
λ-Based Object-Oriented Programming
Marco Servetto #Ñ

ECS, Victoria University of Wellington, New Zealand

Elena Zucca # Ñ

DIBRIS, University of Genova, Italy

Abstract
We show that a minimal subset of Java 8 excluding classes supports a simple and natural programming
style, which we call λ-based object-oriented programming. That is, on one hand the programmer can
use tuples in place of objects (class instances), and tuples can be desugared to lambdas following their
classical encoding in the λ-calculus. On the other hand, lambdas can be equipped with additional
behaviour, thanks to the fact that they may implement interfaces with default methods, hence
inheritance and dynamic dispatch are still supported. We formally describe the encoding by a
translation from FJλ, an FJ variant including lambdas and interfaces with default methods, to FJ−

λ ,
a subset of FJλ with no classes (hence no constructors and fields). We provide several examples
illustrating this novel programming style.

2012 ACM Subject Classification Software and its engineering → Object oriented languages; Software
and its engineering → Functional languages

Keywords and phrases Programming paradigms, Java, lambda-calculus

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.21

Category Pearl

Acknowledgements We warmly thank the anonymous referees for suggestions which greatly improved
the paper.

1 Introduction

Java 8 introduced lambdas and default interface methods. In Java 8, an interface with exactly
one abstract method can be instantiated with the convenient lambda syntax. Lambdas are
intended to represent first class functions; indeed, when such abstract method is invoked
on a lambda, the body is executed as in standard application (β-rule). However, thanks to
default methods, also interfaces with multiple methods can be instantiated with lambdas. In
this way, lambdas also behave as regular objects, making it possibile to write object-oriented
code without any need of classes and constructor invocations. Consider the following Java
code example:

interface Person {
String name ();
default String greet (){

return "Hi , I’m "+this.name ()+"; nice to meet you!";
}

}
Person bob = ()->"bob";
bob.greet ();

interface GamerPerson extends Person {
default String greet (){

return "Hi , I’m "+this.name ()+"; and I love computer games!";
}

}
Person p = ( GamerPerson )()->" charles ";
p.greet (); // dynamic dispatch

© Marco Servetto and Elena Zucca;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marco.servetto@vuw.ac.nz
https://people.wgtn.ac.nz/marco.servetto
https://orcid.org/0000-0003-1458-2868
mailto:elena.zucca@unige.it
https://person.dibris.unige.it/zucca-elena/
https://orcid.org/0000-0002-6833-6470
https://doi.org/10.4230/LIPIcs.ECOOP.2021.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 λ-Based Object-Oriented Programming

In this example, the lambda, rather than be used as a first-class function, serves a
role similar to an object with a name field. Correspondingly, the unique abstract method
String name(); behaves as a getter, even though a field name is never really declared.

At first, this programming style may look an odd curiosity or even a form of misguided
code obfuscation. We started playing with these kinds of programming patterns as a funny
exercise, to see how far we could push this; unexpectedly, in the end we realized that it is
possible to program in a pretty natural way in such a paradigm, hence in a small Java 8 subset
excluding two of the most iconic Java keywords: class and new. We call this programming
style λ-based object-oriented programming: it can be seen as a novel way to conciliate OO
and functional programming, that neither simply encodes one approach into the other, nor
just merges constructs from both paradigms.

In other words, our aim is to explore a programming style which is basically functional
(first-class values are only lambdas) but where functions may have, besides application,
additional behaviour, thus supporting inheritance and dynamic binding, hence code reuse, as
in object-oriented programming. Moreover, our aim is to present (and encode) this approach
by a minimal and clean calculus. In other words, our focus here is not on increasing expressive
power, but on simplicity: encoding the same features with fewer constructs.

To illustrate λ-based object-oriented programming, first of all in Section 2 we present a
core language supporting this paradigm, by means of a simple calculus FJ−

λ , in the style of
Featherweight Java (FJ) [8]. An FJ−

λ program is a table of interfaces, and expressions are only
variables, method calls and lambdas. In a sense, this expression language is lambda-calculus
enriched by the foundational feature of object-oriented programming, that is, dynamically
dispatched method call. While some methods are implemented with lambdas, most code is
provided inside (default) method bodies keeping the natural code organization typical of OO
programming.

Then, we enrich FJ−
λ by classes, fields and constructors, obtaining an extended calculus

FJλ, and in Section 3 we show a simple translation from FJλ to FJ−
λ , thus formally proving

that such constructs are redundant language features. The translation is inspired by the
classical encoding of tuples in the lambda-calculus; however, some additional work is needed
to use the encoding in a language with only nominal types (interface names). We show that
the translation preserves typing and semantics.

In Section 4, we provide several programming examples illustrating how to rely on this
paradigm in a real language, notably a Java 8 subset excluding classes. Finally, in Section 5
we discuss possibile extensions and relation with other works, and in Section 6 we summarize
the contribution of the paper and outline future directions.

2 The FJ−
λ and FJλ calculi

Syntax, reduction rules, and typing rules of FJ−
λ are given in Figure 1. We write Ds as

metavariable for D1 . . . Dn, n ≥ 0, and analogously for other sequences.
As anticipated, an FJ−

λ program is a table of interfaces, and expressions are only variables,
method calls and λ-expressions (lambdas). In Java, λ-abstractions can only be typed when
occurring in a context requiring a given type (called the target type). Here, we directly
assume lambdas to be annotated with their interface type, since the issue of deriving this
annotation from the context is orthogonal to our topic, and has been faced in other works
[2, 6]. Moreover, in the calculus we use the lambda-calculus syntax, both to help readability
and to stress that it can be seen both as a subset of Java, and, conversely, as a λ-calculus
equipped with an interface table.



M. Servetto and E. Zucca 21:3

P ::= Ds program
D ::= interface I extends Is { IMs } declaration
IM ::= MH; | default M interface method
MH ::= T m(T1 x1, . . . , Tn xn) method header
M ::= MH {return e;} method
R, S, T ::= I type
e ::= x | e.m(es) | (λxs.e)I expression

v ::= (λxs.e)I value
E ::= [ ].m(es) | v.m(vs [ ] es) evaluation context
Γ ::= x1:T1 . . . xn:Tn typing context

(ctx)
e→P e′

E [e]→P E [e′] (invk) v.m(vs)→P e[xs←vs][this←v]
typeof(v) = T
mbodyP(T, m) = ⟨xs, e⟩

(β) v.m(vs)→P e[xs←vs][this←v]
v = (λxs.e)I

!absmethP(I ) = m

(t-prog)
⊢P D1 . . . ⊢P Dn

⊢ P P = D1 . . . Dn

(t-interface)
I ⊢P IM1 . . . I ⊢P IMn

⊢P interface I extends Is { IM1 . . . IMn }
Is ⊆ inames(P)

(t-mh) T ⊢P R m(T1 x1, . . . , Tn xn)

{R, T1, . . . , Tn} ⊆ tnames(P)
(T ≤P S and mtypeP(S, m) = Ts → R′) imply

Ts = T1 . . . Tn

R′ = R

(t-abs)
T ⊢P MH
T ⊢P MH;

(t-default)
T ⊢P M

T ⊢P default M

(t-meth)
⊢P MH Γ ⊢P e : R′

T ⊢P MH {return e;}

MH = R m(T1 x1, . . . , Tn xn)
Γ = x1:T1 . . . xn:Tn this:T
R′ ≤P R

(t-var) Γ ⊢P x : T Γ(x) = T

(t-invk)
Γ ⊢P ei : Ti ∀i ∈ 0..n

Γ ⊢P e0.m(e1, . . . , en) : R
mtypeP(T0, m) = S1 . . . Sn → R
Ti ≤P Si ∀i ∈ 1..n

(t-lam)
Γ[x1:T1 . . . xn:Tn] ⊢P e : S

Γ ⊢P (λx1 . . . xn.e)I : I
!absmtypeP(I ) = T1 . . . Tn → R
S ≤P R

Figure 1 Formal definition of FJ−
λ .

ECOOP 2021



21:4 λ-Based Object-Oriented Programming

The formal definition is straightforward. Given a program P, inames(P) and tnames(P)
are the declared interface names and type names; typeof(v) the (dynamic) type of value v,
which for a lambda is its annotation; mtypeP(T, m) and mbodyP(T, m) the type and body of
method m in T, if any; !absmethP(I ) and !absmtypeP(I ), only defined if I has exactly one
abstract method1, the name and type of such method; finally, ≤P the reflexive and transitive
closure of the extends relation. For brevity, we omit the straightforward formal definitions.
Only note that we require mtype and mbody, defined as in FJ, to be actually functions;
this constraint implies that an interface I cannot inherit the same method m with different
signatures, and cannot inherit more than one default method m, unless m is declared by I as
well.

We denote by E [e] the expression obtained by filling the hole of the context E with e, and
by e[xs←vs] the expression obtained from e by replacing variables xs with values vs. Typing
contexts are assumed to represent finite maps from variables into types, hence the notation
Γ(x) is well-defined; we denote by Γ[Γ′] the type context which coincides with Γ′ when the
latter is defined, with Γ otherwise.

In Figure 2, we extend FJ−
λ with classes, fields and constructor invocations. New

productions are emphasized, and we only write the new reduction and typing rules. The
extended calculus is similar to other calculi extending FJ with interfaces and lambdas [2, 6].
Here, we do not include subclassing, since our focus is to show that the role of classes
as object’s generators can be replaced by instantiating functional interfaces with lambdas;
instead, we expect the role of subclassing for code reuse to be achieved by interface inheritance
and default methods.

The reduction relation →P is defined on closed expressions. The calculus enjoys standard
properties; notably, reduction is deterministic, and the type system is sound, that is, reduction
of (closed) well-typed expressions with respect to well-typed programs does not go stuck, as
formally stated below. We write →⋆

P for the transitive and reflexive closure of →P.

▶ Theorem 1 (Determinism). If e→P e1 and e→P e2, then e1 = e2.

Proof. By structural induction on e, observing that at most one (instantation of meta-)rule
is applicable. ◀

▶ Theorem 2 (Soundness). If ⊢ P, and ∅ ⊢P e : T, and e→⋆
P e′, then either e′ is a value or

e′ →P e′′ for some e′′.

Proof. Straightforward adaptation of the proof provided for a richer language in [2]. ◀

Set v∞ ::= v | ∞. The relation e⇒P v∞, associating to an expression e its semantics in
P, is defined as follows:

e⇒P v if e→⋆
P v

e⇒P ∞ if e has an infinite reduction sequence in P.
If ⊢ P, and ∅ ⊢P e : T, then Theorem 1 and Theorem 2 above ensure that the semantics of e
in P is well-defined, that is, e⇒P v∞ for a unique v∞.

1 That is, is a functional interface.



M. Servetto and E. Zucca 21:5

P ::= Ds program
D ::= interface I extends Is { IMs } declaration

| class C implements Is {Fs Ms}
IM ::= MH | default M interface method
MH ::= T m (T1 x1, . . . , Tn xn) method header
M ::= MH {return e;} method
F ::= T f ; field

T ::= I | C type
e ::= x | e.m(es) | (λxs.e)I | new C (es) | e.f expression
v ::= (λxs.e)I | new C (vs) value
E ::= [ ].m(es) | v.m(vs [ ] es) | new C (vs [ ] es) | [ ].f evaluation context

Γ ::= x1:T1 . . . xn:Tn typing context

(field)
new C (v1 . . . vn).fi →P vi

fieldsP(C ) = T1 f1; . . . Tn fn;
i ∈ 1..n

(t-class)
I ⊢P M1 . . . I ⊢P Mn

⊢P class C implements Is {T1 f1; . . . Tk fk; M1 . . . Mn}
T1 . . . Tk ⊆ tnames(P)
Is ⊆ inames(P)

(t-field)
Γ ⊢P e : C

Γ ⊢P e.fi : Ti

fieldsP(C ) = T1 f1; . . . Tn fn;
i ∈ 1..n

(t-new)
Γ ⊢P ei : Ti ∀i ∈ 1..n

Γ ⊢P new C (e1, . . . , en) : C
fieldsP(C ) = S1 f1; . . . Sn fn;
Ti ≤P Si ∀i ∈ 1..n

Figure 2 Formal definition of FJλ.

ECOOP 2021



21:6 λ-Based Object-Oriented Programming

3 Translation

First we explain the translation on a simple example: a class Pair with two fields, where
for simplicity types A and B can be thought to be primitive types, e.g., int and boolean,
respectively.
class Pair {

A fst;
B snd;

}

An instance of a class with n fields is essentially a tuple with n components, so our
translation is based on the classical encoding of tuples in λ-calculus: a tuple is a function
which, taken a selector, returns the corresponding component. In the example, a pair, e.g.,
mypair = ⟨1, true⟩, is encoded by the function λs.s 1 true, and there are only two expected
selectors: fst = λx.λy.x and snd = λx.λy.y. For instance, mypair fst reduces to 1.

We consider now the problem of assigning types to the functions encoding tuples and
selectors. Of course this is easy if we have polymorphic types. However, in each concrete
case, there are only n different types of selectors which can be given as argument to the
tuple, and for each of them a different result type. In other words, union types are enough.
In a language with algebraic types, such as, e.g., Haskell, the same effect can be achieved by
constructors which act as embeddings, as shown below.
type A = Int
type B = Bool
data AorB = FromA A | FromB B

type Fst = A -> B -> A
type Snd = A -> B -> B
data Sel = FromFst Fst | FromSnd Snd

type Pair = Sel -> AorB
--mypair = <1,True >
mypair :: Pair
mypair ( FromFst s) = FromA (s 1 True)
mypair ( FromSnd s) = FromB (s 1 True)

getFst :: Pair -> A
getFst p =

let FromA a = p ( FromFst (\a b -> a))
in a

getSnd :: Pair -> B
getSnd p =

let FromB b = p ( FromSnd (\a b -> b))
in b

Note that the getter methods could in principle raise a pattern matching error, but this will
never happen at runtime.

The encoding in Java is based on the same idea. However, in this case the union of
the result types is encoded by an interface, and the embedding of an element of type A
into AorB is the constant function (FromA)()->a. On the other hand, it is enough to have
the interface Sel corresponding to the various selectors, since in this case the embedding is
silently obtained by subtyping.



M. Servetto and E. Zucca 21:7

interface AorB{
default A toA (){ /* error */}
default B toB (){ /* error */}

}

interface FromA extends AorB{ A toA ();}
interface FromB extends AorB{ B toB (); }

interface Sel { AorB apply(A a, B b);}}

interface Pair {
default A getFst (){

return this.apply (( Sel )(a,b)->( FromA )()->a). toA ();}
default B getSnd (){

return this.apply (( Sel )(a,b)->( FromB )()->b). toB ();}
AorB apply (Sel sel );
}

For instance, the object new Pair(myA,myB) is encoded by (Pair)s->s.apply(myA,myB). Also
in this case the getter methods could in principle raise an error, but this will never happen at
runtime. Hence, the body of the default methods toA and toB could be arbitrary well-typed
expressions, which will be never executed, as indicated by the /*error*/ comment. In the
minimal syntax of FJ−

λ , such arbitrary expressions could be the recursive calls this.toA()
and this.toB(). In full Java, an exception could be thrown.

This pattern is applied for all classes with n ≥ 2 fields, as formally defined below; for
each such class n + 3 interfaces are generated. Classes with zero or one field have specific
(simpler) encodings, explained below.

As shown in the Person example before, a class with a single field can be encoded by an
interface which defines a single abstract no-args getter method for such field, and an instance
of the class can be encoded by a constant function which returns the field value.

A class with no fields, in a functional setting, has only one instance, and offers a set of
methods to be invoked on such unique instance, which hence can be seen as class methods.The
corresponding interface offers such methods, but also needs an abstract method, since the
unique instance of the class should be encoded by a lambda. Note that an arbitrary abstract
method, and an arbitrary lambda providing the implementation could be used, since the
method will never be called. We conventionally use a method dummy with argument and
return type Void, where Void is an empty interface, and as dummy lambda the identity
function. In the following examples in full Java, we use a void dummy() method and the
empty block as body of the dummy lambda.

We provide now the formal translation, denoted J_K. To the aim of this translation, we
assume that, in the FJλ program to be translated, arguments of constructor invocations
are only variable or values, since otherwise (possibly non terminating or stuck) reduction
of arguments would be not simulated in the translation. This is not a restriction, since
general constructor invocations can be encoded by auxiliary methods in FJλ, and could be
translated adding local variable declarations in FJ−

λ . Moreover, as mentioned above, we
assume a declaration interface Void {}. Finally, we assume that all the interface and
method names introduced by the translation are fresh, that is, they do not clash with existing
names. We first provide the translation of class declarations. The C at the beginning of
interface names is necessary to get unique names. Moreover, the to methods are decorated
by indexes, rather than field types as in the introductory example, since two fields could
have the same type.

ECOOP 2021



21:8 λ-Based Object-Oriented Programming

Jinterface I extends Is {IM1 . . . IMn}K = interface I extends Is {JIM1K . . . JIMnK}

Jclass C implements Is {MH1 {return e1;} . . . MHn {return en;}}K = (zero fields)
interface C extends Is {

default MH1 {return Je1K;}
. . .
default MHn {return JenK;}
Void dummy(Void x);

}

Jclass C implements Is {T f ; MH1 {return e1;} . . . MHn {return en;}}K = (one field)
interface C extends Is {

default MH1 {return Je1K;}
. . .
default MHn {return JenK;}
T getf ();

}

Jclass C implements Is
{T1 f1; . . . Tk fk; MH1 {return e1;} . . . MHn {return en;}}K = (≥ 2 fields)

interface CUnion {
default T1 to1(){return /*error*/;}
. . .
default Tk tok(){return /*error*/;}

interface CFrom1 extends CUnion{to1();}
. . .
interface CFromk extends CUnion{tok();}
interface CSel{CUnion apply(T1 x1, . . . , Tk xk);}
interface C extends Is {

default MH1 {return Je1K;}
. . .
default MHn {return JenK;}
default T1 getf1(){return this.apply((λx1 . . . xk.(λ.x1)CFromk)CSel).to1();}
. . .
default Tk getfk(){return this.apply((λx1 . . . xk.(λ.xk)CFromk)CSel).tok();}
CUnion apply(CSel s);

}

The translation of expressions is given below.

Set xv ::= x | v.
JxK = x
Je.m(e1, . . . , en)K = JeK.m(Je1K, . . . , JenK)
J(λxs.e)I K = (λxs.JeK)I

Jnew C ()K = (λx.x)C

Jnew C (xv)K = (λ.JxvK)C

Jnew C (xv1, . . . xvn)K = (λs.s.apply(Jxv1K, . . . , JxvnK))C

Je.f K = JeK.getf ()

The translation preserves typing and semantics, as formally stated below.

▶ Theorem 3. If ⊢ P and ∅ ⊢P e : T, then the following hold:
1. ⊢ JPK.
2. ∅ ⊢JPK JeK : T.
3. e⇒P v∞ iff JeK⇒JPK Jv∞K, where J∞K =∞.



M. Servetto and E. Zucca 21:9

Proof. The first two points can be proved by straightforward induction on the typing rules.
The third point is a consequence of the following properties:

e is a value iff JeK is a value
if e→P e′, then JeK→⋆

JPK Je′K
The first property trivially holds, since e is closed, whereas the second one can be proved by
structural induction on e. We show the most interesting case, which is e.f . There are the
following subcases:

Rule (ctx) is applicable, hence we have e→P e′ and e.f →P e′.f . By inductive hypothesis,
JeK →⋆

JPK Je′K in n steps. Moreover, Je.f K = JeK.getf (), which is of shape E [JeK], then
the thesis follows by applying n times rule (ctx).
Rule (field) is applicable. We distinguish the following subcases:

n = 1: we have new C (v).f →P v and fieldsP(C ) = T f ;; moreover, Jnew C (v).f K =
(λ.)C .getf (). By the second clause in the translation of classes, class C exists in JPK
and has a unique abstract method getf , hence (λ.)C .getf ()→JPK JvK by rule (β).
n > 1: we have new C (v1 . . . vn).f →P vi and fieldsP(C ) = T1 f1; . . . Tn fn;. Moreover,
Jnew C (v1 . . . vn).f K = (λs.s.apply(Jv1K, . . . , JvnK))C .getfi(). By the third clause in
the translation of classes, classes C , CFromTi, and CSel exist in JPK with the specified
methods.
Hence, (λs.s.apply(Jv1K, . . . , JvnK))C .getfi() →⋆

JPK JviK by the following reduction
sequence in JPK, where we write the computational rule applied at each step:

(λs.s.apply(Jv1K, . . . , JvnK))C .getfi() → (invk)

(λs.s.apply(Jv1K, . . . , JvnK))C .apply((λx1 . . . xn.(λ.xi)CFromTi )CSel).toi() → (β)

(λx1 . . . xk.(λ.xi)CFromTi )CSel.apply(Jv1K, . . . , JvnK).toi() → (β)

(λ.JviK)CFromTi .toi() → (β)

JviK ◀

4 Programming with only lambdas

We describe how this programming paradigm can be effectively used. In these examples, we
assume a language extended with numbers and string literals, local variable declarations,
type inference for lambdas and generics as in Java. First of all, to avoid to have to manually
encode tuples by lambdas, we expect this encoding to be provided by libraries. That is,
we expect to have library types Tuple2<T1,T2>, Tuple3<T1,T2,T3>, and so on. In this way,
the programmer can just extend the opportune Tuple interface to encode a class with many
fields.

// Library code:
// case for 2 fields
interface Union2 <T1 ,T2 >{

default T1 to1 (){ /* error */}
default T2 to2 (){ /* error */}
}

interface From2_1 <T1 ,T2 > extends Union2 <T1 ,T2 >{ T1 to1 (); }
interface From2_2 <T1 ,T2 > extends Union2 <T1 ,T2 >{ T2 to2 (); }
interface Tuple2 <T1 ,T2 >{

Union2 <T1 ,T2 > apply(Sel2 <T1 ,T2 > sel );
default T1 get1 (){

return this.apply(
(x1 ,x2)->( From2_1 <T1 ,T2 >)()->x1

ECOOP 2021



21:10 λ-Based Object-Oriented Programming

). to1 ();
}
default T2 get2 (){ /*as above , using From2_2 /to2 ()*/}
}

interface Sel2 <T1 ,T2 >{ Union2 <T1 ,T2 > apply(T1 f1 , T2 f2); }

... // case for 3 or more fields

interface Tuple0 { void dummy (); }

interface Function <T,R>{ R apply(T t);} //as in Java 8
interface Bifunction <T1 ,T2 ,R>{ R apply(T1 t1 , T2 t2 );}
// ... other functional interfaces

With such simple standard library, we can write an extended version of the example in the
introduction as follows:

interface Person extends Tuple2 <String ,Integer >{
default String name (){ return this.get1 ();}
default Integer age (){ return this.get2 ();}
default String greet (){ return "Hi , I’m "+this.name ();}
...
}

Bifunction <String ,Integer ,Person > makePerson
= (name ,age)->s->s.apply(name ,age );

Person bob = makePerson .apply("bob" ,23);
bob.greet ();

The code above shows that it is easy to encode classes with fields and instantiate them. It is
also easy to abstract over object creation and provide factories, as the Bifunction above.

In the second example, we show how we can encode private methods; a library may want
to encapsulate the richer ConcretePoint implementation and only expose a minimal Point
interface.

// Point library code:
/**Point docs */
interface Point{ Integer x(); Integer y(); Integer distance (Point p);}
/** ConcretePoint is only for internal library usage
and may change in a future release */
interface ConcretePoint extends Point , Tuple2 <Integer ,Integer >{

// point implemented with a Tuple
default Integer x(){ return this.get1 ();}
default Integer y(){ return this.get2 ();}
default Integer distance (Point p){/* uses aux */}
default Integer aux(Point p){..} //" private " method
}

/** NewPoint docs do not need to mention ConcretePoint */
interface NewPoint extends Tuple0 , Bifunction <Integer ,Integer ,Point >{

default Point apply( Integer x, Integer y){
return ( ConcretePoint ) s->s.apply(x,y);
}

}
// User code
Point myPoint = (( NewPoint )() - >{}). apply (3 ,5);
myPoint . distance ( myPoint );//ok
// myPoint .aux( myPoint );// no



M. Servetto and E. Zucca 21:11

The interface NewPoint extends Tuple0, leaving the dummy method abstract, hence, as explained
before, is expected to be instantiated by the dummy lambda. Moreover, it extends BiFunction,
providing an implementation for the abstract method apply.

Note how implementation hiding is encoded by using subtyping and factories. This
approach is a natural extension of what is discussed in TraitRecordJ [3], where methods of
classes are implicitly private, and the only way to publicly expose behaviour is to implement
an interface method.

Likely, the interface ConcretePoint should not be public. However, even with ConcretePoint
exposed to the user, the implementation of Point is still hidden, and the user in no way can
be aware that a Point is indeed a ConcretePoint, or call the ConcretePoint.aux method on
an object provided by NewPoint.

Finally, we show that in this programming style recursive types are as easy as in plain
Java. This is important to notice, since in other encodings of objects mutually recursive
types are not trivial to handle. Consider the standard implementation of lists as pairs
consisting of head and tail.

interface List <T>{
T head ();
List <T> tail ();
boolean isEmpty ();
default List <T> add(T elem ){

return (Cons <T>)s->s.apply(elem ,this );
}

}
interface Empty <T> extends List <T>, Tuple0 {

default T head (){ /* error */}
default List <T> tail (){ /* error */}
default boolean isEmpty (){ return true ;}

}
interface Cons <T> extends Tuple2 <T,List <T>>, List <T> {

default T head (){ return this.get1 ();}
default List <T> tail (){ return this.get2 ();}
default boolean isEmpty (){ return false ;}

}
... // usage example
List <Integer > list = (( Empty <Integer >)() - >{}). add (1). add (2). add (3);

Interestingly, we can also easily encode the iconic functional match:

interface List <T>{
<R> R match(Supplier <R> onEmpty , Bifunction <T,List <T>,R> onCons );
default List <T> add(T elem ){

return (Cons <T>)s->s.apply(elem ,this );
}

}
interface Empty <T> extends List <T>, Tuple0 {

<R> R match(Supplier <R> onEmpty , Bifunction <T,List <T>,R> onCons ){
return onEmpty .get ();

}
}
interface Cons <T> extends Tuple2 <T,List <T>>, List <T> {

<R> R match(Supplier <R> onEmpty , Bifunction <T,List <T>,R> onCons ){
return onCons .apply(this.get1 (), this.get2 ());

}
}

ECOOP 2021



21:12 λ-Based Object-Oriented Programming

... // example methods using match
default Integer sumAll (List <Integer > l){

return l.match(
()->0,
(head ,tail)->head+ sumAll (tail)

);
}
default Integer getHead (List <Integer > l, Integer orElse ){

return l.match(
()->orElse ,
(head ,tail)->head

);
}

The above example employs a variant of the visitor pattern [5] getting popular in Java
8, which provides functions as arguments to the visitor. The point to be noted here is that
the λ-based paradigm makes this approach very natural. Note that List as defined above is
open: any user can define new kinds of List by providing an implementation for the match
method.

We end this section with a remark. A subtle detail in Java 8 is that lambdas cannot
be used to implement generic methods. This means that the following more natural tuple
encoding would only work by “desugaring” the lambda syntax.

public interface Tuple2 <A,B> {
<T> T apply(BiFunction <A, B, T> f);
default A a(){ return apply ((a,b)->a);}
default B b(){ return apply ((a,b)->b);}

}
... // code trying to instantiate Tuple2
default <A, B> Tuple2 <A,B> of(A a, B b){

// return f -> f.apply(a, b);// does not compile :-(
return new Tuple2 <A,B >(){ // works without lambda syntax

public <T> T apply(BiFunction <A,B,T> f){
return f.apply(a,b );}};}

Allowing lambdas to implement generic methods was planned in a pre-release of Java 8, but
this feature was removed before release. Note how the generic method match above is the
only abstract method of List, thus if generic methods were instantiable with lambdas, we
could omit the Cons code and simply write

interface List <T>{
<R> R match(Supplier <R> onEmpty , Bifunction <T,List <T>,R> onCons );
default List <T> add(T elem ){

return (onEmpty , onCons )-> onCons .apply(elem ,this );
}

}

5 Discussion and related work

The encoding presented in Section 3 strikes a balance between being not too cumbersome and
useful. A nice feature is that it does not change the way that the programmers write their
program. That is, it is not a transformation that turns the program inside-out and obscures
the original intent: the original classes are still there (as interfaces) and their construction



M. Servetto and E. Zucca 21:13

happens at the same sites (with lambda syntax). On the other hand, the representation of
object’s state as a tuple is mainly intended to show the completeness of the approach, and
could be replaced by an efficient private implementation as, e.g., values of primitive types
are seen as objects in Smalltalk. The translation is shown over a simplification of the FJ
calculus, which makes it composable with other work on Java semantics. Keeping the original
program structure (classes/methods) means that the original program is still extensible in
the same way. Also, Java reflection would still work with the output of this encoding in a
natural way. So, this encoding looks quite powerful to support more features, e.g., simulate
field shadowing or more complex inheritance patterns.

Since our motivation was to explore a programming style which is basically functional,
we did not consider imperative features, as it is in FJ. They can be added, as usually in
functional languages, introducing reference types and constructs for referencing, assigning
and dereferencing. The classical encoding of tuples by functions immediately extends, as
shown by the code below, which is the previous Haskell example rewritten in OCaml with
references:

type a = int
type b = bool
type aOrBref = FromA of a ref | FromB of b ref
type fst = a ref -> b ref -> a ref
type snd = a ref -> b ref -> b ref
type sel = FromFst of fst | FromSnd of snd
type pair = sel -> aOrBref

let mypair : pair =
let first = ref 1 in
let second = ref true in

function
FromFst s -> FromA (s first second )
| FromSnd s -> FromB (s first second )

let getFst : pair -> a =
function p ->

let FromA a = p ( FromFst ( function a -> function b -> a))
in !a

let setFst : pair -> a -> unit =
function p -> function x ->

let FromA a = p ( FromFst ( function a -> function b -> a))
in a; a := x;

In a Java-like language, the same can be achieved having reference types (as in C++), or,
otherwise, by using local variables. Unfortunately, in Java local variables used in a lambda
expression must be final or effectively final. Without this restriction, a class Person with an
updatable field name could be encoded as follows:

interface Person extends Tuple2 <Supplier <String >, Consumer <String >>{
default String getName (){ return this.get1 (). apply ();}
default void setName ( String name ){ return this.get2 (). apply(name );}

}
interface PersonFactory {

void dummy ();
default Person makePerson ( String name ){

return s -> s.apply (()->name , newName ->name= newName );
}

}

ECOOP 2021



21:14 λ-Based Object-Oriented Programming

One commonly used way to circumvent this Java limitation is to use an array of size 1,
as shown below:

default Person makePerson ( String name ){
String [] n={ name };
return s -> s.apply( ()->n[0], newName ->n[0]= newName );

}

In general, adding any kind of array or collections would make our encoding simpler, but, as
said above, here our goal is to achieve minimality.

Though, as already said, addressing limitations of existing programming techniques was
not our aim, we can mention some side benefits of the approach. Replacing “real” fields by
getters/setters avoids the limitation that the type of fields must be invariant; thus more
code reuse patterns become available, see the extended discussion in [12]. Moreover, Java8
interfaces support reusing code from multiple sources, as for multiple inheritance. Avoiding
classes means that all the code is usable for multiple inheritance.

We already mentioned that inheritance and dynamic dispatch are supported through
default methods in interfaces. In addition, we could easily extend our core to support
InterfaceName.super.methName(...) and this would transparently allow super method calls
as in Java. Moreover, the above syntax could be syntactic sugar; if any interface declared
methods with a standard long name returnType InterfaceName$methName(...){...} with a
delegator method returnType methName(...){ return this.InterfaceName$methName(...);}
then InterfaceName.super could be emulated simply using the longer name for the method.

An OO style without class declarations, called interface-based object-oriented program-
ming, has been proposed in [12], and exploited in Java by defining Classless Java. However,
differently from our proposal, Classless Java has objects, obtained as instances of anonymous
inner classes, hence fields as well, and static methods.

More generally, many languages support objects without classes, that is, follow the
so-called “object-based” paradigm. That is, objects are not created as class instances, but,
e.g., by directly writing “object literals”. Our proposal goes a bit further, since in our calculus
there are no objects at all; the only values are functions (lambdas).

Differently from the Java approach, in [11] a minimal core Java is extended to λ-expressions
by adding function types, following the style of functional languages. Complexity of type
inference increases in a substantial way, with respect to Java’s one. Moreover, adding real
function types entails that a method must have a different signature according to whether it
can accept an object or a function. This contrasts with Java philosophy to fuse language
innovations into the old layer.

Empirical methodologies are used in [10] to illustrate when, how and why imperative
programmers adopt λ-expressions.

Classical encodings of objects [4] are as records of mutually recursive functions, where all
such functions are closures over the record. In this kind of encoding, objects contain all their
behaviour, and a program is fully expressed by an expression. Typing in this setting is non
trivial, especially recursive types, which need to be handled by some variation of fixpoints.
Our proposed language, instead, embraces the idea of an externally defined table of types
(in our case interface names) also including most of the behaviour, in the form of default
implementations. In this way, the key technical characteristic of OOP following, e.g., [1],
that is, dynamic dispatch, is provided anyway, and such language design is more friendly
toward module systems and module composition languages.

Grace [9, 7] offers an interesting middle ground: it is structurally typed, but objects can
have (generic) type-alias declarations as members, and these type names can be mutually
recursive. In most Grace programs, a top level object (called a module) plays the role of



M. Servetto and E. Zucca 21:15

the table of types, and reduction actually takes place inside such a module object. Still,
the Grace approach is more flexible than having a fixed top-level type table, since multiple
objects can be nested into each other, and lexical scope and nesting allow for interesting
forms of code composition. However, to make static reasoning feasible, only type members
of known objects (objects created in a controlled way) can be used as type annotations.
Moreover, due to generic type aliases, subtyping is undecidable.

Formalization of lambdas as in Java 8 have been provided in [2, 6], the former covering
intersection types and default methods as well. These works focus on typing issues, notably
on the fact that lambdas can only be typed when occurring in a context requiring a given
type (called the target type). In a small-step semantics, this poses a problem: reduction can
move λ-abstractions into arbitrary contexts, leading to intermediate terms which would be
ill-typed. To maintain subject reduction, in [2] λ-abstractions are decorated with their initial
target type. In a big-step semantics, as in [6], there is no need of such intermediate terms
and annotations.

6 Conclusion

We have described a novel way to conciliate OO and functional programming, where objects
(instances of classes) are replaced by tuples (encoded by lambdas). Lambdas can be equipped
with an additional behaviour, thanks to the fact that they may implement interfaces with
default methods, hence inheritance and dynamic binding are still supported. The encoding
has been formally defined by a translation from a calculus including classes to one with only
lambdas and interfaces, shown to preserve typing and semantics. This novel programming
style has been illustrated by several examples.

Concerning further work, a first step is about the use of the λ-based paradigm in Java
8, illustrated in Section 4. We assumed the encoding of tuples by lambdas to be provided
once and for all by libraries. However, in the examples in Section 4, the programmer
still has to manually write some tedious and rather cryptic code, notably lambdas such
as (name,age)->s->s.apply(name,age), or dummy lambdas. To make the paradigm more
user-friendly, suitable syntactic sugar should be provided for these constructions, likely in
form of macros.

More in general, we could leave the Java world and investigate the design of a language
especially suited to express this paradigm, and its integration with other typical language
features. For instance, which would be the best, simplest way to encode mutation in FJ−

λ

where fields are implicit? An inspiration could come from Smalltalk, which allows to update
local variables, even when they are captured by a closure.

In this design investigation, in particular an interesting direction is to take an approach
which is complementary to that of this paper, that is, to start from a functional kernel and
to enrich it by a table of types.

References
1 Jonathan Aldrich. The power of interoperability: why objects are inevitable. In Antony L.

Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM Symposium on New Ideas
in Programming and Reflections on Software, Onward! 2013, part of SPLASH’13, pages
101–116. ACM Press, 2013. doi:10.1145/2509578.2514738.

2 Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti
Venneri. Java & Lambda: a Featherweight story. Logical Methods in Computer Science, 14(3),
2018. doi:10.23638/LMCS-14(3:17)2018.

ECOOP 2021

https://doi.org/10.1145/2509578.2514738
https://doi.org/10.23638/LMCS-14(3:17)2018


21:16 λ-Based Object-Oriented Programming

3 Lorenzo Bettini, Ferruccio Damiani, Ina Schaefer, and Fabio Strocco. TraitRecordJ: A
programming language with traits and records. Science of Computer Programming, 78(5):521–
541, 2013. doi:10.1016/j.scico.2011.06.007.

4 Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. Informa-
tion and Computation, 155(1-2):108–133, 1999. doi:10.1006/inco.1999.2829.

5 Peter Buchlovsky and Hayo Thielecke. A type-theoretic reconstruction of the visitor pat-
tern. Electronic Notes in Theoretical Computer Science, 155:309–329, 2006. Mathematical
Foundations of Programming Semantics - MFPS 2005. doi:10.1016/j.entcs.2005.11.061.

6 Francesco Dagnino, Viviana Bono, Elena Zucca, and Mariangiola Dezani-Ciancaglini. Sound-
ness conditions for big-step semantics. In Peter Müller, editor, Programming Languages and Sys-
tems - 29th European Symposium on Programming - ESOP 2020, volume 12075 of Lecture Notes
in Computer Science, pages 169–196. Springer, 2020. doi:10.1007/978-3-030-44914-8_7.

7 Michael Homer, Timothy Jones, and James Noble. First-class dynamic types. In Dynamic
Languages Symposium 2019, pages 1–19. ACM Press, 2019. doi:10.1145/3359619.3359740.

8 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, 2001. doi:10.1145/503502.503505.

9 Timothy Jones, Michael Homer, James Noble, and Kim Bruce. Object inheritance without
classes. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, ECOOP’16 - Object-
Oriented Programming, volume 56, pages 13:1–13:26. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.13.

10 Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. Understanding
the use of lambda expressions in Java. Proceedings of ACM on Programming Languages,
1(OOPSLA 2017):85:1–85:31, 2017. doi:10.1145/3133909.

11 Martin Plümicke. Well-typings for Javaλ. In Christian W. Probst and Christian Wimmer,
editors, Principles and Practice of Programming in Java - PPPJ 2011, pages 91–100. ACM
Press, 2011. doi:10.1145/2093157.2093171.

12 Yanlin Wang, Haoyuan Zhang, Bruno C. d. S. Oliveira, and Marco Servetto. Classless Java. In
Bernd Fischer and Ina Schaefer, editors, Generative Programming: Concepts and Experiences
- GPCE 2016, pages 14–24. ACM Press, 2016. doi:10.1145/2993236.2993238.

https://doi.org/10.1016/j.scico.2011.06.007
https://doi.org/10.1006/inco.1999.2829
https://doi.org/10.1016/j.entcs.2005.11.061
https://doi.org/10.1007/978-3-030-44914-8_7
https://doi.org/10.1145/3359619.3359740
https://doi.org/10.1145/503502.503505
https://doi.org/10.4230/LIPIcs.ECOOP.2016.13
https://doi.org/10.1145/3133909
https://doi.org/10.1145/2093157.2093171
https://doi.org/10.1145/2993236.2993238

	1 Introduction
	2 The FJ_{lambda}^{-} and FJ_{lambda} calculi
	3 Translation
	4 Programming with only lambdas
	5 Discussion and related work
	6 Conclusion

