, B, A).

Step 2: In this step, we modify M to ensure that the bid b and ask a have min{qb, qa}
quantity trade between them. Note that in M individually both b and a have at least
min{qb, qa} total trade quantity. We will inductively transfer trades of b and a that are not
between them to the transaction between b and a, a unit quantity at a time, till they have
min{qb, qa} quantity trade between them. To better understand this, consider the case when
b and a have zero trade quantity between them. Let us say there is a transaction between b

and a1 of quantity q1 and a transaction between a and b1 of quantity q2. We remove these
two transactions and replace it with the following four transactions (see Figure 3) that keeps
the matching trade volume intact: (1) transaction between b and a1 of quantity q1 − 1, (2)
transaction between a and b1 of quantity q2−1, (3) transaction between b1 and a1 of quantity
one and (4) transaction between b and a of quantity one. Recall, in a individual-rational and
uniform matching with price p, the limit price of each bid is at least p and the limit price of
each ask is at most p, implying any bid and ask participating in the matching are matchable.
Thus, doing such a replacement surgery is legal and does not affect the individual-rational
and uniform properties, and we obtain the desired M ′ by repeatedly doing this surgery.

M

b

a

a1

b1 q2 p

q1 pm1

m2

M ′

b

a

a1

b1 q2 − 1 p

q1 − 1 p

b1 a1 1 p
b a 1 p

m′
1

m′
2

⇒

Figure 3 In the above figure the matching M ′ is obtained from the matching M . Each bid or
ask has the same trade quantity in both M and M ′. Furthermore, the trade quantity between a

and b in M ′ is one more than that in M .

The proof that UM produces a fair matching follows from inducting on the sum (|A|+ |B|)
and the fact that B and A are sorted by competitiveness of the participating bids and
asks. The argument is similar to the correctness proof of Fair that we saw before. From the
discussion above, the next theorem follows immediately.

▶ Theorem 20. For a given list of bids B and the list of asks A, M = UM(B, A) is a fair
and optimal individual-rational-uniform matching on B and A.

Formalization notes: The formalized proof of the above theorem is done by first proving
Lemma 19 (exists_opt_k) using induction on the gap k = min{qb, qa} − Q(a ↔ b, M).
From this lemma, we get another matching M ′ such that Q(a↔ b, M) = min{qb, qa}. The
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matching M ′ is altered to M0 (as described in the proof of Theorem 18 above) by removing
all the transactions between the bid b and the ask a. We prove that the altered list M0 is is
a matching between the reduced lists of bids and asks. All the results related to M0 are in
the file “MachingAlter.v”. Finally, combining all these we prove the main Theorem 20 as
“UM_main”.

7 A Maximum Matching Mechanism

In the previous section, we indicated that to achieve maximum trade volume matching we
sometimes have to assign different trade prices to the matched bid-ask pairs. An individual
rational matching with maximum trade volume is called a maximum matching. In this
section we describe a process MM, that takes a list of bids and a list of asks and outputs a
fair, individual-rational and maximum matching.

The MM procedure roughly works as follows. In step one, the MM procedure repeatedly
pairs the most competitive bid b with the least competitive matchable ask a and outputs a
transaction (b, a, min{qb, qa}, pa) and decreases the quantities of b and a by min{qb, qa}. In
step two, the MM procedure applies the Fair procedure on the output of step one.

The detailed MM procedure and the proof of its correctness are similar to that of the
UM procedure in spirit. In the proof of optimality, we need to prove a lemma similar to
Lemma 19 which states that a given arbitrary individual-rational matching M of sufficiently
large trade volume can be altered to obtain a matching M ′ of the same total trade volume
such that the total trade quantity between the most competitive bid and the corresponding
least competitive matchable ask in M ′ is the minimum of their respective quantities. The
proof of this requires more surgeries as compared to that in the proof of Lemma 19. Besides
this deviation all other arguments of the proof of optimality of MM are similar to that of
UM with minor variations.

The proof of MM producing an individual-rational matching is trivial and the proof that
it produces a fair matching follows from the fact that MM applies the Fair procedure before
it outputs a final matching. We now state the main theorem of this section.

▶ Theorem 21. For a given list of bids B and a list of asks A, MM(B, A) is a fair, individual-
rational and maximum trade volume matching between B and A.

The proof of the above theorem and discussion around the MM procedure can be found
in the full version of the paper [5].

Formalization notes: All the formalization details can be found in [10].

8 Uniqueness Theorem

In this section, we establish certain theorems that enable us to automatically check for
violations in an exchange matching algorithm by comparing its output with the output of
our certified program. Detailed proofs are available in the Coq formalization [10].

Ideally, we would have wanted a theorem that the properties (fair and optimal individual-
rational-uniform) imply a unique matching. Such a theorem would enable us to automatically
compare a matching produced by an exchange with a matching produced by our certified
program to find violations of these properties in the matching produced by the exchange.
Unfortunately, such a theorem is not possible; there exists two different matchings M1 and
M2 on the same list of bids B and asks A, where both are fair and optimal individual-rational-
uniform: M1 = {(b1, a1, 1, p), (b2, a2, 2, p)} and M2 = {(b1, a2, 1, p), (b2, a2, 1, p), (b2, a1, 1, p)}
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on bids B = {b1 = (∗, ∗, 1, p), b2 = (∗, ∗, 2, p)} and asks A = {a1 = (∗, ∗, 1, p), a2 = (∗, ∗, 2, p)}
for some arbitrary price p, timestamps and ids. Note that fairness does not require the most
competitive bid to be paired with the most competitive ask. For example, assuming a1 has
a lower timestamp than a2 and b1 has a lower timestamp than b2 in the above example,
a1 and b1 are not matched in the matching M2, which is a fair matching. Nonetheless, we
can show that given a list of bids B and a list of asks A, all matchings that are fair and
individual-rational-uniform, must have the same trade volume for each trader. This still
allows us to automatically check for violations of the properties in an exchange, by comparing
the trades of each trader produced by the exchange against that produced by our certified
program.

We have the following lemma which formulates this uniqueness relation on the matchings.

▶ Theorem 22. Let M1 and M2 be two fair matchings on the list of bids B and the list of
asks A such that Q(M1) = Q(M2), then for each order ω, the total traded quantity of ω in
M1 is equal to the total traded quantity of ω in M2.

Proof Idea. We now prove the above theorem by using Lemma 6 and deriving a contradiction.
Let M1 and M2 be fair matchings such that Q(M1) = Q(M2). Let b be a buyer whose total
trade quantity in M1 is different (WLOG, more) from his total trade quantity in M2. It is
easy to show that there exists another buyer b′ such that her total traded quantity in M1
is less than her total traded quantity in M2, i.e., Q(M2, b′) > Q(M1, b′) (since the sum of
the total traded quantities of all the bids of B in M1 is equal to the sum of the total traded
quantities of all the bids of B in M2 from Lemma 6).

Now, there can be two cases: (i) b is more competitive than b′ or (ii) b′ is more competitive
than b, as per price-time priority. In the first case, since Q(M1, b) > Q(M2, b), it follows
that Q(M2, b) < Q(M1, b) ≤ qb. This contradicts the fact that M2 is fair on the bids; this is
because a less competitive bid b′ is being traded in M2 (since Q(M2, b′) > Q(M1, b′) ≥ 0 as
noted above), while a more competitive bid b is not fully traded. Similarly, in the second
case, we show a contradiction to the fact that M1 is fair on the bids. □

From the above theorem, we have the following corollary.

▶ Theorem 23. For any two fair and optimal individual-rational-uniform matchings M1 and
M2 on the list of bids B and the list of asks A, for each order ω, the total traded quantity of
ω in M1 is equal to the total traded quantity of ω in M2.

For each trader, we can compare the total traded quantities of the trader in the matching
M1 produced by an exchange with the total traded quantities of the trader in the matching
M2 = UM(B, A) produced by our certified program. If for some trader, the traded quantities
do not match, then from Theorem 20 and Theorem 23 we know that M1 does not have
the desired properties as required by the regulators. On the other hand, if they do match
for all traders, then the following theorem states that M1 is fair (Note that uniform and
individual-rational properties can be verified directly from the trade prices and clearly the
total trade volume of M1 and M2 are the same if the traded quantities are same for each
trader).

▶ Theorem 24. Given a list of bids B and a list of asks A, if M1 is a fair matching and M2
is an arbitrary matching such that for each order ω, the total traded quantity of ω in M1 is
equal to the total traded quantity of ω in M2, then M2 is fair.

The proof follows immediately from the definition of fairness.
Formalization notes: All the theorems in this section are formalized in the file “Unique-

ness.v” using the above proof ideas.
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9 Demonstration: Automatic Detection of Violations in Real Data

Please see Appendix A for details on our demonstration, where we automate the process
of checking violations in trades using verified programs extracted from our formalization.
We then use this to find violations in trades of 100 stocks traded on a real exchange on a
particular day. Below, we describe our findings.

Out of the 100 stocks we checked, for three stocks our program outputted “Violation
detected!”. When we closely examined these stocks, we realized that in all of these stocks, a
market ask order (with limit price = 0), was not matched by the exchange in its trading
output (and these were the only market ask orders in the entire order-book). On the contrary,
market bid orders were matched by them. With further investigation, we observed that
corresponding to each of these three violations, in the raw data there was an entry of update
request in the order-book with a limit price and timestamp identical to the uniform price
and the auction time, respectively. It seems highly unlikely that these three update requests
were placed by the traders themselves (to match the microsecond time and also the trade
price seems very improbable); we suspect this is an exchange’s system generated entry in the
order-book. We hope that the exchange is aware of this and doing this consciously. When
we delete the market asks in the preprocessing stage, no violations are detected. Even if it is
not a violation (but a result of the exchange implementing some unnatural rule that we are
not aware of), it is fascinating to see that with the help of verified programs we can identify
such minute and interesting anomalies which can be helpful for regulating and improving the
exchange’s matching algorithm.

10 Related Works and Future Direction

In an earlier work [8], Sarswat and Singh dealt primarily with single unit trade requests and
thus provided a proof of concept for obtaining verified programs for financial markets. In the
current work, we extend their work to multiple units that results in verified programs which
we run on real market data and establish new uniqueness theorems that enable automatic
detection of violation in exchanges as demonstrated in this work.

Passmore and Ignatovich in [7] highlight the significance, opportunities and challenges
involved in formalizing financial markets. They describe the whole spectrum of financial
algorithms that need to be verified for ensuring safe and fair markets. Iliano et al. [1] use
concurrent linear logic (CLF) to outline two important properties of a continuous trading
system. There are also some works formalizing various concepts from auction theory [2, 3, 11],
particularly focusing on the Vickrey auction mechanism.

In our opinion, future works should focus on developing a theory for continuous double
auctions for financial markets. Currently the specifications for continuous double auctions
are vague and this is an obstacle for obtaining verified programs.
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A Demonstration on real data

In this section, we demonstrate the practical applicability of our work. For this, we procured
real data from a prominent stock exchange. This data consists of order-book and trade-book
of everyday trading for a certain number of days. For our demonstration, we considered
trades for the top 100 stocks (as per their market capitalizations) of a particular day. For
privacy reasons, we conceal the real identity of the traders, stocks and the exchange by
masking the stock names (to s1 to s100) and the traders’ identities. We also converted the
timestamps appropriately into natural numbers (which keeps the time in microseconds, as in
the original data). Furthermore, the original data has multiple requests with the same order
id; this is because some traders update or delete an existing order placed by them before
the double sided auction is conducted. In our preprocessing, we just keep the final lists of
bids and asks in the order-book that participate in the auction. Furthermore, there are
certain market orders, i.e., orders that are ready to be traded at any available price, which
effectively means a limit price of zero for an ask and a limit price of infinity for a bid; in the
preprocessing we set these limit prices to zero and the largest OCaml integer, respectively.

We then extracted the verified OCaml programs and ran them on the processed market
data. The output trades of the verified code were then compared with the actual trades
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in the trade-book from the exchange. From the uniqueness theorems in the Section 8, we
know that if the total trade quantity of each order in these two matchings are equal, then
the matching produced by the exchange has the desired properties (if it is uniform and IR
which can be checked trivially by looking at the prices in the trade-book). We also know
that if they are not equal for some trader, then the matching algorithm of the exchange does
not have the requisite desired properties (or there is some error in storing or reporting the
order-book or the trade-book accurately).

The processed data and the relevant programs for this demonstration are available at
[10]. The extracted OCaml programs of the functions required for this demonstration are
stored in a separate file named “certified.ml”. The input bids, asks and trades of each stock
are in “s.bid”, “s.ask” and “s.trade” files, where “s” is the masked id for that stock. For
example, file “s1.bid” contains all the bids for the stock “s1”. To feed the inputs to the
verified program and to print the output of the certified program, we have written two OCaml
scripts: create.ml and compare.ml. The create.ml script feeds inputs (lists of bids and asks)
to the UM process, and then prints its output matching M . The compare.ml script compares
the matching produced by the UM process M with the actual trades MEX in the exchange
trade-book. If the total trade quantity for all the traders in M matches with that of the
total trade quantity in MEX, then the compare.ml script outputs “Matching does not violate
the guidelines”. If for some bid (or ask) the total trade quantity of M and MEX does not
match, then the program outputs “Violation detected!”.
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Abstract
Monadic programming is an essential component in the toolbox of functional programmers. For
the pure and total programmers, who sometimes navigate the waters of certified programming in
type theory, it is the only means to concisely implement the imperative traits of certain algorithms.
Monads open up a portal to the imperative world, all that from the comfort of the functional
world. The trend towards certified programming within type theory begs the question of reasoning
about such programs. Effectful programs being encoded as pure programs in the host type theory,
we can readily manipulate these objects through their encoding. In this article, we pursue the
idea, popularized by Maillard [21], that every monad deserves a dedicated program logic and that,
consequently, a proof over a monadic program ought to take place within a Floyd-Hoare logic
built for the occasion. We illustrate this vision through a case study on the SimplExpr module of
CompCert [18], using a separation logic tailored to reason about the freshness of a monadic gensym.
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1 Introduction

This article dwells on the challenges of verifying imperative algorithms implemented in a
proof assistant. As certified programming becomes more commonplace, proof assistants
are indeed being used as the ultimate integrated development environment [5, 10]. The
question of specifying and proving the correctness of such programs is part of a long tradition,
starting from various generalizations of monads [11, 33, 4] accounting for dependent types
and YNot [24], an axiomatic extension of type theory featuring imperative traits, as well as
the family of Dijsktra monads [3, 21, 22, 32] in F⋆ and their intuitionistic counterparts in
Agda [35], including the recent activity around algebraic presentations of effects and their
embedding in Coq and Agda [6, 7, 37, 20, 19]. This article reports on an experiment in
revisiting a proof of Leroy [18] with the help of Hoare [14] and Reynolds [29], under the
direction set by Plotkin and Power [28].

Before reaching for the top on the shoulders of these giants, let us warm up with a classical
monadic verification problem due to Hutton and Fulger [15] involving labelled binary trees

Inductive Tree (X: Type) :=
| Leaf: X → Tree X
| Node: Tree X → Tree X → Tree X.

The challenge consists in implementing a function label: Tree X → Tree nat that
labels every leaf with a fresh symbol, here a natural number. In order to implement this
relabeling procedure in Coq, we are naturally led to define the following variant of the state
monad [26]:
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Definition Fresh X := nat → X * nat.

Definition ret (x: X): Fresh X :=
fun n ⇒ (x, n).

Definition bind (m: Fresh X)(f: X → Fresh Y): Fresh Y :=
fun n ⇒ let (x, n’) := m n in f x n’.

Definition gensym (tt: unit): Fresh nat :=
fun n ⇒ (n, 1+n).

Notation "’do’ x ’← ’ e1 ’;’ e2" := (bind e1 (fun x ⇒ e2)).

Tree relabeling is then the straightforward imperative program one would have written in
any ML-like language:

Fixpoint label {X} (t: Tree X): Fresh (Tree nat) :=
match t with
| Leaf _ ⇒

do n ← gensym tt;
ret (Leaf n)

| Node l r ⇒
do l ← label l;
do r ← label r;
ret (Node l r)

end.

The function label is correct if the structure of the tree is preserved and each leaf stores
a unique number. Setting aside the question of preserving the tree structure, Hutton and
Fulger [15] offered the following formal specification for the latter property:

Lemma label_spec : ∀ t n ft n’,
label t n = (ft, n’) → n < n’ ∧ flatten ft = interval n (n’-1).

where flatten accumulates each leaf value during a left-to-right traversal and interval a b
computes the list of integers in the interval [a, b]. Note that this specification is extremely
prescriptive as it requires that label consecutively numbers the leaves of the tree from the
initial state n of the fresh name generator to its final state n′ in a left-to-right fashion.

It is easy to deduce the absence of duplicates, captured by the NoDup predicate in Coq
standard library:

Definition relabel (t: Tree X): Tree nat := fst (label t 0).

Lemma relabel_spec : ∀ t ft, relabel t = ft → NoDup (flatten ft).

which makes for a reasonable public API to expose, unlike the property established by
label_spec. The correctness of relabeling rests on our ability to prove label_spec. To do
so, it is obviously possible to treat label as a pure function (since it is one, after all) and
therefore directly manipulate the functional encoding of our variant of the state monad. For
example, to reason about a sequence of operations, we would use the inversion lemma

Remark bind_inversion: ∀ m f y n1 n3,
(do x ← m; f x) n1 = (y, n3) →
∃ v n2, m n1 = (v, n2) ∧ f v n2 = (y, n3).
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that reifies, through an existential, the intermediate state that occurs between the first and
second operation, thus allowing us to reason piece-wise about the overall program.

Here, the proof proceeds by induction over the tree t. For instance, in the Node case, we
are given the hypothesis

(do l ← label t1;
do r ← label t2;
ret (Node l r)) n = (t’, n’)

which we invert twice using bind_inversion so as to reveal the intermediate states n2, n3
and intermediate results t1’, t2’:

label t1 n = (t1’, n2)
label t2 n2 = (t2’, n3)
Node t1’ t2’ = t’
n3 = n’

We can then proceed by induction over the first two hypothesis in order to deduce flatten t1
= interval n (n2-1) (with n < n2) on the one hand and flatten t2 = interval n2
(n3-1) (with n2 < n3) on the other hand. Properties of intervals allow us to deduce that

flatten (Node t1 t2) = interval n n’, which establishes the desired invariant. The
resulting proof is thus a back-and-forth between reasoning steps related to the monadic
structure of the program (for example, bind_inversion above) and reasoning steps related
to the invariants preserved by the program (for example, concatenating intervals above).

In order to decouple the monadic structure (whose role is to sequentialize effects) from
specific interpretations of this structure (which defines its admissible semantics), one can
follow the mantra of the algebraic presentations of effects [28]: start with syntax (by means
of signatures) and obtain monads. In Coq, we can easily give the term algebra corresponding
to the Fresh monad using the folklore free monad construction [19]:

Inductive FreeFresh X :=
| ret : X → FreeFresh X
| gensymOp : unit → (nat → FreeFresh X) → FreeFresh X.

Fixpoint bind (m: FreeFresh X)(f: X → FreeFresh Y): FreeFresh Y :=
match m with
| ret v ⇒ f v
| gensymOp _ k ⇒ gensymOp tt (fun n ⇒ bind (k n) f)
end.

Definition gensym (tt: unit): FreeFresh nat := gensymOp tt (@ret nat).

In effect, we are defining a syntax for an embedded imperative language (sequenced
through the bind construct) featuring all Coq values (through the ret constructor) as well
as a gensym operator. To give a semantics to this language, an avid Coq programmer would
claim that an interpreter is as good a denotational semantics as anything else:

Fixpoint eval (m: FreeFresh X): nat → X * nat :=
match m with
| ret v ⇒ fun n ⇒ (v, n)
| gensymOp _ k ⇒ fun n ⇒ eval (k n) (1 + n)
end.
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Alternatively, a zealous disciple of Dijsktra (who may well be his grand nephew [35])
would perhaps give a semantics based on predicate transformers, using for example a weakest-
precondition calculus:

Fixpoint wp (m: FreeFresh X)(Q: X → nat → Prop): nat → Prop :=
match m with
| ret v ⇒ fun n ⇒ Q v n
| gensymOp _ k ⇒ fun n ⇒ wp (k n) Q (1+n)
end.

To get them to come to an agreement, we would prove the adequacy of both semantics:

Lemma adequacy: ∀ m Q n n’ v,
wp m Q n → eval m n = (v, n’) → Q v n’.

Whilst we have argued against reasoning directly about the semantics of monadic programs
(which amounts to eval m here), the adequacy lemma gives us an opportunity to switch to
a more predicative reasoning style. In particular, Hoare triples [14], dear to the heart of
imperative programmers, can be obtained through a simple notational trick

Notation "{{ P }} m {{ Q }}" := (∀ n, P n → wp m Q n)

from which we can readily prove the usual rules of Hoare logic [27]

Lemma rule_value: ∀ Q v,
(*-----------------------*)
{{ Q v }} ret v {{ Q }}.

Lemma rule_composition: ∀ m f P Q R,
{{ P }} m {{ Q }} →
(∀ v, {{ Q v }} f v {{ R }}) →
(*-------------------------------*)
{{ P }} do x ← m; f x {{ R }}.

Lemma rule_gensym: ∀ k,
(*-------------------------------------------------------*)
{{ fun n ⇒ n = k }} gensym tt {{fun v n’ ⇒ v = k ∧ n’ = 1+k}}.

Lemma rule_consequence: ∀ P P’ Q Q’ m,
{{ P’ }} m {{ Q’ }} →
(∀ n, P n → P’ n) →
(∀ x n, Q’ x n → Q x n) →
(*-----------------------*)
{{ P }} m {{ Q }}.

or, put otherwise, we obtain a shallow embedding of Hoare logic within the logic of Coq.
While, syntactically, the code of label is unchanged, it is now a mere abstract syntax

tree. Accordingly, the correctness lemma is naturally expressed as a Hoare triple:

Lemma label_spec: ∀ t k,
{{ fun n ⇒ n = k }}

label t
{{ fun ft n’ ⇒ k < n’ ∧ flatten ft = interval k (n’-1) }}.
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This specification remains unsatisfactory: we have still over-specified the behavior of a
counter whereas, in fine, we are only ever interested in the property NoDup (flatten t).
To prove it, we only need the assurance that every call to gensym tt produce a number
distinct from any previous call (which is indeed verified by an implementation that produces
consecutive numbers but this is an implementation detail).

In the remaining of this article, we argue that separation logic [29] is the perfect vehicle
for this kind of specification. Our plan is to unleash the power of the wonderful ecosystem
created by the MoSel [17] (and, by extension, Iris [16]) – initially introduced to model and
reason about fine-grained models of concurrent systems and languages– to bear on the
verification of our monadic programs. Our contributions are the following:

We instantiate the MoSel framework (Section 2) with a custom logic to reason (exclusively)
about freshness over monadic programs. The result is a tailor-made program logic
embedded within Coq supporting modular reasoning about freshness, MoSel offering a
wonderful environment to harness this flexibility;
We resume our formalization of relabel in this framework (Section 3) and highlight the
key point of the methodology;
We offer a larger case study (Section 4) by porting the SimplExpr module of CompCert [18]
to our framework. This module extensively relies on a monad offering a fresh name
generator together with non catchable exceptions. Crucially, we show that separation
logic can be used locally while the resulting theorems can be integrated in a larger
(pre-existing) development standing solely in Prop.

Our Coq development is available online1. The symbol [ ] in the electronic version of the
paper will lead the reader to the corresponding source code.

2 Supporting Modular Specifications [ ]

Separation logic [29] prominently features a frame rule that enables modular reasoning
about properties supporting a notion of disjointedness. This is particularly relevant for
freshness: we naturally expect to be able to reason separately about two programs producing
fresh identifiers, without interference. We now formalize this intuition by instantiating the
MoSel [17] framework with a minimalist separation logic to reason about generated symbols.

The type of assertions hprop corresponds to predicates over finite sets2 of identifiers:

Definition hprop := gset ident → Prop.

Through this definition, hprop inherits the logical apparatus of Prop (through pointwise
lifting): existential quantification, universal quantification, conjunction, etc. This also
includes any Coq propositions P, called pure propositions and written ⌜ P ⌝

Definition hpure (P : Prop) : hprop := fun _ ⇒ P.

The defining feature of a separation logic is the presence of a separating conjunction

Definition hstar (P1 P2 : hprop) : hprop := fun idents ⇒
∃ ids1 ids2, P1 ids1 ∧ P2 ids2 ∧ ids1 ## ids2 ∧ idents = ids1 ∪ ids2.

1 https://github.com/Artalik/CompCert/tree/ITP
2 Implemented by the gset type in the Coq-std++ library [23]
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that splits a given set of identifiers idents in a two sets ids1 and ids2 that are distinct
(ids1 ## ids2), form a partition of idents (idents ≡ ids1 ∪ ids2), each satisfying its
respective predicate. Unlike standard conjunction (where both propositions must hold
for the whole set of identifiers), the separating conjunction translates the independence of
both predicates by extracting two independent subsets of identifiers. Dually, the separating
implication, written P1 −∗ P2, amounts to the predicate

fun ids1 ⇒ ∀ ids2, ids1 ## ids2 ∧ P1 ids2 → P2 (ids1 ∪ ids2).

and consists, intuitively, in offering P2 provided that one can extend the existing set of
identifiers so as to satisfy P1.

The assertion emp = fun idents ⇒ idents = ∅ states that no identifier has been gen-
erated. We can also assert the freshness of an identifier ident (written & ident) by stating
that it is the sole identifier in the supporting set

Definition hsingle ident : hprop := fun idents ⇒ idents = {[ ident ]}.

and, more generally, the operator && h states that the set of identifiers amounts precisely to
the identifiers in h. The interplay between the separating connectives and this characterization
of freshness allows us to prove the absence of duplicates, such as the following instrumental
lemma3:

Lemma singleton_neq : ∀ l l’, ⊢ & l −∗ & l’ −∗ ⌜l ̸= l’⌝.

From such an algebra of logical connectives, we instantiate the MoSel [17] framework.
As a result, we obtain a full-featured interactive environment for reasoning about and
manipulating statements in the corresponding separation logic. MoSel introduces the type
iProp of (suitably-encoded) separation logic assertions, which subsumes hprop and its
connectives. The relationship between the separation logic and Prop is preserved through a
(somewhat more noisy) characterization

Lemma equivalence (P: iProp) idents: P () idents ↔ (⊢ && idents −∗ P).

3 Monadic Proof in Separation Logic [ ]

Equipped with a separation logic, we can redefine our weakest precondition calculus to take
advantage of the added structure

Fixpoint wp (m: FreeFresh X)(Q: X → iProp): iProp :=
match m with
| ret v ⇒ Q v
| gensymOp _ k ⇒ ∀ (v: ident), & v −∗ wp (k v) Q
end.

from which we naturally derive Hoare triples and their associated logic [9] as a shallow
embedding

Notation "{{ P }} m {{ v ; Q }}" := (P −∗ wp m (fun v ⇒ Q))

Lemma rule_gensym : ⊢ {{ emp }} gensym tt {{ ident; & ident }}.

3 The infix operator ⊢ embeds assertions expressed in the internal separation logic into the ambiant logic
of Coq Propositions.

https://github.com/Artalik/CompCert/tree/ITP/relabels/example3.v
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Lemma rule_consequence: ∀ P P’ Q Q’ m,

(⊢{{ P’ }} m {{ v; Q’ v }}) →
(P ⊢ P’) →
(∀ v, Q’ v ⊢ Q v) →

(*-----------------------*)
⊢{{ P }} m {{ v; Q v }}.

Lemma frame: ∀ P Q P’ m,

(⊢{{ P }} m {{ v; Q v }}) →
(*----------------------------*)
⊢{{ P ∗ P’ }} m {{ v; Q v ∗ P’ }}.

while the statement of the earlier lemmas rule_value and rule_composition remains
essentially unchanged (but their signification did change!).

We are now able to specify label by actively exploiting the separating conjunction4:

Lemma label_spec_aux : ∀ t,
⊢ {{ emp }}

label t
{{ ft; ([∗ list] x ∈ (flatten ft), & x) ∗ ⌜sameShape t ft⌝ }}.

Through this move to separation logic, we have discharged the handling of freshness down
to the logic, which conveniently provides us with the frame rule (rule_frame) to abstract
over disjoint sets of identifiers. The proof of label_spec_aux is thus significantly simpler and
consists only in local invariants. This is in stark contrast with our earlier proof in Section 1,
where we had to maintain a global invariant across the whole execution of the program.

Thanks to MoSel, the proof script now sums up to the following instructions, which are
almost intelligible. The MoSel framework provides the underlined tactics, which we extended
with custom tactics (underlined with dashes) specifically manipulating the Hoare triples:

induction t.

- iBind .

+ eapply rule_gensym.

+ iRet . simpl; auto.

- simpl label. iBind .

+ eapply IHt1.

+ iBind . Frame .

* eapply IHt2.

* iRet .

iIntros "[[HA %] [HB %]]".

iSplitL; auto. simpl.

iApply big_sepL_app.

iFrame.

subgoal 1 :
{{ emp }} gensym () {{ v; ?Q0 v}}
subgoal 2 :
{{ ?Q0 v }} ret Leaf v
{{ v’; ([∗ list] x0 ∈ flatten v’, & x0) ∗ ⌜sameShape (Leaf x) v’⌝ }}

subgoal 1 :
{{ ([∗ list] x ∈ flatten v, & x) ∗ ⌜sameShape t1 v⌝ }} label t2
{{ v0; ?Q1 v0}}
subgoal 2 :
{{ ?Q1 v0 }} ret Node v v0
{{ v’; ([∗ list] x ∈ flatten v’, & x) ∗ ⌜sameShape (Node t1 t2) v’⌝ }}

subgoal 1 :
{{ emp }} label t2 {{ v0; ?Q2 v0}}
subgoal 2 :
{{ ?Q2 v0 ∗ ([∗ list] x ∈ flatten v, & x) ∗ ⌜sameShape t1 v⌝ }}
ret Node v v0
{{ v’; ([∗ list] x ∈ flatten v’, & x) ∗ ⌜sameShape (Node t1 t2) v’⌝ }}

4 The notation ([* list] x in l, P x) asserts that every element x of the list l satisfies the predicate
P. In the present case, we state that all the elements in the flattened tree are fresh.
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In the leaf case, the proof essentially boils down to applying rule_gensym. The power of
the approach strikes in the node case, where we gain access to the recursive cases through the
composition rule, at which point the proof is over: the frame rule allows us to automatically
combine the results of both sub-calls.

However, at this stage, we only have a proof in iProp while our users are expecting a
pure Coq proposition, living in Prop. We can first narrow the gap between the two worlds
by showing that the non-pure post-condition of label_spec_aux amounts to a pure one

∀ idents, ⊢ ([∗ list] i ∈ idents, & (i: ident)) −∗ ⌜NoDup idents⌝.

and, consequently, we obtain a specification with a pure post-condition

Lemma label_spec: ∀ t,
⊢ {{ emp }} label t {{ ft; ⌜NoDup (flatten ft) ∧ sameShape t ft⌝ }}.

The gap is finally bridged through an adequacy lemma, relating the execution of monadic
programs with the generator set to 0

Definition run (m: FreeFresh X): X := fst (eval m 0).

with pure post-conditions obtained in the separation logic

Lemma adequacy : ∀ {X} {m: FreeFresh X} {Q},
(⊢ {{ emp }} m {{ v; ⌜Q v⌝ }}) →
Q (run m).

As a corollary, we obtain a publicly-usable relabeling function together with a specification
expressed at a suitable level of detail:

Definition relabel (t: Tree X): Tree nat := run (label t).

Lemma relabel_spec : ∀ t ft,
relabel t = ft → NoDup (flatten ft) ∧ sameShape t ft.

4 Case study: SimplExpr

To evaluate our approach, we tackle a pre-existing certified program, namely the SimplExpr
module of the CompCert certified compiler. This module implements a simplification phase
over C expressions, pulling side-effects out of expressions and fixing an evaluation order. In the
following, we offer a side-by-side comparison of the original specification with ours, exploiting
separation logic (Section 2) to reason about freshness. We first materialize the underlying
monad in Section 4.1 together with its dynamic and predicate transformer semantics. We
then delve into the benefits of having a rich logic of assertions (Section 4.2) to carry the
proofs. We finally demonstrate how these properties can then be translated to and interact
with pure Coq propositions (Section 4.3), so as to be usable in the correctness proof of the
whole compiler.

4.1 The monad [ ]
As for our introductory example, we crucially rely on a syntactic description of the monad
mon used by the SimplExpr module. This monad, which has received some attention in the
literature [34], exposes two operations: an error e operator, to report a run-time error e;
a gensym ty operator, to generate a fresh symbol associated with a type ty, and a trail
operator, to get the association list of identifiers to types constructed thus far.

https://github.com/Artalik/CompCert/tree/ITP/CompCert/cfrontend/MonadSL.v
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Following the usual free monad construction, we reify this interface through a datatype:

Inductive mon (X : Type) : Type :=
| ret : X → mon X
| errorOp : Errors.errmsg → mon X
| gensymOp : type → (ident → mon X) → mon X
| trailOp : unit → (list (ident * type) → mon X) → mon X.

Definition error {X} (e : Errors.errmsg) : mon X := errorOp e.
Definition gensym (t : type) : mon ident := gensymOp t ret.
Definition trail (_ : unit): mon (list (ident * type)) := trailOp tt ret.

The definition of the monadic bind follows naturally. As before, we will use the user-friendly
notation do _ ← _ ; _ in code.

Note that an error does not require a continuation: at run-time, it corresponds to
an uncatchable exception. It is used by the compiler to abort when some input program
falls outside the semantic domain of C (delineated by the mechanized semantics given by
CompCert).

The dynamic semantics of mon is slightly richer than the one of FreeFresh (Section 1).
First, we must handle the addition of an uncatchable error during execution. We piggy-back
on CompCert’s implementation of the error monad

Inductive res (A: Type) : Type :=
| OK: A → res A
| Error: errmsg → res A.

and, essentially, inline the usual error monad transformer over the state monad necessary
to maintain the internal state of the gensym operator. However, unlike earlier, gensym now
associates fresh identifiers with their provided type. This is reflected in the semantics, which
maintains an association list of ident and types together with the next fresh ident:

Record generator : Type := mkgenerator { gen_next : ident;
gen_trail: list (ident * type) }.

The dynamic semantics amounts to the usual interpretation of errors in res and stateful
operations in generator → M (generator * X):

Fixpoint eval {X} (m : mon X) : generator → res (generator * X) :=
match m with
| ret v ⇒ fun s ⇒ OK (s, v)
| errorOp e ⇒ fun s ⇒ Error e
| gensymOp ty f ⇒

fun s ⇒
let h := gen_trail s in
let n := gen_next s in
eval (f n) (mkgenerator (n+1) ((n,ty) :: h))

| trailOp _ f ⇒
fun s ⇒

let h := gen_trail s in
eval (f h) s

end.
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The compiler pass is ran with an initial_generator that is provided from the OCaml
driver, remaining opaque to Coq until after extraction:

Definition run {X} (m: mon X): res X :=
match eval m (initial_generator tt) with
| OK (_, v) ⇒ OK v
| Error e ⇒ Error e
end.

The predicate transformer semantics is given by a straightforward weakest-precondition
calculus:

Fixpoint wp {X} (e1 : mon X) (Q : X → iProp) : iProp :=
match e1 with
| ret v ⇒ Q v
| errorOp e ⇒ True
| gensymOp _ f ⇒ ∀ l, & l −∗ wp (f l) Q
| trailOp _ f ⇒ ∀ l, wp (f l) Q
end.

where the semantics of gensym follows exactly our earlier definition. The semantics of
error does not require any precondition (but, as we shall see in the adequacy lemma, this
also means that our post-conditions are only true if the compiler did not raise an error).
The specification of trail is purposefully non-committal: CompCert does not make any
assumption about the output of trail (in a rather elegant twist, the fact that the identifiers
produced by trail are all distinct is a decidable property that is checked at run-time in a
later compilation pass: trail is indeed free to return any list of identifiers but CompCert
will simply refuse to compile a piece of code triggering an invalid output.)

As in Section 1, we derive Floyd-Hoare triples {{ P }} m {{ v; Q }} from our weakest-
precondition calculus, together with the usual structural rules. The monad-specific operators
are specified as follows:

Lemma rule_gensym ty : ⊢{{ emp }} gensym ty {{ ident; & ident }}.

Lemma rule_error Q e: ⊢{{ True }} error e {{ v; Q v }}.

Lemma rule_trail : ⊢{{ emp }} trail tt {{ _; emp }}.

In particular, the operator error amounts to a “get out of proof free card”, allowing us
to discharge any post-condition by refusing to do any work. We relate the dynamic and
predicate transformer semantics through an adequacy lemma

Lemma adequacy: ∀ m Q v,
(⊢ {{ emp }} m {{ v; ⌜ Q v ⌝}}) →
run m = OK v → Q v.

that only proves the post-condition when the evaluation succeeds in producing a value.

4.2 Proofs and Programs [ ]
The expression simplification pass is part of the CompCert front-end. It consists of 3 files:
cfrontend/SimplExpr.v (which contains the monadic programs), cfrontend/
SimplExprspec.v (which contains a Prolog-like specification of the monadic programs
through inductive relations, as well as the proof relating the monadic programs to their

https://github.com/Artalik/CompCert/tree/ITP/CompCert/cfrontend/SimplExpr.v
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Figure 1 SimplExpr call graph (left) and the corresponding specifications (right).

specification) and cfronted/SimplExprproof.v (which contains the proof of correctness of
the compilation pass, exploiting the relational specifications). Syntactically, cfrontend/
SimplExpr.v is left unchanged when we swap in our monad: we were careful to implement
the same interface as the previous one. However the semantics is very different: whereas
the previous monad was building an actual computation, ours is just building an abstract
syntax tree. We therefore need to add suitable call to run to turn this syntax into an actual
computation.

We give an overview of the SimplExpr module through its call graph (Figure 1). The raison
d’etre of this module is to define transl_function: Csyntax.function → res function
that performs the simplification over functions. This is the (only) entry-point into the error
monad res. It hosts the call run. transl_function recursively depends on a host of helpers
operating in the error and trail fragment of the monad, grouped in the circular frame
(Figure 1). Crucially, none of the functions invoke a fresh symbol generator themselves. A
third group of functions, all dispatched from transl_expr and collected in the rectangular
frame (Figure 1), consists of those functions that actually generate fresh symbols and must
therefore belong to the full-fledged monad mon.

In the following, we present several programs extracted or modified from CompCert,
together with their specifications. In those, aspects related to the freshness of names is
a means toward an overall correctness result. Consequently, programs and specifications
involve a backbone of operations and properties dealing with freshness, fleshed out with
further transformations and properties implementing the desired compilation pass. In order
to see the forest (of freshness) for the trees, we adapt a typographical legerdemain: we
typeset in a tiny font size the parts of the program and proof that do not involve freshness.
As part of our work, we were led to replace definitions from the original CompCert with new
ones: when recalling the original, we display it on a gray background to set it apart.

Let us begin our exploration of the SimplExpr module through transl_expr, which
involves both fresh name generation and errors

Fixpoint transl_expr (dst: destination) (a: Csyntax.expr) : mon (list statement * expr)

Its argument dst may wrap, in the For_set case, an identifier within a value of type
set_destination
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Inductive set_destination : Type :=
| SDbase (tycast ty: type) (tmp: ident)
| SDcons (tycast ty: type) (tmp: ident) (sd: set_destination).

Inductive destination : Type :=
| For_val
| For_effects
| For_set (sd: set_destination).

The type destination specifies how to pass along the result of a given expression, i.e.
whether the contribution of an expression lies in its returned value, or solely in its side effects,
or in a temporary variable in which its denotation has been saved.

For correctness of this optimization pass, it is crucial that this identifier is fresh with
respect to any identifier that transl_expr may produce. The function transl_expr itself is
defined by pattern-matching over the source AST, we focus here on the assignment case:

| Csyntax.Eassign l1 r2 ty⇒
do (sl1, a1)← transl_expr For_val l1;
do (sl2, a2) ← transl_expr For_val r2;
let ty1 := Csyntax.typeof l1 in

let ty2 := Csyntax.typeof r2 in

match dst with
| For_val | For_set _ ⇒

do t ← gensym ty1;
ret (finish dst

(sl1 ++ sl2 ++ Sset t (Ecast a2 ty1) ::

make_assign a1 (Etempvar t ty1) :: nil)

(Etempvar t ty1))

| For_effects ⇒
ret (sl1 ++ sl2 ++ make_assign a1 a2 :: nil,

dummy_expr)

end

It performs two recursive calls with destinations that do not involve fresh identifiers
(For_val). However, when its own destination is a value (For_val) or an assignment
(For_set), it also performs a call to gensym. The specification needs to reflect the fact that
the identifiers generated by the recursive calls are distinct between each other and distinct
from the identifier potentially generated in the assignment case. In CompCert, this is achieved
by explicitly threading the lists (in this case, tmp, tmp1 and tmp2) of identifiers generated
and asserting their disjointness:

Inductive tr_expr: temp_env → destination → Csyntax.expr → list statement → expr →

list ident → Prop :=

| tr_assign_val: ∀ le dst e1 e2 ty sl1 a1 tmp1 sl2 a2 tmp2 t tmp ty1 ty2,
tr_exprle For_val e1 sl1 a1 tmp1 →
tr_expr le For_val e2 sl2 a2 tmp2 →
incl tmp1 tmp → incl tmp2 tmp →
list_disjoint tmp1 tmp2 →
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In t tmp → ~In t tmp1 → ~In t tmp2 →
ty1 = Csyntax.typeof e1 →

ty2 = Csyntax.typeof e2 →

tr_expr le dst (Csyntax.Eassign e1 e2 ty)

(sl1 ++ sl2 ++

Sset t (Ecast a2 ty1) ::

make_assign a1 (Etempvar t ty1) ::

final dst (Etempvar t ty1))

(Etempvar t ty1) tmp

In order to express the precondition on transl_expr, stating that any potential identifier
in dst is fresh, CompCert introduces the following predicate

Definition sd_temp (sd: set_destination) :=
match sd with SDbase _ _ tmp ⇒ tmp | SDcons _ _ tmp _ ⇒ tmp end.

Definition dest_below (dst: destination) (g: generator) : Prop :=
match dst with
| For_set sd ⇒ Plt (sd_temp sd) g.(gen_next)
| _ ⇒ True
end.

that, in a very operational manner, asserts that the identifiers stored in dst occurred earlier
in the execution of the fresh name generator and are therefore distinct from any future
identifier (since they are produced as consecutive numbers).

Having access to a notion of freshness in our language of assertions, we can prevent these
operational details from leaking out and simply assert that such an identifier must be fresh:

Definition dest_below (dst: destination) : iProp :=
match dst with
| For_set sd ⇒ & (sd_temp sd)
| _ ⇒ emp
end.

The implementation of transl_expr is then abstracted away thanks to the relational
specification given by tr_expr as follows

Lemma transl_meets_spec:
(∀ r dst g sl a g’ I,
transl_expr dst r g = Res (sl, a) g’ I →
dest_below dst g →
∃ tmps, (∀ le, tr_expr le dst r sl a (add_dest dst tmps)) ∧

contained tmps g g’)

where g and g’ represent the state of the fresh name generator at the beginning and,
respectively, the end of the transformation. These are necessary to assert that any ident in
dst is indeed fresh (through dest_below) and that the temporaries produced by transl_expr
will not conflict with any earlier or later use of the generator (through contained tmps g g’,
which guarantees that all the identifiers in tmps were produced between g and g’).
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In our setting, the freshness of the identifiers produced in the subcalls and of the locally
generated identifier is captured with separating conjunctions:

Fixpoint tr_expr (le : temp_env) (dst : destination) (e : Csyntax.expr)

(sl : list statement ) (a : expr) : iProp :=

| Csyntax.Eassign e1 e2 ty ⇒
match dst with
| For_val | For_set _ ⇒
∃ sl2 a2 sl3 a3 t,
tr_expr le For_val e1 sl2 a2 ∗
tr_expr le For_val e2 sl3 a3 ∗
& t ∗
dest_below dst ∗
⌜ sl = sl2 ++ sl3 ++ Sset t (Ecast a3 (Csyntax.typeof e1)) ::

make_assign a2 (Etempvar t (Csyntax.typeof e1)) ::

final dst (Etempvar t (Csyntax.typeof e1)) ∧

a = Etempvar t (Csyntax.typeof e1)⌝

Similarly, the relationship between transl_expr and tr_expr is now straightforward, the
constraint that dst is fresh with respect to the identifiers produced by transl_expr being
naturally expressed through a separating implication

Lemma transl_meets_spec :
(∀ r dst,

⊢ {{ emp }} transl_expr dst r

{{ res; dest_below dst −∗ ∀ le, tr_expr le dst r res.1 res.2 }})

Through this process, we have entirely removed the painstaking need to track the
operational state of the name generators and maintain global invariants about the relative
freshness of program fragments. Doing so, we have elevated our specification and successfully
decoupled it for the operational aspects of generating fresh identifiers. As an added bonus, we
can now rely on MoSel to prove that our implementation meets its specification. In practice,
we observe that the length of the proof scripts is divided by two when moving to MoSel but
we shall resist from the temptation of drawing any conclusion from such an unreliable metric.

4.3 Leaving iProp [ ]
Reasoning about freshness occurs only in the group of functions below transl_expr in the
call graph. For the functions (and their respective specifications) above transl_expr, the set
of fresh identifiers ranged over by the specification is always existentially quantified. Since, by
construction, iProp is isomorphic to gset ident → Prop (Section 2), we have integrated
this discipline in a wrapper-specification

Inductive tr_top: destination → Csyntax.expr → list statement → expr → Prop :=

| tr_top_base: ∀ dst r sl a tmp,
tr_expr le dst r sl a () tmp →
tr_top dst r sl a.

As a consequence, functions above transl_expr do not need to propagate freshness
invariants. As a result, Prop is a sufficient vehicle to write their specifications. However, to
show that these functions satisfy their specifications, we took on ourselves to port the proofs
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to MoSel as well. For example, the function transl_stmt, which translates statements, is
specified as follow in our setting

Lemma transl_stmt_meets_spec : ∀ s,
⊢ {{ emp }} transl_stmt s {{ res; ⌜ tr_stmt s res ⌝}}

which is merely a iota away from the original

Lemma transl_stmt_meets_spec:
∀ s g ts g’ I, transl_stmt s g = Res ts g’ I → tr_stmt s ts

While a purely cosmetic change, this has allowed us to streamline the proofs, which
were designed around inversion lemmas over the monadic structure (themselves wrapped in
tactics). Note that this effort was not strictly necessary: we could have kept the pre-existing
definitions and their proofs.

To restore the overall compiler correctness proof [ ], we must re-establish a simulation
lemma relating source and target programs. This work is carried solely over the specifications
of the various functions (right-hand side of Figure 1). Above tr_top (included), the specific-
ations lives in Prop so the proofs remain unchanged. For tr_expr, where the specification
lives in iProp, we resort to reasoning in separation logic: we have therefore updated the
original predicates so as to fully exploit the separating connectives to handle freshness. We
carry this part of the simulation proof in MoSel. To bridge the gap between iProp and Prop,
which occurs when we go through tr_top, we resort to lemmas such as singleton_neq
(Section 2) that translates freshness assertions into propositional facts.

5 Related Work

Early on, dependent type theory was used to develop various models of Hoare logic [25, 30],
including several ones based on separation logic [24, 8, 16]. However, these formalisms were
introduced to reason about models of imperative or concurrent programs: type theory was
not yet recognized as a vehicle for writing effectful programs. CompCert was instrumental in
showing that non-trivial effectful programs could be written within a proof assistant. This
inspired the work of Swiertra [34], aiming at rationalizing and generalizing the indexed state
monad construction introduced by Leroy specifically in SimplExpr.

The Dijkstra Monad [13, 31, 3, 2, 32] research program, spearheaded by Swamy and
collaborators, has demonstrated that effectful programming has its place in the context of
certified programming in F⋆. On their journey, the designer of F⋆ have shown the benefits
of a modular approach to effects (polymonads), each equipped with a suitable program
logic (Dijkstra monad) which – in some instances – could be automatically derived from the
underlying monad (using an interpretation in the continuation monad). However, this line of
work actively exploits the refinement-based approach to typing of F⋆ (relying extensively on
an SMT solver to decide the conversion of indices). As-is, this would be ill-fitted for a proof
assistant based on dependent type theory, where conversion is not as rich and relying on
functional values at the type level would make for a painful experience. Our approach is
rooted in the pragmatics of indexed programming in dependent type theory and of Coq in
particular. In that respect, MoSel offers the ultimate development environment for reasoning
– in a natural manner – about effectful programs in Coq.

Before us, this approach has been pursued in the context of the FreeSpec project [19] in
Coq. While its scope was limited to modeling and reasoning about (hardware) interfaces,
FreeSpec has shown the benefits of a syntactic treatment of monads (through the free monad
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construction) and how to construct domain-specific logics for those through pre/post pairs.
The key contribution of FreeSpec is a generic treatment of effects, which we could easily
borrow to factor out our monadic constructions.

In Agda, Swierstra and Baanen [35] have shown how the FreeSpec approach (based on
free monads) and the Dijsktra Monads (deriving program logics from monads) could be
fruitfully combined. This results in a library of predicate transformers, operating over the
syntactic model of the monad. We followed this approach to the letter, specializing our
definition to the monads at hand for pedagogical purposes. Being in Coq, we also benefit
from the impredicativeness of Prop and, by extension, iProp, which saves us from tiptoeing
around universe stratification when defining the predicate transformer semantics.

While many of the work above is focused on emulating some form of Hoare logics in
type theory, there is also a parallel and rich line of work betting on the power of equational
reasoning for effectful programs. Gibbons and Hinze [12] were instrumental in illustrating –
on paper – how to use algebraic presentations of monads to prove the correctness of programs
implemented in those. In particular, they revisited the relabel program from Hutton and
Fulger and gave a purely equational proof of correctness. Affeldt et al. [1] realized this vision
in the Coq theorem prover, extensively relying on SSReflect [36] to enable a compositional
treatment of monads and to effectively reason about monadic programs by rewriting.

Interaction Trees [37] are a middle ground between the purely equational treatment of
Affeldt et al. and the syntactic treatment of FreeSpec. Much like FreeSpec, interaction trees
are constructed from a signature of possible operations. However, the authors dispense with
the free monad construction altogether and directly manipulate the free completely iterative
monad, i.e. infinite unfoldings of the signature’s control-flow graph. Program equivalence
is thus proved by establishing a bisimilarity between two unfoldings: in practice, this is
achieved through equational reasoning; substituting equivalent program fragments for each
others. The treatment of diverging computations is worthwile and would deserve further
attention in our setting.

6 Conclusion

This paper reports on an experiment: use one of the most advanced piece of technology for
reasoning about imperative features – separation logic, embodied by the MoSel framework –
to reason about certified monadic programs in Coq. To exercise this approach, we ported the
SimplExpr module of CompCert to use a separation logic for reasoning about fresh names.
Our version of SimplExpr is feature-complete and integrated in the rest of compiler pipeline.
The definition of the monad and its separation logic introduce an additional 750 lines of code
[ ] (ignoring the 30 000 lines of code of Iris/MoSel). Conversely, the specifications and their
proofs go from 1100 lines of code originally down to 650 lines of code [ ]. The correctness
proof stands at around a thousand lines of code [ ].

We should be careful when interpreting these numbers, as code size is but a poor metric to
judge the quality of a development. It is however clear that, while certainly encouraging, this
experiment points towards developing an integrated library of monads and their operational
semantics (à la FreeSpec [19] and interaction trees [37]) as well as their predicate transformer
semantics (à la Dijkstra monad [3]). This effort should also be aimed at providing a library
of ready-made separation logics for reasoning about common effects, which would allow us
to amortize some of those 750 additional lines of code.

As far as proof engineering goes, it would be interesting to study how our proofs fare
compared to the original ones when the underlying code evolves. We believe that the abstract
reasoning style enabled by separation logic provides more opportunities for automation,
which should smooth out the proof update process. Further experiment is required to confirm
or refute this hypothesis.

https://github.com/Artalik/CompCert/tree/ITP/CompCert/cfrontend/MonadSL.v
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Abstract
We introduce Contiguity Types, a formalism for network message formats, aimed especially at
self-describing formats. Contiguity types provide an intermediate layer between programming
language data structures and messages, offering a helpful setting from which to automatically
generate decoders, filters, and message generators. The syntax and semantics of contiguity types are
defined and used to prove the correctness of a matching algorithm which has the flavour of a parser
generator. The matcher has been used to enforce semantic well-formedness conditions on complex
message formats for an autonomous unmanned avionics system.
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1 Introduction

Serialized data, for example network messages, is an important component in many computer
systems.1 As a result, innumerable libraries and tools have been created that use high level
specifications as a basis for automating the creation, validation, and decoding of such data.
Usually, these high level specifications describe the format of a message in terms of how the
elements (fields) of the message are packed side-by-side to make the full message. When the
size of each field is known in advance, there are really no conceptual difficulties. However,
messages can be more complicated than that.

The main source of difficulty is self-describing messages: those where information em-
bedded in fields of the message determines the final structure of the message. Two of the
main culprits are variable-length arrays and unions. A variable-length array is a field where
the number of elements in the field depends on the value of some already-seen field (or,
more generally, as the result of a computation involving previously-seen information in the
message). The length is therefore a value determined at runtime. A union is deployed when
some information held in a message is used to determine the structure of later portions of
the message. For example, unions can be used to support versioning where version i has n

fields, and version i + 1 has n + 1. In settings where both versions need to be supported in
a single format, it can make sense to encode the version handling inside the message, and
unions are how this can be specified.
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base = bool | char | u8 | u16 | u32 | u64 | i16 | i32 | i64 | float | double
τ = base

| Recd (f1 : τ1) . . . (fn : τn)
| Array τ exp
| Alt bexp τ τ

Figure 1 Contiguity types.

We believe that tools and techniques from formal language theory such as regular
expressions, automata, grammars, parser generators, etc. can provide an effective way to
tackle message formats, and have been using the acronym SPLAT (Semantic Properties
for Language and Automata Theory) to refer to this approach. For example, we have used
regular expressions as a specification language for message formats having simple interval
constraints on the values allowed in fields. Generation of the corresponding DFA results in
an efficient table-driven automaton implementing the specified constraints, with a solid proof
certificate connecting the original constraints with the DFA behavior [5].

However, self-describing data formats fall outside the realm of common formal language
techniques; e.g., variable-length fields are clearly not able to be described by regular or
context-free languages. (These language classes encompass repetitions of a fixed or unbounded
size, but not repetitions of a size determined by parts of the input string.) It seems that
context-sensitive grammars can, in principle, specify such information, but there are few tools
supporting context sensitive languages. Knuth introduced attribute grammars [8] for dealing
with context-sensitive aspects of parsing, and those techniques address similar problems
to ours. Another possibility would be to use parser combinators in order to quickly stitch
together a parser; it seems likely that the combinators can be instrumented to gather and
propagate contextual information. However, we are seeking a high level of formal specification
and automation, while still being rooted in formal languages, with their emphasis on sets of
strings as the basic notion.

2 Contiguity Types

The characteristic property of a message is contiguity: all the elements of the message are
laid out side-by-side in a byte array (or string). Our assumption is that a message is the
result of a map from structured data and we will rely on a basic collection of programming
language types to capture that structure. Contiguity types (Figure 1) start with common
base types (booleans, characters, signed and unsigned integers, etc.) and are closed under
the construction of records, arrays, and unions. 2

Notice that τ is defined in terms of a type of arithmetic expressions exp and also bexp,
boolean expressions built from exp. Now consider

Array τ exp .

For this to specify a varying length array dependent on other fields of the message, its
dimension exp should be able to refer to the values of those fields. The challenge is just how
to express the concept of “other fields”, i.e., we need a notation to describe the location in

2 We will use the terms “contiguity type, contig, and τ interchangeably.
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the message buffer where the value of a field can be accessed. Our core insight is that this is
similar to a problem that programming language designers had in the 60s and 70s, resolved
by the notions of L-value and R-value. The idea is originally due to Christopher Strachey in
CPL [13] and developed subsequently, for example by Dennis Ritchie in C [12].

Before getting into formal details, we discuss a few examples. We will use familiar notation:
records are lists of filedname : τ elements enclosed by braces; an array field Array c dim is
written c [dim]; and Alt b τ1 τ2 is written ‘if b then τ1 else τ2’. “Cascaded” Alts may be
written in Lisp “cond” style, i.e., as

Alt b1 −→ τ1 . . .

bn −→ τn

otherwise −→ τn+1

1. The following is a record with no self-describing aspects: each field is of a statically known
size.

{A : u8
B : {name : char [13]

cell : i32}
C : bool

}

The A field is specified to be an unsigned int of width 8 bits, the B field is a record, the
first element of which is a character array of size 13, and the second element of which is a
32 bit integer; the last field is specified to be a boolean.

2. Variable-sized strings are a classic self-describing aspect. In this example the contents of
the len field determines the number of elements in the elts field.

{ len : u16
elts : char [len]

}

3. The following example shows the Alt construct being used to support multiple versions
in a single format. Messages with the value of field versionID being less than 14 have
three fields in the message, while all others have two.

{versionID : u8
versions : if versionID < 14 then

{ A : i32, B : u16})
else { Vec : char [13]}

}

4. The following is a contrived example showing the need for resolution of multiple similarly
named fields; it also shows how the information needed to determine the message structure
may be deeply buried in some fields.

{len : u16
A : {len : u16

elts : u16[len]
}

B : char [A.len - 1 * len]
C : i32 [A.elts[0]]

}
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lval = varname | lval [exp] | lval.fieldname
exp = Loc lval | nLit nat | constname | exp + exp | exp ∗ exp

bexp = bLoc lval | bLit bool | ¬bexp | bexp ∧ bexp | exp = exp | exp < exp

Figure 2 L-values, expressions, and boolean expressions.

2.1 Expressions, L-values, and R-values
In programming languages, an L-value is an expression that can occur on the left-hand
side of an assignment statement. Similarly, an R-value can occur on the right-hand side of
assignments. Following are a few examples:

x := x + 1
A[x] := B.y + 42
A[x].lens.fst[7] := MAX_LEN * 1024 + B.y

Figure 2 presents the formal syntax for L-values, R-values, and the boolean expressions
we will use. An L-value can be a variable, an array index, or a record field access. R-values
are arithmetic expressions that can contain L-values (we will use exp interchangeably with
R-value).

An L-value denotes an offset from the beginning of a data structure, plus a width. In
an R-value, an occurrence of an L-value is mapped to the value of the patch of memory
between offset and offset + width. For the purpose of specifying message formats, it may not
be immediately obvious that a notation supporting assignment in imperative languages can
help, but there is indeed a form of assignment lurking.

The above explanation of L-values centers on indices into a byte buffer; in the following
we will give a mild variant of this: instead of indices into the buffer, we lift out the designated
slices. Thus, given environments θ : lval 7→ string (binding L-values to strings), and functions
toN : string → N and toB : string → bool (which interpret byte sequences to numbers
and booleans, respectively), expression evaluation and boolean expression evaluation have
conventional definitions:

evalExp θ e = case e


Loc lval ⇒ toN(θ(lval))
nLit n ⇒ n

e1 + e2 ⇒ evalExp θ e1 + evalExp θ e2
e1 ∗ e2 ⇒ evalExp θ e1 ∗ evalExp θ e2

evalBexp θ b = case b



bLoc lval ⇒ toB(θ(lval))
bLit b ⇒ b

¬b ⇒ ¬(evalBexp θ b)
b1 ∨ b2 ⇒ evalBexp θ b1 ∨ evalBexp θ b2
b1 ∧ b2 ⇒ evalBexp θ b1 ∧ evalBexp θ b2
e1 = e2 ⇒ evalExp θ e1 = evalExp θ e2
e1 < e2 ⇒ evalExp θ e1 < evalExp θ e2

▶ Remark 1 (Partiality). Expression evaluation is partial because there is no guarantee that
θ(lval) is defined: an lval being looked-up may not be in the map θ. Failure in evaluation
is modelled by the option type, and must be handled in the semantics and the matching
algorithm. However error handling is omitted in the presentation since it hampers readability.
See the HOL4 formalization for full details.
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2.2 Semantics
We now confess to misleading the reader: in spite of the notational similarity, a contiguity
type is not a type: it is a formal language. A type is usually understood to represent a set, or
domain, of values, e.g., the type int32 represents a set of integers. In contrast, the contiguity
type i32 represents the set of strings of width 32 bits. An element of a contiguity type can be
turned into an element of a type by providing interpretations for all the strings at the leaves
and interpreting the Recd and Array constructors into the corresponding type constructs. (A
base contiguity type therefore serves mainly as a tag to be interpreted as a width and also as
an intended target type.) Thus, contiguity types sit – conveniently – between the types in a
programming language and the strings used to make messages.

The semantics definition depends on a few basic notions familiar from language theory:
language concatenation, and iterated language concatenation.

L1 · L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}
L0 = ε

Ln+1 = L · Ln

▶ Definition 2 (Semantics of contiguity types). In the following, we assume given an as-
signment θ for evaluating expressions. If an expression evaluation fails, the language being
constructed will be ∅.

Lθ(τ) = case τ



base ⇒ {s | len(s) = width(base)}
Recd (f1 : τ1) . . . (fn : τn) ⇒ Lθ(τ1) · . . . · Lθ(τn)
Array τ exp ⇒{

Lθ(τ)evalExp θ exp if evalExp θ exp succeeds
∅ if evaluation fails

Alt bexp τ1 τ2 ⇒
Lθ(τ1) if evalBexp θ bexp = true
Lθ(τ2) if evalBexp θ bexp = false
∅ if evaluation fails

▶ Example 3. Consider the following schema for an option contiguity type. The empty
record {} associated with boolean expression b has no fields.

if b then { } else c

In case b evaluates to true, no portion of the string is consumed; otherwise, c specifies the
remainder of the processing. It may be instructive to consider how this type works with
arrays. For example, a string meeting the following contig specification

(if b then {} else i32) [3]

is either zero or twelve bytes in length (assuming that i32 is four bytes wide).

3 Algorithms

The following are classical topics in formal language theory and practice, and they are worth
investigating in the context of contiguity types. At present we have been working on decoding,
filtering, and test generation.

Decoding A decoder breaks a sequence of bytes up and puts the pieces into a useful data
structure, typically a parse tree. We will discuss this in more detail in Section 3.1.
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Filtering A filter computes an answer to the question: “does a sequence of bytes meet the
specification of a given contiguity type”. This is an instance of the language recognition
problem. More powerful filters enforce that certain fields of a message, when interpreted,
meet specific semantic properties. We will discuss this further in Section 4.1.

Serialization Given a contiguity type, synthesize a function that writes a compact binary
version of a data structure to a message.

Test generation Given a contiguity type, generate byte sequences that do (or do not) meet
its specification and feed the sequences to implementations in order to observe their
behaviour.

Learning Given training sets of messages that are accepted/rejected by an implementation,
attempt to discover a contiguity type for the entire set of messages.

3.1 Decoding
Above we mentioned that decoding can result in parse trees; however, self-describing messages
allow a different conceptual framework to be brought to bear. There is an important
distinction between parsing, which creates structure (parse trees), and matching, which is
given structure and calculates assignments (substitutions).3 Giving some evocative types
helps make the difference clear:

parse : grammar → string → parsetree
match : pattern → string → assignments

For our purposes, namely decoding datastructures in binary format, the central decoding
algorithm is a matcher : given a contiguity type τ and a string s, the matcher will either fail, or
succeed with an assignment θ : lval 7→ string mapping each L-value in τ to its corresponding
slice of s. The assignment θ can be post-processed to yield a standard parse tree, but its
novelty and strength is that θ can be dynamically consulted to access the values needed to
guide the processing of self-describing messages.

▶ Definition 4 (Matching algorithm). The matcher operates over a triple (worklist, str , θ)
where worklist is a stack used to linearize the input contiguity type τ , str represents the
remainder of the input string, and θ is the assignment being built up. Each element of the
worklist is a (τ, lval) pair, where τ is a contig, and lval is the path growing down from the
root to τ . The notation (lval 7→ slice) • θ denotes the addition of binding lval 7→ slice to θ.
We examine the cases in turn:

1. The worklist is empty; the match succeeds.

([], str , θ) ⇒ SOME(str , θ)

2. The first element of the worklist is a base type. The prescribed number of bytes are broken
off the front of the string, giving str = (slice, rst); then the binding is added to θ before
recursing. If the string is shorter than the requested number of bytes, fail.

((Basic a, lval) :: t, str , θ) ⇒ (t, rst, (lval 7→ slice) • θ)

3 Thus the notion of matching discussed here is in the tradition of term rewriting [1], the main difference
being that our substitutions are applied to lvals rather than variables.
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3. The first element of the worklist is recd = Recd (f1 : τ1) . . . (fn : τn). Before recursing,
the fields are pushed onto the stack, extending the path to each field element:

((recd, lval) :: t, str , θ) ⇒ ([(τ1, lval.f1), · · · , (τn, lval.fn)]@t, str , θ)

4. The first element of the worklist is an array. The dimension expression is evaluated to
get the width d, then d copies are pushed onto the stack, where each path is extended with
the array index.

((Array τ exp, lval) :: t, str , θ) ⇒ ([(τ, lval[0]), · · · , (τ, lval[d − 1])]@t, str , θ)

5. The first element of the worklist is an Alt. If b evaluates to true, τ1 is pushed on to the
worklist; if it evaluates to false, τ2 is pushed. Otherwise, fail.

((Alt b τ1 τ2, lval) :: t, str , θ) ⇒ ((τi, lval) :: t, str , θ)

The matcher function, match begins with an initial state

state0 = ([(root, τ)], str0, ∅)

where the initial path is a default lval variable named root, the initial string is str0, and
the initial assignment has no bindings.

▶ Theorem 5 (Matcher termination). As mentioned, the state of the matcher is held in a
(worklist, str , θ) tuple. The termination relation is a lexicographic combination, where either
str gets shorter, or, str is unchanged and worklist gets smaller under the multiset order.
(The multiset order is useful in this proof since the handling of the Array construct is a nice
version of the Hercules-Hydra problem [3].)

▶ Definition 6 (Substitution application). Correctness depends on an operation θ lval τ

applying substitution θ to contiguity type τ , starting at lval, in order to reconstruct the
original string.

θ lval τ = case τ



base ⇒ θ(lval)
Recd (f1 : τ1) . . . (fn : τn) ⇒ θ (lval.f1) τ1 · . . . · θ (lval.fn) τn

Array τ1 exp ⇒{
θ (lval[0]) τ1 · . . . · θ (lval[d − 1]) τ1, if d = evalExp θ exp
∅ if evaluation fails

Alt bexp τ1 τ2 ⇒
θ lval τ1 if evalBexp θ bexp = true
θ lval τ2 if evalBexp θ bexp = false
∅ if evaluation fails

▶ Theorem 7 (Correctness of substitution). The correctness statement for the matcher is
similar to those found in the term rewriting literature, namely that the computed substitution
applied to the contiguity type yields the original string:

match state0 = SOME(θ, s) ⇒ θ root τ · s = str0

Proof. By induction on the definition of match. ◀

▶ Theorem 8 (Matcher soundness). The connection to Lθ(τ) is formalized as

str0 = s1s2 ∧ match state0 = SOME(θ, s2) ⇒ s1 ∈ Lθ(τ)
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Proof. By induction on the definition of match. ◀

In other words, a successful match provides a θ that will successfully evaluate all en-
countered expressions, and the matched string is indeed in the language of τ . A completeness
theorem going in the other direction has not yet been tackled.

▶ Example 9. Given the contig

{A : Bool
B : Char
len : u16
elts : i32 [len]

}

and an input string (listed in hex)

[0wx1, 0wx67, 0wx0, 0wx5, 0wx0, 0wx0, 0wx0, 0wx19, 0wx0, 0wx0,
0wx9, 0wx34, 0wx0, 0wx0, 0wx30, 0wx39, 0wx0, 0wx0, 0wxD4,
0wx31, 0wxFF, 0wxFF, 0wxFE, 0wxB3]

created by encoding: the boolean true, the letter g, the number 5 (MSB 2 byte unsigned),
and the five MSB 4 byte signed twos complement integers 25, 2356, 12345, 54321, and -333,
the matcher creates the following assignment of lvals to substrings of the input:

[(root.A, (Bool, [0wx1])),
(root.B, (Char, [0wx67])),
(root.len, (u16, [0wx0, 0wx5])),
(root.elts[0], (i32, [0wx0, 0wx0, 0wx0, 0wx19])),
(root.elts[1], (i32, [0wx0, 0wx0, 0wx9, 0wx34])),
(root.elts[2], (i32, [0wx0, 0wx0, 0wx30, 0wx39])),
(root.elts[3], (i32, [0wx0, 0wx0, 0wxD4, 0wx31])),
(root.elts[4], (i32, [0wxFF, 0wxFF, 0wxFE, 0wxB3]))

]

Note that each element of the list is of the form (lval, (tag, bytes)) where each slice is
labelled with its corresponding base type, to support further translation.

Thus the matcher will break up the input string in accordance with the specification; the
execution, in effect, generates a sequence of assignments that, if applied, would populate
a data structure with the specified data in the specified places. Therefore it is not really
necessary to generate parse trees to in order to decode messages: one merely needs a target
data structure to write data into. (In fact, when filtering, no target data structure is needed
at all.) The correctness property will ensure that all fields are written with the specified
data. The assignments can be incrementally evaluated as the decoder runs, or can be stored
and applied when the decoder terminates.

4 Extended contiguity types

In the discussion so far, contiguity types can only express bounded data: each base type has
a fixed size and all Array types are given an explicit bound. Removing these two restrictions
would greatly increase expressiveness. Of course, we look to the theory of formal languages
to guide extensions to the formalism. We have thus explored the addition of the empty
language ∅, Kleene star, and a lexer. The augmented syntax can be seen in Figure 3. The
addition of ∅ (via Void) and Kleene star (via List) has been accomplished, along with the
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τ = Base (regexp × valFn)
| Void
| List τ

| Recd (f1 : τ1) . . . (fn : τn)
| Array τ exp
| Alt bexp τ1 τ2

Figure 3 Extended contiguity types.

proofs verifying the upgraded matcher. We also discuss replacing the existing base types
with a lexer for completeness, even though that discussion more appropriately belongs to
future work.

▶ Definition 10 (Semantics additions). A base type element has the form Base(regexp, valFn),
where valFn is a function that maps the string recognized by regexp to a data value. The
semantics of a Base type is just the (formal language) semantics of its regular expression,
Void denotes the empty set, and List is a “tagged” version of Kleene star (NilTag and ConsTag
are described in Section 4.2).

Lθ(τ) = case τ


Base (regexp, valFn) ⇒ L(regexp)
Void ⇒ ∅
List τ ⇒ (ConsTag · Lθ(τ))∗ · NilTag
...(previous clauses)

4.1 Void and in-message assertions
The Alt constructor combined with Void supports an in-message assertion feature. The
contiguity type Assert bexp is defined as follows:

▶ Definition 11 (Assert).

Assert bexp = Alt bexp (Recd [ ]) Void

The meaning of Assert b is obtained by simplification:

Lθ(Assert bexp) = if evalBexp θ bexp then ε else ∅

and match evaluates it by failing when evalBexp θ bexp is false, and otherwise continuing on
without advancing in the input.

▶ Example 12 (AnBnCn). It is well known that L = AnBnCn is not a context-free language.
We can use Assert to specify a language that is nearly L with the following contiguity type:

charA = {ch : char, isA : Assert (ch = 65)} (* "A" = ASCII 65 *)
charB = {ch : char, isB : Assert (ch = 66)}
charC = {ch : char, isC : Assert (ch = 67)}

mesg = {len : u16
A : charA [len]
B : charB [len]
C : charC [len]

}

In fact Lθ(mesg) = u · AtoN(u) · BtoN(u) · CtoN(u).
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Assert expressions have been used extensively when specifying wellformedness properties
for messages in our application work. The applications include restrictions on array sizes
and constraints on array elements, e.g., requiring that every element in an array of GPS
coordinates is an acceptable GPS coordinate.

▶ Example 13 (Array limits). In UxAS messages (see Section 5) the length of every array
element is held in a separate length field which is two bytes in size. Thus the following contig,
in the absence of any further constraint, supports arrays of length up to 65536 elements. A
receiver system may well not be prepared for messages having collections of such potentially
large components.

{ len : u16
elts : i32 [len] }

In the meta-data for such messages, one can sometimes find information about the maximum
expected size, usually a fairly small number. This can be directly expressed inside the contig
with an Assert:

{ len : u16
len-range : Assert (len <= 8)
elts : i32 [len] }

Note that the expected array length should be specified before the array itself, otherwise the
allocation attempt might be made before the check.

4.2 Kleene Star
Although the use of bounded Array types provides much expressiveness for representing
sequences of data, ultimately some kinds of message can not be handled, i.e., those where there
is no way to predict the number of nestings of structure: s-expressions, logical formulae, and
programming language syntax trees are some typical examples. We address this shortcoming
by adding a new contiguity type constructor – List – of unbounded lists. A message matching
a List τ type will be subject to an encoding similar to implementations of lists in functional
languages. The matching algorithm for contiguity types is extended to handle List objects by
iteratively unrolling the recursive equation

L∗ = ε ∪ L · L∗

Indeed the type List τ is represented by the following contiguity type, a recursive record:

List τ =


tag : u8
test : Alt (tag = NilTag) −→ ε

(tag = ConsTag) −→ {hd : τ, tl : List τ}
otherwise −→ Void

In words, a List τ matches a sequence of records where a single-byte tag (NilTag or
ConsTag) is read, then tested to see whether to stop parsing the list (NilTag) or to continue
on to parse a τ into the hd field and recurse in order to process the remainder of the list. An
incorrect value for the tag results in failure. Thus, the list of integers

Cons(1, Cons(2, Cons(3, Nil)))

can be represented in a message as (assume Code is an encoder for integers)

ConsTag · Code(1) · ConsTag · Code(2) · ConsTag · Code(3) · NilTag
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and match, given type List int (where int is a contiguity type for some flavor of integer)
succeeds, returning the context

root.tag 7→ ConsTag
root.hd 7→ Code(1)

root.tl.tag 7→ ConsTag
root.tl.hd 7→ Code(2)

root.tl.tl.tag 7→ ConsTag
root.tl.tl.hd 7→ Code(3)

root.tl.tl.tl.tag 7→ NilTag

This solution is compositional, in the sense that List types can be the arguments of other
contiguity types, can be applied to themselves, e.g., List(List τ), etc. Thus quite general
branching structures of arbitrary finite depth and width can be specified and parsed with this
extension. The approach captures a certain class of context-free-like languages. However, it
differs distinctly from the standard Chomsky hierarchy, mainly because sums are determined
by looking behind when computing which choice to follow in an Alt type; for example, the
list parser branches after it has seen the tag. The similarity with ‘no-lookahead’ parsing,
such as LL(0) and LR(0), deserves further investigation.

▶ Example 14 (First order term challenge). Although lists of contig types can be straightfor-
wardly constructed with the above encoding, there remains a problem when lists are part of
a recursive construction. A classic example is first order terms, as described by the following
ML-style datatype:

term = Var of string
| App of string * term list

The following contiguity types capture a binary encoding of term, using tags to distinguish
the two kinds of term:

string = {len : u16, elts : char [len]}

term =


tag : u8
test : Alt (tag = VarTag) −→ {varName : string}

(tag = AppTag) −→ {fnName : string, Args : List term}
otherwise −→ Void

However, such nested recursive specifications demand more elaborate constructions, for
example treating term and List as being mutually recursively defined, as is already done for
nested recursive datatypes in theorem provers [6].

4.3 Lexing
Currently, the set of base contiguity types comprises the usual base types expected in most
programming languages. Semantically, a base type denotes a set of strings of the specified
width, but it is also coupled with an interpretation function for example, the contiguity
type u8 denotes the set of all one-byte strings, interpreted by the usual unsigned valuation
function:

u8 = ({s | length(s) = 1}, toN)
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This approach cannot, however, capture base types such as string literals of arbitrary size, or
bignums, or the situation in packed bit-level encodings where fields are of ad hoc sizes aimed
at saving space. A common generalization is to express base types via regular expressions
paired with interpretation functions. In that setting u8 can be defined as

u8 = (. , toN)

(where ‘.’ is the standard regular expression denoting any character). Similarly,

Cstring = ([\001 − \255]∗\000, λx. x)

denotes the set of zero-terminated strings, as found in the C language. Its displayed
interpretation is just the identity function, but could just as well be a function that drops
the terminating \000 character.

Scott Owens has already formalized a HOL4 theory of regexp based, maximal munch,
lexer generation, and it is future work to adapt contiguity types to use those lexemes instead
of the current restricted set of base types.

5 Application

In the DARPA CASE project, we have been applying contiguity types to help create provably
secure message filters and runtime monitors. One example we have been working with is
OpenUxAS, which has been developed by the Air Force Research Laboratory.4 UxAS is
a collection of modular services that interact via a common message-passing architecture,
aimed at unmanned autonomous systems. Each service subscribes to messages in the system
and responds to queries. The content of each message conforms to the Light-weight Message
Control Protocol (LMCP) format. In UxAS, software classes providing LMCP message
creation, access, and serialization/deserialization are automatically generated from XML
descriptions, which detail the exact data fields, units, and default values for each message.
All UxAS services communicate with LMCP formatted messages.

An example LMCP message type is AirVehicleState. The following is its contiguity type:

AirVehicleState =
{EntityState : EntityState
Airspeed : float
VerticalSpeed : float
WindSpeed : float
WindDirection : float

}

where an EntityState is quite an elaborate type:

{ ID : i64
u : float
v : float
w : float
udot : float
vdot : float
wdot : float
Heading : float

4 See https://github.com/afrl-rq/OpenUxAS.

https://github.com/afrl-rq/OpenUxAS
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Pitch : float
Roll : float
p : float, q : float, r : float
Course : float
Groundspeed : float
Location : mesgOption "LOCATION3D" location3D
EnergyAvailable : float
ActualEnergyRate : float
PayloadStateList

: uxasBoundedArray (mesgOption "PAYLOADSTATE" payloadState) 8
CurrentWaypoint : i64
CurrentCommand : i64
Mode : uxasNavigationMode
AssociatedTasks : uxasBoundedArray i64 8
Time : i64
Info : uxasBoundedArray(mesgOption "KEYVALUEPAIR" keyValuePair) 32

}

Most of the fields are simple base types, but the Location field and the PayloadStateList are
complex. They are expressed with some derived syntax, which we will explain.

The Location field, mesgOption "LOCATION3D" location3D, may or may not occur (signalled
with a tag field), but if it does, it is a location3D, which is a GPS location, and its latitude,
longitude, and altitude fields are checked with an Assert to make sure they lie within the
expected numeric ranges, which are expressed as floating point numbers.

AltitudeType = AGL | MSL

location3D = {
Latitude : double,
Longitude : double,
Altitude : float,
AltitudeType : AltitudeType,
Wellformed : Assert (

-90.0 <= Latitude <= 90.0 and
-180.0 <= Longitude <= 180.0 and
0.0 <= Altitude <= 15000.0)

}

The PayloadStateList is a variable-length array of optional records, with maximum length
8. Each record has, along with other fields, its own variable-length array of key-value
pairs, and the key and value of each such pair is a variable-length string.

We have formalized most of the LMCP messages as contiguity types, and created filters
and parsers by instantiating the match algorithm. In order to meet the demands of LMCP
message modelling, the matcher algorithm has been upgraded to support a fuller expression
and boolean expression language, but the core algorithm is the same as our verified core
version. The filters and parsers have been added to an existing UxAS design and successfully
tested with the UxAS simulator.

6 Extensions and future work

Various extensions have been easy to add to the contiguity type framework, and we also have
more substantial ideas to pursue for future work.
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Enumerations An enumeration declaration introduces a new base contiguity type, and also
adds the specified elements to a map associating constant names to numbers. Suppose
that enumerations are allowed to have up to 256 elements, allowing any enumerated
element to fit in one byte. The following enumeration is taken from UxAS messages:

NavigationMode
= Waypoint | Loiter | FlightDirector
| TargetTrack | FollowLeader | LostComm

A field expecting a NavigationMode element will be one byte wide, and thus there are 250
byte patterns that should not be allowed in the field. Thus, the contig

{ A : NavigationMode }

should be replaced by

{ A : NavigationMode
A-range : Assert (A <= 5)

}

Raw blocks A raw chunk of a string (byte array) of a size that can depend on the values of
earlier fields is easy to specify:

Raw exp

For example, a large Array form can lead to a large number of L-values being stored in θ;
if none are ever accessed later, e.g., if the array is some image data, it can be preferable to
simply declare a Raw block. Thus a 2D array can be blocked out in the following manner:

{ rows : i32
cols : i32
block : Raw (rows * cols)

}

Guest scanners It seemed useful to provide a general ability to host scanning functions.
This is accomplished via the following constructor:

Scanner (scanfn : string → (string × string)option)

When a custom scanner is encountered during the matching process, the scanner is
invoked on the input and should either fail or provide an (s1, s2) pair representing a
splitting of the input. Then s1 is added to θ at the current lval, and matching continues
on s2.

Non-copying implementations In the discussion so far, we have assumed that the input
string is being broken up into substrings that are placed into the lval map θ. However,
very little is changed if, instead of a substring, an lval in θ maps to a pair of indices
(pos, width) designating the location of the substring. The result is a matcher that never
copies byte buffer data. This is necessary to synthesize efficient filters.
In making this representation change, there is a slight change to the semantics. In the
original, θ(lval) yields a string whereas in the non-copying version, θ(lval) yields a pair of
indices, which means that the original string str0 needs to be included in applying the
assignment.
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Compilation Our current implementation of contiguity types is in an interpreted style: the
evaluation of numeric Array bounds and boolean guards on Alt conditions is done with
respect to the current context, which is explicitly accumulated as the message is processed.
However, notice that the host programming language will no doubt already provide
compilation for numeric and boolean expressions. This leads to the idea of compiling
contiguity types: the current matching algorithm for contiguity types can be replaced
by the generation of equivalent host-language code which is then compiled by the host-
language compiler and evaluated. Although the current contiguity type matcher has
proved to be fast enough to keep up with the real-time demands of the UxAS system, we
expect that a compiled version of the code would be much faster.
We would like to formalize the compilation algorithm and prove it correct. Since the
CakeML[9] formalization provides an operational semantics for CakeML programs, and
a convenient translation from HOL4 expressions to CakeML ASTs, one should be able
to prove a correctness theorem relating the matcher function of the present paper with
a compiler that takes a contiguity type and generates CakeML. However, this is only
speculative; there are many details to work out.

Relationship with grammars Contiguity types and match provide a type-directed and
context-oriented parser generator that has some similarities with LL(0) or LR(0) languages
wherein the parser can proceed with no lookahead. This is useful for binary-encoded
datastructures. It would be very interesting to attempt to bridge the gap with conven-
tional parsing technology based on grammars. A good beginning would be to understand
the issues involved in attempting to translate context-free grammars into contiguity types
and vice versa.

7 Related work

As mentioned in the introduction, domain specific languages for message formats have
been around for a long time. Semantic definitions and verification for them is a much
more recent phenomenon. The PADS framework [4] aimed at supporting a wide variety of
formats, including text-based. Its core message description formalism was given semantics by
translation into dependent type theory. An interesting integration of context-sensitivity into
a conventional grammar framework has been done by Jim and Mandelbaum [7]. Everparse
[11] is an impressive approach, based on parser combinators and having an emphasis on
proving the invertibility of encode/decode pairs with automated proof (other properties are
also established). Chlipala and colleagues [2] similarly emphasize encode/decode proofs,
basing their work in Coq and using the power of dependent types to good effect. Formats
based on dependent types can (and do) use the built-in expressive power of type theory to
enforce semantic properties on data. A recent language in this vein is Parsely [10] which
leverages the dependent records and predicate subtyping of PVS to provide a combination of
PEG parsing and attribute grammars aimed at parsing complex language formats.

Many of these efforts obtain the semantics of the data description formalism by translation
into features provided by a powerful host logic. In contrast, contiguity types use only very basic
– and easily implemented – concepts. This means that contiguity type matchers, parsers, and
extensions can be directly implemented in any convenient programming language. Contiguity
types also provide a kind of dependency, without leveraging the type system of the theorem
prover. We suspect that working at the representation level, and using L-values, allows one
to get some of the benefits of type dependency. Another distinguishing aspect of our work is
that our emphasis on filters means that we are primarily interested in the enforcement of
semantic properties on message contents rather than encode/decode properties. In future
work we expect to be able to leverage this in high performance filter implementations.
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8 Conclusion

We have designed, formalized, proved correct, implemented, and applied a specification
language for message formats, based on formal languages and the venerable notion of L- and
R-values from imperative programming. The notion of contiguity type seems to give a lot of
expressive power, sufficient to tackle difficult idioms in self-describing formats. Contiguity
types integrate common structuring mechanisms from programming languages, such as arrays,
records, and lists while keeping the foundation in sets of strings, which seems appropriate for
message specifications.
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Formally
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Abstract

The Tower of Hanoi is a typical example that is used in computer science courses to illustrate all the

power of recursion. In this paper, we show that it is also a very nice example for inductive proofs

and formal verification. We present some non-trivial results that have been formalised in the Coq

proof assistant.
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1 Introduction

The Tower of Hanoi is often used in computer science courses as example to teach recursion.

The puzzle is composed of three pegs and some disks of different sizes. Here is a drawing of

the initial configuration for five disks 1:

Initially, all the disks are stacked in increasing size on the left peg. The goal is to move them

to the right peg using the middle peg as an auxiliary peg. There are two rules. First, only

one disk can be moved at a time and this disk must be on the top of its peg. Second, a larger

disk can never be put on top of a smaller one.

A program P 3r that solves this puzzle can easily be written using recursion : one builds

the program P 3r
n+1 that solves the puzzle for n + 1 disks using the program P 3r

n that solves

the puzzle for n disks. The algorithm proceeds as follows. We first call P 3r
n to move the

top-n disks to the middle peg using the right peg as the auxiliary peg.

1 We use macros designed by Martin Hofmann and Berteun Damman for our drawings.
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Then we move the largest disk to its destination.

Finally, we use P 3r
n to move the n disks on the intermediate peg to their destination using

the left peg as the auxiliary peg.

This simple recursive algorithm is also optimal: it produces the minimal numbers of moves.

In this paper, we consider some variants of this puzzle (with three or four pegs, with

some constraints on the moves one can perform) and explain how these puzzles and their

optimal solution have been formalised.

2 General setting

We present the general settings of our formalisation that has been done in Coq using the

SSReflect extension [5]. Then, we explain more precisely the variants of the puzzle that

we have taken into consideration and how they have been formalised. We have tried as much

as possible to be precise and present exactly what has been formalised. For this, we adopt

the syntax of the Mathematical Component library [11] that we have been using. We also

use the following typesetting convention. Notions that are present in the library are written

using a typewriter font while our own definitions are written using a roman font.

Syntax Summary

We first give of an overview of the syntax of the Mathematical Component library. For a

more detailed presentation, we refer the reader to [5]. The basic data structures we are using

are natural numbers and lists. For natural numbers, they are implemented by an inductive

type with two constructors : a zero (0) and a successor (S). There is a special notation to

hide the application of the successor. So, n.+1, n.+2 and n.+3 represent (S n), (S (S n)) and

(S (S (S n)) respectively. For example, the addition of two natural numbers is defined as

Fixpoint m + n := if m is m1.+1 then (m1 + n).+1 else n.

For lists, [::] is the empty list, h :: t is the list whose head is the element h and whose

tail is the list t and l1 ++ l2 is the concatenation of the two lists l1 and l2. We also use the

function last that returns the last element of a list. It has an extra argument to handle the

case of empty list, last c [::] = c and last c (h :: t) = last h t. Finally, [seq f i | i <-

l ] represents the list built by applying the function f to all the elements of l.

In Coq, there is a distinction between a logical proposition (the type Prop) and a boolean

expression (the type bool) but the library facilitates the bridge between the two by using
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the so-called small scale reflection [7]. As everything is finite in our application, we state

most of our definitions in the boolean world. For example, we use the syntax [rel a b | P]

to define a relation between two arbitrary objects a and b with P being a boolean expression

where the variables a and b can occur. The boolean equality is written a == b, the inequality

a != b. The syntax for boolean operators is !b, b1 && b2, b1 || b2 and b1 ==> b2 for NEG, AND,

OR and IMP respectively. There is a cumulative notation for the AND and the OR : [&& b1, b2,

. . . & bn] and [|| b1, b2, . . . | bn]. Finally, the syntax for the two boolean quantifications

is [forall x : T , P] and [exists x : T , P].

Disks

A disk is represented by its size. We use the type In of natural numbers strictly smaller than

n for this purpose.

Definition disk n := In.

In the following, we use the convention that a variable n will always represent a number of

disks, and d a disk (an element of disk n).

As there is an implicit conversion from In to natural number, the comparison of the

respective size of two disks is simply written as d1 < d2. A minimal element (ord0) and a

maximal element (ord_max) are defined for In when n is not zero2. We use them to represent

the smallest disk and the largest one.

Definition sdisk : disk n.+1 := ord0.

Definition ldisk : disk n.+1 := ord_max.

In particular, ldisk is the main actor of our proofs by simple induction on the number of

disks, it represents the largest disk.

Pegs

We also use In for pegs.

Definition peg k := Ik.

In the following, we use the convention that a variable k will always represent a number of

pegs, and p a peg (an element of peg k).

We mostly use elements of peg 3 or peg 4 but some generic properties hold for peg k. An

operation associated to pegs is the one that picks a peg that differs from an initial peg pi and

a destination peg pj when possible3. It is written as p[pi, pj ]. Generic and specific properties

are derived from it. For example, we have:

2 I0 is an empty type.
3 If it is not possible (when working with peg 1 or peg 2), it returns ord0
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Lemma opeg sym (p1 p2 : peg k) : p[p1, p2] = p[p2, p1].
Lemma opegDl (p1 p2 : peg k.+3) : p[p1, p2] != p1.

Lemma opeg3Kl (p1 p2 : peg 3) : p1 != p2 → p[p[p1, p2], p1] = p2.

The symmetry is valid for every number of pegs. The property of being distinct is only

fulfilled when we have more than two pegs. Finally, there is a version of the pigeon-hole

principle for three pegs.

Configuration

If we start from the initial position and follow the rules, all the configurations we can

encounter are such that on each peg, the disks are always ordered from the largest to the

smallest. This means that just recording which disk is on which peg is enough to encode

a configuration. To give an example, if we consider the following configuration with three

disks and three pegs :

knowing that the small disk is on the second peg, the medium disk is on the second peg and

the large disk is on the first peg is enough to recover the information that the small disk is

on top of the medium one.

Configurations are then simply represented by finite functions from disks to pegs.

Definition configuration k n := {ffun disk n → peg k}.

From a technical point of view, using finite functions gives for free functional extensionality

(which is not valid for usual functions in Coq). As a consequence, we can use the boolean

equality == to test equality between two configurations.

A perfect configuration is a configuration where all the disks are on the same peg. So, it

is encoded as the constant function:

Definition perfect p := [ffun d ⇒ p].

It is written as c[p] in the following, or c[p, n] when the number of disks n is given explicitly

in order to help typechecking.

Note that our encoding of configurations has the merit of covering exactly valid config-

urations. The price to pay is that we have to recover some natural notions. One of these

notions is the predicate on top d c that indicates that the disk d is on top of its peg in the

configuration c. It is defined as follows:

Definition on top (d : disk n) (c : configuration k n) :=
[forall d1 : disk n, c d == c d1 ==> d ≤ d1].
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It simply states that d is on top if every disk on the same peg as d has a size larger than d.

Most of the main results of the library are proved by some kind of inductive argument.

In order to apply the inductive hypothesis formally, it is then central to be able to see a

subset of a configuration composed of some disks and/or some pegs as a proper configuration

with lesser disks and/or lesser pegs. As configurations are functions, it consists in restricting

the domain and/or the codomain of the function. We call these operations transformations

and usually also define their inverse. Here, we are only going to give an overview of the

transformations we have been using : showing their type and what they are used for but not

their definition. We refer to the library for the actual implementation.

The most common transformation that is used in proofs by simple induction is to see the

configuration without the largest disk as a configuration with one disk less or conversely to

extend a configuration with a new large disk that is put at the bottom on an arbitrary peg p

to get a configuration with one disk more4.

Definition cunliftr (c : configuration k n.+1) : configuration k n.

Definition cliftr (c : configuration k n) (p : peg k) : configuration k n.+1.

A dedicated notation ↓[c] is associated with cunlift c and a corresponding one, ↑[c]p, for clift

c p. A set of basic properties is derived for these operations. For example, we have:

Lemma cunliftrK (c : configuration k n.+1) : ↑[ ↓[c]](c ldisk) = c.

Lemma perfect unliftr (p : peg k) : ↓[c[p, n.+1]] = c[p, n].

If we remove the largest disk then add it to the same peg, we get the same configuration. If

we remove the last disk of a perfect configuration on peg p, we obtain a perfect configuration.

Similarly, in proofs by strong induction, one may need to take bigger piece of configuration.

One way to do this is to be directed by the type (here the addition).

Definition clshift (c : configuration k (m + n)) : configuration k m.

Definition crshift (c : configuration k (m + n)) : configuration k n.

Definition cmerge (c1 : configuration k m) (c2 : configuration k n) :

configuration k (m + n).

clshift builds a configuration with m disks taking the m largest disks of c while crshift builds

a configuration with n disks taking the n smallest disks of c. As a matter of fact, ↓[c] and

↑[c]p are just defined as a special case of these operators for m = 1.
Other kinds of transformations that have been defined but not used frequently are:

Definition ccut (C : c ≤ n) (c : configuration k n) : configuration k c.

Definition ctuc (C : c ≤ n) (c : configuration k n) : configuration k (n− c).
Definition cset (s : {set (disk n)}) (c : configuration k n) : configuration k #|s|.

4 Following, the lift and unlift operations for In of the Mathematical Component Library, we take
the convention that lifting a configuration adds a disk.
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Definition cset2 (sp : {set (peg k)}) (sd : {set (disk n)})

(c : configuration k n) : configuration #|sp| #|sd|.

ccut and ctuc are the equivalent of crshift and clshift but directed by the proof C rather than

the type. cset considers a subset of disks but with the same number of peg (#|s| is the cardinal
of s). cset2 is the most general and considers both a subset of disks and a subset of pegs.

Move

A move is defined as a relation between configurations. As we want to possibly add constraints

on moves, it is parameterised by a relation r on pegs: r p1 p2 indicates that it is possible

to go from peg p1 to peg p2. Assumptions are usually added on the relation r (such as

irreflexivity or symmetry) in order to prove basic properties of moves.

Here is the formal definition of a move:

Definition move : rel (configuration k n) :=
[rel c1 c2 | [exists d1 : disk n,

[&& r (c1 d1) (c2 d1), on top d1 c1, on top d1 c2 &

[forall d2, d1 != d2 ==> c1 d2 == c2 d2]]]].

It simply states that there is a disk d1 that fulfills 4 conditions:

the move of d1 from its peg in c1 to its peg in c2 is compatible with r;

the disk d1 is on top of its peg in c1;

the disk d1 is on top of its peg in in c2;

it is the unique disk that has possibly moved.

The standard puzzle has no restriction on the moves between pegs as long as we don’t

put a large disk on top of a small one. If we draw the possible moves as arrows between pegs,

the picture for four pegs gives the following complete graph:

10 2 3

We call this version regular. It is denoted with the r exponent. For example, P 4r
5 corresponds

to the puzzle with four pegs and five disks with no restriction on the moves. Its associated

relation rrel only enforces irreflexivity:

Definition rrel : rel (peg k) := [rel x y | x != y].

Definition rmove : rel (configuration k n) := move rrel.
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The first variant we consider is where one can only move from one peg to its neighbour. The

picture for four pegs is the following:

10 2 3

This version is called linear and its associated infix is l. For example, the puzzle with four

pegs and five disks with linear moves is written P 4l
5 . The corresponding relation lrel uses

simple arithmetic to check neighbourhood :

Definition lrel : rel (peg k) := [rel x y | (x.+1 == y) || (y.+1 == x)].

Definition lmove : rel (configuration k n) := move lrel.

Finally the last variant we consider is the one where one central peg is the only one that

can communicate with its outer pegs. A picture for four pegs gives

0

1 2

3

This version is called star and its associated exponent is s. For example, the puzzle with

four pegs and five disks with star moves is written P 4s
5 . The corresponding relation srel uses

multiplication to put the peg 0 in the center :

Definition srel : rel (peg k) := [rel x y | (x != y) && (x * y == 0)].
Definition smove : rel (configuration k n) := move srel.

Note that these categories may overlap when there are few pegs. For example, P 3l
n and P 3s

n

correspond to the same puzzle.

2.1 Path and distance

Moves are defined as relations over configurations. So, we can see sequences of moves as

paths on a graph whose nodes are the configurations. As configurations belong to a finite

type, we can benefit from the elements of graph theory that are present in the Mathematical

Component library. For example, (rgraph move c) returns the set of all the configurations

that are reachable from c in one move, (connect move c1 c2) indicates that c1 and c2 can be

connected through moves, or (path move c cs) gives that the sequence cs of configurations is

a path that connects c with the last element of cs.

Now, all the transformations on configurations need to be lifted to paths. As distinct

configurations may become identical when taking sub-parts, we first need to define an

operation on sequences that removes repetitions.
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Fixpoint rm rep (A : eqType) (a : A) (s : seq A) :=
if n is b :: s1 then

if a == b then rm rep b s1 else b :: rm rep b s1
else [::]

It is then possible to derive properties on paths. For example, we have:

Lemma path clshift (c : configuration (m + n)) cs :

path move c cs →
path move (clshift c) (rm rep (clshift c) [seq (clshift i) | i <- cs]).

As we want to show that some algorithms are optimal, the last ingredient we need is

a notion of distance between configurations. Unfortunately, there is no built-in notion of

distance in the Mathematical Component library, so we have to define one. For this, we first

build recursively the function connectn that computes the set of elements that are connected

with exactly n moves. Then, we can define the distance between two points x and y as the

smallest n such as (connectn r n x y) holds. It is defined as (gdist r x y) and written as d[x,

y]r in the following. From this definition, the triangle inequality is derived as :

Lemma gdist triangular r x y z : d[x, y]r ≤ d[x, z]r + d[z, y]r.

Finally, we introduce the notion of geodesic path: a path that realises the distance.

Definition gpath r x y p :=
[&& path r x p, last x p == y & d[x, y]_r == size p].

Companion theorems are derived for these basic notions. For example, the following lemma

shows that concatenation behaves well with respect to distances.

Lemma gdist cat r x y p1 p2 :

gpath r x y (p1 ++ p2) → d[x, y]_r = d[x, last x p1]_r + d[last x p1, y]_r.

3 Puzzles with three pegs

The proofs associated with the puzzles with three pegs are straightforward. They are done

by induction on the number of disks inspecting the moves of the largest disk. What makes

the simple induction work so well with three pegs is that when, from a configuration c, the

largest disk moves from pi to pj , all the smaller disks in c are necessarily on the peg p[pi, pj ].
So, they make a perfect configuration on which one can apply the inductive hypothesis using

↓[c].

3.1 Regular puzzle

It is easy to translate in Coq the algorithm described in the introduction. We write it as a

recursive function that works on n disks and generates the sequence of configurations that

goes from the configuration c[p1] to the configuration c[p2] :
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Fixpoint ppeg n p1 p2 :=

if n is n1.+1 then

let p3 := p[p1, p2] in
[seq ↑ [i]p1 | i ← ppeg n1 p1 p3] ++ [seq ↑ [i]p2 | i ← c[p3] :: ppeg n1 p3 p2]

else [::].

We pick an auxiliary peg p3, appropriately lift the results of the two recursive calls and

concatenate them to get the resulting path. It is easy to prove the basic properties of this

function

Lemma size ppeg n p1 p2 : size (ppeg n p1 p2) = 2n − 1
Lemma last ppeg n p1 p2 c : last c (ppeg n p1 p2) = c[p2].
Lemma path ppeg n p1 p2 : p1 != p2 → path rmove c[p1] (ppeg n p1 p2).

Note that even for such simple theorems, there are some little subtleties. The last ppeg does

hold unconditionally even when the function returns the empty list. It is because this only

happens when the configuration has no disk, so the theorem is an equality between elements

of an empty type. Also, the path ppeg needs the condition p1 != p2 otherwise it will try to

move the largest peg from p1 to p1 that is not valid since the relation rmove is irreflexive.

The key property of the ppeg function is that it builds a path of minimal size. As a

matter of fact, we have proved something slightly stronger : it is the unique minimal path.

In order to state this property, we make use of the extended comparison (e1 ≤ e2 ?= iff C)

that is available in the library. It tells not only that e1 is smaller than e2 but also that the

condition C indicates exactly when the comparison between e1 and e2 is an equality. This

comparison comes with some algebraic rules. For example, the transitivity gives that if (e1
≤ e2 ?= iff C1) and (e2 ≤ e3 ?= iff C2) hold, we have (e1 ≤ e3 ?= iff C1 && C2). With

this comparison, the uniqueness and minimality are stated as :

Lemma ppeg min n p1 p2 cs :

p1 != p2 → path rmove c[p1] cs → last c[p1] cs = c[p2] →
2n − 1 ≤ size cs ?= iff (cs == ppeg n p1 p2).

The proof is simply done by double induction (one on the size of cs and one on n) inspecting

the moves of the largest disk in the sequence cs. Since p1 differs from p2, we know that

the largest disk must move at least one time in cs. If it moves exactly once, the inductive

hypothesis on n let us conclude directly. If it moves at least twice, the equality never holds.

If the first two moves are on different pegs, adding the inductive hypothesis on n− 1 twice

plus the two moves of the largest disk gives us a path of size at least 2× (2n−1 − 1) + 2 = 2n.

If the largest disk moves on one peg and then returns to the peg p1, the path has some

repetition, so the inductive hypothesis on the size of cs let us conclude.

From this theorem, we easily derive the corollary on the distance.

Lemma gdist rhanoi3p n (p1 p2 : peg 3) :

d[c[p1, n], c[p2, n]]rmove = (2n − 1) × (p1 != p2)
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Note that we have used the automatic conversion from boolean to integer (true is 1 and

false is 0) to include the case where p1 and p2 are the same peg.

The last theorem only talks about going from a perfect configuration to another one. What

about the distance between two arbitrary configurations c1 and c2? It seems natural to apply

the same greedy strategy always trying to move the largest disk to its destination. The

greedy algorithm would proceed as follows : If c1 ldisk is equal to c2 ldisk, we just perform

the recursive call for smaller disks. If they are different, we perform a recursive call to move

the smaller disks in c1 to an intermediate peg, p[c1 ldisk, c2 ldisk], then move the largest disk

to its position in c2, and finally perform another recursive call to move the smaller disks to

their position in c2. Unfortunately, this natural strategy is not optimal anymore. We can

illustrate this with an example with 3 disks. Let us suppose that we try to go from the initial

configuration:

to the final position:

The greedy strategy would move the largest disk only once and would have size seven, one

for the largest disk, plus two times moving the two small disks. The optimal strategy instead

moves the largest disks twice. It moves it first to the right peg:

and now it follows the greedy strategy and makes four extra moves to reach the target

configuration. So, we have a solution of size five.

We have formalised exactly what the optimal solutions are :

between an arbitrary configuration and a perfect configuration, the greedy strategy is

always optimal;

between two arbitrary configurations c1 and c2, the optimal strategy just needs to compare

the one-jump solution with the two-jump solution only for the largest disk d such that c1
d differs from c2 d.

3.2 Linear puzzle

Implementing the greedy strategy for the linear puzzle is slightly more complicated. As we

can move only between pegs that are neighbours, the largest disk may need to jump twice to

reach its destination. But from the optimality point of view the situation is much simpler,

the greedy strategy is always optimal. This is formally proved and we get the expected

theorem about distance between perfect configurations:

Lemma gdist lhanoi3p n (p1 p2 : peg 3) :

d[c[p1, n], c[p2, n]]lmove =
if lrel p1 p2 then (3n − 1)/2 else (3n − 1) × (p1 != p2)
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Note that as there are n disks and 3 pegs, there are 3n possible configurations. This last

theorem tells us that the solution that goes from the perfect configuration where all the disks

are on the left peg to the perfect configuration where they are on the right peg visits all the

configurations!

4 Puzzles with four pegs

Adding a peg changes completely the situation. If the previous simple recursive algorithm

still works, it does not give anymore an optimal solution. The new strategy is implemented by

the so-called Frame-Stewart algorithm. We explain it using the regular puzzle with four pegs.

Then, we explain how the proofs about the distances for P 4r
n and P 4s

n have been formalised

in Coq.

4.1 The Frame-Stewart Algorithm

Let us build, P 4r
n , an algorithm that moves the disks from the leftmost peg to the rightmost

one for the regular puzzles with four pegs.

We choose an arbitrary m smaller than n and use P 4r
m to move the top-m disks to an

intermediate peg.

The remaining n−m disks can now freely move except on this intermediate peg, so we can

use P 3r
n−m to move them to their destination.

and reuse P4rk to move the top-m disks to their destination.

Now, we can choose the parameter m as to minimise the number of moves. This means that

we have |P 4r
n | = min

m<n
2|P 4r

m |+ (2n−m − 1). This strategy can be generalised to an arbitrary
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number k of pegs, leading to the recurrence relation:

|P kr
n | = min

m<n
2|P kr

m |+ |P k−1r
n−m |.

Knowing if this general program is optimal is an open question but it has been shown

optimal for P 4r
n and P 4s

n . It is what we have formalised. Note that, from the proving point

of view, the new strategy just seems to move from simple induction to strong induction

with this new parameter m. As a matter of fact, if we look closely, this new strategy is just

a generalisation of the previous one. If we apply it to three pegs, taking the minimum is

trivial : there is only one way we can move n−m pegs for the P 2r
n−m puzzle; it is by taking

m = n− 1.

4.2 Regular puzzle

The proof given in [2] that shows that the Frame-Stewart algorithm is optimal for the

regular puzzle with four pegs is rather technical. As a matter of fact, this technicality was

a motivation of our formalisation. The proof is very well written and very convincing but

contains several cases which makes it difficult to assess its correctness. A formalisation

ensures that no detail has been overlooked. As an anecdote, the Wikipedia page [13] about

the Tower of Hanoi in March 2020 was indicating that there was actually a journal paper [6]

with a proof of the optimality of the Frame-Stewart algorithm for the regular puzzle with k

pegs. When we started formalising this proof, we quickly got stuck on the formalisation of

Corollary 3. We contacted the author that told us that it was a known flaw in the proof as

documented in [4].

In what follows, we are only going to highlight the overall structure of the proof of

optimality of P 4r
n . We refer to the paper proof given in [2] for the details. The first step is to

relate |P 4r
n | with triangular numbers. Following [2], we write |P 4r

n | as Φ(n). We introduce

the notation ∆n for the sum of the first n natural numbers :

∆n =
∑
i≤n

i = n(n + 1)
2 .

A number n is triangular if it is a ∆i for some i. By analogy to the square root, we introduce

the triangular root ∇n :

∆(∇n) ≤ n < ∆(∇(n + 1)).

Now, we can give explicit formula for Φ(n) :

Φ(n) =
∑
i<n

2∆i

It is relatively easy to show that the function Φ verifies the recurrence relation of the Frame-

Stewart algorithm: Φ(n) = minm<n 2Φ(m) + (2n−m − 1). Then, what is left to be proved is

that it is the optimal solution. The key ingredient of the proof is of course to find the right

inductive invariant. This is done thanks to a valuation function Ψ that takes a finite set over

the natural numbers and returns a natural number:

ΨE = max
L∈N

((1− L)2L − 1 +
∑
n∈E

2min(∇n,L))

The idea is that E will contain the disks we are interested in. If we consider the set [n] of all
the natural numbers smaller than n (i.e. we are interested by all the disks)

[n] = {set i | i < n}
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we get back the Φ function we are aiming at:

Ψ[n] = Φ(n + 1)− 1
2 =

∑
i<n 2∇(i+1)

2
Now we can present the central theorem. We consider two configurations u and v of n disks

and the four pegs p0, p1, p2 and p3. If v is such that there is no disk on pegs p0 and p1 and

E is defined as

E = {set i | the disk i is on the peg p0 in u}

the invariant is:

d[u, v]rmove ≥ ΨE

The proof proceeds by strong induction on the number of disks. It examines a geodesic

path p from u to v. If p2 is the peg where the disk ldisk is in v (it cannot be p0 nor p1),

it considers T the largest disk that was initially on the peg p0 and visits at least one time

the peg p3. If such a disk does not exist, the inequality easily holds. Then, it considers

inside the path p the configuration x0 before which the disk T leaves the peg p0 for the

first time and the configuration x3 in which the disk T reaches the peg p3 for the first time.

Similarly, it considers the configuration z0 before which the disk n leaves the peg p0 for the

first time and the configuration z2 before which the disk n reaches the peg p2 for the last

time. Examining the respective positions of x0, x3, z0 and z2 in p and applying some surgery

on the configurations of the path p in order to fit the inductive hypothesis it concludes that

the inequality holds in every cases.

The six-page long proof of the main theorem 2.9 in [2] translates to a 1000-line long Coq

proof.

Lemma gdist le psi (u v : configuration 4 n) (p0 p2 p3 : peg 4) :
[∧ p3 != p2, p3 != p0 & p2 != p0] → (codom v) \subset [:: p2 ; p3] →
Ψ [set i | u i == p0] ≤ d[u, v]rmove.

From which, we easily derive the expected theorem:

Lemma gdist rhanoi4 (n : nat) (p1 p2 : peg 4) :
p1 != p2 → d[c[p1, n], c[p2, n]]rmove = Φ n.

5 Star puzzle

We first recall how to apply the Frame-Stewart algorithm to the star puzzle. Let us build

the program P 4s
n that generates the moves between two perfect configurations: one on an

outer peg pi (pi ̸= 0) and the other on another outer peg pj (pj ̸= pi ̸= 0 ). We first choose a

parameter m and use P 4s
m to move the top-m disk to the third outer peg pk (pk ̸= pj ̸= pi ̸= 0).

Now, we use P 3s
n−m (which is identical to P 3l

n−m) to move the n−m from peg pi to peg pj

and avoiding pk. Finally, we use P 4s
k to move the top-m disk from peg pk to peg pj . This

leads to the recurrence relation:

|P 4s
n | = min

m<n
2|P 4s

m |+ (3n−m − 1).
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Now, we have to find a mathematical object that verifies this recurrence relation. This time

it is not the triangular numbers but the increasing sequence α1 of the elements 2i3j . The

first elements of this sequence are 1, 2, 3, 4, 6, 8, 9. If we define S1(n) =
∑

i<n α1(i), it is
relatively easy to prove that

S1(n) = min
m<n

2S1(m) + (3n−m − 1)/2.

It follows that 2S1 verifies the recurrence relation.

Here, the proof of optimality is even more intricate, we just give an idea of the inductive

invariant and how the proof proceeds. We refer to [3] for a detailed and very clear exposition of

the proof. The first generalisation is to consider distance not only between two configurations

but between l + 1 configurations (i.e. a distance between u0 and ul passing through u1, . . . ,

ul−1):
∑

i<l d[ui, ui+1]. These intermediate configurations (0 < i < l) are alternating. If p1,

p2 and p3 are the outer pegs, the configuration ui is supposed to have its disks on pegs p2
and a[p1, p3](i) where alternation is defined as

a[pi, pj ](0) = pi a[pi, pj ](n + 1) = a[pj , pi](n)

Taking into account this new parameter l, we need to lift S1 to a parametrised function Sl.

Sl(n) = min
m<n

2S1(m) + l(3n−m − 1)/2

and α1 to αl(n) = Sl(n + 1)−Sl(n). Finally, we introduce the penality function β defined as

βn,l(k) = if 1 < l and k + 1 = n then αl(k) else 2α1(k)

Given these definitions, the inductive invariant looks like:

Lemma main (p1 p2 p3 : peg 4) n l (u : {ffun Il.+1 → configuration 4 n}) :
p1 != p2 → p1 != p3 → p2 != p3
p1 != p0 → p2 != p0 → p3 != p0 →
(∀k, 0 < k < l → codom (u k) subset [:: p2; a[p1, p3] k]) →
(S [l] n).*2 ≤ sum (i < l) d[u i, u i.+1] smove +

sum (k < n) (u ord0 k != p1) * β [n, l] k +

sum (k < n) (u ord_max k != a[p1, p3] l) * β [n, l] k.

The proof is done by simple induction on n. It is then split in several cases depending

on the number of elements i such that ui(ldisk) = a[p1, p3](i). Furthermore, the inductive

invariant has this alternating assumption. So, often, one needs to split the path in a bunch of

alternating sub-paths in order to apply the inductive hypothesis on each of these sub-paths.

This leads to a lower-bound where various values of Si(m) appear. Key properties of Sl(n)
(i.e. its convexity5 in n and concavity6 in l) are then used to derive simpler lower-bounds.

For example, the combination of these two theorems

5 A function on natural numbers is convex if f and n 7→ f(n + 1) − f(n) are both increasing.
6 A function on natural numbers is concave if f is increasing and n 7→ f(n + 1) − f(n) is decreasing.
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Lemma concaveEk f i k : concave f → f (i + k) + f (i− k) ≤ 2 × (f i)
Lemma concave dsum alphaL l n : concave (fun l → S [l] n).

are often used to simplify inequalities dealing with the Sl function.

The paper proof of the main lemma is 15-page long and translates into 3500 lines of Coq

proof script. As it contains several crossed references between cases, the formal proof of

the main lemma is composed of 3 separate sub-lemmas plus one use of the “without loss of

generality” tactic [8].

Finally, the Frame-Stewart algorithm gives an upper-bound to the distance and the main

lemma applied with l = 1 gives a lower-bound. Altogether we get the expected theorem:

Lemma gdist shanoi4 (n : nat) (p1 p2 : peg 4) :
p1 != p2 → p1 != p0 → p1 != p0 → d[c[p1, n], c[p2, n]] smove = (S [1] n).*2.

6 Conclusion

We have presented a formalisation of the Tower of Hanoi with three and four pegs. Of course,

we have only scratched the surface of what can be proved. We refer the reader to [9, 10] for

an account of all the mathematical objects and programming techniques this simple puzzle

can be linked to.

We started this formalisation as a mere exercise. Then, we got addicted and tried to prove

more difficult results. This development relies heavily on the graph library for the modeling

part. In that respect, this work bears some similarity with the formalisation of another puzzle,

the mini-Rubik, where it is proved that the Rubik cube 2x2x2 can be solved in a maximum

of 11 moves by looking at the diameter of the Cayley graph of all its configurations [12]. An

attractive aspect of this formalisation is also that it uses very elementary mathematics. So,

it is heavily testing the capability to do various flavour of inductive proofs and to manipulate

combinations of big operators [1] such as maxi≤n F , mini≤n F and
∑

i≤n F . To give only one

example, in order to prove the concavity of the function Sl we had to revisit the merge sort

algorithm. It is usually given as a beginner exercise as a way to merge two sorted lists. Here,

it is used to “merge” two increasing functions f and g in an increasing function fmerge(f, g)7
and we had to prove that

fmerge(f, g)(n) = max
i≤n

min(f(i), g(n− i))

When doing it formally, it is very easy to get lost in this kind of proof.

The main contribution of this work is the formal proofs about the distance between two

perfect configurations for the 4 pegs versions. These results are relatively recent. We believe

that our formal proofs are a natural companion to the paper proofs. These paper proofs are

very technical. We have mechanically checked all the details. As a matter of fact, we have

been using very little automation, so our formal proofs follow very closely the paper proofs.

The main difference is that our formalisation used natural numbers only. So, we have tried

7 this is used for example to build the increasing sequence of 2i3j
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to avoid as much as possible subtraction. In our formal setting, (m− n) + n = m is a valid

theorem only if we add the assumption that n ≤ m. So an expression such as a− b ≤ c− d

in the paper proof is translated into a + d ≤ b + c in the formal development.

Our formal proofs can, of course, be largely improved. To cite only one example, in

the proof of the star puzzle with 4 pegs, lots of subcases are proved by simple symbolic

manipulations with applications of some concavity theorems like concaveEk. These are

currently done by hand. There is clearly room for automating all these steps.
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main result was a guarantee that any trace of observed external communications with the
server is included in an interaction tree describing intended server behavior.

In the work described here, we scale these verification techniques to a more realistic
example: a Key-Value server (KVServer) running over a minimal but practical subset of the
HTTP/1.1 protocol. The KVServer provides clients with a Get(key) and Put(key, value)
interface that uses HTTP/1.1 features including GET requests, POST requests, and Content-
Length encoding. It runs on the verified operating system CertiKOS [18] or any other OS
with a POSIX-compatible socket interface.

Besides significantly scaling up server features and protocol complexity, the present work
reduces the set of trusted axioms compared to that of Koh et al. [25]. The network interface of
the earlier swap server is described by a set of Hoare triples for the socket system calls, which
are assumed to be satisfied by the host operating system. In this work, we apply recently
developed techniques for proving refinement relations between CertiKOS’ kernel-level system
call specifications and user-level VST system call specifications, and prove that network
interface assumptions from [25] are consistent with CertiKOS’ system call specifications [32].
Such proofs are necessary because the specification styles of VST and CertiKOS are different
enough that it is not obvious that two specifications describe the same behaviors. One
significant difference stems from the logics used by VST and CertiKOS. Another distinction
is in their representations of the system state and the external effects of socket operations.
The user-level VST socket specifications use interaction trees to describe external effects
as observed “on the wire”. The CertiKOS specifications, on the other hand, capture these
external effects in a logical log of events, while also describing the internal effects on the
kernel state, which are invisible to the user-level code.

By proving refinement between the VST and CertiKOS models of socket system calls, we
demonstrate that the kernel- and user-level specifications agree on the behavior of sockets.
The kernel implementation of the socket system calls in CertiKOS is currently unverified
with respect to CertiKOS socket specifications. Our work does not attempt to fill this gap
(which requires modeling and verifying a TCP/IP stack), but instead proves a refinement
between the CertiKOS and VST socket specifications. This guarantees at least that the
operating system and the server agree on how sockets are expected to behave, thus removing
this interface from the trusted computing base and leaving only the kernel’s implementation.

The main challenges in developing the new KVServer stem from the significant increase
in feature complexity across all levels of the server. At the connection management level,
the KVServer needs verified data structures to maintain incoming and outgoing buffers for
multiple concurrent connections. At the protocol level, the KVServer requires a verified parser
to deserialize HTTP/1.1 requests and a verified printer to serialize HTTP/1.1 responses.
The parser and printer depend on a verified C string library. At the application level, the
KVServer needs a verified in-memory map for storing key-value pairs.

This blow-up in feature complexity also calls for a modular approach that can (1) contain
the implementation and verification complexity within each module and (2) reduce total
proof checking time through parallelization. We achieve this by dividing the entire KVServer
into eight independent verified modules. Each module comes with VST specifications for all
exposed functions. A module that depends on a lower-level module only needs the lower-level
module’s C API and VST specifications, while implementation and proof complexity remain
hidden away. This modular separation of the KVServer also produces general purpose and
reusable low-level modules. Furthermore, we keep function specifications separate from code
and avoid intermingling of code and proof information (e.g., loop invariants), as the latter is
typically specification-dependent. This organization sets our development apart from the
methodologies of verification tools such as Frama-C, VeriFast, KeY, and Dafny [23, 22, 28, 1]
and enables us to distribute the verification of individual function bodies into different files
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that can be processed in parallel. We discuss related verification projects in more detail in
Section 6.

Our main contributions are:
1. We demonstrate a verified network server, implemented in C and communicating using a

subset of HTTP/1.1. The termination-insensitive specification and proofs are formulated
using VST and interaction trees (Section 3).

2. We prove that the network operations in KVServer interaction trees correspond directly
to I/O operations performed by the operating system. We use the verification methods
of Mansky et al. [32] to demonstrate a refinement between two disparate specifications of
the socket interface written in two different specification languages, by abstracting the
lower kernel-level CCAL specification on kernel socket states and the logical log of socket
operations into a higher user-level VST specification on externally observable network
effects. Our work is the first to formally bridge the gap between user- and kernel-level
specifications of POSIX network operations (Section 4).

3. We present a reusable and fully verified C string module offering 34 verified C string
functions. 17 of these belong to the POSIX string library; the rest are general-purpose
string functions used by the KVServer (Section 5).

2 Background

2.1 Interaction Trees
Interaction trees (ITrees) are a data structure and an accompanying Coq library for represent-
ing and reasoning about effectful and potentially non-terminating programs [42]. A significant
part of the verification work for KVServer involves proving that the server performs various
socket system calls in an expected way. We streamlined this effort by using ITree programs
to specify the socket-level behavior of KVServer.

To write an ITree program, one must first define the set of visible effects the program
can perform. In KVServer, the socket-level network effects are modeled by the following Coq
datatype.

Variant networkE : Type -> Type :=
| Listen : endpoint_id -> networkE unit
| Accept : endpoint_id -> networkE connection_id
| Shutdown : connection_id -> networkE unit
| RecvByte : connection_id -> networkE byte
| SendByte : connection_id -> byte -> networkE unit.

Each constructor describes a network effect parameterized by its argument types (the
parameters to the constructor) and its result type (the type argument to networkE at the
end of each line). For example, the Listen constructor represents the server beginning to
listen for incoming client connections on an endpoint_id (a network address identifier). This
operation does not return any meaningful data so its return type is unit. We specify how
this effect corresponds to the POSIX listen system call in the C program in Section 2.3.

ITree programs may involve multiple sets of effects. For example, runtime errors can be
expressed in ITree programs through the exceptE effect type from the ITree library...

Variant exceptE (Err : Type) : Type -> Type :=
| Throw : Err -> exceptE Err void.

... and we can use the binary operator +' to create a larger effect type: networkE +' (exceptE
string) is a composition of two kinds of effects, which together allow an ITree program to

perform socket effects and throw string-valued errors.
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The ITree library also provides a mechanism for expressing effect subsumption rela-
tions between effect types, leveraging Coq’s typeclass mechanism to automatically resolve
subsumption constraints. This mechanism can be used to automatically “lift” a concrete,
monomorphic effect type into a polymorphic one. For example, we can use it to define a
helper function that generalizes the Listen effect:

Definition listen `{networkE -< E} : endpoint_id -> itree E unit := embed Listen.

Here, the effect type E represents some possibly larger set of effects satisfying the subsumption
relation networkE -< E, and embed is an ITree library function that performs the lifting from
networkE into the subsuming type E. The signature of listen says that it is a function that
receives a network identifier and produces an ITree of type itree E unit that, intuitively,
calls the “listen” kernel function and returns the unit value once the effect completes.

ITrees satisfy the interface of monads [42], a standard mechanism for composing effectful
programs in a pure functional programming context. The monad interface consists of two
combinators:

Definition bind `{Monad m} {a b : Type} : m a -> (a -> m b) -> m b.
Definition ret `{Monad m} {a : Type} : a -> m a.

Intuitively, the bind combinator builds a computation that runs the effectful computation
in its first argument (with type m a) to produce a result of type a, passes the result to
the continuation in the second argument (with type a -> m b), and returns an effectful
computation with type m b. The ret combinator injects an effectless value of type a into a
computation that may have effects. ITree programmers can use these two combinators to
compose ITree values; for convenience, the ITree library provides the notation a <- m;; k for
the expression bind m (fun a => k).

2.2 Verified Software Toolchain
The Verified Software Toolchain [4] is a Coq framework for verifying C programs using
concurrent separation logic [37, 35]. To verify a piece of code, a user employs Coq’s
programming features to define assertions, connects partial-correctness specifications to
function definitions in CompCert’s Clight program representation, and finally applies forward
symbolic execution tactics to verify the corresponding function bodies. For readability,
specifications in this paper are presented in informal notation rather than in VST’s Coq-
based syntax.

As an example, consider this string library function, which allocates space for a string of
a given length.

unsigned char* new_string(uint32_t len);

Drawing upon predicates Mem and Mtok from VST’s verified malloc/free library [5], this
function’s specification{

!!(l < max_unsigned)
&& MemM gv

}
new_string(l)

 p. if p = null then MemM gv
else CUStringN(Ews, [ ], l + 1, p) ∗

Mtok(Ews, ucharl+1, p) ∗MemM gv


asserts that the result p of a call to new_string (with a suitable argument l), is either null
or is a pointer to some fresh region of memory that satisfies the predicate CUStringN. The
“deallocation token” Mtok represents the fact that the client not only gains read/write access
(represented by the exclusive-write-share Ews) to the freshly allocated region but may also
free it. In addition to these predicates – whose precise definitions we elide – the specification
makes use of VST’s operators for separating (∗) and ordinary (&&) conjunction, and an
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operator !! that injects a pure Coq proposition into VST’s category of assertions. Finally,
ucharn is a shorthand for a length-annotated specialization of CompCert’s representation of
the function’s return type when interpreted as an array. Note that the malloc/free library
assertion MemM gv must be present but is not modified by the call, and that no fresh memory
is allocated if the return value is null.

2.3 Specifying Effects with VST and ITrees
We not only use VST for verifying memory safety and application logic, but also rely on a
combination of VST and ITrees to verify externally observable effects of C code.

Consider the listen system call from the POSIX socket API:
int listen(int sockfd, int backlog);

Recalling the lifted Listen network effect from Section 2.1, we specify the listen() system
call using two abstract predicates. The predicate ITREE t states that effects described by the
interaction tree t are included in the overall effects exhibited by the host OS. The predicate
SOCKAPI st states that the host OS has sockets in states corresponding to st, a map from
socket identifiers to states (bound, open, listening, etc.).

The specification of listen() quantifies over two ITrees, t and k, that respectively describe
the sequence of effects performed by the KVServer before and after running this listen()
network call.

{!!((listen addr ; ; k) ⊑ t) && ITREE t ∗ SOCKAPI st}
listen(fd, backlog){

r. EX t′ st ′. !!(−1 ≤ r ≤ 0 ∧ post_listen t k st fd addr r t′ st ′)
&& ITREE t′ ∗ SOCKAPI st′

}
Informally, the precondition says that the observed effects in t must first be a listen

effect, followed by effects observable in k, and that st is the current internal state of the
sockets being managed by the kernel. We think of the tree t as permission to perform
certain sequences of external operations, from the perspective of an observer that checks
off operations one by one as they are performed by the program. The ITree value k is
a continuation that models effects following this listen effect. The relation post_listen
specifies how t and st evolve to the ITree value t′ modeling the remaining observable effects
and the updated socket state st′, depending on whether the listen() system call succeeds.
Specifically, if the listen() system call fails (r = −1), then post_listen states that t′ is the
same as t. (The specification implies that the actual side effect of listen() does not occur
when the system call fails, and this design leads to a more straightforward connection to
the CertiKOS socket specification compared to some alternative designs. We discuss this
detail in Section 4.) Note that post_listen is purely propositional: it is independent of the
memory.

Formally, the predicates ITREE and SOCKAPI are defined as assertions on the external
ghost state of VST [32], which is kept in sync with a piece of external state in the OS. In this
case, the external state is the log of socket communications and the set of currently active
sockets; Section 4 will detail how this ghost state is related to CertiKOS’ kernel state.

2.4 HTTP/1.1
HTTP/1.1 is a standard network protocol that allows a client (e.g., a web browser) to access
and modify resources (e.g., HTML files, databases) stored on a remote server. A client
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initiates the communication with a request formatted as: (1) a request line consisting of a
method (e.g., GET, PUT, POST) indicating the desired action, and the resource on which
to perform it; (2) a sequence of header fields that specify extra options; (3) a blank line; and
(4) an optional body whose meaning depends on the request line. After handling the request,
the server responds with a message comprising (1) a status line that includes the numeric
status code (e.g., 404) and a textual message (e.g., “Not Found”); (2) a sequence of header
fields with additional information; (3) a blank line; and (4) an optional body [16].

The full HTTP/1.1 specification includes nine methods and many possible headers whose
effects range from setting the acceptable language of the response to specifying compression
and caching behaviors. In practice, though, only a relatively small subset is necessary
for common operations such as retrieving or updating resources: in particular, the only
methods the KVServer needs to implement are GET for looking up keys and POST for
updating or inserting key-value pairs, and the only header that the server needs to recognize
is Content-Length, which indicates the size of the message body. The following is a sample
request-response pair for a successful retrieval of the key-value pair foo 7→ bar. The ←↩

symbol represents an ASCII carriage return and line feed (CRLF) sequence.
GET /foo HTTP/1.1←↩
←↩
HTTP/1.1 200 OK←↩
Content-Length: 3←↩
←↩
bar

Though lean, this subset is sufficient to build a non-trivial application and demonstrate the
effectiveness of our methodology. Two real-world webservers1 also implement just this lean
subset of HTTP with only GET and POST support.

3 Components

The implementation of our HTTP server is divided into eight verified modules. We verify
memory safety and (termination-insensitive) functional correctness of each.

3.1 Infrastructure Modules
StringAPI. The KVServer presents a string-based key-value store over HTTP, and its im-
plementation uses C strings throughout. Our lowest-level infrastructure module is therefore
a reusable verified string library with implementations and specifications of many common
string functions, plus some useful variants. Due to the details of C memory semantics, idio-
matic C string programming introduces proof obligations for side conditions that programmers
typically gloss over. We therefore provide alternative implementations and specifications for
commonly used string functions to hide these proof obligations from dependent modules.
Section 5 describes the string library in more detail.

BufferAPI. This module provides a dynamically allocated resizable byte-buffer data struc-
ture. These byte buffers are used to both accumulate data received from clients and to
construct data to be sent to clients. We provide verified functions to create, resize, append
to, and deallocate byte buffers. Our specifications assert that BufferAPI operations allocate
and deallocate memory correctly and do not perform any invalid memory reads or writes.

1 http://tinyserver.sourceforge.net/ and https://sourceforge.net/projects/miniweb/

http://tinyserver.sourceforge.net/
https://sourceforge.net/projects/miniweb/
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SocketAPI. This module provides the VST specifications of POSIX system calls for creating
sockets, binding sockets to network addresses, accepting connections, writing and reading
data on sockets, and learning which sockets are ready to read or write. This module
bridges the CertiKOS kernel and the rest of the KVServer by establishing refinement proofs
of the CertiKOS socket specifications against the VST socket specifications. Since these
socket operations have network effects that are observable from outside the KVServer, their
VST specifications describe the effects they may trigger using the technique introduced in
Section 2.3.

The earlier “swap server” described by Koh et al. [25] had similar specifications for the
network operations used by our KVServer. However, the specifications of network operations
in that work did not have a refinement relation with the CertiKOS socket specifications.
In our work, we push this verification boundary lower into CertiKOS with the SocketAPI
refinement proofs. We discuss this improvement in Section 4.

3.2 Application Modules

ParseAPI. This module provides functions that parse the subset of HTTP/1.1 requests
accepted by the KVServer and functions that serialize standard HTTP responses for KVServer
clients. The top-level specification for the parser is a relation between the input string, the
parsed request, and the remaining unused input string. This parser specification describes
how the parsed request and the unused portion of the input string can be reassembled to
recover the original input string. Specifically, the subset of HTTP/1.1 requests that the
KVServer accepts are GET and POST requests, and POST requests must have a string as
payload in the Content-Length encoding (the length of the string payload must be equal to
the value in the Content-Length header).

We also develop an executable parser in Gallina, Coq’s internal functional programming
language, for the subset of requests KVServer supports, plus refinement proofs between the
VST specification of the C parser and the Gallina parser, showing that the C parser is a
refinement of the pure Gallina parser.

KeyValueAPI. This module is a thin wrapper around the ParseAPI module that interprets
HTTP requests to the KVServer as read/write operations on the KeyValue storage. An
HTTP GET request at some url is translated into a read request to the KeyValue storage,
with the key being the specified url. Similarly, an HTTP POST request at some url with
some payload is a write request that puts the value of payload under the key url. The
KeyValueAPI specifications assert that GET and POST requests are correctly translated
into key-value read and write requests.

HashtableAPI. This module implements a hash table for string-valued keys and values,
which acts as the in-memory KeyValue storage. This module uses a pure Gallina implement-
ation of a string-valued hash table as its specification; we establish the refinement between
the Gallina implementation and the C implementation using VST. The hash table uses a
verified hash function that computes the hash value of a string by arithmetic manipulations
on the ASCII values of the characters in the string. The HashtableAPI specifications assert
that the C hash table implementation strictly follows the Gallina implementation model.
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3.3 Server I/O Modules
ConnectionAPI. This module pulls in both the application modules and the infrastructure
modules and provides an interface for managing and communicating with logical client
connections.

The KVServer is a single-threaded event-driven server. The event-driven I/O model allows
a single-threaded server to manage multiple concurrent connections. Under this scheme, the
server repeatedly tries to receive network data in a loop, buffers available network data from
all clients and checks the client buffers for pending requests in each loop iteration.

ConnectionAPI uses the BufferAPI module to maintain both incoming and outgoing
byte buffers for each connection. It also relies on the ParseAPI module to abstract over the
underlying byte stream by repeatedly trying to parse the accumulated bytes in the receiving
buffer until a complete HTTP request has been parsed. This request is then interpreted as a
KeyValue request by the KeyValueAPI module, and the corresponding KeyValue operations
are executed on the hash table storage.

ConnectionAPI uses a linked-list data structure to manage a collection of connections.
Furthermore, ConnectionAPI abstracts over select and provides an interface for focusing on
connections ready for network I/O.

ServerAPI. This module implements the main event-loop of the entire KVServer. The main
loop relies on operations from the ConnectionAPI module to focus on connections that have
pending requests to be processed, performs the operations encoded in these pending requests,
appends the serialized responses to the outgoing buffers for relevant connections, and flushes
outgoing buffers for connections that are ready for outgoing communication. The ServerAPI
specification asserts that the main loop does not cause the connection data structures to
become invalid and that the hash table storage’s content is updated correctly upon client
requests.

The ServerAPI module exposes a top-level VST specification for the main() function of the
entire server and relates the C implementation of the server’s main loop to its interaction-tree
specification.

!!(consistent_world st) &&
(ITREE ITree.iter (run_server) ([], empty_table); ; k tt) ∗

SOCKAPI st ∗ MemM gv


main()

{st ′. ITREE k tt ∗ SOCKAPI st ′ ∗ MemM gv}

This states that, starting from a valid state of OS sockets modeled by st, the effect of running
the main() function is reflected by the interaction tree that iterates the server specification
run_server in a loop, and that the loop starts with the initial empty state ([], empty_table).
The empty list is the initial empty list of client connections, and the empty table is an initial
empty key-value storage table.

The ITree function run_server is the specification of a single event-loop iteration of
the main server. This iteration is repeated using an ITree combinator ITree.iter. The
composed specification ITree.iter run_server is a program that runs forever, unless the
server encounters an irrecoverable error (e.g. memory allocation failure). The proof of this
VST triple uses data structure invariants for the hash table and connection list and relies on
lemmas that prove each server operation preserves these data structures’ invariants. However,
these proof details need not be exposed in the top-level VST specification.
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Name Spec Proof Impl Description

String
POSIX functions 369 1890 143 POSIX-compliant string functions
Non-POSIX functions 563 2393 212 Other string functions
Buffer
buffer_append 49 225 27 Append bytes to a byte buffer
Socket
accept 36 37 N/A Accept a connection
listen 27 16 N/A Open port to listen for connections
send 40 33 N/A Send bytes
recv 44 158 N/A Receive bytes
socket 15 20 N/A Create a socket
Parse
parse_request 50 921 73 Parse an HTTP request
serialize_http_response 34 257 35 Serialize an HTTP response
Hashtable
hashtable_get 27 300 13 Read a key
hashtable_update 30 162 5 Set the string at a key
KeyValue
message_process 39 91 12 Run a KeyValue request
Connection
connection_set_next 31 41 3 Sets the tail of a connections list
connection_get_next 26 92 3 Gets the tail of a connections list
process_and_register 60 305 44 Process an HTTP request
master_process_and_register 58 1162 30 Process the entire connections list

Figure 1 Critical verified C functions from each module.

3.4 Summary
To give an idea of the scale of the KVServer and its verification, Figure 1 lists some of the
important functions from each module along with the number of lines of C code and Coq
specification and proof each required. Figure 2 compares the total number of lines to the
earlier Swap Server [25] to highlight the significant increase in scale.

4 Socket API

4.1 Connecting VST Specifications to CertiKOS Socket Calls
The KVServer communicates with clients using POSIX socket system calls: bind, accept,
send, recv, and so on. These system calls are provided by the verified operating system
CertiKOS, which includes functional specifications (either verified or axiomatized) for each
system call. Using a technique due to Mansky et al. [32], we connect the VST specifications
(separation logic pre- and postconditions) for the socket calls to the Certified Concurrent
Abstraction Layers (CCAL) specifications of socket calls provided by CertiKOS, strengthening
our confidence in the correctness of our server’s network communication.

The basic approach of Mansky et al. [32] is shown in Figure 3. We connect VST specific-
ations of each call to CertiKOS by means of an intermediate-level first-order predicate on
CompCert memories (maps from memory locations to values) and external state. Mansky
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Lines of Code KVServer Swap
Total specification lines 7033 1373
Total proof lines 28998 8545
Total implementation lines 3097 469

Figure 2 Total lines of code for KVServer and Swap Server.

VST

dry

CertiKOS

load(buf ) = vals ∧ ext = t

{buf 7→ vals ∗ EXT(t)} syscall(buf ); {buf 7→ vals′ ∗ EXT(t′)}

load(buf ) = vals′ ∧ ext = t′

syscall(buf , OS_state) = OS_state′

Figure 3 Connecting VST to CertiKOS.

et al. refer to this intermediate-level specification as a “dry specification”. The dry specifica-
tion serves as a translation layer between the corresponding VST specification and CertiKOS
specification; this allows us to prove a round-trip theorem stating that the VST specification
follows from the guarantees provided by CertiKOS. For instance, recall the VST specification
of the listen system call from Section 2.3. The CertiKOS specification for listen is:

Definition listen_spec (abd : RData) (fd : Z) : option (SysRet Z) :=
if negb (kern_init abd) then None else
let socks := ZMap.get (curid abd) abd.(sockets) in
let log := ZMap.get (curid abd) abd.(socket_log) in
match is_bound (ZMap.get fd socks) with
| Some port =>

let socks' := ZMap.set fd (ListeningSocket port) socks in
let log' := SysSockListen port :: log in
Some (abd {sockets: ZMap.set (curid abd) socks' abd.(sockets)}

{socket_log: ZMap.set (curid abd) log' abd.(socket_log)},
OK)

| _ => Some (abd, ERR EBADF) (* Invalid socket state *)
end.

This specification mentions various pieces of OS state that are invisible to the C programmer,
including a record of the state of the sockets (i.e., abd.(sockets)) that is modified during the
call and a log of socket operations performed (i.e., abd.(socket_log)). The OS socket states
should correspond to the SOCKAPI in the VST specification, while operations appended to
the log should be reflected in events removed from the ITREE. We connect the two layers
by writing a dry specification for listen, in which the assertions of the VST specification
are converted to first-order predicates on memory and external state. The dry pre- and
postcondition take the parameters of the VST specification as arguments, along with the
memory m, external state z, and – in the case of the postcondition – the initial memory m0
and return value r. They capture the requirements on the external state and reflect the fact
that listen has no effect on user memory:

Pre((t, k, st, addr , fd, backlog), m, z) ≜ (listen addr ; ; k) ⊑ t ∧ z = (t, st) ∧
st fd = BoundSocket addr

Post((t, k, st, addr , fd, backlog), m0, m, z, r) ≜ m = m0 ∧ ∃t′st ′. z = (t′, st′) ∧
consistent_world st ′ ∧ −1 ≤ r ≤ 0 ∧ post_listen t k st fd addr r t′ st ′

In particular, note that the ITREE and SOCKAPI predicates are no longer present, and
their contents are translated into assertions on the external state z. We then complete
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the refinement by showing that the VST precondition implies Pre, that Post implies the
VST postcondition, and that if Pre is true of the user memory and external state given to
the CertiKOS listen_spec, then Post is true of the corresponding parts of the output –
thereby translating the assertions on z to effects on abd.(sockets) and abd.(socket_log),
the OS-level representation of sockets and communication.

The server implementation uses the system calls socket, bind, listen, accept, send, recv,
close, shutdown, and htons. For each of these, we prove a connection between the VST proof
rule used in the verification of the server and the CertiKOS axiom for the call. The proofs
follow the pattern of prior work. Most of the calls only affect external state (socket state
and/or interaction tree), while send and recv also use or change the contents of a single buffer
in memory; both of these patterns were illustrated by Mansky et al. [32]. These refinement
proofs significantly strengthen our confidence in the correctness of the server by removing
the VST socket specifications from the trusted computing base and replacing them with the
abstractions provided by the operating system. Indeed, while carrying out the refinement
proof, we discovered some correctness conditions that were missing from the original VST
specifications. For instance, the bind call is only guaranteed to return a valid result when
the provided port number is between 0 and 65535; the original VST specification omitted
this range requirement.

4.2 Granularity of ITree Events

The VST specification we used for the listen call looks like this:

{!!((listen addr ; ; k) ⊑ t) && ITREE t ∗ SOCKAPI st}
listen(fd, backlog){

r. EX t′ st ′. !!(−1 <= r <= 0 ∧ post_listen t k st fd addr r t′ st ′)
&& ITREE t′ ∗ SOCKAPI st′

}
Most of the details of what listen actually does are hidden in post_listen, which says that
either the call succeeds and t′ is the continuation k (i.e., t minus the listen event), or the call
fails and t′ = t. In other words, the listen event in the ITREE represents a successful call to
listen, and on failure the server must retry the call before moving on to k. This is only one
possible approach to representing communication events with an ITREE: we could imagine
using the listen event to represent an invocation of the listen system call, successful or not,
or even a permission guaranteeing that, if the server calls listen at this point, then the call
will succeed. In the former case, the event would be removed from the ITREE regardless of
the result; in the latter case, the error result (and the return value of −1) would not appear
in the specification at all.

In the swap server of Koh et al. [25], it was (somewhat arbitrarily) decided that events
should represent successful communications, leading to the current style of specification. Now
that we have connected the ITREE to the operating system’s log, this choice is no longer
arbitrary: each ITREE event corresponds to exactly one socket_log event, and the OS does
not add an event to its log when the call fails. We could build and validate specifications
in the other styles (by writing a wrapper function that calls listen until it succeeds, or by
providing a token from the OS that somehow guarantees that the next listen will not fail),
but our specification style leads to the most direct translation of the CertiKOS specification
into VST. If a user writes a program that assumes listen will always succeed and tries to
verify it using VST, the gap between their assumptions and the guarantees of the OS will
show up in the verification.
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5 C Strings in VST

A C string is a contiguous array of non-zero unsigned bytes (1-255), terminated by a null (0)
byte. To avoid confusion between a C string value and a Coq string value, we write C strings
here with array notation. For example, ['K', 'V', 'S', 'e', 'r', 'v', 'e', 'r', '\0'] is
a C string that can be modeled by the Coq string "KVServer".

Programs manipulate C strings through pointers to these byte arrays. For example,
our implementation of the standard function strstr() takes two pointers of type const
unsigned char *, representing a “haystack” and a “needle,” and searches for the needle in
the haystack.

const unsigned char* strstr(const unsigned char* hstk, const unsigned char* ndl);

Two key properties of a C string are its contiguous memory layout and its terminating null
byte; violating these can cause unexpected behaviors and subtle memory bugs [43, 14]. For
example, if hstk is not null-terminated, strstr may read beyond the allocated memory region,
possibly leaking secret information or crashing the program.

We use two VST predicates CUStringN(sh, s, n, p) and CUString(sh, s, p) to model C
strings. The predicate CUStringN is defined in terms of an access-permission share, the list of
bytes in the string s, and a pointer p to an array of size n. CUStringN(sh, s, n, p) states that:
1. the list of bytes s does not contain a null byte;
2. the length of s is strictly smaller than the array’s size (n);
3. the pointer p points to a contiguous memory region that starts with the contents of s;
4. the pointer p points to a value with the type ucharn (i.e., an array of n unsigned bytes);

and
5. the contents of s are immediately followed by a null byte.
The leftover space may hold arbitrary data. The share parameter sh controls whether read
or write accesses are allowed on the memory where the string is located. In KVServer, we use
the share values Ews and Tsh, which respectively mark heap-allocated read-write memory
and stack-allocated read-write memory.

We then further refine CUStringN with CUString by requiring that the length of the
array at the pointer p is exactly the length of s plus 1 (the extra byte is for the termin-
ating null). For example, the C string ['K', 'V', 'S', 'e', 'r', 'v', 'e', 'r', '\0']
allocated at pointer p with both read and write permissions can be specified, in Coq, as
CUString(Ews, “KVServer”, p).

5.1 Specifying strstr
To specify a string function like strstr, we need to formally describe two parts:
1. Memory safety: the memory-layout assumptions that the function makes about its inputs.

In this case, strstr only requires both inputs to be valid C strings.
2. Functional correctness. In this case, if hstk contains ndl, then strstr (either diverges or)

returns a pointer to a substring of hstk whose prefix is ndl. Otherwise, strstr returns
NULL.

For functions that return a substring of one of their arguments, the convention in the
standard C string library is to return a pointer at some offset from the input. For example,
when strstr succeeds, it returns a pointer at some offset i into the haystack C string.
However, in many instances (especially when working with constant strings), we are primarily
interested in the index at which the substring begins, rather than the substring itself.
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In principle, the returned pointer from strstr implicitly encodes a non-negative offset
into the haystack string where the needle string can be found: if the haystack string is
at pointer p and the returned pointer is n, then offset = n - p. Although this offset is
trivial to compute, it adds proof obligations to convince VST that the arithmetic uses only
well-defined operations according to the CompCert memory model. While programmers
usually think of memory in C programs as a big array of data indexed by memory addresses,
and while memory addresses can obviously be subtracted from one another to compute the
offset between them, the C standard as reflected in the CompCert memory model is more
structured. In VST, memory regions allocated by different calls to malloc are considered
disjoint, and it is undefined behavior to take a pointer pA that points to region A and add
an offset x to pA such that pA + x points to a separate memory region B starting at some
pointer pB , even if arithmetically pA + x = pB [29].

Thus, a pointer subtraction like p1 − p2 induces an extra proof obligation that p1 and p2
point to memory addresses within the same memory region. Users of strstr’s specification
must deal with such proof obligations if what they really want is the offset. Since computing
the offset is indeed a common pattern throughout KVServer, we provide an alternative
“indexed” version of strstr called strstr_idx that packages up the pointer subtraction proof
and directly returns the offset.

int strstr_idx(const unsigned char* hstk, const unsigned char* ndl) {
const unsigned char* s = strstr(hstk, ndl);
if (s == NULL) { return -1; }
int i = s - hstk;
return i;

}

The specification of strstr_idx also reflects some logical simplifications that come with
working with offsets instead of pointers:

{
CUString(sh1, hstk, hstkptr) ∗ CUString(sh2, ndl, ndlptr)

}
strstr_idx(hstkptr, ndlptr)

i. !!(−1 ≤ i < length(hstk)) &&
!!(post_strstr_idx hstkptr hstk ndl i) &&

CUString(sh1, hstk, hstkptr) ∗ CUString(sh2, ndl, ndlptr)


The proposition post_strstr_idx used in the postcondition is defined as follows

Variant post_strstr_idx (ptr1 : val) (s1 s2 : list byte) : Z -> Prop :=
| StrStr_Idx_Not_Found:

~ (is_sublist s2 s1)
-> post_strstr_idx ptr1 s1 s2 (-1)

| StrStr_Idx_Empty:
s2 = nil

-> post_strstr_idx ptr1 s1 s2 0
| StrStr_Idx_Found (r : Z):

0 <= r < Zlength s1
-> s2 = firstn (List.length s2) (skipn (Z.to_nat r) s1)
-> ~ (is_sublist s2 (firstn (Z.to_nat r + List.length s2 - 1) s1))
-> post_strstr_idx ptr1 s1 s2 r.

The preconditions state the inputs are valid C strings stored in readable memory, and the
postconditions state that the returned value i is an integer between −1 (inclusive) and the
length of the “haystack” (exclusive) and that the model haystack string, needle string, and
returned value i satisfy a relation post_strstr_idx. This relation is split into three cases:
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1. The needle is not in the haystack and i = -1.
2. The needle is empty and i = 0.
3. The needle appears at offset i in the haystack, and i is in the range [0, length(hstk)).

The extra proof obligation induced by pointer subtraction is then handled once and for
all in the verification of strstr_idx.

We applied this technique for three functions in our string library: strstr, strchr, and
strcasestr. Each of these has a _idx version with a simplified specification, and higher-level
modules that depend on the C string module all use the indexed versions instead of the raw
pointer versions.

6 Related Work

Verifying networked servers. There are many papers on verifying networked servers,
including HTTP servers [11], distributed systems [20, 41], and mail servers [12]. Koh et al.
provide a detailed discussion of this previous work [25].

The goals and techniques of our work have much in common with those of Koh et al. [25].
The primary methodology in both projects is to refine a C program against an interaction tree
specification using separation logic and VST based on the Clight semantics of CompCert. The
KVServer extends the scale of this earlier effort in several dimensions. One is the complexity
of the server’s state and behavior: The swap server by Koh et al. [25] simply remembers
the last integer it received, where our KVServer manages arbitrarily many mappings, which
requires operations such as growing and shrinking buffers and string hashing. Another
difference is the protocols used for server-client communications. The swap server assumes
requests are always 4-byte integers, while the KVServer understands a subset of HTTP/1.1,
a ubiquitous industry standard. Handling HTTP requires verified parsing and C string
libraries, most of which are generic and could be reused in other verified projects.

Additionally, our work significantly strengthens the connection to CertiKOS. Although
Koh et al. [25] discussed connecting user- and kernel-level socket specifications, at the time
there was only a work-in-progress proof for recv, whereas we provide complete proofs for
a significant portion of the POSIX socket interface. The relation between user and kernel
state in the swap server also ignored some important details, such as the translation between
virtual and physical memory addresses, which are handled correctly in our work.

One limitation of our work compared to the swap server [25] is that we do not provide a
full refinement proof connecting the implementation to a high-level “linear specification” that
models the server’s behavior at the level of whole HTTP requests, hiding the low-level details
of parsing and buffering. We believe that the “network refinement” relation between the
low-level implementation and such a top-level linear specification can be formulated in terms
of linearizability [21]. The additional complexity in the KVServer compared to the swap
server arises from the fact that requests and responses are not atomic, since they may be
split by the network. As future work, we plan to formalize the connection to linearizability
and prove network refinement.

There is a great deal of previous work on verified parsers for network protocols. For
example, TRX [26] is a parser interpreter that can be used to extract HTTP parsers with
total correctness guarantees, and EverParse [36] is a framework for generating secure parsers
and has been used to implement a parser for TLS. Instead of generating a verified parser,
our work focuses on verifying hand-written C programs that use the standard, low-level C
string library to implement HTTP parsing.
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Perennial [13] is a new framework for verifying concurrent, crash-safe systems that has
been used to implement a mail server. Whereas Perennial focuses on reasoning about
crash-safety of concurrent programs, our work focuses on building a networked server whose
specification is connected to the host operating system. A potential next step of our work is
to incorporate Perennial’s crash safety reasoning methodology.

There are also many prior efforts to specify the POSIX socket interface [8, 9, 10, 38].
Since KVServer only requires a subset of the POSIX socket interface, our specification is not
as complete as these. However, the KVServer socket specification is formally verified against
the specification provided by the host CertiKOS (Section 4), while [8], [9], [10] and [38] all
considered the verification against their specifications out of scope.

Modular verification. Beringer and Appel [7, 6] extended VST to support data repres-
entation abstraction and separation logic specification subsumption. These improvements
made it possible to modularly specify and verify abstract data structures that hide their
internal layouts and their operations with support from VST. KVServer uses an earlier
release of VST that does not have these features yet, and all internal data structures used
by KVServer in fact expose their implementation layouts – all C structs are defined in
C header files. Although we manually ensure higher-level modules only access lower-level
data structures through their verified C APIs to avoid breaking abstractions or introducing
spurious dependencies, this manual discipline could be mechanically checked by leveraging
these new features in the latest VST.

CCAL [17, 19] is a modular verification technique used in the CertiKOS project. CCAL is
a formal calculus that enforces clear separation between the interface of a verified module and
its implementation. CCAL gives a formal semantics of horizontal module composition within
abstraction layers and vertical composition between abstraction layers. The composition
of KVServer modules is similar to the horizontal composition of CCAL modules. However,
KVServer does not employ vertical composition or abstraction layers, since these features do
not exist yet in VST.

Verifying C strings. The VeriSoft project [2] verified a custom string library [39] based
on the C0 semantics, a restricted version of ANSI C99 [27]. Moy and Marché [34] verified
22 functions from the standard C string library of MINIX 3 (https://www.minix3.org/);
however, they only checked basic safety properties of these functions (e.g., absence of memory
access errors), not functional correctness. Efremov et al. [15] verified the functional correctness
of 26 string functions from the Linux kernel via deductive verification in Frama-C. Our work
includes the functional correctness specifications and proofs of 34 functions (see Figure 1)
based on the Clight semantics of CompCert [29]. 17 out of the 34 functions are POSIX
compliant.

Interaction trees. Our specifications are phrased in terms of interaction trees, a general-
purpose data structure for representing the behaviors of recursive programs that interact
with their environments [42]. They are a coinductive variant of “freer monads” [24]; similar
data structures include the program monads of Letan et al. [30], the general monads of
McBride [33], and the action trees of Swamy et al. [40]. Interaction trees were also used in
the specification of the swap server [25].
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Connecting user-space and kernel-space specifications. Mansky et al. [32] demonstrated
how to connect higher-order specifications with external effects written in VST with first-order
specifications written in CCAL. This technique removes a verification gap between user-space
programs and the host kernel. We apply Mansky et al.’s verification methods, and prove a
refinement between the KVServer and CertiKOS socket specifications.

7 Conclusions and Future Work

We have verified a networked key-value server based on a subset of the HTTP/1.1 protocol,
using VST and interaction trees to verify memory safety and functional correctness of the C
implementation for each module. We also deepened the connection between KVServer and
CertiKOS by proving that the user-level socket specifications agree with kernel-level socket
specifications. The resulting proof guarantees the termination-insensitive correctness of the
KVServer down to the kernel level, reducing the trusted computing base to the unverified
POSIX socket system calls provided by CertiKOS.

As discussed in Section 6, an important future project is to define a high-level specification
similar to the “linear specification” of Koh et al. [25] and prove the associated refinement,
which can be viewed as a form of linearizability [21].

Specifying servers with interaction trees allows us to test server implementations against
the specification [31]. We have written a top-level linear specification for testing purposes,
whose relationship with the VST specification is still to be proven. From the testable
specification, we have automatically derived a “testing client” that interacts with servers and
checks whether they violate the specification. When developing the verified KVServer, we
ran it against the derived tester, which has helped shake out a liveness-related bug – when a
client pipelines more than one request in a single send(), the client connection may hang
without immediately processing the latter requests. This liveness bug was out of scope for the
verification of the KVServer due to the partial-correctness nature of VST specifications, but
we have patched the server implementation and related proofs to correctly handle pipelined
requests.
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