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Abstract
Program families (software product lines) are increasingly adopted by industry for building families
of related software systems. A program family offers a set of features (configured options) to control
the presence and absence of software functionality. Features in program families are often assigned at
compile-time, so their values can only be read at run-time. However, today many program families
and application domains demand run-time adaptation, reconfiguration, and post-deployment tuning.
Dynamic program families (dynamic software product lines) have emerged as an attempt to handle
variability at run-time. Features in dynamic program families can be controlled by ordinary program
variables, so reads and writes to them may happen at run-time.

Recently, a decision tree lifted domain for analyzing traditional program families with numerical
features has been proposed, in which decision nodes contain linear constraints defined over numerical
features and leaf nodes contain analysis properties defined over program variables. Decision nodes
partition the configuration space of possible feature values, while leaf nodes provide analysis
information corresponding to each partition of the configuration space. As features are statically
assigned at compile-time, decision nodes can be added, modified, and deleted only when analyzing
read accesses of features. In this work, we extend the decision tree lifted domain so that it can be used
to efficiently analyze dynamic program families with numerical features. Since features can now be
changed at run-time, decision nodes can be modified when handling read and write accesses of feature
variables. For this purpose, we define extended transfer functions for assignments and tests as well
as a special widening operator to ensure termination of the lifted analysis. To illustrate the potential
of this approach, we have implemented a lifted static analyzer, called DSPLNum2Analyzer, for
inferring numerical invariants of dynamic program families written in C. An empirical evaluation
on benchmarks from SV-COMP indicates that our tool is effective and provides a flexible way of
adjusting the precision/cost ratio in static analysis of dynamic program families.
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1 Introduction

A program family (software product line) is a set of similar programs, called variants, that is
built from a common code base [39]. The variants of a program family can be distinguished
in terms of features, which describe the commonalities and variability between the variants.
Program families are commonly seen in the development of commercial embedded and critical
system domains, such as cars, phones, avionics, medicine, robotics, etc. [1]. There are
several techniques for implementing program families. Often traditional program families
[11] support static feature binding and require to know the values of features at compile-
time. For example, #if directives from the C preprocessor CPP represent the most common
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14:2 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

implementation mechanism in practice [34]. At compile-time, a variant is derived by assigning
concrete values to a set of features relevant for it, and only then is this variant compiled or
interpreted. However, in an increasingly dynamic world, the increasing need for adaptive
software demands highly configurable and adaptive variability mechanisms, many of them
managed at run-time. Recent development approaches such as dynamic program families
(dynamic software product lines) [29, 28, 41, 7] support dynamic feature binding, and so
features can be assigned at run-time. This provides high flexibility to tailor a variant with
respect to available resources and user preferences on demand. Dynamic binding is often
necessary in long-running systems that cannot be stopped but have to adapt to changing
requirements [27]. For example, for a mobile device, we can decide at run-time which values
of features are actually required according to the location of the device. Hence, a dynamic
program family adapts to dynamically changing requirements by reconfiguring itself, which
may result in an infinite configuration process [10].

In this paper, we devise an approach to perform static analysis by abstract interpretation
of dynamic program families. Abstract interpretation [12, 38] is a powerful framework for
approximating the semantics of programs. It provides static analysis techniques that analyze
the program’s source code directly and without intervention at some level of abstraction.
The obtained static analyses are sound (all reported correct programs are indeed correct)
and efficient (with a good trade-off between precision and cost). However, static analysis
of program families is harder than static analysis of single programs, because the number
of possible variants can be very large (often huge) in practice. Recently, researchers have
addressed this problem by designing aggregate lifted (family-based) static analyses [5, 36, 47],
which analyze all variants of the family simultaneously in a single run. These techniques take
as input the common code base, which encodes all variants of a program family, and produce
precise analysis results for all variants. Lifted static analysis by abstract interpretation of
traditional (static) program families with numerical features has been introduced recently
[21]. The elements of the lifted abstract domain are decision trees, in which the decision
nodes are labelled with linear constraints over numerical features, whereas the leaf nodes
belong to a single-program analysis domain. The decision trees recursively partition the
space of configurations (i.e., the space of possible combinations of feature values), whereas
the program properties at the leaves provide analysis information corresponding to each
partition, i.e. to the variants (configurations) that satisfy the constraints along the path to
the given leaf node. Since features are statically bound at compile-time and only appear in
presence conditions of #if directives, new decision nodes can only be added by feature-based
presence conditions (at #if directives), and existing decision nodes can be removed when
merging the corresponding control flows again. The fundamental limitation of this decision
tree lifted domain [21] (as well as other lifted domains [4, 36, 47]) is that it cannot handle
dynamically bound features that can be changed at run-time.

To improve over the state-of-the-art, we devise a novel decision tree lifted domain for
analyzing dynamic program families with numerical features. Since features can now be
dynamically reconfigured and bound at run-time, linear constraints over features that occur
in decision nodes can be dynamically changed during the analysis. This requires extended
transfer functions for assignments and tests that can freely modify decision nodes and leafs.
Moreover, we need a special widening operator applied on linear constraints in decision nodes
as well as on analysis properties in leaf nodes to ensure that we obtain finite decision trees.
This way, we minimize the cost of the lifted analysis and ensure its termination.

The resulting decision tree lifted domain is parametric in the choice of the numerical
domain that underlies the linear constraints over numerical features labelling decision nodes,
and the choice of the single-program analysis domain for leaf nodes. In our implementation,
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we also use numerical domains for leaf nodes, which encode linear constraints over both
program and feature variables. We use well-known numerical domains, including intervals [12],
octagons [37], polyhedra [16], from the APRON library [33], to obtain a concrete decision
tree-based implementation of the lifted abstract domain. To demonstrate the feasibility of our
approach, we have implemented a lifted analysis of dynamic program families written in C for
the automatic inference of numerical invariants. Our tool, called DSPLNum2Analyzer1,
computes a set of possible numerical invariants, which represent linear constraints over
program and feature variables. We can use the implemented lifted static analyzer to check
invariance properties of dynamic program families in C, such as assertions, buffer overflows,
null pointer references, division by zero, etc. [14].

Since features behave as ordinary program variables in dynamic program families, they
can be also analyzed using off-the-shelf single-program analyzers. For example, we can use
numerical abstract domains from the APRON library [33] for analyzing dynamic program
families. However, these domains infer a conjunction of linear constraints over variables to
record the information of all possible values of variables and relationships between them.
The absence of disjunctions may result in rough approximations and very weak analysis
results, which may lead to imprecisions and the failure of showing the required program
properties. The decision tree lifted domain proposed here overcomes these limitations of
standard single-program analysis domains by adding weak forms of disjunctions arising from
feature-based program constructs. The elements of the decision tree lifted domain partition
the space of possible values of features inducing disjunctions into the leaf domain.

In summary, we make several contributions:
We propose a new parameterized decision tree lifted domain suited for handling program
families with dynamically bound features.
We develop a lifted static analyzer, DSPLNum2Analyzer, in which the lifted domain is
instantiated to numerical domains from the APRON library.
We evaluate our approach for lifted static analysis of dynamic program families written
in C. We compare (precision and time) performances of our decision tree-based approach
with the single-program analysis approach; and we show their concrete application in
assertion checking. Our lifted analysis provides an acceptable precision/cost tradeoff: we
obtain invariants with a higher degree of precision within a reasonable amount of time
than when using single-program analysis.

2 Motivating Example

We now illustrate the decision tree lifted domain through several motivating examples. The
code base of the program family sFAMILY is given in Fig. 1. sFAMILY contains one
numerical feature A whose domain is [0, 99] = {0, 1, . . . , 99}. Thus, there are a hundred
valid configurations K = {(A = 0), (A = 1), . . . , (A = 99)}. The code of sFAMILY contains
one #if directive that changes the current value of program variable y depending on how
feature A is set at compile-time. For each configuration from K, a variant (single program)
can be generated by appropriately resolving the #if directive. For example, the variant
corresponding to configuration (A=0) will have the assignment y := y+1 included in location

3⃝, whereas the variant corresponding to configuration (A = 10) will have the assignment
y := y-1 included in location 3⃝.

1 Num2 in the name of the tool refers to its ability to both handle Numerical features and to perform
Numerical client analysis of dynamic program families (DSPLs).
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14:4 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

1⃝ int x := 10, y := 5;
2⃝ while (x ≥ 0) {
3⃝ #if (A ≤ 5) y := y+1;
4⃝ #else y := y-1; #endif
5⃝ x := x-1;
6⃝ }

Figure 1 Program family sFAMILY.

1⃝ int x := 10, y := 5;
2⃝ A := [0, 9];
3⃝ while (x ≥ 0) {
4⃝ if (A ≤ 5) then y := y+A;
5⃝ else y := y-A;
6⃝ x := x-1; }
7⃝ if (A ≤ 5) then assert (y ≥ 5);
8⃝ else assert (y≤−60);

Figure 2 Dynamic program family dFAMILY.

A ≤ 5

y = 16 ∧ x = −1 y=−6 ∧ x=−1
(a) sFAMILY.

A ≤ 5

5≤y-A≤55 ∧ x=−1 6 ≤

A≤ 9

−85≤y+A≤−55 ∧ x=−1 ⊥

(b) dFAMILY.

Figure 3 Inferred decision trees at final program locations (solid edges = true, dashed edges =
false).

Assume that we want to perform lifted polyhedra analysis of sFAMILY using the decision
tree lifted domain introduced in [21]. The decision tree inferred at the final location of
sFAMILY is shown in Fig. 3a. Notice that inner decision nodes (resp., leaves) of the decision
tree in Fig. 3a are labeled with Polyhedra linear constraints over feature A (resp., over
program variables x and y). The edges of decision trees are labeled with the truth value of
the decision on the parent node; we use solid edges for true (i.e. the constraint in the parent
node is satisfied) and dashed edges for false (i.e. the negation of the constraint in the parent
node is satisfied). We observe that decision trees offer good possibilities for sharing and
interaction between analysis properties corresponding to different configurations, and so they
provide compact representation of lifted analysis elements. For example, the decision tree in
Fig. 3a shows that when (A≤5) the shared property in the final location is (y=16, x=−1),
whereas when (A>5) the shared property is (y=−6, x=−1). Hence, the decision tree-based
approach uses only two leaves (program properties), whereas the brute force enumeration
approach that analyzes all variants one by one will use a hundred program properties. This
ability for sharing is the key motivation behind the usage of decision trees in lifted analysis.

Consider the code base of the dynamic program family dFAMILY in Fig. 2. Similarly
to sFAMILY, dFAMILY contains one feature A with domain [0, 99]. However, feature A in
sFAMILY can only be read and occurs only in presence conditions of #if-s. In contrast,
feature A in dFAMILY can also be assigned and occurs freely in the code as any other
program variable (see locations 2⃝, 4⃝, 5⃝, and 7⃝). To perform lifted polyhedra analysis
of dFAMILY, we need to extend the decision tree lifted domain for traditional program
families [21], so that it takes into account the new possibilities of features in dynamic program
families. The decision tree inferred in program location 7⃝ of dFAMILY is depicted in
Fig. 3b. It can be written as the following disjunctive property in first order logic:(

0≤A≤5∧ 5≤y-A≤55∧ x=−1
)
∨

(
6≤A≤9∧−85≤y+A≤−55∧ x=−1

)
∨

(
9<A≤99∧⊥

)
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This invariant successfully confirms the validity of the given assertion. Note that, the
leaf node ⊥ abstracts only the empty set of (concrete) program states and so it describes
unreachable program locations. Hence, ⊥ in Fig. 3b means that the assertion at location 7⃝ is
unreachable when (A > 9). Also, as decision nodes partition the space of valid configurations
K, we implicitly assume the correctness of linear constraints that take into account domains
of features. For example, the decision node (A≤5) is satisfied when (A ≤ 5) ∧ (0≤A≤99),
whereas its negation is satisfied when (A > 5) ∧ (0≤ A≤ 99). The constraint (0≤ A≤ 99)
represents the domain of A.

Alternatively, dynamic program family dFAMILY can be analyzed using the off-the-shelf
(single-program) APRON polyhedra domain [33], such that feature A is considered as an
ordinary program variable. In this case, we obtain the invariant: A+y≤66 ∧ A-y≥−54 at
location 7⃝. However, this invariant is not strong enough to establish the validity of the
given assertion. This is because the different partitions of the set of valid configurations
have different behaviours and this single-program domain do not consider them separately.
Therefore, this domain is less precise than the decision tree lifted domain that takes those
differences into account.

3 A Language for Dynamic Program Families

Let F = {A1, . . . , An} be a finite and totaly ordered set of numerical features available in a
dynamic program family. For each feature A ∈ F, dom(A) ⊆ Z denotes the set of possible
values that can be assigned to A. Note that any Boolean feature can be represented as
a numerical feature B ∈ F with dom(B) = {0, 1}, such that 0 means that feature B is
disabled while 1 means that B is enabled. An assignment of values to all features represents
a configuration k, which specifies one variant of a program family. It is given as a valuation
function k : K = F → Z, which is a mapping that assigns a value from dom(A) to each
feature A, i.e. k(A) ∈ dom(A) for any A ∈ F. We assume that only a subset K of all
possible configurations are valid. An alternative representation of configurations is based
upon propositional formulae. Each configuration k ∈ K can be represented by a formula:
(A1 = k(A1)) ∧ . . . ∧ (An = k(An)). Given a Boolean feature B ∈ F, we often abbreviate
(B = 1) with formula B and (B = 0) with formula ¬B. The set of valid configurations K
can be also represented as a formula: ∨k∈Kk.

We consider a simple sequential non-deterministic programming language, which will be
used to exemplify our work. The program variables Var are statically allocated and the
only data type is the set Z of mathematical integers. To introduce dynamic variability into
the language, apart from reading the current values of features, it is possible to write into
features. The new statement “A:=ae” has a possibility to update the current configuration
(variant) k ∈ K by assigning a new arithmetic expression ae to feature A. This is known
as run-time reconfiguration [7]. We write k[A 7→ n] for the updated configuration that is
identical to k but feature A is mapped to value n. The syntax of the language is:

s ::= skip | x:=ae | s; s | if (be) then s else s | while (be) do s | A:=ae,

ae ::= n | [n, n′] | x ∈ Var | A ∈ F | ae⊕ae,

be ::= ae▷◁ae | ¬be | be ∧ be | be ∨ be

where n ranges over integers Z, [n, n′] over integer intervals, x over program variables Var, A

over numerical features F, and ⊕ ∈ {+,−, ∗, /}, ▷◁∈ {<,≤, =, ̸=}. Integer intervals [n, n′]
denote a random choice of an integer in the interval. The set of all statements s is denoted
by Stm; the set of all arithmetic expressions ae is denoted by AExp; the set of all boolean
expressions be is denoted by BExp.

ECOOP 2021



14:6 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

[[skip]]S = S

[[x := ae]]S = {⟨σ[x 7→ n], k⟩ | ⟨σ, k⟩ ∈ S, n ∈ [[ae]]⟨σ, k⟩}
[[s1 ; s2]]S = [[s2]]([[s1]]S)

[[if be then s1 else s2]]S = [[s1]]{⟨σ, k⟩ ∈ S | true ∈ [[be]]⟨σ, k⟩}∪
[[s2]]{⟨σ, k⟩ ∈ S | false ∈ [[be]]⟨σ, k⟩}

[[while be do s]]S = {⟨σ, k⟩ ∈ lfp ϕ | false ∈ [[be]]⟨σ, k⟩}
ϕ(X) = S ∪ [[s]]{⟨σ, k⟩ ∈ X | true ∈ [[be]]⟨σ, k⟩}

[[A := ae]]S = {⟨σ, k[A 7→n]⟩ | ⟨σ, k⟩∈S, n∈ [[ae]]⟨σ, k⟩, k[A 7→n]∈K}

Figure 4 Invariance semantics [[s]] : P(Σ × K) → P(Σ × K).

Semantics

We now define the semantics of a dynamic program family. A store σ : Σ = Var → Z
is a mapping from program variables to values, whereas a configuration k : K = F → Z
is a mapping from numerical features to values. A program state s = ⟨σ, k⟩ : Σ × K is a
pair consisting of a store σ ∈ Σ and a configuration k ∈ K. The semantics of arithmetic
expressions [[ae]] : Σ × K → P(Z) is the set of possible values for expression ae in a given
state. It is defined by induction on ae as a function from a store and a configuration to a set
of values:

[[n]]⟨σ, k⟩ = {n}, [[[n, n′]]]⟨σ, k⟩ = {n, . . . , n′}, [[x]]⟨σ, k⟩ = {σ(x)},
[[A]]⟨σ, k⟩ = {k(A)}, [[ae0⊕ae1]]⟨σ, k⟩ = {n0 ⊕ n1 | n0 ∈ [[ae0]]⟨σ, k⟩, n1 ∈ [[ae1]]⟨σ, k⟩}

Similarly, the semantics of boolean expressions [[be]] : Σ×K→ P({true, false}) is the set of
possible truth values for expression be in a given state.

[[ae0▷◁ae1]]⟨σ, k⟩ = {n0 ▷◁ n1 | n0 ∈ [[ae0]]⟨σ, k⟩, n1 ∈ [[ae1]]⟨σ, k⟩}
[[¬be]]⟨σ, k⟩ = {¬t | t ∈ [[be]]⟨σ, k⟩},
[[be0 ∧ be1]]⟨σ, k⟩ = {t0 ∧ t1 | t0 ∈ [[be0]]⟨σ, k⟩, t1 ∈ [[be1]]⟨σ, k⟩}
[[be0 ∨ be1]]⟨σ, k⟩ = {t0 ∨ t1 | t0 ∈ [[be0]]⟨σ, k⟩, t1 ∈ [[be1]]⟨σ, k⟩}

We define an invariance semantics [12, 38] on the complete lattice ⟨P(Σ×K),⊆,∪,∩, ∅, Σ×
K⟩ by induction on the syntax of programs. It works on sets of states, so the property of
interest is the possible sets of stores and configurations that may arise at each program
location. In Fig. 4, we define the invariance semantics [[s]] : P(Σ×K)→ P(Σ×K) of each
program statement. The states resulting from the invariance semantics are built forward:
each function [[s]] takes as input a set of states (i.e. pairs of stores and configurations)
S ∈ P(Σ×K) and outputs the set of possible states at the final location of the statement.
The operation k[A 7→n] (resp., σ[x 7→ n]) is used to update a configuration from K (resp., a
store from Σ). Note that a while statement is given in a standard fixed-point formulation
[12], where the fixed-point functional ϕ : P(Σ×K)→ P(Σ×K) accumulates the possible
states after another while iteration from a given set of states X.

However, the invariance semantics [[s]] is not computable since our language is Turing
complete. In the following, we present sound decidable abstractions of [[s]] by means of
decision tree-based abstract domains.
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4 Decision Trees Lifted Domain

Lifted analyses are designed by lifting existing single-program analyses to work on program
families, rather than on individual programs. Lifted analysis for traditional program families
introduced in [21] relies on a decision tree lifted domain. The leaf nodes of decision trees
belong to an existing single-program analysis domain, and are separated by linear constraints
over numerical features, organized in decision nodes. In Section 4.1, we first recall basic
elements of the decision tree lifted domain [21] that can be reused for dynamic program
families. Then, in Section 4.2 we consider extended transfer functions for assignments
and tests when features can freely occur in them, whereas in Section 4.3 we define the
extrapolation widening operator for this lifted domain. Finally, we define the abstract
invariance semantics based on this domain and show its soundness in Section 4.4.

4.1 Basic elements
Abstract domain for leaf nodes

We assume that a single-program numerical domain D defined over a set of variables V is
equipped with sound operators for concretization γD, ordering ⊑D, join ⊔D, meet ⊓D, the
least element (called bottom) ⊥D, the greatest element (called top) ⊤D, widening ∇D, and
narrowing △D, as well as sound transfer functions for tests (boolean expressions) FILTERD
and forward assignments ASSIGND. The domain D employs data structures and algorithms
specific to the shape of invariants (analysis properties) it represents and manipulates. More
specifically, the concretization function γD assigns a concrete meaning to each element in D,
ordering ⊑D conveys the idea of approximation since some analysis results may be coarser
than some other results, whereas join ⊔D and meet ⊓D convey the idea of convergence since
a new abstract element is computed when merging control flows. To analyze loops effectively
and efficiently, the convergence acceleration operators such as widening ∇D and narrowing△D
are used. Transfer functions give abstract semantics of expressions and statements. Hence,
ASSIGND(d : D, x:=ae : Stm) returns an updated version of d by abstractly evaluating x:=ae

in it, whereas FILTERD(d : D, be : BExp) returns an abstract element from D obtained
by restricting d to satisfy test be. In practice, the domain D will be instantiated with
some of the known numerical domains, such as Intervals ⟨I,⊑I⟩ [12], Octagons ⟨O,⊑O⟩
[46], and Polyhedra ⟨P,⊑P ⟩ [16]. The elements of I are intervals of the form: ±x ≥ β,
where x ∈ V, β ∈ Z; the elements of O are conjunctions of octagonal constraints of the form
±x1±x2 ≥ β, where x1, x2 ∈ V, β ∈ Z; while the elements of P are conjunctions of polyhedral
constraints of the form α1x1 + . . . + αkxk + β ≥ 0, where x1, . . . xk ∈ V, α1, . . . , αk, β ∈ Z.

We will sometimes write DV to explicitly denote the set of variables V over which domain D
is defined. In this work, we use domains DVar∪F for leaf nodes of decision trees that are defined
over both program and feature variables. The abstraction for numerical domains ⟨DVar∪F,⊑D⟩
is formally defined by the concretization-based abstraction ⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩.
We refer to [38] for a more detailed discussion of the definition of γD as well as other abstract
operations and transfer functions for Intervals, Octagons, and Polyhedra.

Abstract domain for decision nodes

We introduce a family of abstract domains for linear constraints CD defined over features
F, which are parameterized by any of the numerical domains D (intervals I, octagons O,
polyhedra P). For example, the finite set of polyhedral constraints is CP = {α1A1 + . . . +
αkAk + β ≥ 0 | A1, . . . Ak ∈ F, α1, . . . , αk, β ∈ Z, gcd(|α1|, . . . , |αk|, |β|) = 1}. The finite set
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14:8 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

CD of linear constraints over features F is constructed by the underlying numerical domain
⟨D,⊑D⟩ using the Galois connection ⟨P(CD),⊑D⟩ −−−−→←−−−−

αCD

γCD ⟨D,⊑D⟩, where P(CD) is the power
set of CD. The concretization function γCD : D→ P(CD) maps a conjunction of constraints
from D to a finite set of constraints in P(CD).

The domain of decision nodes is CD. We assume the set of features F = {A1, . . . , An} to
be totally ordered, such that the ordering is A1 > . . . > An. We impose a total order <CD

on CD to be the lexicographic order on the coefficients α1, . . . , αn and constant αn+1 of the
linear constraints, such that:

(α1 ·A1 + . . . + αn ·An + αn+1≥0) <CD (α′
1 ·A1 + . . . + α′

n ·An + α′
n+1≥0)

⇐⇒ ∃j > 0.∀i < j.(αi = α′
i) ∧ (αj < α′

j)

The negation of linear constraints is formed as: ¬(α1A1+. . . αnAn+β≥0) = −α1A1 −
. . .− αnAn − β − 1 ≥ 0. For example, the negation of A− 3 ≥ 0 is −A + 2 ≥ 0. To ensure
canonical representation of decision trees, a linear constraint c and its negation ¬c cannot
both appear as decision nodes. Thus, we only keep the largest constraint with respect to
<CD between c and ¬c.

Abstract domain for decision trees

A decision tree t ∈ T(CDF ,DVar∪F) over the sets CDF of linear constraints defined over F
and the leaf abstract domain DVar∪F defined over Var ∪ F is: either a leaf node ≪d≫
with d ∈ DVar∪F, or [[c : tl, tr]], where c ∈ CDF (denoted by t.c) is the smallest constraint
with respect to <CD appearing in the tree t, tl (denoted by t.l) is the left subtree of t

representing its true branch, and tr (denoted by t.r) is the right subtree of t representing its
false branch. The path along a decision tree establishes the set of configurations (those that
satisfy the encountered constraints), and the leaf nodes represent the analysis properties for
the corresponding configurations.

▶ Example 1. The following two decision trees t1 and t2 have decision and leaf nodes labelled
with polyhedral linear constraints defined over numerical feature A with domain Z and over
integer program variable y, respectively:

t1 = [[A≥4 :≪[y≥2]≫,≪[y =0]≫]], t2 = [[A≥2 :≪[y≥0]≫,≪[y≤0]≫]] ⌟

Abstract Operations

We define the following concretization-based abstraction ⟨P(Σ×K),⊆⟩ γT←− ⟨T(CD,D),⊑T⟩.
The concretization function γT of a decision tree t ∈ T(CD,D) returns a set of pairs ⟨σ, k⟩,
such that ⟨σ, k⟩ ∈ γD(d) and k satisfies the set C ∈ P(CD) of constraints accumulated along
the top-down path to the leaf node d ∈ D. More formally, the concretization function
γT(t) : T(CD,D)→ P(Σ×K) is defined as:

γT(t) = γT[K](t)

where K ∈ P(CD) is the set of configurations, i.e. the set of constraints over F taking into
account the domains of features. Function γT : P(CD)→ T(CD,D)→ P(Σ×K) is defined as:

γT[C](≪d≫)={⟨σ, k⟩ | ⟨σ, k⟩ ∈ γD(d), k |= C},
γT[C]([[c : tl, tr]])=γT[C ∪ {c}](tl) ∪ γT[C ∪ {¬c}](tr)

Note that k |= C is equivalent with αCD({k}) ⊑D αCD(C), thus we can check k |= C using
the abstract operation ⊑D of the numerical domain D.
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Algorithm 1 UNIFICATION(t1, t2, C).

1 if isLeaf(t1) ∧ isLeaf(t2) then return (t1, t2);
2 if isLeaf(t1) ∨ (isNode(t1) ∧ isNode(t2) ∧ t2.c <CD t1.c) then
3 if isRedundant(t2.c, C) then return UNIFICATION(t1, t2.l, C);
4 if isRedundant(¬t2.c, C) then return UNIFICATION(t1, t2.r, C);
5 (l1, l2) = UNIFICATION(t1, t2.l, C ∪ {t2.c});
6 (r1, r2) = UNIFICATION(t1, t2.r, C ∪ {¬t2.c});
7 return ([[t2.c : l1, r1]], [[t2.c : l2, r2]]);
8 if isLeaf(t2) ∨ (isNode(t1) ∧ isNode(t2) ∧ t1.c <CD t2.c) then
9 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2, C);

10 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2, C);
11 (l1, l2) = UNIFICATION(t1.l, t2, C ∪ {t1.c});
12 (r1, r2) = UNIFICATION(t1.r, t2, C ∪ {¬t1.c});
13 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);
14 else
15 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2.l, C);
16 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2.r, C);
17 (l1, l2) = UNIFICATION(t1.l, t2.l, C ∪ {t1.c});
18 (r1, r2) = UNIFICATION(t1.r, t2.r, C ∪ {¬t1.c});
19 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);

Other binary operations rely on the algorithm for tree unification [45] given in Algorithm 1,
which finds a common labelling of two trees t1 and t2 by forcing them to have the same
structure. It accumulates into the set C ∈ P(CD) (initially equal to K) the linear constraints
encountered along the paths of the decision trees possibly adding new constraints as decision
nodes (Lines 5–7, Lines 11–13) or removing constraints that are redundant with respect
to C (Lines 3,4,9,10,15,16). This is done by using the function isRedundant(c, C), which
checks whether the linear constraint c ∈ CD is redundant with respect to the set C by testing
αCD(C) ⊑D αCD({c}). Note that the tree unification does not lose any information.

▶ Example 2. After tree unification of t1 and t2 from Example 1, we obtain:

t1 = [[A ≥ 4 :≪[y ≥ 2]≫, [[A ≥ 2 :≪[y = 0]≫,≪[y = 0]≫]]]],
t2 = [[A ≥ 4 :≪[y ≥ 0]≫, [[A ≥ 2 :≪[y ≥ 0]≫,≪[y ≤ 0]≫]]]]

Note that the tree unification adds a decision node for A ≥ 2 to the right subtree of t1,
whereas it adds a decision node for A ≥ 4 to t2 and removes the redundant constraint A ≥ 2
from the resulting left subtree of t2. ⌟

Some binary operations are performed leaf-wise on the unified decision trees. Given two
unified decision trees t1 and t2, their ordering t1 ⊑T t2, join t1 ⊔T t2, and meet t1 ⊓T t2 are
defined recursively:

≪d1≫⊑T≪d2≫= d1⊑D d2, [[c : tl1, tr1]]⊑T [[c : tl2, tr2]]=(tl1⊑T tl2) ∧ (tr1⊑T tr2)
≪d1≫⊔T≪d2≫=≪d1⊔Dd2≫, [[c : tl1, tr1]]⊔T [[c : tl2, tr2]]=[[c : tl1⊔Ttl2, tr1⊔Ttr2]]
≪d1≫⊓T≪d2≫=≪d1⊓Dd2≫, [[c : tl1, tr1]]⊓T [[c : tl2, tr2]]=[[c : tl1⊓Ttl2, tr1⊓Ttr2]]

The top is a tree with a single ⊤D leaf: ⊤T =≪⊤D≫, while the bottom is a tree with a single
⊥D leaf: ⊥T =≪⊥D≫.
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▶ Example 3. Consider the unified trees t1 and t2 from Example 2. We have that t1⊑T t2
holds, t1⊔Tt2 =[[A≥4:≪[y≥0]≫, [[A≥2:≪[y≥0]≫,≪[y≤0]≫]]]], and t1⊓Tt2 =[[A≥4:≪[y≥2]≫
, [[A≥2:≪[y =0]≫,≪[y =0]≫]]]]. ⌟

The concretization function γT is monotonic with respect to the ordering ⊑T.

▶ Lemma 4. ∀t1, t2 ∈ T(CD,D): t1 ⊑T t2 =⇒ γT(t1) ⊆ γT(t2).

Proof. Let t1, t2 ∈ T such that t1 ⊑T t2. The ordering ⊑T between decision trees is
implemented by first calling the tree unification algorithm, and then by comparing the
decision trees “leaf-wise”. Tree unification forces the same structure on decision trees, so
all paths to the leaf nodes coincide between the unified decision trees. Let C ∈ P(CD)
denote the set of linear constraints satisfied along a path of the unified decision trees, and let
d1, d2 ∈ DVar∪F denote the leaf nodes reached following the path C within the first and the
second decision tree. Since t1 ⊑T t2, we have that d1 ⊑D d2 and so γD(d1) ⊆ γD(d2). The
proof follows from: {⟨σ, k⟩ | ⟨σ, k⟩ ∈ γD(d1), k |= C} ⊆ {⟨σ, k⟩ | ⟨σ, k⟩ ∈ γD(d2), k |= C}. ◀

Basic Transfer functions

We define basic lifted transfer functions for forward assignments (ASSIGNT) and tests
(FILTERT), when only program variables occur in given assignments and tests (boolean
expressions). Those basic transfer functions ASSIGNT and FILTERT modify only leaf nodes
since the analysis information about program variables is located in leaf nodes while the
information about features is located in both decision nodes and leaf nodes.

Algorithm 2 ASSIGNT(t, x:=ae, C) when vars(ae) ⊆ Var.

1 if isLeaf(t) then return ≪ASSIGNDVar∪F(t, x:=ae)≫;
2 if isNode(t) then
3 l = ASSIGNT(t.l, x:=ae, C ∪ {t.c});
4 r = ASSIGNT(t.r, x:=ae, C ∪ {¬t.c});
5 return [[t.c : l, r]]

Algorithm 3 FILTERT(t, be, C) when vars(be) ⊆ Var.

1 if isLeaf(t) then return ≪FILTERDVar∪F(t, be)≫;
2 if isNode(t) then
3 l = FILTERT(t.l, be, C ∪ {t.c});
4 r = FILTERT(t.r, be, C ∪ {¬t.c});
5 return [[t.c : l, r]]

Basic transfer function ASSIGNT for handling an assignment x:=ae is described by
Algorithm 2. Note that x ∈ Var is a program variable, and ae ∈ AExp may contain only
program variables, i.e. the set of variables that occur in ae is vars(ae) ⊆ Var. ASSIGNT
descends along the paths of the decision tree t up to a leaf node d, where ASSIGNDVar∪F is
invoked to substitute expression ae for variable x in d. Similarly, basic transfer function
FILTERT for handling tests be ∈ BExp when vars(be) ⊆ Var, given in Algorithm 3, is
implemented by applying FILTERDVar∪F leaf-wise, so that be is satisfied by all leaves.
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Algorithm 4 FILTERT(t, be, C) when vars(be) ⊆ F.

1 switch be do
2 case (ae0 ▷◁ ae1) || (¬(ae0 ▷◁ ae1)) do
3 J = FILTERDF(⊤DF , be); return RESTRICT(t, C, J)
4 case be1 ∧ be2 do
5 return FILTERT(t, be1, C) ⊓T FILTERT(t, be2, C)
6 case be1 ∨ be2 do
7 return FILTERT(t, be1, C) ⊔T FILTERT(t, be2, C)

Note that, in program families with static feature binding, features occur only in presence
conditions (tests) of #if directives. Thus, special transfer functions FEAT-FILTERT for
feature-based tests and IFDEFT for #if directives are defined in [21], which can add, modify,
or delete decision nodes of a decision tree. Therefore, the basic transfer function FILTERT
for handling tests be ∈ BExp when vars(be) ⊆ F coincides with FEAT-FILTERT in [21],
and is given in Algorithm 4. It reasons by induction on the structure of be. When be is a
comparison of arithmetic expressions (Lines 2,3), we use FILTERDF to approximate be, thus
producing a set of constraints J , which are then added to the tree t, possibly discarding
all paths of t that do not satisfy be. This is done by calling function RESTRICT(t, C, J),
which adds linear constraints from J to t in ascending order with respect to <CD as shown
in Algorithm 5. Note that be may not be representable exactly in CD (e.g., in the case of
non-linear constraints over F), so FILTERDF may produce a set of constraints approximating
it. When be is a conjunction (resp., disjunction) of two feature expressions (Lines 4,5) (resp.,
(Lines 6,7)), the resulting decision trees are merged by operation meet ⊓T (resp., join ⊔T).

The above transfer function and some of the remaining operations rely on function
RESTRICT given in Algorithm 5 for constraining a decision tree t with respect to a given set J

of linear constraints over F. The subtrees whose paths from the root satisfy these constraints
are preserved, while leafs of the other subtrees are replaced with bottom ⊥D. Function
RESTRICT(t, C, J) takes as input a decision tree t, a set C of constraints accumulated along
paths up to a node, a set J of linear constraints in canonical form that need to be added to
t. For each constraint j ∈ J , there exists a boolean bj that shows whether the tree should be
constrained with respect to j (bj is set to true) or with respect to ¬j (bj is set to false). At
each iteration, the smallest linear constraint j is extracted from J (Line 9), and is handled
appropriately based on whether j is smaller or equal (Line 11–15), or greater (Line 17–21) to
the constraint at the node of t we currently consider.

4.2 Extended transfer functions
We now define extended transfer functions ASSIGNT and FILTERT where assignments and
tests may contain both feature and program variables.

Assignments

Transfer function ASSIGNT(t, x:=ae, C), when vars(ae) ⊆ Var ∪ F, is given in Algorithm 6.
It accumulates the constraints along the paths in the decision tree t in a set of constraints
C ∈ P(CD) (Lines 8–10), which is initialized to K, up to the leaf nodes in which assignment
is performed by ASSIGNDVar∪F . That is, we first merge constraints from the leaf node t
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Algorithm 5 RESTRICT(t, C, J).

1 if isEmpty(J) then
2 if isLeaf(t) then return t;
3 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
4 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
5 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
6 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
7 return ([[t.c : l, r]]);
8 else
9 j = min<CD

(J) ;
10 if isLeaf(t) ∨ (isNode(t) ∧ j ≤CD t.c) then
11 if isRedundant(j, C) then return RESTRICT(t, C, J\{j});
12 if isRedundant(¬j, C) then return ≪⊥A≫;
13 if j =CD t.c then (if bj then t = t.l else t = t.r) ;
14 if bj then return ([[j : RESTRICT(t, C ∪ {j}, J\{j}),≪⊥A≫]]) ;
15 else return ([[j :≪⊥A≫, RESTRICT(t, C ∪ {¬j}, J\{j})]]) ;
16 else
17 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
18 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
19 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
20 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
21 return ([[t.c : l, r]]);

defined over Var∪F and constraints from decision nodes C ∈ P(CDF) defined over F, by using
⊎Var∪F operator. Thus, we obtain an abstract element from DVar∪F on which the assignment
operator of the domain DVar∪F is applied (Line 2).

Transfer function ASSIGNT(t, A:=ae, C), when vars(ae) ⊆ Var ∪ F, is implemented by
Algorithm 7. It calls the auxiliary function ASSIGN-AUXT(t, A:=ae, C), which performs the
assignment on each leaf node t merged with the set of linear constraints C collected along the
path to the leaf (Line 6). The obtained result d′ is a new leaf node (Line 7), and furthermore
it is projected on feature variables using ↾F operator to generate a new set of constraints
J = γCD(d′ ↾F) that needs to be substituted to C in the decision tree (Lines 8–13). The
substitution is done at each decision node, such that new sets of constraints J1 and J2 are
collected from its left and right subtrees, and then they are used as constraints in the given
decision node instead of t.c and ¬t.c. Let J = J1 ∩ J2 be the common (overlapping) set of
constraints that arise due to non-determinism (Line 11). When both J1\J and J2\J are
empty, the left and the right subtrees are joined (Line 12). Otherwise, the corresponding
tree is constructed using sets J1\J and J2\J and together with the set J are propagated to
the parent node (Line 13). Note that, if some of the sets of constraints J , J1\J , and J2\J is
empty in the returned trees in Lines 12-13, then it is considered as a true constraint so that
its true branch is always taken.

Tests

Transfer function FILTERT(t, be, C), when vars(be) ⊆ Var ∪ F, is described by Algorithm 8.
Similarly to ASSIGNT(t, x:=ae, C) in Algorithm 6, it accumulates the constraints along the
paths in the decision tree t in a set of constraints C ∈ P(CD) up to the leaf nodes (Lines
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Algorithm 6 ASSIGNT(t, x:=ae, C) when vars(ae) ⊆ Var ∪ F.

1 if isLeaf(t) then
2 d′ = ASSIGNDVar∪F(t ⊎Var∪F αCD(C), x:=ae);
3 return ≪d′≫
4 if isNode(t) then
5 l = ASSIGNT(t.l, x:=ae, C ∪ {t.c});
6 r = ASSIGNT(t.r, x:=ae, C ∪ {¬t.c});
7 return [[t.c : l, r]]

Algorithm 7 ASSIGNT(t, A:=ae, C) when vars(ae) ⊆ Var ∪ F.

1 (t,d) = ASSIGN-AUXT(t, A:=ae, C)
2 return t

3

4 Function ASSIGN-AUXT(t, A:=ae, C):
5 if isLeaf(t) then
6 d′ = ASSIGNDVar∪F(t ⊎Var∪F αCD(C), A:=ae)
7 return (≪d′≫, γCD(d′ ↾F))
8 if isNode(t) then
9 (t1, J1) = ASSIGN-AUXT(t.l, A:=ae, C ∪ {t.c})

10 (t2, J2) = ASSIGN-AUXT(t.r, A:=ae, C ∪ {¬t.c})
11 J = J1 ∩ J2
12 if isEmpty(J1\J) ∧ isEmpty(J2\J) then return

(
[[J, t1 ⊔T t2,⊥T]], ∅

)
13 else return

(
[[J1\J, t1, [[J2\J, t2,⊥T]]]], J

)

6–9). When t is a leaf node, test be is handled using FILTERDVar∪F applied on an abstract
element from DVar∪F obtained by merging constraints in the leaf node and decision nodes
along the path to the leaf (Lines 2). The obtained result d′ represents a new leaf node, and
furthermore d′ is projected on feature variables using ↾F operator to generate a new set of
constraints J that is added to the given path to d′ (Lines 3–5).

Note that the trees returned by ASSIGNT(t, x:=ae, C), ASSIGNT(t, A:=ae, C), and
FILTERT(t, be, C) are sorted (normalized) to remove possible multiple occurrences of a
constraint c, possible occurrences of both c and ¬c, and possible ordering inconsistences.
Moreover, the obtained decision trees may contain some redundancy that can be exploited to
further compress them. We use several optimizations [21, 45]. E.g., if constraints on a path
to some leaf are unsatisfiable, we eliminate that leaf node; if a decision node contains two
same subtrees, then we keep only one subtree and we also eliminate the decision node, etc.

▶ Example 5. Let us consider the following dynamic program family P ′:

1⃝ int y := [0, 4];
2⃝ if (A < 2) y := y+1; else y := y-1;
3⃝ A := y+1;
4⃝ y := A+1;
5⃝ A := 5; 6⃝

The code base of P ′ contains only one program variable Var = {y} and one numerical feature
F = {A} with domain dom(A) = [0, 99]. In Fig. 5 we depict decision trees inferred by
performing polyhedral lifted analysis using the lifted domain T(CP, P). We use FILTERT
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Algorithm 8 FILTERT(t, be, C) when vars(be) ⊆ Var ∪ F.

1 if isLeaf(t) then
2 d′ = FILTERDVar∪F(t ⊎Var∪F αCD(C), be);
3 J = γCD(d′ ↾F);
4 if isRedundant(J, C) then return ≪d′≫;
5 else return RESTRICT(≪d′≫, C, J\C);
6 if isNode(t) then
7 l = FILTERT(t.l, be, C ∪ {t.c});
8 r = FILTERT(t.r, be, C ∪ {¬t.c});
9 return [[t.c : l, r]]

[y = ⊤I]
(a) Loc. 1⃝.

[0 ≤ y ≤ 4]
(b) Loc. 2⃝.

A ≤ 1

[1 ≤ y≤5] [−1 ≤ y≤3]
(c) Loc. 3⃝.

A ≤ 6

[y=A-1] ⊥I

(d) Loc. 4⃝.

A ≤ 6

[y=A+1] ⊥I

(e) Loc. 5⃝.

A = 5

[1 ≤ y≤7] ⊥I

(f) Loc. 6⃝.

Figure 5 Decision tree-based (polyhedral) invariants at program locations from 1⃝ to 6⃝ of P ′.

from Algorithm 4 to analyze statement at location 2⃝ and infer the decision tree at location
3⃝. Then, we use ASSIGNT from Algorithm 7 to analyze the statement A := y+1 at 3⃝ and

infer the tree at location 4⃝. Note that, by using the left and right leafs in the input tree at
3⃝, we generate constraint sets J1 = (2 ≤ A ≤ 6) and J2 = (0 ≤ A ≤ 4) with the same leaf

nodes [y=A-1]. After applying reductions, we obtain the tree at location 4⃝. Recall that we
implicitly assume the correctness of linear constraints K that take into account domains of
features. Hence, node (A ≤ 6) is satisfied when (A ≤ 6) ∧ (0 ≤ A ≤ 99), where constraint
(0 ≤ A ≤ 99) represents the domains of A. Finally, statement y := A+1 at location 4⃝ is
analyzed using Algorithm 6 such that all leafs in the input tree are updated accordingly,
whereas statement A := 5 at location 5⃝ is analyzed using Algorithm 7 such that all leafs in
the input tree along the paths to them are joined to create new leaf that satisfies (A = 5).

4.3 Widening
The widening operator ∇T is necessary in order to extrapolate an analysis property over
configurations (values of features) and stores (values of program variables) on which it is not
yet defined. Hence, it provides a way to handle (potentially) infinite reconfiguration of features
inside loops. The widening t1∇T t2 is implemented by calling function WIDENT(t1, t2,K),
where t1 and t2 are two decision trees and K is the set of valid configurations. Function
WIDENT, given in Algorithm 9, first calls function LEFT_UNIFICATION (Line 1) that performs
widening of the configuration space (i.e., decision nodes), and then extrapolates the value
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of leafs by calling function WIDEN_LEAF (Line 2). Function LEFT_UNIFICATION (Lines 4–17)
limits the size of decision trees, and thus avoids infinite sequences of partition refinements.
It forces the structure of t1 on t2. This way, there may be information loss by applying
this function. LEFT_UNIFICATION accumulates into a set C (initially equal to K) the linear
constraints along the paths in the first decision tree, possibly adding nodes to the second
tree (Lines 10–17), or removing decision nodes from the second tree in which case the left
and the right subtree are joined (Lines 6–9), or removing constraints that are redundant
(Lines 7,8 and 11,12). Finally, function WIDEN_LEAF (Line 18–23) applies the widening ∇D
leaf-wise on the left unified decision trees.

Algorithm 9 WIDENT(t1, t2, C).

1 (t1, t2) =LEFT_UNIFICATION(t1, t2, C)
2 return WIDEN_LEAF(t1, t2, C)
3

4 Function LEFT_UNIFICATION(t1, t2, C):
5 if isLeaf(t1) ∧ isLeaf(t2) then return (t1, t2)
6 if isLeaf(t1) ∨ (isNode(t1) ∧ isNode(t2) ∧ t2.c <CD t1.c) then
7 if isRedundant(t2.c, C) then return LEFT_UNIFICATION(t1, t2.l, C)
8 if isRedundant(¬t2.c, C) then return LEFT_UNIFICATION(t1, t2.r, C)
9 return LEFT_UNIFICATION(t1, t2.l ⊔T t2.r, C)

10 if isLeaf(t2) ∨ (isNode(t1) ∧ isNode(t2) ∧ t1.c ≤CD t2.c) then
11 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2, C)
12 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2, C)
13 if t1.c <CD t2.c then t21 = t2; t22 = t2;
14 else t21 = t2.l; t22 = t2.r;
15 (l1, l2) = UNIFICATION(t1.l, t21, C ∪ {t1.c})
16 (r1, r2) = UNIFICATION(t1.r, t22, C ∪ {¬t1.c})
17 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]])

18 Function WIDEN_LEAF(t1, t2, C):
19 if isLeaf(t1) ∧ isLeaf(t2) then return (≪t1∇Dt2≫)
20 if isNode(t1) ∧ isNode(t2) then
21 l = WIDEN_LEAF(t1.l, t2.l, C ∪ {t1.c})
22 r = WIDEN_LEAF(t1.r, t2.r, C ∪ {¬t1.c})
23 return ([[t1.c : l, r]])

▶ Example 6. Consider the following two decision trees t1 and t2:

t1 = [[A>1 : [[A>5 :≪[y≥0]≫,≪[y≤0]≫]],≪[y =0]≫]]
t2 = [[A>2 :≪[y =1]≫,≪[y >1]≫]]

After applying the left unification of t1 and t2, the tree t2 becomes:

t2 = [[A>1 : [[A>5 :≪[y =1]≫,≪[y≥1]≫]],≪[y >1]≫]]

Note that when (A>1) and ¬(A>5), the left and right leafs of the input t2 are joined, thus
yielding the leaf [y≥1] in the left-unified t2. This represents an example of information-loss
in a left-unified tree. After applying the leaf-wise widening of t1 and left-unified t2, we obtain:

t = [[A>1 : [[A>5 :≪[y≥0]≫,≪⊤≫]],≪[y≥0]≫]] ⌟
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[[skip]]♮t = t

[[x := ae]]♮t = ASSIGNT(t, x:=ae,K)
[[s1 ; s2]]♮t = [[s2]]♮([[s1]]♮t)

[[if be then s1 else s2]]♮t = [[s1]]♮(FILTERT(t, be,K)) ⊔T [[s2]]♮(FILTERT(t,¬be,K))
[[while be do s]]♮t = FILTERT(lfp♮ ϕ♮,¬be,K)

ϕ♮(x) = t ⊔T [[s]]♮(FILTERT(x, be,K))
[[A := ae]]♮t = ASSIGNT(t, A:=ae,K)

Figure 6 Abstract invariance semantics [[s]]♮ : T → T.

4.4 Soundness
The operations and transfer functions of the decision tree lifted domain T(CD,D) can now be
used to define the abstract invariance semantics. In Fig. 6, we define the abstract invariance
semantics [[s]]♮ : T → T for each statement s. Function [[s]]♮ takes as input a decision tree
over-approximating the set of reachable states at the initial location of statement s, and
outputs a decision tree that over-approximates the set of reachable states at the final location
od s. For a while loop, lfp♮ ϕ♮ is the limit of the following increasing chain defined by the
widening operator ∇T (note that, t1∇T t2 = WIDENT(t1, t2,K)):

y0 = ⊥T, yn+1 = yn∇T ϕ♮(yn)

The lifted analysis (abstract invariance semantics) of a dynamic program family s is defined
as [[s]]♮tin, where the input tree tin at the initial location has only one leaf node ⊤D and
decision nodes define the set K. Note that tin =≪⊤D≫ if there are no constraints in K. This
way, by calculating [[s]]♮tin we collect the possible invariants in the form of decision trees at
all program locations.

We can establish soundness of the abstract invariant semantics [[s]]♮tin ∈ T(CD,D) with
respect to the invariance semantics [[s]]⟨Σ,K⟩ ∈ P(Σ×K), where ⟨Σ,K⟩ = {⟨σ, k⟩ | σ ∈ Σ, k ∈
K}, by showing that [[s]]⟨Σ,K⟩ ⊆ γT

(
[[s]]♮tin

)
. This is done by proving the following result. 2

▶ Theorem 7 (Soundness). ∀t ∈ T(CD,D) : [[s]]γT(t) ⊆ γT
(
[[s]]♮t

)
.

Proof. The proof is by structural induction on s. We consider the most interesting cases.
Case skip. [[skip]]γT(t) = γT(t) = γT([[skip]]♮t).
Case x:=ae. Let ⟨σ, k⟩ ∈ γT(t). By definition of [[x := ae]] in Fig. 4, it holds that
⟨σ[x 7→ n], k⟩ ∈ [[x := ae]]γT(t) for all n ∈ [[ae]]⟨σ, k⟩. Since ⟨σ, k⟩ ∈ γT(t), there must be
a leaf node d of t and a set of constraints C collected along the path to d, such that
⟨σ, k⟩ ∈ γD(d)∧ k |= C. By definition of the abstraction ⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩,
the soundness of ASSIGNDVar∪F , and by definition of ASSIGNT (cf. Algorithms 2 and 6), it
must hold ⟨σ[x 7→ n], k⟩ ∈ γT(ASSIGNT(t, x := ae,K)) due to the fact that Algorithms 2
and 6 invoke ASSIGNDVar∪F for every leaf node of t that may be merged with linear con-
straints from decision nodes found on the path from the root to that leaf. Thus, we
conclude [[x := ae]]γT(t) ⊆ γT(ASSIGNT(t, x:=ae,K)) = γT([[x := ae]]♮t).

2 Note that γT(tin) = ⟨Σ,K⟩.
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Case if be then s1 else s2. Let ⟨σ, k⟩∈γT(t) and ⟨σ′, k′⟩∈ [[if be then s1 else s2]]{⟨σ, k⟩}.
By structural induction, we have that [[s1]]γT(t′) ⊆ γT([[s1]]♮t′) and [[s2]]γT(t′) ⊆ γT([[s2]]♮t′)
for any t′. By definition of [[if be then s1 else s2]] in Fig. 4, we have that ⟨σ′, k′⟩ ∈
[[s1]]{⟨σ, k⟩} if true ∈ [[be]]⟨σ, k⟩ or ⟨σ′, k′⟩ ∈ [[s2]]{⟨σ, k⟩} if false ∈ [[be]]⟨σ, k⟩. Since
⟨σ, k⟩ ∈ γT(t), there must be a leaf node d of t and a set of constraints C collected
along the path to d, such that ⟨σ, k⟩ ∈ γD(d) ∧ k |= C. By definition of the abstraction
⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩, the soundness of FILTERDVar∪F , and by definition of
FILTERT (cf. Algorithms 2, 4, and 8), it must hold that ⟨σ, k⟩ ∈ γT(FILTERT(t, be,K)) or
⟨σ, k⟩ ∈ γT(FILTERT(t,¬be,K)) due to the fact that these Algorithms invoke FILTERDVar∪F

for every leaf node of t that may be merged with linear constraints from decision nodes
found on the path from the root to that leaf. Thus, by structural induction, we have
⟨σ′, k′⟩ ∈ γT([[s1]]♮FILTERT(t, be,K)) or ⟨σ′, k′⟩ ∈ γT([[s2]]♮FILTERT(t,¬be,K)), and so
⟨σ′, k′⟩ ∈ γT([[s1]]♮FILTERT(t, be,K) ⊔T [[s2]]♮FILTERT(t,¬be,K)). Thus, we conclude that
[[if be then s1 else s2]]γT(t) ⊆ γT([[s1]]♮FILTERT(t, be,K) ⊔T [[s2]]♮FILTERT(t,¬be,K)) =
γT([[if be then s1 else s2]]♮t).

Case while e do s. We show that, given a t ∈ T, for all x ∈ T, we have: ϕ(γT(x)) ⊆
γT(ϕ♮(x)). By structural induction, we have [[s]]γT(x) ⊆ γT([[s]]♮x).
Let ⟨σ, k⟩ ∈ γT(x) and ⟨σ′, k′⟩ ∈ ϕ(γT(x)). By definition of ϕ(x) in Fig. 4, we have
that ⟨σ′, k′⟩ ∈ [[s]]{⟨σ, k⟩} and true ∈ [[be]]⟨σ, k⟩. By definition of the abstraction
⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩, the soundness of FILTERDVar∪F , and by definition of
FILTERT (cf. Algorithms 2, 4, and 8), it must hold that ⟨σ, k⟩ ∈ γT(FILTERT(x, be,K))
by using similar arguments to “if” case. Thus, by structural induction, we have ⟨σ′, k′⟩ ∈
γT([[s]]♮FILTERT(x, be,K)), and so ⟨σ′, k′⟩ ∈ γT(ϕ♮(x)). We conclude ϕ(γT(x)) ⊆ γT(ϕ♮(x)).
The proof that [[while e do s]]γT(t) ⊆ γT([[while e do s]]♮(t)) follows from the definition
of ∇T (cf. Algorithm 9) that invokes the sound ∇DVar∪F operator on leaf nodes. ◀

▶ Example 8. Let us consider the following dynamic program family P ′′:

1⃝ A := [10, 15];
2⃝ int x := 10, y;
3⃝ if (A>12) then y := 1 else y := −1;
4⃝ while 5⃝ (x > 0) {
6⃝ A := A+y;
7⃝ x := x-1;
8⃝ } 9⃝

which contains one feature A with domain [0,99]. Initially, A can have a value from [10,15].
We can calculate the abstract invariant semantics [[P ′′]]♮, thus obtaining invariants from
T in all locations. We show the inferred invariants in locations 5⃝ and 9⃝ in Figs. 7 and
8, respectively. The decision tree at the final location 9⃝ shows that we have x=0 ∧ y=1
when 23 ≤A≤ 25 and x=0 ∧ y=-1 when 0 ≤A≤ 2 on program exit. On the other hand,
if we analyze P ′′ using single-program polyhedra analysis, where A is considered as an
ordinary program variable, we obtain the following less precise invariant on program exit:
x=0 ∧ −1≤y≤1 ∧ 5≤2A− 5y≤45. ⌟

5 Evaluation

We evaluate our decision tree-based approach for analyzing dynamic program families by
comparing it with the single-program analysis approach, in which dynamic program families
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13 ≤

A ≤ 25

[13 ≤ A+x≤25 ∧ 0 ≤ x≤10 ∧ y=1] 0 ≤

A ≤ 12

[0 ≤ A-x≤2 ∧ 0 ≤ x≤10 ∧ y=− 1] ⊥I

Figure 7 Invariant at loc. 5⃝ of P ′′.

23 ≤

A ≤ 25

[x=0 ∧ y=1] 0 ≤

A ≤ 2

[x=0 ∧ y=− 1] ⊥I

Figure 8 Invariant at loc. 9⃝ of P ′′.

are considered as single programs and features as ordinary program variables. The evaluation
aims to show that our decision tree-based approach can effectively analyze dynamic program
families and that it achieves a good precision/cost tradeoff with respect to the single-program
analysis. Specifically, we ask the following research questions:
RQ1: How precise are inferred invariants of our decision tree-based approach compared to

single-program analysis?
RQ2: How time efficient is our decision tree-based approach compared to single-program

analysis?
RQ3: Can we find practical application scenarios of using our approach to effectively analyze

dynamic program families?

Implementation

We have developed a prototype lifted static analyzer, called DSPLNum2Analyzer, which
uses the lifted domain of decision trees T(CD,D). The abstract operations and transfer
functions of the numerical domain D (e.g., intervals, octagons, and polyhedra) are provided
by the APRON library [33]. Our proof-of-concept implementation is written in OCaml
and consists of around 8K lines of code. The current front-end of the tool provides only a
limited support for arrays, pointers, recursion, struct and union types, though an extension
is possible. The only basic data type is mathematical integers, which is sufficient for our
purposes. DSPLNum2Analyzer automatically computes a decision tree from the lifted
domain in every program location. The analysis proceeds by structural induction on the
program syntax, iterating while-s until a fixed point is reached. We apply delayed widening
[13], which means that we start extrapolating by widening only after some fixed number of
iterations we explicitly analyze the loop’s body. The precision of the obtained invariants
for while-s is further improved by applying the narrowing operator [13]. We can tune the
precision and time efficiency of the analysis by choosing the underlying numerical abstract
domain (intervals, octagons, polyhedra), and by adjusting the widening delay. The precision
of domains increases from intervals to polyhedra, but so does the computational complexity.

Experimental setup and Benchmarks

All experiments are executed on a 64-bit Intel®CoreT M i7-8700 CPU@3.20GHz × 12, Ubuntu
18.04.5 LTS, with 8 GB memory. All times are reported as averages over five independent
executions. The implementation, benchmarks, and all results obtained from our experiments
are available from [20]: https://zenodo.org/record/4718697#.YJrDzagzbIU. We use
three instances of our lifted analyses via decision trees: AT(I), AT(O), and AT(P ), which
use intervals, octagons, and polyhedra domains as parameters. We compare our approach

https://zenodo.org/record/4718697#.YJrDzagzbIU
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Table 1 Performance results for single analysis A(I) vs. lifted analysis AT(I) with one and two
features on selected e-mail variant simulators. All times are in seconds.

Benchmark LOC
A(I), 0 feature AT(I), 1 feature AT(I), 2 features

Time Unrea. Rea. Time Unrea. Mix Time Unrea. Mix

e-mail_spec0 2645 16.2 80 48 29.3 80 48(1:1) 50.7 80 48(3:1)

e-mail_spec6 2660 18.8 6 26 23.6 16 16(1:1) 24.2 16 16(3:1)

e-mail_spec8 2665 14.6 12 20 19.1 12 20(1:1) 27.7 12 20(2:2)

e-mail_spec11 2660 15.2 160 96 24.7 160 96(1:1) 32.1 160 96(3:1)

e-mail_spec27 2630 14.5 384 128 28.4 384 128(1:1) 38.4 384 128(3:1)

with three instances of the single-program analysis based on numerical domains from the
APRON library [33]: A(I), A(O), and A(P ), which use intervals, octagons, and polyhedra
domains, respectively. The default widening delay is 2.

The evaluation is performed on a dozen of C numerical programs collected from several
categories of the 9th International Competition on Software Verification (SV-COMP 2020)
3: product lines, loops, loop-invgen (invgen for short), loop-lit (lit for short), and
termination-crafted (crafted for short). In the case of product lines, we selected
the e-mail system [26], which has been used before to assess product-line verification in
the product-line community [2, 3, 48]. The e-mail system has eight features: encryption,
decryption, automatic forwarding, e-mail signatures, auto responder, keys, verify, and address
book, which can be activated or deactivated at run-time. There are forty valid configurations
that can be derived. For the other categories, we have first selected some numerical programs,
and then we have considered some of their integer variables as features. Basically, we selected
those program variables as features that control configuration decisions and can influence
the outcome of the given assertions. Tables 1 and 2 present characteristics of the selected
benchmarks in our empirical study, such as: the file name (Benchmark), the category where
it is located (folder), number of features (|F|), total number of lines of code (LOC).

We use the analyses A(D) and AT(D) to evaluate the validity of assertions in the
selected benchmarks. Let d ∈ D be a numerical invariant found before the assertion
assert(be). An analysis can establish that the assertion is: (1) “unreachable”, if d = ⊥D;
(2) “correct” (valid), if d ⊑D FILTERD(d, be), meaning that the assertion is indeed valid
regardless of approximations; (3) “erroneous” (invalid), if d⊑D FILTERD(d,¬be), meaning
that the assertion is indeed invalid; and (4) “I don’t know”, otherwise, meaning that the
approximations introduced due to abstraction prevent the analyzer from giving a definite
answer. We say that an assertion is reachable if one of the answers (2), (3), or (4) is obtained.
In the case of the lifted analysis AT(D), we may also obtain mixed assertions when different
leaf nodes of the resulting decision trees yield different answers.

Results

E-mail system. We use a variant simulator that has been generated with variability encoding
from the e-mail configurable system [26]. Variability encoding is a process of encoding
compile-time (static) variability of a configurable system as run-time (dynamic) variability
in the variant simulator [48, 32]. In this setting, compile-time features are encoded with
global program variables, and static configuration choices (e.g., #if-s) are encoded with

3 https://sv-comp.sosy-lab.org/2020/
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conditional statements in the target language (if statements). We consider five specifications
of the e-mail system encoded as assertions in SV-COMP. As variant simulators use standard
language constructs to express variability (if statements), they can be analyzed by standard
single-program analyzers A(D). We also analyze the variant simulators using our lifted
analysis AT(D), where some of the feature variables are considered as real features. This
way, our aim is to obtain more precise analysis results. For effectiveness, we consider only
those feature variables that influence directly the specification as real features. Specifically,
we consider variant simulators with one and two separate features, and five specifications:
spec0, spec6, spec8, spec11, and spec27. For example, spec0 checks whether a message
to be forwarded is readable, while spec27 checks whether the public key of a person who sent
a message is available. For each specification, many assertions appear in the main function
after inlining.

Table 1 shows the results of analyzing the selected e-mail simulators using A(I) and
AT(I) with one and two features. In the case of A(I), we report the number of assertions
that are found “unreachable”, denoted by Unrea., and reachable (“correct”/“erroneous”/“I
don’t know”), denoted by Rea.. In the case of AT(I), we report the number of “unreachable”
assertions, denoted by Unrea., and mixed assertions, denoted by Mix. When a reachable
(“correct”/“erroneous”/“I don”t know”) assertion is reported by A(I), the lifted analysis
AT(I) may give more precise answer by providing the information for which variants that
assertion is reachable and for which is unreachable. We denote by (n : m) the fact that one
assertion is unreachable in n variants and reachable in m variants. Note that feature variables
in variant simulators are non-deterministically initialized at the beginning of the program
and then can be only read in guards of if statements, thus AT(I) may only find more precise
answers than A(I) with respect to the reachability of assertions. That is, it may find more
assertions that are unreachable in various variants. See the following paragraph “Other
benchmarks” for examples where “I don’t know” answers by A(I) are turned into definite
(“correct”/“erroneous”) answers by AT(I). We can see in Table 1 that, for all reachable
assertions found by A(I), we obtain more precise answers using the lifted analysis AT(I).
For example, A(I) finds 128 “I don’t know” assertions for spec27, while AT(I) with one
feature Keys finds 128 (1:1) mixed assertions such that each assertion is “unreachable” when
Keys=0 and “I don’t know” when Keys=1. By using AT(I) with two features Keys and
Forward, we obtain 128 (3:1) mixed assertions, with each assertion is “unreachable” when
Keys = 0 ∨ Forward = 0. Similar analysis results are obtained for the other specifications.
For all specifications, the analysis time increases by considering more features. In particular,
we find that AT(I) with one feature is in average 1.6 times slower than A(I), and AT(I)
with two features is in average 2.2 times slower than A(I). However, we also obtain more
precise information when using AT(I) with respect to the reachability of assertions in various
configurations.
Other benchmarks. We now present the performance results for the benchmarks from
other SV-COMP categories. The program half_2.c from loop-invgen category is given
in Fig. 9a. When we perform a single-program analysis A(P ), we obtain the “I don’t
know” answer for the assertion. However, if n is considered as a feature and the lifted
analysis AT(P ) is performed on the resulting dynamic program family, we yield that the
assertion is: “correct” when n ≥ 1, “erroneous” when n ≤ −2, and “I don’t know” answer
otherwise. We observe that the lifted analysis considers two different behaviors of half_2.c
separately: the first when the loops are executed one or more times, and the second
when the loops are not executed at all. Hence, we obtain definite answers, “correct” and
“erroneous”, for the two behaviors. The program seq.c from loop-invgen category is
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n:=[-Max, Max];
int k:=n, i:=0;
while (i<n) {

k := k-1;
i := i+2; }

int j:=0;
while (j<n/2) {

k := k-1;
j := j+1; }

assert
(

k≥−1
)
;

(a) half_2.c.

n0:=[-Max, Max];
n1:=[-Max, Max];
int i0:=0, k=0;
while (i0<n0) {

i0 := i0+1;
k := k+1; }

int i1:=0;
while (i1<n1) {

i1 := i1+1;
k := k+1; }

int j1:=0;
while (j1<n0+n1) {

j1 := j1+1;
k := k-1; }

assert
(

k==0
)
;

(b) seq.c.

n:=[0, Max];
int a := 2;
int i, j:=10, sn=0;
for (i=1; i ≤ n; i++) {

if (j>n) then

sn := sn+a;
j := j-1;

}

assert (sn == n*a);

(c) sum01_bug02.c.

n:=[-Max, Max];
int x := n;
int y=0;
while (n>0) {

n := n-1;
y := y+1; }

}

assert (y == x);

(d) count_up_down ∗ .c.

res:=[-Max, Max];
cnt:=[-Max, Max];
int a:=res, b:=cnt;
while (cnt>0) {

cnt := cnt-1;
res := res+1; }

assert
(

res==a+b
)
;

(e) hhk2008.c.

x:=[-Max, Max];
x:=-50;
int y:=[-9,9];
while (x<0) {

x := x+y;
y := y+1; }

assert
(

y≤60+x
)
;

(f) gsv2008.c.

c:=[-Max, Max];
int x := [−Max, Max];
if (c ≥ 2) then {

while (x+c ≥ 2) {
x := x-c;
c := c+1; }

}

assert (x ≤ −3);

(g) Mysore.c.

x:=[-Max, Max];
y:=[-Max, Max];
int oldx;
while (x ≥ 0 ∧ y ≥ 0) }

oldx := x;
x := y-1; }
y := oldx-1; }

assert (x+y ≤ 0);

(h) Copenhagen.c.

Figure 9 Benchmarks from SV-COMP. All underlined variables are considered as features in the
corresponding dynamic program families.

given in Fig. 9b. When seq.c is analyzed using A(P ), we obtain “I don’t know” for the
assertion. When n0 and n1 are considered as features with the domains [−Max, +Max],
AT(P ) gives more precise results for the assertion. In particular, the assertion is “correct”
when (1 ≤ n0 ≤ Max ∧ 1 ≤ n1 ≤ Max) or (−Max ≤ n0 ≤ 0 ∧ −Max ≤ n1 ≤ 0), whereas
the assertion is “erroneous” when (n0 + n1 ≤ 0 ∧ (n0 ≥ 1 ∨ n1 ≥ 1)) and we obtain “I don’t
know” when (n0 + n1 ≥ 1 ∧ (n0 ≤ 0 ∨ n1 ≤ 0)). The program sum01_bug02.c from loops
is given in Fig. 9c. A(P ) reports “I don’t know” for the assertion, while AT(P ), when n

is a feature with domain [0, Max], reports more precise answers: “erroneous” when n ≥ 9,
“correct” when n = 0, and “I don’t know” otherwise. A(P ) reports “I don’t know” for the
assertion in count_up_down*.c from loops, which is given in Fig. 9d. Still, AT(P ) when n

is a feature with domain [−Max, Max] reports: “correct” answer when n = 0 at the final
location, “erroneous” when n ≤ −1, and “I don’t know” otherwise. Similarly, A(P ) reports “I
don’t know” for the assertions in hhk2008.c and gsv2008.c from loop-lit (given in Figs. 9e
and 9f). However, AT(P ) reports more precise answers in both cases. We consider res and
cnt (resp., x) as features with domains [−Max, Max] for hhk2008.c (resp., gsv2008.c), and
we obtain “correct” answer when cnt = 0 for hhk2008.c (resp., when x ≥ 0 for gsv2008.c),
“erroneous” answer when cnt ≤ −1 for hhk2008.c, and “I don’t know” answer otherwise.
Finally, AT(P ) reports more precise answers than A(P ) for Mysore.c and Copenhagen.c
from termination crafted category (given in Figs. 9g and 9h).
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Table 2 Performance results for single analysis A(D) vs. lifted analysis AT(D) and AT(O) on
selected benchmarks from SV-COMP.All times are in seconds.

Benchmark folder |F| LOC
A(P ) AT(O) AT(P )

Time Ans. Time Ans. Time Ans.

half_2.c invgen 1 25 0.008 × 0.014 ≃ 0.017 ✓

seq.c invgen 2 30 0.015 × 0.084 ✓ 0.045 ✓

sum01*.c loops 1 15 0.008 × 0.009 ✓ 0.041 ✓

count_up_d*.c loops 1 15 0.002 × 0.008 ≃ 0.011 ✓

hhk2008.c lit 2 20 0.003 × 0.073 ≃ 0.032 ✓

gsv2008.c lit 1 20 0.002 × 0.007 ✓ 0.015 ✓

Mysore.c crafted 1 30 0.0008 × 0.002 ✓ 0.004 ✓

Copenhagen.c crafted 2 30 0.002 × 0.012 ≃ 0.021 ✓

Although for all benchmarks AT(P ) infers more precise invariants, still AT(P ) also takes
more time than A(P ), as expected. On our benchmarks, this translates to slow-downs (i.e.,
A(P ) vs. AT(P )) of 4.9 times in average when |F| = 1, and of 6.9 times in average when
|F| = 2. However, in some cases the more efficient version AT(O), which uses octagons, can
also provide more precise results than A(P ). For example, AT(O) for half_2.c gives the
precise “erroneous” answer like AT(P ) but gives “I don’t know” in all other cases, whereas
AT(O) for count_up_down*.c gives the precise “erroneous” and “unreachable” answers like
AT(P ) but it turns the “correct” answer from AT(P ) into an “I don’t know”. On the other
hand, for gsv2008.c and Mysore.c, AT(O) gives the same precise answers as AT(P ), but
twice faster. Furthermore, for sum01*.c, even AT(I), which uses intervals, gives the same
precise answers like AT(P ), but with the similar time performance as A(P ). Table 2 shows
the running times of A(P ), AT(O), and AT(P ), as well as whether the corresponding analysis
precisely evaluates the given assertion – denoted by Ans. (we use ✓ for yes, ≃ for partially
yes, and × for no).

Discussion

Our experiments demonstrate that the lifted analysis AT(D) is able to infer more precise
numerical invariants than the single-program analysis A(D) while maintaining scalability
(addresses RQ1). As the result of more complex abstract operations and transfer functions
of the decision tree domain, we observe slower running times of AT(D) as compared to A(D).
However, this is an acceptable precision/cost tradeoff, since the more precise numerical
invariants inferred by AT(D) enables us to successfully answer many interesting assertions in
all considered benchmarks (addresses RQ2 and RQ3). Furthermore, our current tool is only
a prototype implementation to experimentally confirm the suitability of our approach. Many
abstract operations and transfer functions of the lifted domain can be further optimized,
thus making the performances of the tool to improve.

Our current tool supports a non-trivial subset of C, and the missing constructs (e.g.
pointers, struct and union types) are largely orthogonal to the solution (lifted domains).
In particular, these features complicate the abstract semantics of single-programs and
implementation of the domains for leaf nodes, but have no impact on the semantics of
variability-specific constructs and the lifted domains we introduce in this work. Therefore,
supporting these constructs would not provide any new insights to our evaluation. If a
real-world tool based on abstract interpretation (e.g. ASTREE [14]) becomes freely available,
we can easily transfer our implementation to it.
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6 Related Work

Decision-tree abstract domains have been a topic of research in the field of abstract inter-
pretation in recent times [25, 15, 9, 46]. Decision trees have been applied for the disjunctive
refinement of interval (boxes) domain [25]. That is, each element of the new domain is a
propositional formula over interval linear constraints. Decision tree abstract domains has also
been used to enable path dependent static analysis [15, 9] by handling disjunctive analysis
properties. Binary decision tree domains [9] can express disjunctive properties depending on
the boolean values of the branch (if) conditions (represented in decision nodes) with sharing
of the properties of the other variables (represented in leaf nodes). Segmented decision
tree abstract domains [15] are generalizations of binary decision tree domains and array
segmentation, where the choices in decision nodes are made on the values of decision variables
according to the ranges specified by a symbolic segmentation. A pre-analysis is used to find
decision variables and their symbolic segmentation. The choices for a given decision variable
are made only once along a given path. The decision tree lifted domain proposed here can
be considered as a generalization of the segmented decision tree domain, where the choices
for a given feature variable can be made several times along a given path and arbitrary
linear constraints over feature variables can be used to represent the choices in decision
nodes. Moreover, linear constraints labelling decision nodes here are semantically inferred
during the static analysis and do not necessarily syntactically appear in the code. Urban and
Mine [46] use decision tree-based abstract domains to prove program termination. Decision
nodes are labelled with linear constraints that split the memory space and leaf nodes contain
affine ranking functions for proving program termination. The APRON library has been
developed by Jeannet and Mine [33] to support the application of numerical abstract domains
in static analysis. The ELINA library [44] represents an another efficient implementation of
numerical abstract domains.

Several lifted analyses based on abstract interpretation have been proposed recently
[36, 23, 18, 19, 21] for analyzing traditional program families with #ifdef-s. A formal
methodology for derivation of tuple-based lifted analyses from existing single-program analyses
phrased in the abstract interpretation framework has been proposed by Midtgaard et. al. [36].
They use a lifted domain that is a |K|-fold product of an existing single-program domain.
That is, the elements of the lifted domain are tuples that contain one separate component for
each configuration of K. A more efficient lifted analysis by abstract interpretation obtained
by improving representation via BDD-based lifted domains is proposed by Dimovski [18, 19].
The elements of the lifted domain are BDDs, in which decision nodes are labelled with Boolean
features and leaf nodes belong to an existing single-program domain. BDDs offer more
possibilities for sharing and interaction between analysis properties corresponding to different
configurations. The above lifted analyses are applied to program families with only Boolean
features. The work [21] extends prior approaches by using decision tree-based lifted domain
for analyzing program families with numerical features. In this case, the elements of the
lifted domain are decision trees, in which decision nodes are labelled with linear constraints
over numerical features and leaf nodes belong to an existing single-program domain. This
domain is also successfully applied to program synthesis for resolving program sketches [22].
Several other efficient implementations of the lifted dataflow analysis from the monotone
framework (a-la Kildall) [35] have also been proposed in the SPL community. Brabrand et
al. [5] have introduced a tuple-based lifted dataflow analysis, whereas an approach based
on using variational data structures (e.g., variational CFGs, variational data-flow facts) [47]
have been used for achieving efficient dataflow computation of some real-world systems.
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Finally, SPLLIFT [4] is an implementation of the lifted dataflow analysis formulated within
the IFDS framework, which is a subset of dataflow analyses with certain properties, such as
distributivity of transfer functions.

Dynamic program families (DSPLs) have been introduced by Hallsteinsen et al. [28] in
2008 as a technique that uses the principles of traditional SPLs to build variants adaptable
at run-time. Since then, the research on DSPLs has been mainly focussed on developing
mechanisms for implementing DSPLs and for defining suitable feature models.

There are many strategies for implementing variability in traditional SPLs, such as:
annotative approach via the C-preprocessor’s #ifdef construct [34], compositional approach
via the feature-oriented programming (FOP) [40] and the delta-oriented programming (DOP)
[43], etc. The extensions of FOP and DOP to support run-time reconfiguration and software
evolution as found in DSPLs has been proposed by Rosenmuller et al. [42] and Damiani
et al [17]. In this work, we extend the annotative approach via #ifdef-s to implement
variability in DSPLs. The set of valid configurations K of a program family with Boolean
and numerical features is typically described by a numerical feature model, which represents
a tree-like structure that describes which combinations of feature’s values and relationships
among them are valid. Several works address the need to change the structural variability
(feature model) at run-time. One approach [30] relies on the Common Variability Language
(CVL) as an attempt for modelling variability transformations by allowing different types
of substitutions to re-configure new versions of base models. Cetina et al. [8] also propose
several strategies for modelling runtime transformations using CVL. Helleboogh et al. [31]
use a meta-variability model to support dynamic feature models, where high-level constructs
enable the addition and removal of variants on-the-fly to the base feature model. In this work,
we disregard syntactic representations of the set K as feature model, as we are concerned
with behavioural analysis of program families rather than with implementation details of
K. Therefore, we use the set-theoretic view of K that is syntactically fixed a priori. This is
convenient for our purpose here. To the best of our knowledge, our work is pioneering in
studying specifically designed behavioral analysis of dynamic program families.

7 Conclusion

In this work, we employ decision trees and widely-known numerical abstract domains for the
automatic analysis of C program families that contain dynamically bound features. This
way, we obtain a decision tree lifted domain for handling dynamic program families with
numerical features. Based on a number of experiments on benchmarks from SV-COMP, we
have shown that our lifted analysis is effective and performs well on a wide variety of cases
by achieving a good precision/cots tradeoff. The lifted domain T(CD,D) is very expressive
since it can express weak forms of disjunctions arising from feature-based constructs.

In the future, we would like to extend the lifted abstract domain to also support non-linear
constraints, such as congruences and non-linear functions (e.g. polynomials, exponentials)
[6]. Note that the lifted analysis AT(D) reports constraints defined over features for which
a given assertion is valid, fails, or unreachable. The found constraints take into account
the value of features at the location before the given assertion. By using a backward lifted
analysis [24, 38], which propagates backwards the found constraints by AT(D), we can infer
the necessary preconditions (defined over features) in the initial state that will guarantee the
assertion is always valid, fails, or unreachable.
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